Home | History | Annotate | Download | only in CodeGen
      1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #define DEBUG_TYPE "post-RA-sched"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "AggressiveAntiDepBreaker.h"
     24 #include "AntiDepBreaker.h"
     25 #include "CriticalAntiDepBreaker.h"
     26 #include "llvm/ADT/BitVector.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/Analysis/AliasAnalysis.h"
     29 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     30 #include "llvm/CodeGen/MachineDominators.h"
     31 #include "llvm/CodeGen/MachineFrameInfo.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineLoopInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/RegisterClassInfo.h"
     37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     39 #include "llvm/CodeGen/SchedulerRegistry.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetLowering.h"
     46 #include "llvm/Target/TargetMachine.h"
     47 #include "llvm/Target/TargetRegisterInfo.h"
     48 #include "llvm/Target/TargetSubtargetInfo.h"
     49 using namespace llvm;
     50 
     51 STATISTIC(NumNoops, "Number of noops inserted");
     52 STATISTIC(NumStalls, "Number of pipeline stalls");
     53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
     54 
     55 // Post-RA scheduling is enabled with
     56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
     57 // override the target.
     58 static cl::opt<bool>
     59 EnablePostRAScheduler("post-RA-scheduler",
     60                        cl::desc("Enable scheduling after register allocation"),
     61                        cl::init(false), cl::Hidden);
     62 static cl::opt<std::string>
     63 EnableAntiDepBreaking("break-anti-dependencies",
     64                       cl::desc("Break post-RA scheduling anti-dependencies: "
     65                                "\"critical\", \"all\", or \"none\""),
     66                       cl::init("none"), cl::Hidden);
     67 
     68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
     69 static cl::opt<int>
     70 DebugDiv("postra-sched-debugdiv",
     71                       cl::desc("Debug control MBBs that are scheduled"),
     72                       cl::init(0), cl::Hidden);
     73 static cl::opt<int>
     74 DebugMod("postra-sched-debugmod",
     75                       cl::desc("Debug control MBBs that are scheduled"),
     76                       cl::init(0), cl::Hidden);
     77 
     78 AntiDepBreaker::~AntiDepBreaker() { }
     79 
     80 namespace {
     81   class PostRAScheduler : public MachineFunctionPass {
     82     const TargetInstrInfo *TII;
     83     RegisterClassInfo RegClassInfo;
     84 
     85   public:
     86     static char ID;
     87     PostRAScheduler() : MachineFunctionPass(ID) {}
     88 
     89     void getAnalysisUsage(AnalysisUsage &AU) const {
     90       AU.setPreservesCFG();
     91       AU.addRequired<AliasAnalysis>();
     92       AU.addRequired<TargetPassConfig>();
     93       AU.addRequired<MachineDominatorTree>();
     94       AU.addPreserved<MachineDominatorTree>();
     95       AU.addRequired<MachineLoopInfo>();
     96       AU.addPreserved<MachineLoopInfo>();
     97       MachineFunctionPass::getAnalysisUsage(AU);
     98     }
     99 
    100     bool runOnMachineFunction(MachineFunction &Fn);
    101   };
    102   char PostRAScheduler::ID = 0;
    103 
    104   class SchedulePostRATDList : public ScheduleDAGInstrs {
    105     /// AvailableQueue - The priority queue to use for the available SUnits.
    106     ///
    107     LatencyPriorityQueue AvailableQueue;
    108 
    109     /// PendingQueue - This contains all of the instructions whose operands have
    110     /// been issued, but their results are not ready yet (due to the latency of
    111     /// the operation).  Once the operands becomes available, the instruction is
    112     /// added to the AvailableQueue.
    113     std::vector<SUnit*> PendingQueue;
    114 
    115     /// HazardRec - The hazard recognizer to use.
    116     ScheduleHazardRecognizer *HazardRec;
    117 
    118     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    119     AntiDepBreaker *AntiDepBreak;
    120 
    121     /// AA - AliasAnalysis for making memory reference queries.
    122     AliasAnalysis *AA;
    123 
    124     /// LiveRegs - true if the register is live.
    125     BitVector LiveRegs;
    126 
    127     /// The schedule. Null SUnit*'s represent noop instructions.
    128     std::vector<SUnit*> Sequence;
    129 
    130   public:
    131     SchedulePostRATDList(
    132       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    133       AliasAnalysis *AA, const RegisterClassInfo&,
    134       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    135       SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
    136 
    137     ~SchedulePostRATDList();
    138 
    139     /// startBlock - Initialize register live-range state for scheduling in
    140     /// this block.
    141     ///
    142     void startBlock(MachineBasicBlock *BB);
    143 
    144     /// Initialize the scheduler state for the next scheduling region.
    145     virtual void enterRegion(MachineBasicBlock *bb,
    146                              MachineBasicBlock::iterator begin,
    147                              MachineBasicBlock::iterator end,
    148                              unsigned endcount);
    149 
    150     /// Notify that the scheduler has finished scheduling the current region.
    151     virtual void exitRegion();
    152 
    153     /// Schedule - Schedule the instruction range using list scheduling.
    154     ///
    155     void schedule();
    156 
    157     void EmitSchedule();
    158 
    159     /// Observe - Update liveness information to account for the current
    160     /// instruction, which will not be scheduled.
    161     ///
    162     void Observe(MachineInstr *MI, unsigned Count);
    163 
    164     /// finishBlock - Clean up register live-range state.
    165     ///
    166     void finishBlock();
    167 
    168     /// FixupKills - Fix register kill flags that have been made
    169     /// invalid due to scheduling
    170     ///
    171     void FixupKills(MachineBasicBlock *MBB);
    172 
    173   private:
    174     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    175     void ReleaseSuccessors(SUnit *SU);
    176     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    177     void ListScheduleTopDown();
    178     void StartBlockForKills(MachineBasicBlock *BB);
    179 
    180     // ToggleKillFlag - Toggle a register operand kill flag. Other
    181     // adjustments may be made to the instruction if necessary. Return
    182     // true if the operand has been deleted, false if not.
    183     bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
    184 
    185     void dumpSchedule() const;
    186   };
    187 }
    188 
    189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
    190 
    191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
    192                 "Post RA top-down list latency scheduler", false, false)
    193 
    194 SchedulePostRATDList::SchedulePostRATDList(
    195   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    196   AliasAnalysis *AA, const RegisterClassInfo &RCI,
    197   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    198   SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
    199   : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
    200     LiveRegs(TRI->getNumRegs())
    201 {
    202   const TargetMachine &TM = MF.getTarget();
    203   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
    204   HazardRec =
    205     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
    206 
    207   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
    208           MRI.tracksLiveness()) &&
    209          "Live-ins must be accurate for anti-dependency breaking");
    210   AntiDepBreak =
    211     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
    212      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
    213      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
    214       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
    215 }
    216 
    217 SchedulePostRATDList::~SchedulePostRATDList() {
    218   delete HazardRec;
    219   delete AntiDepBreak;
    220 }
    221 
    222 /// Initialize state associated with the next scheduling region.
    223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
    224                  MachineBasicBlock::iterator begin,
    225                  MachineBasicBlock::iterator end,
    226                  unsigned endcount) {
    227   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
    228   Sequence.clear();
    229 }
    230 
    231 /// Print the schedule before exiting the region.
    232 void SchedulePostRATDList::exitRegion() {
    233   DEBUG({
    234       dbgs() << "*** Final schedule ***\n";
    235       dumpSchedule();
    236       dbgs() << '\n';
    237     });
    238   ScheduleDAGInstrs::exitRegion();
    239 }
    240 
    241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    242 /// dumpSchedule - dump the scheduled Sequence.
    243 void SchedulePostRATDList::dumpSchedule() const {
    244   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    245     if (SUnit *SU = Sequence[i])
    246       SU->dump(this);
    247     else
    248       dbgs() << "**** NOOP ****\n";
    249   }
    250 }
    251 #endif
    252 
    253 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
    254   TII = Fn.getTarget().getInstrInfo();
    255   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    256   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
    257   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
    258   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
    259 
    260   RegClassInfo.runOnMachineFunction(Fn);
    261 
    262   // Check for explicit enable/disable of post-ra scheduling.
    263   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    264     TargetSubtargetInfo::ANTIDEP_NONE;
    265   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
    266   if (EnablePostRAScheduler.getPosition() > 0) {
    267     if (!EnablePostRAScheduler)
    268       return false;
    269   } else {
    270     // Check that post-RA scheduling is enabled for this target.
    271     // This may upgrade the AntiDepMode.
    272     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
    273     if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
    274                                   CriticalPathRCs))
    275       return false;
    276   }
    277 
    278   // Check for antidep breaking override...
    279   if (EnableAntiDepBreaking.getPosition() > 0) {
    280     AntiDepMode = (EnableAntiDepBreaking == "all")
    281       ? TargetSubtargetInfo::ANTIDEP_ALL
    282       : ((EnableAntiDepBreaking == "critical")
    283          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
    284          : TargetSubtargetInfo::ANTIDEP_NONE);
    285   }
    286 
    287   DEBUG(dbgs() << "PostRAScheduler\n");
    288 
    289   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
    290                                  CriticalPathRCs);
    291 
    292   // Loop over all of the basic blocks
    293   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    294        MBB != MBBe; ++MBB) {
    295 #ifndef NDEBUG
    296     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    297     if (DebugDiv > 0) {
    298       static int bbcnt = 0;
    299       if (bbcnt++ % DebugDiv != DebugMod)
    300         continue;
    301       dbgs() << "*** DEBUG scheduling " << Fn.getName()
    302              << ":BB#" << MBB->getNumber() << " ***\n";
    303     }
    304 #endif
    305 
    306     // Initialize register live-range state for scheduling in this block.
    307     Scheduler.startBlock(MBB);
    308 
    309     // Schedule each sequence of instructions not interrupted by a label
    310     // or anything else that effectively needs to shut down scheduling.
    311     MachineBasicBlock::iterator Current = MBB->end();
    312     unsigned Count = MBB->size(), CurrentCount = Count;
    313     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
    314       MachineInstr *MI = llvm::prior(I);
    315       // Calls are not scheduling boundaries before register allocation, but
    316       // post-ra we don't gain anything by scheduling across calls since we
    317       // don't need to worry about register pressure.
    318       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
    319         Scheduler.enterRegion(MBB, I, Current, CurrentCount);
    320         Scheduler.schedule();
    321         Scheduler.exitRegion();
    322         Scheduler.EmitSchedule();
    323         Current = MI;
    324         CurrentCount = Count - 1;
    325         Scheduler.Observe(MI, CurrentCount);
    326       }
    327       I = MI;
    328       --Count;
    329       if (MI->isBundle())
    330         Count -= MI->getBundleSize();
    331     }
    332     assert(Count == 0 && "Instruction count mismatch!");
    333     assert((MBB->begin() == Current || CurrentCount != 0) &&
    334            "Instruction count mismatch!");
    335     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
    336     Scheduler.schedule();
    337     Scheduler.exitRegion();
    338     Scheduler.EmitSchedule();
    339 
    340     // Clean up register live-range state.
    341     Scheduler.finishBlock();
    342 
    343     // Update register kills
    344     Scheduler.FixupKills(MBB);
    345   }
    346 
    347   return true;
    348 }
    349 
    350 /// StartBlock - Initialize register live-range state for scheduling in
    351 /// this block.
    352 ///
    353 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
    354   // Call the superclass.
    355   ScheduleDAGInstrs::startBlock(BB);
    356 
    357   // Reset the hazard recognizer and anti-dep breaker.
    358   HazardRec->Reset();
    359   if (AntiDepBreak != NULL)
    360     AntiDepBreak->StartBlock(BB);
    361 }
    362 
    363 /// Schedule - Schedule the instruction range using list scheduling.
    364 ///
    365 void SchedulePostRATDList::schedule() {
    366   // Build the scheduling graph.
    367   buildSchedGraph(AA);
    368 
    369   if (AntiDepBreak != NULL) {
    370     unsigned Broken =
    371       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
    372                                           EndIndex, DbgValues);
    373 
    374     if (Broken != 0) {
    375       // We made changes. Update the dependency graph.
    376       // Theoretically we could update the graph in place:
    377       // When a live range is changed to use a different register, remove
    378       // the def's anti-dependence *and* output-dependence edges due to
    379       // that register, and add new anti-dependence and output-dependence
    380       // edges based on the next live range of the register.
    381       ScheduleDAG::clearDAG();
    382       buildSchedGraph(AA);
    383 
    384       NumFixedAnti += Broken;
    385     }
    386   }
    387 
    388   DEBUG(dbgs() << "********** List Scheduling **********\n");
    389   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    390           SUnits[su].dumpAll(this));
    391 
    392   AvailableQueue.initNodes(SUnits);
    393   ListScheduleTopDown();
    394   AvailableQueue.releaseState();
    395 }
    396 
    397 /// Observe - Update liveness information to account for the current
    398 /// instruction, which will not be scheduled.
    399 ///
    400 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
    401   if (AntiDepBreak != NULL)
    402     AntiDepBreak->Observe(MI, Count, EndIndex);
    403 }
    404 
    405 /// FinishBlock - Clean up register live-range state.
    406 ///
    407 void SchedulePostRATDList::finishBlock() {
    408   if (AntiDepBreak != NULL)
    409     AntiDepBreak->FinishBlock();
    410 
    411   // Call the superclass.
    412   ScheduleDAGInstrs::finishBlock();
    413 }
    414 
    415 /// StartBlockForKills - Initialize register live-range state for updating kills
    416 ///
    417 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
    418   // Start with no live registers.
    419   LiveRegs.reset();
    420 
    421   // Examine the live-in regs of all successors.
    422   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    423        SE = BB->succ_end(); SI != SE; ++SI) {
    424     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    425          E = (*SI)->livein_end(); I != E; ++I) {
    426       unsigned Reg = *I;
    427       // Repeat, for reg and all subregs.
    428       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    429            SubRegs.isValid(); ++SubRegs)
    430         LiveRegs.set(*SubRegs);
    431     }
    432   }
    433 }
    434 
    435 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
    436                                           MachineOperand &MO) {
    437   // Setting kill flag...
    438   if (!MO.isKill()) {
    439     MO.setIsKill(true);
    440     return false;
    441   }
    442 
    443   // If MO itself is live, clear the kill flag...
    444   if (LiveRegs.test(MO.getReg())) {
    445     MO.setIsKill(false);
    446     return false;
    447   }
    448 
    449   // If any subreg of MO is live, then create an imp-def for that
    450   // subreg and keep MO marked as killed.
    451   MO.setIsKill(false);
    452   bool AllDead = true;
    453   const unsigned SuperReg = MO.getReg();
    454   MachineInstrBuilder MIB(MF, MI);
    455   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
    456     if (LiveRegs.test(*SubRegs)) {
    457       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
    458       AllDead = false;
    459     }
    460   }
    461 
    462   if(AllDead)
    463     MO.setIsKill(true);
    464   return false;
    465 }
    466 
    467 /// FixupKills - Fix the register kill flags, they may have been made
    468 /// incorrect by instruction reordering.
    469 ///
    470 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
    471   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
    472 
    473   BitVector killedRegs(TRI->getNumRegs());
    474 
    475   StartBlockForKills(MBB);
    476 
    477   // Examine block from end to start...
    478   unsigned Count = MBB->size();
    479   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
    480        I != E; --Count) {
    481     MachineInstr *MI = --I;
    482     if (MI->isDebugValue())
    483       continue;
    484 
    485     // Update liveness.  Registers that are defed but not used in this
    486     // instruction are now dead. Mark register and all subregs as they
    487     // are completely defined.
    488     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    489       MachineOperand &MO = MI->getOperand(i);
    490       if (MO.isRegMask())
    491         LiveRegs.clearBitsNotInMask(MO.getRegMask());
    492       if (!MO.isReg()) continue;
    493       unsigned Reg = MO.getReg();
    494       if (Reg == 0) continue;
    495       if (!MO.isDef()) continue;
    496       // Ignore two-addr defs.
    497       if (MI->isRegTiedToUseOperand(i)) continue;
    498 
    499       // Repeat for reg and all subregs.
    500       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    501            SubRegs.isValid(); ++SubRegs)
    502         LiveRegs.reset(*SubRegs);
    503     }
    504 
    505     // Examine all used registers and set/clear kill flag. When a
    506     // register is used multiple times we only set the kill flag on
    507     // the first use.
    508     killedRegs.reset();
    509     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    510       MachineOperand &MO = MI->getOperand(i);
    511       if (!MO.isReg() || !MO.isUse()) continue;
    512       unsigned Reg = MO.getReg();
    513       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
    514 
    515       bool kill = false;
    516       if (!killedRegs.test(Reg)) {
    517         kill = true;
    518         // A register is not killed if any subregs are live...
    519         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    520           if (LiveRegs.test(*SubRegs)) {
    521             kill = false;
    522             break;
    523           }
    524         }
    525 
    526         // If subreg is not live, then register is killed if it became
    527         // live in this instruction
    528         if (kill)
    529           kill = !LiveRegs.test(Reg);
    530       }
    531 
    532       if (MO.isKill() != kill) {
    533         DEBUG(dbgs() << "Fixing " << MO << " in ");
    534         // Warning: ToggleKillFlag may invalidate MO.
    535         ToggleKillFlag(MI, MO);
    536         DEBUG(MI->dump());
    537       }
    538 
    539       killedRegs.set(Reg);
    540     }
    541 
    542     // Mark any used register (that is not using undef) and subregs as
    543     // now live...
    544     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    545       MachineOperand &MO = MI->getOperand(i);
    546       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
    547       unsigned Reg = MO.getReg();
    548       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
    549 
    550       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    551            SubRegs.isValid(); ++SubRegs)
    552         LiveRegs.set(*SubRegs);
    553     }
    554   }
    555 }
    556 
    557 //===----------------------------------------------------------------------===//
    558 //  Top-Down Scheduling
    559 //===----------------------------------------------------------------------===//
    560 
    561 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    562 /// the PendingQueue if the count reaches zero.
    563 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
    564   SUnit *SuccSU = SuccEdge->getSUnit();
    565 
    566   if (SuccEdge->isWeak()) {
    567     --SuccSU->WeakPredsLeft;
    568     return;
    569   }
    570 #ifndef NDEBUG
    571   if (SuccSU->NumPredsLeft == 0) {
    572     dbgs() << "*** Scheduling failed! ***\n";
    573     SuccSU->dump(this);
    574     dbgs() << " has been released too many times!\n";
    575     llvm_unreachable(0);
    576   }
    577 #endif
    578   --SuccSU->NumPredsLeft;
    579 
    580   // Standard scheduler algorithms will recompute the depth of the successor
    581   // here as such:
    582   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
    583   //
    584   // However, we lazily compute node depth instead. Note that
    585   // ScheduleNodeTopDown has already updated the depth of this node which causes
    586   // all descendents to be marked dirty. Setting the successor depth explicitly
    587   // here would cause depth to be recomputed for all its ancestors. If the
    588   // successor is not yet ready (because of a transitively redundant edge) then
    589   // this causes depth computation to be quadratic in the size of the DAG.
    590 
    591   // If all the node's predecessors are scheduled, this node is ready
    592   // to be scheduled. Ignore the special ExitSU node.
    593   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    594     PendingQueue.push_back(SuccSU);
    595 }
    596 
    597 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
    598 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
    599   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    600        I != E; ++I) {
    601     ReleaseSucc(SU, &*I);
    602   }
    603 }
    604 
    605 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    606 /// count of its successors. If a successor pending count is zero, add it to
    607 /// the Available queue.
    608 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    609   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    610   DEBUG(SU->dump(this));
    611 
    612   Sequence.push_back(SU);
    613   assert(CurCycle >= SU->getDepth() &&
    614          "Node scheduled above its depth!");
    615   SU->setDepthToAtLeast(CurCycle);
    616 
    617   ReleaseSuccessors(SU);
    618   SU->isScheduled = true;
    619   AvailableQueue.scheduledNode(SU);
    620 }
    621 
    622 /// ListScheduleTopDown - The main loop of list scheduling for top-down
    623 /// schedulers.
    624 void SchedulePostRATDList::ListScheduleTopDown() {
    625   unsigned CurCycle = 0;
    626 
    627   // We're scheduling top-down but we're visiting the regions in
    628   // bottom-up order, so we don't know the hazards at the start of a
    629   // region. So assume no hazards (this should usually be ok as most
    630   // blocks are a single region).
    631   HazardRec->Reset();
    632 
    633   // Release any successors of the special Entry node.
    634   ReleaseSuccessors(&EntrySU);
    635 
    636   // Add all leaves to Available queue.
    637   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    638     // It is available if it has no predecessors.
    639     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
    640       AvailableQueue.push(&SUnits[i]);
    641       SUnits[i].isAvailable = true;
    642     }
    643   }
    644 
    645   // In any cycle where we can't schedule any instructions, we must
    646   // stall or emit a noop, depending on the target.
    647   bool CycleHasInsts = false;
    648 
    649   // While Available queue is not empty, grab the node with the highest
    650   // priority. If it is not ready put it back.  Schedule the node.
    651   std::vector<SUnit*> NotReady;
    652   Sequence.reserve(SUnits.size());
    653   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    654     // Check to see if any of the pending instructions are ready to issue.  If
    655     // so, add them to the available queue.
    656     unsigned MinDepth = ~0u;
    657     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    658       if (PendingQueue[i]->getDepth() <= CurCycle) {
    659         AvailableQueue.push(PendingQueue[i]);
    660         PendingQueue[i]->isAvailable = true;
    661         PendingQueue[i] = PendingQueue.back();
    662         PendingQueue.pop_back();
    663         --i; --e;
    664       } else if (PendingQueue[i]->getDepth() < MinDepth)
    665         MinDepth = PendingQueue[i]->getDepth();
    666     }
    667 
    668     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
    669 
    670     SUnit *FoundSUnit = 0;
    671     bool HasNoopHazards = false;
    672     while (!AvailableQueue.empty()) {
    673       SUnit *CurSUnit = AvailableQueue.pop();
    674 
    675       ScheduleHazardRecognizer::HazardType HT =
    676         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    677       if (HT == ScheduleHazardRecognizer::NoHazard) {
    678         FoundSUnit = CurSUnit;
    679         break;
    680       }
    681 
    682       // Remember if this is a noop hazard.
    683       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    684 
    685       NotReady.push_back(CurSUnit);
    686     }
    687 
    688     // Add the nodes that aren't ready back onto the available list.
    689     if (!NotReady.empty()) {
    690       AvailableQueue.push_all(NotReady);
    691       NotReady.clear();
    692     }
    693 
    694     // If we found a node to schedule...
    695     if (FoundSUnit) {
    696       // ... schedule the node...
    697       ScheduleNodeTopDown(FoundSUnit, CurCycle);
    698       HazardRec->EmitInstruction(FoundSUnit);
    699       CycleHasInsts = true;
    700       if (HazardRec->atIssueLimit()) {
    701         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
    702         HazardRec->AdvanceCycle();
    703         ++CurCycle;
    704         CycleHasInsts = false;
    705       }
    706     } else {
    707       if (CycleHasInsts) {
    708         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
    709         HazardRec->AdvanceCycle();
    710       } else if (!HasNoopHazards) {
    711         // Otherwise, we have a pipeline stall, but no other problem,
    712         // just advance the current cycle and try again.
    713         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
    714         HazardRec->AdvanceCycle();
    715         ++NumStalls;
    716       } else {
    717         // Otherwise, we have no instructions to issue and we have instructions
    718         // that will fault if we don't do this right.  This is the case for
    719         // processors without pipeline interlocks and other cases.
    720         DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
    721         HazardRec->EmitNoop();
    722         Sequence.push_back(0);   // NULL here means noop
    723         ++NumNoops;
    724       }
    725 
    726       ++CurCycle;
    727       CycleHasInsts = false;
    728     }
    729   }
    730 
    731 #ifndef NDEBUG
    732   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
    733   unsigned Noops = 0;
    734   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    735     if (!Sequence[i])
    736       ++Noops;
    737   assert(Sequence.size() - Noops == ScheduledNodes &&
    738          "The number of nodes scheduled doesn't match the expected number!");
    739 #endif // NDEBUG
    740 }
    741 
    742 // EmitSchedule - Emit the machine code in scheduled order.
    743 void SchedulePostRATDList::EmitSchedule() {
    744   RegionBegin = RegionEnd;
    745 
    746   // If first instruction was a DBG_VALUE then put it back.
    747   if (FirstDbgValue)
    748     BB->splice(RegionEnd, BB, FirstDbgValue);
    749 
    750   // Then re-insert them according to the given schedule.
    751   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    752     if (SUnit *SU = Sequence[i])
    753       BB->splice(RegionEnd, BB, SU->getInstr());
    754     else
    755       // Null SUnit* is a noop.
    756       TII->insertNoop(*BB, RegionEnd);
    757 
    758     // Update the Begin iterator, as the first instruction in the block
    759     // may have been scheduled later.
    760     if (i == 0)
    761       RegionBegin = prior(RegionEnd);
    762   }
    763 
    764   // Reinsert any remaining debug_values.
    765   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    766          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    767     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    768     MachineInstr *DbgValue = P.first;
    769     MachineBasicBlock::iterator OrigPrivMI = P.second;
    770     BB->splice(++OrigPrivMI, BB, DbgValue);
    771   }
    772   DbgValues.clear();
    773   FirstDbgValue = NULL;
    774 }
    775