1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCContext.h" 35 #include "llvm/MC/MCExpr.h" 36 #include "llvm/MC/MCInst.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCStreamer.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetFrameLowering.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 using namespace llvm; 52 53 static const char *const DWARFGroupName = "DWARF Emission"; 54 static const char *const DbgTimerName = "DWARF Debug Writer"; 55 static const char *const EHTimerName = "DWARF Exception Writer"; 56 57 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 58 59 char AsmPrinter::ID = 0; 60 61 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 62 static gcp_map_type &getGCMap(void *&P) { 63 if (P == 0) 64 P = new gcp_map_type(); 65 return *(gcp_map_type*)P; 66 } 67 68 69 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 70 /// value in log2 form. This rounds up to the preferred alignment if possible 71 /// and legal. 72 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 73 unsigned InBits = 0) { 74 unsigned NumBits = 0; 75 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 76 NumBits = TD.getPreferredAlignmentLog(GVar); 77 78 // If InBits is specified, round it to it. 79 if (InBits > NumBits) 80 NumBits = InBits; 81 82 // If the GV has a specified alignment, take it into account. 83 if (GV->getAlignment() == 0) 84 return NumBits; 85 86 unsigned GVAlign = Log2_32(GV->getAlignment()); 87 88 // If the GVAlign is larger than NumBits, or if we are required to obey 89 // NumBits because the GV has an assigned section, obey it. 90 if (GVAlign > NumBits || GV->hasSection()) 91 NumBits = GVAlign; 92 return NumBits; 93 } 94 95 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 96 : MachineFunctionPass(ID), 97 TM(tm), MAI(tm.getMCAsmInfo()), 98 OutContext(Streamer.getContext()), 99 OutStreamer(Streamer), 100 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 101 DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0; 102 CurrentFnSym = CurrentFnSymForSize = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105 } 106 107 AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120 } 121 122 /// getFunctionNumber - Return a unique ID for the current function. 123 /// 124 unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126 } 127 128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130 } 131 132 /// getDataLayout - Return information about data layout. 133 const DataLayout &AsmPrinter::getDataLayout() const { 134 return *TM.getDataLayout(); 135 } 136 137 StringRef AsmPrinter::getTargetTriple() const { 138 return TM.getTargetTriple(); 139 } 140 141 /// getCurrentSection() - Return the current section we are emitting to. 142 const MCSection *AsmPrinter::getCurrentSection() const { 143 return OutStreamer.getCurrentSection().first; 144 } 145 146 147 148 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 149 AU.setPreservesAll(); 150 MachineFunctionPass::getAnalysisUsage(AU); 151 AU.addRequired<MachineModuleInfo>(); 152 AU.addRequired<GCModuleInfo>(); 153 if (isVerbose()) 154 AU.addRequired<MachineLoopInfo>(); 155 } 156 157 bool AsmPrinter::doInitialization(Module &M) { 158 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 159 MMI->AnalyzeModule(M); 160 161 // Initialize TargetLoweringObjectFile. 162 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 163 .Initialize(OutContext, TM); 164 165 OutStreamer.InitStreamer(); 166 167 Mang = new Mangler(OutContext, &TM); 168 169 // Allow the target to emit any magic that it wants at the start of the file. 170 EmitStartOfAsmFile(M); 171 172 // Very minimal debug info. It is ignored if we emit actual debug info. If we 173 // don't, this at least helps the user find where a global came from. 174 if (MAI->hasSingleParameterDotFile()) { 175 // .file "foo.c" 176 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 177 } 178 179 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 180 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 181 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 182 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 183 MP->beginAssembly(*this); 184 185 // Emit module-level inline asm if it exists. 186 if (!M.getModuleInlineAsm().empty()) { 187 OutStreamer.AddComment("Start of file scope inline assembly"); 188 OutStreamer.AddBlankLine(); 189 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 190 OutStreamer.AddComment("End of file scope inline assembly"); 191 OutStreamer.AddBlankLine(); 192 } 193 194 if (MAI->doesSupportDebugInformation()) 195 DD = new DwarfDebug(this, &M); 196 197 switch (MAI->getExceptionHandlingType()) { 198 case ExceptionHandling::None: 199 return false; 200 case ExceptionHandling::SjLj: 201 case ExceptionHandling::DwarfCFI: 202 DE = new DwarfCFIException(this); 203 return false; 204 case ExceptionHandling::ARM: 205 DE = new ARMException(this); 206 return false; 207 case ExceptionHandling::Win64: 208 DE = new Win64Exception(this); 209 return false; 210 } 211 212 llvm_unreachable("Unknown exception type."); 213 } 214 215 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 216 switch ((GlobalValue::LinkageTypes)Linkage) { 217 case GlobalValue::CommonLinkage: 218 case GlobalValue::LinkOnceAnyLinkage: 219 case GlobalValue::LinkOnceODRLinkage: 220 case GlobalValue::LinkOnceODRAutoHideLinkage: 221 case GlobalValue::WeakAnyLinkage: 222 case GlobalValue::WeakODRLinkage: 223 case GlobalValue::LinkerPrivateWeakLinkage: 224 if (MAI->getWeakDefDirective() != 0) { 225 // .globl _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 227 228 if ((GlobalValue::LinkageTypes)Linkage != 229 GlobalValue::LinkOnceODRAutoHideLinkage) 230 // .weak_definition _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 232 else 233 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 234 } else if (MAI->getLinkOnceDirective() != 0) { 235 // .globl _foo 236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 237 //NOTE: linkonce is handled by the section the symbol was assigned to. 238 } else { 239 // .weak _foo 240 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 241 } 242 break; 243 case GlobalValue::DLLExportLinkage: 244 case GlobalValue::AppendingLinkage: 245 // FIXME: appending linkage variables should go into a section of 246 // their name or something. For now, just emit them as external. 247 case GlobalValue::ExternalLinkage: 248 // If external or appending, declare as a global symbol. 249 // .globl _foo 250 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 251 break; 252 case GlobalValue::PrivateLinkage: 253 case GlobalValue::InternalLinkage: 254 case GlobalValue::LinkerPrivateLinkage: 255 break; 256 default: 257 llvm_unreachable("Unknown linkage type!"); 258 } 259 } 260 261 262 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 263 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 264 if (GV->hasInitializer()) { 265 // Check to see if this is a special global used by LLVM, if so, emit it. 266 if (EmitSpecialLLVMGlobal(GV)) 267 return; 268 269 if (isVerbose()) { 270 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 271 /*PrintType=*/false, GV->getParent()); 272 OutStreamer.GetCommentOS() << '\n'; 273 } 274 } 275 276 MCSymbol *GVSym = Mang->getSymbol(GV); 277 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 278 279 if (!GV->hasInitializer()) // External globals require no extra code. 280 return; 281 282 if (MAI->hasDotTypeDotSizeDirective()) 283 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 284 285 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 286 287 const DataLayout *TD = TM.getDataLayout(); 288 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 289 290 // If the alignment is specified, we *must* obey it. Overaligning a global 291 // with a specified alignment is a prompt way to break globals emitted to 292 // sections and expected to be contiguous (e.g. ObjC metadata). 293 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 294 295 // Handle common and BSS local symbols (.lcomm). 296 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 297 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 298 unsigned Align = 1 << AlignLog; 299 300 // Handle common symbols. 301 if (GVKind.isCommon()) { 302 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 303 Align = 0; 304 305 // .comm _foo, 42, 4 306 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 307 return; 308 } 309 310 // Handle local BSS symbols. 311 if (MAI->hasMachoZeroFillDirective()) { 312 const MCSection *TheSection = 313 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 314 // .zerofill __DATA, __bss, _foo, 400, 5 315 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 316 return; 317 } 318 319 // Use .lcomm only if it supports user-specified alignment. 320 // Otherwise, while it would still be correct to use .lcomm in some 321 // cases (e.g. when Align == 1), the external assembler might enfore 322 // some -unknown- default alignment behavior, which could cause 323 // spurious differences between external and integrated assembler. 324 // Prefer to simply fall back to .local / .comm in this case. 325 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 326 // .lcomm _foo, 42 327 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 332 Align = 0; 333 334 // .local _foo 335 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 336 // .comm _foo, 42, 4 337 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 338 return; 339 } 340 341 const MCSection *TheSection = 342 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 343 344 // Handle the zerofill directive on darwin, which is a special form of BSS 345 // emission. 346 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 347 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 348 349 // .globl _foo 350 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 351 // .zerofill __DATA, __common, _foo, 400, 5 352 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 353 return; 354 } 355 356 // Handle thread local data for mach-o which requires us to output an 357 // additional structure of data and mangle the original symbol so that we 358 // can reference it later. 359 // 360 // TODO: This should become an "emit thread local global" method on TLOF. 361 // All of this macho specific stuff should be sunk down into TLOFMachO and 362 // stuff like "TLSExtraDataSection" should no longer be part of the parent 363 // TLOF class. This will also make it more obvious that stuff like 364 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 365 // specific code. 366 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 367 // Emit the .tbss symbol 368 MCSymbol *MangSym = 369 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 370 371 if (GVKind.isThreadBSS()) { 372 TheSection = getObjFileLowering().getTLSBSSSection(); 373 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 374 } else if (GVKind.isThreadData()) { 375 OutStreamer.SwitchSection(TheSection); 376 377 EmitAlignment(AlignLog, GV); 378 OutStreamer.EmitLabel(MangSym); 379 380 EmitGlobalConstant(GV->getInitializer()); 381 } 382 383 OutStreamer.AddBlankLine(); 384 385 // Emit the variable struct for the runtime. 386 const MCSection *TLVSect 387 = getObjFileLowering().getTLSExtraDataSection(); 388 389 OutStreamer.SwitchSection(TLVSect); 390 // Emit the linkage here. 391 EmitLinkage(GV->getLinkage(), GVSym); 392 OutStreamer.EmitLabel(GVSym); 393 394 // Three pointers in size: 395 // - __tlv_bootstrap - used to make sure support exists 396 // - spare pointer, used when mapped by the runtime 397 // - pointer to mangled symbol above with initializer 398 unsigned PtrSize = TD->getPointerSizeInBits()/8; 399 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 400 PtrSize); 401 OutStreamer.EmitIntValue(0, PtrSize); 402 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 403 404 OutStreamer.AddBlankLine(); 405 return; 406 } 407 408 OutStreamer.SwitchSection(TheSection); 409 410 EmitLinkage(GV->getLinkage(), GVSym); 411 EmitAlignment(AlignLog, GV); 412 413 OutStreamer.EmitLabel(GVSym); 414 415 EmitGlobalConstant(GV->getInitializer()); 416 417 if (MAI->hasDotTypeDotSizeDirective()) 418 // .size foo, 42 419 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 420 421 OutStreamer.AddBlankLine(); 422 } 423 424 /// EmitFunctionHeader - This method emits the header for the current 425 /// function. 426 void AsmPrinter::EmitFunctionHeader() { 427 // Print out constants referenced by the function 428 EmitConstantPool(); 429 430 // Print the 'header' of function. 431 const Function *F = MF->getFunction(); 432 433 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 434 EmitVisibility(CurrentFnSym, F->getVisibility()); 435 436 EmitLinkage(F->getLinkage(), CurrentFnSym); 437 EmitAlignment(MF->getAlignment(), F); 438 439 if (MAI->hasDotTypeDotSizeDirective()) 440 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 441 442 if (isVerbose()) { 443 WriteAsOperand(OutStreamer.GetCommentOS(), F, 444 /*PrintType=*/false, F->getParent()); 445 OutStreamer.GetCommentOS() << '\n'; 446 } 447 448 // Emit the CurrentFnSym. This is a virtual function to allow targets to 449 // do their wild and crazy things as required. 450 EmitFunctionEntryLabel(); 451 452 // If the function had address-taken blocks that got deleted, then we have 453 // references to the dangling symbols. Emit them at the start of the function 454 // so that we don't get references to undefined symbols. 455 std::vector<MCSymbol*> DeadBlockSyms; 456 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 457 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 458 OutStreamer.AddComment("Address taken block that was later removed"); 459 OutStreamer.EmitLabel(DeadBlockSyms[i]); 460 } 461 462 // Add some workaround for linkonce linkage on Cygwin\MinGW. 463 if (MAI->getLinkOnceDirective() != 0 && 464 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 465 // FIXME: What is this? 466 MCSymbol *FakeStub = 467 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 468 CurrentFnSym->getName()); 469 OutStreamer.EmitLabel(FakeStub); 470 } 471 472 // Emit pre-function debug and/or EH information. 473 if (DE) { 474 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 475 DE->BeginFunction(MF); 476 } 477 if (DD) { 478 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 479 DD->beginFunction(MF); 480 } 481 } 482 483 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 484 /// function. This can be overridden by targets as required to do custom stuff. 485 void AsmPrinter::EmitFunctionEntryLabel() { 486 // The function label could have already been emitted if two symbols end up 487 // conflicting due to asm renaming. Detect this and emit an error. 488 if (CurrentFnSym->isUndefined()) 489 return OutStreamer.EmitLabel(CurrentFnSym); 490 491 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 492 "' label emitted multiple times to assembly file"); 493 } 494 495 /// emitComments - Pretty-print comments for instructions. 496 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 497 const MachineFunction *MF = MI.getParent()->getParent(); 498 const TargetMachine &TM = MF->getTarget(); 499 500 // Check for spills and reloads 501 int FI; 502 503 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 504 505 // We assume a single instruction only has a spill or reload, not 506 // both. 507 const MachineMemOperand *MMO; 508 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 509 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 510 MMO = *MI.memoperands_begin(); 511 CommentOS << MMO->getSize() << "-byte Reload\n"; 512 } 513 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 514 if (FrameInfo->isSpillSlotObjectIndex(FI)) 515 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 516 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 517 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 518 MMO = *MI.memoperands_begin(); 519 CommentOS << MMO->getSize() << "-byte Spill\n"; 520 } 521 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 522 if (FrameInfo->isSpillSlotObjectIndex(FI)) 523 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 524 } 525 526 // Check for spill-induced copies 527 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 528 CommentOS << " Reload Reuse\n"; 529 } 530 531 /// emitImplicitDef - This method emits the specified machine instruction 532 /// that is an implicit def. 533 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 534 unsigned RegNo = MI->getOperand(0).getReg(); 535 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 536 AP.TM.getRegisterInfo()->getName(RegNo)); 537 AP.OutStreamer.AddBlankLine(); 538 } 539 540 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 541 std::string Str = "kill:"; 542 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 543 const MachineOperand &Op = MI->getOperand(i); 544 assert(Op.isReg() && "KILL instruction must have only register operands"); 545 Str += ' '; 546 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 547 Str += (Op.isDef() ? "<def>" : "<kill>"); 548 } 549 AP.OutStreamer.AddComment(Str); 550 AP.OutStreamer.AddBlankLine(); 551 } 552 553 /// emitDebugValueComment - This method handles the target-independent form 554 /// of DBG_VALUE, returning true if it was able to do so. A false return 555 /// means the target will need to handle MI in EmitInstruction. 556 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 557 // This code handles only the 3-operand target-independent form. 558 if (MI->getNumOperands() != 3) 559 return false; 560 561 SmallString<128> Str; 562 raw_svector_ostream OS(Str); 563 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 564 565 // cast away const; DIetc do not take const operands for some reason. 566 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 567 if (V.getContext().isSubprogram()) { 568 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 569 if (!Name.empty()) 570 OS << Name << ":"; 571 } 572 OS << V.getName() << " <- "; 573 574 // The second operand is only an offset if it's an immediate. 575 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 576 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 577 578 // Register or immediate value. Register 0 means undef. 579 if (MI->getOperand(0).isFPImm()) { 580 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 581 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 582 OS << (double)APF.convertToFloat(); 583 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 584 OS << APF.convertToDouble(); 585 } else { 586 // There is no good way to print long double. Convert a copy to 587 // double. Ah well, it's only a comment. 588 bool ignored; 589 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 590 &ignored); 591 OS << "(long double) " << APF.convertToDouble(); 592 } 593 } else if (MI->getOperand(0).isImm()) { 594 OS << MI->getOperand(0).getImm(); 595 } else if (MI->getOperand(0).isCImm()) { 596 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 597 } else { 598 unsigned Reg; 599 if (MI->getOperand(0).isReg()) { 600 Reg = MI->getOperand(0).getReg(); 601 } else { 602 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 603 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 604 Offset += TFI->getFrameIndexReference(*AP.MF, 605 MI->getOperand(0).getIndex(), Reg); 606 Deref = true; 607 } 608 if (Reg == 0) { 609 // Suppress offset, it is not meaningful here. 610 OS << "undef"; 611 // NOTE: Want this comment at start of line, don't emit with AddComment. 612 AP.OutStreamer.EmitRawText(OS.str()); 613 return true; 614 } 615 if (Deref) 616 OS << '['; 617 OS << AP.TM.getRegisterInfo()->getName(Reg); 618 } 619 620 if (Deref) 621 OS << '+' << Offset << ']'; 622 623 // NOTE: Want this comment at start of line, don't emit with AddComment. 624 AP.OutStreamer.EmitRawText(OS.str()); 625 return true; 626 } 627 628 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 629 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 630 MF->getFunction()->needsUnwindTableEntry()) 631 return CFI_M_EH; 632 633 if (MMI->hasDebugInfo()) 634 return CFI_M_Debug; 635 636 return CFI_M_None; 637 } 638 639 bool AsmPrinter::needsSEHMoves() { 640 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 641 MF->getFunction()->needsUnwindTableEntry(); 642 } 643 644 bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 645 return MAI->doesDwarfUseRelocationsAcrossSections(); 646 } 647 648 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 649 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 650 651 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 652 return; 653 654 if (needsCFIMoves() == CFI_M_None) 655 return; 656 657 if (MMI->getCompactUnwindEncoding() != 0) 658 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 659 660 MachineModuleInfo &MMI = MF->getMMI(); 661 std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions(); 662 bool FoundOne = false; 663 (void)FoundOne; 664 for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(), 665 E = Instructions.end(); I != E; ++I) { 666 if (I->getLabel() == Label) { 667 emitCFIInstruction(*I); 668 FoundOne = true; 669 } 670 } 671 assert(FoundOne); 672 } 673 674 /// EmitFunctionBody - This method emits the body and trailer for a 675 /// function. 676 void AsmPrinter::EmitFunctionBody() { 677 // Emit target-specific gunk before the function body. 678 EmitFunctionBodyStart(); 679 680 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 681 682 // Print out code for the function. 683 bool HasAnyRealCode = false; 684 const MachineInstr *LastMI = 0; 685 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 686 I != E; ++I) { 687 // Print a label for the basic block. 688 EmitBasicBlockStart(I); 689 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 690 II != IE; ++II) { 691 LastMI = II; 692 693 // Print the assembly for the instruction. 694 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 695 !II->isDebugValue()) { 696 HasAnyRealCode = true; 697 ++EmittedInsts; 698 } 699 700 if (ShouldPrintDebugScopes) { 701 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 702 DD->beginInstruction(II); 703 } 704 705 if (isVerbose()) 706 emitComments(*II, OutStreamer.GetCommentOS()); 707 708 switch (II->getOpcode()) { 709 case TargetOpcode::PROLOG_LABEL: 710 emitPrologLabel(*II); 711 break; 712 713 case TargetOpcode::EH_LABEL: 714 case TargetOpcode::GC_LABEL: 715 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 716 break; 717 case TargetOpcode::INLINEASM: 718 EmitInlineAsm(II); 719 break; 720 case TargetOpcode::DBG_VALUE: 721 if (isVerbose()) { 722 if (!emitDebugValueComment(II, *this)) 723 EmitInstruction(II); 724 } 725 break; 726 case TargetOpcode::IMPLICIT_DEF: 727 if (isVerbose()) emitImplicitDef(II, *this); 728 break; 729 case TargetOpcode::KILL: 730 if (isVerbose()) emitKill(II, *this); 731 break; 732 default: 733 if (!TM.hasMCUseLoc()) 734 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 735 736 EmitInstruction(II); 737 break; 738 } 739 740 if (ShouldPrintDebugScopes) { 741 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 742 DD->endInstruction(II); 743 } 744 } 745 } 746 747 // If the last instruction was a prolog label, then we have a situation where 748 // we emitted a prolog but no function body. This results in the ending prolog 749 // label equaling the end of function label and an invalid "row" in the 750 // FDE. We need to emit a noop in this situation so that the FDE's rows are 751 // valid. 752 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 753 754 // If the function is empty and the object file uses .subsections_via_symbols, 755 // then we need to emit *something* to the function body to prevent the 756 // labels from collapsing together. Just emit a noop. 757 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 758 MCInst Noop; 759 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 760 if (Noop.getOpcode()) { 761 OutStreamer.AddComment("avoids zero-length function"); 762 OutStreamer.EmitInstruction(Noop); 763 } else // Target not mc-ized yet. 764 OutStreamer.EmitRawText(StringRef("\tnop\n")); 765 } 766 767 const Function *F = MF->getFunction(); 768 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 769 const BasicBlock *BB = i; 770 if (!BB->hasAddressTaken()) 771 continue; 772 MCSymbol *Sym = GetBlockAddressSymbol(BB); 773 if (Sym->isDefined()) 774 continue; 775 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 776 OutStreamer.EmitLabel(Sym); 777 } 778 779 // Emit target-specific gunk after the function body. 780 EmitFunctionBodyEnd(); 781 782 // If the target wants a .size directive for the size of the function, emit 783 // it. 784 if (MAI->hasDotTypeDotSizeDirective()) { 785 // Create a symbol for the end of function, so we can get the size as 786 // difference between the function label and the temp label. 787 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 788 OutStreamer.EmitLabel(FnEndLabel); 789 790 const MCExpr *SizeExp = 791 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 792 MCSymbolRefExpr::Create(CurrentFnSymForSize, 793 OutContext), 794 OutContext); 795 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 796 } 797 798 // Emit post-function debug information. 799 if (DD) { 800 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 801 DD->endFunction(MF); 802 } 803 if (DE) { 804 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 805 DE->EndFunction(); 806 } 807 MMI->EndFunction(); 808 809 // Print out jump tables referenced by the function. 810 EmitJumpTableInfo(); 811 812 OutStreamer.AddBlankLine(); 813 } 814 815 /// EmitDwarfRegOp - Emit dwarf register operation. 816 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, 817 bool Indirect) const { 818 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 819 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 820 821 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 822 ++SR) { 823 Reg = TRI->getDwarfRegNum(*SR, false); 824 // FIXME: Get the bit range this register uses of the superregister 825 // so that we can produce a DW_OP_bit_piece 826 } 827 828 // FIXME: Handle cases like a super register being encoded as 829 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 830 831 // FIXME: We have no reasonable way of handling errors in here. The 832 // caller might be in the middle of an dwarf expression. We should 833 // probably assert that Reg >= 0 once debug info generation is more mature. 834 835 if (MLoc.isIndirect() || Indirect) { 836 if (Reg < 32) { 837 OutStreamer.AddComment( 838 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 839 EmitInt8(dwarf::DW_OP_breg0 + Reg); 840 } else { 841 OutStreamer.AddComment("DW_OP_bregx"); 842 EmitInt8(dwarf::DW_OP_bregx); 843 OutStreamer.AddComment(Twine(Reg)); 844 EmitULEB128(Reg); 845 } 846 EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset()); 847 if (MLoc.isIndirect() && Indirect) 848 EmitInt8(dwarf::DW_OP_deref); 849 } else { 850 if (Reg < 32) { 851 OutStreamer.AddComment( 852 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 853 EmitInt8(dwarf::DW_OP_reg0 + Reg); 854 } else { 855 OutStreamer.AddComment("DW_OP_regx"); 856 EmitInt8(dwarf::DW_OP_regx); 857 OutStreamer.AddComment(Twine(Reg)); 858 EmitULEB128(Reg); 859 } 860 } 861 862 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 863 } 864 865 bool AsmPrinter::doFinalization(Module &M) { 866 // Emit global variables. 867 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 868 I != E; ++I) 869 EmitGlobalVariable(I); 870 871 // Emit visibility info for declarations 872 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 873 const Function &F = *I; 874 if (!F.isDeclaration()) 875 continue; 876 GlobalValue::VisibilityTypes V = F.getVisibility(); 877 if (V == GlobalValue::DefaultVisibility) 878 continue; 879 880 MCSymbol *Name = Mang->getSymbol(&F); 881 EmitVisibility(Name, V, false); 882 } 883 884 // Emit module flags. 885 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 886 M.getModuleFlagsMetadata(ModuleFlags); 887 if (!ModuleFlags.empty()) 888 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 889 890 // Finalize debug and EH information. 891 if (DE) { 892 { 893 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 894 DE->EndModule(); 895 } 896 delete DE; DE = 0; 897 } 898 if (DD) { 899 { 900 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 901 DD->endModule(); 902 } 903 delete DD; DD = 0; 904 } 905 906 // If the target wants to know about weak references, print them all. 907 if (MAI->getWeakRefDirective()) { 908 // FIXME: This is not lazy, it would be nice to only print weak references 909 // to stuff that is actually used. Note that doing so would require targets 910 // to notice uses in operands (due to constant exprs etc). This should 911 // happen with the MC stuff eventually. 912 913 // Print out module-level global variables here. 914 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 915 I != E; ++I) { 916 if (!I->hasExternalWeakLinkage()) continue; 917 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 918 } 919 920 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 921 if (!I->hasExternalWeakLinkage()) continue; 922 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 923 } 924 } 925 926 if (MAI->hasSetDirective()) { 927 OutStreamer.AddBlankLine(); 928 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 929 I != E; ++I) { 930 MCSymbol *Name = Mang->getSymbol(I); 931 932 const GlobalValue *GV = I->getAliasedGlobal(); 933 MCSymbol *Target = Mang->getSymbol(GV); 934 935 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 936 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 937 else if (I->hasWeakLinkage()) 938 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 939 else 940 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 941 942 EmitVisibility(Name, I->getVisibility()); 943 944 // Emit the directives as assignments aka .set: 945 OutStreamer.EmitAssignment(Name, 946 MCSymbolRefExpr::Create(Target, OutContext)); 947 } 948 } 949 950 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 951 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 952 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 953 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 954 MP->finishAssembly(*this); 955 956 // If we don't have any trampolines, then we don't require stack memory 957 // to be executable. Some targets have a directive to declare this. 958 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 959 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 960 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 961 OutStreamer.SwitchSection(S); 962 963 // Allow the target to emit any magic that it wants at the end of the file, 964 // after everything else has gone out. 965 EmitEndOfAsmFile(M); 966 967 delete Mang; Mang = 0; 968 MMI = 0; 969 970 OutStreamer.Finish(); 971 OutStreamer.reset(); 972 973 return false; 974 } 975 976 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 977 this->MF = &MF; 978 // Get the function symbol. 979 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 980 CurrentFnSymForSize = CurrentFnSym; 981 982 if (isVerbose()) 983 LI = &getAnalysis<MachineLoopInfo>(); 984 } 985 986 namespace { 987 // SectionCPs - Keep track the alignment, constpool entries per Section. 988 struct SectionCPs { 989 const MCSection *S; 990 unsigned Alignment; 991 SmallVector<unsigned, 4> CPEs; 992 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 993 }; 994 } 995 996 /// EmitConstantPool - Print to the current output stream assembly 997 /// representations of the constants in the constant pool MCP. This is 998 /// used to print out constants which have been "spilled to memory" by 999 /// the code generator. 1000 /// 1001 void AsmPrinter::EmitConstantPool() { 1002 const MachineConstantPool *MCP = MF->getConstantPool(); 1003 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1004 if (CP.empty()) return; 1005 1006 // Calculate sections for constant pool entries. We collect entries to go into 1007 // the same section together to reduce amount of section switch statements. 1008 SmallVector<SectionCPs, 4> CPSections; 1009 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1010 const MachineConstantPoolEntry &CPE = CP[i]; 1011 unsigned Align = CPE.getAlignment(); 1012 1013 SectionKind Kind; 1014 switch (CPE.getRelocationInfo()) { 1015 default: llvm_unreachable("Unknown section kind"); 1016 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1017 case 1: 1018 Kind = SectionKind::getReadOnlyWithRelLocal(); 1019 break; 1020 case 0: 1021 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1022 case 4: Kind = SectionKind::getMergeableConst4(); break; 1023 case 8: Kind = SectionKind::getMergeableConst8(); break; 1024 case 16: Kind = SectionKind::getMergeableConst16();break; 1025 default: Kind = SectionKind::getMergeableConst(); break; 1026 } 1027 } 1028 1029 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1030 1031 // The number of sections are small, just do a linear search from the 1032 // last section to the first. 1033 bool Found = false; 1034 unsigned SecIdx = CPSections.size(); 1035 while (SecIdx != 0) { 1036 if (CPSections[--SecIdx].S == S) { 1037 Found = true; 1038 break; 1039 } 1040 } 1041 if (!Found) { 1042 SecIdx = CPSections.size(); 1043 CPSections.push_back(SectionCPs(S, Align)); 1044 } 1045 1046 if (Align > CPSections[SecIdx].Alignment) 1047 CPSections[SecIdx].Alignment = Align; 1048 CPSections[SecIdx].CPEs.push_back(i); 1049 } 1050 1051 // Now print stuff into the calculated sections. 1052 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1053 OutStreamer.SwitchSection(CPSections[i].S); 1054 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1055 1056 unsigned Offset = 0; 1057 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1058 unsigned CPI = CPSections[i].CPEs[j]; 1059 MachineConstantPoolEntry CPE = CP[CPI]; 1060 1061 // Emit inter-object padding for alignment. 1062 unsigned AlignMask = CPE.getAlignment() - 1; 1063 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1064 OutStreamer.EmitZeros(NewOffset - Offset); 1065 1066 Type *Ty = CPE.getType(); 1067 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1068 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1069 1070 if (CPE.isMachineConstantPoolEntry()) 1071 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1072 else 1073 EmitGlobalConstant(CPE.Val.ConstVal); 1074 } 1075 } 1076 } 1077 1078 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1079 /// by the current function to the current output stream. 1080 /// 1081 void AsmPrinter::EmitJumpTableInfo() { 1082 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1083 if (MJTI == 0) return; 1084 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1085 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1086 if (JT.empty()) return; 1087 1088 // Pick the directive to use to print the jump table entries, and switch to 1089 // the appropriate section. 1090 const Function *F = MF->getFunction(); 1091 bool JTInDiffSection = false; 1092 if (// In PIC mode, we need to emit the jump table to the same section as the 1093 // function body itself, otherwise the label differences won't make sense. 1094 // FIXME: Need a better predicate for this: what about custom entries? 1095 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1096 // We should also do if the section name is NULL or function is declared 1097 // in discardable section 1098 // FIXME: this isn't the right predicate, should be based on the MCSection 1099 // for the function. 1100 F->isWeakForLinker()) { 1101 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1102 } else { 1103 // Otherwise, drop it in the readonly section. 1104 const MCSection *ReadOnlySection = 1105 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1106 OutStreamer.SwitchSection(ReadOnlySection); 1107 JTInDiffSection = true; 1108 } 1109 1110 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1111 1112 // Jump tables in code sections are marked with a data_region directive 1113 // where that's supported. 1114 if (!JTInDiffSection) 1115 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1116 1117 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1118 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1119 1120 // If this jump table was deleted, ignore it. 1121 if (JTBBs.empty()) continue; 1122 1123 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1124 // .set directive for each unique entry. This reduces the number of 1125 // relocations the assembler will generate for the jump table. 1126 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1127 MAI->hasSetDirective()) { 1128 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1129 const TargetLowering *TLI = TM.getTargetLowering(); 1130 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1131 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1132 const MachineBasicBlock *MBB = JTBBs[ii]; 1133 if (!EmittedSets.insert(MBB)) continue; 1134 1135 // .set LJTSet, LBB32-base 1136 const MCExpr *LHS = 1137 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1138 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1139 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1140 } 1141 } 1142 1143 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1144 // before each jump table. The first label is never referenced, but tells 1145 // the assembler and linker the extents of the jump table object. The 1146 // second label is actually referenced by the code. 1147 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1148 // FIXME: This doesn't have to have any specific name, just any randomly 1149 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1150 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1151 1152 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1153 1154 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1155 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1156 } 1157 if (!JTInDiffSection) 1158 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1159 } 1160 1161 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1162 /// current stream. 1163 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1164 const MachineBasicBlock *MBB, 1165 unsigned UID) const { 1166 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1167 const MCExpr *Value = 0; 1168 switch (MJTI->getEntryKind()) { 1169 case MachineJumpTableInfo::EK_Inline: 1170 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1171 case MachineJumpTableInfo::EK_Custom32: 1172 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1173 OutContext); 1174 break; 1175 case MachineJumpTableInfo::EK_BlockAddress: 1176 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1177 // .word LBB123 1178 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1179 break; 1180 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1181 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1182 // with a relocation as gp-relative, e.g.: 1183 // .gprel32 LBB123 1184 MCSymbol *MBBSym = MBB->getSymbol(); 1185 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1186 return; 1187 } 1188 1189 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1190 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1191 // with a relocation as gp-relative, e.g.: 1192 // .gpdword LBB123 1193 MCSymbol *MBBSym = MBB->getSymbol(); 1194 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1195 return; 1196 } 1197 1198 case MachineJumpTableInfo::EK_LabelDifference32: { 1199 // EK_LabelDifference32 - Each entry is the address of the block minus 1200 // the address of the jump table. This is used for PIC jump tables where 1201 // gprel32 is not supported. e.g.: 1202 // .word LBB123 - LJTI1_2 1203 // If the .set directive is supported, this is emitted as: 1204 // .set L4_5_set_123, LBB123 - LJTI1_2 1205 // .word L4_5_set_123 1206 1207 // If we have emitted set directives for the jump table entries, print 1208 // them rather than the entries themselves. If we're emitting PIC, then 1209 // emit the table entries as differences between two text section labels. 1210 if (MAI->hasSetDirective()) { 1211 // If we used .set, reference the .set's symbol. 1212 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1213 OutContext); 1214 break; 1215 } 1216 // Otherwise, use the difference as the jump table entry. 1217 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1218 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1219 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1220 break; 1221 } 1222 } 1223 1224 assert(Value && "Unknown entry kind!"); 1225 1226 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1227 OutStreamer.EmitValue(Value, EntrySize); 1228 } 1229 1230 1231 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1232 /// special global used by LLVM. If so, emit it and return true, otherwise 1233 /// do nothing and return false. 1234 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1235 if (GV->getName() == "llvm.used") { 1236 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1237 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1238 return true; 1239 } 1240 1241 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1242 if (GV->getSection() == "llvm.metadata" || 1243 GV->hasAvailableExternallyLinkage()) 1244 return true; 1245 1246 if (!GV->hasAppendingLinkage()) return false; 1247 1248 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1249 1250 if (GV->getName() == "llvm.global_ctors") { 1251 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1252 1253 if (TM.getRelocationModel() == Reloc::Static && 1254 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1255 StringRef Sym(".constructors_used"); 1256 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1257 MCSA_Reference); 1258 } 1259 return true; 1260 } 1261 1262 if (GV->getName() == "llvm.global_dtors") { 1263 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1264 1265 if (TM.getRelocationModel() == Reloc::Static && 1266 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1267 StringRef Sym(".destructors_used"); 1268 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1269 MCSA_Reference); 1270 } 1271 return true; 1272 } 1273 1274 return false; 1275 } 1276 1277 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1278 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1279 /// is true, as being used with this directive. 1280 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1281 // Should be an array of 'i8*'. 1282 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1283 const GlobalValue *GV = 1284 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1285 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1286 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1287 } 1288 } 1289 1290 typedef std::pair<unsigned, Constant*> Structor; 1291 1292 static bool priority_order(const Structor& lhs, const Structor& rhs) { 1293 return lhs.first < rhs.first; 1294 } 1295 1296 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1297 /// priority. 1298 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1299 // Should be an array of '{ int, void ()* }' structs. The first value is the 1300 // init priority. 1301 if (!isa<ConstantArray>(List)) return; 1302 1303 // Sanity check the structors list. 1304 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1305 if (!InitList) return; // Not an array! 1306 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1307 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1308 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1309 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1310 1311 // Gather the structors in a form that's convenient for sorting by priority. 1312 SmallVector<Structor, 8> Structors; 1313 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1314 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1315 if (!CS) continue; // Malformed. 1316 if (CS->getOperand(1)->isNullValue()) 1317 break; // Found a null terminator, skip the rest. 1318 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1319 if (!Priority) continue; // Malformed. 1320 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1321 CS->getOperand(1))); 1322 } 1323 1324 // Emit the function pointers in the target-specific order 1325 const DataLayout *TD = TM.getDataLayout(); 1326 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1327 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1328 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1329 const MCSection *OutputSection = 1330 (isCtor ? 1331 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1332 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1333 OutStreamer.SwitchSection(OutputSection); 1334 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1335 EmitAlignment(Align); 1336 EmitXXStructor(Structors[i].second); 1337 } 1338 } 1339 1340 //===--------------------------------------------------------------------===// 1341 // Emission and print routines 1342 // 1343 1344 /// EmitInt8 - Emit a byte directive and value. 1345 /// 1346 void AsmPrinter::EmitInt8(int Value) const { 1347 OutStreamer.EmitIntValue(Value, 1); 1348 } 1349 1350 /// EmitInt16 - Emit a short directive and value. 1351 /// 1352 void AsmPrinter::EmitInt16(int Value) const { 1353 OutStreamer.EmitIntValue(Value, 2); 1354 } 1355 1356 /// EmitInt32 - Emit a long directive and value. 1357 /// 1358 void AsmPrinter::EmitInt32(int Value) const { 1359 OutStreamer.EmitIntValue(Value, 4); 1360 } 1361 1362 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1363 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1364 /// labels. This implicitly uses .set if it is available. 1365 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1366 unsigned Size) const { 1367 // Get the Hi-Lo expression. 1368 const MCExpr *Diff = 1369 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1370 MCSymbolRefExpr::Create(Lo, OutContext), 1371 OutContext); 1372 1373 if (!MAI->hasSetDirective()) { 1374 OutStreamer.EmitValue(Diff, Size); 1375 return; 1376 } 1377 1378 // Otherwise, emit with .set (aka assignment). 1379 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1380 OutStreamer.EmitAssignment(SetLabel, Diff); 1381 OutStreamer.EmitSymbolValue(SetLabel, Size); 1382 } 1383 1384 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1385 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1386 /// specify the labels. This implicitly uses .set if it is available. 1387 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1388 const MCSymbol *Lo, unsigned Size) 1389 const { 1390 1391 // Emit Hi+Offset - Lo 1392 // Get the Hi+Offset expression. 1393 const MCExpr *Plus = 1394 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1395 MCConstantExpr::Create(Offset, OutContext), 1396 OutContext); 1397 1398 // Get the Hi+Offset-Lo expression. 1399 const MCExpr *Diff = 1400 MCBinaryExpr::CreateSub(Plus, 1401 MCSymbolRefExpr::Create(Lo, OutContext), 1402 OutContext); 1403 1404 if (!MAI->hasSetDirective()) 1405 OutStreamer.EmitValue(Diff, 4); 1406 else { 1407 // Otherwise, emit with .set (aka assignment). 1408 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1409 OutStreamer.EmitAssignment(SetLabel, Diff); 1410 OutStreamer.EmitSymbolValue(SetLabel, 4); 1411 } 1412 } 1413 1414 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1415 /// where the size in bytes of the directive is specified by Size and Label 1416 /// specifies the label. This implicitly uses .set if it is available. 1417 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1418 unsigned Size) 1419 const { 1420 if (MAI->needsDwarfSectionOffsetDirective() && Size == 4) { // secrel32 ONLY works for 32bits. 1421 OutStreamer.EmitCOFFSecRel32(Label); 1422 return; 1423 } 1424 1425 // Emit Label+Offset (or just Label if Offset is zero) 1426 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1427 if (Offset) 1428 Expr = MCBinaryExpr::CreateAdd(Expr, 1429 MCConstantExpr::Create(Offset, OutContext), 1430 OutContext); 1431 1432 OutStreamer.EmitValue(Expr, Size); 1433 } 1434 1435 1436 //===----------------------------------------------------------------------===// 1437 1438 // EmitAlignment - Emit an alignment directive to the specified power of 1439 // two boundary. For example, if you pass in 3 here, you will get an 8 1440 // byte alignment. If a global value is specified, and if that global has 1441 // an explicit alignment requested, it will override the alignment request 1442 // if required for correctness. 1443 // 1444 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1445 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1446 1447 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1448 1449 if (getCurrentSection()->getKind().isText()) 1450 OutStreamer.EmitCodeAlignment(1 << NumBits); 1451 else 1452 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1453 } 1454 1455 //===----------------------------------------------------------------------===// 1456 // Constant emission. 1457 //===----------------------------------------------------------------------===// 1458 1459 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1460 /// 1461 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1462 MCContext &Ctx = AP.OutContext; 1463 1464 if (CV->isNullValue() || isa<UndefValue>(CV)) 1465 return MCConstantExpr::Create(0, Ctx); 1466 1467 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1468 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1469 1470 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1471 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1472 1473 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1474 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1475 1476 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1477 if (CE == 0) { 1478 llvm_unreachable("Unknown constant value to lower!"); 1479 } 1480 1481 switch (CE->getOpcode()) { 1482 default: 1483 // If the code isn't optimized, there may be outstanding folding 1484 // opportunities. Attempt to fold the expression using DataLayout as a 1485 // last resort before giving up. 1486 if (Constant *C = 1487 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1488 if (C != CE) 1489 return lowerConstant(C, AP); 1490 1491 // Otherwise report the problem to the user. 1492 { 1493 std::string S; 1494 raw_string_ostream OS(S); 1495 OS << "Unsupported expression in static initializer: "; 1496 WriteAsOperand(OS, CE, /*PrintType=*/false, 1497 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1498 report_fatal_error(OS.str()); 1499 } 1500 case Instruction::GetElementPtr: { 1501 const DataLayout &TD = *AP.TM.getDataLayout(); 1502 // Generate a symbolic expression for the byte address 1503 APInt OffsetAI(TD.getPointerSizeInBits(), 0); 1504 cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI); 1505 1506 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1507 if (!OffsetAI) 1508 return Base; 1509 1510 int64_t Offset = OffsetAI.getSExtValue(); 1511 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1512 Ctx); 1513 } 1514 1515 case Instruction::Trunc: 1516 // We emit the value and depend on the assembler to truncate the generated 1517 // expression properly. This is important for differences between 1518 // blockaddress labels. Since the two labels are in the same function, it 1519 // is reasonable to treat their delta as a 32-bit value. 1520 // FALL THROUGH. 1521 case Instruction::BitCast: 1522 return lowerConstant(CE->getOperand(0), AP); 1523 1524 case Instruction::IntToPtr: { 1525 const DataLayout &TD = *AP.TM.getDataLayout(); 1526 // Handle casts to pointers by changing them into casts to the appropriate 1527 // integer type. This promotes constant folding and simplifies this code. 1528 Constant *Op = CE->getOperand(0); 1529 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1530 false/*ZExt*/); 1531 return lowerConstant(Op, AP); 1532 } 1533 1534 case Instruction::PtrToInt: { 1535 const DataLayout &TD = *AP.TM.getDataLayout(); 1536 // Support only foldable casts to/from pointers that can be eliminated by 1537 // changing the pointer to the appropriately sized integer type. 1538 Constant *Op = CE->getOperand(0); 1539 Type *Ty = CE->getType(); 1540 1541 const MCExpr *OpExpr = lowerConstant(Op, AP); 1542 1543 // We can emit the pointer value into this slot if the slot is an 1544 // integer slot equal to the size of the pointer. 1545 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1546 return OpExpr; 1547 1548 // Otherwise the pointer is smaller than the resultant integer, mask off 1549 // the high bits so we are sure to get a proper truncation if the input is 1550 // a constant expr. 1551 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1552 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1553 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1554 } 1555 1556 // The MC library also has a right-shift operator, but it isn't consistently 1557 // signed or unsigned between different targets. 1558 case Instruction::Add: 1559 case Instruction::Sub: 1560 case Instruction::Mul: 1561 case Instruction::SDiv: 1562 case Instruction::SRem: 1563 case Instruction::Shl: 1564 case Instruction::And: 1565 case Instruction::Or: 1566 case Instruction::Xor: { 1567 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1568 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1569 switch (CE->getOpcode()) { 1570 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1571 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1572 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1573 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1574 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1575 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1576 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1577 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1578 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1579 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1580 } 1581 } 1582 } 1583 } 1584 1585 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1586 1587 /// isRepeatedByteSequence - Determine whether the given value is 1588 /// composed of a repeated sequence of identical bytes and return the 1589 /// byte value. If it is not a repeated sequence, return -1. 1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1591 StringRef Data = V->getRawDataValues(); 1592 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1593 char C = Data[0]; 1594 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1595 if (Data[i] != C) return -1; 1596 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1597 } 1598 1599 1600 /// isRepeatedByteSequence - Determine whether the given value is 1601 /// composed of a repeated sequence of identical bytes and return the 1602 /// byte value. If it is not a repeated sequence, return -1. 1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1604 1605 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1606 if (CI->getBitWidth() > 64) return -1; 1607 1608 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1609 uint64_t Value = CI->getZExtValue(); 1610 1611 // Make sure the constant is at least 8 bits long and has a power 1612 // of 2 bit width. This guarantees the constant bit width is 1613 // always a multiple of 8 bits, avoiding issues with padding out 1614 // to Size and other such corner cases. 1615 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1616 1617 uint8_t Byte = static_cast<uint8_t>(Value); 1618 1619 for (unsigned i = 1; i < Size; ++i) { 1620 Value >>= 8; 1621 if (static_cast<uint8_t>(Value) != Byte) return -1; 1622 } 1623 return Byte; 1624 } 1625 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1626 // Make sure all array elements are sequences of the same repeated 1627 // byte. 1628 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1629 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1630 if (Byte == -1) return -1; 1631 1632 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1633 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1634 if (ThisByte == -1) return -1; 1635 if (Byte != ThisByte) return -1; 1636 } 1637 return Byte; 1638 } 1639 1640 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1641 return isRepeatedByteSequence(CDS); 1642 1643 return -1; 1644 } 1645 1646 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1647 AsmPrinter &AP){ 1648 1649 // See if we can aggregate this into a .fill, if so, emit it as such. 1650 int Value = isRepeatedByteSequence(CDS, AP.TM); 1651 if (Value != -1) { 1652 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1653 // Don't emit a 1-byte object as a .fill. 1654 if (Bytes > 1) 1655 return AP.OutStreamer.EmitFill(Bytes, Value); 1656 } 1657 1658 // If this can be emitted with .ascii/.asciz, emit it as such. 1659 if (CDS->isString()) 1660 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1661 1662 // Otherwise, emit the values in successive locations. 1663 unsigned ElementByteSize = CDS->getElementByteSize(); 1664 if (isa<IntegerType>(CDS->getElementType())) { 1665 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1666 if (AP.isVerbose()) 1667 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1668 CDS->getElementAsInteger(i)); 1669 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1670 ElementByteSize); 1671 } 1672 } else if (ElementByteSize == 4) { 1673 // FP Constants are printed as integer constants to avoid losing 1674 // precision. 1675 assert(CDS->getElementType()->isFloatTy()); 1676 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1677 union { 1678 float F; 1679 uint32_t I; 1680 }; 1681 1682 F = CDS->getElementAsFloat(i); 1683 if (AP.isVerbose()) 1684 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1685 AP.OutStreamer.EmitIntValue(I, 4); 1686 } 1687 } else { 1688 assert(CDS->getElementType()->isDoubleTy()); 1689 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1690 union { 1691 double F; 1692 uint64_t I; 1693 }; 1694 1695 F = CDS->getElementAsDouble(i); 1696 if (AP.isVerbose()) 1697 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1698 AP.OutStreamer.EmitIntValue(I, 8); 1699 } 1700 } 1701 1702 const DataLayout &TD = *AP.TM.getDataLayout(); 1703 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1704 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1705 CDS->getNumElements(); 1706 if (unsigned Padding = Size - EmittedSize) 1707 AP.OutStreamer.EmitZeros(Padding); 1708 1709 } 1710 1711 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1712 // See if we can aggregate some values. Make sure it can be 1713 // represented as a series of bytes of the constant value. 1714 int Value = isRepeatedByteSequence(CA, AP.TM); 1715 1716 if (Value != -1) { 1717 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1718 AP.OutStreamer.EmitFill(Bytes, Value); 1719 } 1720 else { 1721 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1722 emitGlobalConstantImpl(CA->getOperand(i), AP); 1723 } 1724 } 1725 1726 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1727 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1728 emitGlobalConstantImpl(CV->getOperand(i), AP); 1729 1730 const DataLayout &TD = *AP.TM.getDataLayout(); 1731 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1732 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1733 CV->getType()->getNumElements(); 1734 if (unsigned Padding = Size - EmittedSize) 1735 AP.OutStreamer.EmitZeros(Padding); 1736 } 1737 1738 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1739 // Print the fields in successive locations. Pad to align if needed! 1740 const DataLayout *TD = AP.TM.getDataLayout(); 1741 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1742 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1743 uint64_t SizeSoFar = 0; 1744 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1745 const Constant *Field = CS->getOperand(i); 1746 1747 // Check if padding is needed and insert one or more 0s. 1748 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1749 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1750 - Layout->getElementOffset(i)) - FieldSize; 1751 SizeSoFar += FieldSize + PadSize; 1752 1753 // Now print the actual field value. 1754 emitGlobalConstantImpl(Field, AP); 1755 1756 // Insert padding - this may include padding to increase the size of the 1757 // current field up to the ABI size (if the struct is not packed) as well 1758 // as padding to ensure that the next field starts at the right offset. 1759 AP.OutStreamer.EmitZeros(PadSize); 1760 } 1761 assert(SizeSoFar == Layout->getSizeInBytes() && 1762 "Layout of constant struct may be incorrect!"); 1763 } 1764 1765 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1766 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1767 1768 // First print a comment with what we think the original floating-point value 1769 // should have been. 1770 if (AP.isVerbose()) { 1771 SmallString<8> StrVal; 1772 CFP->getValueAPF().toString(StrVal); 1773 1774 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1775 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1776 } 1777 1778 // Now iterate through the APInt chunks, emitting them in endian-correct 1779 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1780 // floats). 1781 unsigned NumBytes = API.getBitWidth() / 8; 1782 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1783 const uint64_t *p = API.getRawData(); 1784 1785 // PPC's long double has odd notions of endianness compared to how LLVM 1786 // handles it: p[0] goes first for *big* endian on PPC. 1787 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1788 int Chunk = API.getNumWords() - 1; 1789 1790 if (TrailingBytes) 1791 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1792 1793 for (; Chunk >= 0; --Chunk) 1794 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1795 } else { 1796 unsigned Chunk; 1797 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1798 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1799 1800 if (TrailingBytes) 1801 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1802 } 1803 1804 // Emit the tail padding for the long double. 1805 const DataLayout &TD = *AP.TM.getDataLayout(); 1806 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1807 TD.getTypeStoreSize(CFP->getType())); 1808 } 1809 1810 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1811 const DataLayout *TD = AP.TM.getDataLayout(); 1812 unsigned BitWidth = CI->getBitWidth(); 1813 1814 // Copy the value as we may massage the layout for constants whose bit width 1815 // is not a multiple of 64-bits. 1816 APInt Realigned(CI->getValue()); 1817 uint64_t ExtraBits = 0; 1818 unsigned ExtraBitsSize = BitWidth & 63; 1819 1820 if (ExtraBitsSize) { 1821 // The bit width of the data is not a multiple of 64-bits. 1822 // The extra bits are expected to be at the end of the chunk of the memory. 1823 // Little endian: 1824 // * Nothing to be done, just record the extra bits to emit. 1825 // Big endian: 1826 // * Record the extra bits to emit. 1827 // * Realign the raw data to emit the chunks of 64-bits. 1828 if (TD->isBigEndian()) { 1829 // Basically the structure of the raw data is a chunk of 64-bits cells: 1830 // 0 1 BitWidth / 64 1831 // [chunk1][chunk2] ... [chunkN]. 1832 // The most significant chunk is chunkN and it should be emitted first. 1833 // However, due to the alignment issue chunkN contains useless bits. 1834 // Realign the chunks so that they contain only useless information: 1835 // ExtraBits 0 1 (BitWidth / 64) - 1 1836 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1837 ExtraBits = Realigned.getRawData()[0] & 1838 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1839 Realigned = Realigned.lshr(ExtraBitsSize); 1840 } else 1841 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1842 } 1843 1844 // We don't expect assemblers to support integer data directives 1845 // for more than 64 bits, so we emit the data in at most 64-bit 1846 // quantities at a time. 1847 const uint64_t *RawData = Realigned.getRawData(); 1848 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1849 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1850 AP.OutStreamer.EmitIntValue(Val, 8); 1851 } 1852 1853 if (ExtraBitsSize) { 1854 // Emit the extra bits after the 64-bits chunks. 1855 1856 // Emit a directive that fills the expected size. 1857 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1858 Size -= (BitWidth / 64) * 8; 1859 assert(Size && Size * 8 >= ExtraBitsSize && 1860 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1861 == ExtraBits && "Directive too small for extra bits."); 1862 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1863 } 1864 } 1865 1866 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1867 const DataLayout *TD = AP.TM.getDataLayout(); 1868 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1869 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1870 return AP.OutStreamer.EmitZeros(Size); 1871 1872 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1873 switch (Size) { 1874 case 1: 1875 case 2: 1876 case 4: 1877 case 8: 1878 if (AP.isVerbose()) 1879 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1880 CI->getZExtValue()); 1881 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1882 return; 1883 default: 1884 emitGlobalConstantLargeInt(CI, AP); 1885 return; 1886 } 1887 } 1888 1889 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1890 return emitGlobalConstantFP(CFP, AP); 1891 1892 if (isa<ConstantPointerNull>(CV)) { 1893 AP.OutStreamer.EmitIntValue(0, Size); 1894 return; 1895 } 1896 1897 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1898 return emitGlobalConstantDataSequential(CDS, AP); 1899 1900 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1901 return emitGlobalConstantArray(CVA, AP); 1902 1903 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1904 return emitGlobalConstantStruct(CVS, AP); 1905 1906 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1907 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1908 // vectors). 1909 if (CE->getOpcode() == Instruction::BitCast) 1910 return emitGlobalConstantImpl(CE->getOperand(0), AP); 1911 1912 if (Size > 8) { 1913 // If the constant expression's size is greater than 64-bits, then we have 1914 // to emit the value in chunks. Try to constant fold the value and emit it 1915 // that way. 1916 Constant *New = ConstantFoldConstantExpression(CE, TD); 1917 if (New && New != CE) 1918 return emitGlobalConstantImpl(New, AP); 1919 } 1920 } 1921 1922 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1923 return emitGlobalConstantVector(V, AP); 1924 1925 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1926 // thread the streamer with EmitValue. 1927 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 1928 } 1929 1930 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1931 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 1932 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1933 if (Size) 1934 emitGlobalConstantImpl(CV, *this); 1935 else if (MAI->hasSubsectionsViaSymbols()) { 1936 // If the global has zero size, emit a single byte so that two labels don't 1937 // look like they are at the same location. 1938 OutStreamer.EmitIntValue(0, 1); 1939 } 1940 } 1941 1942 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1943 // Target doesn't support this yet! 1944 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1945 } 1946 1947 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1948 if (Offset > 0) 1949 OS << '+' << Offset; 1950 else if (Offset < 0) 1951 OS << Offset; 1952 } 1953 1954 //===----------------------------------------------------------------------===// 1955 // Symbol Lowering Routines. 1956 //===----------------------------------------------------------------------===// 1957 1958 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1959 /// temporary label with the specified stem and unique ID. 1960 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1961 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1962 Name + Twine(ID)); 1963 } 1964 1965 /// GetTempSymbol - Return an assembler temporary label with the specified 1966 /// stem. 1967 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1968 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1969 Name); 1970 } 1971 1972 1973 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1974 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1975 } 1976 1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1978 return MMI->getAddrLabelSymbol(BB); 1979 } 1980 1981 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1982 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1983 return OutContext.GetOrCreateSymbol 1984 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1985 + "_" + Twine(CPID)); 1986 } 1987 1988 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1989 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1990 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1991 } 1992 1993 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1994 /// FIXME: privatize to AsmPrinter. 1995 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1996 return OutContext.GetOrCreateSymbol 1997 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1998 Twine(UID) + "_set_" + Twine(MBBID)); 1999 } 2000 2001 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 2002 /// global value name as its base, with the specified suffix, and where the 2003 /// symbol is forced to have private linkage if ForcePrivate is true. 2004 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 2005 StringRef Suffix, 2006 bool ForcePrivate) const { 2007 SmallString<60> NameStr; 2008 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 2009 NameStr.append(Suffix.begin(), Suffix.end()); 2010 return OutContext.GetOrCreateSymbol(NameStr.str()); 2011 } 2012 2013 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2014 /// ExternalSymbol. 2015 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2016 SmallString<60> NameStr; 2017 Mang->getNameWithPrefix(NameStr, Sym); 2018 return OutContext.GetOrCreateSymbol(NameStr.str()); 2019 } 2020 2021 2022 2023 /// PrintParentLoopComment - Print comments about parent loops of this one. 2024 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2025 unsigned FunctionNumber) { 2026 if (Loop == 0) return; 2027 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2028 OS.indent(Loop->getLoopDepth()*2) 2029 << "Parent Loop BB" << FunctionNumber << "_" 2030 << Loop->getHeader()->getNumber() 2031 << " Depth=" << Loop->getLoopDepth() << '\n'; 2032 } 2033 2034 2035 /// PrintChildLoopComment - Print comments about child loops within 2036 /// the loop for this basic block, with nesting. 2037 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2038 unsigned FunctionNumber) { 2039 // Add child loop information 2040 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2041 OS.indent((*CL)->getLoopDepth()*2) 2042 << "Child Loop BB" << FunctionNumber << "_" 2043 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2044 << '\n'; 2045 PrintChildLoopComment(OS, *CL, FunctionNumber); 2046 } 2047 } 2048 2049 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2050 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2051 const MachineLoopInfo *LI, 2052 const AsmPrinter &AP) { 2053 // Add loop depth information 2054 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2055 if (Loop == 0) return; 2056 2057 MachineBasicBlock *Header = Loop->getHeader(); 2058 assert(Header && "No header for loop"); 2059 2060 // If this block is not a loop header, just print out what is the loop header 2061 // and return. 2062 if (Header != &MBB) { 2063 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2064 Twine(AP.getFunctionNumber())+"_" + 2065 Twine(Loop->getHeader()->getNumber())+ 2066 " Depth="+Twine(Loop->getLoopDepth())); 2067 return; 2068 } 2069 2070 // Otherwise, it is a loop header. Print out information about child and 2071 // parent loops. 2072 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2073 2074 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2075 2076 OS << "=>"; 2077 OS.indent(Loop->getLoopDepth()*2-2); 2078 2079 OS << "This "; 2080 if (Loop->empty()) 2081 OS << "Inner "; 2082 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2083 2084 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2085 } 2086 2087 2088 /// EmitBasicBlockStart - This method prints the label for the specified 2089 /// MachineBasicBlock, an alignment (if present) and a comment describing 2090 /// it if appropriate. 2091 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2092 // Emit an alignment directive for this block, if needed. 2093 if (unsigned Align = MBB->getAlignment()) 2094 EmitAlignment(Align); 2095 2096 // If the block has its address taken, emit any labels that were used to 2097 // reference the block. It is possible that there is more than one label 2098 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2099 // the references were generated. 2100 if (MBB->hasAddressTaken()) { 2101 const BasicBlock *BB = MBB->getBasicBlock(); 2102 if (isVerbose()) 2103 OutStreamer.AddComment("Block address taken"); 2104 2105 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2106 2107 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2108 OutStreamer.EmitLabel(Syms[i]); 2109 } 2110 2111 // Print some verbose block comments. 2112 if (isVerbose()) { 2113 if (const BasicBlock *BB = MBB->getBasicBlock()) 2114 if (BB->hasName()) 2115 OutStreamer.AddComment("%" + BB->getName()); 2116 emitBasicBlockLoopComments(*MBB, LI, *this); 2117 } 2118 2119 // Print the main label for the block. 2120 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2121 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2122 // NOTE: Want this comment at start of line, don't emit with AddComment. 2123 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2124 Twine(MBB->getNumber()) + ":"); 2125 } 2126 } else { 2127 OutStreamer.EmitLabel(MBB->getSymbol()); 2128 } 2129 } 2130 2131 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2132 bool IsDefinition) const { 2133 MCSymbolAttr Attr = MCSA_Invalid; 2134 2135 switch (Visibility) { 2136 default: break; 2137 case GlobalValue::HiddenVisibility: 2138 if (IsDefinition) 2139 Attr = MAI->getHiddenVisibilityAttr(); 2140 else 2141 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2142 break; 2143 case GlobalValue::ProtectedVisibility: 2144 Attr = MAI->getProtectedVisibilityAttr(); 2145 break; 2146 } 2147 2148 if (Attr != MCSA_Invalid) 2149 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2150 } 2151 2152 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2153 /// exactly one predecessor and the control transfer mechanism between 2154 /// the predecessor and this block is a fall-through. 2155 bool AsmPrinter:: 2156 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2157 // If this is a landing pad, it isn't a fall through. If it has no preds, 2158 // then nothing falls through to it. 2159 if (MBB->isLandingPad() || MBB->pred_empty()) 2160 return false; 2161 2162 // If there isn't exactly one predecessor, it can't be a fall through. 2163 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2164 ++PI2; 2165 if (PI2 != MBB->pred_end()) 2166 return false; 2167 2168 // The predecessor has to be immediately before this block. 2169 MachineBasicBlock *Pred = *PI; 2170 2171 if (!Pred->isLayoutSuccessor(MBB)) 2172 return false; 2173 2174 // If the block is completely empty, then it definitely does fall through. 2175 if (Pred->empty()) 2176 return true; 2177 2178 // Check the terminators in the previous blocks 2179 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2180 IE = Pred->end(); II != IE; ++II) { 2181 MachineInstr &MI = *II; 2182 2183 // If it is not a simple branch, we are in a table somewhere. 2184 if (!MI.isBranch() || MI.isIndirectBranch()) 2185 return false; 2186 2187 // If we are the operands of one of the branches, this is not 2188 // a fall through. 2189 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2190 OE = MI.operands_end(); OI != OE; ++OI) { 2191 const MachineOperand& OP = *OI; 2192 if (OP.isJTI()) 2193 return false; 2194 if (OP.isMBB() && OP.getMBB() == MBB) 2195 return false; 2196 } 2197 } 2198 2199 return true; 2200 } 2201 2202 2203 2204 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2205 if (!S->usesMetadata()) 2206 return 0; 2207 2208 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2209 gcp_map_type::iterator GCPI = GCMap.find(S); 2210 if (GCPI != GCMap.end()) 2211 return GCPI->second; 2212 2213 const char *Name = S->getName().c_str(); 2214 2215 for (GCMetadataPrinterRegistry::iterator 2216 I = GCMetadataPrinterRegistry::begin(), 2217 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2218 if (strcmp(Name, I->getName()) == 0) { 2219 GCMetadataPrinter *GMP = I->instantiate(); 2220 GMP->S = S; 2221 GCMap.insert(std::make_pair(S, GMP)); 2222 return GMP; 2223 } 2224 2225 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2226 } 2227