1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "BufferQueue" 18 #define ATRACE_TAG ATRACE_TAG_GRAPHICS 19 //#define LOG_NDEBUG 0 20 21 #define GL_GLEXT_PROTOTYPES 22 #define EGL_EGLEXT_PROTOTYPES 23 24 #include <EGL/egl.h> 25 #include <EGL/eglext.h> 26 27 #include <gui/BufferQueue.h> 28 #include <gui/IConsumerListener.h> 29 #include <gui/ISurfaceComposer.h> 30 #include <private/gui/ComposerService.h> 31 32 #include <utils/Log.h> 33 #include <utils/Trace.h> 34 #include <utils/CallStack.h> 35 36 // Macros for including the BufferQueue name in log messages 37 #define ST_LOGV(x, ...) ALOGV("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) 38 #define ST_LOGD(x, ...) ALOGD("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) 39 #define ST_LOGI(x, ...) ALOGI("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) 40 #define ST_LOGW(x, ...) ALOGW("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) 41 #define ST_LOGE(x, ...) ALOGE("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) 42 43 #define ATRACE_BUFFER_INDEX(index) \ 44 if (ATRACE_ENABLED()) { \ 45 char ___traceBuf[1024]; \ 46 snprintf(___traceBuf, 1024, "%s: %d", mConsumerName.string(), \ 47 (index)); \ 48 android::ScopedTrace ___bufTracer(ATRACE_TAG, ___traceBuf); \ 49 } 50 51 namespace android { 52 53 // Get an ID that's unique within this process. 54 static int32_t createProcessUniqueId() { 55 static volatile int32_t globalCounter = 0; 56 return android_atomic_inc(&globalCounter); 57 } 58 59 static const char* scalingModeName(int scalingMode) { 60 switch (scalingMode) { 61 case NATIVE_WINDOW_SCALING_MODE_FREEZE: return "FREEZE"; 62 case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: return "SCALE_TO_WINDOW"; 63 case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: return "SCALE_CROP"; 64 default: return "Unknown"; 65 } 66 } 67 68 BufferQueue::BufferQueue(const sp<IGraphicBufferAlloc>& allocator) : 69 mDefaultWidth(1), 70 mDefaultHeight(1), 71 mMaxAcquiredBufferCount(1), 72 mDefaultMaxBufferCount(2), 73 mOverrideMaxBufferCount(0), 74 mConsumerControlledByApp(false), 75 mDequeueBufferCannotBlock(false), 76 mUseAsyncBuffer(true), 77 mConnectedApi(NO_CONNECTED_API), 78 mAbandoned(false), 79 mFrameCounter(0), 80 mBufferHasBeenQueued(false), 81 mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888), 82 mConsumerUsageBits(0), 83 mTransformHint(0) 84 { 85 // Choose a name using the PID and a process-unique ID. 86 mConsumerName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId()); 87 88 ST_LOGV("BufferQueue"); 89 if (allocator == NULL) { 90 sp<ISurfaceComposer> composer(ComposerService::getComposerService()); 91 mGraphicBufferAlloc = composer->createGraphicBufferAlloc(); 92 if (mGraphicBufferAlloc == 0) { 93 ST_LOGE("createGraphicBufferAlloc() failed in BufferQueue()"); 94 } 95 } else { 96 mGraphicBufferAlloc = allocator; 97 } 98 } 99 100 BufferQueue::~BufferQueue() { 101 ST_LOGV("~BufferQueue"); 102 } 103 104 status_t BufferQueue::setDefaultMaxBufferCountLocked(int count) { 105 const int minBufferCount = mUseAsyncBuffer ? 2 : 1; 106 if (count < minBufferCount || count > NUM_BUFFER_SLOTS) 107 return BAD_VALUE; 108 109 mDefaultMaxBufferCount = count; 110 mDequeueCondition.broadcast(); 111 112 return NO_ERROR; 113 } 114 115 void BufferQueue::setConsumerName(const String8& name) { 116 Mutex::Autolock lock(mMutex); 117 mConsumerName = name; 118 } 119 120 status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) { 121 Mutex::Autolock lock(mMutex); 122 mDefaultBufferFormat = defaultFormat; 123 return NO_ERROR; 124 } 125 126 status_t BufferQueue::setConsumerUsageBits(uint32_t usage) { 127 Mutex::Autolock lock(mMutex); 128 mConsumerUsageBits = usage; 129 return NO_ERROR; 130 } 131 132 status_t BufferQueue::setTransformHint(uint32_t hint) { 133 ST_LOGV("setTransformHint: %02x", hint); 134 Mutex::Autolock lock(mMutex); 135 mTransformHint = hint; 136 return NO_ERROR; 137 } 138 139 status_t BufferQueue::setBufferCount(int bufferCount) { 140 ST_LOGV("setBufferCount: count=%d", bufferCount); 141 142 sp<IConsumerListener> listener; 143 { 144 Mutex::Autolock lock(mMutex); 145 146 if (mAbandoned) { 147 ST_LOGE("setBufferCount: BufferQueue has been abandoned!"); 148 return NO_INIT; 149 } 150 if (bufferCount > NUM_BUFFER_SLOTS) { 151 ST_LOGE("setBufferCount: bufferCount too large (max %d)", 152 NUM_BUFFER_SLOTS); 153 return BAD_VALUE; 154 } 155 156 // Error out if the user has dequeued buffers 157 for (int i=0 ; i<NUM_BUFFER_SLOTS; i++) { 158 if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) { 159 ST_LOGE("setBufferCount: client owns some buffers"); 160 return -EINVAL; 161 } 162 } 163 164 if (bufferCount == 0) { 165 mOverrideMaxBufferCount = 0; 166 mDequeueCondition.broadcast(); 167 return NO_ERROR; 168 } 169 170 // fine to assume async to false before we're setting the buffer count 171 const int minBufferSlots = getMinMaxBufferCountLocked(false); 172 if (bufferCount < minBufferSlots) { 173 ST_LOGE("setBufferCount: requested buffer count (%d) is less than " 174 "minimum (%d)", bufferCount, minBufferSlots); 175 return BAD_VALUE; 176 } 177 178 // here we're guaranteed that the client doesn't have dequeued buffers 179 // and will release all of its buffer references. We don't clear the 180 // queue, however, so currently queued buffers still get displayed. 181 freeAllBuffersLocked(); 182 mOverrideMaxBufferCount = bufferCount; 183 mDequeueCondition.broadcast(); 184 listener = mConsumerListener; 185 } // scope for lock 186 187 if (listener != NULL) { 188 listener->onBuffersReleased(); 189 } 190 191 return NO_ERROR; 192 } 193 194 int BufferQueue::query(int what, int* outValue) 195 { 196 ATRACE_CALL(); 197 Mutex::Autolock lock(mMutex); 198 199 if (mAbandoned) { 200 ST_LOGE("query: BufferQueue has been abandoned!"); 201 return NO_INIT; 202 } 203 204 int value; 205 switch (what) { 206 case NATIVE_WINDOW_WIDTH: 207 value = mDefaultWidth; 208 break; 209 case NATIVE_WINDOW_HEIGHT: 210 value = mDefaultHeight; 211 break; 212 case NATIVE_WINDOW_FORMAT: 213 value = mDefaultBufferFormat; 214 break; 215 case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS: 216 value = getMinUndequeuedBufferCount(false); 217 break; 218 case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND: 219 value = (mQueue.size() >= 2); 220 break; 221 case NATIVE_WINDOW_CONSUMER_USAGE_BITS: 222 value = mConsumerUsageBits; 223 break; 224 default: 225 return BAD_VALUE; 226 } 227 outValue[0] = value; 228 return NO_ERROR; 229 } 230 231 status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) { 232 ATRACE_CALL(); 233 ST_LOGV("requestBuffer: slot=%d", slot); 234 Mutex::Autolock lock(mMutex); 235 if (mAbandoned) { 236 ST_LOGE("requestBuffer: BufferQueue has been abandoned!"); 237 return NO_INIT; 238 } 239 if (slot < 0 || slot >= NUM_BUFFER_SLOTS) { 240 ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d", 241 NUM_BUFFER_SLOTS, slot); 242 return BAD_VALUE; 243 } else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) { 244 ST_LOGE("requestBuffer: slot %d is not owned by the client (state=%d)", 245 slot, mSlots[slot].mBufferState); 246 return BAD_VALUE; 247 } 248 mSlots[slot].mRequestBufferCalled = true; 249 *buf = mSlots[slot].mGraphicBuffer; 250 return NO_ERROR; 251 } 252 253 status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async, 254 uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { 255 ATRACE_CALL(); 256 ST_LOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage); 257 258 if ((w && !h) || (!w && h)) { 259 ST_LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h); 260 return BAD_VALUE; 261 } 262 263 status_t returnFlags(OK); 264 EGLDisplay dpy = EGL_NO_DISPLAY; 265 EGLSyncKHR eglFence = EGL_NO_SYNC_KHR; 266 267 { // Scope for the lock 268 Mutex::Autolock lock(mMutex); 269 270 if (format == 0) { 271 format = mDefaultBufferFormat; 272 } 273 // turn on usage bits the consumer requested 274 usage |= mConsumerUsageBits; 275 276 int found = -1; 277 bool tryAgain = true; 278 while (tryAgain) { 279 if (mAbandoned) { 280 ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); 281 return NO_INIT; 282 } 283 284 const int maxBufferCount = getMaxBufferCountLocked(async); 285 if (async && mOverrideMaxBufferCount) { 286 // FIXME: some drivers are manually setting the buffer-count (which they 287 // shouldn't), so we do this extra test here to handle that case. 288 // This is TEMPORARY, until we get this fixed. 289 if (mOverrideMaxBufferCount < maxBufferCount) { 290 ST_LOGE("dequeueBuffer: async mode is invalid with buffercount override"); 291 return BAD_VALUE; 292 } 293 } 294 295 // Free up any buffers that are in slots beyond the max buffer 296 // count. 297 for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) { 298 assert(mSlots[i].mBufferState == BufferSlot::FREE); 299 if (mSlots[i].mGraphicBuffer != NULL) { 300 freeBufferLocked(i); 301 returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS; 302 } 303 } 304 305 // look for a free buffer to give to the client 306 found = INVALID_BUFFER_SLOT; 307 int dequeuedCount = 0; 308 int acquiredCount = 0; 309 for (int i = 0; i < maxBufferCount; i++) { 310 const int state = mSlots[i].mBufferState; 311 switch (state) { 312 case BufferSlot::DEQUEUED: 313 dequeuedCount++; 314 break; 315 case BufferSlot::ACQUIRED: 316 acquiredCount++; 317 break; 318 case BufferSlot::FREE: 319 /* We return the oldest of the free buffers to avoid 320 * stalling the producer if possible. This is because 321 * the consumer may still have pending reads of the 322 * buffers in flight. 323 */ 324 if ((found < 0) || 325 mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) { 326 found = i; 327 } 328 break; 329 } 330 } 331 332 // clients are not allowed to dequeue more than one buffer 333 // if they didn't set a buffer count. 334 if (!mOverrideMaxBufferCount && dequeuedCount) { 335 ST_LOGE("dequeueBuffer: can't dequeue multiple buffers without " 336 "setting the buffer count"); 337 return -EINVAL; 338 } 339 340 // See whether a buffer has been queued since the last 341 // setBufferCount so we know whether to perform the min undequeued 342 // buffers check below. 343 if (mBufferHasBeenQueued) { 344 // make sure the client is not trying to dequeue more buffers 345 // than allowed. 346 const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1); 347 const int minUndequeuedCount = getMinUndequeuedBufferCount(async); 348 if (newUndequeuedCount < minUndequeuedCount) { 349 ST_LOGE("dequeueBuffer: min undequeued buffer count (%d) " 350 "exceeded (dequeued=%d undequeudCount=%d)", 351 minUndequeuedCount, dequeuedCount, 352 newUndequeuedCount); 353 return -EBUSY; 354 } 355 } 356 357 // If no buffer is found, wait for a buffer to be released or for 358 // the max buffer count to change. 359 tryAgain = found == INVALID_BUFFER_SLOT; 360 if (tryAgain) { 361 // return an error if we're in "cannot block" mode (producer and consumer 362 // are controlled by the application) -- however, the consumer is allowed 363 // to acquire briefly an extra buffer (which could cause us to have to wait here) 364 // and that's okay because we know the wait will be brief (it happens 365 // if we dequeue a buffer while the consumer has acquired one but not released 366 // the old one yet -- for e.g.: see GLConsumer::updateTexImage()). 367 if (mDequeueBufferCannotBlock && (acquiredCount <= mMaxAcquiredBufferCount)) { 368 ST_LOGE("dequeueBuffer: would block! returning an error instead."); 369 return WOULD_BLOCK; 370 } 371 mDequeueCondition.wait(mMutex); 372 } 373 } 374 375 376 if (found == INVALID_BUFFER_SLOT) { 377 // This should not happen. 378 ST_LOGE("dequeueBuffer: no available buffer slots"); 379 return -EBUSY; 380 } 381 382 const int buf = found; 383 *outBuf = found; 384 385 ATRACE_BUFFER_INDEX(buf); 386 387 const bool useDefaultSize = !w && !h; 388 if (useDefaultSize) { 389 // use the default size 390 w = mDefaultWidth; 391 h = mDefaultHeight; 392 } 393 394 mSlots[buf].mBufferState = BufferSlot::DEQUEUED; 395 396 const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer); 397 if ((buffer == NULL) || 398 (uint32_t(buffer->width) != w) || 399 (uint32_t(buffer->height) != h) || 400 (uint32_t(buffer->format) != format) || 401 ((uint32_t(buffer->usage) & usage) != usage)) 402 { 403 mSlots[buf].mAcquireCalled = false; 404 mSlots[buf].mGraphicBuffer = NULL; 405 mSlots[buf].mRequestBufferCalled = false; 406 mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; 407 mSlots[buf].mFence = Fence::NO_FENCE; 408 mSlots[buf].mEglDisplay = EGL_NO_DISPLAY; 409 410 returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION; 411 } 412 413 414 if (CC_UNLIKELY(mSlots[buf].mFence == NULL)) { 415 ST_LOGE("dequeueBuffer: about to return a NULL fence from mSlot. " 416 "buf=%d, w=%d, h=%d, format=%d", 417 buf, buffer->width, buffer->height, buffer->format); 418 } 419 420 dpy = mSlots[buf].mEglDisplay; 421 eglFence = mSlots[buf].mEglFence; 422 *outFence = mSlots[buf].mFence; 423 mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; 424 mSlots[buf].mFence = Fence::NO_FENCE; 425 } // end lock scope 426 427 if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) { 428 status_t error; 429 sp<GraphicBuffer> graphicBuffer( 430 mGraphicBufferAlloc->createGraphicBuffer(w, h, format, usage, &error)); 431 if (graphicBuffer == 0) { 432 ST_LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer failed"); 433 return error; 434 } 435 436 { // Scope for the lock 437 Mutex::Autolock lock(mMutex); 438 439 if (mAbandoned) { 440 ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); 441 return NO_INIT; 442 } 443 444 mSlots[*outBuf].mFrameNumber = ~0; 445 mSlots[*outBuf].mGraphicBuffer = graphicBuffer; 446 } 447 } 448 449 if (eglFence != EGL_NO_SYNC_KHR) { 450 EGLint result = eglClientWaitSyncKHR(dpy, eglFence, 0, 1000000000); 451 // If something goes wrong, log the error, but return the buffer without 452 // synchronizing access to it. It's too late at this point to abort the 453 // dequeue operation. 454 if (result == EGL_FALSE) { 455 ST_LOGE("dequeueBuffer: error waiting for fence: %#x", eglGetError()); 456 } else if (result == EGL_TIMEOUT_EXPIRED_KHR) { 457 ST_LOGE("dequeueBuffer: timeout waiting for fence"); 458 } 459 eglDestroySyncKHR(dpy, eglFence); 460 } 461 462 ST_LOGV("dequeueBuffer: returning slot=%d/%llu buf=%p flags=%#x", *outBuf, 463 mSlots[*outBuf].mFrameNumber, 464 mSlots[*outBuf].mGraphicBuffer->handle, returnFlags); 465 466 return returnFlags; 467 } 468 469 status_t BufferQueue::queueBuffer(int buf, 470 const QueueBufferInput& input, QueueBufferOutput* output) { 471 ATRACE_CALL(); 472 ATRACE_BUFFER_INDEX(buf); 473 474 Rect crop; 475 uint32_t transform; 476 int scalingMode; 477 int64_t timestamp; 478 bool isAutoTimestamp; 479 bool async; 480 sp<Fence> fence; 481 482 input.deflate(×tamp, &isAutoTimestamp, &crop, &scalingMode, &transform, 483 &async, &fence); 484 485 if (fence == NULL) { 486 ST_LOGE("queueBuffer: fence is NULL"); 487 return BAD_VALUE; 488 } 489 490 switch (scalingMode) { 491 case NATIVE_WINDOW_SCALING_MODE_FREEZE: 492 case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: 493 case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: 494 case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP: 495 break; 496 default: 497 ST_LOGE("unknown scaling mode: %d", scalingMode); 498 return -EINVAL; 499 } 500 501 sp<IConsumerListener> listener; 502 503 { // scope for the lock 504 Mutex::Autolock lock(mMutex); 505 506 if (mAbandoned) { 507 ST_LOGE("queueBuffer: BufferQueue has been abandoned!"); 508 return NO_INIT; 509 } 510 511 const int maxBufferCount = getMaxBufferCountLocked(async); 512 if (async && mOverrideMaxBufferCount) { 513 // FIXME: some drivers are manually setting the buffer-count (which they 514 // shouldn't), so we do this extra test here to handle that case. 515 // This is TEMPORARY, until we get this fixed. 516 if (mOverrideMaxBufferCount < maxBufferCount) { 517 ST_LOGE("queueBuffer: async mode is invalid with buffercount override"); 518 return BAD_VALUE; 519 } 520 } 521 if (buf < 0 || buf >= maxBufferCount) { 522 ST_LOGE("queueBuffer: slot index out of range [0, %d]: %d", 523 maxBufferCount, buf); 524 return -EINVAL; 525 } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { 526 ST_LOGE("queueBuffer: slot %d is not owned by the client " 527 "(state=%d)", buf, mSlots[buf].mBufferState); 528 return -EINVAL; 529 } else if (!mSlots[buf].mRequestBufferCalled) { 530 ST_LOGE("queueBuffer: slot %d was enqueued without requesting a " 531 "buffer", buf); 532 return -EINVAL; 533 } 534 535 ST_LOGV("queueBuffer: slot=%d/%llu time=%#llx crop=[%d,%d,%d,%d] " 536 "tr=%#x scale=%s", 537 buf, mFrameCounter + 1, timestamp, 538 crop.left, crop.top, crop.right, crop.bottom, 539 transform, scalingModeName(scalingMode)); 540 541 const sp<GraphicBuffer>& graphicBuffer(mSlots[buf].mGraphicBuffer); 542 Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight()); 543 Rect croppedCrop; 544 crop.intersect(bufferRect, &croppedCrop); 545 if (croppedCrop != crop) { 546 ST_LOGE("queueBuffer: crop rect is not contained within the " 547 "buffer in slot %d", buf); 548 return -EINVAL; 549 } 550 551 mSlots[buf].mFence = fence; 552 mSlots[buf].mBufferState = BufferSlot::QUEUED; 553 mFrameCounter++; 554 mSlots[buf].mFrameNumber = mFrameCounter; 555 556 BufferItem item; 557 item.mAcquireCalled = mSlots[buf].mAcquireCalled; 558 item.mGraphicBuffer = mSlots[buf].mGraphicBuffer; 559 item.mCrop = crop; 560 item.mTransform = transform & ~NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY; 561 item.mTransformToDisplayInverse = bool(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY); 562 item.mScalingMode = scalingMode; 563 item.mTimestamp = timestamp; 564 item.mIsAutoTimestamp = isAutoTimestamp; 565 item.mFrameNumber = mFrameCounter; 566 item.mBuf = buf; 567 item.mFence = fence; 568 item.mIsDroppable = mDequeueBufferCannotBlock || async; 569 570 if (mQueue.empty()) { 571 // when the queue is empty, we can ignore "mDequeueBufferCannotBlock", and 572 // simply queue this buffer. 573 mQueue.push_back(item); 574 listener = mConsumerListener; 575 } else { 576 // when the queue is not empty, we need to look at the front buffer 577 // state and see if we need to replace it. 578 Fifo::iterator front(mQueue.begin()); 579 if (front->mIsDroppable) { 580 // buffer slot currently queued is marked free if still tracked 581 if (stillTracking(front)) { 582 mSlots[front->mBuf].mBufferState = BufferSlot::FREE; 583 // reset the frame number of the freed buffer so that it is the first in 584 // line to be dequeued again. 585 mSlots[front->mBuf].mFrameNumber = 0; 586 } 587 // and we record the new buffer in the queued list 588 *front = item; 589 } else { 590 mQueue.push_back(item); 591 listener = mConsumerListener; 592 } 593 } 594 595 mBufferHasBeenQueued = true; 596 mDequeueCondition.broadcast(); 597 598 output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, 599 mQueue.size()); 600 601 ATRACE_INT(mConsumerName.string(), mQueue.size()); 602 } // scope for the lock 603 604 // call back without lock held 605 if (listener != 0) { 606 listener->onFrameAvailable(); 607 } 608 return NO_ERROR; 609 } 610 611 void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) { 612 ATRACE_CALL(); 613 ST_LOGV("cancelBuffer: slot=%d", buf); 614 Mutex::Autolock lock(mMutex); 615 616 if (mAbandoned) { 617 ST_LOGW("cancelBuffer: BufferQueue has been abandoned!"); 618 return; 619 } 620 621 if (buf < 0 || buf >= NUM_BUFFER_SLOTS) { 622 ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d", 623 NUM_BUFFER_SLOTS, buf); 624 return; 625 } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { 626 ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)", 627 buf, mSlots[buf].mBufferState); 628 return; 629 } else if (fence == NULL) { 630 ST_LOGE("cancelBuffer: fence is NULL"); 631 return; 632 } 633 mSlots[buf].mBufferState = BufferSlot::FREE; 634 mSlots[buf].mFrameNumber = 0; 635 mSlots[buf].mFence = fence; 636 mDequeueCondition.broadcast(); 637 } 638 639 640 status_t BufferQueue::connect(const sp<IBinder>& token, 641 int api, bool producerControlledByApp, QueueBufferOutput* output) { 642 ATRACE_CALL(); 643 ST_LOGV("connect: api=%d producerControlledByApp=%s", api, 644 producerControlledByApp ? "true" : "false"); 645 Mutex::Autolock lock(mMutex); 646 647 retry: 648 if (mAbandoned) { 649 ST_LOGE("connect: BufferQueue has been abandoned!"); 650 return NO_INIT; 651 } 652 653 if (mConsumerListener == NULL) { 654 ST_LOGE("connect: BufferQueue has no consumer!"); 655 return NO_INIT; 656 } 657 658 if (mConnectedApi != NO_CONNECTED_API) { 659 ST_LOGE("connect: already connected (cur=%d, req=%d)", 660 mConnectedApi, api); 661 return -EINVAL; 662 } 663 664 // If we disconnect and reconnect quickly, we can be in a state where our slots are 665 // empty but we have many buffers in the queue. This can cause us to run out of 666 // memory if we outrun the consumer. Wait here if it looks like we have too many 667 // buffers queued up. 668 int maxBufferCount = getMaxBufferCountLocked(false); // worst-case, i.e. largest value 669 if (mQueue.size() > (size_t) maxBufferCount) { 670 // TODO: make this bound tighter? 671 ST_LOGV("queue size is %d, waiting", mQueue.size()); 672 mDequeueCondition.wait(mMutex); 673 goto retry; 674 } 675 676 int err = NO_ERROR; 677 switch (api) { 678 case NATIVE_WINDOW_API_EGL: 679 case NATIVE_WINDOW_API_CPU: 680 case NATIVE_WINDOW_API_MEDIA: 681 case NATIVE_WINDOW_API_CAMERA: 682 mConnectedApi = api; 683 output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size()); 684 685 // set-up a death notification so that we can disconnect 686 // automatically when/if the remote producer dies. 687 if (token != NULL && token->remoteBinder() != NULL) { 688 status_t err = token->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); 689 if (err == NO_ERROR) { 690 mConnectedProducerToken = token; 691 } else { 692 ALOGE("linkToDeath failed: %s (%d)", strerror(-err), err); 693 } 694 } 695 break; 696 default: 697 err = -EINVAL; 698 break; 699 } 700 701 mBufferHasBeenQueued = false; 702 mDequeueBufferCannotBlock = mConsumerControlledByApp && producerControlledByApp; 703 704 return err; 705 } 706 707 void BufferQueue::binderDied(const wp<IBinder>& who) { 708 // If we're here, it means that a producer we were connected to died. 709 // We're GUARANTEED that we still are connected to it because it has no other way 710 // to get disconnected -- or -- we wouldn't be here because we're removing this 711 // callback upon disconnect. Therefore, it's okay to read mConnectedApi without 712 // synchronization here. 713 int api = mConnectedApi; 714 this->disconnect(api); 715 } 716 717 status_t BufferQueue::disconnect(int api) { 718 ATRACE_CALL(); 719 ST_LOGV("disconnect: api=%d", api); 720 721 int err = NO_ERROR; 722 sp<IConsumerListener> listener; 723 724 { // Scope for the lock 725 Mutex::Autolock lock(mMutex); 726 727 if (mAbandoned) { 728 // it is not really an error to disconnect after the surface 729 // has been abandoned, it should just be a no-op. 730 return NO_ERROR; 731 } 732 733 switch (api) { 734 case NATIVE_WINDOW_API_EGL: 735 case NATIVE_WINDOW_API_CPU: 736 case NATIVE_WINDOW_API_MEDIA: 737 case NATIVE_WINDOW_API_CAMERA: 738 if (mConnectedApi == api) { 739 freeAllBuffersLocked(); 740 // remove our death notification callback if we have one 741 sp<IBinder> token = mConnectedProducerToken; 742 if (token != NULL) { 743 // this can fail if we're here because of the death notification 744 // either way, we just ignore. 745 token->unlinkToDeath(static_cast<IBinder::DeathRecipient*>(this)); 746 } 747 mConnectedProducerToken = NULL; 748 mConnectedApi = NO_CONNECTED_API; 749 mDequeueCondition.broadcast(); 750 listener = mConsumerListener; 751 } else { 752 ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)", 753 mConnectedApi, api); 754 err = -EINVAL; 755 } 756 break; 757 default: 758 ST_LOGE("disconnect: unknown API %d", api); 759 err = -EINVAL; 760 break; 761 } 762 } 763 764 if (listener != NULL) { 765 listener->onBuffersReleased(); 766 } 767 768 return err; 769 } 770 771 void BufferQueue::dump(String8& result, const char* prefix) const { 772 Mutex::Autolock _l(mMutex); 773 774 String8 fifo; 775 int fifoSize = 0; 776 Fifo::const_iterator i(mQueue.begin()); 777 while (i != mQueue.end()) { 778 fifo.appendFormat("%02d:%p crop=[%d,%d,%d,%d], " 779 "xform=0x%02x, time=%#llx, scale=%s\n", 780 i->mBuf, i->mGraphicBuffer.get(), 781 i->mCrop.left, i->mCrop.top, i->mCrop.right, 782 i->mCrop.bottom, i->mTransform, i->mTimestamp, 783 scalingModeName(i->mScalingMode) 784 ); 785 i++; 786 fifoSize++; 787 } 788 789 790 result.appendFormat( 791 "%s-BufferQueue mMaxAcquiredBufferCount=%d, mDequeueBufferCannotBlock=%d, default-size=[%dx%d], " 792 "default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n", 793 prefix, mMaxAcquiredBufferCount, mDequeueBufferCannotBlock, mDefaultWidth, 794 mDefaultHeight, mDefaultBufferFormat, mTransformHint, 795 fifoSize, fifo.string()); 796 797 struct { 798 const char * operator()(int state) const { 799 switch (state) { 800 case BufferSlot::DEQUEUED: return "DEQUEUED"; 801 case BufferSlot::QUEUED: return "QUEUED"; 802 case BufferSlot::FREE: return "FREE"; 803 case BufferSlot::ACQUIRED: return "ACQUIRED"; 804 default: return "Unknown"; 805 } 806 } 807 } stateName; 808 809 // just trim the free buffers to not spam the dump 810 int maxBufferCount = 0; 811 for (int i=NUM_BUFFER_SLOTS-1 ; i>=0 ; i--) { 812 const BufferSlot& slot(mSlots[i]); 813 if ((slot.mBufferState != BufferSlot::FREE) || (slot.mGraphicBuffer != NULL)) { 814 maxBufferCount = i+1; 815 break; 816 } 817 } 818 819 for (int i=0 ; i<maxBufferCount ; i++) { 820 const BufferSlot& slot(mSlots[i]); 821 const sp<GraphicBuffer>& buf(slot.mGraphicBuffer); 822 result.appendFormat( 823 "%s%s[%02d:%p] state=%-8s", 824 prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i, buf.get(), 825 stateName(slot.mBufferState) 826 ); 827 828 if (buf != NULL) { 829 result.appendFormat( 830 ", %p [%4ux%4u:%4u,%3X]", 831 buf->handle, buf->width, buf->height, buf->stride, 832 buf->format); 833 } 834 result.append("\n"); 835 } 836 } 837 838 void BufferQueue::freeBufferLocked(int slot) { 839 ST_LOGV("freeBufferLocked: slot=%d", slot); 840 mSlots[slot].mGraphicBuffer = 0; 841 if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) { 842 mSlots[slot].mNeedsCleanupOnRelease = true; 843 } 844 mSlots[slot].mBufferState = BufferSlot::FREE; 845 mSlots[slot].mFrameNumber = 0; 846 mSlots[slot].mAcquireCalled = false; 847 848 // destroy fence as BufferQueue now takes ownership 849 if (mSlots[slot].mEglFence != EGL_NO_SYNC_KHR) { 850 eglDestroySyncKHR(mSlots[slot].mEglDisplay, mSlots[slot].mEglFence); 851 mSlots[slot].mEglFence = EGL_NO_SYNC_KHR; 852 } 853 mSlots[slot].mFence = Fence::NO_FENCE; 854 } 855 856 void BufferQueue::freeAllBuffersLocked() { 857 mBufferHasBeenQueued = false; 858 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { 859 freeBufferLocked(i); 860 } 861 } 862 863 status_t BufferQueue::acquireBuffer(BufferItem *buffer, nsecs_t expectedPresent) { 864 ATRACE_CALL(); 865 Mutex::Autolock _l(mMutex); 866 867 // Check that the consumer doesn't currently have the maximum number of 868 // buffers acquired. We allow the max buffer count to be exceeded by one 869 // buffer, so that the consumer can successfully set up the newly acquired 870 // buffer before releasing the old one. 871 int numAcquiredBuffers = 0; 872 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { 873 if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) { 874 numAcquiredBuffers++; 875 } 876 } 877 if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) { 878 ST_LOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)", 879 numAcquiredBuffers, mMaxAcquiredBufferCount); 880 return INVALID_OPERATION; 881 } 882 883 // check if queue is empty 884 // In asynchronous mode the list is guaranteed to be one buffer 885 // deep, while in synchronous mode we use the oldest buffer. 886 if (mQueue.empty()) { 887 return NO_BUFFER_AVAILABLE; 888 } 889 890 Fifo::iterator front(mQueue.begin()); 891 892 // If expectedPresent is specified, we may not want to return a buffer yet. 893 // If it's specified and there's more than one buffer queued, we may 894 // want to drop a buffer. 895 if (expectedPresent != 0) { 896 const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second 897 898 // The "expectedPresent" argument indicates when the buffer is expected 899 // to be presented on-screen. If the buffer's desired-present time 900 // is earlier (less) than expectedPresent, meaning it'll be displayed 901 // on time or possibly late if we show it ASAP, we acquire and return 902 // it. If we don't want to display it until after the expectedPresent 903 // time, we return PRESENT_LATER without acquiring it. 904 // 905 // To be safe, we don't defer acquisition if expectedPresent is 906 // more than one second in the future beyond the desired present time 907 // (i.e. we'd be holding the buffer for a long time). 908 // 909 // NOTE: code assumes monotonic time values from the system clock are 910 // positive. 911 912 // Start by checking to see if we can drop frames. We skip this check 913 // if the timestamps are being auto-generated by Surface -- if the 914 // app isn't generating timestamps explicitly, they probably don't 915 // want frames to be discarded based on them. 916 while (mQueue.size() > 1 && !mQueue[0].mIsAutoTimestamp) { 917 // If entry[1] is timely, drop entry[0] (and repeat). We apply 918 // an additional criteria here: we only drop the earlier buffer if 919 // our desiredPresent falls within +/- 1 second of the expected 920 // present. Otherwise, bogus desiredPresent times (e.g. 0 or 921 // a small relative timestamp), which normally mean "ignore the 922 // timestamp and acquire immediately", would cause us to drop 923 // frames. 924 // 925 // We may want to add an additional criteria: don't drop the 926 // earlier buffer if entry[1]'s fence hasn't signaled yet. 927 // 928 // (Vector front is [0], back is [size()-1]) 929 const BufferItem& bi(mQueue[1]); 930 nsecs_t desiredPresent = bi.mTimestamp; 931 if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC || 932 desiredPresent > expectedPresent) { 933 // This buffer is set to display in the near future, or 934 // desiredPresent is garbage. Either way we don't want to 935 // drop the previous buffer just to get this on screen sooner. 936 ST_LOGV("pts nodrop: des=%lld expect=%lld (%lld) now=%lld", 937 desiredPresent, expectedPresent, desiredPresent - expectedPresent, 938 systemTime(CLOCK_MONOTONIC)); 939 break; 940 } 941 ST_LOGV("pts drop: queue1des=%lld expect=%lld size=%d", 942 desiredPresent, expectedPresent, mQueue.size()); 943 if (stillTracking(front)) { 944 // front buffer is still in mSlots, so mark the slot as free 945 mSlots[front->mBuf].mBufferState = BufferSlot::FREE; 946 } 947 mQueue.erase(front); 948 front = mQueue.begin(); 949 } 950 951 // See if the front buffer is due. 952 nsecs_t desiredPresent = front->mTimestamp; 953 if (desiredPresent > expectedPresent && 954 desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) { 955 ST_LOGV("pts defer: des=%lld expect=%lld (%lld) now=%lld", 956 desiredPresent, expectedPresent, desiredPresent - expectedPresent, 957 systemTime(CLOCK_MONOTONIC)); 958 return PRESENT_LATER; 959 } 960 961 ST_LOGV("pts accept: des=%lld expect=%lld (%lld) now=%lld", 962 desiredPresent, expectedPresent, desiredPresent - expectedPresent, 963 systemTime(CLOCK_MONOTONIC)); 964 } 965 966 int buf = front->mBuf; 967 *buffer = *front; 968 ATRACE_BUFFER_INDEX(buf); 969 970 ST_LOGV("acquireBuffer: acquiring { slot=%d/%llu, buffer=%p }", 971 front->mBuf, front->mFrameNumber, 972 front->mGraphicBuffer->handle); 973 // if front buffer still being tracked update slot state 974 if (stillTracking(front)) { 975 mSlots[buf].mAcquireCalled = true; 976 mSlots[buf].mNeedsCleanupOnRelease = false; 977 mSlots[buf].mBufferState = BufferSlot::ACQUIRED; 978 mSlots[buf].mFence = Fence::NO_FENCE; 979 } 980 981 // If the buffer has previously been acquired by the consumer, set 982 // mGraphicBuffer to NULL to avoid unnecessarily remapping this 983 // buffer on the consumer side. 984 if (buffer->mAcquireCalled) { 985 buffer->mGraphicBuffer = NULL; 986 } 987 988 mQueue.erase(front); 989 mDequeueCondition.broadcast(); 990 991 ATRACE_INT(mConsumerName.string(), mQueue.size()); 992 993 return NO_ERROR; 994 } 995 996 status_t BufferQueue::releaseBuffer( 997 int buf, uint64_t frameNumber, EGLDisplay display, 998 EGLSyncKHR eglFence, const sp<Fence>& fence) { 999 ATRACE_CALL(); 1000 ATRACE_BUFFER_INDEX(buf); 1001 1002 if (buf == INVALID_BUFFER_SLOT || fence == NULL) { 1003 return BAD_VALUE; 1004 } 1005 1006 Mutex::Autolock _l(mMutex); 1007 1008 // If the frame number has changed because buffer has been reallocated, 1009 // we can ignore this releaseBuffer for the old buffer. 1010 if (frameNumber != mSlots[buf].mFrameNumber) { 1011 return STALE_BUFFER_SLOT; 1012 } 1013 1014 1015 // Internal state consistency checks: 1016 // Make sure this buffers hasn't been queued while we were owning it (acquired) 1017 Fifo::iterator front(mQueue.begin()); 1018 Fifo::const_iterator const end(mQueue.end()); 1019 while (front != end) { 1020 if (front->mBuf == buf) { 1021 LOG_ALWAYS_FATAL("[%s] received new buffer(#%lld) on slot #%d that has not yet been " 1022 "acquired", mConsumerName.string(), frameNumber, buf); 1023 break; // never reached 1024 } 1025 front++; 1026 } 1027 1028 // The buffer can now only be released if its in the acquired state 1029 if (mSlots[buf].mBufferState == BufferSlot::ACQUIRED) { 1030 mSlots[buf].mEglDisplay = display; 1031 mSlots[buf].mEglFence = eglFence; 1032 mSlots[buf].mFence = fence; 1033 mSlots[buf].mBufferState = BufferSlot::FREE; 1034 } else if (mSlots[buf].mNeedsCleanupOnRelease) { 1035 ST_LOGV("releasing a stale buf %d its state was %d", buf, mSlots[buf].mBufferState); 1036 mSlots[buf].mNeedsCleanupOnRelease = false; 1037 return STALE_BUFFER_SLOT; 1038 } else { 1039 ST_LOGE("attempted to release buf %d but its state was %d", buf, mSlots[buf].mBufferState); 1040 return -EINVAL; 1041 } 1042 1043 mDequeueCondition.broadcast(); 1044 return NO_ERROR; 1045 } 1046 1047 status_t BufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener, 1048 bool controlledByApp) { 1049 ST_LOGV("consumerConnect controlledByApp=%s", 1050 controlledByApp ? "true" : "false"); 1051 Mutex::Autolock lock(mMutex); 1052 1053 if (mAbandoned) { 1054 ST_LOGE("consumerConnect: BufferQueue has been abandoned!"); 1055 return NO_INIT; 1056 } 1057 if (consumerListener == NULL) { 1058 ST_LOGE("consumerConnect: consumerListener may not be NULL"); 1059 return BAD_VALUE; 1060 } 1061 1062 mConsumerListener = consumerListener; 1063 mConsumerControlledByApp = controlledByApp; 1064 1065 return NO_ERROR; 1066 } 1067 1068 status_t BufferQueue::consumerDisconnect() { 1069 ST_LOGV("consumerDisconnect"); 1070 Mutex::Autolock lock(mMutex); 1071 1072 if (mConsumerListener == NULL) { 1073 ST_LOGE("consumerDisconnect: No consumer is connected!"); 1074 return -EINVAL; 1075 } 1076 1077 mAbandoned = true; 1078 mConsumerListener = NULL; 1079 mQueue.clear(); 1080 freeAllBuffersLocked(); 1081 mDequeueCondition.broadcast(); 1082 return NO_ERROR; 1083 } 1084 1085 status_t BufferQueue::getReleasedBuffers(uint32_t* slotMask) { 1086 ST_LOGV("getReleasedBuffers"); 1087 Mutex::Autolock lock(mMutex); 1088 1089 if (mAbandoned) { 1090 ST_LOGE("getReleasedBuffers: BufferQueue has been abandoned!"); 1091 return NO_INIT; 1092 } 1093 1094 uint32_t mask = 0; 1095 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { 1096 if (!mSlots[i].mAcquireCalled) { 1097 mask |= 1 << i; 1098 } 1099 } 1100 1101 // Remove buffers in flight (on the queue) from the mask where acquire has 1102 // been called, as the consumer will not receive the buffer address, so 1103 // it should not free these slots. 1104 Fifo::iterator front(mQueue.begin()); 1105 while (front != mQueue.end()) { 1106 if (front->mAcquireCalled) 1107 mask &= ~(1 << front->mBuf); 1108 front++; 1109 } 1110 1111 *slotMask = mask; 1112 1113 ST_LOGV("getReleasedBuffers: returning mask %#x", mask); 1114 return NO_ERROR; 1115 } 1116 1117 status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) { 1118 ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h); 1119 if (!w || !h) { 1120 ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)", 1121 w, h); 1122 return BAD_VALUE; 1123 } 1124 1125 Mutex::Autolock lock(mMutex); 1126 mDefaultWidth = w; 1127 mDefaultHeight = h; 1128 return NO_ERROR; 1129 } 1130 1131 status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) { 1132 ATRACE_CALL(); 1133 Mutex::Autolock lock(mMutex); 1134 return setDefaultMaxBufferCountLocked(bufferCount); 1135 } 1136 1137 status_t BufferQueue::disableAsyncBuffer() { 1138 ATRACE_CALL(); 1139 Mutex::Autolock lock(mMutex); 1140 if (mConsumerListener != NULL) { 1141 ST_LOGE("disableAsyncBuffer: consumer already connected!"); 1142 return INVALID_OPERATION; 1143 } 1144 mUseAsyncBuffer = false; 1145 return NO_ERROR; 1146 } 1147 1148 status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) { 1149 ATRACE_CALL(); 1150 Mutex::Autolock lock(mMutex); 1151 if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) { 1152 ST_LOGE("setMaxAcquiredBufferCount: invalid count specified: %d", 1153 maxAcquiredBuffers); 1154 return BAD_VALUE; 1155 } 1156 if (mConnectedApi != NO_CONNECTED_API) { 1157 return INVALID_OPERATION; 1158 } 1159 mMaxAcquiredBufferCount = maxAcquiredBuffers; 1160 return NO_ERROR; 1161 } 1162 1163 int BufferQueue::getMinUndequeuedBufferCount(bool async) const { 1164 // if dequeueBuffer is allowed to error out, we don't have to 1165 // add an extra buffer. 1166 if (!mUseAsyncBuffer) 1167 return mMaxAcquiredBufferCount; 1168 1169 // we're in async mode, or we want to prevent the app to 1170 // deadlock itself, we throw-in an extra buffer to guarantee it. 1171 if (mDequeueBufferCannotBlock || async) 1172 return mMaxAcquiredBufferCount+1; 1173 1174 return mMaxAcquiredBufferCount; 1175 } 1176 1177 int BufferQueue::getMinMaxBufferCountLocked(bool async) const { 1178 return getMinUndequeuedBufferCount(async) + 1; 1179 } 1180 1181 int BufferQueue::getMaxBufferCountLocked(bool async) const { 1182 int minMaxBufferCount = getMinMaxBufferCountLocked(async); 1183 1184 int maxBufferCount = mDefaultMaxBufferCount; 1185 if (maxBufferCount < minMaxBufferCount) { 1186 maxBufferCount = minMaxBufferCount; 1187 } 1188 if (mOverrideMaxBufferCount != 0) { 1189 assert(mOverrideMaxBufferCount >= minMaxBufferCount); 1190 maxBufferCount = mOverrideMaxBufferCount; 1191 } 1192 1193 // Any buffers that are dequeued by the producer or sitting in the queue 1194 // waiting to be consumed need to have their slots preserved. Such 1195 // buffers will temporarily keep the max buffer count up until the slots 1196 // no longer need to be preserved. 1197 for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) { 1198 BufferSlot::BufferState state = mSlots[i].mBufferState; 1199 if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) { 1200 maxBufferCount = i + 1; 1201 } 1202 } 1203 1204 return maxBufferCount; 1205 } 1206 1207 bool BufferQueue::stillTracking(const BufferItem *item) const { 1208 const BufferSlot &slot = mSlots[item->mBuf]; 1209 1210 ST_LOGV("stillTracking?: item: { slot=%d/%llu, buffer=%p }, " 1211 "slot: { slot=%d/%llu, buffer=%p }", 1212 item->mBuf, item->mFrameNumber, 1213 (item->mGraphicBuffer.get() ? item->mGraphicBuffer->handle : 0), 1214 item->mBuf, slot.mFrameNumber, 1215 (slot.mGraphicBuffer.get() ? slot.mGraphicBuffer->handle : 0)); 1216 1217 // Compare item with its original buffer slot. We can check the slot 1218 // as the buffer would not be moved to a different slot by the producer. 1219 return (slot.mGraphicBuffer != NULL && 1220 item->mGraphicBuffer->handle == slot.mGraphicBuffer->handle); 1221 } 1222 1223 BufferQueue::ProxyConsumerListener::ProxyConsumerListener( 1224 const wp<ConsumerListener>& consumerListener): 1225 mConsumerListener(consumerListener) {} 1226 1227 BufferQueue::ProxyConsumerListener::~ProxyConsumerListener() {} 1228 1229 void BufferQueue::ProxyConsumerListener::onFrameAvailable() { 1230 sp<ConsumerListener> listener(mConsumerListener.promote()); 1231 if (listener != NULL) { 1232 listener->onFrameAvailable(); 1233 } 1234 } 1235 1236 void BufferQueue::ProxyConsumerListener::onBuffersReleased() { 1237 sp<ConsumerListener> listener(mConsumerListener.promote()); 1238 if (listener != NULL) { 1239 listener->onBuffersReleased(); 1240 } 1241 } 1242 1243 }; // namespace android 1244