Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 // Copyright 2007 Google Inc. All Rights Reserved.
     29 //
     30 // Author: wjr (at) google.com (William Rucklidge)
     31 //
     32 // This file contains a class that exercises a cost function, to make sure
     33 // that it is computing reasonable derivatives. It compares the Jacobians
     34 // computed by the cost function with those obtained by finite
     35 // differences.
     36 
     37 #ifndef CERES_PUBLIC_GRADIENT_CHECKER_H_
     38 #define CERES_PUBLIC_GRADIENT_CHECKER_H_
     39 
     40 #include <cstddef>
     41 #include <algorithm>
     42 #include <vector>
     43 
     44 #include "ceres/internal/eigen.h"
     45 #include "ceres/internal/fixed_array.h"
     46 #include "ceres/internal/macros.h"
     47 #include "ceres/internal/scoped_ptr.h"
     48 #include "ceres/numeric_diff_cost_function.h"
     49 #include "glog/logging.h"
     50 
     51 namespace ceres {
     52 
     53 // An object that exercises a cost function, to compare the answers that it
     54 // gives with derivatives estimated using finite differencing.
     55 //
     56 // The only likely usage of this is for testing.
     57 //
     58 // How to use: Fill in an array of pointers to parameter blocks for your
     59 // CostFunction, and then call Probe(). Check that the return value is
     60 // 'true'. See prober_test.cc for an example.
     61 //
     62 // This is templated similarly to NumericDiffCostFunction, as it internally
     63 // uses that.
     64 template <typename CostFunctionToProbe,
     65           int M = 0, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0>
     66 class GradientChecker {
     67  public:
     68   // Here we stash some results from the probe, for later
     69   // inspection.
     70   struct GradientCheckResults {
     71     // Computed cost.
     72     Vector cost;
     73 
     74     // The sizes of these matrices are dictated by the cost function's
     75     // parameter and residual block sizes. Each vector's length will
     76     // term->parameter_block_sizes().size(), and each matrix is the
     77     // Jacobian of the residual with respect to the corresponding parameter
     78     // block.
     79 
     80     // Derivatives as computed by the cost function.
     81     vector<Matrix> term_jacobians;
     82 
     83     // Derivatives as computed by finite differencing.
     84     vector<Matrix> finite_difference_jacobians;
     85 
     86     // Infinity-norm of term_jacobians - finite_difference_jacobians.
     87     double error_jacobians;
     88   };
     89 
     90   // Checks the Jacobian computed by a cost function.
     91   //
     92   // probe_point: The parameter values at which to probe.
     93   // error_tolerance: A threshold for the infinity-norm difference
     94   // between the Jacobians. If the Jacobians differ by more than
     95   // this amount, then the probe fails.
     96   //
     97   // term: The cost function to test. Not retained after this call returns.
     98   //
     99   // results: On return, the two Jacobians (and other information)
    100   // will be stored here.  May be NULL.
    101   //
    102   // Returns true if no problems are detected and the difference between the
    103   // Jacobians is less than error_tolerance.
    104   static bool Probe(double const* const* probe_point,
    105                     double error_tolerance,
    106                     CostFunctionToProbe *term,
    107                     GradientCheckResults* results) {
    108     CHECK_NOTNULL(probe_point);
    109     CHECK_NOTNULL(term);
    110     LOG(INFO) << "-------------------- Starting Probe() --------------------";
    111 
    112     // We need a GradientCheckeresults, whether or not they supplied one.
    113     internal::scoped_ptr<GradientCheckResults> owned_results;
    114     if (results == NULL) {
    115       owned_results.reset(new GradientCheckResults);
    116       results = owned_results.get();
    117     }
    118 
    119     // Do a consistency check between the term and the template parameters.
    120     CHECK_EQ(M, term->num_residuals());
    121     const int num_residuals = M;
    122     const vector<int16>& block_sizes = term->parameter_block_sizes();
    123     const int num_blocks = block_sizes.size();
    124 
    125     CHECK_LE(num_blocks, 5) << "Unable to test functions that take more "
    126                             << "than 5 parameter blocks";
    127     if (N0) {
    128       CHECK_EQ(N0, block_sizes[0]);
    129       CHECK_GE(num_blocks, 1);
    130     } else {
    131       CHECK_LT(num_blocks, 1);
    132     }
    133     if (N1) {
    134       CHECK_EQ(N1, block_sizes[1]);
    135       CHECK_GE(num_blocks, 2);
    136     } else {
    137       CHECK_LT(num_blocks, 2);
    138     }
    139     if (N2) {
    140       CHECK_EQ(N2, block_sizes[2]);
    141       CHECK_GE(num_blocks, 3);
    142     } else {
    143       CHECK_LT(num_blocks, 3);
    144     }
    145     if (N3) {
    146       CHECK_EQ(N3, block_sizes[3]);
    147       CHECK_GE(num_blocks, 4);
    148     } else {
    149       CHECK_LT(num_blocks, 4);
    150     }
    151     if (N4) {
    152       CHECK_EQ(N4, block_sizes[4]);
    153       CHECK_GE(num_blocks, 5);
    154     } else {
    155       CHECK_LT(num_blocks, 5);
    156     }
    157 
    158     results->term_jacobians.clear();
    159     results->term_jacobians.resize(num_blocks);
    160     results->finite_difference_jacobians.clear();
    161     results->finite_difference_jacobians.resize(num_blocks);
    162 
    163     internal::FixedArray<double*> term_jacobian_pointers(num_blocks);
    164     internal::FixedArray<double*>
    165         finite_difference_jacobian_pointers(num_blocks);
    166     for (int i = 0; i < num_blocks; i++) {
    167       results->term_jacobians[i].resize(num_residuals, block_sizes[i]);
    168       term_jacobian_pointers[i] = results->term_jacobians[i].data();
    169       results->finite_difference_jacobians[i].resize(
    170           num_residuals, block_sizes[i]);
    171       finite_difference_jacobian_pointers[i] =
    172           results->finite_difference_jacobians[i].data();
    173     }
    174     results->cost.resize(num_residuals, 1);
    175 
    176     CHECK(term->Evaluate(probe_point, results->cost.data(),
    177                          term_jacobian_pointers.get()));
    178     NumericDiffCostFunction<CostFunctionToProbe, CENTRAL, M, N0, N1, N2, N3, N4>
    179         numeric_term(term, DO_NOT_TAKE_OWNERSHIP);
    180     CHECK(numeric_term.Evaluate(probe_point, results->cost.data(),
    181                                 finite_difference_jacobian_pointers.get()));
    182 
    183     results->error_jacobians = 0;
    184     for (int i = 0; i < num_blocks; i++) {
    185       Matrix jacobian_difference = results->term_jacobians[i] -
    186           results->finite_difference_jacobians[i];
    187       results->error_jacobians =
    188           std::max(results->error_jacobians,
    189                    jacobian_difference.lpNorm<Eigen::Infinity>());
    190     }
    191 
    192     LOG(INFO) << "========== term-computed derivatives ==========";
    193     for (int i = 0; i < num_blocks; i++) {
    194       LOG(INFO) << "term_computed block " << i;
    195       LOG(INFO) << "\n" << results->term_jacobians[i];
    196     }
    197 
    198     LOG(INFO) << "========== finite-difference derivatives ==========";
    199     for (int i = 0; i < num_blocks; i++) {
    200       LOG(INFO) << "finite_difference block " << i;
    201       LOG(INFO) << "\n" << results->finite_difference_jacobians[i];
    202     }
    203 
    204     LOG(INFO) << "========== difference ==========";
    205     for (int i = 0; i < num_blocks; i++) {
    206       LOG(INFO) << "difference block " << i;
    207       LOG(INFO) << (results->term_jacobians[i] -
    208                     results->finite_difference_jacobians[i]);
    209     }
    210 
    211     LOG(INFO) << "||difference|| = " << results->error_jacobians;
    212 
    213     return results->error_jacobians < error_tolerance;
    214   }
    215 
    216  private:
    217   CERES_DISALLOW_IMPLICIT_CONSTRUCTORS(GradientChecker);
    218 };
    219 
    220 }  // namespace ceres
    221 
    222 #endif  // CERES_PUBLIC_GRADIENT_CHECKER_H_
    223