1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements folding of constants for LLVM. This implements the 11 // (internal) ConstantFold.h interface, which is used by the 12 // ConstantExpr::get* methods to automatically fold constants when possible. 13 // 14 // The current constant folding implementation is implemented in two pieces: the 15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 16 // a dependence in IR on Target. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "ConstantFold.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/GetElementPtrTypeIterator.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <limits> 35 using namespace llvm; 36 37 //===----------------------------------------------------------------------===// 38 // ConstantFold*Instruction Implementations 39 //===----------------------------------------------------------------------===// 40 41 /// BitCastConstantVector - Convert the specified vector Constant node to the 42 /// specified vector type. At this point, we know that the elements of the 43 /// input vector constant are all simple integer or FP values. 44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 45 46 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 47 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 48 49 // If this cast changes element count then we can't handle it here: 50 // doing so requires endianness information. This should be handled by 51 // Analysis/ConstantFolding.cpp 52 unsigned NumElts = DstTy->getNumElements(); 53 if (NumElts != CV->getType()->getVectorNumElements()) 54 return 0; 55 56 Type *DstEltTy = DstTy->getElementType(); 57 58 SmallVector<Constant*, 16> Result; 59 Type *Ty = IntegerType::get(CV->getContext(), 32); 60 for (unsigned i = 0; i != NumElts; ++i) { 61 Constant *C = 62 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 63 C = ConstantExpr::getBitCast(C, DstEltTy); 64 Result.push_back(C); 65 } 66 67 return ConstantVector::get(Result); 68 } 69 70 /// This function determines which opcode to use to fold two constant cast 71 /// expressions together. It uses CastInst::isEliminableCastPair to determine 72 /// the opcode. Consequently its just a wrapper around that function. 73 /// @brief Determine if it is valid to fold a cast of a cast 74 static unsigned 75 foldConstantCastPair( 76 unsigned opc, ///< opcode of the second cast constant expression 77 ConstantExpr *Op, ///< the first cast constant expression 78 Type *DstTy ///< destination type of the first cast 79 ) { 80 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 81 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 82 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 83 84 // The the types and opcodes for the two Cast constant expressions 85 Type *SrcTy = Op->getOperand(0)->getType(); 86 Type *MidTy = Op->getType(); 87 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 88 Instruction::CastOps secondOp = Instruction::CastOps(opc); 89 90 // Assume that pointers are never more than 64 bits wide, and only use this 91 // for the middle type. Otherwise we could end up folding away illegal 92 // bitcasts between address spaces with different sizes. 93 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 94 95 // Let CastInst::isEliminableCastPair do the heavy lifting. 96 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 97 0, FakeIntPtrTy, 0); 98 } 99 100 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 101 Type *SrcTy = V->getType(); 102 if (SrcTy == DestTy) 103 return V; // no-op cast 104 105 // Check to see if we are casting a pointer to an aggregate to a pointer to 106 // the first element. If so, return the appropriate GEP instruction. 107 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 108 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 109 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 110 && DPTy->getElementType()->isSized()) { 111 SmallVector<Value*, 8> IdxList; 112 Value *Zero = 113 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 114 IdxList.push_back(Zero); 115 Type *ElTy = PTy->getElementType(); 116 while (ElTy != DPTy->getElementType()) { 117 if (StructType *STy = dyn_cast<StructType>(ElTy)) { 118 if (STy->getNumElements() == 0) break; 119 ElTy = STy->getElementType(0); 120 IdxList.push_back(Zero); 121 } else if (SequentialType *STy = 122 dyn_cast<SequentialType>(ElTy)) { 123 if (ElTy->isPointerTy()) break; // Can't index into pointers! 124 ElTy = STy->getElementType(); 125 IdxList.push_back(Zero); 126 } else { 127 break; 128 } 129 } 130 131 if (ElTy == DPTy->getElementType()) 132 // This GEP is inbounds because all indices are zero. 133 return ConstantExpr::getInBoundsGetElementPtr(V, IdxList); 134 } 135 136 // Handle casts from one vector constant to another. We know that the src 137 // and dest type have the same size (otherwise its an illegal cast). 138 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 139 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 140 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && 141 "Not cast between same sized vectors!"); 142 SrcTy = NULL; 143 // First, check for null. Undef is already handled. 144 if (isa<ConstantAggregateZero>(V)) 145 return Constant::getNullValue(DestTy); 146 147 // Handle ConstantVector and ConstantAggregateVector. 148 return BitCastConstantVector(V, DestPTy); 149 } 150 151 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 152 // This allows for other simplifications (although some of them 153 // can only be handled by Analysis/ConstantFolding.cpp). 154 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 155 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 156 } 157 158 // Finally, implement bitcast folding now. The code below doesn't handle 159 // bitcast right. 160 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 161 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 162 163 // Handle integral constant input. 164 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 165 if (DestTy->isIntegerTy()) 166 // Integral -> Integral. This is a no-op because the bit widths must 167 // be the same. Consequently, we just fold to V. 168 return V; 169 170 if (DestTy->isFloatingPointTy()) 171 return ConstantFP::get(DestTy->getContext(), 172 APFloat(DestTy->getFltSemantics(), 173 CI->getValue())); 174 175 // Otherwise, can't fold this (vector?) 176 return 0; 177 } 178 179 // Handle ConstantFP input: FP -> Integral. 180 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) 181 return ConstantInt::get(FP->getContext(), 182 FP->getValueAPF().bitcastToAPInt()); 183 184 return 0; 185 } 186 187 188 /// ExtractConstantBytes - V is an integer constant which only has a subset of 189 /// its bytes used. The bytes used are indicated by ByteStart (which is the 190 /// first byte used, counting from the least significant byte) and ByteSize, 191 /// which is the number of bytes used. 192 /// 193 /// This function analyzes the specified constant to see if the specified byte 194 /// range can be returned as a simplified constant. If so, the constant is 195 /// returned, otherwise null is returned. 196 /// 197 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 198 unsigned ByteSize) { 199 assert(C->getType()->isIntegerTy() && 200 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 201 "Non-byte sized integer input"); 202 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 203 assert(ByteSize && "Must be accessing some piece"); 204 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 205 assert(ByteSize != CSize && "Should not extract everything"); 206 207 // Constant Integers are simple. 208 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 209 APInt V = CI->getValue(); 210 if (ByteStart) 211 V = V.lshr(ByteStart*8); 212 V = V.trunc(ByteSize*8); 213 return ConstantInt::get(CI->getContext(), V); 214 } 215 216 // In the input is a constant expr, we might be able to recursively simplify. 217 // If not, we definitely can't do anything. 218 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 219 if (CE == 0) return 0; 220 221 switch (CE->getOpcode()) { 222 default: return 0; 223 case Instruction::Or: { 224 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 225 if (RHS == 0) 226 return 0; 227 228 // X | -1 -> -1. 229 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 230 if (RHSC->isAllOnesValue()) 231 return RHSC; 232 233 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 234 if (LHS == 0) 235 return 0; 236 return ConstantExpr::getOr(LHS, RHS); 237 } 238 case Instruction::And: { 239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 240 if (RHS == 0) 241 return 0; 242 243 // X & 0 -> 0. 244 if (RHS->isNullValue()) 245 return RHS; 246 247 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 248 if (LHS == 0) 249 return 0; 250 return ConstantExpr::getAnd(LHS, RHS); 251 } 252 case Instruction::LShr: { 253 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 254 if (Amt == 0) 255 return 0; 256 unsigned ShAmt = Amt->getZExtValue(); 257 // Cannot analyze non-byte shifts. 258 if ((ShAmt & 7) != 0) 259 return 0; 260 ShAmt >>= 3; 261 262 // If the extract is known to be all zeros, return zero. 263 if (ByteStart >= CSize-ShAmt) 264 return Constant::getNullValue(IntegerType::get(CE->getContext(), 265 ByteSize*8)); 266 // If the extract is known to be fully in the input, extract it. 267 if (ByteStart+ByteSize+ShAmt <= CSize) 268 return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize); 269 270 // TODO: Handle the 'partially zero' case. 271 return 0; 272 } 273 274 case Instruction::Shl: { 275 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 276 if (Amt == 0) 277 return 0; 278 unsigned ShAmt = Amt->getZExtValue(); 279 // Cannot analyze non-byte shifts. 280 if ((ShAmt & 7) != 0) 281 return 0; 282 ShAmt >>= 3; 283 284 // If the extract is known to be all zeros, return zero. 285 if (ByteStart+ByteSize <= ShAmt) 286 return Constant::getNullValue(IntegerType::get(CE->getContext(), 287 ByteSize*8)); 288 // If the extract is known to be fully in the input, extract it. 289 if (ByteStart >= ShAmt) 290 return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize); 291 292 // TODO: Handle the 'partially zero' case. 293 return 0; 294 } 295 296 case Instruction::ZExt: { 297 unsigned SrcBitSize = 298 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 299 300 // If extracting something that is completely zero, return 0. 301 if (ByteStart*8 >= SrcBitSize) 302 return Constant::getNullValue(IntegerType::get(CE->getContext(), 303 ByteSize*8)); 304 305 // If exactly extracting the input, return it. 306 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 307 return CE->getOperand(0); 308 309 // If extracting something completely in the input, if if the input is a 310 // multiple of 8 bits, recurse. 311 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 312 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 313 314 // Otherwise, if extracting a subset of the input, which is not multiple of 315 // 8 bits, do a shift and trunc to get the bits. 316 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 317 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 318 Constant *Res = CE->getOperand(0); 319 if (ByteStart) 320 Res = ConstantExpr::getLShr(Res, 321 ConstantInt::get(Res->getType(), ByteStart*8)); 322 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 323 ByteSize*8)); 324 } 325 326 // TODO: Handle the 'partially zero' case. 327 return 0; 328 } 329 } 330 } 331 332 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof 333 /// on Ty, with any known factors factored out. If Folded is false, 334 /// return null if no factoring was possible, to avoid endlessly 335 /// bouncing an unfoldable expression back into the top-level folder. 336 /// 337 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, 338 bool Folded) { 339 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 340 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 341 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 342 return ConstantExpr::getNUWMul(E, N); 343 } 344 345 if (StructType *STy = dyn_cast<StructType>(Ty)) 346 if (!STy->isPacked()) { 347 unsigned NumElems = STy->getNumElements(); 348 // An empty struct has size zero. 349 if (NumElems == 0) 350 return ConstantExpr::getNullValue(DestTy); 351 // Check for a struct with all members having the same size. 352 Constant *MemberSize = 353 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 354 bool AllSame = true; 355 for (unsigned i = 1; i != NumElems; ++i) 356 if (MemberSize != 357 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 358 AllSame = false; 359 break; 360 } 361 if (AllSame) { 362 Constant *N = ConstantInt::get(DestTy, NumElems); 363 return ConstantExpr::getNUWMul(MemberSize, N); 364 } 365 } 366 367 // Pointer size doesn't depend on the pointee type, so canonicalize them 368 // to an arbitrary pointee. 369 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 370 if (!PTy->getElementType()->isIntegerTy(1)) 371 return 372 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 373 PTy->getAddressSpace()), 374 DestTy, true); 375 376 // If there's no interesting folding happening, bail so that we don't create 377 // a constant that looks like it needs folding but really doesn't. 378 if (!Folded) 379 return 0; 380 381 // Base case: Get a regular sizeof expression. 382 Constant *C = ConstantExpr::getSizeOf(Ty); 383 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 384 DestTy, false), 385 C, DestTy); 386 return C; 387 } 388 389 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof 390 /// on Ty, with any known factors factored out. If Folded is false, 391 /// return null if no factoring was possible, to avoid endlessly 392 /// bouncing an unfoldable expression back into the top-level folder. 393 /// 394 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, 395 bool Folded) { 396 // The alignment of an array is equal to the alignment of the 397 // array element. Note that this is not always true for vectors. 398 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 399 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 400 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 401 DestTy, 402 false), 403 C, DestTy); 404 return C; 405 } 406 407 if (StructType *STy = dyn_cast<StructType>(Ty)) { 408 // Packed structs always have an alignment of 1. 409 if (STy->isPacked()) 410 return ConstantInt::get(DestTy, 1); 411 412 // Otherwise, struct alignment is the maximum alignment of any member. 413 // Without target data, we can't compare much, but we can check to see 414 // if all the members have the same alignment. 415 unsigned NumElems = STy->getNumElements(); 416 // An empty struct has minimal alignment. 417 if (NumElems == 0) 418 return ConstantInt::get(DestTy, 1); 419 // Check for a struct with all members having the same alignment. 420 Constant *MemberAlign = 421 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 422 bool AllSame = true; 423 for (unsigned i = 1; i != NumElems; ++i) 424 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 425 AllSame = false; 426 break; 427 } 428 if (AllSame) 429 return MemberAlign; 430 } 431 432 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 433 // to an arbitrary pointee. 434 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 435 if (!PTy->getElementType()->isIntegerTy(1)) 436 return 437 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 438 1), 439 PTy->getAddressSpace()), 440 DestTy, true); 441 442 // If there's no interesting folding happening, bail so that we don't create 443 // a constant that looks like it needs folding but really doesn't. 444 if (!Folded) 445 return 0; 446 447 // Base case: Get a regular alignof expression. 448 Constant *C = ConstantExpr::getAlignOf(Ty); 449 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 450 DestTy, false), 451 C, DestTy); 452 return C; 453 } 454 455 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof 456 /// on Ty and FieldNo, with any known factors factored out. If Folded is false, 457 /// return null if no factoring was possible, to avoid endlessly 458 /// bouncing an unfoldable expression back into the top-level folder. 459 /// 460 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, 461 Type *DestTy, 462 bool Folded) { 463 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 464 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 465 DestTy, false), 466 FieldNo, DestTy); 467 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 468 return ConstantExpr::getNUWMul(E, N); 469 } 470 471 if (StructType *STy = dyn_cast<StructType>(Ty)) 472 if (!STy->isPacked()) { 473 unsigned NumElems = STy->getNumElements(); 474 // An empty struct has no members. 475 if (NumElems == 0) 476 return 0; 477 // Check for a struct with all members having the same size. 478 Constant *MemberSize = 479 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 480 bool AllSame = true; 481 for (unsigned i = 1; i != NumElems; ++i) 482 if (MemberSize != 483 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 484 AllSame = false; 485 break; 486 } 487 if (AllSame) { 488 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 489 false, 490 DestTy, 491 false), 492 FieldNo, DestTy); 493 return ConstantExpr::getNUWMul(MemberSize, N); 494 } 495 } 496 497 // If there's no interesting folding happening, bail so that we don't create 498 // a constant that looks like it needs folding but really doesn't. 499 if (!Folded) 500 return 0; 501 502 // Base case: Get a regular offsetof expression. 503 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 504 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 505 DestTy, false), 506 C, DestTy); 507 return C; 508 } 509 510 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 511 Type *DestTy) { 512 if (isa<UndefValue>(V)) { 513 // zext(undef) = 0, because the top bits will be zero. 514 // sext(undef) = 0, because the top bits will all be the same. 515 // [us]itofp(undef) = 0, because the result value is bounded. 516 if (opc == Instruction::ZExt || opc == Instruction::SExt || 517 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 518 return Constant::getNullValue(DestTy); 519 return UndefValue::get(DestTy); 520 } 521 522 if (V->isNullValue() && !DestTy->isX86_MMXTy()) 523 return Constant::getNullValue(DestTy); 524 525 // If the cast operand is a constant expression, there's a few things we can 526 // do to try to simplify it. 527 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 528 if (CE->isCast()) { 529 // Try hard to fold cast of cast because they are often eliminable. 530 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 531 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 532 } else if (CE->getOpcode() == Instruction::GetElementPtr) { 533 // If all of the indexes in the GEP are null values, there is no pointer 534 // adjustment going on. We might as well cast the source pointer. 535 bool isAllNull = true; 536 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 537 if (!CE->getOperand(i)->isNullValue()) { 538 isAllNull = false; 539 break; 540 } 541 if (isAllNull) 542 // This is casting one pointer type to another, always BitCast 543 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 544 } 545 } 546 547 // If the cast operand is a constant vector, perform the cast by 548 // operating on each element. In the cast of bitcasts, the element 549 // count may be mismatched; don't attempt to handle that here. 550 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 551 DestTy->isVectorTy() && 552 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { 553 SmallVector<Constant*, 16> res; 554 VectorType *DestVecTy = cast<VectorType>(DestTy); 555 Type *DstEltTy = DestVecTy->getElementType(); 556 Type *Ty = IntegerType::get(V->getContext(), 32); 557 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { 558 Constant *C = 559 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 560 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 561 } 562 return ConstantVector::get(res); 563 } 564 565 // We actually have to do a cast now. Perform the cast according to the 566 // opcode specified. 567 switch (opc) { 568 default: 569 llvm_unreachable("Failed to cast constant expression"); 570 case Instruction::FPTrunc: 571 case Instruction::FPExt: 572 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 573 bool ignored; 574 APFloat Val = FPC->getValueAPF(); 575 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf : 576 DestTy->isFloatTy() ? APFloat::IEEEsingle : 577 DestTy->isDoubleTy() ? APFloat::IEEEdouble : 578 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended : 579 DestTy->isFP128Ty() ? APFloat::IEEEquad : 580 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble : 581 APFloat::Bogus, 582 APFloat::rmNearestTiesToEven, &ignored); 583 return ConstantFP::get(V->getContext(), Val); 584 } 585 return 0; // Can't fold. 586 case Instruction::FPToUI: 587 case Instruction::FPToSI: 588 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 589 const APFloat &V = FPC->getValueAPF(); 590 bool ignored; 591 uint64_t x[2]; 592 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 593 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI, 594 APFloat::rmTowardZero, &ignored); 595 APInt Val(DestBitWidth, x); 596 return ConstantInt::get(FPC->getContext(), Val); 597 } 598 return 0; // Can't fold. 599 case Instruction::IntToPtr: //always treated as unsigned 600 if (V->isNullValue()) // Is it an integral null value? 601 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 602 return 0; // Other pointer types cannot be casted 603 case Instruction::PtrToInt: // always treated as unsigned 604 // Is it a null pointer value? 605 if (V->isNullValue()) 606 return ConstantInt::get(DestTy, 0); 607 // If this is a sizeof-like expression, pull out multiplications by 608 // known factors to expose them to subsequent folding. If it's an 609 // alignof-like expression, factor out known factors. 610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 611 if (CE->getOpcode() == Instruction::GetElementPtr && 612 CE->getOperand(0)->isNullValue()) { 613 Type *Ty = 614 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 615 if (CE->getNumOperands() == 2) { 616 // Handle a sizeof-like expression. 617 Constant *Idx = CE->getOperand(1); 618 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 619 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 620 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 621 DestTy, false), 622 Idx, DestTy); 623 return ConstantExpr::getMul(C, Idx); 624 } 625 } else if (CE->getNumOperands() == 3 && 626 CE->getOperand(1)->isNullValue()) { 627 // Handle an alignof-like expression. 628 if (StructType *STy = dyn_cast<StructType>(Ty)) 629 if (!STy->isPacked()) { 630 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 631 if (CI->isOne() && 632 STy->getNumElements() == 2 && 633 STy->getElementType(0)->isIntegerTy(1)) { 634 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 635 } 636 } 637 // Handle an offsetof-like expression. 638 if (Ty->isStructTy() || Ty->isArrayTy()) { 639 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 640 DestTy, false)) 641 return C; 642 } 643 } 644 } 645 // Other pointer types cannot be casted 646 return 0; 647 case Instruction::UIToFP: 648 case Instruction::SIToFP: 649 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 650 APInt api = CI->getValue(); 651 APFloat apf(DestTy->getFltSemantics(), 652 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 653 (void)apf.convertFromAPInt(api, 654 opc==Instruction::SIToFP, 655 APFloat::rmNearestTiesToEven); 656 return ConstantFP::get(V->getContext(), apf); 657 } 658 return 0; 659 case Instruction::ZExt: 660 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 661 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 662 return ConstantInt::get(V->getContext(), 663 CI->getValue().zext(BitWidth)); 664 } 665 return 0; 666 case Instruction::SExt: 667 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 668 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 669 return ConstantInt::get(V->getContext(), 670 CI->getValue().sext(BitWidth)); 671 } 672 return 0; 673 case Instruction::Trunc: { 674 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 675 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 676 return ConstantInt::get(V->getContext(), 677 CI->getValue().trunc(DestBitWidth)); 678 } 679 680 // The input must be a constantexpr. See if we can simplify this based on 681 // the bytes we are demanding. Only do this if the source and dest are an 682 // even multiple of a byte. 683 if ((DestBitWidth & 7) == 0 && 684 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 685 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 686 return Res; 687 688 return 0; 689 } 690 case Instruction::BitCast: 691 return FoldBitCast(V, DestTy); 692 } 693 } 694 695 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 696 Constant *V1, Constant *V2) { 697 // Check for i1 and vector true/false conditions. 698 if (Cond->isNullValue()) return V2; 699 if (Cond->isAllOnesValue()) return V1; 700 701 // If the condition is a vector constant, fold the result elementwise. 702 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 703 SmallVector<Constant*, 16> Result; 704 Type *Ty = IntegerType::get(CondV->getContext(), 32); 705 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ 706 ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i)); 707 if (Cond == 0) break; 708 709 Constant *V = Cond->isNullValue() ? V2 : V1; 710 Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 711 Result.push_back(Res); 712 } 713 714 // If we were able to build the vector, return it. 715 if (Result.size() == V1->getType()->getVectorNumElements()) 716 return ConstantVector::get(Result); 717 } 718 719 if (isa<UndefValue>(Cond)) { 720 if (isa<UndefValue>(V1)) return V1; 721 return V2; 722 } 723 if (isa<UndefValue>(V1)) return V2; 724 if (isa<UndefValue>(V2)) return V1; 725 if (V1 == V2) return V1; 726 727 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 728 if (TrueVal->getOpcode() == Instruction::Select) 729 if (TrueVal->getOperand(0) == Cond) 730 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 731 } 732 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 733 if (FalseVal->getOpcode() == Instruction::Select) 734 if (FalseVal->getOperand(0) == Cond) 735 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 736 } 737 738 return 0; 739 } 740 741 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 742 Constant *Idx) { 743 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef 744 return UndefValue::get(Val->getType()->getVectorElementType()); 745 if (Val->isNullValue()) // ee(zero, x) -> zero 746 return Constant::getNullValue(Val->getType()->getVectorElementType()); 747 // ee({w,x,y,z}, undef) -> undef 748 if (isa<UndefValue>(Idx)) 749 return UndefValue::get(Val->getType()->getVectorElementType()); 750 751 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { 752 uint64_t Index = CIdx->getZExtValue(); 753 // ee({w,x,y,z}, wrong_value) -> undef 754 if (Index >= Val->getType()->getVectorNumElements()) 755 return UndefValue::get(Val->getType()->getVectorElementType()); 756 return Val->getAggregateElement(Index); 757 } 758 return 0; 759 } 760 761 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 762 Constant *Elt, 763 Constant *Idx) { 764 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 765 if (!CIdx) return 0; 766 const APInt &IdxVal = CIdx->getValue(); 767 768 SmallVector<Constant*, 16> Result; 769 Type *Ty = IntegerType::get(Val->getContext(), 32); 770 for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){ 771 if (i == IdxVal) { 772 Result.push_back(Elt); 773 continue; 774 } 775 776 Constant *C = 777 ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 778 Result.push_back(C); 779 } 780 781 return ConstantVector::get(Result); 782 } 783 784 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, 785 Constant *V2, 786 Constant *Mask) { 787 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 788 Type *EltTy = V1->getType()->getVectorElementType(); 789 790 // Undefined shuffle mask -> undefined value. 791 if (isa<UndefValue>(Mask)) 792 return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); 793 794 // Don't break the bitcode reader hack. 795 if (isa<ConstantExpr>(Mask)) return 0; 796 797 unsigned SrcNumElts = V1->getType()->getVectorNumElements(); 798 799 // Loop over the shuffle mask, evaluating each element. 800 SmallVector<Constant*, 32> Result; 801 for (unsigned i = 0; i != MaskNumElts; ++i) { 802 int Elt = ShuffleVectorInst::getMaskValue(Mask, i); 803 if (Elt == -1) { 804 Result.push_back(UndefValue::get(EltTy)); 805 continue; 806 } 807 Constant *InElt; 808 if (unsigned(Elt) >= SrcNumElts*2) 809 InElt = UndefValue::get(EltTy); 810 else if (unsigned(Elt) >= SrcNumElts) { 811 Type *Ty = IntegerType::get(V2->getContext(), 32); 812 InElt = 813 ConstantExpr::getExtractElement(V2, 814 ConstantInt::get(Ty, Elt - SrcNumElts)); 815 } else { 816 Type *Ty = IntegerType::get(V1->getContext(), 32); 817 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 818 } 819 Result.push_back(InElt); 820 } 821 822 return ConstantVector::get(Result); 823 } 824 825 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 826 ArrayRef<unsigned> Idxs) { 827 // Base case: no indices, so return the entire value. 828 if (Idxs.empty()) 829 return Agg; 830 831 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 832 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 833 834 return 0; 835 } 836 837 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 838 Constant *Val, 839 ArrayRef<unsigned> Idxs) { 840 // Base case: no indices, so replace the entire value. 841 if (Idxs.empty()) 842 return Val; 843 844 unsigned NumElts; 845 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 846 NumElts = ST->getNumElements(); 847 else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) 848 NumElts = AT->getNumElements(); 849 else 850 NumElts = Agg->getType()->getVectorNumElements(); 851 852 SmallVector<Constant*, 32> Result; 853 for (unsigned i = 0; i != NumElts; ++i) { 854 Constant *C = Agg->getAggregateElement(i); 855 if (C == 0) return 0; 856 857 if (Idxs[0] == i) 858 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 859 860 Result.push_back(C); 861 } 862 863 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 864 return ConstantStruct::get(ST, Result); 865 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) 866 return ConstantArray::get(AT, Result); 867 return ConstantVector::get(Result); 868 } 869 870 871 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, 872 Constant *C1, Constant *C2) { 873 // Handle UndefValue up front. 874 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 875 switch (Opcode) { 876 case Instruction::Xor: 877 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 878 // Handle undef ^ undef -> 0 special case. This is a common 879 // idiom (misuse). 880 return Constant::getNullValue(C1->getType()); 881 // Fallthrough 882 case Instruction::Add: 883 case Instruction::Sub: 884 return UndefValue::get(C1->getType()); 885 case Instruction::And: 886 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 887 return C1; 888 return Constant::getNullValue(C1->getType()); // undef & X -> 0 889 case Instruction::Mul: { 890 ConstantInt *CI; 891 // X * undef -> undef if X is odd or undef 892 if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) || 893 ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) || 894 (isa<UndefValue>(C1) && isa<UndefValue>(C2))) 895 return UndefValue::get(C1->getType()); 896 897 // X * undef -> 0 otherwise 898 return Constant::getNullValue(C1->getType()); 899 } 900 case Instruction::UDiv: 901 case Instruction::SDiv: 902 // undef / 1 -> undef 903 if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv) 904 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) 905 if (CI2->isOne()) 906 return C1; 907 // FALL THROUGH 908 case Instruction::URem: 909 case Instruction::SRem: 910 if (!isa<UndefValue>(C2)) // undef / X -> 0 911 return Constant::getNullValue(C1->getType()); 912 return C2; // X / undef -> undef 913 case Instruction::Or: // X | undef -> -1 914 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 915 return C1; 916 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 917 case Instruction::LShr: 918 if (isa<UndefValue>(C2) && isa<UndefValue>(C1)) 919 return C1; // undef lshr undef -> undef 920 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0 921 // undef lshr X -> 0 922 case Instruction::AShr: 923 if (!isa<UndefValue>(C2)) // undef ashr X --> all ones 924 return Constant::getAllOnesValue(C1->getType()); 925 else if (isa<UndefValue>(C1)) 926 return C1; // undef ashr undef -> undef 927 else 928 return C1; // X ashr undef --> X 929 case Instruction::Shl: 930 if (isa<UndefValue>(C2) && isa<UndefValue>(C1)) 931 return C1; // undef shl undef -> undef 932 // undef << X -> 0 or X << undef -> 0 933 return Constant::getNullValue(C1->getType()); 934 } 935 } 936 937 // Handle simplifications when the RHS is a constant int. 938 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 939 switch (Opcode) { 940 case Instruction::Add: 941 if (CI2->equalsInt(0)) return C1; // X + 0 == X 942 break; 943 case Instruction::Sub: 944 if (CI2->equalsInt(0)) return C1; // X - 0 == X 945 break; 946 case Instruction::Mul: 947 if (CI2->equalsInt(0)) return C2; // X * 0 == 0 948 if (CI2->equalsInt(1)) 949 return C1; // X * 1 == X 950 break; 951 case Instruction::UDiv: 952 case Instruction::SDiv: 953 if (CI2->equalsInt(1)) 954 return C1; // X / 1 == X 955 if (CI2->equalsInt(0)) 956 return UndefValue::get(CI2->getType()); // X / 0 == undef 957 break; 958 case Instruction::URem: 959 case Instruction::SRem: 960 if (CI2->equalsInt(1)) 961 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 962 if (CI2->equalsInt(0)) 963 return UndefValue::get(CI2->getType()); // X % 0 == undef 964 break; 965 case Instruction::And: 966 if (CI2->isZero()) return C2; // X & 0 == 0 967 if (CI2->isAllOnesValue()) 968 return C1; // X & -1 == X 969 970 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 971 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 972 if (CE1->getOpcode() == Instruction::ZExt) { 973 unsigned DstWidth = CI2->getType()->getBitWidth(); 974 unsigned SrcWidth = 975 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 976 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 977 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 978 return C1; 979 } 980 981 // If and'ing the address of a global with a constant, fold it. 982 if (CE1->getOpcode() == Instruction::PtrToInt && 983 isa<GlobalValue>(CE1->getOperand(0))) { 984 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 985 986 // Functions are at least 4-byte aligned. 987 unsigned GVAlign = GV->getAlignment(); 988 if (isa<Function>(GV)) 989 GVAlign = std::max(GVAlign, 4U); 990 991 if (GVAlign > 1) { 992 unsigned DstWidth = CI2->getType()->getBitWidth(); 993 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign)); 994 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 995 996 // If checking bits we know are clear, return zero. 997 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 998 return Constant::getNullValue(CI2->getType()); 999 } 1000 } 1001 } 1002 break; 1003 case Instruction::Or: 1004 if (CI2->equalsInt(0)) return C1; // X | 0 == X 1005 if (CI2->isAllOnesValue()) 1006 return C2; // X | -1 == -1 1007 break; 1008 case Instruction::Xor: 1009 if (CI2->equalsInt(0)) return C1; // X ^ 0 == X 1010 1011 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1012 switch (CE1->getOpcode()) { 1013 default: break; 1014 case Instruction::ICmp: 1015 case Instruction::FCmp: 1016 // cmp pred ^ true -> cmp !pred 1017 assert(CI2->equalsInt(1)); 1018 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1019 pred = CmpInst::getInversePredicate(pred); 1020 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1021 CE1->getOperand(1)); 1022 } 1023 } 1024 break; 1025 case Instruction::AShr: 1026 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1027 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1028 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1029 return ConstantExpr::getLShr(C1, C2); 1030 break; 1031 } 1032 } else if (isa<ConstantInt>(C1)) { 1033 // If C1 is a ConstantInt and C2 is not, swap the operands. 1034 if (Instruction::isCommutative(Opcode)) 1035 return ConstantExpr::get(Opcode, C2, C1); 1036 } 1037 1038 // At this point we know neither constant is an UndefValue. 1039 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1040 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1041 const APInt &C1V = CI1->getValue(); 1042 const APInt &C2V = CI2->getValue(); 1043 switch (Opcode) { 1044 default: 1045 break; 1046 case Instruction::Add: 1047 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1048 case Instruction::Sub: 1049 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1050 case Instruction::Mul: 1051 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1052 case Instruction::UDiv: 1053 assert(!CI2->isNullValue() && "Div by zero handled above"); 1054 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1055 case Instruction::SDiv: 1056 assert(!CI2->isNullValue() && "Div by zero handled above"); 1057 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1058 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1059 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1060 case Instruction::URem: 1061 assert(!CI2->isNullValue() && "Div by zero handled above"); 1062 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1063 case Instruction::SRem: 1064 assert(!CI2->isNullValue() && "Div by zero handled above"); 1065 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1066 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1067 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1068 case Instruction::And: 1069 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1070 case Instruction::Or: 1071 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1072 case Instruction::Xor: 1073 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1074 case Instruction::Shl: { 1075 uint32_t shiftAmt = C2V.getZExtValue(); 1076 if (shiftAmt < C1V.getBitWidth()) 1077 return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt)); 1078 else 1079 return UndefValue::get(C1->getType()); // too big shift is undef 1080 } 1081 case Instruction::LShr: { 1082 uint32_t shiftAmt = C2V.getZExtValue(); 1083 if (shiftAmt < C1V.getBitWidth()) 1084 return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt)); 1085 else 1086 return UndefValue::get(C1->getType()); // too big shift is undef 1087 } 1088 case Instruction::AShr: { 1089 uint32_t shiftAmt = C2V.getZExtValue(); 1090 if (shiftAmt < C1V.getBitWidth()) 1091 return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt)); 1092 else 1093 return UndefValue::get(C1->getType()); // too big shift is undef 1094 } 1095 } 1096 } 1097 1098 switch (Opcode) { 1099 case Instruction::SDiv: 1100 case Instruction::UDiv: 1101 case Instruction::URem: 1102 case Instruction::SRem: 1103 case Instruction::LShr: 1104 case Instruction::AShr: 1105 case Instruction::Shl: 1106 if (CI1->equalsInt(0)) return C1; 1107 break; 1108 default: 1109 break; 1110 } 1111 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1112 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1113 APFloat C1V = CFP1->getValueAPF(); 1114 APFloat C2V = CFP2->getValueAPF(); 1115 APFloat C3V = C1V; // copy for modification 1116 switch (Opcode) { 1117 default: 1118 break; 1119 case Instruction::FAdd: 1120 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1121 return ConstantFP::get(C1->getContext(), C3V); 1122 case Instruction::FSub: 1123 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1124 return ConstantFP::get(C1->getContext(), C3V); 1125 case Instruction::FMul: 1126 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1127 return ConstantFP::get(C1->getContext(), C3V); 1128 case Instruction::FDiv: 1129 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1130 return ConstantFP::get(C1->getContext(), C3V); 1131 case Instruction::FRem: 1132 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven); 1133 return ConstantFP::get(C1->getContext(), C3V); 1134 } 1135 } 1136 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { 1137 // Perform elementwise folding. 1138 SmallVector<Constant*, 16> Result; 1139 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1140 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1141 Constant *LHS = 1142 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 1143 Constant *RHS = 1144 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 1145 1146 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1147 } 1148 1149 return ConstantVector::get(Result); 1150 } 1151 1152 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1153 // There are many possible foldings we could do here. We should probably 1154 // at least fold add of a pointer with an integer into the appropriate 1155 // getelementptr. This will improve alias analysis a bit. 1156 1157 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1158 // (a + (b + c)). 1159 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1160 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1161 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1162 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1163 } 1164 } else if (isa<ConstantExpr>(C2)) { 1165 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1166 // other way if possible. 1167 if (Instruction::isCommutative(Opcode)) 1168 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1169 } 1170 1171 // i1 can be simplified in many cases. 1172 if (C1->getType()->isIntegerTy(1)) { 1173 switch (Opcode) { 1174 case Instruction::Add: 1175 case Instruction::Sub: 1176 return ConstantExpr::getXor(C1, C2); 1177 case Instruction::Mul: 1178 return ConstantExpr::getAnd(C1, C2); 1179 case Instruction::Shl: 1180 case Instruction::LShr: 1181 case Instruction::AShr: 1182 // We can assume that C2 == 0. If it were one the result would be 1183 // undefined because the shift value is as large as the bitwidth. 1184 return C1; 1185 case Instruction::SDiv: 1186 case Instruction::UDiv: 1187 // We can assume that C2 == 1. If it were zero the result would be 1188 // undefined through division by zero. 1189 return C1; 1190 case Instruction::URem: 1191 case Instruction::SRem: 1192 // We can assume that C2 == 1. If it were zero the result would be 1193 // undefined through division by zero. 1194 return ConstantInt::getFalse(C1->getContext()); 1195 default: 1196 break; 1197 } 1198 } 1199 1200 // We don't know how to fold this. 1201 return 0; 1202 } 1203 1204 /// isZeroSizedType - This type is zero sized if its an array or structure of 1205 /// zero sized types. The only leaf zero sized type is an empty structure. 1206 static bool isMaybeZeroSizedType(Type *Ty) { 1207 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1208 if (STy->isOpaque()) return true; // Can't say. 1209 1210 // If all of elements have zero size, this does too. 1211 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1212 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1213 return true; 1214 1215 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1216 return isMaybeZeroSizedType(ATy->getElementType()); 1217 } 1218 return false; 1219 } 1220 1221 /// IdxCompare - Compare the two constants as though they were getelementptr 1222 /// indices. This allows coersion of the types to be the same thing. 1223 /// 1224 /// If the two constants are the "same" (after coersion), return 0. If the 1225 /// first is less than the second, return -1, if the second is less than the 1226 /// first, return 1. If the constants are not integral, return -2. 1227 /// 1228 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1229 if (C1 == C2) return 0; 1230 1231 // Ok, we found a different index. If they are not ConstantInt, we can't do 1232 // anything with them. 1233 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1234 return -2; // don't know! 1235 1236 // Ok, we have two differing integer indices. Sign extend them to be the same 1237 // type. Long is always big enough, so we use it. 1238 if (!C1->getType()->isIntegerTy(64)) 1239 C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext())); 1240 1241 if (!C2->getType()->isIntegerTy(64)) 1242 C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext())); 1243 1244 if (C1 == C2) return 0; // They are equal 1245 1246 // If the type being indexed over is really just a zero sized type, there is 1247 // no pointer difference being made here. 1248 if (isMaybeZeroSizedType(ElTy)) 1249 return -2; // dunno. 1250 1251 // If they are really different, now that they are the same type, then we 1252 // found a difference! 1253 if (cast<ConstantInt>(C1)->getSExtValue() < 1254 cast<ConstantInt>(C2)->getSExtValue()) 1255 return -1; 1256 else 1257 return 1; 1258 } 1259 1260 /// evaluateFCmpRelation - This function determines if there is anything we can 1261 /// decide about the two constants provided. This doesn't need to handle simple 1262 /// things like ConstantFP comparisons, but should instead handle ConstantExprs. 1263 /// If we can determine that the two constants have a particular relation to 1264 /// each other, we should return the corresponding FCmpInst predicate, 1265 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1266 /// ConstantFoldCompareInstruction. 1267 /// 1268 /// To simplify this code we canonicalize the relation so that the first 1269 /// operand is always the most "complex" of the two. We consider ConstantFP 1270 /// to be the simplest, and ConstantExprs to be the most complex. 1271 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1272 assert(V1->getType() == V2->getType() && 1273 "Cannot compare values of different types!"); 1274 1275 // Handle degenerate case quickly 1276 if (V1 == V2) return FCmpInst::FCMP_OEQ; 1277 1278 if (!isa<ConstantExpr>(V1)) { 1279 if (!isa<ConstantExpr>(V2)) { 1280 // We distilled thisUse the standard constant folder for a few cases 1281 ConstantInt *R = 0; 1282 R = dyn_cast<ConstantInt>( 1283 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1284 if (R && !R->isZero()) 1285 return FCmpInst::FCMP_OEQ; 1286 R = dyn_cast<ConstantInt>( 1287 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1288 if (R && !R->isZero()) 1289 return FCmpInst::FCMP_OLT; 1290 R = dyn_cast<ConstantInt>( 1291 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1292 if (R && !R->isZero()) 1293 return FCmpInst::FCMP_OGT; 1294 1295 // Nothing more we can do 1296 return FCmpInst::BAD_FCMP_PREDICATE; 1297 } 1298 1299 // If the first operand is simple and second is ConstantExpr, swap operands. 1300 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1301 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1302 return FCmpInst::getSwappedPredicate(SwappedRelation); 1303 } else { 1304 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1305 // constantexpr or a simple constant. 1306 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1307 switch (CE1->getOpcode()) { 1308 case Instruction::FPTrunc: 1309 case Instruction::FPExt: 1310 case Instruction::UIToFP: 1311 case Instruction::SIToFP: 1312 // We might be able to do something with these but we don't right now. 1313 break; 1314 default: 1315 break; 1316 } 1317 } 1318 // There are MANY other foldings that we could perform here. They will 1319 // probably be added on demand, as they seem needed. 1320 return FCmpInst::BAD_FCMP_PREDICATE; 1321 } 1322 1323 /// evaluateICmpRelation - This function determines if there is anything we can 1324 /// decide about the two constants provided. This doesn't need to handle simple 1325 /// things like integer comparisons, but should instead handle ConstantExprs 1326 /// and GlobalValues. If we can determine that the two constants have a 1327 /// particular relation to each other, we should return the corresponding ICmp 1328 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE. 1329 /// 1330 /// To simplify this code we canonicalize the relation so that the first 1331 /// operand is always the most "complex" of the two. We consider simple 1332 /// constants (like ConstantInt) to be the simplest, followed by 1333 /// GlobalValues, followed by ConstantExpr's (the most complex). 1334 /// 1335 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1336 bool isSigned) { 1337 assert(V1->getType() == V2->getType() && 1338 "Cannot compare different types of values!"); 1339 if (V1 == V2) return ICmpInst::ICMP_EQ; 1340 1341 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1342 !isa<BlockAddress>(V1)) { 1343 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1344 !isa<BlockAddress>(V2)) { 1345 // We distilled this down to a simple case, use the standard constant 1346 // folder. 1347 ConstantInt *R = 0; 1348 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1349 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1350 if (R && !R->isZero()) 1351 return pred; 1352 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1353 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1354 if (R && !R->isZero()) 1355 return pred; 1356 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1357 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1358 if (R && !R->isZero()) 1359 return pred; 1360 1361 // If we couldn't figure it out, bail. 1362 return ICmpInst::BAD_ICMP_PREDICATE; 1363 } 1364 1365 // If the first operand is simple, swap operands. 1366 ICmpInst::Predicate SwappedRelation = 1367 evaluateICmpRelation(V2, V1, isSigned); 1368 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1369 return ICmpInst::getSwappedPredicate(SwappedRelation); 1370 1371 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1372 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1373 ICmpInst::Predicate SwappedRelation = 1374 evaluateICmpRelation(V2, V1, isSigned); 1375 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1376 return ICmpInst::getSwappedPredicate(SwappedRelation); 1377 return ICmpInst::BAD_ICMP_PREDICATE; 1378 } 1379 1380 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1381 // constant (which, since the types must match, means that it's a 1382 // ConstantPointerNull). 1383 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1384 // Don't try to decide equality of aliases. 1385 if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2)) 1386 if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage()) 1387 return ICmpInst::ICMP_NE; 1388 } else if (isa<BlockAddress>(V2)) { 1389 return ICmpInst::ICMP_NE; // Globals never equal labels. 1390 } else { 1391 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1392 // GlobalVals can never be null unless they have external weak linkage. 1393 // We don't try to evaluate aliases here. 1394 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV)) 1395 return ICmpInst::ICMP_NE; 1396 } 1397 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1398 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1399 ICmpInst::Predicate SwappedRelation = 1400 evaluateICmpRelation(V2, V1, isSigned); 1401 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1402 return ICmpInst::getSwappedPredicate(SwappedRelation); 1403 return ICmpInst::BAD_ICMP_PREDICATE; 1404 } 1405 1406 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1407 // constant (which, since the types must match, means that it is a 1408 // ConstantPointerNull). 1409 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1410 // Block address in another function can't equal this one, but block 1411 // addresses in the current function might be the same if blocks are 1412 // empty. 1413 if (BA2->getFunction() != BA->getFunction()) 1414 return ICmpInst::ICMP_NE; 1415 } else { 1416 // Block addresses aren't null, don't equal the address of globals. 1417 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1418 "Canonicalization guarantee!"); 1419 return ICmpInst::ICMP_NE; 1420 } 1421 } else { 1422 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1423 // constantexpr, a global, block address, or a simple constant. 1424 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1425 Constant *CE1Op0 = CE1->getOperand(0); 1426 1427 switch (CE1->getOpcode()) { 1428 case Instruction::Trunc: 1429 case Instruction::FPTrunc: 1430 case Instruction::FPExt: 1431 case Instruction::FPToUI: 1432 case Instruction::FPToSI: 1433 break; // We can't evaluate floating point casts or truncations. 1434 1435 case Instruction::UIToFP: 1436 case Instruction::SIToFP: 1437 case Instruction::BitCast: 1438 case Instruction::ZExt: 1439 case Instruction::SExt: 1440 // If the cast is not actually changing bits, and the second operand is a 1441 // null pointer, do the comparison with the pre-casted value. 1442 if (V2->isNullValue() && 1443 (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) { 1444 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1445 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1446 return evaluateICmpRelation(CE1Op0, 1447 Constant::getNullValue(CE1Op0->getType()), 1448 isSigned); 1449 } 1450 break; 1451 1452 case Instruction::GetElementPtr: 1453 // Ok, since this is a getelementptr, we know that the constant has a 1454 // pointer type. Check the various cases. 1455 if (isa<ConstantPointerNull>(V2)) { 1456 // If we are comparing a GEP to a null pointer, check to see if the base 1457 // of the GEP equals the null pointer. 1458 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1459 if (GV->hasExternalWeakLinkage()) 1460 // Weak linkage GVals could be zero or not. We're comparing that 1461 // to null pointer so its greater-or-equal 1462 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1463 else 1464 // If its not weak linkage, the GVal must have a non-zero address 1465 // so the result is greater-than 1466 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1467 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1468 // If we are indexing from a null pointer, check to see if we have any 1469 // non-zero indices. 1470 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1471 if (!CE1->getOperand(i)->isNullValue()) 1472 // Offsetting from null, must not be equal. 1473 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1474 // Only zero indexes from null, must still be zero. 1475 return ICmpInst::ICMP_EQ; 1476 } 1477 // Otherwise, we can't really say if the first operand is null or not. 1478 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1479 if (isa<ConstantPointerNull>(CE1Op0)) { 1480 if (GV2->hasExternalWeakLinkage()) 1481 // Weak linkage GVals could be zero or not. We're comparing it to 1482 // a null pointer, so its less-or-equal 1483 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1484 else 1485 // If its not weak linkage, the GVal must have a non-zero address 1486 // so the result is less-than 1487 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1488 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1489 if (GV == GV2) { 1490 // If this is a getelementptr of the same global, then it must be 1491 // different. Because the types must match, the getelementptr could 1492 // only have at most one index, and because we fold getelementptr's 1493 // with a single zero index, it must be nonzero. 1494 assert(CE1->getNumOperands() == 2 && 1495 !CE1->getOperand(1)->isNullValue() && 1496 "Surprising getelementptr!"); 1497 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1498 } else { 1499 // If they are different globals, we don't know what the value is. 1500 return ICmpInst::BAD_ICMP_PREDICATE; 1501 } 1502 } 1503 } else { 1504 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1505 Constant *CE2Op0 = CE2->getOperand(0); 1506 1507 // There are MANY other foldings that we could perform here. They will 1508 // probably be added on demand, as they seem needed. 1509 switch (CE2->getOpcode()) { 1510 default: break; 1511 case Instruction::GetElementPtr: 1512 // By far the most common case to handle is when the base pointers are 1513 // obviously to the same global. 1514 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1515 if (CE1Op0 != CE2Op0) // Don't know relative ordering. 1516 return ICmpInst::BAD_ICMP_PREDICATE; 1517 // Ok, we know that both getelementptr instructions are based on the 1518 // same global. From this, we can precisely determine the relative 1519 // ordering of the resultant pointers. 1520 unsigned i = 1; 1521 1522 // The logic below assumes that the result of the comparison 1523 // can be determined by finding the first index that differs. 1524 // This doesn't work if there is over-indexing in any 1525 // subsequent indices, so check for that case first. 1526 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1527 !CE2->isGEPWithNoNotionalOverIndexing()) 1528 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1529 1530 // Compare all of the operands the GEP's have in common. 1531 gep_type_iterator GTI = gep_type_begin(CE1); 1532 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1533 ++i, ++GTI) 1534 switch (IdxCompare(CE1->getOperand(i), 1535 CE2->getOperand(i), GTI.getIndexedType())) { 1536 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1537 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1538 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1539 } 1540 1541 // Ok, we ran out of things they have in common. If any leftovers 1542 // are non-zero then we have a difference, otherwise we are equal. 1543 for (; i < CE1->getNumOperands(); ++i) 1544 if (!CE1->getOperand(i)->isNullValue()) { 1545 if (isa<ConstantInt>(CE1->getOperand(i))) 1546 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1547 else 1548 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1549 } 1550 1551 for (; i < CE2->getNumOperands(); ++i) 1552 if (!CE2->getOperand(i)->isNullValue()) { 1553 if (isa<ConstantInt>(CE2->getOperand(i))) 1554 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1555 else 1556 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1557 } 1558 return ICmpInst::ICMP_EQ; 1559 } 1560 } 1561 } 1562 default: 1563 break; 1564 } 1565 } 1566 1567 return ICmpInst::BAD_ICMP_PREDICATE; 1568 } 1569 1570 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1571 Constant *C1, Constant *C2) { 1572 Type *ResultTy; 1573 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1574 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1575 VT->getNumElements()); 1576 else 1577 ResultTy = Type::getInt1Ty(C1->getContext()); 1578 1579 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1580 if (pred == FCmpInst::FCMP_FALSE) 1581 return Constant::getNullValue(ResultTy); 1582 1583 if (pred == FCmpInst::FCMP_TRUE) 1584 return Constant::getAllOnesValue(ResultTy); 1585 1586 // Handle some degenerate cases first 1587 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1588 // For EQ and NE, we can always pick a value for the undef to make the 1589 // predicate pass or fail, so we can return undef. 1590 // Also, if both operands are undef, we can return undef. 1591 if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) || 1592 (isa<UndefValue>(C1) && isa<UndefValue>(C2))) 1593 return UndefValue::get(ResultTy); 1594 // Otherwise, pick the same value as the non-undef operand, and fold 1595 // it to true or false. 1596 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred)); 1597 } 1598 1599 // icmp eq/ne(null,GV) -> false/true 1600 if (C1->isNullValue()) { 1601 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1602 // Don't try to evaluate aliases. External weak GV can be null. 1603 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { 1604 if (pred == ICmpInst::ICMP_EQ) 1605 return ConstantInt::getFalse(C1->getContext()); 1606 else if (pred == ICmpInst::ICMP_NE) 1607 return ConstantInt::getTrue(C1->getContext()); 1608 } 1609 // icmp eq/ne(GV,null) -> false/true 1610 } else if (C2->isNullValue()) { 1611 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1612 // Don't try to evaluate aliases. External weak GV can be null. 1613 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { 1614 if (pred == ICmpInst::ICMP_EQ) 1615 return ConstantInt::getFalse(C1->getContext()); 1616 else if (pred == ICmpInst::ICMP_NE) 1617 return ConstantInt::getTrue(C1->getContext()); 1618 } 1619 } 1620 1621 // If the comparison is a comparison between two i1's, simplify it. 1622 if (C1->getType()->isIntegerTy(1)) { 1623 switch(pred) { 1624 case ICmpInst::ICMP_EQ: 1625 if (isa<ConstantInt>(C2)) 1626 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1627 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1628 case ICmpInst::ICMP_NE: 1629 return ConstantExpr::getXor(C1, C2); 1630 default: 1631 break; 1632 } 1633 } 1634 1635 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1636 APInt V1 = cast<ConstantInt>(C1)->getValue(); 1637 APInt V2 = cast<ConstantInt>(C2)->getValue(); 1638 switch (pred) { 1639 default: llvm_unreachable("Invalid ICmp Predicate"); 1640 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1641 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1642 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1643 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1644 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1645 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1646 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1647 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1648 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1649 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1650 } 1651 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1652 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF(); 1653 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF(); 1654 APFloat::cmpResult R = C1V.compare(C2V); 1655 switch (pred) { 1656 default: llvm_unreachable("Invalid FCmp Predicate"); 1657 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1658 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1659 case FCmpInst::FCMP_UNO: 1660 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1661 case FCmpInst::FCMP_ORD: 1662 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1663 case FCmpInst::FCMP_UEQ: 1664 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1665 R==APFloat::cmpEqual); 1666 case FCmpInst::FCMP_OEQ: 1667 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 1668 case FCmpInst::FCMP_UNE: 1669 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 1670 case FCmpInst::FCMP_ONE: 1671 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1672 R==APFloat::cmpGreaterThan); 1673 case FCmpInst::FCMP_ULT: 1674 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1675 R==APFloat::cmpLessThan); 1676 case FCmpInst::FCMP_OLT: 1677 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 1678 case FCmpInst::FCMP_UGT: 1679 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1680 R==APFloat::cmpGreaterThan); 1681 case FCmpInst::FCMP_OGT: 1682 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 1683 case FCmpInst::FCMP_ULE: 1684 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 1685 case FCmpInst::FCMP_OLE: 1686 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1687 R==APFloat::cmpEqual); 1688 case FCmpInst::FCMP_UGE: 1689 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 1690 case FCmpInst::FCMP_OGE: 1691 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 1692 R==APFloat::cmpEqual); 1693 } 1694 } else if (C1->getType()->isVectorTy()) { 1695 // If we can constant fold the comparison of each element, constant fold 1696 // the whole vector comparison. 1697 SmallVector<Constant*, 4> ResElts; 1698 Type *Ty = IntegerType::get(C1->getContext(), 32); 1699 // Compare the elements, producing an i1 result or constant expr. 1700 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ 1701 Constant *C1E = 1702 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 1703 Constant *C2E = 1704 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 1705 1706 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 1707 } 1708 1709 return ConstantVector::get(ResElts); 1710 } 1711 1712 if (C1->getType()->isFloatingPointTy()) { 1713 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1714 switch (evaluateFCmpRelation(C1, C2)) { 1715 default: llvm_unreachable("Unknown relation!"); 1716 case FCmpInst::FCMP_UNO: 1717 case FCmpInst::FCMP_ORD: 1718 case FCmpInst::FCMP_UEQ: 1719 case FCmpInst::FCMP_UNE: 1720 case FCmpInst::FCMP_ULT: 1721 case FCmpInst::FCMP_UGT: 1722 case FCmpInst::FCMP_ULE: 1723 case FCmpInst::FCMP_UGE: 1724 case FCmpInst::FCMP_TRUE: 1725 case FCmpInst::FCMP_FALSE: 1726 case FCmpInst::BAD_FCMP_PREDICATE: 1727 break; // Couldn't determine anything about these constants. 1728 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 1729 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 1730 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 1731 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1732 break; 1733 case FCmpInst::FCMP_OLT: // We know that C1 < C2 1734 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1735 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 1736 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 1737 break; 1738 case FCmpInst::FCMP_OGT: // We know that C1 > C2 1739 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1740 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 1741 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1742 break; 1743 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 1744 // We can only partially decide this relation. 1745 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1746 Result = 0; 1747 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1748 Result = 1; 1749 break; 1750 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 1751 // We can only partially decide this relation. 1752 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1753 Result = 0; 1754 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1755 Result = 1; 1756 break; 1757 case FCmpInst::FCMP_ONE: // We know that C1 != C2 1758 // We can only partially decide this relation. 1759 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 1760 Result = 0; 1761 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 1762 Result = 1; 1763 break; 1764 } 1765 1766 // If we evaluated the result, return it now. 1767 if (Result != -1) 1768 return ConstantInt::get(ResultTy, Result); 1769 1770 } else { 1771 // Evaluate the relation between the two constants, per the predicate. 1772 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1773 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) { 1774 default: llvm_unreachable("Unknown relational!"); 1775 case ICmpInst::BAD_ICMP_PREDICATE: 1776 break; // Couldn't determine anything about these constants. 1777 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1778 // If we know the constants are equal, we can decide the result of this 1779 // computation precisely. 1780 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 1781 break; 1782 case ICmpInst::ICMP_ULT: 1783 switch (pred) { 1784 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1785 Result = 1; break; 1786 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1787 Result = 0; break; 1788 } 1789 break; 1790 case ICmpInst::ICMP_SLT: 1791 switch (pred) { 1792 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1793 Result = 1; break; 1794 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1795 Result = 0; break; 1796 } 1797 break; 1798 case ICmpInst::ICMP_UGT: 1799 switch (pred) { 1800 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1801 Result = 1; break; 1802 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1803 Result = 0; break; 1804 } 1805 break; 1806 case ICmpInst::ICMP_SGT: 1807 switch (pred) { 1808 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1809 Result = 1; break; 1810 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1811 Result = 0; break; 1812 } 1813 break; 1814 case ICmpInst::ICMP_ULE: 1815 if (pred == ICmpInst::ICMP_UGT) Result = 0; 1816 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 1817 break; 1818 case ICmpInst::ICMP_SLE: 1819 if (pred == ICmpInst::ICMP_SGT) Result = 0; 1820 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 1821 break; 1822 case ICmpInst::ICMP_UGE: 1823 if (pred == ICmpInst::ICMP_ULT) Result = 0; 1824 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 1825 break; 1826 case ICmpInst::ICMP_SGE: 1827 if (pred == ICmpInst::ICMP_SLT) Result = 0; 1828 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 1829 break; 1830 case ICmpInst::ICMP_NE: 1831 if (pred == ICmpInst::ICMP_EQ) Result = 0; 1832 if (pred == ICmpInst::ICMP_NE) Result = 1; 1833 break; 1834 } 1835 1836 // If we evaluated the result, return it now. 1837 if (Result != -1) 1838 return ConstantInt::get(ResultTy, Result); 1839 1840 // If the right hand side is a bitcast, try using its inverse to simplify 1841 // it by moving it to the left hand side. We can't do this if it would turn 1842 // a vector compare into a scalar compare or visa versa. 1843 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 1844 Constant *CE2Op0 = CE2->getOperand(0); 1845 if (CE2->getOpcode() == Instruction::BitCast && 1846 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) { 1847 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 1848 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 1849 } 1850 } 1851 1852 // If the left hand side is an extension, try eliminating it. 1853 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1854 if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) || 1855 (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){ 1856 Constant *CE1Op0 = CE1->getOperand(0); 1857 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 1858 if (CE1Inverse == CE1Op0) { 1859 // Check whether we can safely truncate the right hand side. 1860 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 1861 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 1862 C2->getType()) == C2) 1863 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 1864 } 1865 } 1866 } 1867 1868 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 1869 (C1->isNullValue() && !C2->isNullValue())) { 1870 // If C2 is a constant expr and C1 isn't, flip them around and fold the 1871 // other way if possible. 1872 // Also, if C1 is null and C2 isn't, flip them around. 1873 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 1874 return ConstantExpr::getICmp(pred, C2, C1); 1875 } 1876 } 1877 return 0; 1878 } 1879 1880 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices 1881 /// is "inbounds". 1882 template<typename IndexTy> 1883 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 1884 // No indices means nothing that could be out of bounds. 1885 if (Idxs.empty()) return true; 1886 1887 // If the first index is zero, it's in bounds. 1888 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 1889 1890 // If the first index is one and all the rest are zero, it's in bounds, 1891 // by the one-past-the-end rule. 1892 if (!cast<ConstantInt>(Idxs[0])->isOne()) 1893 return false; 1894 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 1895 if (!cast<Constant>(Idxs[i])->isNullValue()) 1896 return false; 1897 return true; 1898 } 1899 1900 template<typename IndexTy> 1901 static Constant *ConstantFoldGetElementPtrImpl(Constant *C, 1902 bool inBounds, 1903 ArrayRef<IndexTy> Idxs) { 1904 if (Idxs.empty()) return C; 1905 Constant *Idx0 = cast<Constant>(Idxs[0]); 1906 if ((Idxs.size() == 1 && Idx0->isNullValue())) 1907 return C; 1908 1909 if (isa<UndefValue>(C)) { 1910 PointerType *Ptr = cast<PointerType>(C->getType()); 1911 Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs); 1912 assert(Ty != 0 && "Invalid indices for GEP!"); 1913 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace())); 1914 } 1915 1916 if (C->isNullValue()) { 1917 bool isNull = true; 1918 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 1919 if (!cast<Constant>(Idxs[i])->isNullValue()) { 1920 isNull = false; 1921 break; 1922 } 1923 if (isNull) { 1924 PointerType *Ptr = cast<PointerType>(C->getType()); 1925 Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs); 1926 assert(Ty != 0 && "Invalid indices for GEP!"); 1927 return ConstantPointerNull::get(PointerType::get(Ty, 1928 Ptr->getAddressSpace())); 1929 } 1930 } 1931 1932 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1933 // Combine Indices - If the source pointer to this getelementptr instruction 1934 // is a getelementptr instruction, combine the indices of the two 1935 // getelementptr instructions into a single instruction. 1936 // 1937 if (CE->getOpcode() == Instruction::GetElementPtr) { 1938 Type *LastTy = 0; 1939 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 1940 I != E; ++I) 1941 LastTy = *I; 1942 1943 if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) { 1944 SmallVector<Value*, 16> NewIndices; 1945 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 1946 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i) 1947 NewIndices.push_back(CE->getOperand(i)); 1948 1949 // Add the last index of the source with the first index of the new GEP. 1950 // Make sure to handle the case when they are actually different types. 1951 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 1952 // Otherwise it must be an array. 1953 if (!Idx0->isNullValue()) { 1954 Type *IdxTy = Combined->getType(); 1955 if (IdxTy != Idx0->getType()) { 1956 Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext()); 1957 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty); 1958 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty); 1959 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 1960 } else { 1961 Combined = 1962 ConstantExpr::get(Instruction::Add, Idx0, Combined); 1963 } 1964 } 1965 1966 NewIndices.push_back(Combined); 1967 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 1968 return 1969 ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices, 1970 inBounds && 1971 cast<GEPOperator>(CE)->isInBounds()); 1972 } 1973 } 1974 1975 // Attempt to fold casts to the same type away. For example, folding: 1976 // 1977 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 1978 // i64 0, i64 0) 1979 // into: 1980 // 1981 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 1982 // 1983 // Don't fold if the cast is changing address spaces. 1984 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 1985 PointerType *SrcPtrTy = 1986 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 1987 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 1988 if (SrcPtrTy && DstPtrTy) { 1989 ArrayType *SrcArrayTy = 1990 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 1991 ArrayType *DstArrayTy = 1992 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 1993 if (SrcArrayTy && DstArrayTy 1994 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 1995 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 1996 return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0), 1997 Idxs, inBounds); 1998 } 1999 } 2000 } 2001 2002 // Check to see if any array indices are not within the corresponding 2003 // notional array bounds. If so, try to determine if they can be factored 2004 // out into preceding dimensions. 2005 bool Unknown = false; 2006 SmallVector<Constant *, 8> NewIdxs; 2007 Type *Ty = C->getType(); 2008 Type *Prev = 0; 2009 for (unsigned i = 0, e = Idxs.size(); i != e; 2010 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { 2011 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2012 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2013 if (ATy->getNumElements() <= INT64_MAX && 2014 ATy->getNumElements() != 0 && 2015 CI->getSExtValue() >= (int64_t)ATy->getNumElements()) { 2016 if (isa<SequentialType>(Prev)) { 2017 // It's out of range, but we can factor it into the prior 2018 // dimension. 2019 NewIdxs.resize(Idxs.size()); 2020 ConstantInt *Factor = ConstantInt::get(CI->getType(), 2021 ATy->getNumElements()); 2022 NewIdxs[i] = ConstantExpr::getSRem(CI, Factor); 2023 2024 Constant *PrevIdx = cast<Constant>(Idxs[i-1]); 2025 Constant *Div = ConstantExpr::getSDiv(CI, Factor); 2026 2027 // Before adding, extend both operands to i64 to avoid 2028 // overflow trouble. 2029 if (!PrevIdx->getType()->isIntegerTy(64)) 2030 PrevIdx = ConstantExpr::getSExt(PrevIdx, 2031 Type::getInt64Ty(Div->getContext())); 2032 if (!Div->getType()->isIntegerTy(64)) 2033 Div = ConstantExpr::getSExt(Div, 2034 Type::getInt64Ty(Div->getContext())); 2035 2036 NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div); 2037 } else { 2038 // It's out of range, but the prior dimension is a struct 2039 // so we can't do anything about it. 2040 Unknown = true; 2041 } 2042 } 2043 } else { 2044 // We don't know if it's in range or not. 2045 Unknown = true; 2046 } 2047 } 2048 2049 // If we did any factoring, start over with the adjusted indices. 2050 if (!NewIdxs.empty()) { 2051 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2052 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2053 return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds); 2054 } 2055 2056 // If all indices are known integers and normalized, we can do a simple 2057 // check for the "inbounds" property. 2058 if (!Unknown && !inBounds && 2059 isa<GlobalVariable>(C) && isInBoundsIndices(Idxs)) 2060 return ConstantExpr::getInBoundsGetElementPtr(C, Idxs); 2061 2062 return 0; 2063 } 2064 2065 Constant *llvm::ConstantFoldGetElementPtr(Constant *C, 2066 bool inBounds, 2067 ArrayRef<Constant *> Idxs) { 2068 return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs); 2069 } 2070 2071 Constant *llvm::ConstantFoldGetElementPtr(Constant *C, 2072 bool inBounds, 2073 ArrayRef<Value *> Idxs) { 2074 return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs); 2075 } 2076