Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #include "DwarfDebug.h"
     17 #include "DwarfException.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ConstantFolding.h"
     21 #include "llvm/Assembly/Writer.h"
     22 #include "llvm/CodeGen/GCMetadataPrinter.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/DebugInfo.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/IR/Operator.h"
     33 #include "llvm/MC/MCAsmInfo.h"
     34 #include "llvm/MC/MCContext.h"
     35 #include "llvm/MC/MCExpr.h"
     36 #include "llvm/MC/MCInst.h"
     37 #include "llvm/MC/MCSection.h"
     38 #include "llvm/MC/MCStreamer.h"
     39 #include "llvm/MC/MCSymbol.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/Format.h"
     42 #include "llvm/Support/MathExtras.h"
     43 #include "llvm/Support/Timer.h"
     44 #include "llvm/Target/Mangler.h"
     45 #include "llvm/Target/TargetFrameLowering.h"
     46 #include "llvm/Target/TargetInstrInfo.h"
     47 #include "llvm/Target/TargetLowering.h"
     48 #include "llvm/Target/TargetLoweringObjectFile.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 #include "llvm/Target/TargetRegisterInfo.h"
     51 using namespace llvm;
     52 
     53 static const char *const DWARFGroupName = "DWARF Emission";
     54 static const char *const DbgTimerName = "DWARF Debug Writer";
     55 static const char *const EHTimerName = "DWARF Exception Writer";
     56 
     57 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     58 
     59 char AsmPrinter::ID = 0;
     60 
     61 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     62 static gcp_map_type &getGCMap(void *&P) {
     63   if (P == 0)
     64     P = new gcp_map_type();
     65   return *(gcp_map_type*)P;
     66 }
     67 
     68 
     69 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     70 /// value in log2 form.  This rounds up to the preferred alignment if possible
     71 /// and legal.
     72 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
     73                                    unsigned InBits = 0) {
     74   unsigned NumBits = 0;
     75   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     76     NumBits = TD.getPreferredAlignmentLog(GVar);
     77 
     78   // If InBits is specified, round it to it.
     79   if (InBits > NumBits)
     80     NumBits = InBits;
     81 
     82   // If the GV has a specified alignment, take it into account.
     83   if (GV->getAlignment() == 0)
     84     return NumBits;
     85 
     86   unsigned GVAlign = Log2_32(GV->getAlignment());
     87 
     88   // If the GVAlign is larger than NumBits, or if we are required to obey
     89   // NumBits because the GV has an assigned section, obey it.
     90   if (GVAlign > NumBits || GV->hasSection())
     91     NumBits = GVAlign;
     92   return NumBits;
     93 }
     94 
     95 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
     96   : MachineFunctionPass(ID),
     97     TM(tm), MAI(tm.getMCAsmInfo()),
     98     OutContext(Streamer.getContext()),
     99     OutStreamer(Streamer),
    100     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    101   DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
    102   CurrentFnSym = CurrentFnSymForSize = 0;
    103   GCMetadataPrinters = 0;
    104   VerboseAsm = Streamer.isVerboseAsm();
    105 }
    106 
    107 AsmPrinter::~AsmPrinter() {
    108   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    109 
    110   if (GCMetadataPrinters != 0) {
    111     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    112 
    113     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    114       delete I->second;
    115     delete &GCMap;
    116     GCMetadataPrinters = 0;
    117   }
    118 
    119   delete &OutStreamer;
    120 }
    121 
    122 /// getFunctionNumber - Return a unique ID for the current function.
    123 ///
    124 unsigned AsmPrinter::getFunctionNumber() const {
    125   return MF->getFunctionNumber();
    126 }
    127 
    128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    129   return TM.getTargetLowering()->getObjFileLowering();
    130 }
    131 
    132 /// getDataLayout - Return information about data layout.
    133 const DataLayout &AsmPrinter::getDataLayout() const {
    134   return *TM.getDataLayout();
    135 }
    136 
    137 StringRef AsmPrinter::getTargetTriple() const {
    138   return TM.getTargetTriple();
    139 }
    140 
    141 /// getCurrentSection() - Return the current section we are emitting to.
    142 const MCSection *AsmPrinter::getCurrentSection() const {
    143   return OutStreamer.getCurrentSection().first;
    144 }
    145 
    146 
    147 
    148 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    149   AU.setPreservesAll();
    150   MachineFunctionPass::getAnalysisUsage(AU);
    151   AU.addRequired<MachineModuleInfo>();
    152   AU.addRequired<GCModuleInfo>();
    153   if (isVerbose())
    154     AU.addRequired<MachineLoopInfo>();
    155 }
    156 
    157 bool AsmPrinter::doInitialization(Module &M) {
    158   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    159   MMI->AnalyzeModule(M);
    160 
    161   // Initialize TargetLoweringObjectFile.
    162   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    163     .Initialize(OutContext, TM);
    164 
    165   OutStreamer.InitStreamer();
    166 
    167   Mang = new Mangler(OutContext, &TM);
    168 
    169   // Allow the target to emit any magic that it wants at the start of the file.
    170   EmitStartOfAsmFile(M);
    171 
    172   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    173   // don't, this at least helps the user find where a global came from.
    174   if (MAI->hasSingleParameterDotFile()) {
    175     // .file "foo.c"
    176     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    177   }
    178 
    179   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    180   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    181   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    182     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    183       MP->beginAssembly(*this);
    184 
    185   // Emit module-level inline asm if it exists.
    186   if (!M.getModuleInlineAsm().empty()) {
    187     OutStreamer.AddComment("Start of file scope inline assembly");
    188     OutStreamer.AddBlankLine();
    189     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    190     OutStreamer.AddComment("End of file scope inline assembly");
    191     OutStreamer.AddBlankLine();
    192   }
    193 
    194   if (MAI->doesSupportDebugInformation())
    195     DD = new DwarfDebug(this, &M);
    196 
    197   switch (MAI->getExceptionHandlingType()) {
    198   case ExceptionHandling::None:
    199     return false;
    200   case ExceptionHandling::SjLj:
    201   case ExceptionHandling::DwarfCFI:
    202     DE = new DwarfCFIException(this);
    203     return false;
    204   case ExceptionHandling::ARM:
    205     DE = new ARMException(this);
    206     return false;
    207   case ExceptionHandling::Win64:
    208     DE = new Win64Exception(this);
    209     return false;
    210   }
    211 
    212   llvm_unreachable("Unknown exception type.");
    213 }
    214 
    215 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    216   switch ((GlobalValue::LinkageTypes)Linkage) {
    217   case GlobalValue::CommonLinkage:
    218   case GlobalValue::LinkOnceAnyLinkage:
    219   case GlobalValue::LinkOnceODRLinkage:
    220   case GlobalValue::LinkOnceODRAutoHideLinkage:
    221   case GlobalValue::WeakAnyLinkage:
    222   case GlobalValue::WeakODRLinkage:
    223   case GlobalValue::LinkerPrivateWeakLinkage:
    224     if (MAI->getWeakDefDirective() != 0) {
    225       // .globl _foo
    226       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    227 
    228       if ((GlobalValue::LinkageTypes)Linkage !=
    229           GlobalValue::LinkOnceODRAutoHideLinkage)
    230         // .weak_definition _foo
    231         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    232       else
    233         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    234     } else if (MAI->getLinkOnceDirective() != 0) {
    235       // .globl _foo
    236       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    237       //NOTE: linkonce is handled by the section the symbol was assigned to.
    238     } else {
    239       // .weak _foo
    240       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    241     }
    242     break;
    243   case GlobalValue::DLLExportLinkage:
    244   case GlobalValue::AppendingLinkage:
    245     // FIXME: appending linkage variables should go into a section of
    246     // their name or something.  For now, just emit them as external.
    247   case GlobalValue::ExternalLinkage:
    248     // If external or appending, declare as a global symbol.
    249     // .globl _foo
    250     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    251     break;
    252   case GlobalValue::PrivateLinkage:
    253   case GlobalValue::InternalLinkage:
    254   case GlobalValue::LinkerPrivateLinkage:
    255     break;
    256   default:
    257     llvm_unreachable("Unknown linkage type!");
    258   }
    259 }
    260 
    261 
    262 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    263 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    264   if (GV->hasInitializer()) {
    265     // Check to see if this is a special global used by LLVM, if so, emit it.
    266     if (EmitSpecialLLVMGlobal(GV))
    267       return;
    268 
    269     if (isVerbose()) {
    270       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    271                      /*PrintType=*/false, GV->getParent());
    272       OutStreamer.GetCommentOS() << '\n';
    273     }
    274   }
    275 
    276   MCSymbol *GVSym = Mang->getSymbol(GV);
    277   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    278 
    279   if (!GV->hasInitializer())   // External globals require no extra code.
    280     return;
    281 
    282   if (MAI->hasDotTypeDotSizeDirective())
    283     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    284 
    285   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    286 
    287   const DataLayout *TD = TM.getDataLayout();
    288   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    289 
    290   // If the alignment is specified, we *must* obey it.  Overaligning a global
    291   // with a specified alignment is a prompt way to break globals emitted to
    292   // sections and expected to be contiguous (e.g. ObjC metadata).
    293   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    294 
    295   // Handle common and BSS local symbols (.lcomm).
    296   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    297     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    298     unsigned Align = 1 << AlignLog;
    299 
    300     // Handle common symbols.
    301     if (GVKind.isCommon()) {
    302       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    303         Align = 0;
    304 
    305       // .comm _foo, 42, 4
    306       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    307       return;
    308     }
    309 
    310     // Handle local BSS symbols.
    311     if (MAI->hasMachoZeroFillDirective()) {
    312       const MCSection *TheSection =
    313         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    314       // .zerofill __DATA, __bss, _foo, 400, 5
    315       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    316       return;
    317     }
    318 
    319     // Use .lcomm only if it supports user-specified alignment.
    320     // Otherwise, while it would still be correct to use .lcomm in some
    321     // cases (e.g. when Align == 1), the external assembler might enfore
    322     // some -unknown- default alignment behavior, which could cause
    323     // spurious differences between external and integrated assembler.
    324     // Prefer to simply fall back to .local / .comm in this case.
    325     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    326       // .lcomm _foo, 42
    327       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    328       return;
    329     }
    330 
    331     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    332       Align = 0;
    333 
    334     // .local _foo
    335     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    336     // .comm _foo, 42, 4
    337     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    338     return;
    339   }
    340 
    341   const MCSection *TheSection =
    342     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    343 
    344   // Handle the zerofill directive on darwin, which is a special form of BSS
    345   // emission.
    346   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    347     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    348 
    349     // .globl _foo
    350     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    351     // .zerofill __DATA, __common, _foo, 400, 5
    352     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    353     return;
    354   }
    355 
    356   // Handle thread local data for mach-o which requires us to output an
    357   // additional structure of data and mangle the original symbol so that we
    358   // can reference it later.
    359   //
    360   // TODO: This should become an "emit thread local global" method on TLOF.
    361   // All of this macho specific stuff should be sunk down into TLOFMachO and
    362   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    363   // TLOF class.  This will also make it more obvious that stuff like
    364   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    365   // specific code.
    366   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    367     // Emit the .tbss symbol
    368     MCSymbol *MangSym =
    369       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    370 
    371     if (GVKind.isThreadBSS()) {
    372       TheSection = getObjFileLowering().getTLSBSSSection();
    373       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    374     } else if (GVKind.isThreadData()) {
    375       OutStreamer.SwitchSection(TheSection);
    376 
    377       EmitAlignment(AlignLog, GV);
    378       OutStreamer.EmitLabel(MangSym);
    379 
    380       EmitGlobalConstant(GV->getInitializer());
    381     }
    382 
    383     OutStreamer.AddBlankLine();
    384 
    385     // Emit the variable struct for the runtime.
    386     const MCSection *TLVSect
    387       = getObjFileLowering().getTLSExtraDataSection();
    388 
    389     OutStreamer.SwitchSection(TLVSect);
    390     // Emit the linkage here.
    391     EmitLinkage(GV->getLinkage(), GVSym);
    392     OutStreamer.EmitLabel(GVSym);
    393 
    394     // Three pointers in size:
    395     //   - __tlv_bootstrap - used to make sure support exists
    396     //   - spare pointer, used when mapped by the runtime
    397     //   - pointer to mangled symbol above with initializer
    398     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    399     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    400                                 PtrSize);
    401     OutStreamer.EmitIntValue(0, PtrSize);
    402     OutStreamer.EmitSymbolValue(MangSym, PtrSize);
    403 
    404     OutStreamer.AddBlankLine();
    405     return;
    406   }
    407 
    408   OutStreamer.SwitchSection(TheSection);
    409 
    410   EmitLinkage(GV->getLinkage(), GVSym);
    411   EmitAlignment(AlignLog, GV);
    412 
    413   OutStreamer.EmitLabel(GVSym);
    414 
    415   EmitGlobalConstant(GV->getInitializer());
    416 
    417   if (MAI->hasDotTypeDotSizeDirective())
    418     // .size foo, 42
    419     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    420 
    421   OutStreamer.AddBlankLine();
    422 }
    423 
    424 /// EmitFunctionHeader - This method emits the header for the current
    425 /// function.
    426 void AsmPrinter::EmitFunctionHeader() {
    427   // Print out constants referenced by the function
    428   EmitConstantPool();
    429 
    430   // Print the 'header' of function.
    431   const Function *F = MF->getFunction();
    432 
    433   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    434   EmitVisibility(CurrentFnSym, F->getVisibility());
    435 
    436   EmitLinkage(F->getLinkage(), CurrentFnSym);
    437   EmitAlignment(MF->getAlignment(), F);
    438 
    439   if (MAI->hasDotTypeDotSizeDirective())
    440     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    441 
    442   if (isVerbose()) {
    443     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    444                    /*PrintType=*/false, F->getParent());
    445     OutStreamer.GetCommentOS() << '\n';
    446   }
    447 
    448   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    449   // do their wild and crazy things as required.
    450   EmitFunctionEntryLabel();
    451 
    452   // If the function had address-taken blocks that got deleted, then we have
    453   // references to the dangling symbols.  Emit them at the start of the function
    454   // so that we don't get references to undefined symbols.
    455   std::vector<MCSymbol*> DeadBlockSyms;
    456   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    457   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    458     OutStreamer.AddComment("Address taken block that was later removed");
    459     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    460   }
    461 
    462   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    463   if (MAI->getLinkOnceDirective() != 0 &&
    464       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    465     // FIXME: What is this?
    466     MCSymbol *FakeStub =
    467       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    468                                    CurrentFnSym->getName());
    469     OutStreamer.EmitLabel(FakeStub);
    470   }
    471 
    472   // Emit pre-function debug and/or EH information.
    473   if (DE) {
    474     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    475     DE->BeginFunction(MF);
    476   }
    477   if (DD) {
    478     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    479     DD->beginFunction(MF);
    480   }
    481 }
    482 
    483 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    484 /// function.  This can be overridden by targets as required to do custom stuff.
    485 void AsmPrinter::EmitFunctionEntryLabel() {
    486   // The function label could have already been emitted if two symbols end up
    487   // conflicting due to asm renaming.  Detect this and emit an error.
    488   if (CurrentFnSym->isUndefined())
    489     return OutStreamer.EmitLabel(CurrentFnSym);
    490 
    491   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    492                      "' label emitted multiple times to assembly file");
    493 }
    494 
    495 /// emitComments - Pretty-print comments for instructions.
    496 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    497   const MachineFunction *MF = MI.getParent()->getParent();
    498   const TargetMachine &TM = MF->getTarget();
    499 
    500   // Check for spills and reloads
    501   int FI;
    502 
    503   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    504 
    505   // We assume a single instruction only has a spill or reload, not
    506   // both.
    507   const MachineMemOperand *MMO;
    508   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    509     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    510       MMO = *MI.memoperands_begin();
    511       CommentOS << MMO->getSize() << "-byte Reload\n";
    512     }
    513   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    514     if (FrameInfo->isSpillSlotObjectIndex(FI))
    515       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    516   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    517     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    518       MMO = *MI.memoperands_begin();
    519       CommentOS << MMO->getSize() << "-byte Spill\n";
    520     }
    521   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    522     if (FrameInfo->isSpillSlotObjectIndex(FI))
    523       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    524   }
    525 
    526   // Check for spill-induced copies
    527   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    528     CommentOS << " Reload Reuse\n";
    529 }
    530 
    531 /// emitImplicitDef - This method emits the specified machine instruction
    532 /// that is an implicit def.
    533 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    534   unsigned RegNo = MI->getOperand(0).getReg();
    535   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    536                             AP.TM.getRegisterInfo()->getName(RegNo));
    537   AP.OutStreamer.AddBlankLine();
    538 }
    539 
    540 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    541   std::string Str = "kill:";
    542   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    543     const MachineOperand &Op = MI->getOperand(i);
    544     assert(Op.isReg() && "KILL instruction must have only register operands");
    545     Str += ' ';
    546     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    547     Str += (Op.isDef() ? "<def>" : "<kill>");
    548   }
    549   AP.OutStreamer.AddComment(Str);
    550   AP.OutStreamer.AddBlankLine();
    551 }
    552 
    553 /// emitDebugValueComment - This method handles the target-independent form
    554 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    555 /// means the target will need to handle MI in EmitInstruction.
    556 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    557   // This code handles only the 3-operand target-independent form.
    558   if (MI->getNumOperands() != 3)
    559     return false;
    560 
    561   SmallString<128> Str;
    562   raw_svector_ostream OS(Str);
    563   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    564 
    565   // cast away const; DIetc do not take const operands for some reason.
    566   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    567   if (V.getContext().isSubprogram()) {
    568     StringRef Name = DISubprogram(V.getContext()).getDisplayName();
    569     if (!Name.empty())
    570       OS << Name << ":";
    571   }
    572   OS << V.getName() << " <- ";
    573 
    574   // The second operand is only an offset if it's an immediate.
    575   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
    576   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
    577 
    578   // Register or immediate value. Register 0 means undef.
    579   if (MI->getOperand(0).isFPImm()) {
    580     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    581     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    582       OS << (double)APF.convertToFloat();
    583     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    584       OS << APF.convertToDouble();
    585     } else {
    586       // There is no good way to print long double.  Convert a copy to
    587       // double.  Ah well, it's only a comment.
    588       bool ignored;
    589       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    590                   &ignored);
    591       OS << "(long double) " << APF.convertToDouble();
    592     }
    593   } else if (MI->getOperand(0).isImm()) {
    594     OS << MI->getOperand(0).getImm();
    595   } else if (MI->getOperand(0).isCImm()) {
    596     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    597   } else {
    598     unsigned Reg;
    599     if (MI->getOperand(0).isReg()) {
    600       Reg = MI->getOperand(0).getReg();
    601     } else {
    602       assert(MI->getOperand(0).isFI() && "Unknown operand type");
    603       const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
    604       Offset += TFI->getFrameIndexReference(*AP.MF,
    605                                             MI->getOperand(0).getIndex(), Reg);
    606       Deref = true;
    607     }
    608     if (Reg == 0) {
    609       // Suppress offset, it is not meaningful here.
    610       OS << "undef";
    611       // NOTE: Want this comment at start of line, don't emit with AddComment.
    612       AP.OutStreamer.EmitRawText(OS.str());
    613       return true;
    614     }
    615     if (Deref)
    616       OS << '[';
    617     OS << AP.TM.getRegisterInfo()->getName(Reg);
    618   }
    619 
    620   if (Deref)
    621     OS << '+' << Offset << ']';
    622 
    623   // NOTE: Want this comment at start of line, don't emit with AddComment.
    624   AP.OutStreamer.EmitRawText(OS.str());
    625   return true;
    626 }
    627 
    628 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    629   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    630       MF->getFunction()->needsUnwindTableEntry())
    631     return CFI_M_EH;
    632 
    633   if (MMI->hasDebugInfo())
    634     return CFI_M_Debug;
    635 
    636   return CFI_M_None;
    637 }
    638 
    639 bool AsmPrinter::needsSEHMoves() {
    640   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    641     MF->getFunction()->needsUnwindTableEntry();
    642 }
    643 
    644 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
    645   return MAI->doesDwarfUseRelocationsAcrossSections();
    646 }
    647 
    648 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    649   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    650 
    651   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    652     return;
    653 
    654   if (needsCFIMoves() == CFI_M_None)
    655     return;
    656 
    657   if (MMI->getCompactUnwindEncoding() != 0)
    658     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    659 
    660   MachineModuleInfo &MMI = MF->getMMI();
    661   std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
    662   bool FoundOne = false;
    663   (void)FoundOne;
    664   for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
    665          E = Instructions.end(); I != E; ++I) {
    666     if (I->getLabel() == Label) {
    667       emitCFIInstruction(*I);
    668       FoundOne = true;
    669     }
    670   }
    671   assert(FoundOne);
    672 }
    673 
    674 /// EmitFunctionBody - This method emits the body and trailer for a
    675 /// function.
    676 void AsmPrinter::EmitFunctionBody() {
    677   // Emit target-specific gunk before the function body.
    678   EmitFunctionBodyStart();
    679 
    680   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    681 
    682   // Print out code for the function.
    683   bool HasAnyRealCode = false;
    684   const MachineInstr *LastMI = 0;
    685   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    686        I != E; ++I) {
    687     // Print a label for the basic block.
    688     EmitBasicBlockStart(I);
    689     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    690          II != IE; ++II) {
    691       LastMI = II;
    692 
    693       // Print the assembly for the instruction.
    694       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    695           !II->isDebugValue()) {
    696         HasAnyRealCode = true;
    697         ++EmittedInsts;
    698       }
    699 
    700       if (ShouldPrintDebugScopes) {
    701         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    702         DD->beginInstruction(II);
    703       }
    704 
    705       if (isVerbose())
    706         emitComments(*II, OutStreamer.GetCommentOS());
    707 
    708       switch (II->getOpcode()) {
    709       case TargetOpcode::PROLOG_LABEL:
    710         emitPrologLabel(*II);
    711         break;
    712 
    713       case TargetOpcode::EH_LABEL:
    714       case TargetOpcode::GC_LABEL:
    715         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    716         break;
    717       case TargetOpcode::INLINEASM:
    718         EmitInlineAsm(II);
    719         break;
    720       case TargetOpcode::DBG_VALUE:
    721         if (isVerbose()) {
    722           if (!emitDebugValueComment(II, *this))
    723             EmitInstruction(II);
    724         }
    725         break;
    726       case TargetOpcode::IMPLICIT_DEF:
    727         if (isVerbose()) emitImplicitDef(II, *this);
    728         break;
    729       case TargetOpcode::KILL:
    730         if (isVerbose()) emitKill(II, *this);
    731         break;
    732       default:
    733         if (!TM.hasMCUseLoc())
    734           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    735 
    736         EmitInstruction(II);
    737         break;
    738       }
    739 
    740       if (ShouldPrintDebugScopes) {
    741         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    742         DD->endInstruction(II);
    743       }
    744     }
    745   }
    746 
    747   // If the last instruction was a prolog label, then we have a situation where
    748   // we emitted a prolog but no function body. This results in the ending prolog
    749   // label equaling the end of function label and an invalid "row" in the
    750   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    751   // valid.
    752   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    753 
    754   // If the function is empty and the object file uses .subsections_via_symbols,
    755   // then we need to emit *something* to the function body to prevent the
    756   // labels from collapsing together.  Just emit a noop.
    757   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    758     MCInst Noop;
    759     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    760     if (Noop.getOpcode()) {
    761       OutStreamer.AddComment("avoids zero-length function");
    762       OutStreamer.EmitInstruction(Noop);
    763     } else  // Target not mc-ized yet.
    764       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    765   }
    766 
    767   const Function *F = MF->getFunction();
    768   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
    769     const BasicBlock *BB = i;
    770     if (!BB->hasAddressTaken())
    771       continue;
    772     MCSymbol *Sym = GetBlockAddressSymbol(BB);
    773     if (Sym->isDefined())
    774       continue;
    775     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    776     OutStreamer.EmitLabel(Sym);
    777   }
    778 
    779   // Emit target-specific gunk after the function body.
    780   EmitFunctionBodyEnd();
    781 
    782   // If the target wants a .size directive for the size of the function, emit
    783   // it.
    784   if (MAI->hasDotTypeDotSizeDirective()) {
    785     // Create a symbol for the end of function, so we can get the size as
    786     // difference between the function label and the temp label.
    787     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    788     OutStreamer.EmitLabel(FnEndLabel);
    789 
    790     const MCExpr *SizeExp =
    791       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    792                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    793                                                       OutContext),
    794                               OutContext);
    795     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    796   }
    797 
    798   // Emit post-function debug information.
    799   if (DD) {
    800     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    801     DD->endFunction(MF);
    802   }
    803   if (DE) {
    804     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    805     DE->EndFunction();
    806   }
    807   MMI->EndFunction();
    808 
    809   // Print out jump tables referenced by the function.
    810   EmitJumpTableInfo();
    811 
    812   OutStreamer.AddBlankLine();
    813 }
    814 
    815 /// EmitDwarfRegOp - Emit dwarf register operation.
    816 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
    817                                 bool Indirect) const {
    818   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    819   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    820 
    821   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
    822        ++SR) {
    823     Reg = TRI->getDwarfRegNum(*SR, false);
    824     // FIXME: Get the bit range this register uses of the superregister
    825     // so that we can produce a DW_OP_bit_piece
    826   }
    827 
    828   // FIXME: Handle cases like a super register being encoded as
    829   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    830 
    831   // FIXME: We have no reasonable way of handling errors in here. The
    832   // caller might be in the middle of an dwarf expression. We should
    833   // probably assert that Reg >= 0 once debug info generation is more mature.
    834 
    835   if (MLoc.isIndirect() || Indirect) {
    836     if (Reg < 32) {
    837       OutStreamer.AddComment(
    838         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    839       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    840     } else {
    841       OutStreamer.AddComment("DW_OP_bregx");
    842       EmitInt8(dwarf::DW_OP_bregx);
    843       OutStreamer.AddComment(Twine(Reg));
    844       EmitULEB128(Reg);
    845     }
    846     EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
    847     if (MLoc.isIndirect() && Indirect)
    848       EmitInt8(dwarf::DW_OP_deref);
    849   } else {
    850     if (Reg < 32) {
    851       OutStreamer.AddComment(
    852         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    853       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    854     } else {
    855       OutStreamer.AddComment("DW_OP_regx");
    856       EmitInt8(dwarf::DW_OP_regx);
    857       OutStreamer.AddComment(Twine(Reg));
    858       EmitULEB128(Reg);
    859     }
    860   }
    861 
    862   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    863 }
    864 
    865 bool AsmPrinter::doFinalization(Module &M) {
    866   // Emit global variables.
    867   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    868        I != E; ++I)
    869     EmitGlobalVariable(I);
    870 
    871   // Emit visibility info for declarations
    872   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    873     const Function &F = *I;
    874     if (!F.isDeclaration())
    875       continue;
    876     GlobalValue::VisibilityTypes V = F.getVisibility();
    877     if (V == GlobalValue::DefaultVisibility)
    878       continue;
    879 
    880     MCSymbol *Name = Mang->getSymbol(&F);
    881     EmitVisibility(Name, V, false);
    882   }
    883 
    884   // Emit module flags.
    885   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
    886   M.getModuleFlagsMetadata(ModuleFlags);
    887   if (!ModuleFlags.empty())
    888     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
    889 
    890   // Finalize debug and EH information.
    891   if (DE) {
    892     {
    893       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    894       DE->EndModule();
    895     }
    896     delete DE; DE = 0;
    897   }
    898   if (DD) {
    899     {
    900       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    901       DD->endModule();
    902     }
    903     delete DD; DD = 0;
    904   }
    905 
    906   // If the target wants to know about weak references, print them all.
    907   if (MAI->getWeakRefDirective()) {
    908     // FIXME: This is not lazy, it would be nice to only print weak references
    909     // to stuff that is actually used.  Note that doing so would require targets
    910     // to notice uses in operands (due to constant exprs etc).  This should
    911     // happen with the MC stuff eventually.
    912 
    913     // Print out module-level global variables here.
    914     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    915          I != E; ++I) {
    916       if (!I->hasExternalWeakLinkage()) continue;
    917       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    918     }
    919 
    920     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    921       if (!I->hasExternalWeakLinkage()) continue;
    922       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    923     }
    924   }
    925 
    926   if (MAI->hasSetDirective()) {
    927     OutStreamer.AddBlankLine();
    928     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    929          I != E; ++I) {
    930       MCSymbol *Name = Mang->getSymbol(I);
    931 
    932       const GlobalValue *GV = I->getAliasedGlobal();
    933       MCSymbol *Target = Mang->getSymbol(GV);
    934 
    935       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    936         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    937       else if (I->hasWeakLinkage())
    938         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    939       else
    940         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    941 
    942       EmitVisibility(Name, I->getVisibility());
    943 
    944       // Emit the directives as assignments aka .set:
    945       OutStreamer.EmitAssignment(Name,
    946                                  MCSymbolRefExpr::Create(Target, OutContext));
    947     }
    948   }
    949 
    950   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    951   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    952   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    953     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    954       MP->finishAssembly(*this);
    955 
    956   // If we don't have any trampolines, then we don't require stack memory
    957   // to be executable. Some targets have a directive to declare this.
    958   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    959   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    960     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    961       OutStreamer.SwitchSection(S);
    962 
    963   // Allow the target to emit any magic that it wants at the end of the file,
    964   // after everything else has gone out.
    965   EmitEndOfAsmFile(M);
    966 
    967   delete Mang; Mang = 0;
    968   MMI = 0;
    969 
    970   OutStreamer.Finish();
    971   OutStreamer.reset();
    972 
    973   return false;
    974 }
    975 
    976 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    977   this->MF = &MF;
    978   // Get the function symbol.
    979   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    980   CurrentFnSymForSize = CurrentFnSym;
    981 
    982   if (isVerbose())
    983     LI = &getAnalysis<MachineLoopInfo>();
    984 }
    985 
    986 namespace {
    987   // SectionCPs - Keep track the alignment, constpool entries per Section.
    988   struct SectionCPs {
    989     const MCSection *S;
    990     unsigned Alignment;
    991     SmallVector<unsigned, 4> CPEs;
    992     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    993   };
    994 }
    995 
    996 /// EmitConstantPool - Print to the current output stream assembly
    997 /// representations of the constants in the constant pool MCP. This is
    998 /// used to print out constants which have been "spilled to memory" by
    999 /// the code generator.
   1000 ///
   1001 void AsmPrinter::EmitConstantPool() {
   1002   const MachineConstantPool *MCP = MF->getConstantPool();
   1003   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
   1004   if (CP.empty()) return;
   1005 
   1006   // Calculate sections for constant pool entries. We collect entries to go into
   1007   // the same section together to reduce amount of section switch statements.
   1008   SmallVector<SectionCPs, 4> CPSections;
   1009   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1010     const MachineConstantPoolEntry &CPE = CP[i];
   1011     unsigned Align = CPE.getAlignment();
   1012 
   1013     SectionKind Kind;
   1014     switch (CPE.getRelocationInfo()) {
   1015     default: llvm_unreachable("Unknown section kind");
   1016     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
   1017     case 1:
   1018       Kind = SectionKind::getReadOnlyWithRelLocal();
   1019       break;
   1020     case 0:
   1021     switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
   1022     case 4:  Kind = SectionKind::getMergeableConst4(); break;
   1023     case 8:  Kind = SectionKind::getMergeableConst8(); break;
   1024     case 16: Kind = SectionKind::getMergeableConst16();break;
   1025     default: Kind = SectionKind::getMergeableConst(); break;
   1026     }
   1027     }
   1028 
   1029     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
   1030 
   1031     // The number of sections are small, just do a linear search from the
   1032     // last section to the first.
   1033     bool Found = false;
   1034     unsigned SecIdx = CPSections.size();
   1035     while (SecIdx != 0) {
   1036       if (CPSections[--SecIdx].S == S) {
   1037         Found = true;
   1038         break;
   1039       }
   1040     }
   1041     if (!Found) {
   1042       SecIdx = CPSections.size();
   1043       CPSections.push_back(SectionCPs(S, Align));
   1044     }
   1045 
   1046     if (Align > CPSections[SecIdx].Alignment)
   1047       CPSections[SecIdx].Alignment = Align;
   1048     CPSections[SecIdx].CPEs.push_back(i);
   1049   }
   1050 
   1051   // Now print stuff into the calculated sections.
   1052   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1053     OutStreamer.SwitchSection(CPSections[i].S);
   1054     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1055 
   1056     unsigned Offset = 0;
   1057     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1058       unsigned CPI = CPSections[i].CPEs[j];
   1059       MachineConstantPoolEntry CPE = CP[CPI];
   1060 
   1061       // Emit inter-object padding for alignment.
   1062       unsigned AlignMask = CPE.getAlignment() - 1;
   1063       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1064       OutStreamer.EmitZeros(NewOffset - Offset);
   1065 
   1066       Type *Ty = CPE.getType();
   1067       Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
   1068       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1069 
   1070       if (CPE.isMachineConstantPoolEntry())
   1071         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1072       else
   1073         EmitGlobalConstant(CPE.Val.ConstVal);
   1074     }
   1075   }
   1076 }
   1077 
   1078 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1079 /// by the current function to the current output stream.
   1080 ///
   1081 void AsmPrinter::EmitJumpTableInfo() {
   1082   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1083   if (MJTI == 0) return;
   1084   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1085   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1086   if (JT.empty()) return;
   1087 
   1088   // Pick the directive to use to print the jump table entries, and switch to
   1089   // the appropriate section.
   1090   const Function *F = MF->getFunction();
   1091   bool JTInDiffSection = false;
   1092   if (// In PIC mode, we need to emit the jump table to the same section as the
   1093       // function body itself, otherwise the label differences won't make sense.
   1094       // FIXME: Need a better predicate for this: what about custom entries?
   1095       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1096       // We should also do if the section name is NULL or function is declared
   1097       // in discardable section
   1098       // FIXME: this isn't the right predicate, should be based on the MCSection
   1099       // for the function.
   1100       F->isWeakForLinker()) {
   1101     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1102   } else {
   1103     // Otherwise, drop it in the readonly section.
   1104     const MCSection *ReadOnlySection =
   1105       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1106     OutStreamer.SwitchSection(ReadOnlySection);
   1107     JTInDiffSection = true;
   1108   }
   1109 
   1110   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
   1111 
   1112   // Jump tables in code sections are marked with a data_region directive
   1113   // where that's supported.
   1114   if (!JTInDiffSection)
   1115     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
   1116 
   1117   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1118     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1119 
   1120     // If this jump table was deleted, ignore it.
   1121     if (JTBBs.empty()) continue;
   1122 
   1123     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1124     // .set directive for each unique entry.  This reduces the number of
   1125     // relocations the assembler will generate for the jump table.
   1126     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1127         MAI->hasSetDirective()) {
   1128       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1129       const TargetLowering *TLI = TM.getTargetLowering();
   1130       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1131       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1132         const MachineBasicBlock *MBB = JTBBs[ii];
   1133         if (!EmittedSets.insert(MBB)) continue;
   1134 
   1135         // .set LJTSet, LBB32-base
   1136         const MCExpr *LHS =
   1137           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1138         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1139                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1140       }
   1141     }
   1142 
   1143     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1144     // before each jump table.  The first label is never referenced, but tells
   1145     // the assembler and linker the extents of the jump table object.  The
   1146     // second label is actually referenced by the code.
   1147     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1148       // FIXME: This doesn't have to have any specific name, just any randomly
   1149       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1150       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1151 
   1152     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1153 
   1154     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1155       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1156   }
   1157   if (!JTInDiffSection)
   1158     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1159 }
   1160 
   1161 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1162 /// current stream.
   1163 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1164                                     const MachineBasicBlock *MBB,
   1165                                     unsigned UID) const {
   1166   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1167   const MCExpr *Value = 0;
   1168   switch (MJTI->getEntryKind()) {
   1169   case MachineJumpTableInfo::EK_Inline:
   1170     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1171   case MachineJumpTableInfo::EK_Custom32:
   1172     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1173                                                               OutContext);
   1174     break;
   1175   case MachineJumpTableInfo::EK_BlockAddress:
   1176     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1177     //     .word LBB123
   1178     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1179     break;
   1180   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1181     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1182     // with a relocation as gp-relative, e.g.:
   1183     //     .gprel32 LBB123
   1184     MCSymbol *MBBSym = MBB->getSymbol();
   1185     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1186     return;
   1187   }
   1188 
   1189   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1190     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1191     // with a relocation as gp-relative, e.g.:
   1192     //     .gpdword LBB123
   1193     MCSymbol *MBBSym = MBB->getSymbol();
   1194     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1195     return;
   1196   }
   1197 
   1198   case MachineJumpTableInfo::EK_LabelDifference32: {
   1199     // EK_LabelDifference32 - Each entry is the address of the block minus
   1200     // the address of the jump table.  This is used for PIC jump tables where
   1201     // gprel32 is not supported.  e.g.:
   1202     //      .word LBB123 - LJTI1_2
   1203     // If the .set directive is supported, this is emitted as:
   1204     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1205     //      .word L4_5_set_123
   1206 
   1207     // If we have emitted set directives for the jump table entries, print
   1208     // them rather than the entries themselves.  If we're emitting PIC, then
   1209     // emit the table entries as differences between two text section labels.
   1210     if (MAI->hasSetDirective()) {
   1211       // If we used .set, reference the .set's symbol.
   1212       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1213                                       OutContext);
   1214       break;
   1215     }
   1216     // Otherwise, use the difference as the jump table entry.
   1217     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1218     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1219     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1220     break;
   1221   }
   1222   }
   1223 
   1224   assert(Value && "Unknown entry kind!");
   1225 
   1226   unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
   1227   OutStreamer.EmitValue(Value, EntrySize);
   1228 }
   1229 
   1230 
   1231 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1232 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1233 /// do nothing and return false.
   1234 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1235   if (GV->getName() == "llvm.used") {
   1236     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1237       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
   1238     return true;
   1239   }
   1240 
   1241   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1242   if (GV->getSection() == "llvm.metadata" ||
   1243       GV->hasAvailableExternallyLinkage())
   1244     return true;
   1245 
   1246   if (!GV->hasAppendingLinkage()) return false;
   1247 
   1248   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1249 
   1250   if (GV->getName() == "llvm.global_ctors") {
   1251     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1252 
   1253     if (TM.getRelocationModel() == Reloc::Static &&
   1254         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1255       StringRef Sym(".constructors_used");
   1256       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1257                                       MCSA_Reference);
   1258     }
   1259     return true;
   1260   }
   1261 
   1262   if (GV->getName() == "llvm.global_dtors") {
   1263     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1264 
   1265     if (TM.getRelocationModel() == Reloc::Static &&
   1266         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1267       StringRef Sym(".destructors_used");
   1268       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1269                                       MCSA_Reference);
   1270     }
   1271     return true;
   1272   }
   1273 
   1274   return false;
   1275 }
   1276 
   1277 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1278 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1279 /// is true, as being used with this directive.
   1280 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
   1281   // Should be an array of 'i8*'.
   1282   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1283     const GlobalValue *GV =
   1284       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1285     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1286       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1287   }
   1288 }
   1289 
   1290 typedef std::pair<unsigned, Constant*> Structor;
   1291 
   1292 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1293   return lhs.first < rhs.first;
   1294 }
   1295 
   1296 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1297 /// priority.
   1298 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1299   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1300   // init priority.
   1301   if (!isa<ConstantArray>(List)) return;
   1302 
   1303   // Sanity check the structors list.
   1304   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1305   if (!InitList) return; // Not an array!
   1306   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1307   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1308   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1309       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1310 
   1311   // Gather the structors in a form that's convenient for sorting by priority.
   1312   SmallVector<Structor, 8> Structors;
   1313   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1314     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1315     if (!CS) continue; // Malformed.
   1316     if (CS->getOperand(1)->isNullValue())
   1317       break;  // Found a null terminator, skip the rest.
   1318     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1319     if (!Priority) continue; // Malformed.
   1320     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1321                                        CS->getOperand(1)));
   1322   }
   1323 
   1324   // Emit the function pointers in the target-specific order
   1325   const DataLayout *TD = TM.getDataLayout();
   1326   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1327   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
   1328   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
   1329     const MCSection *OutputSection =
   1330       (isCtor ?
   1331        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
   1332        getObjFileLowering().getStaticDtorSection(Structors[i].first));
   1333     OutStreamer.SwitchSection(OutputSection);
   1334     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1335       EmitAlignment(Align);
   1336     EmitXXStructor(Structors[i].second);
   1337   }
   1338 }
   1339 
   1340 //===--------------------------------------------------------------------===//
   1341 // Emission and print routines
   1342 //
   1343 
   1344 /// EmitInt8 - Emit a byte directive and value.
   1345 ///
   1346 void AsmPrinter::EmitInt8(int Value) const {
   1347   OutStreamer.EmitIntValue(Value, 1);
   1348 }
   1349 
   1350 /// EmitInt16 - Emit a short directive and value.
   1351 ///
   1352 void AsmPrinter::EmitInt16(int Value) const {
   1353   OutStreamer.EmitIntValue(Value, 2);
   1354 }
   1355 
   1356 /// EmitInt32 - Emit a long directive and value.
   1357 ///
   1358 void AsmPrinter::EmitInt32(int Value) const {
   1359   OutStreamer.EmitIntValue(Value, 4);
   1360 }
   1361 
   1362 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1363 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1364 /// labels.  This implicitly uses .set if it is available.
   1365 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1366                                      unsigned Size) const {
   1367   // Get the Hi-Lo expression.
   1368   const MCExpr *Diff =
   1369     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1370                             MCSymbolRefExpr::Create(Lo, OutContext),
   1371                             OutContext);
   1372 
   1373   if (!MAI->hasSetDirective()) {
   1374     OutStreamer.EmitValue(Diff, Size);
   1375     return;
   1376   }
   1377 
   1378   // Otherwise, emit with .set (aka assignment).
   1379   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1380   OutStreamer.EmitAssignment(SetLabel, Diff);
   1381   OutStreamer.EmitSymbolValue(SetLabel, Size);
   1382 }
   1383 
   1384 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1385 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1386 /// specify the labels.  This implicitly uses .set if it is available.
   1387 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1388                                            const MCSymbol *Lo, unsigned Size)
   1389   const {
   1390 
   1391   // Emit Hi+Offset - Lo
   1392   // Get the Hi+Offset expression.
   1393   const MCExpr *Plus =
   1394     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1395                             MCConstantExpr::Create(Offset, OutContext),
   1396                             OutContext);
   1397 
   1398   // Get the Hi+Offset-Lo expression.
   1399   const MCExpr *Diff =
   1400     MCBinaryExpr::CreateSub(Plus,
   1401                             MCSymbolRefExpr::Create(Lo, OutContext),
   1402                             OutContext);
   1403 
   1404   if (!MAI->hasSetDirective())
   1405     OutStreamer.EmitValue(Diff, 4);
   1406   else {
   1407     // Otherwise, emit with .set (aka assignment).
   1408     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1409     OutStreamer.EmitAssignment(SetLabel, Diff);
   1410     OutStreamer.EmitSymbolValue(SetLabel, 4);
   1411   }
   1412 }
   1413 
   1414 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1415 /// where the size in bytes of the directive is specified by Size and Label
   1416 /// specifies the label.  This implicitly uses .set if it is available.
   1417 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1418                                       unsigned Size)
   1419   const {
   1420   if (MAI->needsDwarfSectionOffsetDirective() && Size == 4) { // secrel32 ONLY works for 32bits.
   1421     OutStreamer.EmitCOFFSecRel32(Label);
   1422     return;
   1423   }
   1424 
   1425   // Emit Label+Offset (or just Label if Offset is zero)
   1426   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
   1427   if (Offset)
   1428     Expr = MCBinaryExpr::CreateAdd(Expr,
   1429                                    MCConstantExpr::Create(Offset, OutContext),
   1430                                    OutContext);
   1431 
   1432   OutStreamer.EmitValue(Expr, Size);
   1433 }
   1434 
   1435 
   1436 //===----------------------------------------------------------------------===//
   1437 
   1438 // EmitAlignment - Emit an alignment directive to the specified power of
   1439 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1440 // byte alignment.  If a global value is specified, and if that global has
   1441 // an explicit alignment requested, it will override the alignment request
   1442 // if required for correctness.
   1443 //
   1444 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1445   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
   1446 
   1447   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1448 
   1449   if (getCurrentSection()->getKind().isText())
   1450     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1451   else
   1452     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1453 }
   1454 
   1455 //===----------------------------------------------------------------------===//
   1456 // Constant emission.
   1457 //===----------------------------------------------------------------------===//
   1458 
   1459 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1460 ///
   1461 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
   1462   MCContext &Ctx = AP.OutContext;
   1463 
   1464   if (CV->isNullValue() || isa<UndefValue>(CV))
   1465     return MCConstantExpr::Create(0, Ctx);
   1466 
   1467   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1468     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1469 
   1470   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1471     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1472 
   1473   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1474     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1475 
   1476   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1477   if (CE == 0) {
   1478     llvm_unreachable("Unknown constant value to lower!");
   1479   }
   1480 
   1481   switch (CE->getOpcode()) {
   1482   default:
   1483     // If the code isn't optimized, there may be outstanding folding
   1484     // opportunities. Attempt to fold the expression using DataLayout as a
   1485     // last resort before giving up.
   1486     if (Constant *C =
   1487           ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
   1488       if (C != CE)
   1489         return lowerConstant(C, AP);
   1490 
   1491     // Otherwise report the problem to the user.
   1492     {
   1493       std::string S;
   1494       raw_string_ostream OS(S);
   1495       OS << "Unsupported expression in static initializer: ";
   1496       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1497                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1498       report_fatal_error(OS.str());
   1499     }
   1500   case Instruction::GetElementPtr: {
   1501     const DataLayout &TD = *AP.TM.getDataLayout();
   1502     // Generate a symbolic expression for the byte address
   1503     APInt OffsetAI(TD.getPointerSizeInBits(), 0);
   1504     cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
   1505 
   1506     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
   1507     if (!OffsetAI)
   1508       return Base;
   1509 
   1510     int64_t Offset = OffsetAI.getSExtValue();
   1511     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1512                                    Ctx);
   1513   }
   1514 
   1515   case Instruction::Trunc:
   1516     // We emit the value and depend on the assembler to truncate the generated
   1517     // expression properly.  This is important for differences between
   1518     // blockaddress labels.  Since the two labels are in the same function, it
   1519     // is reasonable to treat their delta as a 32-bit value.
   1520     // FALL THROUGH.
   1521   case Instruction::BitCast:
   1522     return lowerConstant(CE->getOperand(0), AP);
   1523 
   1524   case Instruction::IntToPtr: {
   1525     const DataLayout &TD = *AP.TM.getDataLayout();
   1526     // Handle casts to pointers by changing them into casts to the appropriate
   1527     // integer type.  This promotes constant folding and simplifies this code.
   1528     Constant *Op = CE->getOperand(0);
   1529     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1530                                       false/*ZExt*/);
   1531     return lowerConstant(Op, AP);
   1532   }
   1533 
   1534   case Instruction::PtrToInt: {
   1535     const DataLayout &TD = *AP.TM.getDataLayout();
   1536     // Support only foldable casts to/from pointers that can be eliminated by
   1537     // changing the pointer to the appropriately sized integer type.
   1538     Constant *Op = CE->getOperand(0);
   1539     Type *Ty = CE->getType();
   1540 
   1541     const MCExpr *OpExpr = lowerConstant(Op, AP);
   1542 
   1543     // We can emit the pointer value into this slot if the slot is an
   1544     // integer slot equal to the size of the pointer.
   1545     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1546       return OpExpr;
   1547 
   1548     // Otherwise the pointer is smaller than the resultant integer, mask off
   1549     // the high bits so we are sure to get a proper truncation if the input is
   1550     // a constant expr.
   1551     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1552     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1553     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1554   }
   1555 
   1556   // The MC library also has a right-shift operator, but it isn't consistently
   1557   // signed or unsigned between different targets.
   1558   case Instruction::Add:
   1559   case Instruction::Sub:
   1560   case Instruction::Mul:
   1561   case Instruction::SDiv:
   1562   case Instruction::SRem:
   1563   case Instruction::Shl:
   1564   case Instruction::And:
   1565   case Instruction::Or:
   1566   case Instruction::Xor: {
   1567     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
   1568     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
   1569     switch (CE->getOpcode()) {
   1570     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1571     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1572     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1573     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1574     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1575     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1576     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1577     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1578     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1579     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1580     }
   1581   }
   1582   }
   1583 }
   1584 
   1585 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
   1586 
   1587 /// isRepeatedByteSequence - Determine whether the given value is
   1588 /// composed of a repeated sequence of identical bytes and return the
   1589 /// byte value.  If it is not a repeated sequence, return -1.
   1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1591   StringRef Data = V->getRawDataValues();
   1592   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1593   char C = Data[0];
   1594   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1595     if (Data[i] != C) return -1;
   1596   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1597 }
   1598 
   1599 
   1600 /// isRepeatedByteSequence - Determine whether the given value is
   1601 /// composed of a repeated sequence of identical bytes and return the
   1602 /// byte value.  If it is not a repeated sequence, return -1.
   1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1604 
   1605   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1606     if (CI->getBitWidth() > 64) return -1;
   1607 
   1608     uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
   1609     uint64_t Value = CI->getZExtValue();
   1610 
   1611     // Make sure the constant is at least 8 bits long and has a power
   1612     // of 2 bit width.  This guarantees the constant bit width is
   1613     // always a multiple of 8 bits, avoiding issues with padding out
   1614     // to Size and other such corner cases.
   1615     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1616 
   1617     uint8_t Byte = static_cast<uint8_t>(Value);
   1618 
   1619     for (unsigned i = 1; i < Size; ++i) {
   1620       Value >>= 8;
   1621       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1622     }
   1623     return Byte;
   1624   }
   1625   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1626     // Make sure all array elements are sequences of the same repeated
   1627     // byte.
   1628     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1629     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1630     if (Byte == -1) return -1;
   1631 
   1632     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1633       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1634       if (ThisByte == -1) return -1;
   1635       if (Byte != ThisByte) return -1;
   1636     }
   1637     return Byte;
   1638   }
   1639 
   1640   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1641     return isRepeatedByteSequence(CDS);
   1642 
   1643   return -1;
   1644 }
   1645 
   1646 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1647                                              AsmPrinter &AP){
   1648 
   1649   // See if we can aggregate this into a .fill, if so, emit it as such.
   1650   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1651   if (Value != -1) {
   1652     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
   1653     // Don't emit a 1-byte object as a .fill.
   1654     if (Bytes > 1)
   1655       return AP.OutStreamer.EmitFill(Bytes, Value);
   1656   }
   1657 
   1658   // If this can be emitted with .ascii/.asciz, emit it as such.
   1659   if (CDS->isString())
   1660     return AP.OutStreamer.EmitBytes(CDS->getAsString());
   1661 
   1662   // Otherwise, emit the values in successive locations.
   1663   unsigned ElementByteSize = CDS->getElementByteSize();
   1664   if (isa<IntegerType>(CDS->getElementType())) {
   1665     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1666       if (AP.isVerbose())
   1667         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1668                                                 CDS->getElementAsInteger(i));
   1669       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1670                                   ElementByteSize);
   1671     }
   1672   } else if (ElementByteSize == 4) {
   1673     // FP Constants are printed as integer constants to avoid losing
   1674     // precision.
   1675     assert(CDS->getElementType()->isFloatTy());
   1676     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1677       union {
   1678         float F;
   1679         uint32_t I;
   1680       };
   1681 
   1682       F = CDS->getElementAsFloat(i);
   1683       if (AP.isVerbose())
   1684         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1685       AP.OutStreamer.EmitIntValue(I, 4);
   1686     }
   1687   } else {
   1688     assert(CDS->getElementType()->isDoubleTy());
   1689     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1690       union {
   1691         double F;
   1692         uint64_t I;
   1693       };
   1694 
   1695       F = CDS->getElementAsDouble(i);
   1696       if (AP.isVerbose())
   1697         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1698       AP.OutStreamer.EmitIntValue(I, 8);
   1699     }
   1700   }
   1701 
   1702   const DataLayout &TD = *AP.TM.getDataLayout();
   1703   unsigned Size = TD.getTypeAllocSize(CDS->getType());
   1704   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
   1705                         CDS->getNumElements();
   1706   if (unsigned Padding = Size - EmittedSize)
   1707     AP.OutStreamer.EmitZeros(Padding);
   1708 
   1709 }
   1710 
   1711 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
   1712   // See if we can aggregate some values.  Make sure it can be
   1713   // represented as a series of bytes of the constant value.
   1714   int Value = isRepeatedByteSequence(CA, AP.TM);
   1715 
   1716   if (Value != -1) {
   1717     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
   1718     AP.OutStreamer.EmitFill(Bytes, Value);
   1719   }
   1720   else {
   1721     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1722       emitGlobalConstantImpl(CA->getOperand(i), AP);
   1723   }
   1724 }
   1725 
   1726 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
   1727   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1728     emitGlobalConstantImpl(CV->getOperand(i), AP);
   1729 
   1730   const DataLayout &TD = *AP.TM.getDataLayout();
   1731   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1732   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1733                          CV->getType()->getNumElements();
   1734   if (unsigned Padding = Size - EmittedSize)
   1735     AP.OutStreamer.EmitZeros(Padding);
   1736 }
   1737 
   1738 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
   1739   // Print the fields in successive locations. Pad to align if needed!
   1740   const DataLayout *TD = AP.TM.getDataLayout();
   1741   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1742   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1743   uint64_t SizeSoFar = 0;
   1744   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1745     const Constant *Field = CS->getOperand(i);
   1746 
   1747     // Check if padding is needed and insert one or more 0s.
   1748     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1749     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1750                         - Layout->getElementOffset(i)) - FieldSize;
   1751     SizeSoFar += FieldSize + PadSize;
   1752 
   1753     // Now print the actual field value.
   1754     emitGlobalConstantImpl(Field, AP);
   1755 
   1756     // Insert padding - this may include padding to increase the size of the
   1757     // current field up to the ABI size (if the struct is not packed) as well
   1758     // as padding to ensure that the next field starts at the right offset.
   1759     AP.OutStreamer.EmitZeros(PadSize);
   1760   }
   1761   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1762          "Layout of constant struct may be incorrect!");
   1763 }
   1764 
   1765 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
   1766   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1767 
   1768   // First print a comment with what we think the original floating-point value
   1769   // should have been.
   1770   if (AP.isVerbose()) {
   1771     SmallString<8> StrVal;
   1772     CFP->getValueAPF().toString(StrVal);
   1773 
   1774     CFP->getType()->print(AP.OutStreamer.GetCommentOS());
   1775     AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
   1776   }
   1777 
   1778   // Now iterate through the APInt chunks, emitting them in endian-correct
   1779   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
   1780   // floats).
   1781   unsigned NumBytes = API.getBitWidth() / 8;
   1782   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
   1783   const uint64_t *p = API.getRawData();
   1784 
   1785   // PPC's long double has odd notions of endianness compared to how LLVM
   1786   // handles it: p[0] goes first for *big* endian on PPC.
   1787   if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
   1788     int Chunk = API.getNumWords() - 1;
   1789 
   1790     if (TrailingBytes)
   1791       AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
   1792 
   1793     for (; Chunk >= 0; --Chunk)
   1794       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   1795   } else {
   1796     unsigned Chunk;
   1797     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
   1798       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   1799 
   1800     if (TrailingBytes)
   1801       AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
   1802   }
   1803 
   1804   // Emit the tail padding for the long double.
   1805   const DataLayout &TD = *AP.TM.getDataLayout();
   1806   AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1807                            TD.getTypeStoreSize(CFP->getType()));
   1808 }
   1809 
   1810 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
   1811   const DataLayout *TD = AP.TM.getDataLayout();
   1812   unsigned BitWidth = CI->getBitWidth();
   1813 
   1814   // Copy the value as we may massage the layout for constants whose bit width
   1815   // is not a multiple of 64-bits.
   1816   APInt Realigned(CI->getValue());
   1817   uint64_t ExtraBits = 0;
   1818   unsigned ExtraBitsSize = BitWidth & 63;
   1819 
   1820   if (ExtraBitsSize) {
   1821     // The bit width of the data is not a multiple of 64-bits.
   1822     // The extra bits are expected to be at the end of the chunk of the memory.
   1823     // Little endian:
   1824     // * Nothing to be done, just record the extra bits to emit.
   1825     // Big endian:
   1826     // * Record the extra bits to emit.
   1827     // * Realign the raw data to emit the chunks of 64-bits.
   1828     if (TD->isBigEndian()) {
   1829       // Basically the structure of the raw data is a chunk of 64-bits cells:
   1830       //    0        1         BitWidth / 64
   1831       // [chunk1][chunk2] ... [chunkN].
   1832       // The most significant chunk is chunkN and it should be emitted first.
   1833       // However, due to the alignment issue chunkN contains useless bits.
   1834       // Realign the chunks so that they contain only useless information:
   1835       // ExtraBits     0       1       (BitWidth / 64) - 1
   1836       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
   1837       ExtraBits = Realigned.getRawData()[0] &
   1838         (((uint64_t)-1) >> (64 - ExtraBitsSize));
   1839       Realigned = Realigned.lshr(ExtraBitsSize);
   1840     } else
   1841       ExtraBits = Realigned.getRawData()[BitWidth / 64];
   1842   }
   1843 
   1844   // We don't expect assemblers to support integer data directives
   1845   // for more than 64 bits, so we emit the data in at most 64-bit
   1846   // quantities at a time.
   1847   const uint64_t *RawData = Realigned.getRawData();
   1848   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1849     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1850     AP.OutStreamer.EmitIntValue(Val, 8);
   1851   }
   1852 
   1853   if (ExtraBitsSize) {
   1854     // Emit the extra bits after the 64-bits chunks.
   1855 
   1856     // Emit a directive that fills the expected size.
   1857     uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
   1858     Size -= (BitWidth / 64) * 8;
   1859     assert(Size && Size * 8 >= ExtraBitsSize &&
   1860            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
   1861            == ExtraBits && "Directive too small for extra bits.");
   1862     AP.OutStreamer.EmitIntValue(ExtraBits, Size);
   1863   }
   1864 }
   1865 
   1866 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
   1867   const DataLayout *TD = AP.TM.getDataLayout();
   1868   uint64_t Size = TD->getTypeAllocSize(CV->getType());
   1869   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   1870     return AP.OutStreamer.EmitZeros(Size);
   1871 
   1872   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1873     switch (Size) {
   1874     case 1:
   1875     case 2:
   1876     case 4:
   1877     case 8:
   1878       if (AP.isVerbose())
   1879         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1880                                                 CI->getZExtValue());
   1881       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
   1882       return;
   1883     default:
   1884       emitGlobalConstantLargeInt(CI, AP);
   1885       return;
   1886     }
   1887   }
   1888 
   1889   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1890     return emitGlobalConstantFP(CFP, AP);
   1891 
   1892   if (isa<ConstantPointerNull>(CV)) {
   1893     AP.OutStreamer.EmitIntValue(0, Size);
   1894     return;
   1895   }
   1896 
   1897   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   1898     return emitGlobalConstantDataSequential(CDS, AP);
   1899 
   1900   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1901     return emitGlobalConstantArray(CVA, AP);
   1902 
   1903   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1904     return emitGlobalConstantStruct(CVS, AP);
   1905 
   1906   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1907     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   1908     // vectors).
   1909     if (CE->getOpcode() == Instruction::BitCast)
   1910       return emitGlobalConstantImpl(CE->getOperand(0), AP);
   1911 
   1912     if (Size > 8) {
   1913       // If the constant expression's size is greater than 64-bits, then we have
   1914       // to emit the value in chunks. Try to constant fold the value and emit it
   1915       // that way.
   1916       Constant *New = ConstantFoldConstantExpression(CE, TD);
   1917       if (New && New != CE)
   1918         return emitGlobalConstantImpl(New, AP);
   1919     }
   1920   }
   1921 
   1922   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1923     return emitGlobalConstantVector(V, AP);
   1924 
   1925   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1926   // thread the streamer with EmitValue.
   1927   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
   1928 }
   1929 
   1930 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1931 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
   1932   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
   1933   if (Size)
   1934     emitGlobalConstantImpl(CV, *this);
   1935   else if (MAI->hasSubsectionsViaSymbols()) {
   1936     // If the global has zero size, emit a single byte so that two labels don't
   1937     // look like they are at the same location.
   1938     OutStreamer.EmitIntValue(0, 1);
   1939   }
   1940 }
   1941 
   1942 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1943   // Target doesn't support this yet!
   1944   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1945 }
   1946 
   1947 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1948   if (Offset > 0)
   1949     OS << '+' << Offset;
   1950   else if (Offset < 0)
   1951     OS << Offset;
   1952 }
   1953 
   1954 //===----------------------------------------------------------------------===//
   1955 // Symbol Lowering Routines.
   1956 //===----------------------------------------------------------------------===//
   1957 
   1958 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1959 /// temporary label with the specified stem and unique ID.
   1960 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1961   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1962                                       Name + Twine(ID));
   1963 }
   1964 
   1965 /// GetTempSymbol - Return an assembler temporary label with the specified
   1966 /// stem.
   1967 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1968   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1969                                       Name);
   1970 }
   1971 
   1972 
   1973 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1974   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1975 }
   1976 
   1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1978   return MMI->getAddrLabelSymbol(BB);
   1979 }
   1980 
   1981 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1982 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1983   return OutContext.GetOrCreateSymbol
   1984     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1985      + "_" + Twine(CPID));
   1986 }
   1987 
   1988 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1989 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1990   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1991 }
   1992 
   1993 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1994 /// FIXME: privatize to AsmPrinter.
   1995 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   1996   return OutContext.GetOrCreateSymbol
   1997   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   1998    Twine(UID) + "_set_" + Twine(MBBID));
   1999 }
   2000 
   2001 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   2002 /// global value name as its base, with the specified suffix, and where the
   2003 /// symbol is forced to have private linkage if ForcePrivate is true.
   2004 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   2005                                                    StringRef Suffix,
   2006                                                    bool ForcePrivate) const {
   2007   SmallString<60> NameStr;
   2008   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   2009   NameStr.append(Suffix.begin(), Suffix.end());
   2010   return OutContext.GetOrCreateSymbol(NameStr.str());
   2011 }
   2012 
   2013 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   2014 /// ExternalSymbol.
   2015 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2016   SmallString<60> NameStr;
   2017   Mang->getNameWithPrefix(NameStr, Sym);
   2018   return OutContext.GetOrCreateSymbol(NameStr.str());
   2019 }
   2020 
   2021 
   2022 
   2023 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2024 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2025                                    unsigned FunctionNumber) {
   2026   if (Loop == 0) return;
   2027   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2028   OS.indent(Loop->getLoopDepth()*2)
   2029     << "Parent Loop BB" << FunctionNumber << "_"
   2030     << Loop->getHeader()->getNumber()
   2031     << " Depth=" << Loop->getLoopDepth() << '\n';
   2032 }
   2033 
   2034 
   2035 /// PrintChildLoopComment - Print comments about child loops within
   2036 /// the loop for this basic block, with nesting.
   2037 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2038                                   unsigned FunctionNumber) {
   2039   // Add child loop information
   2040   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   2041     OS.indent((*CL)->getLoopDepth()*2)
   2042       << "Child Loop BB" << FunctionNumber << "_"
   2043       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   2044       << '\n';
   2045     PrintChildLoopComment(OS, *CL, FunctionNumber);
   2046   }
   2047 }
   2048 
   2049 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2050 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2051                                        const MachineLoopInfo *LI,
   2052                                        const AsmPrinter &AP) {
   2053   // Add loop depth information
   2054   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2055   if (Loop == 0) return;
   2056 
   2057   MachineBasicBlock *Header = Loop->getHeader();
   2058   assert(Header && "No header for loop");
   2059 
   2060   // If this block is not a loop header, just print out what is the loop header
   2061   // and return.
   2062   if (Header != &MBB) {
   2063     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2064                               Twine(AP.getFunctionNumber())+"_" +
   2065                               Twine(Loop->getHeader()->getNumber())+
   2066                               " Depth="+Twine(Loop->getLoopDepth()));
   2067     return;
   2068   }
   2069 
   2070   // Otherwise, it is a loop header.  Print out information about child and
   2071   // parent loops.
   2072   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2073 
   2074   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2075 
   2076   OS << "=>";
   2077   OS.indent(Loop->getLoopDepth()*2-2);
   2078 
   2079   OS << "This ";
   2080   if (Loop->empty())
   2081     OS << "Inner ";
   2082   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2083 
   2084   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2085 }
   2086 
   2087 
   2088 /// EmitBasicBlockStart - This method prints the label for the specified
   2089 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2090 /// it if appropriate.
   2091 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   2092   // Emit an alignment directive for this block, if needed.
   2093   if (unsigned Align = MBB->getAlignment())
   2094     EmitAlignment(Align);
   2095 
   2096   // If the block has its address taken, emit any labels that were used to
   2097   // reference the block.  It is possible that there is more than one label
   2098   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2099   // the references were generated.
   2100   if (MBB->hasAddressTaken()) {
   2101     const BasicBlock *BB = MBB->getBasicBlock();
   2102     if (isVerbose())
   2103       OutStreamer.AddComment("Block address taken");
   2104 
   2105     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   2106 
   2107     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   2108       OutStreamer.EmitLabel(Syms[i]);
   2109   }
   2110 
   2111   // Print some verbose block comments.
   2112   if (isVerbose()) {
   2113     if (const BasicBlock *BB = MBB->getBasicBlock())
   2114       if (BB->hasName())
   2115         OutStreamer.AddComment("%" + BB->getName());
   2116     emitBasicBlockLoopComments(*MBB, LI, *this);
   2117   }
   2118 
   2119   // Print the main label for the block.
   2120   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   2121     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   2122       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2123       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   2124                               Twine(MBB->getNumber()) + ":");
   2125     }
   2126   } else {
   2127     OutStreamer.EmitLabel(MBB->getSymbol());
   2128   }
   2129 }
   2130 
   2131 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2132                                 bool IsDefinition) const {
   2133   MCSymbolAttr Attr = MCSA_Invalid;
   2134 
   2135   switch (Visibility) {
   2136   default: break;
   2137   case GlobalValue::HiddenVisibility:
   2138     if (IsDefinition)
   2139       Attr = MAI->getHiddenVisibilityAttr();
   2140     else
   2141       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2142     break;
   2143   case GlobalValue::ProtectedVisibility:
   2144     Attr = MAI->getProtectedVisibilityAttr();
   2145     break;
   2146   }
   2147 
   2148   if (Attr != MCSA_Invalid)
   2149     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2150 }
   2151 
   2152 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2153 /// exactly one predecessor and the control transfer mechanism between
   2154 /// the predecessor and this block is a fall-through.
   2155 bool AsmPrinter::
   2156 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2157   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2158   // then nothing falls through to it.
   2159   if (MBB->isLandingPad() || MBB->pred_empty())
   2160     return false;
   2161 
   2162   // If there isn't exactly one predecessor, it can't be a fall through.
   2163   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2164   ++PI2;
   2165   if (PI2 != MBB->pred_end())
   2166     return false;
   2167 
   2168   // The predecessor has to be immediately before this block.
   2169   MachineBasicBlock *Pred = *PI;
   2170 
   2171   if (!Pred->isLayoutSuccessor(MBB))
   2172     return false;
   2173 
   2174   // If the block is completely empty, then it definitely does fall through.
   2175   if (Pred->empty())
   2176     return true;
   2177 
   2178   // Check the terminators in the previous blocks
   2179   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2180          IE = Pred->end(); II != IE; ++II) {
   2181     MachineInstr &MI = *II;
   2182 
   2183     // If it is not a simple branch, we are in a table somewhere.
   2184     if (!MI.isBranch() || MI.isIndirectBranch())
   2185       return false;
   2186 
   2187     // If we are the operands of one of the branches, this is not
   2188     // a fall through.
   2189     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2190            OE = MI.operands_end(); OI != OE; ++OI) {
   2191       const MachineOperand& OP = *OI;
   2192       if (OP.isJTI())
   2193         return false;
   2194       if (OP.isMBB() && OP.getMBB() == MBB)
   2195         return false;
   2196     }
   2197   }
   2198 
   2199   return true;
   2200 }
   2201 
   2202 
   2203 
   2204 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2205   if (!S->usesMetadata())
   2206     return 0;
   2207 
   2208   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2209   gcp_map_type::iterator GCPI = GCMap.find(S);
   2210   if (GCPI != GCMap.end())
   2211     return GCPI->second;
   2212 
   2213   const char *Name = S->getName().c_str();
   2214 
   2215   for (GCMetadataPrinterRegistry::iterator
   2216          I = GCMetadataPrinterRegistry::begin(),
   2217          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2218     if (strcmp(Name, I->getName()) == 0) {
   2219       GCMetadataPrinter *GMP = I->instantiate();
   2220       GMP->S = S;
   2221       GCMap.insert(std::make_pair(S, GMP));
   2222       return GMP;
   2223     }
   2224 
   2225   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2226 }
   2227