Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the FastISel class.
     11 //
     12 // "Fast" instruction selection is designed to emit very poor code quickly.
     13 // Also, it is not designed to be able to do much lowering, so most illegal
     14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
     15 // also not intended to be able to do much optimization, except in a few cases
     16 // where doing optimizations reduces overall compile time.  For example, folding
     17 // constants into immediate fields is often done, because it's cheap and it
     18 // reduces the number of instructions later phases have to examine.
     19 //
     20 // "Fast" instruction selection is able to fail gracefully and transfer
     21 // control to the SelectionDAG selector for operations that it doesn't
     22 // support.  In many cases, this allows us to avoid duplicating a lot of
     23 // the complicated lowering logic that SelectionDAG currently has.
     24 //
     25 // The intended use for "fast" instruction selection is "-O0" mode
     26 // compilation, where the quality of the generated code is irrelevant when
     27 // weighed against the speed at which the code can be generated.  Also,
     28 // at -O0, the LLVM optimizers are not running, and this makes the
     29 // compile time of codegen a much higher portion of the overall compile
     30 // time.  Despite its limitations, "fast" instruction selection is able to
     31 // handle enough code on its own to provide noticeable overall speedups
     32 // in -O0 compiles.
     33 //
     34 // Basic operations are supported in a target-independent way, by reading
     35 // the same instruction descriptions that the SelectionDAG selector reads,
     36 // and identifying simple arithmetic operations that can be directly selected
     37 // from simple operators.  More complicated operations currently require
     38 // target-specific code.
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #define DEBUG_TYPE "isel"
     43 #include "llvm/CodeGen/FastISel.h"
     44 #include "llvm/ADT/Optional.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/Loads.h"
     47 #include "llvm/CodeGen/Analysis.h"
     48 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     49 #include "llvm/CodeGen/MachineInstrBuilder.h"
     50 #include "llvm/CodeGen/MachineModuleInfo.h"
     51 #include "llvm/CodeGen/MachineRegisterInfo.h"
     52 #include "llvm/DebugInfo.h"
     53 #include "llvm/IR/DataLayout.h"
     54 #include "llvm/IR/Function.h"
     55 #include "llvm/IR/GlobalVariable.h"
     56 #include "llvm/IR/Instructions.h"
     57 #include "llvm/IR/IntrinsicInst.h"
     58 #include "llvm/IR/Operator.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Support/ErrorHandling.h"
     61 #include "llvm/Target/TargetInstrInfo.h"
     62 #include "llvm/Target/TargetLibraryInfo.h"
     63 #include "llvm/Target/TargetLowering.h"
     64 #include "llvm/Target/TargetMachine.h"
     65 using namespace llvm;
     66 
     67 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
     68           "target-independent selector");
     69 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
     70           "target-specific selector");
     71 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
     72 
     73 /// startNewBlock - Set the current block to which generated machine
     74 /// instructions will be appended, and clear the local CSE map.
     75 ///
     76 void FastISel::startNewBlock() {
     77   LocalValueMap.clear();
     78 
     79   // Instructions are appended to FuncInfo.MBB. If the basic block already
     80   // contains labels or copies, use the last instruction as the last local
     81   // value.
     82   EmitStartPt = 0;
     83   if (!FuncInfo.MBB->empty())
     84     EmitStartPt = &FuncInfo.MBB->back();
     85   LastLocalValue = EmitStartPt;
     86 }
     87 
     88 bool FastISel::LowerArguments() {
     89   if (!FuncInfo.CanLowerReturn)
     90     // Fallback to SDISel argument lowering code to deal with sret pointer
     91     // parameter.
     92     return false;
     93 
     94   if (!FastLowerArguments())
     95     return false;
     96 
     97   // Enter arguments into ValueMap for uses in non-entry BBs.
     98   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
     99          E = FuncInfo.Fn->arg_end(); I != E; ++I) {
    100     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
    101     assert(VI != LocalValueMap.end() && "Missed an argument?");
    102     FuncInfo.ValueMap[I] = VI->second;
    103   }
    104   return true;
    105 }
    106 
    107 void FastISel::flushLocalValueMap() {
    108   LocalValueMap.clear();
    109   LastLocalValue = EmitStartPt;
    110   recomputeInsertPt();
    111 }
    112 
    113 bool FastISel::hasTrivialKill(const Value *V) const {
    114   // Don't consider constants or arguments to have trivial kills.
    115   const Instruction *I = dyn_cast<Instruction>(V);
    116   if (!I)
    117     return false;
    118 
    119   // No-op casts are trivially coalesced by fast-isel.
    120   if (const CastInst *Cast = dyn_cast<CastInst>(I))
    121     if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
    122         !hasTrivialKill(Cast->getOperand(0)))
    123       return false;
    124 
    125   // GEPs with all zero indices are trivially coalesced by fast-isel.
    126   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    127     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
    128       return false;
    129 
    130   // Only instructions with a single use in the same basic block are considered
    131   // to have trivial kills.
    132   return I->hasOneUse() &&
    133          !(I->getOpcode() == Instruction::BitCast ||
    134            I->getOpcode() == Instruction::PtrToInt ||
    135            I->getOpcode() == Instruction::IntToPtr) &&
    136          cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
    137 }
    138 
    139 unsigned FastISel::getRegForValue(const Value *V) {
    140   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
    141   // Don't handle non-simple values in FastISel.
    142   if (!RealVT.isSimple())
    143     return 0;
    144 
    145   // Ignore illegal types. We must do this before looking up the value
    146   // in ValueMap because Arguments are given virtual registers regardless
    147   // of whether FastISel can handle them.
    148   MVT VT = RealVT.getSimpleVT();
    149   if (!TLI.isTypeLegal(VT)) {
    150     // Handle integer promotions, though, because they're common and easy.
    151     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    152       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    153     else
    154       return 0;
    155   }
    156 
    157   // Look up the value to see if we already have a register for it.
    158   unsigned Reg = lookUpRegForValue(V);
    159   if (Reg != 0)
    160     return Reg;
    161 
    162   // In bottom-up mode, just create the virtual register which will be used
    163   // to hold the value. It will be materialized later.
    164   if (isa<Instruction>(V) &&
    165       (!isa<AllocaInst>(V) ||
    166        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
    167     return FuncInfo.InitializeRegForValue(V);
    168 
    169   SavePoint SaveInsertPt = enterLocalValueArea();
    170 
    171   // Materialize the value in a register. Emit any instructions in the
    172   // local value area.
    173   Reg = materializeRegForValue(V, VT);
    174 
    175   leaveLocalValueArea(SaveInsertPt);
    176 
    177   return Reg;
    178 }
    179 
    180 /// materializeRegForValue - Helper for getRegForValue. This function is
    181 /// called when the value isn't already available in a register and must
    182 /// be materialized with new instructions.
    183 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
    184   unsigned Reg = 0;
    185 
    186   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    187     if (CI->getValue().getActiveBits() <= 64)
    188       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    189   } else if (isa<AllocaInst>(V)) {
    190     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
    191   } else if (isa<ConstantPointerNull>(V)) {
    192     // Translate this as an integer zero so that it can be
    193     // local-CSE'd with actual integer zeros.
    194     Reg =
    195       getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
    196   } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    197     if (CF->isNullValue()) {
    198       Reg = TargetMaterializeFloatZero(CF);
    199     } else {
    200       // Try to emit the constant directly.
    201       Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
    202     }
    203 
    204     if (!Reg) {
    205       // Try to emit the constant by using an integer constant with a cast.
    206       const APFloat &Flt = CF->getValueAPF();
    207       EVT IntVT = TLI.getPointerTy();
    208 
    209       uint64_t x[2];
    210       uint32_t IntBitWidth = IntVT.getSizeInBits();
    211       bool isExact;
    212       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
    213                                   APFloat::rmTowardZero, &isExact);
    214       if (isExact) {
    215         APInt IntVal(IntBitWidth, x);
    216 
    217         unsigned IntegerReg =
    218           getRegForValue(ConstantInt::get(V->getContext(), IntVal));
    219         if (IntegerReg != 0)
    220           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
    221                            IntegerReg, /*Kill=*/false);
    222       }
    223     }
    224   } else if (const Operator *Op = dyn_cast<Operator>(V)) {
    225     if (!SelectOperator(Op, Op->getOpcode()))
    226       if (!isa<Instruction>(Op) ||
    227           !TargetSelectInstruction(cast<Instruction>(Op)))
    228         return 0;
    229     Reg = lookUpRegForValue(Op);
    230   } else if (isa<UndefValue>(V)) {
    231     Reg = createResultReg(TLI.getRegClassFor(VT));
    232     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    233             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
    234   }
    235 
    236   // If target-independent code couldn't handle the value, give target-specific
    237   // code a try.
    238   if (!Reg && isa<Constant>(V))
    239     Reg = TargetMaterializeConstant(cast<Constant>(V));
    240 
    241   // Don't cache constant materializations in the general ValueMap.
    242   // To do so would require tracking what uses they dominate.
    243   if (Reg != 0) {
    244     LocalValueMap[V] = Reg;
    245     LastLocalValue = MRI.getVRegDef(Reg);
    246   }
    247   return Reg;
    248 }
    249 
    250 unsigned FastISel::lookUpRegForValue(const Value *V) {
    251   // Look up the value to see if we already have a register for it. We
    252   // cache values defined by Instructions across blocks, and other values
    253   // only locally. This is because Instructions already have the SSA
    254   // def-dominates-use requirement enforced.
    255   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
    256   if (I != FuncInfo.ValueMap.end())
    257     return I->second;
    258   return LocalValueMap[V];
    259 }
    260 
    261 /// UpdateValueMap - Update the value map to include the new mapping for this
    262 /// instruction, or insert an extra copy to get the result in a previous
    263 /// determined register.
    264 /// NOTE: This is only necessary because we might select a block that uses
    265 /// a value before we select the block that defines the value.  It might be
    266 /// possible to fix this by selecting blocks in reverse postorder.
    267 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
    268   if (!isa<Instruction>(I)) {
    269     LocalValueMap[I] = Reg;
    270     return;
    271   }
    272 
    273   unsigned &AssignedReg = FuncInfo.ValueMap[I];
    274   if (AssignedReg == 0)
    275     // Use the new register.
    276     AssignedReg = Reg;
    277   else if (Reg != AssignedReg) {
    278     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
    279     for (unsigned i = 0; i < NumRegs; i++)
    280       FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
    281 
    282     AssignedReg = Reg;
    283   }
    284 }
    285 
    286 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
    287   unsigned IdxN = getRegForValue(Idx);
    288   if (IdxN == 0)
    289     // Unhandled operand. Halt "fast" selection and bail.
    290     return std::pair<unsigned, bool>(0, false);
    291 
    292   bool IdxNIsKill = hasTrivialKill(Idx);
    293 
    294   // If the index is smaller or larger than intptr_t, truncate or extend it.
    295   MVT PtrVT = TLI.getPointerTy();
    296   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
    297   if (IdxVT.bitsLT(PtrVT)) {
    298     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
    299                       IdxN, IdxNIsKill);
    300     IdxNIsKill = true;
    301   }
    302   else if (IdxVT.bitsGT(PtrVT)) {
    303     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
    304                       IdxN, IdxNIsKill);
    305     IdxNIsKill = true;
    306   }
    307   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
    308 }
    309 
    310 void FastISel::recomputeInsertPt() {
    311   if (getLastLocalValue()) {
    312     FuncInfo.InsertPt = getLastLocalValue();
    313     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
    314     ++FuncInfo.InsertPt;
    315   } else
    316     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
    317 
    318   // Now skip past any EH_LABELs, which must remain at the beginning.
    319   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
    320          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
    321     ++FuncInfo.InsertPt;
    322 }
    323 
    324 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
    325                               MachineBasicBlock::iterator E) {
    326   assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
    327   while (I != E) {
    328     MachineInstr *Dead = &*I;
    329     ++I;
    330     Dead->eraseFromParent();
    331     ++NumFastIselDead;
    332   }
    333   recomputeInsertPt();
    334 }
    335 
    336 FastISel::SavePoint FastISel::enterLocalValueArea() {
    337   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
    338   DebugLoc OldDL = DL;
    339   recomputeInsertPt();
    340   DL = DebugLoc();
    341   SavePoint SP = { OldInsertPt, OldDL };
    342   return SP;
    343 }
    344 
    345 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
    346   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
    347     LastLocalValue = llvm::prior(FuncInfo.InsertPt);
    348 
    349   // Restore the previous insert position.
    350   FuncInfo.InsertPt = OldInsertPt.InsertPt;
    351   DL = OldInsertPt.DL;
    352 }
    353 
    354 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
    355 /// which has an opcode which directly corresponds to the given ISD opcode.
    356 ///
    357 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
    358   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
    359   if (VT == MVT::Other || !VT.isSimple())
    360     // Unhandled type. Halt "fast" selection and bail.
    361     return false;
    362 
    363   // We only handle legal types. For example, on x86-32 the instruction
    364   // selector contains all of the 64-bit instructions from x86-64,
    365   // under the assumption that i64 won't be used if the target doesn't
    366   // support it.
    367   if (!TLI.isTypeLegal(VT)) {
    368     // MVT::i1 is special. Allow AND, OR, or XOR because they
    369     // don't require additional zeroing, which makes them easy.
    370     if (VT == MVT::i1 &&
    371         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
    372          ISDOpcode == ISD::XOR))
    373       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    374     else
    375       return false;
    376   }
    377 
    378   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
    379   // we don't have anything that canonicalizes operand order.
    380   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
    381     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
    382       unsigned Op1 = getRegForValue(I->getOperand(1));
    383       if (Op1 == 0) return false;
    384 
    385       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    386 
    387       unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
    388                                         Op1IsKill, CI->getZExtValue(),
    389                                         VT.getSimpleVT());
    390       if (ResultReg == 0) return false;
    391 
    392       // We successfully emitted code for the given LLVM Instruction.
    393       UpdateValueMap(I, ResultReg);
    394       return true;
    395     }
    396 
    397 
    398   unsigned Op0 = getRegForValue(I->getOperand(0));
    399   if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
    400     return false;
    401 
    402   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    403 
    404   // Check if the second operand is a constant and handle it appropriately.
    405   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    406     uint64_t Imm = CI->getZExtValue();
    407 
    408     // Transform "sdiv exact X, 8" -> "sra X, 3".
    409     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
    410         cast<BinaryOperator>(I)->isExact() &&
    411         isPowerOf2_64(Imm)) {
    412       Imm = Log2_64(Imm);
    413       ISDOpcode = ISD::SRA;
    414     }
    415 
    416     // Transform "urem x, pow2" -> "and x, pow2-1".
    417     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
    418         isPowerOf2_64(Imm)) {
    419       --Imm;
    420       ISDOpcode = ISD::AND;
    421     }
    422 
    423     unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
    424                                       Op0IsKill, Imm, VT.getSimpleVT());
    425     if (ResultReg == 0) return false;
    426 
    427     // We successfully emitted code for the given LLVM Instruction.
    428     UpdateValueMap(I, ResultReg);
    429     return true;
    430   }
    431 
    432   // Check if the second operand is a constant float.
    433   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
    434     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
    435                                      ISDOpcode, Op0, Op0IsKill, CF);
    436     if (ResultReg != 0) {
    437       // We successfully emitted code for the given LLVM Instruction.
    438       UpdateValueMap(I, ResultReg);
    439       return true;
    440     }
    441   }
    442 
    443   unsigned Op1 = getRegForValue(I->getOperand(1));
    444   if (Op1 == 0)
    445     // Unhandled operand. Halt "fast" selection and bail.
    446     return false;
    447 
    448   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    449 
    450   // Now we have both operands in registers. Emit the instruction.
    451   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
    452                                    ISDOpcode,
    453                                    Op0, Op0IsKill,
    454                                    Op1, Op1IsKill);
    455   if (ResultReg == 0)
    456     // Target-specific code wasn't able to find a machine opcode for
    457     // the given ISD opcode and type. Halt "fast" selection and bail.
    458     return false;
    459 
    460   // We successfully emitted code for the given LLVM Instruction.
    461   UpdateValueMap(I, ResultReg);
    462   return true;
    463 }
    464 
    465 bool FastISel::SelectGetElementPtr(const User *I) {
    466   unsigned N = getRegForValue(I->getOperand(0));
    467   if (N == 0)
    468     // Unhandled operand. Halt "fast" selection and bail.
    469     return false;
    470 
    471   bool NIsKill = hasTrivialKill(I->getOperand(0));
    472 
    473   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
    474   // into a single N = N + TotalOffset.
    475   uint64_t TotalOffs = 0;
    476   // FIXME: What's a good SWAG number for MaxOffs?
    477   uint64_t MaxOffs = 2048;
    478   Type *Ty = I->getOperand(0)->getType();
    479   MVT VT = TLI.getPointerTy();
    480   for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
    481        E = I->op_end(); OI != E; ++OI) {
    482     const Value *Idx = *OI;
    483     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
    484       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
    485       if (Field) {
    486         // N = N + Offset
    487         TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
    488         if (TotalOffs >= MaxOffs) {
    489           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    490           if (N == 0)
    491             // Unhandled operand. Halt "fast" selection and bail.
    492             return false;
    493           NIsKill = true;
    494           TotalOffs = 0;
    495         }
    496       }
    497       Ty = StTy->getElementType(Field);
    498     } else {
    499       Ty = cast<SequentialType>(Ty)->getElementType();
    500 
    501       // If this is a constant subscript, handle it quickly.
    502       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
    503         if (CI->isZero()) continue;
    504         // N = N + Offset
    505         TotalOffs +=
    506           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
    507         if (TotalOffs >= MaxOffs) {
    508           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    509           if (N == 0)
    510             // Unhandled operand. Halt "fast" selection and bail.
    511             return false;
    512           NIsKill = true;
    513           TotalOffs = 0;
    514         }
    515         continue;
    516       }
    517       if (TotalOffs) {
    518         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    519         if (N == 0)
    520           // Unhandled operand. Halt "fast" selection and bail.
    521           return false;
    522         NIsKill = true;
    523         TotalOffs = 0;
    524       }
    525 
    526       // N = N + Idx * ElementSize;
    527       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
    528       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
    529       unsigned IdxN = Pair.first;
    530       bool IdxNIsKill = Pair.second;
    531       if (IdxN == 0)
    532         // Unhandled operand. Halt "fast" selection and bail.
    533         return false;
    534 
    535       if (ElementSize != 1) {
    536         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
    537         if (IdxN == 0)
    538           // Unhandled operand. Halt "fast" selection and bail.
    539           return false;
    540         IdxNIsKill = true;
    541       }
    542       N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
    543       if (N == 0)
    544         // Unhandled operand. Halt "fast" selection and bail.
    545         return false;
    546     }
    547   }
    548   if (TotalOffs) {
    549     N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    550     if (N == 0)
    551       // Unhandled operand. Halt "fast" selection and bail.
    552       return false;
    553   }
    554 
    555   // We successfully emitted code for the given LLVM Instruction.
    556   UpdateValueMap(I, N);
    557   return true;
    558 }
    559 
    560 bool FastISel::SelectCall(const User *I) {
    561   const CallInst *Call = cast<CallInst>(I);
    562 
    563   // Handle simple inline asms.
    564   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
    565     // Don't attempt to handle constraints.
    566     if (!IA->getConstraintString().empty())
    567       return false;
    568 
    569     unsigned ExtraInfo = 0;
    570     if (IA->hasSideEffects())
    571       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
    572     if (IA->isAlignStack())
    573       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
    574 
    575     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    576             TII.get(TargetOpcode::INLINEASM))
    577       .addExternalSymbol(IA->getAsmString().c_str())
    578       .addImm(ExtraInfo);
    579     return true;
    580   }
    581 
    582   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
    583   ComputeUsesVAFloatArgument(*Call, &MMI);
    584 
    585   const Function *F = Call->getCalledFunction();
    586   if (!F) return false;
    587 
    588   // Handle selected intrinsic function calls.
    589   switch (F->getIntrinsicID()) {
    590   default: break;
    591     // At -O0 we don't care about the lifetime intrinsics.
    592   case Intrinsic::lifetime_start:
    593   case Intrinsic::lifetime_end:
    594     // The donothing intrinsic does, well, nothing.
    595   case Intrinsic::donothing:
    596     return true;
    597 
    598   case Intrinsic::dbg_declare: {
    599     const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
    600     DIVariable DIVar(DI->getVariable());
    601     assert((!DIVar || DIVar.isVariable()) &&
    602       "Variable in DbgDeclareInst should be either null or a DIVariable.");
    603     if (!DIVar ||
    604         !FuncInfo.MF->getMMI().hasDebugInfo()) {
    605       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    606       return true;
    607     }
    608 
    609     const Value *Address = DI->getAddress();
    610     if (!Address || isa<UndefValue>(Address)) {
    611       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    612       return true;
    613     }
    614 
    615     unsigned Offset = 0;
    616     Optional<MachineOperand> Op;
    617     if (const Argument *Arg = dyn_cast<Argument>(Address))
    618       // Some arguments' frame index is recorded during argument lowering.
    619       Offset = FuncInfo.getArgumentFrameIndex(Arg);
    620     if (Offset)
    621         Op = MachineOperand::CreateFI(Offset);
    622     if (!Op)
    623       if (unsigned Reg = lookUpRegForValue(Address))
    624         Op = MachineOperand::CreateReg(Reg, false);
    625 
    626     // If we have a VLA that has a "use" in a metadata node that's then used
    627     // here but it has no other uses, then we have a problem. E.g.,
    628     //
    629     //   int foo (const int *x) {
    630     //     char a[*x];
    631     //     return 0;
    632     //   }
    633     //
    634     // If we assign 'a' a vreg and fast isel later on has to use the selection
    635     // DAG isel, it will want to copy the value to the vreg. However, there are
    636     // no uses, which goes counter to what selection DAG isel expects.
    637     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
    638         (!isa<AllocaInst>(Address) ||
    639          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
    640       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
    641                                       false);
    642 
    643     if (Op)
    644       if (Op->isReg()) {
    645         // Set the indirect flag if the type and the DIVariable's
    646         // indirect field are in disagreement: Indirectly-addressed
    647         // variables that are nonpointer types should be marked as
    648         // indirect, and VLAs should be marked as indirect eventhough
    649         // they are a pointer type.
    650         bool IsIndirect = DI->getAddress()->getType()->isPointerTy()
    651           ^ DIVar.isIndirect();
    652         Op->setIsDebug(true);
    653         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    654                 TII.get(TargetOpcode::DBG_VALUE),
    655                 IsIndirect, Op->getReg(), Offset, DI->getVariable());
    656       } else
    657         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    658                 TII.get(TargetOpcode::DBG_VALUE)).addOperand(*Op).addImm(0)
    659           .addMetadata(DI->getVariable());
    660     else
    661       // We can't yet handle anything else here because it would require
    662       // generating code, thus altering codegen because of debug info.
    663       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    664     return true;
    665   }
    666   case Intrinsic::dbg_value: {
    667     // This form of DBG_VALUE is target-independent.
    668     const DbgValueInst *DI = cast<DbgValueInst>(Call);
    669     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
    670     const Value *V = DI->getValue();
    671     if (!V) {
    672       // Currently the optimizer can produce this; insert an undef to
    673       // help debugging.  Probably the optimizer should not do this.
    674       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    675         .addReg(0U).addImm(DI->getOffset())
    676         .addMetadata(DI->getVariable());
    677     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    678       if (CI->getBitWidth() > 64)
    679         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    680           .addCImm(CI).addImm(DI->getOffset())
    681           .addMetadata(DI->getVariable());
    682       else
    683         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    684           .addImm(CI->getZExtValue()).addImm(DI->getOffset())
    685           .addMetadata(DI->getVariable());
    686     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    687       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    688         .addFPImm(CF).addImm(DI->getOffset())
    689         .addMetadata(DI->getVariable());
    690     } else if (unsigned Reg = lookUpRegForValue(V)) {
    691       bool IsIndirect = DI->getOffset() != 0;
    692       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect,
    693               Reg, DI->getOffset(), DI->getVariable());
    694     } else {
    695       // We can't yet handle anything else here because it would require
    696       // generating code, thus altering codegen because of debug info.
    697       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    698     }
    699     return true;
    700   }
    701   case Intrinsic::objectsize: {
    702     ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
    703     unsigned long long Res = CI->isZero() ? -1ULL : 0;
    704     Constant *ResCI = ConstantInt::get(Call->getType(), Res);
    705     unsigned ResultReg = getRegForValue(ResCI);
    706     if (ResultReg == 0)
    707       return false;
    708     UpdateValueMap(Call, ResultReg);
    709     return true;
    710   }
    711   case Intrinsic::expect: {
    712     unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
    713     if (ResultReg == 0)
    714       return false;
    715     UpdateValueMap(Call, ResultReg);
    716     return true;
    717   }
    718   }
    719 
    720   // Usually, it does not make sense to initialize a value,
    721   // make an unrelated function call and use the value, because
    722   // it tends to be spilled on the stack. So, we move the pointer
    723   // to the last local value to the beginning of the block, so that
    724   // all the values which have already been materialized,
    725   // appear after the call. It also makes sense to skip intrinsics
    726   // since they tend to be inlined.
    727   if (!isa<IntrinsicInst>(Call))
    728     flushLocalValueMap();
    729 
    730   // An arbitrary call. Bail.
    731   return false;
    732 }
    733 
    734 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
    735   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    736   EVT DstVT = TLI.getValueType(I->getType());
    737 
    738   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
    739       DstVT == MVT::Other || !DstVT.isSimple())
    740     // Unhandled type. Halt "fast" selection and bail.
    741     return false;
    742 
    743   // Check if the destination type is legal.
    744   if (!TLI.isTypeLegal(DstVT))
    745     return false;
    746 
    747   // Check if the source operand is legal.
    748   if (!TLI.isTypeLegal(SrcVT))
    749     return false;
    750 
    751   unsigned InputReg = getRegForValue(I->getOperand(0));
    752   if (!InputReg)
    753     // Unhandled operand.  Halt "fast" selection and bail.
    754     return false;
    755 
    756   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
    757 
    758   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
    759                                   DstVT.getSimpleVT(),
    760                                   Opcode,
    761                                   InputReg, InputRegIsKill);
    762   if (!ResultReg)
    763     return false;
    764 
    765   UpdateValueMap(I, ResultReg);
    766   return true;
    767 }
    768 
    769 bool FastISel::SelectBitCast(const User *I) {
    770   // If the bitcast doesn't change the type, just use the operand value.
    771   if (I->getType() == I->getOperand(0)->getType()) {
    772     unsigned Reg = getRegForValue(I->getOperand(0));
    773     if (Reg == 0)
    774       return false;
    775     UpdateValueMap(I, Reg);
    776     return true;
    777   }
    778 
    779   // Bitcasts of other values become reg-reg copies or BITCAST operators.
    780   EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
    781   EVT DstEVT = TLI.getValueType(I->getType());
    782   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
    783       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
    784     // Unhandled type. Halt "fast" selection and bail.
    785     return false;
    786 
    787   MVT SrcVT = SrcEVT.getSimpleVT();
    788   MVT DstVT = DstEVT.getSimpleVT();
    789   unsigned Op0 = getRegForValue(I->getOperand(0));
    790   if (Op0 == 0)
    791     // Unhandled operand. Halt "fast" selection and bail.
    792     return false;
    793 
    794   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    795 
    796   // First, try to perform the bitcast by inserting a reg-reg copy.
    797   unsigned ResultReg = 0;
    798   if (SrcVT == DstVT) {
    799     const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
    800     const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
    801     // Don't attempt a cross-class copy. It will likely fail.
    802     if (SrcClass == DstClass) {
    803       ResultReg = createResultReg(DstClass);
    804       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    805               ResultReg).addReg(Op0);
    806     }
    807   }
    808 
    809   // If the reg-reg copy failed, select a BITCAST opcode.
    810   if (!ResultReg)
    811     ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
    812 
    813   if (!ResultReg)
    814     return false;
    815 
    816   UpdateValueMap(I, ResultReg);
    817   return true;
    818 }
    819 
    820 bool
    821 FastISel::SelectInstruction(const Instruction *I) {
    822   // Just before the terminator instruction, insert instructions to
    823   // feed PHI nodes in successor blocks.
    824   if (isa<TerminatorInst>(I))
    825     if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
    826       return false;
    827 
    828   DL = I->getDebugLoc();
    829 
    830   MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
    831 
    832   // As a special case, don't handle calls to builtin library functions that
    833   // may be translated directly to target instructions.
    834   if (const CallInst *Call = dyn_cast<CallInst>(I)) {
    835     const Function *F = Call->getCalledFunction();
    836     LibFunc::Func Func;
    837     if (F && !F->hasLocalLinkage() && F->hasName() &&
    838         LibInfo->getLibFunc(F->getName(), Func) &&
    839         LibInfo->hasOptimizedCodeGen(Func))
    840       return false;
    841   }
    842 
    843   // First, try doing target-independent selection.
    844   if (SelectOperator(I, I->getOpcode())) {
    845     ++NumFastIselSuccessIndependent;
    846     DL = DebugLoc();
    847     return true;
    848   }
    849   // Remove dead code.  However, ignore call instructions since we've flushed
    850   // the local value map and recomputed the insert point.
    851   if (!isa<CallInst>(I)) {
    852     recomputeInsertPt();
    853     if (SavedInsertPt != FuncInfo.InsertPt)
    854       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
    855   }
    856 
    857   // Next, try calling the target to attempt to handle the instruction.
    858   SavedInsertPt = FuncInfo.InsertPt;
    859   if (TargetSelectInstruction(I)) {
    860     ++NumFastIselSuccessTarget;
    861     DL = DebugLoc();
    862     return true;
    863   }
    864   // Check for dead code and remove as necessary.
    865   recomputeInsertPt();
    866   if (SavedInsertPt != FuncInfo.InsertPt)
    867     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
    868 
    869   DL = DebugLoc();
    870   return false;
    871 }
    872 
    873 /// FastEmitBranch - Emit an unconditional branch to the given block,
    874 /// unless it is the immediate (fall-through) successor, and update
    875 /// the CFG.
    876 void
    877 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
    878 
    879   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
    880       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
    881     // For more accurate line information if this is the only instruction
    882     // in the block then emit it, otherwise we have the unconditional
    883     // fall-through case, which needs no instructions.
    884   } else {
    885     // The unconditional branch case.
    886     TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
    887                      SmallVector<MachineOperand, 0>(), DL);
    888   }
    889   FuncInfo.MBB->addSuccessor(MSucc);
    890 }
    891 
    892 /// SelectFNeg - Emit an FNeg operation.
    893 ///
    894 bool
    895 FastISel::SelectFNeg(const User *I) {
    896   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
    897   if (OpReg == 0) return false;
    898 
    899   bool OpRegIsKill = hasTrivialKill(I);
    900 
    901   // If the target has ISD::FNEG, use it.
    902   EVT VT = TLI.getValueType(I->getType());
    903   unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
    904                                   ISD::FNEG, OpReg, OpRegIsKill);
    905   if (ResultReg != 0) {
    906     UpdateValueMap(I, ResultReg);
    907     return true;
    908   }
    909 
    910   // Bitcast the value to integer, twiddle the sign bit with xor,
    911   // and then bitcast it back to floating-point.
    912   if (VT.getSizeInBits() > 64) return false;
    913   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
    914   if (!TLI.isTypeLegal(IntVT))
    915     return false;
    916 
    917   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
    918                                ISD::BITCAST, OpReg, OpRegIsKill);
    919   if (IntReg == 0)
    920     return false;
    921 
    922   unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
    923                                        IntReg, /*Kill=*/true,
    924                                        UINT64_C(1) << (VT.getSizeInBits()-1),
    925                                        IntVT.getSimpleVT());
    926   if (IntResultReg == 0)
    927     return false;
    928 
    929   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
    930                          ISD::BITCAST, IntResultReg, /*Kill=*/true);
    931   if (ResultReg == 0)
    932     return false;
    933 
    934   UpdateValueMap(I, ResultReg);
    935   return true;
    936 }
    937 
    938 bool
    939 FastISel::SelectExtractValue(const User *U) {
    940   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
    941   if (!EVI)
    942     return false;
    943 
    944   // Make sure we only try to handle extracts with a legal result.  But also
    945   // allow i1 because it's easy.
    946   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
    947   if (!RealVT.isSimple())
    948     return false;
    949   MVT VT = RealVT.getSimpleVT();
    950   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
    951     return false;
    952 
    953   const Value *Op0 = EVI->getOperand(0);
    954   Type *AggTy = Op0->getType();
    955 
    956   // Get the base result register.
    957   unsigned ResultReg;
    958   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
    959   if (I != FuncInfo.ValueMap.end())
    960     ResultReg = I->second;
    961   else if (isa<Instruction>(Op0))
    962     ResultReg = FuncInfo.InitializeRegForValue(Op0);
    963   else
    964     return false; // fast-isel can't handle aggregate constants at the moment
    965 
    966   // Get the actual result register, which is an offset from the base register.
    967   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
    968 
    969   SmallVector<EVT, 4> AggValueVTs;
    970   ComputeValueVTs(TLI, AggTy, AggValueVTs);
    971 
    972   for (unsigned i = 0; i < VTIndex; i++)
    973     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
    974 
    975   UpdateValueMap(EVI, ResultReg);
    976   return true;
    977 }
    978 
    979 bool
    980 FastISel::SelectOperator(const User *I, unsigned Opcode) {
    981   switch (Opcode) {
    982   case Instruction::Add:
    983     return SelectBinaryOp(I, ISD::ADD);
    984   case Instruction::FAdd:
    985     return SelectBinaryOp(I, ISD::FADD);
    986   case Instruction::Sub:
    987     return SelectBinaryOp(I, ISD::SUB);
    988   case Instruction::FSub:
    989     // FNeg is currently represented in LLVM IR as a special case of FSub.
    990     if (BinaryOperator::isFNeg(I))
    991       return SelectFNeg(I);
    992     return SelectBinaryOp(I, ISD::FSUB);
    993   case Instruction::Mul:
    994     return SelectBinaryOp(I, ISD::MUL);
    995   case Instruction::FMul:
    996     return SelectBinaryOp(I, ISD::FMUL);
    997   case Instruction::SDiv:
    998     return SelectBinaryOp(I, ISD::SDIV);
    999   case Instruction::UDiv:
   1000     return SelectBinaryOp(I, ISD::UDIV);
   1001   case Instruction::FDiv:
   1002     return SelectBinaryOp(I, ISD::FDIV);
   1003   case Instruction::SRem:
   1004     return SelectBinaryOp(I, ISD::SREM);
   1005   case Instruction::URem:
   1006     return SelectBinaryOp(I, ISD::UREM);
   1007   case Instruction::FRem:
   1008     return SelectBinaryOp(I, ISD::FREM);
   1009   case Instruction::Shl:
   1010     return SelectBinaryOp(I, ISD::SHL);
   1011   case Instruction::LShr:
   1012     return SelectBinaryOp(I, ISD::SRL);
   1013   case Instruction::AShr:
   1014     return SelectBinaryOp(I, ISD::SRA);
   1015   case Instruction::And:
   1016     return SelectBinaryOp(I, ISD::AND);
   1017   case Instruction::Or:
   1018     return SelectBinaryOp(I, ISD::OR);
   1019   case Instruction::Xor:
   1020     return SelectBinaryOp(I, ISD::XOR);
   1021 
   1022   case Instruction::GetElementPtr:
   1023     return SelectGetElementPtr(I);
   1024 
   1025   case Instruction::Br: {
   1026     const BranchInst *BI = cast<BranchInst>(I);
   1027 
   1028     if (BI->isUnconditional()) {
   1029       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
   1030       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
   1031       FastEmitBranch(MSucc, BI->getDebugLoc());
   1032       return true;
   1033     }
   1034 
   1035     // Conditional branches are not handed yet.
   1036     // Halt "fast" selection and bail.
   1037     return false;
   1038   }
   1039 
   1040   case Instruction::Unreachable:
   1041     // Nothing to emit.
   1042     return true;
   1043 
   1044   case Instruction::Alloca:
   1045     // FunctionLowering has the static-sized case covered.
   1046     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
   1047       return true;
   1048 
   1049     // Dynamic-sized alloca is not handled yet.
   1050     return false;
   1051 
   1052   case Instruction::Call:
   1053     return SelectCall(I);
   1054 
   1055   case Instruction::BitCast:
   1056     return SelectBitCast(I);
   1057 
   1058   case Instruction::FPToSI:
   1059     return SelectCast(I, ISD::FP_TO_SINT);
   1060   case Instruction::ZExt:
   1061     return SelectCast(I, ISD::ZERO_EXTEND);
   1062   case Instruction::SExt:
   1063     return SelectCast(I, ISD::SIGN_EXTEND);
   1064   case Instruction::Trunc:
   1065     return SelectCast(I, ISD::TRUNCATE);
   1066   case Instruction::SIToFP:
   1067     return SelectCast(I, ISD::SINT_TO_FP);
   1068 
   1069   case Instruction::IntToPtr: // Deliberate fall-through.
   1070   case Instruction::PtrToInt: {
   1071     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   1072     EVT DstVT = TLI.getValueType(I->getType());
   1073     if (DstVT.bitsGT(SrcVT))
   1074       return SelectCast(I, ISD::ZERO_EXTEND);
   1075     if (DstVT.bitsLT(SrcVT))
   1076       return SelectCast(I, ISD::TRUNCATE);
   1077     unsigned Reg = getRegForValue(I->getOperand(0));
   1078     if (Reg == 0) return false;
   1079     UpdateValueMap(I, Reg);
   1080     return true;
   1081   }
   1082 
   1083   case Instruction::ExtractValue:
   1084     return SelectExtractValue(I);
   1085 
   1086   case Instruction::PHI:
   1087     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
   1088 
   1089   default:
   1090     // Unhandled instruction. Halt "fast" selection and bail.
   1091     return false;
   1092   }
   1093 }
   1094 
   1095 FastISel::FastISel(FunctionLoweringInfo &funcInfo,
   1096                    const TargetLibraryInfo *libInfo)
   1097   : FuncInfo(funcInfo),
   1098     MRI(FuncInfo.MF->getRegInfo()),
   1099     MFI(*FuncInfo.MF->getFrameInfo()),
   1100     MCP(*FuncInfo.MF->getConstantPool()),
   1101     TM(FuncInfo.MF->getTarget()),
   1102     TD(*TM.getDataLayout()),
   1103     TII(*TM.getInstrInfo()),
   1104     TLI(*TM.getTargetLowering()),
   1105     TRI(*TM.getRegisterInfo()),
   1106     LibInfo(libInfo) {
   1107 }
   1108 
   1109 FastISel::~FastISel() {}
   1110 
   1111 bool FastISel::FastLowerArguments() {
   1112   return false;
   1113 }
   1114 
   1115 unsigned FastISel::FastEmit_(MVT, MVT,
   1116                              unsigned) {
   1117   return 0;
   1118 }
   1119 
   1120 unsigned FastISel::FastEmit_r(MVT, MVT,
   1121                               unsigned,
   1122                               unsigned /*Op0*/, bool /*Op0IsKill*/) {
   1123   return 0;
   1124 }
   1125 
   1126 unsigned FastISel::FastEmit_rr(MVT, MVT,
   1127                                unsigned,
   1128                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1129                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
   1130   return 0;
   1131 }
   1132 
   1133 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
   1134   return 0;
   1135 }
   1136 
   1137 unsigned FastISel::FastEmit_f(MVT, MVT,
   1138                               unsigned, const ConstantFP * /*FPImm*/) {
   1139   return 0;
   1140 }
   1141 
   1142 unsigned FastISel::FastEmit_ri(MVT, MVT,
   1143                                unsigned,
   1144                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1145                                uint64_t /*Imm*/) {
   1146   return 0;
   1147 }
   1148 
   1149 unsigned FastISel::FastEmit_rf(MVT, MVT,
   1150                                unsigned,
   1151                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1152                                const ConstantFP * /*FPImm*/) {
   1153   return 0;
   1154 }
   1155 
   1156 unsigned FastISel::FastEmit_rri(MVT, MVT,
   1157                                 unsigned,
   1158                                 unsigned /*Op0*/, bool /*Op0IsKill*/,
   1159                                 unsigned /*Op1*/, bool /*Op1IsKill*/,
   1160                                 uint64_t /*Imm*/) {
   1161   return 0;
   1162 }
   1163 
   1164 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
   1165 /// to emit an instruction with an immediate operand using FastEmit_ri.
   1166 /// If that fails, it materializes the immediate into a register and try
   1167 /// FastEmit_rr instead.
   1168 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
   1169                                 unsigned Op0, bool Op0IsKill,
   1170                                 uint64_t Imm, MVT ImmType) {
   1171   // If this is a multiply by a power of two, emit this as a shift left.
   1172   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
   1173     Opcode = ISD::SHL;
   1174     Imm = Log2_64(Imm);
   1175   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
   1176     // div x, 8 -> srl x, 3
   1177     Opcode = ISD::SRL;
   1178     Imm = Log2_64(Imm);
   1179   }
   1180 
   1181   // Horrible hack (to be removed), check to make sure shift amounts are
   1182   // in-range.
   1183   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
   1184       Imm >= VT.getSizeInBits())
   1185     return 0;
   1186 
   1187   // First check if immediate type is legal. If not, we can't use the ri form.
   1188   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
   1189   if (ResultReg != 0)
   1190     return ResultReg;
   1191   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
   1192   if (MaterialReg == 0) {
   1193     // This is a bit ugly/slow, but failing here means falling out of
   1194     // fast-isel, which would be very slow.
   1195     IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
   1196                                               VT.getSizeInBits());
   1197     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
   1198     assert (MaterialReg != 0 && "Unable to materialize imm.");
   1199     if (MaterialReg == 0) return 0;
   1200   }
   1201   return FastEmit_rr(VT, VT, Opcode,
   1202                      Op0, Op0IsKill,
   1203                      MaterialReg, /*Kill=*/true);
   1204 }
   1205 
   1206 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
   1207   return MRI.createVirtualRegister(RC);
   1208 }
   1209 
   1210 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
   1211                                  const TargetRegisterClass* RC) {
   1212   unsigned ResultReg = createResultReg(RC);
   1213   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1214 
   1215   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
   1216   return ResultReg;
   1217 }
   1218 
   1219 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
   1220                                   const TargetRegisterClass *RC,
   1221                                   unsigned Op0, bool Op0IsKill) {
   1222   unsigned ResultReg = createResultReg(RC);
   1223   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1224 
   1225   if (II.getNumDefs() >= 1)
   1226     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1227       .addReg(Op0, Op0IsKill * RegState::Kill);
   1228   else {
   1229     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1230       .addReg(Op0, Op0IsKill * RegState::Kill);
   1231     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1232             ResultReg).addReg(II.ImplicitDefs[0]);
   1233   }
   1234 
   1235   return ResultReg;
   1236 }
   1237 
   1238 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
   1239                                    const TargetRegisterClass *RC,
   1240                                    unsigned Op0, bool Op0IsKill,
   1241                                    unsigned Op1, bool Op1IsKill) {
   1242   unsigned ResultReg = createResultReg(RC);
   1243   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1244 
   1245   if (II.getNumDefs() >= 1)
   1246     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1247       .addReg(Op0, Op0IsKill * RegState::Kill)
   1248       .addReg(Op1, Op1IsKill * RegState::Kill);
   1249   else {
   1250     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1251       .addReg(Op0, Op0IsKill * RegState::Kill)
   1252       .addReg(Op1, Op1IsKill * RegState::Kill);
   1253     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1254             ResultReg).addReg(II.ImplicitDefs[0]);
   1255   }
   1256   return ResultReg;
   1257 }
   1258 
   1259 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
   1260                                    const TargetRegisterClass *RC,
   1261                                    unsigned Op0, bool Op0IsKill,
   1262                                    unsigned Op1, bool Op1IsKill,
   1263                                    unsigned Op2, bool Op2IsKill) {
   1264   unsigned ResultReg = createResultReg(RC);
   1265   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1266 
   1267   if (II.getNumDefs() >= 1)
   1268     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1269       .addReg(Op0, Op0IsKill * RegState::Kill)
   1270       .addReg(Op1, Op1IsKill * RegState::Kill)
   1271       .addReg(Op2, Op2IsKill * RegState::Kill);
   1272   else {
   1273     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1274       .addReg(Op0, Op0IsKill * RegState::Kill)
   1275       .addReg(Op1, Op1IsKill * RegState::Kill)
   1276       .addReg(Op2, Op2IsKill * RegState::Kill);
   1277     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1278             ResultReg).addReg(II.ImplicitDefs[0]);
   1279   }
   1280   return ResultReg;
   1281 }
   1282 
   1283 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
   1284                                    const TargetRegisterClass *RC,
   1285                                    unsigned Op0, bool Op0IsKill,
   1286                                    uint64_t Imm) {
   1287   unsigned ResultReg = createResultReg(RC);
   1288   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1289 
   1290   if (II.getNumDefs() >= 1)
   1291     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1292       .addReg(Op0, Op0IsKill * RegState::Kill)
   1293       .addImm(Imm);
   1294   else {
   1295     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1296       .addReg(Op0, Op0IsKill * RegState::Kill)
   1297       .addImm(Imm);
   1298     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1299             ResultReg).addReg(II.ImplicitDefs[0]);
   1300   }
   1301   return ResultReg;
   1302 }
   1303 
   1304 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
   1305                                    const TargetRegisterClass *RC,
   1306                                    unsigned Op0, bool Op0IsKill,
   1307                                    uint64_t Imm1, uint64_t Imm2) {
   1308   unsigned ResultReg = createResultReg(RC);
   1309   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1310 
   1311   if (II.getNumDefs() >= 1)
   1312     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1313       .addReg(Op0, Op0IsKill * RegState::Kill)
   1314       .addImm(Imm1)
   1315       .addImm(Imm2);
   1316   else {
   1317     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1318       .addReg(Op0, Op0IsKill * RegState::Kill)
   1319       .addImm(Imm1)
   1320       .addImm(Imm2);
   1321     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1322             ResultReg).addReg(II.ImplicitDefs[0]);
   1323   }
   1324   return ResultReg;
   1325 }
   1326 
   1327 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
   1328                                    const TargetRegisterClass *RC,
   1329                                    unsigned Op0, bool Op0IsKill,
   1330                                    const ConstantFP *FPImm) {
   1331   unsigned ResultReg = createResultReg(RC);
   1332   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1333 
   1334   if (II.getNumDefs() >= 1)
   1335     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1336       .addReg(Op0, Op0IsKill * RegState::Kill)
   1337       .addFPImm(FPImm);
   1338   else {
   1339     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1340       .addReg(Op0, Op0IsKill * RegState::Kill)
   1341       .addFPImm(FPImm);
   1342     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1343             ResultReg).addReg(II.ImplicitDefs[0]);
   1344   }
   1345   return ResultReg;
   1346 }
   1347 
   1348 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
   1349                                     const TargetRegisterClass *RC,
   1350                                     unsigned Op0, bool Op0IsKill,
   1351                                     unsigned Op1, bool Op1IsKill,
   1352                                     uint64_t Imm) {
   1353   unsigned ResultReg = createResultReg(RC);
   1354   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1355 
   1356   if (II.getNumDefs() >= 1)
   1357     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1358       .addReg(Op0, Op0IsKill * RegState::Kill)
   1359       .addReg(Op1, Op1IsKill * RegState::Kill)
   1360       .addImm(Imm);
   1361   else {
   1362     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1363       .addReg(Op0, Op0IsKill * RegState::Kill)
   1364       .addReg(Op1, Op1IsKill * RegState::Kill)
   1365       .addImm(Imm);
   1366     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1367             ResultReg).addReg(II.ImplicitDefs[0]);
   1368   }
   1369   return ResultReg;
   1370 }
   1371 
   1372 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
   1373                                      const TargetRegisterClass *RC,
   1374                                      unsigned Op0, bool Op0IsKill,
   1375                                      unsigned Op1, bool Op1IsKill,
   1376                                      uint64_t Imm1, uint64_t Imm2) {
   1377   unsigned ResultReg = createResultReg(RC);
   1378   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1379 
   1380   if (II.getNumDefs() >= 1)
   1381     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1382       .addReg(Op0, Op0IsKill * RegState::Kill)
   1383       .addReg(Op1, Op1IsKill * RegState::Kill)
   1384       .addImm(Imm1).addImm(Imm2);
   1385   else {
   1386     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1387       .addReg(Op0, Op0IsKill * RegState::Kill)
   1388       .addReg(Op1, Op1IsKill * RegState::Kill)
   1389       .addImm(Imm1).addImm(Imm2);
   1390     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1391             ResultReg).addReg(II.ImplicitDefs[0]);
   1392   }
   1393   return ResultReg;
   1394 }
   1395 
   1396 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
   1397                                   const TargetRegisterClass *RC,
   1398                                   uint64_t Imm) {
   1399   unsigned ResultReg = createResultReg(RC);
   1400   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1401 
   1402   if (II.getNumDefs() >= 1)
   1403     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
   1404   else {
   1405     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
   1406     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1407             ResultReg).addReg(II.ImplicitDefs[0]);
   1408   }
   1409   return ResultReg;
   1410 }
   1411 
   1412 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
   1413                                   const TargetRegisterClass *RC,
   1414                                   uint64_t Imm1, uint64_t Imm2) {
   1415   unsigned ResultReg = createResultReg(RC);
   1416   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1417 
   1418   if (II.getNumDefs() >= 1)
   1419     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1420       .addImm(Imm1).addImm(Imm2);
   1421   else {
   1422     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
   1423     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1424             ResultReg).addReg(II.ImplicitDefs[0]);
   1425   }
   1426   return ResultReg;
   1427 }
   1428 
   1429 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
   1430                                               unsigned Op0, bool Op0IsKill,
   1431                                               uint32_t Idx) {
   1432   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
   1433   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
   1434          "Cannot yet extract from physregs");
   1435   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
   1436   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
   1437   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   1438           DL, TII.get(TargetOpcode::COPY), ResultReg)
   1439     .addReg(Op0, getKillRegState(Op0IsKill), Idx);
   1440   return ResultReg;
   1441 }
   1442 
   1443 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
   1444 /// with all but the least significant bit set to zero.
   1445 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
   1446   return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
   1447 }
   1448 
   1449 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
   1450 /// Emit code to ensure constants are copied into registers when needed.
   1451 /// Remember the virtual registers that need to be added to the Machine PHI
   1452 /// nodes as input.  We cannot just directly add them, because expansion
   1453 /// might result in multiple MBB's for one BB.  As such, the start of the
   1454 /// BB might correspond to a different MBB than the end.
   1455 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   1456   const TerminatorInst *TI = LLVMBB->getTerminator();
   1457 
   1458   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   1459   unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
   1460 
   1461   // Check successor nodes' PHI nodes that expect a constant to be available
   1462   // from this block.
   1463   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   1464     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   1465     if (!isa<PHINode>(SuccBB->begin())) continue;
   1466     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   1467 
   1468     // If this terminator has multiple identical successors (common for
   1469     // switches), only handle each succ once.
   1470     if (!SuccsHandled.insert(SuccMBB)) continue;
   1471 
   1472     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   1473 
   1474     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   1475     // nodes and Machine PHI nodes, but the incoming operands have not been
   1476     // emitted yet.
   1477     for (BasicBlock::const_iterator I = SuccBB->begin();
   1478          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1479 
   1480       // Ignore dead phi's.
   1481       if (PN->use_empty()) continue;
   1482 
   1483       // Only handle legal types. Two interesting things to note here. First,
   1484       // by bailing out early, we may leave behind some dead instructions,
   1485       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
   1486       // own moves. Second, this check is necessary because FastISel doesn't
   1487       // use CreateRegs to create registers, so it always creates
   1488       // exactly one register for each non-void instruction.
   1489       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
   1490       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
   1491         // Handle integer promotions, though, because they're common and easy.
   1492         if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
   1493           VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
   1494         else {
   1495           FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1496           return false;
   1497         }
   1498       }
   1499 
   1500       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   1501 
   1502       // Set the DebugLoc for the copy. Prefer the location of the operand
   1503       // if there is one; use the location of the PHI otherwise.
   1504       DL = PN->getDebugLoc();
   1505       if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
   1506         DL = Inst->getDebugLoc();
   1507 
   1508       unsigned Reg = getRegForValue(PHIOp);
   1509       if (Reg == 0) {
   1510         FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1511         return false;
   1512       }
   1513       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
   1514       DL = DebugLoc();
   1515     }
   1516   }
   1517 
   1518   return true;
   1519 }
   1520 
   1521 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
   1522   assert(LI->hasOneUse() &&
   1523       "tryToFoldLoad expected a LoadInst with a single use");
   1524   // We know that the load has a single use, but don't know what it is.  If it
   1525   // isn't one of the folded instructions, then we can't succeed here.  Handle
   1526   // this by scanning the single-use users of the load until we get to FoldInst.
   1527   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
   1528 
   1529   const Instruction *TheUser = LI->use_back();
   1530   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
   1531          // Stay in the right block.
   1532          TheUser->getParent() == FoldInst->getParent() &&
   1533          --MaxUsers) {  // Don't scan too far.
   1534     // If there are multiple or no uses of this instruction, then bail out.
   1535     if (!TheUser->hasOneUse())
   1536       return false;
   1537 
   1538     TheUser = TheUser->use_back();
   1539   }
   1540 
   1541   // If we didn't find the fold instruction, then we failed to collapse the
   1542   // sequence.
   1543   if (TheUser != FoldInst)
   1544     return false;
   1545 
   1546   // Don't try to fold volatile loads.  Target has to deal with alignment
   1547   // constraints.
   1548   if (LI->isVolatile())
   1549     return false;
   1550 
   1551   // Figure out which vreg this is going into.  If there is no assigned vreg yet
   1552   // then there actually was no reference to it.  Perhaps the load is referenced
   1553   // by a dead instruction.
   1554   unsigned LoadReg = getRegForValue(LI);
   1555   if (LoadReg == 0)
   1556     return false;
   1557 
   1558   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
   1559   // may mean that the instruction got lowered to multiple MIs, or the use of
   1560   // the loaded value ended up being multiple operands of the result.
   1561   if (!MRI.hasOneUse(LoadReg))
   1562     return false;
   1563 
   1564   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
   1565   MachineInstr *User = &*RI;
   1566 
   1567   // Set the insertion point properly.  Folding the load can cause generation of
   1568   // other random instructions (like sign extends) for addressing modes; make
   1569   // sure they get inserted in a logical place before the new instruction.
   1570   FuncInfo.InsertPt = User;
   1571   FuncInfo.MBB = User->getParent();
   1572 
   1573   // Ask the target to try folding the load.
   1574   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
   1575 }
   1576 
   1577 
   1578