Home | History | Annotate | Download | only in IR
      1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements folding of constants for LLVM.  This implements the
     11 // (internal) ConstantFold.h interface, which is used by the
     12 // ConstantExpr::get* methods to automatically fold constants when possible.
     13 //
     14 // The current constant folding implementation is implemented in two pieces: the
     15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
     16 // a dependence in IR on Target.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "ConstantFold.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GlobalAlias.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/Support/Compiler.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include <limits>
     35 using namespace llvm;
     36 
     37 //===----------------------------------------------------------------------===//
     38 //                ConstantFold*Instruction Implementations
     39 //===----------------------------------------------------------------------===//
     40 
     41 /// BitCastConstantVector - Convert the specified vector Constant node to the
     42 /// specified vector type.  At this point, we know that the elements of the
     43 /// input vector constant are all simple integer or FP values.
     44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
     45 
     46   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
     47   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
     48 
     49   // If this cast changes element count then we can't handle it here:
     50   // doing so requires endianness information.  This should be handled by
     51   // Analysis/ConstantFolding.cpp
     52   unsigned NumElts = DstTy->getNumElements();
     53   if (NumElts != CV->getType()->getVectorNumElements())
     54     return 0;
     55 
     56   Type *DstEltTy = DstTy->getElementType();
     57 
     58   SmallVector<Constant*, 16> Result;
     59   Type *Ty = IntegerType::get(CV->getContext(), 32);
     60   for (unsigned i = 0; i != NumElts; ++i) {
     61     Constant *C =
     62       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
     63     C = ConstantExpr::getBitCast(C, DstEltTy);
     64     Result.push_back(C);
     65   }
     66 
     67   return ConstantVector::get(Result);
     68 }
     69 
     70 /// This function determines which opcode to use to fold two constant cast
     71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
     72 /// the opcode. Consequently its just a wrapper around that function.
     73 /// @brief Determine if it is valid to fold a cast of a cast
     74 static unsigned
     75 foldConstantCastPair(
     76   unsigned opc,          ///< opcode of the second cast constant expression
     77   ConstantExpr *Op,      ///< the first cast constant expression
     78   Type *DstTy            ///< destination type of the first cast
     79 ) {
     80   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
     81   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
     82   assert(CastInst::isCast(opc) && "Invalid cast opcode");
     83 
     84   // The the types and opcodes for the two Cast constant expressions
     85   Type *SrcTy = Op->getOperand(0)->getType();
     86   Type *MidTy = Op->getType();
     87   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
     88   Instruction::CastOps secondOp = Instruction::CastOps(opc);
     89 
     90   // Assume that pointers are never more than 64 bits wide, and only use this
     91   // for the middle type. Otherwise we could end up folding away illegal
     92   // bitcasts between address spaces with different sizes.
     93   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
     94 
     95   // Let CastInst::isEliminableCastPair do the heavy lifting.
     96   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
     97                                         0, FakeIntPtrTy, 0);
     98 }
     99 
    100 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
    101   Type *SrcTy = V->getType();
    102   if (SrcTy == DestTy)
    103     return V; // no-op cast
    104 
    105   // Check to see if we are casting a pointer to an aggregate to a pointer to
    106   // the first element.  If so, return the appropriate GEP instruction.
    107   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
    108     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
    109       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
    110           && DPTy->getElementType()->isSized()) {
    111         SmallVector<Value*, 8> IdxList;
    112         Value *Zero =
    113           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
    114         IdxList.push_back(Zero);
    115         Type *ElTy = PTy->getElementType();
    116         while (ElTy != DPTy->getElementType()) {
    117           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
    118             if (STy->getNumElements() == 0) break;
    119             ElTy = STy->getElementType(0);
    120             IdxList.push_back(Zero);
    121           } else if (SequentialType *STy =
    122                      dyn_cast<SequentialType>(ElTy)) {
    123             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
    124             ElTy = STy->getElementType();
    125             IdxList.push_back(Zero);
    126           } else {
    127             break;
    128           }
    129         }
    130 
    131         if (ElTy == DPTy->getElementType())
    132           // This GEP is inbounds because all indices are zero.
    133           return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
    134       }
    135 
    136   // Handle casts from one vector constant to another.  We know that the src
    137   // and dest type have the same size (otherwise its an illegal cast).
    138   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
    139     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
    140       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
    141              "Not cast between same sized vectors!");
    142       SrcTy = NULL;
    143       // First, check for null.  Undef is already handled.
    144       if (isa<ConstantAggregateZero>(V))
    145         return Constant::getNullValue(DestTy);
    146 
    147       // Handle ConstantVector and ConstantAggregateVector.
    148       return BitCastConstantVector(V, DestPTy);
    149     }
    150 
    151     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
    152     // This allows for other simplifications (although some of them
    153     // can only be handled by Analysis/ConstantFolding.cpp).
    154     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
    155       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
    156   }
    157 
    158   // Finally, implement bitcast folding now.   The code below doesn't handle
    159   // bitcast right.
    160   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
    161     return ConstantPointerNull::get(cast<PointerType>(DestTy));
    162 
    163   // Handle integral constant input.
    164   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    165     if (DestTy->isIntegerTy())
    166       // Integral -> Integral. This is a no-op because the bit widths must
    167       // be the same. Consequently, we just fold to V.
    168       return V;
    169 
    170     if (DestTy->isFloatingPointTy())
    171       return ConstantFP::get(DestTy->getContext(),
    172                              APFloat(DestTy->getFltSemantics(),
    173                                      CI->getValue()));
    174 
    175     // Otherwise, can't fold this (vector?)
    176     return 0;
    177   }
    178 
    179   // Handle ConstantFP input: FP -> Integral.
    180   if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
    181     return ConstantInt::get(FP->getContext(),
    182                             FP->getValueAPF().bitcastToAPInt());
    183 
    184   return 0;
    185 }
    186 
    187 
    188 /// ExtractConstantBytes - V is an integer constant which only has a subset of
    189 /// its bytes used.  The bytes used are indicated by ByteStart (which is the
    190 /// first byte used, counting from the least significant byte) and ByteSize,
    191 /// which is the number of bytes used.
    192 ///
    193 /// This function analyzes the specified constant to see if the specified byte
    194 /// range can be returned as a simplified constant.  If so, the constant is
    195 /// returned, otherwise null is returned.
    196 ///
    197 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
    198                                       unsigned ByteSize) {
    199   assert(C->getType()->isIntegerTy() &&
    200          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
    201          "Non-byte sized integer input");
    202   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
    203   assert(ByteSize && "Must be accessing some piece");
    204   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
    205   assert(ByteSize != CSize && "Should not extract everything");
    206 
    207   // Constant Integers are simple.
    208   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    209     APInt V = CI->getValue();
    210     if (ByteStart)
    211       V = V.lshr(ByteStart*8);
    212     V = V.trunc(ByteSize*8);
    213     return ConstantInt::get(CI->getContext(), V);
    214   }
    215 
    216   // In the input is a constant expr, we might be able to recursively simplify.
    217   // If not, we definitely can't do anything.
    218   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    219   if (CE == 0) return 0;
    220 
    221   switch (CE->getOpcode()) {
    222   default: return 0;
    223   case Instruction::Or: {
    224     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    225     if (RHS == 0)
    226       return 0;
    227 
    228     // X | -1 -> -1.
    229     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
    230       if (RHSC->isAllOnesValue())
    231         return RHSC;
    232 
    233     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    234     if (LHS == 0)
    235       return 0;
    236     return ConstantExpr::getOr(LHS, RHS);
    237   }
    238   case Instruction::And: {
    239     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    240     if (RHS == 0)
    241       return 0;
    242 
    243     // X & 0 -> 0.
    244     if (RHS->isNullValue())
    245       return RHS;
    246 
    247     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    248     if (LHS == 0)
    249       return 0;
    250     return ConstantExpr::getAnd(LHS, RHS);
    251   }
    252   case Instruction::LShr: {
    253     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    254     if (Amt == 0)
    255       return 0;
    256     unsigned ShAmt = Amt->getZExtValue();
    257     // Cannot analyze non-byte shifts.
    258     if ((ShAmt & 7) != 0)
    259       return 0;
    260     ShAmt >>= 3;
    261 
    262     // If the extract is known to be all zeros, return zero.
    263     if (ByteStart >= CSize-ShAmt)
    264       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    265                                                      ByteSize*8));
    266     // If the extract is known to be fully in the input, extract it.
    267     if (ByteStart+ByteSize+ShAmt <= CSize)
    268       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
    269 
    270     // TODO: Handle the 'partially zero' case.
    271     return 0;
    272   }
    273 
    274   case Instruction::Shl: {
    275     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    276     if (Amt == 0)
    277       return 0;
    278     unsigned ShAmt = Amt->getZExtValue();
    279     // Cannot analyze non-byte shifts.
    280     if ((ShAmt & 7) != 0)
    281       return 0;
    282     ShAmt >>= 3;
    283 
    284     // If the extract is known to be all zeros, return zero.
    285     if (ByteStart+ByteSize <= ShAmt)
    286       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    287                                                      ByteSize*8));
    288     // If the extract is known to be fully in the input, extract it.
    289     if (ByteStart >= ShAmt)
    290       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
    291 
    292     // TODO: Handle the 'partially zero' case.
    293     return 0;
    294   }
    295 
    296   case Instruction::ZExt: {
    297     unsigned SrcBitSize =
    298       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
    299 
    300     // If extracting something that is completely zero, return 0.
    301     if (ByteStart*8 >= SrcBitSize)
    302       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    303                                                      ByteSize*8));
    304 
    305     // If exactly extracting the input, return it.
    306     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
    307       return CE->getOperand(0);
    308 
    309     // If extracting something completely in the input, if if the input is a
    310     // multiple of 8 bits, recurse.
    311     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
    312       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
    313 
    314     // Otherwise, if extracting a subset of the input, which is not multiple of
    315     // 8 bits, do a shift and trunc to get the bits.
    316     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
    317       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
    318       Constant *Res = CE->getOperand(0);
    319       if (ByteStart)
    320         Res = ConstantExpr::getLShr(Res,
    321                                  ConstantInt::get(Res->getType(), ByteStart*8));
    322       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
    323                                                           ByteSize*8));
    324     }
    325 
    326     // TODO: Handle the 'partially zero' case.
    327     return 0;
    328   }
    329   }
    330 }
    331 
    332 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
    333 /// on Ty, with any known factors factored out. If Folded is false,
    334 /// return null if no factoring was possible, to avoid endlessly
    335 /// bouncing an unfoldable expression back into the top-level folder.
    336 ///
    337 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
    338                                  bool Folded) {
    339   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    340     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
    341     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    342     return ConstantExpr::getNUWMul(E, N);
    343   }
    344 
    345   if (StructType *STy = dyn_cast<StructType>(Ty))
    346     if (!STy->isPacked()) {
    347       unsigned NumElems = STy->getNumElements();
    348       // An empty struct has size zero.
    349       if (NumElems == 0)
    350         return ConstantExpr::getNullValue(DestTy);
    351       // Check for a struct with all members having the same size.
    352       Constant *MemberSize =
    353         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    354       bool AllSame = true;
    355       for (unsigned i = 1; i != NumElems; ++i)
    356         if (MemberSize !=
    357             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    358           AllSame = false;
    359           break;
    360         }
    361       if (AllSame) {
    362         Constant *N = ConstantInt::get(DestTy, NumElems);
    363         return ConstantExpr::getNUWMul(MemberSize, N);
    364       }
    365     }
    366 
    367   // Pointer size doesn't depend on the pointee type, so canonicalize them
    368   // to an arbitrary pointee.
    369   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    370     if (!PTy->getElementType()->isIntegerTy(1))
    371       return
    372         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
    373                                          PTy->getAddressSpace()),
    374                         DestTy, true);
    375 
    376   // If there's no interesting folding happening, bail so that we don't create
    377   // a constant that looks like it needs folding but really doesn't.
    378   if (!Folded)
    379     return 0;
    380 
    381   // Base case: Get a regular sizeof expression.
    382   Constant *C = ConstantExpr::getSizeOf(Ty);
    383   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    384                                                     DestTy, false),
    385                             C, DestTy);
    386   return C;
    387 }
    388 
    389 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
    390 /// on Ty, with any known factors factored out. If Folded is false,
    391 /// return null if no factoring was possible, to avoid endlessly
    392 /// bouncing an unfoldable expression back into the top-level folder.
    393 ///
    394 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
    395                                   bool Folded) {
    396   // The alignment of an array is equal to the alignment of the
    397   // array element. Note that this is not always true for vectors.
    398   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    399     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
    400     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    401                                                       DestTy,
    402                                                       false),
    403                               C, DestTy);
    404     return C;
    405   }
    406 
    407   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    408     // Packed structs always have an alignment of 1.
    409     if (STy->isPacked())
    410       return ConstantInt::get(DestTy, 1);
    411 
    412     // Otherwise, struct alignment is the maximum alignment of any member.
    413     // Without target data, we can't compare much, but we can check to see
    414     // if all the members have the same alignment.
    415     unsigned NumElems = STy->getNumElements();
    416     // An empty struct has minimal alignment.
    417     if (NumElems == 0)
    418       return ConstantInt::get(DestTy, 1);
    419     // Check for a struct with all members having the same alignment.
    420     Constant *MemberAlign =
    421       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
    422     bool AllSame = true;
    423     for (unsigned i = 1; i != NumElems; ++i)
    424       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
    425         AllSame = false;
    426         break;
    427       }
    428     if (AllSame)
    429       return MemberAlign;
    430   }
    431 
    432   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
    433   // to an arbitrary pointee.
    434   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    435     if (!PTy->getElementType()->isIntegerTy(1))
    436       return
    437         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
    438                                                            1),
    439                                           PTy->getAddressSpace()),
    440                          DestTy, true);
    441 
    442   // If there's no interesting folding happening, bail so that we don't create
    443   // a constant that looks like it needs folding but really doesn't.
    444   if (!Folded)
    445     return 0;
    446 
    447   // Base case: Get a regular alignof expression.
    448   Constant *C = ConstantExpr::getAlignOf(Ty);
    449   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    450                                                     DestTy, false),
    451                             C, DestTy);
    452   return C;
    453 }
    454 
    455 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
    456 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
    457 /// return null if no factoring was possible, to avoid endlessly
    458 /// bouncing an unfoldable expression back into the top-level folder.
    459 ///
    460 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
    461                                    Type *DestTy,
    462                                    bool Folded) {
    463   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    464     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
    465                                                                 DestTy, false),
    466                                         FieldNo, DestTy);
    467     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    468     return ConstantExpr::getNUWMul(E, N);
    469   }
    470 
    471   if (StructType *STy = dyn_cast<StructType>(Ty))
    472     if (!STy->isPacked()) {
    473       unsigned NumElems = STy->getNumElements();
    474       // An empty struct has no members.
    475       if (NumElems == 0)
    476         return 0;
    477       // Check for a struct with all members having the same size.
    478       Constant *MemberSize =
    479         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    480       bool AllSame = true;
    481       for (unsigned i = 1; i != NumElems; ++i)
    482         if (MemberSize !=
    483             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    484           AllSame = false;
    485           break;
    486         }
    487       if (AllSame) {
    488         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
    489                                                                     false,
    490                                                                     DestTy,
    491                                                                     false),
    492                                             FieldNo, DestTy);
    493         return ConstantExpr::getNUWMul(MemberSize, N);
    494       }
    495     }
    496 
    497   // If there's no interesting folding happening, bail so that we don't create
    498   // a constant that looks like it needs folding but really doesn't.
    499   if (!Folded)
    500     return 0;
    501 
    502   // Base case: Get a regular offsetof expression.
    503   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
    504   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    505                                                     DestTy, false),
    506                             C, DestTy);
    507   return C;
    508 }
    509 
    510 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
    511                                             Type *DestTy) {
    512   if (isa<UndefValue>(V)) {
    513     // zext(undef) = 0, because the top bits will be zero.
    514     // sext(undef) = 0, because the top bits will all be the same.
    515     // [us]itofp(undef) = 0, because the result value is bounded.
    516     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
    517         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
    518       return Constant::getNullValue(DestTy);
    519     return UndefValue::get(DestTy);
    520   }
    521 
    522   if (V->isNullValue() && !DestTy->isX86_MMXTy())
    523     return Constant::getNullValue(DestTy);
    524 
    525   // If the cast operand is a constant expression, there's a few things we can
    526   // do to try to simplify it.
    527   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    528     if (CE->isCast()) {
    529       // Try hard to fold cast of cast because they are often eliminable.
    530       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
    531         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    532     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
    533       // If all of the indexes in the GEP are null values, there is no pointer
    534       // adjustment going on.  We might as well cast the source pointer.
    535       bool isAllNull = true;
    536       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
    537         if (!CE->getOperand(i)->isNullValue()) {
    538           isAllNull = false;
    539           break;
    540         }
    541       if (isAllNull)
    542         // This is casting one pointer type to another, always BitCast
    543         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    544     }
    545   }
    546 
    547   // If the cast operand is a constant vector, perform the cast by
    548   // operating on each element. In the cast of bitcasts, the element
    549   // count may be mismatched; don't attempt to handle that here.
    550   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
    551       DestTy->isVectorTy() &&
    552       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
    553     SmallVector<Constant*, 16> res;
    554     VectorType *DestVecTy = cast<VectorType>(DestTy);
    555     Type *DstEltTy = DestVecTy->getElementType();
    556     Type *Ty = IntegerType::get(V->getContext(), 32);
    557     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
    558       Constant *C =
    559         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    560       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
    561     }
    562     return ConstantVector::get(res);
    563   }
    564 
    565   // We actually have to do a cast now. Perform the cast according to the
    566   // opcode specified.
    567   switch (opc) {
    568   default:
    569     llvm_unreachable("Failed to cast constant expression");
    570   case Instruction::FPTrunc:
    571   case Instruction::FPExt:
    572     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    573       bool ignored;
    574       APFloat Val = FPC->getValueAPF();
    575       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
    576                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
    577                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
    578                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
    579                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
    580                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
    581                   APFloat::Bogus,
    582                   APFloat::rmNearestTiesToEven, &ignored);
    583       return ConstantFP::get(V->getContext(), Val);
    584     }
    585     return 0; // Can't fold.
    586   case Instruction::FPToUI:
    587   case Instruction::FPToSI:
    588     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    589       const APFloat &V = FPC->getValueAPF();
    590       bool ignored;
    591       uint64_t x[2];
    592       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    593       (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
    594                                 APFloat::rmTowardZero, &ignored);
    595       APInt Val(DestBitWidth, x);
    596       return ConstantInt::get(FPC->getContext(), Val);
    597     }
    598     return 0; // Can't fold.
    599   case Instruction::IntToPtr:   //always treated as unsigned
    600     if (V->isNullValue())       // Is it an integral null value?
    601       return ConstantPointerNull::get(cast<PointerType>(DestTy));
    602     return 0;                   // Other pointer types cannot be casted
    603   case Instruction::PtrToInt:   // always treated as unsigned
    604     // Is it a null pointer value?
    605     if (V->isNullValue())
    606       return ConstantInt::get(DestTy, 0);
    607     // If this is a sizeof-like expression, pull out multiplications by
    608     // known factors to expose them to subsequent folding. If it's an
    609     // alignof-like expression, factor out known factors.
    610     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    611       if (CE->getOpcode() == Instruction::GetElementPtr &&
    612           CE->getOperand(0)->isNullValue()) {
    613         Type *Ty =
    614           cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    615         if (CE->getNumOperands() == 2) {
    616           // Handle a sizeof-like expression.
    617           Constant *Idx = CE->getOperand(1);
    618           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
    619           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
    620             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
    621                                                                 DestTy, false),
    622                                         Idx, DestTy);
    623             return ConstantExpr::getMul(C, Idx);
    624           }
    625         } else if (CE->getNumOperands() == 3 &&
    626                    CE->getOperand(1)->isNullValue()) {
    627           // Handle an alignof-like expression.
    628           if (StructType *STy = dyn_cast<StructType>(Ty))
    629             if (!STy->isPacked()) {
    630               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
    631               if (CI->isOne() &&
    632                   STy->getNumElements() == 2 &&
    633                   STy->getElementType(0)->isIntegerTy(1)) {
    634                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
    635               }
    636             }
    637           // Handle an offsetof-like expression.
    638           if (Ty->isStructTy() || Ty->isArrayTy()) {
    639             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
    640                                                 DestTy, false))
    641               return C;
    642           }
    643         }
    644       }
    645     // Other pointer types cannot be casted
    646     return 0;
    647   case Instruction::UIToFP:
    648   case Instruction::SIToFP:
    649     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    650       APInt api = CI->getValue();
    651       APFloat apf(DestTy->getFltSemantics(),
    652                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
    653       (void)apf.convertFromAPInt(api,
    654                                  opc==Instruction::SIToFP,
    655                                  APFloat::rmNearestTiesToEven);
    656       return ConstantFP::get(V->getContext(), apf);
    657     }
    658     return 0;
    659   case Instruction::ZExt:
    660     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    661       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    662       return ConstantInt::get(V->getContext(),
    663                               CI->getValue().zext(BitWidth));
    664     }
    665     return 0;
    666   case Instruction::SExt:
    667     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    668       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    669       return ConstantInt::get(V->getContext(),
    670                               CI->getValue().sext(BitWidth));
    671     }
    672     return 0;
    673   case Instruction::Trunc: {
    674     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    675     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    676       return ConstantInt::get(V->getContext(),
    677                               CI->getValue().trunc(DestBitWidth));
    678     }
    679 
    680     // The input must be a constantexpr.  See if we can simplify this based on
    681     // the bytes we are demanding.  Only do this if the source and dest are an
    682     // even multiple of a byte.
    683     if ((DestBitWidth & 7) == 0 &&
    684         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
    685       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
    686         return Res;
    687 
    688     return 0;
    689   }
    690   case Instruction::BitCast:
    691     return FoldBitCast(V, DestTy);
    692   }
    693 }
    694 
    695 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
    696                                               Constant *V1, Constant *V2) {
    697   // Check for i1 and vector true/false conditions.
    698   if (Cond->isNullValue()) return V2;
    699   if (Cond->isAllOnesValue()) return V1;
    700 
    701   // If the condition is a vector constant, fold the result elementwise.
    702   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
    703     SmallVector<Constant*, 16> Result;
    704     Type *Ty = IntegerType::get(CondV->getContext(), 32);
    705     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
    706       ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
    707       if (Cond == 0) break;
    708 
    709       Constant *V = Cond->isNullValue() ? V2 : V1;
    710       Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    711       Result.push_back(Res);
    712     }
    713 
    714     // If we were able to build the vector, return it.
    715     if (Result.size() == V1->getType()->getVectorNumElements())
    716       return ConstantVector::get(Result);
    717   }
    718 
    719   if (isa<UndefValue>(Cond)) {
    720     if (isa<UndefValue>(V1)) return V1;
    721     return V2;
    722   }
    723   if (isa<UndefValue>(V1)) return V2;
    724   if (isa<UndefValue>(V2)) return V1;
    725   if (V1 == V2) return V1;
    726 
    727   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
    728     if (TrueVal->getOpcode() == Instruction::Select)
    729       if (TrueVal->getOperand(0) == Cond)
    730         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
    731   }
    732   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
    733     if (FalseVal->getOpcode() == Instruction::Select)
    734       if (FalseVal->getOperand(0) == Cond)
    735         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
    736   }
    737 
    738   return 0;
    739 }
    740 
    741 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
    742                                                       Constant *Idx) {
    743   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    744     return UndefValue::get(Val->getType()->getVectorElementType());
    745   if (Val->isNullValue())  // ee(zero, x) -> zero
    746     return Constant::getNullValue(Val->getType()->getVectorElementType());
    747   // ee({w,x,y,z}, undef) -> undef
    748   if (isa<UndefValue>(Idx))
    749     return UndefValue::get(Val->getType()->getVectorElementType());
    750 
    751   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
    752     uint64_t Index = CIdx->getZExtValue();
    753     // ee({w,x,y,z}, wrong_value) -> undef
    754     if (Index >= Val->getType()->getVectorNumElements())
    755       return UndefValue::get(Val->getType()->getVectorElementType());
    756     return Val->getAggregateElement(Index);
    757   }
    758   return 0;
    759 }
    760 
    761 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
    762                                                      Constant *Elt,
    763                                                      Constant *Idx) {
    764   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
    765   if (!CIdx) return 0;
    766   const APInt &IdxVal = CIdx->getValue();
    767 
    768   SmallVector<Constant*, 16> Result;
    769   Type *Ty = IntegerType::get(Val->getContext(), 32);
    770   for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
    771     if (i == IdxVal) {
    772       Result.push_back(Elt);
    773       continue;
    774     }
    775 
    776     Constant *C =
    777       ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
    778     Result.push_back(C);
    779   }
    780 
    781   return ConstantVector::get(Result);
    782 }
    783 
    784 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
    785                                                      Constant *V2,
    786                                                      Constant *Mask) {
    787   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
    788   Type *EltTy = V1->getType()->getVectorElementType();
    789 
    790   // Undefined shuffle mask -> undefined value.
    791   if (isa<UndefValue>(Mask))
    792     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
    793 
    794   // Don't break the bitcode reader hack.
    795   if (isa<ConstantExpr>(Mask)) return 0;
    796 
    797   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
    798 
    799   // Loop over the shuffle mask, evaluating each element.
    800   SmallVector<Constant*, 32> Result;
    801   for (unsigned i = 0; i != MaskNumElts; ++i) {
    802     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
    803     if (Elt == -1) {
    804       Result.push_back(UndefValue::get(EltTy));
    805       continue;
    806     }
    807     Constant *InElt;
    808     if (unsigned(Elt) >= SrcNumElts*2)
    809       InElt = UndefValue::get(EltTy);
    810     else if (unsigned(Elt) >= SrcNumElts) {
    811       Type *Ty = IntegerType::get(V2->getContext(), 32);
    812       InElt =
    813         ConstantExpr::getExtractElement(V2,
    814                                         ConstantInt::get(Ty, Elt - SrcNumElts));
    815     } else {
    816       Type *Ty = IntegerType::get(V1->getContext(), 32);
    817       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
    818     }
    819     Result.push_back(InElt);
    820   }
    821 
    822   return ConstantVector::get(Result);
    823 }
    824 
    825 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
    826                                                     ArrayRef<unsigned> Idxs) {
    827   // Base case: no indices, so return the entire value.
    828   if (Idxs.empty())
    829     return Agg;
    830 
    831   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
    832     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
    833 
    834   return 0;
    835 }
    836 
    837 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
    838                                                    Constant *Val,
    839                                                    ArrayRef<unsigned> Idxs) {
    840   // Base case: no indices, so replace the entire value.
    841   if (Idxs.empty())
    842     return Val;
    843 
    844   unsigned NumElts;
    845   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    846     NumElts = ST->getNumElements();
    847   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    848     NumElts = AT->getNumElements();
    849   else
    850     NumElts = Agg->getType()->getVectorNumElements();
    851 
    852   SmallVector<Constant*, 32> Result;
    853   for (unsigned i = 0; i != NumElts; ++i) {
    854     Constant *C = Agg->getAggregateElement(i);
    855     if (C == 0) return 0;
    856 
    857     if (Idxs[0] == i)
    858       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
    859 
    860     Result.push_back(C);
    861   }
    862 
    863   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    864     return ConstantStruct::get(ST, Result);
    865   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    866     return ConstantArray::get(AT, Result);
    867   return ConstantVector::get(Result);
    868 }
    869 
    870 
    871 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
    872                                               Constant *C1, Constant *C2) {
    873   // Handle UndefValue up front.
    874   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    875     switch (Opcode) {
    876     case Instruction::Xor:
    877       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    878         // Handle undef ^ undef -> 0 special case. This is a common
    879         // idiom (misuse).
    880         return Constant::getNullValue(C1->getType());
    881       // Fallthrough
    882     case Instruction::Add:
    883     case Instruction::Sub:
    884       return UndefValue::get(C1->getType());
    885     case Instruction::And:
    886       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
    887         return C1;
    888       return Constant::getNullValue(C1->getType());   // undef & X -> 0
    889     case Instruction::Mul: {
    890       ConstantInt *CI;
    891       // X * undef -> undef   if X is odd or undef
    892       if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
    893           ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
    894           (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
    895         return UndefValue::get(C1->getType());
    896 
    897       // X * undef -> 0       otherwise
    898       return Constant::getNullValue(C1->getType());
    899     }
    900     case Instruction::UDiv:
    901     case Instruction::SDiv:
    902       // undef / 1 -> undef
    903       if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
    904         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
    905           if (CI2->isOne())
    906             return C1;
    907       // FALL THROUGH
    908     case Instruction::URem:
    909     case Instruction::SRem:
    910       if (!isa<UndefValue>(C2))                    // undef / X -> 0
    911         return Constant::getNullValue(C1->getType());
    912       return C2;                                   // X / undef -> undef
    913     case Instruction::Or:                          // X | undef -> -1
    914       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
    915         return C1;
    916       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
    917     case Instruction::LShr:
    918       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
    919         return C1;                                  // undef lshr undef -> undef
    920       return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
    921                                                     // undef lshr X -> 0
    922     case Instruction::AShr:
    923       if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
    924         return Constant::getAllOnesValue(C1->getType());
    925       else if (isa<UndefValue>(C1))
    926         return C1;                                  // undef ashr undef -> undef
    927       else
    928         return C1;                                  // X ashr undef --> X
    929     case Instruction::Shl:
    930       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
    931         return C1;                                  // undef shl undef -> undef
    932       // undef << X -> 0   or   X << undef -> 0
    933       return Constant::getNullValue(C1->getType());
    934     }
    935   }
    936 
    937   // Handle simplifications when the RHS is a constant int.
    938   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
    939     switch (Opcode) {
    940     case Instruction::Add:
    941       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
    942       break;
    943     case Instruction::Sub:
    944       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
    945       break;
    946     case Instruction::Mul:
    947       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
    948       if (CI2->equalsInt(1))
    949         return C1;                                              // X * 1 == X
    950       break;
    951     case Instruction::UDiv:
    952     case Instruction::SDiv:
    953       if (CI2->equalsInt(1))
    954         return C1;                                            // X / 1 == X
    955       if (CI2->equalsInt(0))
    956         return UndefValue::get(CI2->getType());               // X / 0 == undef
    957       break;
    958     case Instruction::URem:
    959     case Instruction::SRem:
    960       if (CI2->equalsInt(1))
    961         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
    962       if (CI2->equalsInt(0))
    963         return UndefValue::get(CI2->getType());               // X % 0 == undef
    964       break;
    965     case Instruction::And:
    966       if (CI2->isZero()) return C2;                           // X & 0 == 0
    967       if (CI2->isAllOnesValue())
    968         return C1;                                            // X & -1 == X
    969 
    970       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
    971         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
    972         if (CE1->getOpcode() == Instruction::ZExt) {
    973           unsigned DstWidth = CI2->getType()->getBitWidth();
    974           unsigned SrcWidth =
    975             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
    976           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
    977           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
    978             return C1;
    979         }
    980 
    981         // If and'ing the address of a global with a constant, fold it.
    982         if (CE1->getOpcode() == Instruction::PtrToInt &&
    983             isa<GlobalValue>(CE1->getOperand(0))) {
    984           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
    985 
    986           // Functions are at least 4-byte aligned.
    987           unsigned GVAlign = GV->getAlignment();
    988           if (isa<Function>(GV))
    989             GVAlign = std::max(GVAlign, 4U);
    990 
    991           if (GVAlign > 1) {
    992             unsigned DstWidth = CI2->getType()->getBitWidth();
    993             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
    994             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
    995 
    996             // If checking bits we know are clear, return zero.
    997             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
    998               return Constant::getNullValue(CI2->getType());
    999           }
   1000         }
   1001       }
   1002       break;
   1003     case Instruction::Or:
   1004       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
   1005       if (CI2->isAllOnesValue())
   1006         return C2;                         // X | -1 == -1
   1007       break;
   1008     case Instruction::Xor:
   1009       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
   1010 
   1011       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1012         switch (CE1->getOpcode()) {
   1013         default: break;
   1014         case Instruction::ICmp:
   1015         case Instruction::FCmp:
   1016           // cmp pred ^ true -> cmp !pred
   1017           assert(CI2->equalsInt(1));
   1018           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
   1019           pred = CmpInst::getInversePredicate(pred);
   1020           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
   1021                                           CE1->getOperand(1));
   1022         }
   1023       }
   1024       break;
   1025     case Instruction::AShr:
   1026       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
   1027       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
   1028         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
   1029           return ConstantExpr::getLShr(C1, C2);
   1030       break;
   1031     }
   1032   } else if (isa<ConstantInt>(C1)) {
   1033     // If C1 is a ConstantInt and C2 is not, swap the operands.
   1034     if (Instruction::isCommutative(Opcode))
   1035       return ConstantExpr::get(Opcode, C2, C1);
   1036   }
   1037 
   1038   // At this point we know neither constant is an UndefValue.
   1039   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
   1040     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1041       const APInt &C1V = CI1->getValue();
   1042       const APInt &C2V = CI2->getValue();
   1043       switch (Opcode) {
   1044       default:
   1045         break;
   1046       case Instruction::Add:
   1047         return ConstantInt::get(CI1->getContext(), C1V + C2V);
   1048       case Instruction::Sub:
   1049         return ConstantInt::get(CI1->getContext(), C1V - C2V);
   1050       case Instruction::Mul:
   1051         return ConstantInt::get(CI1->getContext(), C1V * C2V);
   1052       case Instruction::UDiv:
   1053         assert(!CI2->isNullValue() && "Div by zero handled above");
   1054         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
   1055       case Instruction::SDiv:
   1056         assert(!CI2->isNullValue() && "Div by zero handled above");
   1057         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1058           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
   1059         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
   1060       case Instruction::URem:
   1061         assert(!CI2->isNullValue() && "Div by zero handled above");
   1062         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
   1063       case Instruction::SRem:
   1064         assert(!CI2->isNullValue() && "Div by zero handled above");
   1065         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1066           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
   1067         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
   1068       case Instruction::And:
   1069         return ConstantInt::get(CI1->getContext(), C1V & C2V);
   1070       case Instruction::Or:
   1071         return ConstantInt::get(CI1->getContext(), C1V | C2V);
   1072       case Instruction::Xor:
   1073         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
   1074       case Instruction::Shl: {
   1075         uint32_t shiftAmt = C2V.getZExtValue();
   1076         if (shiftAmt < C1V.getBitWidth())
   1077           return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
   1078         else
   1079           return UndefValue::get(C1->getType()); // too big shift is undef
   1080       }
   1081       case Instruction::LShr: {
   1082         uint32_t shiftAmt = C2V.getZExtValue();
   1083         if (shiftAmt < C1V.getBitWidth())
   1084           return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
   1085         else
   1086           return UndefValue::get(C1->getType()); // too big shift is undef
   1087       }
   1088       case Instruction::AShr: {
   1089         uint32_t shiftAmt = C2V.getZExtValue();
   1090         if (shiftAmt < C1V.getBitWidth())
   1091           return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
   1092         else
   1093           return UndefValue::get(C1->getType()); // too big shift is undef
   1094       }
   1095       }
   1096     }
   1097 
   1098     switch (Opcode) {
   1099     case Instruction::SDiv:
   1100     case Instruction::UDiv:
   1101     case Instruction::URem:
   1102     case Instruction::SRem:
   1103     case Instruction::LShr:
   1104     case Instruction::AShr:
   1105     case Instruction::Shl:
   1106       if (CI1->equalsInt(0)) return C1;
   1107       break;
   1108     default:
   1109       break;
   1110     }
   1111   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
   1112     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
   1113       APFloat C1V = CFP1->getValueAPF();
   1114       APFloat C2V = CFP2->getValueAPF();
   1115       APFloat C3V = C1V;  // copy for modification
   1116       switch (Opcode) {
   1117       default:
   1118         break;
   1119       case Instruction::FAdd:
   1120         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
   1121         return ConstantFP::get(C1->getContext(), C3V);
   1122       case Instruction::FSub:
   1123         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
   1124         return ConstantFP::get(C1->getContext(), C3V);
   1125       case Instruction::FMul:
   1126         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
   1127         return ConstantFP::get(C1->getContext(), C3V);
   1128       case Instruction::FDiv:
   1129         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
   1130         return ConstantFP::get(C1->getContext(), C3V);
   1131       case Instruction::FRem:
   1132         (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
   1133         return ConstantFP::get(C1->getContext(), C3V);
   1134       }
   1135     }
   1136   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
   1137     // Perform elementwise folding.
   1138     SmallVector<Constant*, 16> Result;
   1139     Type *Ty = IntegerType::get(VTy->getContext(), 32);
   1140     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
   1141       Constant *LHS =
   1142         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1143       Constant *RHS =
   1144         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1145 
   1146       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
   1147     }
   1148 
   1149     return ConstantVector::get(Result);
   1150   }
   1151 
   1152   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1153     // There are many possible foldings we could do here.  We should probably
   1154     // at least fold add of a pointer with an integer into the appropriate
   1155     // getelementptr.  This will improve alias analysis a bit.
   1156 
   1157     // Given ((a + b) + c), if (b + c) folds to something interesting, return
   1158     // (a + (b + c)).
   1159     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
   1160       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
   1161       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
   1162         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
   1163     }
   1164   } else if (isa<ConstantExpr>(C2)) {
   1165     // If C2 is a constant expr and C1 isn't, flop them around and fold the
   1166     // other way if possible.
   1167     if (Instruction::isCommutative(Opcode))
   1168       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
   1169   }
   1170 
   1171   // i1 can be simplified in many cases.
   1172   if (C1->getType()->isIntegerTy(1)) {
   1173     switch (Opcode) {
   1174     case Instruction::Add:
   1175     case Instruction::Sub:
   1176       return ConstantExpr::getXor(C1, C2);
   1177     case Instruction::Mul:
   1178       return ConstantExpr::getAnd(C1, C2);
   1179     case Instruction::Shl:
   1180     case Instruction::LShr:
   1181     case Instruction::AShr:
   1182       // We can assume that C2 == 0.  If it were one the result would be
   1183       // undefined because the shift value is as large as the bitwidth.
   1184       return C1;
   1185     case Instruction::SDiv:
   1186     case Instruction::UDiv:
   1187       // We can assume that C2 == 1.  If it were zero the result would be
   1188       // undefined through division by zero.
   1189       return C1;
   1190     case Instruction::URem:
   1191     case Instruction::SRem:
   1192       // We can assume that C2 == 1.  If it were zero the result would be
   1193       // undefined through division by zero.
   1194       return ConstantInt::getFalse(C1->getContext());
   1195     default:
   1196       break;
   1197     }
   1198   }
   1199 
   1200   // We don't know how to fold this.
   1201   return 0;
   1202 }
   1203 
   1204 /// isZeroSizedType - This type is zero sized if its an array or structure of
   1205 /// zero sized types.  The only leaf zero sized type is an empty structure.
   1206 static bool isMaybeZeroSizedType(Type *Ty) {
   1207   if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1208     if (STy->isOpaque()) return true;  // Can't say.
   1209 
   1210     // If all of elements have zero size, this does too.
   1211     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1212       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
   1213     return true;
   1214 
   1215   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1216     return isMaybeZeroSizedType(ATy->getElementType());
   1217   }
   1218   return false;
   1219 }
   1220 
   1221 /// IdxCompare - Compare the two constants as though they were getelementptr
   1222 /// indices.  This allows coersion of the types to be the same thing.
   1223 ///
   1224 /// If the two constants are the "same" (after coersion), return 0.  If the
   1225 /// first is less than the second, return -1, if the second is less than the
   1226 /// first, return 1.  If the constants are not integral, return -2.
   1227 ///
   1228 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
   1229   if (C1 == C2) return 0;
   1230 
   1231   // Ok, we found a different index.  If they are not ConstantInt, we can't do
   1232   // anything with them.
   1233   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
   1234     return -2; // don't know!
   1235 
   1236   // Ok, we have two differing integer indices.  Sign extend them to be the same
   1237   // type.  Long is always big enough, so we use it.
   1238   if (!C1->getType()->isIntegerTy(64))
   1239     C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
   1240 
   1241   if (!C2->getType()->isIntegerTy(64))
   1242     C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
   1243 
   1244   if (C1 == C2) return 0;  // They are equal
   1245 
   1246   // If the type being indexed over is really just a zero sized type, there is
   1247   // no pointer difference being made here.
   1248   if (isMaybeZeroSizedType(ElTy))
   1249     return -2; // dunno.
   1250 
   1251   // If they are really different, now that they are the same type, then we
   1252   // found a difference!
   1253   if (cast<ConstantInt>(C1)->getSExtValue() <
   1254       cast<ConstantInt>(C2)->getSExtValue())
   1255     return -1;
   1256   else
   1257     return 1;
   1258 }
   1259 
   1260 /// evaluateFCmpRelation - This function determines if there is anything we can
   1261 /// decide about the two constants provided.  This doesn't need to handle simple
   1262 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
   1263 /// If we can determine that the two constants have a particular relation to
   1264 /// each other, we should return the corresponding FCmpInst predicate,
   1265 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
   1266 /// ConstantFoldCompareInstruction.
   1267 ///
   1268 /// To simplify this code we canonicalize the relation so that the first
   1269 /// operand is always the most "complex" of the two.  We consider ConstantFP
   1270 /// to be the simplest, and ConstantExprs to be the most complex.
   1271 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
   1272   assert(V1->getType() == V2->getType() &&
   1273          "Cannot compare values of different types!");
   1274 
   1275   // Handle degenerate case quickly
   1276   if (V1 == V2) return FCmpInst::FCMP_OEQ;
   1277 
   1278   if (!isa<ConstantExpr>(V1)) {
   1279     if (!isa<ConstantExpr>(V2)) {
   1280       // We distilled thisUse the standard constant folder for a few cases
   1281       ConstantInt *R = 0;
   1282       R = dyn_cast<ConstantInt>(
   1283                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
   1284       if (R && !R->isZero())
   1285         return FCmpInst::FCMP_OEQ;
   1286       R = dyn_cast<ConstantInt>(
   1287                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
   1288       if (R && !R->isZero())
   1289         return FCmpInst::FCMP_OLT;
   1290       R = dyn_cast<ConstantInt>(
   1291                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
   1292       if (R && !R->isZero())
   1293         return FCmpInst::FCMP_OGT;
   1294 
   1295       // Nothing more we can do
   1296       return FCmpInst::BAD_FCMP_PREDICATE;
   1297     }
   1298 
   1299     // If the first operand is simple and second is ConstantExpr, swap operands.
   1300     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
   1301     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
   1302       return FCmpInst::getSwappedPredicate(SwappedRelation);
   1303   } else {
   1304     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1305     // constantexpr or a simple constant.
   1306     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1307     switch (CE1->getOpcode()) {
   1308     case Instruction::FPTrunc:
   1309     case Instruction::FPExt:
   1310     case Instruction::UIToFP:
   1311     case Instruction::SIToFP:
   1312       // We might be able to do something with these but we don't right now.
   1313       break;
   1314     default:
   1315       break;
   1316     }
   1317   }
   1318   // There are MANY other foldings that we could perform here.  They will
   1319   // probably be added on demand, as they seem needed.
   1320   return FCmpInst::BAD_FCMP_PREDICATE;
   1321 }
   1322 
   1323 /// evaluateICmpRelation - This function determines if there is anything we can
   1324 /// decide about the two constants provided.  This doesn't need to handle simple
   1325 /// things like integer comparisons, but should instead handle ConstantExprs
   1326 /// and GlobalValues.  If we can determine that the two constants have a
   1327 /// particular relation to each other, we should return the corresponding ICmp
   1328 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
   1329 ///
   1330 /// To simplify this code we canonicalize the relation so that the first
   1331 /// operand is always the most "complex" of the two.  We consider simple
   1332 /// constants (like ConstantInt) to be the simplest, followed by
   1333 /// GlobalValues, followed by ConstantExpr's (the most complex).
   1334 ///
   1335 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
   1336                                                 bool isSigned) {
   1337   assert(V1->getType() == V2->getType() &&
   1338          "Cannot compare different types of values!");
   1339   if (V1 == V2) return ICmpInst::ICMP_EQ;
   1340 
   1341   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
   1342       !isa<BlockAddress>(V1)) {
   1343     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
   1344         !isa<BlockAddress>(V2)) {
   1345       // We distilled this down to a simple case, use the standard constant
   1346       // folder.
   1347       ConstantInt *R = 0;
   1348       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
   1349       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1350       if (R && !R->isZero())
   1351         return pred;
   1352       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1353       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1354       if (R && !R->isZero())
   1355         return pred;
   1356       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1357       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1358       if (R && !R->isZero())
   1359         return pred;
   1360 
   1361       // If we couldn't figure it out, bail.
   1362       return ICmpInst::BAD_ICMP_PREDICATE;
   1363     }
   1364 
   1365     // If the first operand is simple, swap operands.
   1366     ICmpInst::Predicate SwappedRelation =
   1367       evaluateICmpRelation(V2, V1, isSigned);
   1368     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1369       return ICmpInst::getSwappedPredicate(SwappedRelation);
   1370 
   1371   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
   1372     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1373       ICmpInst::Predicate SwappedRelation =
   1374         evaluateICmpRelation(V2, V1, isSigned);
   1375       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1376         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1377       return ICmpInst::BAD_ICMP_PREDICATE;
   1378     }
   1379 
   1380     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1381     // constant (which, since the types must match, means that it's a
   1382     // ConstantPointerNull).
   1383     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1384       // Don't try to decide equality of aliases.
   1385       if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
   1386         if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
   1387           return ICmpInst::ICMP_NE;
   1388     } else if (isa<BlockAddress>(V2)) {
   1389       return ICmpInst::ICMP_NE; // Globals never equal labels.
   1390     } else {
   1391       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
   1392       // GlobalVals can never be null unless they have external weak linkage.
   1393       // We don't try to evaluate aliases here.
   1394       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
   1395         return ICmpInst::ICMP_NE;
   1396     }
   1397   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
   1398     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1399       ICmpInst::Predicate SwappedRelation =
   1400         evaluateICmpRelation(V2, V1, isSigned);
   1401       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1402         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1403       return ICmpInst::BAD_ICMP_PREDICATE;
   1404     }
   1405 
   1406     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1407     // constant (which, since the types must match, means that it is a
   1408     // ConstantPointerNull).
   1409     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
   1410       // Block address in another function can't equal this one, but block
   1411       // addresses in the current function might be the same if blocks are
   1412       // empty.
   1413       if (BA2->getFunction() != BA->getFunction())
   1414         return ICmpInst::ICMP_NE;
   1415     } else {
   1416       // Block addresses aren't null, don't equal the address of globals.
   1417       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
   1418              "Canonicalization guarantee!");
   1419       return ICmpInst::ICMP_NE;
   1420     }
   1421   } else {
   1422     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1423     // constantexpr, a global, block address, or a simple constant.
   1424     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1425     Constant *CE1Op0 = CE1->getOperand(0);
   1426 
   1427     switch (CE1->getOpcode()) {
   1428     case Instruction::Trunc:
   1429     case Instruction::FPTrunc:
   1430     case Instruction::FPExt:
   1431     case Instruction::FPToUI:
   1432     case Instruction::FPToSI:
   1433       break; // We can't evaluate floating point casts or truncations.
   1434 
   1435     case Instruction::UIToFP:
   1436     case Instruction::SIToFP:
   1437     case Instruction::BitCast:
   1438     case Instruction::ZExt:
   1439     case Instruction::SExt:
   1440       // If the cast is not actually changing bits, and the second operand is a
   1441       // null pointer, do the comparison with the pre-casted value.
   1442       if (V2->isNullValue() &&
   1443           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
   1444         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
   1445         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
   1446         return evaluateICmpRelation(CE1Op0,
   1447                                     Constant::getNullValue(CE1Op0->getType()),
   1448                                     isSigned);
   1449       }
   1450       break;
   1451 
   1452     case Instruction::GetElementPtr:
   1453       // Ok, since this is a getelementptr, we know that the constant has a
   1454       // pointer type.  Check the various cases.
   1455       if (isa<ConstantPointerNull>(V2)) {
   1456         // If we are comparing a GEP to a null pointer, check to see if the base
   1457         // of the GEP equals the null pointer.
   1458         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1459           if (GV->hasExternalWeakLinkage())
   1460             // Weak linkage GVals could be zero or not. We're comparing that
   1461             // to null pointer so its greater-or-equal
   1462             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
   1463           else
   1464             // If its not weak linkage, the GVal must have a non-zero address
   1465             // so the result is greater-than
   1466             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1467         } else if (isa<ConstantPointerNull>(CE1Op0)) {
   1468           // If we are indexing from a null pointer, check to see if we have any
   1469           // non-zero indices.
   1470           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
   1471             if (!CE1->getOperand(i)->isNullValue())
   1472               // Offsetting from null, must not be equal.
   1473               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1474           // Only zero indexes from null, must still be zero.
   1475           return ICmpInst::ICMP_EQ;
   1476         }
   1477         // Otherwise, we can't really say if the first operand is null or not.
   1478       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1479         if (isa<ConstantPointerNull>(CE1Op0)) {
   1480           if (GV2->hasExternalWeakLinkage())
   1481             // Weak linkage GVals could be zero or not. We're comparing it to
   1482             // a null pointer, so its less-or-equal
   1483             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1484           else
   1485             // If its not weak linkage, the GVal must have a non-zero address
   1486             // so the result is less-than
   1487             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1488         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1489           if (GV == GV2) {
   1490             // If this is a getelementptr of the same global, then it must be
   1491             // different.  Because the types must match, the getelementptr could
   1492             // only have at most one index, and because we fold getelementptr's
   1493             // with a single zero index, it must be nonzero.
   1494             assert(CE1->getNumOperands() == 2 &&
   1495                    !CE1->getOperand(1)->isNullValue() &&
   1496                    "Surprising getelementptr!");
   1497             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1498           } else {
   1499             // If they are different globals, we don't know what the value is.
   1500             return ICmpInst::BAD_ICMP_PREDICATE;
   1501           }
   1502         }
   1503       } else {
   1504         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
   1505         Constant *CE2Op0 = CE2->getOperand(0);
   1506 
   1507         // There are MANY other foldings that we could perform here.  They will
   1508         // probably be added on demand, as they seem needed.
   1509         switch (CE2->getOpcode()) {
   1510         default: break;
   1511         case Instruction::GetElementPtr:
   1512           // By far the most common case to handle is when the base pointers are
   1513           // obviously to the same global.
   1514           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
   1515             if (CE1Op0 != CE2Op0) // Don't know relative ordering.
   1516               return ICmpInst::BAD_ICMP_PREDICATE;
   1517             // Ok, we know that both getelementptr instructions are based on the
   1518             // same global.  From this, we can precisely determine the relative
   1519             // ordering of the resultant pointers.
   1520             unsigned i = 1;
   1521 
   1522             // The logic below assumes that the result of the comparison
   1523             // can be determined by finding the first index that differs.
   1524             // This doesn't work if there is over-indexing in any
   1525             // subsequent indices, so check for that case first.
   1526             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
   1527                 !CE2->isGEPWithNoNotionalOverIndexing())
   1528                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1529 
   1530             // Compare all of the operands the GEP's have in common.
   1531             gep_type_iterator GTI = gep_type_begin(CE1);
   1532             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
   1533                  ++i, ++GTI)
   1534               switch (IdxCompare(CE1->getOperand(i),
   1535                                  CE2->getOperand(i), GTI.getIndexedType())) {
   1536               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
   1537               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
   1538               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
   1539               }
   1540 
   1541             // Ok, we ran out of things they have in common.  If any leftovers
   1542             // are non-zero then we have a difference, otherwise we are equal.
   1543             for (; i < CE1->getNumOperands(); ++i)
   1544               if (!CE1->getOperand(i)->isNullValue()) {
   1545                 if (isa<ConstantInt>(CE1->getOperand(i)))
   1546                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1547                 else
   1548                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1549               }
   1550 
   1551             for (; i < CE2->getNumOperands(); ++i)
   1552               if (!CE2->getOperand(i)->isNullValue()) {
   1553                 if (isa<ConstantInt>(CE2->getOperand(i)))
   1554                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1555                 else
   1556                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1557               }
   1558             return ICmpInst::ICMP_EQ;
   1559           }
   1560         }
   1561       }
   1562     default:
   1563       break;
   1564     }
   1565   }
   1566 
   1567   return ICmpInst::BAD_ICMP_PREDICATE;
   1568 }
   1569 
   1570 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   1571                                                Constant *C1, Constant *C2) {
   1572   Type *ResultTy;
   1573   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
   1574     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
   1575                                VT->getNumElements());
   1576   else
   1577     ResultTy = Type::getInt1Ty(C1->getContext());
   1578 
   1579   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
   1580   if (pred == FCmpInst::FCMP_FALSE)
   1581     return Constant::getNullValue(ResultTy);
   1582 
   1583   if (pred == FCmpInst::FCMP_TRUE)
   1584     return Constant::getAllOnesValue(ResultTy);
   1585 
   1586   // Handle some degenerate cases first
   1587   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
   1588     // For EQ and NE, we can always pick a value for the undef to make the
   1589     // predicate pass or fail, so we can return undef.
   1590     // Also, if both operands are undef, we can return undef.
   1591     if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
   1592         (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
   1593       return UndefValue::get(ResultTy);
   1594     // Otherwise, pick the same value as the non-undef operand, and fold
   1595     // it to true or false.
   1596     return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
   1597   }
   1598 
   1599   // icmp eq/ne(null,GV) -> false/true
   1600   if (C1->isNullValue()) {
   1601     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
   1602       // Don't try to evaluate aliases.  External weak GV can be null.
   1603       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1604         if (pred == ICmpInst::ICMP_EQ)
   1605           return ConstantInt::getFalse(C1->getContext());
   1606         else if (pred == ICmpInst::ICMP_NE)
   1607           return ConstantInt::getTrue(C1->getContext());
   1608       }
   1609   // icmp eq/ne(GV,null) -> false/true
   1610   } else if (C2->isNullValue()) {
   1611     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
   1612       // Don't try to evaluate aliases.  External weak GV can be null.
   1613       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1614         if (pred == ICmpInst::ICMP_EQ)
   1615           return ConstantInt::getFalse(C1->getContext());
   1616         else if (pred == ICmpInst::ICMP_NE)
   1617           return ConstantInt::getTrue(C1->getContext());
   1618       }
   1619   }
   1620 
   1621   // If the comparison is a comparison between two i1's, simplify it.
   1622   if (C1->getType()->isIntegerTy(1)) {
   1623     switch(pred) {
   1624     case ICmpInst::ICMP_EQ:
   1625       if (isa<ConstantInt>(C2))
   1626         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
   1627       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
   1628     case ICmpInst::ICMP_NE:
   1629       return ConstantExpr::getXor(C1, C2);
   1630     default:
   1631       break;
   1632     }
   1633   }
   1634 
   1635   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
   1636     APInt V1 = cast<ConstantInt>(C1)->getValue();
   1637     APInt V2 = cast<ConstantInt>(C2)->getValue();
   1638     switch (pred) {
   1639     default: llvm_unreachable("Invalid ICmp Predicate");
   1640     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
   1641     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
   1642     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
   1643     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
   1644     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
   1645     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
   1646     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
   1647     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
   1648     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
   1649     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
   1650     }
   1651   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
   1652     APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
   1653     APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
   1654     APFloat::cmpResult R = C1V.compare(C2V);
   1655     switch (pred) {
   1656     default: llvm_unreachable("Invalid FCmp Predicate");
   1657     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
   1658     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
   1659     case FCmpInst::FCMP_UNO:
   1660       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
   1661     case FCmpInst::FCMP_ORD:
   1662       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
   1663     case FCmpInst::FCMP_UEQ:
   1664       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1665                                         R==APFloat::cmpEqual);
   1666     case FCmpInst::FCMP_OEQ:
   1667       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
   1668     case FCmpInst::FCMP_UNE:
   1669       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
   1670     case FCmpInst::FCMP_ONE:
   1671       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1672                                         R==APFloat::cmpGreaterThan);
   1673     case FCmpInst::FCMP_ULT:
   1674       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1675                                         R==APFloat::cmpLessThan);
   1676     case FCmpInst::FCMP_OLT:
   1677       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
   1678     case FCmpInst::FCMP_UGT:
   1679       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1680                                         R==APFloat::cmpGreaterThan);
   1681     case FCmpInst::FCMP_OGT:
   1682       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
   1683     case FCmpInst::FCMP_ULE:
   1684       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
   1685     case FCmpInst::FCMP_OLE:
   1686       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1687                                         R==APFloat::cmpEqual);
   1688     case FCmpInst::FCMP_UGE:
   1689       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
   1690     case FCmpInst::FCMP_OGE:
   1691       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
   1692                                         R==APFloat::cmpEqual);
   1693     }
   1694   } else if (C1->getType()->isVectorTy()) {
   1695     // If we can constant fold the comparison of each element, constant fold
   1696     // the whole vector comparison.
   1697     SmallVector<Constant*, 4> ResElts;
   1698     Type *Ty = IntegerType::get(C1->getContext(), 32);
   1699     // Compare the elements, producing an i1 result or constant expr.
   1700     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
   1701       Constant *C1E =
   1702         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1703       Constant *C2E =
   1704         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1705 
   1706       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
   1707     }
   1708 
   1709     return ConstantVector::get(ResElts);
   1710   }
   1711 
   1712   if (C1->getType()->isFloatingPointTy()) {
   1713     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1714     switch (evaluateFCmpRelation(C1, C2)) {
   1715     default: llvm_unreachable("Unknown relation!");
   1716     case FCmpInst::FCMP_UNO:
   1717     case FCmpInst::FCMP_ORD:
   1718     case FCmpInst::FCMP_UEQ:
   1719     case FCmpInst::FCMP_UNE:
   1720     case FCmpInst::FCMP_ULT:
   1721     case FCmpInst::FCMP_UGT:
   1722     case FCmpInst::FCMP_ULE:
   1723     case FCmpInst::FCMP_UGE:
   1724     case FCmpInst::FCMP_TRUE:
   1725     case FCmpInst::FCMP_FALSE:
   1726     case FCmpInst::BAD_FCMP_PREDICATE:
   1727       break; // Couldn't determine anything about these constants.
   1728     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
   1729       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
   1730                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
   1731                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1732       break;
   1733     case FCmpInst::FCMP_OLT: // We know that C1 < C2
   1734       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1735                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
   1736                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
   1737       break;
   1738     case FCmpInst::FCMP_OGT: // We know that C1 > C2
   1739       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1740                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
   1741                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1742       break;
   1743     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
   1744       // We can only partially decide this relation.
   1745       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1746         Result = 0;
   1747       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1748         Result = 1;
   1749       break;
   1750     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
   1751       // We can only partially decide this relation.
   1752       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1753         Result = 0;
   1754       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1755         Result = 1;
   1756       break;
   1757     case FCmpInst::FCMP_ONE: // We know that C1 != C2
   1758       // We can only partially decide this relation.
   1759       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
   1760         Result = 0;
   1761       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
   1762         Result = 1;
   1763       break;
   1764     }
   1765 
   1766     // If we evaluated the result, return it now.
   1767     if (Result != -1)
   1768       return ConstantInt::get(ResultTy, Result);
   1769 
   1770   } else {
   1771     // Evaluate the relation between the two constants, per the predicate.
   1772     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1773     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
   1774     default: llvm_unreachable("Unknown relational!");
   1775     case ICmpInst::BAD_ICMP_PREDICATE:
   1776       break;  // Couldn't determine anything about these constants.
   1777     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
   1778       // If we know the constants are equal, we can decide the result of this
   1779       // computation precisely.
   1780       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
   1781       break;
   1782     case ICmpInst::ICMP_ULT:
   1783       switch (pred) {
   1784       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
   1785         Result = 1; break;
   1786       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
   1787         Result = 0; break;
   1788       }
   1789       break;
   1790     case ICmpInst::ICMP_SLT:
   1791       switch (pred) {
   1792       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
   1793         Result = 1; break;
   1794       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
   1795         Result = 0; break;
   1796       }
   1797       break;
   1798     case ICmpInst::ICMP_UGT:
   1799       switch (pred) {
   1800       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
   1801         Result = 1; break;
   1802       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
   1803         Result = 0; break;
   1804       }
   1805       break;
   1806     case ICmpInst::ICMP_SGT:
   1807       switch (pred) {
   1808       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
   1809         Result = 1; break;
   1810       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
   1811         Result = 0; break;
   1812       }
   1813       break;
   1814     case ICmpInst::ICMP_ULE:
   1815       if (pred == ICmpInst::ICMP_UGT) Result = 0;
   1816       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
   1817       break;
   1818     case ICmpInst::ICMP_SLE:
   1819       if (pred == ICmpInst::ICMP_SGT) Result = 0;
   1820       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
   1821       break;
   1822     case ICmpInst::ICMP_UGE:
   1823       if (pred == ICmpInst::ICMP_ULT) Result = 0;
   1824       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
   1825       break;
   1826     case ICmpInst::ICMP_SGE:
   1827       if (pred == ICmpInst::ICMP_SLT) Result = 0;
   1828       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
   1829       break;
   1830     case ICmpInst::ICMP_NE:
   1831       if (pred == ICmpInst::ICMP_EQ) Result = 0;
   1832       if (pred == ICmpInst::ICMP_NE) Result = 1;
   1833       break;
   1834     }
   1835 
   1836     // If we evaluated the result, return it now.
   1837     if (Result != -1)
   1838       return ConstantInt::get(ResultTy, Result);
   1839 
   1840     // If the right hand side is a bitcast, try using its inverse to simplify
   1841     // it by moving it to the left hand side.  We can't do this if it would turn
   1842     // a vector compare into a scalar compare or visa versa.
   1843     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
   1844       Constant *CE2Op0 = CE2->getOperand(0);
   1845       if (CE2->getOpcode() == Instruction::BitCast &&
   1846           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
   1847         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
   1848         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
   1849       }
   1850     }
   1851 
   1852     // If the left hand side is an extension, try eliminating it.
   1853     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1854       if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
   1855           (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
   1856         Constant *CE1Op0 = CE1->getOperand(0);
   1857         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
   1858         if (CE1Inverse == CE1Op0) {
   1859           // Check whether we can safely truncate the right hand side.
   1860           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
   1861           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
   1862                                     C2->getType()) == C2)
   1863             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
   1864         }
   1865       }
   1866     }
   1867 
   1868     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
   1869         (C1->isNullValue() && !C2->isNullValue())) {
   1870       // If C2 is a constant expr and C1 isn't, flip them around and fold the
   1871       // other way if possible.
   1872       // Also, if C1 is null and C2 isn't, flip them around.
   1873       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
   1874       return ConstantExpr::getICmp(pred, C2, C1);
   1875     }
   1876   }
   1877   return 0;
   1878 }
   1879 
   1880 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
   1881 /// is "inbounds".
   1882 template<typename IndexTy>
   1883 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
   1884   // No indices means nothing that could be out of bounds.
   1885   if (Idxs.empty()) return true;
   1886 
   1887   // If the first index is zero, it's in bounds.
   1888   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
   1889 
   1890   // If the first index is one and all the rest are zero, it's in bounds,
   1891   // by the one-past-the-end rule.
   1892   if (!cast<ConstantInt>(Idxs[0])->isOne())
   1893     return false;
   1894   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
   1895     if (!cast<Constant>(Idxs[i])->isNullValue())
   1896       return false;
   1897   return true;
   1898 }
   1899 
   1900 template<typename IndexTy>
   1901 static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
   1902                                                bool inBounds,
   1903                                                ArrayRef<IndexTy> Idxs) {
   1904   if (Idxs.empty()) return C;
   1905   Constant *Idx0 = cast<Constant>(Idxs[0]);
   1906   if ((Idxs.size() == 1 && Idx0->isNullValue()))
   1907     return C;
   1908 
   1909   if (isa<UndefValue>(C)) {
   1910     PointerType *Ptr = cast<PointerType>(C->getType());
   1911     Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
   1912     assert(Ty != 0 && "Invalid indices for GEP!");
   1913     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
   1914   }
   1915 
   1916   if (C->isNullValue()) {
   1917     bool isNull = true;
   1918     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   1919       if (!cast<Constant>(Idxs[i])->isNullValue()) {
   1920         isNull = false;
   1921         break;
   1922       }
   1923     if (isNull) {
   1924       PointerType *Ptr = cast<PointerType>(C->getType());
   1925       Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
   1926       assert(Ty != 0 && "Invalid indices for GEP!");
   1927       return ConstantPointerNull::get(PointerType::get(Ty,
   1928                                                        Ptr->getAddressSpace()));
   1929     }
   1930   }
   1931 
   1932   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1933     // Combine Indices - If the source pointer to this getelementptr instruction
   1934     // is a getelementptr instruction, combine the indices of the two
   1935     // getelementptr instructions into a single instruction.
   1936     //
   1937     if (CE->getOpcode() == Instruction::GetElementPtr) {
   1938       Type *LastTy = 0;
   1939       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
   1940            I != E; ++I)
   1941         LastTy = *I;
   1942 
   1943       if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
   1944         SmallVector<Value*, 16> NewIndices;
   1945         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
   1946         for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
   1947           NewIndices.push_back(CE->getOperand(i));
   1948 
   1949         // Add the last index of the source with the first index of the new GEP.
   1950         // Make sure to handle the case when they are actually different types.
   1951         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
   1952         // Otherwise it must be an array.
   1953         if (!Idx0->isNullValue()) {
   1954           Type *IdxTy = Combined->getType();
   1955           if (IdxTy != Idx0->getType()) {
   1956             Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
   1957             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
   1958             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
   1959             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
   1960           } else {
   1961             Combined =
   1962               ConstantExpr::get(Instruction::Add, Idx0, Combined);
   1963           }
   1964         }
   1965 
   1966         NewIndices.push_back(Combined);
   1967         NewIndices.append(Idxs.begin() + 1, Idxs.end());
   1968         return
   1969           ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
   1970                                          inBounds &&
   1971                                            cast<GEPOperator>(CE)->isInBounds());
   1972       }
   1973     }
   1974 
   1975     // Attempt to fold casts to the same type away.  For example, folding:
   1976     //
   1977     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
   1978     //                       i64 0, i64 0)
   1979     // into:
   1980     //
   1981     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
   1982     //
   1983     // Don't fold if the cast is changing address spaces.
   1984     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
   1985       PointerType *SrcPtrTy =
   1986         dyn_cast<PointerType>(CE->getOperand(0)->getType());
   1987       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
   1988       if (SrcPtrTy && DstPtrTy) {
   1989         ArrayType *SrcArrayTy =
   1990           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
   1991         ArrayType *DstArrayTy =
   1992           dyn_cast<ArrayType>(DstPtrTy->getElementType());
   1993         if (SrcArrayTy && DstArrayTy
   1994             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
   1995             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
   1996           return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
   1997                                                 Idxs, inBounds);
   1998       }
   1999     }
   2000   }
   2001 
   2002   // Check to see if any array indices are not within the corresponding
   2003   // notional array bounds. If so, try to determine if they can be factored
   2004   // out into preceding dimensions.
   2005   bool Unknown = false;
   2006   SmallVector<Constant *, 8> NewIdxs;
   2007   Type *Ty = C->getType();
   2008   Type *Prev = 0;
   2009   for (unsigned i = 0, e = Idxs.size(); i != e;
   2010        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
   2011     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
   2012       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
   2013         if (ATy->getNumElements() <= INT64_MAX &&
   2014             ATy->getNumElements() != 0 &&
   2015             CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
   2016           if (isa<SequentialType>(Prev)) {
   2017             // It's out of range, but we can factor it into the prior
   2018             // dimension.
   2019             NewIdxs.resize(Idxs.size());
   2020             ConstantInt *Factor = ConstantInt::get(CI->getType(),
   2021                                                    ATy->getNumElements());
   2022             NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
   2023 
   2024             Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
   2025             Constant *Div = ConstantExpr::getSDiv(CI, Factor);
   2026 
   2027             // Before adding, extend both operands to i64 to avoid
   2028             // overflow trouble.
   2029             if (!PrevIdx->getType()->isIntegerTy(64))
   2030               PrevIdx = ConstantExpr::getSExt(PrevIdx,
   2031                                            Type::getInt64Ty(Div->getContext()));
   2032             if (!Div->getType()->isIntegerTy(64))
   2033               Div = ConstantExpr::getSExt(Div,
   2034                                           Type::getInt64Ty(Div->getContext()));
   2035 
   2036             NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
   2037           } else {
   2038             // It's out of range, but the prior dimension is a struct
   2039             // so we can't do anything about it.
   2040             Unknown = true;
   2041           }
   2042         }
   2043     } else {
   2044       // We don't know if it's in range or not.
   2045       Unknown = true;
   2046     }
   2047   }
   2048 
   2049   // If we did any factoring, start over with the adjusted indices.
   2050   if (!NewIdxs.empty()) {
   2051     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2052       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
   2053     return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
   2054   }
   2055 
   2056   // If all indices are known integers and normalized, we can do a simple
   2057   // check for the "inbounds" property.
   2058   if (!Unknown && !inBounds &&
   2059       isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
   2060     return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
   2061 
   2062   return 0;
   2063 }
   2064 
   2065 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2066                                           bool inBounds,
   2067                                           ArrayRef<Constant *> Idxs) {
   2068   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
   2069 }
   2070 
   2071 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2072                                           bool inBounds,
   2073                                           ArrayRef<Value *> Idxs) {
   2074   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
   2075 }
   2076