1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/Operator.h" 23 #include "llvm/Support/CallSite.h" 24 #include "llvm/Support/ConstantRange.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CallSite Class 31 //===----------------------------------------------------------------------===// 32 33 User::op_iterator CallSite::getCallee() const { 34 Instruction *II(getInstruction()); 35 return isCall() 36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 38 } 39 40 //===----------------------------------------------------------------------===// 41 // TerminatorInst Class 42 //===----------------------------------------------------------------------===// 43 44 // Out of line virtual method, so the vtable, etc has a home. 45 TerminatorInst::~TerminatorInst() { 46 } 47 48 //===----------------------------------------------------------------------===// 49 // UnaryInstruction Class 50 //===----------------------------------------------------------------------===// 51 52 // Out of line virtual method, so the vtable, etc has a home. 53 UnaryInstruction::~UnaryInstruction() { 54 } 55 56 //===----------------------------------------------------------------------===// 57 // SelectInst Class 58 //===----------------------------------------------------------------------===// 59 60 /// areInvalidOperands - Return a string if the specified operands are invalid 61 /// for a select operation, otherwise return null. 62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 63 if (Op1->getType() != Op2->getType()) 64 return "both values to select must have same type"; 65 66 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 67 // Vector select. 68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 69 return "vector select condition element type must be i1"; 70 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 71 if (ET == 0) 72 return "selected values for vector select must be vectors"; 73 if (ET->getNumElements() != VT->getNumElements()) 74 return "vector select requires selected vectors to have " 75 "the same vector length as select condition"; 76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 77 return "select condition must be i1 or <n x i1>"; 78 } 79 return 0; 80 } 81 82 83 //===----------------------------------------------------------------------===// 84 // PHINode Class 85 //===----------------------------------------------------------------------===// 86 87 PHINode::PHINode(const PHINode &PN) 88 : Instruction(PN.getType(), Instruction::PHI, 89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), 90 ReservedSpace(PN.getNumOperands()) { 91 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 92 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 93 SubclassOptionalData = PN.SubclassOptionalData; 94 } 95 96 PHINode::~PHINode() { 97 dropHungoffUses(); 98 } 99 100 Use *PHINode::allocHungoffUses(unsigned N) const { 101 // Allocate the array of Uses of the incoming values, followed by a pointer 102 // (with bottom bit set) to the User, followed by the array of pointers to 103 // the incoming basic blocks. 104 size_t size = N * sizeof(Use) + sizeof(Use::UserRef) 105 + N * sizeof(BasicBlock*); 106 Use *Begin = static_cast<Use*>(::operator new(size)); 107 Use *End = Begin + N; 108 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); 109 return Use::initTags(Begin, End); 110 } 111 112 // removeIncomingValue - Remove an incoming value. This is useful if a 113 // predecessor basic block is deleted. 114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 115 Value *Removed = getIncomingValue(Idx); 116 117 // Move everything after this operand down. 118 // 119 // FIXME: we could just swap with the end of the list, then erase. However, 120 // clients might not expect this to happen. The code as it is thrashes the 121 // use/def lists, which is kinda lame. 122 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 123 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 124 125 // Nuke the last value. 126 Op<-1>().set(0); 127 --NumOperands; 128 129 // If the PHI node is dead, because it has zero entries, nuke it now. 130 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 131 // If anyone is using this PHI, make them use a dummy value instead... 132 replaceAllUsesWith(UndefValue::get(getType())); 133 eraseFromParent(); 134 } 135 return Removed; 136 } 137 138 /// growOperands - grow operands - This grows the operand list in response 139 /// to a push_back style of operation. This grows the number of ops by 1.5 140 /// times. 141 /// 142 void PHINode::growOperands() { 143 unsigned e = getNumOperands(); 144 unsigned NumOps = e + e / 2; 145 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 146 147 Use *OldOps = op_begin(); 148 BasicBlock **OldBlocks = block_begin(); 149 150 ReservedSpace = NumOps; 151 OperandList = allocHungoffUses(ReservedSpace); 152 153 std::copy(OldOps, OldOps + e, op_begin()); 154 std::copy(OldBlocks, OldBlocks + e, block_begin()); 155 156 Use::zap(OldOps, OldOps + e, true); 157 } 158 159 /// hasConstantValue - If the specified PHI node always merges together the same 160 /// value, return the value, otherwise return null. 161 Value *PHINode::hasConstantValue() const { 162 // Exploit the fact that phi nodes always have at least one entry. 163 Value *ConstantValue = getIncomingValue(0); 164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 166 if (ConstantValue != this) 167 return 0; // Incoming values not all the same. 168 // The case where the first value is this PHI. 169 ConstantValue = getIncomingValue(i); 170 } 171 if (ConstantValue == this) 172 return UndefValue::get(getType()); 173 return ConstantValue; 174 } 175 176 //===----------------------------------------------------------------------===// 177 // LandingPadInst Implementation 178 //===----------------------------------------------------------------------===// 179 180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 181 unsigned NumReservedValues, const Twine &NameStr, 182 Instruction *InsertBefore) 183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { 184 init(PersonalityFn, 1 + NumReservedValues, NameStr); 185 } 186 187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 188 unsigned NumReservedValues, const Twine &NameStr, 189 BasicBlock *InsertAtEnd) 190 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { 191 init(PersonalityFn, 1 + NumReservedValues, NameStr); 192 } 193 194 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 195 : Instruction(LP.getType(), Instruction::LandingPad, 196 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), 197 ReservedSpace(LP.getNumOperands()) { 198 Use *OL = OperandList, *InOL = LP.OperandList; 199 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 200 OL[I] = InOL[I]; 201 202 setCleanup(LP.isCleanup()); 203 } 204 205 LandingPadInst::~LandingPadInst() { 206 dropHungoffUses(); 207 } 208 209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 210 unsigned NumReservedClauses, 211 const Twine &NameStr, 212 Instruction *InsertBefore) { 213 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 214 InsertBefore); 215 } 216 217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 218 unsigned NumReservedClauses, 219 const Twine &NameStr, 220 BasicBlock *InsertAtEnd) { 221 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 222 InsertAtEnd); 223 } 224 225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, 226 const Twine &NameStr) { 227 ReservedSpace = NumReservedValues; 228 NumOperands = 1; 229 OperandList = allocHungoffUses(ReservedSpace); 230 OperandList[0] = PersFn; 231 setName(NameStr); 232 setCleanup(false); 233 } 234 235 /// growOperands - grow operands - This grows the operand list in response to a 236 /// push_back style of operation. This grows the number of ops by 2 times. 237 void LandingPadInst::growOperands(unsigned Size) { 238 unsigned e = getNumOperands(); 239 if (ReservedSpace >= e + Size) return; 240 ReservedSpace = (e + Size / 2) * 2; 241 242 Use *NewOps = allocHungoffUses(ReservedSpace); 243 Use *OldOps = OperandList; 244 for (unsigned i = 0; i != e; ++i) 245 NewOps[i] = OldOps[i]; 246 247 OperandList = NewOps; 248 Use::zap(OldOps, OldOps + e, true); 249 } 250 251 void LandingPadInst::addClause(Value *Val) { 252 unsigned OpNo = getNumOperands(); 253 growOperands(1); 254 assert(OpNo < ReservedSpace && "Growing didn't work!"); 255 ++NumOperands; 256 OperandList[OpNo] = Val; 257 } 258 259 //===----------------------------------------------------------------------===// 260 // CallInst Implementation 261 //===----------------------------------------------------------------------===// 262 263 CallInst::~CallInst() { 264 } 265 266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { 267 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); 268 Op<-1>() = Func; 269 270 #ifndef NDEBUG 271 FunctionType *FTy = 272 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 273 274 assert((Args.size() == FTy->getNumParams() || 275 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 276 "Calling a function with bad signature!"); 277 278 for (unsigned i = 0; i != Args.size(); ++i) 279 assert((i >= FTy->getNumParams() || 280 FTy->getParamType(i) == Args[i]->getType()) && 281 "Calling a function with a bad signature!"); 282 #endif 283 284 std::copy(Args.begin(), Args.end(), op_begin()); 285 setName(NameStr); 286 } 287 288 void CallInst::init(Value *Func, const Twine &NameStr) { 289 assert(NumOperands == 1 && "NumOperands not set up?"); 290 Op<-1>() = Func; 291 292 #ifndef NDEBUG 293 FunctionType *FTy = 294 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 295 296 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 297 #endif 298 299 setName(NameStr); 300 } 301 302 CallInst::CallInst(Value *Func, const Twine &Name, 303 Instruction *InsertBefore) 304 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 305 ->getElementType())->getReturnType(), 306 Instruction::Call, 307 OperandTraits<CallInst>::op_end(this) - 1, 308 1, InsertBefore) { 309 init(Func, Name); 310 } 311 312 CallInst::CallInst(Value *Func, const Twine &Name, 313 BasicBlock *InsertAtEnd) 314 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 315 ->getElementType())->getReturnType(), 316 Instruction::Call, 317 OperandTraits<CallInst>::op_end(this) - 1, 318 1, InsertAtEnd) { 319 init(Func, Name); 320 } 321 322 CallInst::CallInst(const CallInst &CI) 323 : Instruction(CI.getType(), Instruction::Call, 324 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 325 CI.getNumOperands()) { 326 setAttributes(CI.getAttributes()); 327 setTailCall(CI.isTailCall()); 328 setCallingConv(CI.getCallingConv()); 329 330 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 331 SubclassOptionalData = CI.SubclassOptionalData; 332 } 333 334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 335 AttributeSet PAL = getAttributes(); 336 PAL = PAL.addAttribute(getContext(), i, attr); 337 setAttributes(PAL); 338 } 339 340 void CallInst::removeAttribute(unsigned i, Attribute attr) { 341 AttributeSet PAL = getAttributes(); 342 AttrBuilder B(attr); 343 LLVMContext &Context = getContext(); 344 PAL = PAL.removeAttributes(Context, i, 345 AttributeSet::get(Context, i, B)); 346 setAttributes(PAL); 347 } 348 349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const { 350 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) 351 return true; 352 if (const Function *F = getCalledFunction()) 353 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); 354 return false; 355 } 356 357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 358 if (AttributeList.hasAttribute(i, A)) 359 return true; 360 if (const Function *F = getCalledFunction()) 361 return F->getAttributes().hasAttribute(i, A); 362 return false; 363 } 364 365 /// IsConstantOne - Return true only if val is constant int 1 366 static bool IsConstantOne(Value *val) { 367 assert(val && "IsConstantOne does not work with NULL val"); 368 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); 369 } 370 371 static Instruction *createMalloc(Instruction *InsertBefore, 372 BasicBlock *InsertAtEnd, Type *IntPtrTy, 373 Type *AllocTy, Value *AllocSize, 374 Value *ArraySize, Function *MallocF, 375 const Twine &Name) { 376 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 377 "createMalloc needs either InsertBefore or InsertAtEnd"); 378 379 // malloc(type) becomes: 380 // bitcast (i8* malloc(typeSize)) to type* 381 // malloc(type, arraySize) becomes: 382 // bitcast (i8 *malloc(typeSize*arraySize)) to type* 383 if (!ArraySize) 384 ArraySize = ConstantInt::get(IntPtrTy, 1); 385 else if (ArraySize->getType() != IntPtrTy) { 386 if (InsertBefore) 387 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 388 "", InsertBefore); 389 else 390 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 391 "", InsertAtEnd); 392 } 393 394 if (!IsConstantOne(ArraySize)) { 395 if (IsConstantOne(AllocSize)) { 396 AllocSize = ArraySize; // Operand * 1 = Operand 397 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 398 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 399 false /*ZExt*/); 400 // Malloc arg is constant product of type size and array size 401 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 402 } else { 403 // Multiply type size by the array size... 404 if (InsertBefore) 405 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 406 "mallocsize", InsertBefore); 407 else 408 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 409 "mallocsize", InsertAtEnd); 410 } 411 } 412 413 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 414 // Create the call to Malloc. 415 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 416 Module* M = BB->getParent()->getParent(); 417 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 418 Value *MallocFunc = MallocF; 419 if (!MallocFunc) 420 // prototype malloc as "void *malloc(size_t)" 421 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); 422 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 423 CallInst *MCall = NULL; 424 Instruction *Result = NULL; 425 if (InsertBefore) { 426 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); 427 Result = MCall; 428 if (Result->getType() != AllocPtrType) 429 // Create a cast instruction to convert to the right type... 430 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 431 } else { 432 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); 433 Result = MCall; 434 if (Result->getType() != AllocPtrType) { 435 InsertAtEnd->getInstList().push_back(MCall); 436 // Create a cast instruction to convert to the right type... 437 Result = new BitCastInst(MCall, AllocPtrType, Name); 438 } 439 } 440 MCall->setTailCall(); 441 if (Function *F = dyn_cast<Function>(MallocFunc)) { 442 MCall->setCallingConv(F->getCallingConv()); 443 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 444 } 445 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 446 447 return Result; 448 } 449 450 /// CreateMalloc - Generate the IR for a call to malloc: 451 /// 1. Compute the malloc call's argument as the specified type's size, 452 /// possibly multiplied by the array size if the array size is not 453 /// constant 1. 454 /// 2. Call malloc with that argument. 455 /// 3. Bitcast the result of the malloc call to the specified type. 456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 457 Type *IntPtrTy, Type *AllocTy, 458 Value *AllocSize, Value *ArraySize, 459 Function * MallocF, 460 const Twine &Name) { 461 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, 462 ArraySize, MallocF, Name); 463 } 464 465 /// CreateMalloc - Generate the IR for a call to malloc: 466 /// 1. Compute the malloc call's argument as the specified type's size, 467 /// possibly multiplied by the array size if the array size is not 468 /// constant 1. 469 /// 2. Call malloc with that argument. 470 /// 3. Bitcast the result of the malloc call to the specified type. 471 /// Note: This function does not add the bitcast to the basic block, that is the 472 /// responsibility of the caller. 473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 474 Type *IntPtrTy, Type *AllocTy, 475 Value *AllocSize, Value *ArraySize, 476 Function *MallocF, const Twine &Name) { 477 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 478 ArraySize, MallocF, Name); 479 } 480 481 static Instruction* createFree(Value* Source, Instruction *InsertBefore, 482 BasicBlock *InsertAtEnd) { 483 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 484 "createFree needs either InsertBefore or InsertAtEnd"); 485 assert(Source->getType()->isPointerTy() && 486 "Can not free something of nonpointer type!"); 487 488 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 489 Module* M = BB->getParent()->getParent(); 490 491 Type *VoidTy = Type::getVoidTy(M->getContext()); 492 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 493 // prototype free as "void free(void*)" 494 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); 495 CallInst* Result = NULL; 496 Value *PtrCast = Source; 497 if (InsertBefore) { 498 if (Source->getType() != IntPtrTy) 499 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 500 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); 501 } else { 502 if (Source->getType() != IntPtrTy) 503 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 504 Result = CallInst::Create(FreeFunc, PtrCast, ""); 505 } 506 Result->setTailCall(); 507 if (Function *F = dyn_cast<Function>(FreeFunc)) 508 Result->setCallingConv(F->getCallingConv()); 509 510 return Result; 511 } 512 513 /// CreateFree - Generate the IR for a call to the builtin free function. 514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { 515 return createFree(Source, InsertBefore, NULL); 516 } 517 518 /// CreateFree - Generate the IR for a call to the builtin free function. 519 /// Note: This function does not add the call to the basic block, that is the 520 /// responsibility of the caller. 521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { 522 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); 523 assert(FreeCall && "CreateFree did not create a CallInst"); 524 return FreeCall; 525 } 526 527 //===----------------------------------------------------------------------===// 528 // InvokeInst Implementation 529 //===----------------------------------------------------------------------===// 530 531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, 532 ArrayRef<Value *> Args, const Twine &NameStr) { 533 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); 534 Op<-3>() = Fn; 535 Op<-2>() = IfNormal; 536 Op<-1>() = IfException; 537 538 #ifndef NDEBUG 539 FunctionType *FTy = 540 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); 541 542 assert(((Args.size() == FTy->getNumParams()) || 543 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 544 "Invoking a function with bad signature"); 545 546 for (unsigned i = 0, e = Args.size(); i != e; i++) 547 assert((i >= FTy->getNumParams() || 548 FTy->getParamType(i) == Args[i]->getType()) && 549 "Invoking a function with a bad signature!"); 550 #endif 551 552 std::copy(Args.begin(), Args.end(), op_begin()); 553 setName(NameStr); 554 } 555 556 InvokeInst::InvokeInst(const InvokeInst &II) 557 : TerminatorInst(II.getType(), Instruction::Invoke, 558 OperandTraits<InvokeInst>::op_end(this) 559 - II.getNumOperands(), 560 II.getNumOperands()) { 561 setAttributes(II.getAttributes()); 562 setCallingConv(II.getCallingConv()); 563 std::copy(II.op_begin(), II.op_end(), op_begin()); 564 SubclassOptionalData = II.SubclassOptionalData; 565 } 566 567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 568 return getSuccessor(idx); 569 } 570 unsigned InvokeInst::getNumSuccessorsV() const { 571 return getNumSuccessors(); 572 } 573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 574 return setSuccessor(idx, B); 575 } 576 577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const { 578 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) 579 return true; 580 if (const Function *F = getCalledFunction()) 581 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); 582 return false; 583 } 584 585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 586 if (AttributeList.hasAttribute(i, A)) 587 return true; 588 if (const Function *F = getCalledFunction()) 589 return F->getAttributes().hasAttribute(i, A); 590 return false; 591 } 592 593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 594 AttributeSet PAL = getAttributes(); 595 PAL = PAL.addAttribute(getContext(), i, attr); 596 setAttributes(PAL); 597 } 598 599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) { 600 AttributeSet PAL = getAttributes(); 601 AttrBuilder B(attr); 602 PAL = PAL.removeAttributes(getContext(), i, 603 AttributeSet::get(getContext(), i, B)); 604 setAttributes(PAL); 605 } 606 607 LandingPadInst *InvokeInst::getLandingPadInst() const { 608 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 609 } 610 611 //===----------------------------------------------------------------------===// 612 // ReturnInst Implementation 613 //===----------------------------------------------------------------------===// 614 615 ReturnInst::ReturnInst(const ReturnInst &RI) 616 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 617 OperandTraits<ReturnInst>::op_end(this) - 618 RI.getNumOperands(), 619 RI.getNumOperands()) { 620 if (RI.getNumOperands()) 621 Op<0>() = RI.Op<0>(); 622 SubclassOptionalData = RI.SubclassOptionalData; 623 } 624 625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 626 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 627 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 628 InsertBefore) { 629 if (retVal) 630 Op<0>() = retVal; 631 } 632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 633 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 634 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 635 InsertAtEnd) { 636 if (retVal) 637 Op<0>() = retVal; 638 } 639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 640 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 641 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 642 } 643 644 unsigned ReturnInst::getNumSuccessorsV() const { 645 return getNumSuccessors(); 646 } 647 648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 649 /// emit the vtable for the class in this translation unit. 650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 651 llvm_unreachable("ReturnInst has no successors!"); 652 } 653 654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 655 llvm_unreachable("ReturnInst has no successors!"); 656 } 657 658 ReturnInst::~ReturnInst() { 659 } 660 661 //===----------------------------------------------------------------------===// 662 // ResumeInst Implementation 663 //===----------------------------------------------------------------------===// 664 665 ResumeInst::ResumeInst(const ResumeInst &RI) 666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 667 OperandTraits<ResumeInst>::op_begin(this), 1) { 668 Op<0>() = RI.Op<0>(); 669 } 670 671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 674 Op<0>() = Exn; 675 } 676 677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 680 Op<0>() = Exn; 681 } 682 683 unsigned ResumeInst::getNumSuccessorsV() const { 684 return getNumSuccessors(); 685 } 686 687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 688 llvm_unreachable("ResumeInst has no successors!"); 689 } 690 691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 692 llvm_unreachable("ResumeInst has no successors!"); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // UnreachableInst Implementation 697 //===----------------------------------------------------------------------===// 698 699 UnreachableInst::UnreachableInst(LLVMContext &Context, 700 Instruction *InsertBefore) 701 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 702 0, 0, InsertBefore) { 703 } 704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 705 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 706 0, 0, InsertAtEnd) { 707 } 708 709 unsigned UnreachableInst::getNumSuccessorsV() const { 710 return getNumSuccessors(); 711 } 712 713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 714 llvm_unreachable("UnreachableInst has no successors!"); 715 } 716 717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 718 llvm_unreachable("UnreachableInst has no successors!"); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // BranchInst Implementation 723 //===----------------------------------------------------------------------===// 724 725 void BranchInst::AssertOK() { 726 if (isConditional()) 727 assert(getCondition()->getType()->isIntegerTy(1) && 728 "May only branch on boolean predicates!"); 729 } 730 731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 732 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 733 OperandTraits<BranchInst>::op_end(this) - 1, 734 1, InsertBefore) { 735 assert(IfTrue != 0 && "Branch destination may not be null!"); 736 Op<-1>() = IfTrue; 737 } 738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 739 Instruction *InsertBefore) 740 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 741 OperandTraits<BranchInst>::op_end(this) - 3, 742 3, InsertBefore) { 743 Op<-1>() = IfTrue; 744 Op<-2>() = IfFalse; 745 Op<-3>() = Cond; 746 #ifndef NDEBUG 747 AssertOK(); 748 #endif 749 } 750 751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 752 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 753 OperandTraits<BranchInst>::op_end(this) - 1, 754 1, InsertAtEnd) { 755 assert(IfTrue != 0 && "Branch destination may not be null!"); 756 Op<-1>() = IfTrue; 757 } 758 759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 760 BasicBlock *InsertAtEnd) 761 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 762 OperandTraits<BranchInst>::op_end(this) - 3, 763 3, InsertAtEnd) { 764 Op<-1>() = IfTrue; 765 Op<-2>() = IfFalse; 766 Op<-3>() = Cond; 767 #ifndef NDEBUG 768 AssertOK(); 769 #endif 770 } 771 772 773 BranchInst::BranchInst(const BranchInst &BI) : 774 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 775 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 776 BI.getNumOperands()) { 777 Op<-1>() = BI.Op<-1>(); 778 if (BI.getNumOperands() != 1) { 779 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 780 Op<-3>() = BI.Op<-3>(); 781 Op<-2>() = BI.Op<-2>(); 782 } 783 SubclassOptionalData = BI.SubclassOptionalData; 784 } 785 786 void BranchInst::swapSuccessors() { 787 assert(isConditional() && 788 "Cannot swap successors of an unconditional branch"); 789 Op<-1>().swap(Op<-2>()); 790 791 // Update profile metadata if present and it matches our structural 792 // expectations. 793 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 794 if (!ProfileData || ProfileData->getNumOperands() != 3) 795 return; 796 797 // The first operand is the name. Fetch them backwards and build a new one. 798 Value *Ops[] = { 799 ProfileData->getOperand(0), 800 ProfileData->getOperand(2), 801 ProfileData->getOperand(1) 802 }; 803 setMetadata(LLVMContext::MD_prof, 804 MDNode::get(ProfileData->getContext(), Ops)); 805 } 806 807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 808 return getSuccessor(idx); 809 } 810 unsigned BranchInst::getNumSuccessorsV() const { 811 return getNumSuccessors(); 812 } 813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 814 setSuccessor(idx, B); 815 } 816 817 818 //===----------------------------------------------------------------------===// 819 // AllocaInst Implementation 820 //===----------------------------------------------------------------------===// 821 822 static Value *getAISize(LLVMContext &Context, Value *Amt) { 823 if (!Amt) 824 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 825 else { 826 assert(!isa<BasicBlock>(Amt) && 827 "Passed basic block into allocation size parameter! Use other ctor"); 828 assert(Amt->getType()->isIntegerTy() && 829 "Allocation array size is not an integer!"); 830 } 831 return Amt; 832 } 833 834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 835 const Twine &Name, Instruction *InsertBefore) 836 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 837 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 838 setAlignment(0); 839 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 840 setName(Name); 841 } 842 843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 844 const Twine &Name, BasicBlock *InsertAtEnd) 845 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 846 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 847 setAlignment(0); 848 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 849 setName(Name); 850 } 851 852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 853 Instruction *InsertBefore) 854 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 855 getAISize(Ty->getContext(), 0), InsertBefore) { 856 setAlignment(0); 857 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 858 setName(Name); 859 } 860 861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 862 BasicBlock *InsertAtEnd) 863 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 864 getAISize(Ty->getContext(), 0), InsertAtEnd) { 865 setAlignment(0); 866 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 867 setName(Name); 868 } 869 870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 871 const Twine &Name, Instruction *InsertBefore) 872 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 873 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 874 setAlignment(Align); 875 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 876 setName(Name); 877 } 878 879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 880 const Twine &Name, BasicBlock *InsertAtEnd) 881 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 882 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 883 setAlignment(Align); 884 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 885 setName(Name); 886 } 887 888 // Out of line virtual method, so the vtable, etc has a home. 889 AllocaInst::~AllocaInst() { 890 } 891 892 void AllocaInst::setAlignment(unsigned Align) { 893 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 894 assert(Align <= MaximumAlignment && 895 "Alignment is greater than MaximumAlignment!"); 896 setInstructionSubclassData(Log2_32(Align) + 1); 897 assert(getAlignment() == Align && "Alignment representation error!"); 898 } 899 900 bool AllocaInst::isArrayAllocation() const { 901 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 902 return !CI->isOne(); 903 return true; 904 } 905 906 Type *AllocaInst::getAllocatedType() const { 907 return getType()->getElementType(); 908 } 909 910 /// isStaticAlloca - Return true if this alloca is in the entry block of the 911 /// function and is a constant size. If so, the code generator will fold it 912 /// into the prolog/epilog code, so it is basically free. 913 bool AllocaInst::isStaticAlloca() const { 914 // Must be constant size. 915 if (!isa<ConstantInt>(getArraySize())) return false; 916 917 // Must be in the entry block. 918 const BasicBlock *Parent = getParent(); 919 return Parent == &Parent->getParent()->front(); 920 } 921 922 //===----------------------------------------------------------------------===// 923 // LoadInst Implementation 924 //===----------------------------------------------------------------------===// 925 926 void LoadInst::AssertOK() { 927 assert(getOperand(0)->getType()->isPointerTy() && 928 "Ptr must have pointer type."); 929 assert(!(isAtomic() && getAlignment() == 0) && 930 "Alignment required for atomic load"); 931 } 932 933 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 934 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 935 Load, Ptr, InsertBef) { 936 setVolatile(false); 937 setAlignment(0); 938 setAtomic(NotAtomic); 939 AssertOK(); 940 setName(Name); 941 } 942 943 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 944 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 945 Load, Ptr, InsertAE) { 946 setVolatile(false); 947 setAlignment(0); 948 setAtomic(NotAtomic); 949 AssertOK(); 950 setName(Name); 951 } 952 953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 954 Instruction *InsertBef) 955 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 956 Load, Ptr, InsertBef) { 957 setVolatile(isVolatile); 958 setAlignment(0); 959 setAtomic(NotAtomic); 960 AssertOK(); 961 setName(Name); 962 } 963 964 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 965 BasicBlock *InsertAE) 966 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 967 Load, Ptr, InsertAE) { 968 setVolatile(isVolatile); 969 setAlignment(0); 970 setAtomic(NotAtomic); 971 AssertOK(); 972 setName(Name); 973 } 974 975 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 976 unsigned Align, Instruction *InsertBef) 977 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 978 Load, Ptr, InsertBef) { 979 setVolatile(isVolatile); 980 setAlignment(Align); 981 setAtomic(NotAtomic); 982 AssertOK(); 983 setName(Name); 984 } 985 986 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 987 unsigned Align, BasicBlock *InsertAE) 988 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 989 Load, Ptr, InsertAE) { 990 setVolatile(isVolatile); 991 setAlignment(Align); 992 setAtomic(NotAtomic); 993 AssertOK(); 994 setName(Name); 995 } 996 997 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 998 unsigned Align, AtomicOrdering Order, 999 SynchronizationScope SynchScope, 1000 Instruction *InsertBef) 1001 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1002 Load, Ptr, InsertBef) { 1003 setVolatile(isVolatile); 1004 setAlignment(Align); 1005 setAtomic(Order, SynchScope); 1006 AssertOK(); 1007 setName(Name); 1008 } 1009 1010 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1011 unsigned Align, AtomicOrdering Order, 1012 SynchronizationScope SynchScope, 1013 BasicBlock *InsertAE) 1014 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1015 Load, Ptr, InsertAE) { 1016 setVolatile(isVolatile); 1017 setAlignment(Align); 1018 setAtomic(Order, SynchScope); 1019 AssertOK(); 1020 setName(Name); 1021 } 1022 1023 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1024 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1025 Load, Ptr, InsertBef) { 1026 setVolatile(false); 1027 setAlignment(0); 1028 setAtomic(NotAtomic); 1029 AssertOK(); 1030 if (Name && Name[0]) setName(Name); 1031 } 1032 1033 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1034 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1035 Load, Ptr, InsertAE) { 1036 setVolatile(false); 1037 setAlignment(0); 1038 setAtomic(NotAtomic); 1039 AssertOK(); 1040 if (Name && Name[0]) setName(Name); 1041 } 1042 1043 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1044 Instruction *InsertBef) 1045 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1046 Load, Ptr, InsertBef) { 1047 setVolatile(isVolatile); 1048 setAlignment(0); 1049 setAtomic(NotAtomic); 1050 AssertOK(); 1051 if (Name && Name[0]) setName(Name); 1052 } 1053 1054 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1055 BasicBlock *InsertAE) 1056 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1057 Load, Ptr, InsertAE) { 1058 setVolatile(isVolatile); 1059 setAlignment(0); 1060 setAtomic(NotAtomic); 1061 AssertOK(); 1062 if (Name && Name[0]) setName(Name); 1063 } 1064 1065 void LoadInst::setAlignment(unsigned Align) { 1066 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1067 assert(Align <= MaximumAlignment && 1068 "Alignment is greater than MaximumAlignment!"); 1069 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1070 ((Log2_32(Align)+1)<<1)); 1071 assert(getAlignment() == Align && "Alignment representation error!"); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // StoreInst Implementation 1076 //===----------------------------------------------------------------------===// 1077 1078 void StoreInst::AssertOK() { 1079 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1080 assert(getOperand(1)->getType()->isPointerTy() && 1081 "Ptr must have pointer type!"); 1082 assert(getOperand(0)->getType() == 1083 cast<PointerType>(getOperand(1)->getType())->getElementType() 1084 && "Ptr must be a pointer to Val type!"); 1085 assert(!(isAtomic() && getAlignment() == 0) && 1086 "Alignment required for atomic load"); 1087 } 1088 1089 1090 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1091 : Instruction(Type::getVoidTy(val->getContext()), Store, 1092 OperandTraits<StoreInst>::op_begin(this), 1093 OperandTraits<StoreInst>::operands(this), 1094 InsertBefore) { 1095 Op<0>() = val; 1096 Op<1>() = addr; 1097 setVolatile(false); 1098 setAlignment(0); 1099 setAtomic(NotAtomic); 1100 AssertOK(); 1101 } 1102 1103 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1104 : Instruction(Type::getVoidTy(val->getContext()), Store, 1105 OperandTraits<StoreInst>::op_begin(this), 1106 OperandTraits<StoreInst>::operands(this), 1107 InsertAtEnd) { 1108 Op<0>() = val; 1109 Op<1>() = addr; 1110 setVolatile(false); 1111 setAlignment(0); 1112 setAtomic(NotAtomic); 1113 AssertOK(); 1114 } 1115 1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1117 Instruction *InsertBefore) 1118 : Instruction(Type::getVoidTy(val->getContext()), Store, 1119 OperandTraits<StoreInst>::op_begin(this), 1120 OperandTraits<StoreInst>::operands(this), 1121 InsertBefore) { 1122 Op<0>() = val; 1123 Op<1>() = addr; 1124 setVolatile(isVolatile); 1125 setAlignment(0); 1126 setAtomic(NotAtomic); 1127 AssertOK(); 1128 } 1129 1130 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1131 unsigned Align, Instruction *InsertBefore) 1132 : Instruction(Type::getVoidTy(val->getContext()), Store, 1133 OperandTraits<StoreInst>::op_begin(this), 1134 OperandTraits<StoreInst>::operands(this), 1135 InsertBefore) { 1136 Op<0>() = val; 1137 Op<1>() = addr; 1138 setVolatile(isVolatile); 1139 setAlignment(Align); 1140 setAtomic(NotAtomic); 1141 AssertOK(); 1142 } 1143 1144 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1145 unsigned Align, AtomicOrdering Order, 1146 SynchronizationScope SynchScope, 1147 Instruction *InsertBefore) 1148 : Instruction(Type::getVoidTy(val->getContext()), Store, 1149 OperandTraits<StoreInst>::op_begin(this), 1150 OperandTraits<StoreInst>::operands(this), 1151 InsertBefore) { 1152 Op<0>() = val; 1153 Op<1>() = addr; 1154 setVolatile(isVolatile); 1155 setAlignment(Align); 1156 setAtomic(Order, SynchScope); 1157 AssertOK(); 1158 } 1159 1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1161 BasicBlock *InsertAtEnd) 1162 : Instruction(Type::getVoidTy(val->getContext()), Store, 1163 OperandTraits<StoreInst>::op_begin(this), 1164 OperandTraits<StoreInst>::operands(this), 1165 InsertAtEnd) { 1166 Op<0>() = val; 1167 Op<1>() = addr; 1168 setVolatile(isVolatile); 1169 setAlignment(0); 1170 setAtomic(NotAtomic); 1171 AssertOK(); 1172 } 1173 1174 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1175 unsigned Align, BasicBlock *InsertAtEnd) 1176 : Instruction(Type::getVoidTy(val->getContext()), Store, 1177 OperandTraits<StoreInst>::op_begin(this), 1178 OperandTraits<StoreInst>::operands(this), 1179 InsertAtEnd) { 1180 Op<0>() = val; 1181 Op<1>() = addr; 1182 setVolatile(isVolatile); 1183 setAlignment(Align); 1184 setAtomic(NotAtomic); 1185 AssertOK(); 1186 } 1187 1188 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1189 unsigned Align, AtomicOrdering Order, 1190 SynchronizationScope SynchScope, 1191 BasicBlock *InsertAtEnd) 1192 : Instruction(Type::getVoidTy(val->getContext()), Store, 1193 OperandTraits<StoreInst>::op_begin(this), 1194 OperandTraits<StoreInst>::operands(this), 1195 InsertAtEnd) { 1196 Op<0>() = val; 1197 Op<1>() = addr; 1198 setVolatile(isVolatile); 1199 setAlignment(Align); 1200 setAtomic(Order, SynchScope); 1201 AssertOK(); 1202 } 1203 1204 void StoreInst::setAlignment(unsigned Align) { 1205 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1206 assert(Align <= MaximumAlignment && 1207 "Alignment is greater than MaximumAlignment!"); 1208 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1209 ((Log2_32(Align)+1) << 1)); 1210 assert(getAlignment() == Align && "Alignment representation error!"); 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // AtomicCmpXchgInst Implementation 1215 //===----------------------------------------------------------------------===// 1216 1217 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1218 AtomicOrdering Ordering, 1219 SynchronizationScope SynchScope) { 1220 Op<0>() = Ptr; 1221 Op<1>() = Cmp; 1222 Op<2>() = NewVal; 1223 setOrdering(Ordering); 1224 setSynchScope(SynchScope); 1225 1226 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1227 "All operands must be non-null!"); 1228 assert(getOperand(0)->getType()->isPointerTy() && 1229 "Ptr must have pointer type!"); 1230 assert(getOperand(1)->getType() == 1231 cast<PointerType>(getOperand(0)->getType())->getElementType() 1232 && "Ptr must be a pointer to Cmp type!"); 1233 assert(getOperand(2)->getType() == 1234 cast<PointerType>(getOperand(0)->getType())->getElementType() 1235 && "Ptr must be a pointer to NewVal type!"); 1236 assert(Ordering != NotAtomic && 1237 "AtomicCmpXchg instructions must be atomic!"); 1238 } 1239 1240 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1241 AtomicOrdering Ordering, 1242 SynchronizationScope SynchScope, 1243 Instruction *InsertBefore) 1244 : Instruction(Cmp->getType(), AtomicCmpXchg, 1245 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1246 OperandTraits<AtomicCmpXchgInst>::operands(this), 1247 InsertBefore) { 1248 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1249 } 1250 1251 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1252 AtomicOrdering Ordering, 1253 SynchronizationScope SynchScope, 1254 BasicBlock *InsertAtEnd) 1255 : Instruction(Cmp->getType(), AtomicCmpXchg, 1256 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1257 OperandTraits<AtomicCmpXchgInst>::operands(this), 1258 InsertAtEnd) { 1259 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1260 } 1261 1262 //===----------------------------------------------------------------------===// 1263 // AtomicRMWInst Implementation 1264 //===----------------------------------------------------------------------===// 1265 1266 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1267 AtomicOrdering Ordering, 1268 SynchronizationScope SynchScope) { 1269 Op<0>() = Ptr; 1270 Op<1>() = Val; 1271 setOperation(Operation); 1272 setOrdering(Ordering); 1273 setSynchScope(SynchScope); 1274 1275 assert(getOperand(0) && getOperand(1) && 1276 "All operands must be non-null!"); 1277 assert(getOperand(0)->getType()->isPointerTy() && 1278 "Ptr must have pointer type!"); 1279 assert(getOperand(1)->getType() == 1280 cast<PointerType>(getOperand(0)->getType())->getElementType() 1281 && "Ptr must be a pointer to Val type!"); 1282 assert(Ordering != NotAtomic && 1283 "AtomicRMW instructions must be atomic!"); 1284 } 1285 1286 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1287 AtomicOrdering Ordering, 1288 SynchronizationScope SynchScope, 1289 Instruction *InsertBefore) 1290 : Instruction(Val->getType(), AtomicRMW, 1291 OperandTraits<AtomicRMWInst>::op_begin(this), 1292 OperandTraits<AtomicRMWInst>::operands(this), 1293 InsertBefore) { 1294 Init(Operation, Ptr, Val, Ordering, SynchScope); 1295 } 1296 1297 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1298 AtomicOrdering Ordering, 1299 SynchronizationScope SynchScope, 1300 BasicBlock *InsertAtEnd) 1301 : Instruction(Val->getType(), AtomicRMW, 1302 OperandTraits<AtomicRMWInst>::op_begin(this), 1303 OperandTraits<AtomicRMWInst>::operands(this), 1304 InsertAtEnd) { 1305 Init(Operation, Ptr, Val, Ordering, SynchScope); 1306 } 1307 1308 //===----------------------------------------------------------------------===// 1309 // FenceInst Implementation 1310 //===----------------------------------------------------------------------===// 1311 1312 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1313 SynchronizationScope SynchScope, 1314 Instruction *InsertBefore) 1315 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { 1316 setOrdering(Ordering); 1317 setSynchScope(SynchScope); 1318 } 1319 1320 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1321 SynchronizationScope SynchScope, 1322 BasicBlock *InsertAtEnd) 1323 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { 1324 setOrdering(Ordering); 1325 setSynchScope(SynchScope); 1326 } 1327 1328 //===----------------------------------------------------------------------===// 1329 // GetElementPtrInst Implementation 1330 //===----------------------------------------------------------------------===// 1331 1332 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1333 const Twine &Name) { 1334 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); 1335 OperandList[0] = Ptr; 1336 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1337 setName(Name); 1338 } 1339 1340 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1341 : Instruction(GEPI.getType(), GetElementPtr, 1342 OperandTraits<GetElementPtrInst>::op_end(this) 1343 - GEPI.getNumOperands(), 1344 GEPI.getNumOperands()) { 1345 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1346 SubclassOptionalData = GEPI.SubclassOptionalData; 1347 } 1348 1349 /// getIndexedType - Returns the type of the element that would be accessed with 1350 /// a gep instruction with the specified parameters. 1351 /// 1352 /// The Idxs pointer should point to a continuous piece of memory containing the 1353 /// indices, either as Value* or uint64_t. 1354 /// 1355 /// A null type is returned if the indices are invalid for the specified 1356 /// pointer type. 1357 /// 1358 template <typename IndexTy> 1359 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { 1360 PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType()); 1361 if (!PTy) return 0; // Type isn't a pointer type! 1362 Type *Agg = PTy->getElementType(); 1363 1364 // Handle the special case of the empty set index set, which is always valid. 1365 if (IdxList.empty()) 1366 return Agg; 1367 1368 // If there is at least one index, the top level type must be sized, otherwise 1369 // it cannot be 'stepped over'. 1370 if (!Agg->isSized()) 1371 return 0; 1372 1373 unsigned CurIdx = 1; 1374 for (; CurIdx != IdxList.size(); ++CurIdx) { 1375 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1376 if (!CT || CT->isPointerTy()) return 0; 1377 IndexTy Index = IdxList[CurIdx]; 1378 if (!CT->indexValid(Index)) return 0; 1379 Agg = CT->getTypeAtIndex(Index); 1380 } 1381 return CurIdx == IdxList.size() ? Agg : 0; 1382 } 1383 1384 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { 1385 return getIndexedTypeInternal(Ptr, IdxList); 1386 } 1387 1388 Type *GetElementPtrInst::getIndexedType(Type *Ptr, 1389 ArrayRef<Constant *> IdxList) { 1390 return getIndexedTypeInternal(Ptr, IdxList); 1391 } 1392 1393 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { 1394 return getIndexedTypeInternal(Ptr, IdxList); 1395 } 1396 1397 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1398 /// zeros. If so, the result pointer and the first operand have the same 1399 /// value, just potentially different types. 1400 bool GetElementPtrInst::hasAllZeroIndices() const { 1401 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1402 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1403 if (!CI->isZero()) return false; 1404 } else { 1405 return false; 1406 } 1407 } 1408 return true; 1409 } 1410 1411 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1412 /// constant integers. If so, the result pointer and the first operand have 1413 /// a constant offset between them. 1414 bool GetElementPtrInst::hasAllConstantIndices() const { 1415 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1416 if (!isa<ConstantInt>(getOperand(i))) 1417 return false; 1418 } 1419 return true; 1420 } 1421 1422 void GetElementPtrInst::setIsInBounds(bool B) { 1423 cast<GEPOperator>(this)->setIsInBounds(B); 1424 } 1425 1426 bool GetElementPtrInst::isInBounds() const { 1427 return cast<GEPOperator>(this)->isInBounds(); 1428 } 1429 1430 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1431 APInt &Offset) const { 1432 // Delegate to the generic GEPOperator implementation. 1433 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1434 } 1435 1436 //===----------------------------------------------------------------------===// 1437 // ExtractElementInst Implementation 1438 //===----------------------------------------------------------------------===// 1439 1440 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1441 const Twine &Name, 1442 Instruction *InsertBef) 1443 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1444 ExtractElement, 1445 OperandTraits<ExtractElementInst>::op_begin(this), 1446 2, InsertBef) { 1447 assert(isValidOperands(Val, Index) && 1448 "Invalid extractelement instruction operands!"); 1449 Op<0>() = Val; 1450 Op<1>() = Index; 1451 setName(Name); 1452 } 1453 1454 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1455 const Twine &Name, 1456 BasicBlock *InsertAE) 1457 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1458 ExtractElement, 1459 OperandTraits<ExtractElementInst>::op_begin(this), 1460 2, InsertAE) { 1461 assert(isValidOperands(Val, Index) && 1462 "Invalid extractelement instruction operands!"); 1463 1464 Op<0>() = Val; 1465 Op<1>() = Index; 1466 setName(Name); 1467 } 1468 1469 1470 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1471 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) 1472 return false; 1473 return true; 1474 } 1475 1476 1477 //===----------------------------------------------------------------------===// 1478 // InsertElementInst Implementation 1479 //===----------------------------------------------------------------------===// 1480 1481 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1482 const Twine &Name, 1483 Instruction *InsertBef) 1484 : Instruction(Vec->getType(), InsertElement, 1485 OperandTraits<InsertElementInst>::op_begin(this), 1486 3, InsertBef) { 1487 assert(isValidOperands(Vec, Elt, Index) && 1488 "Invalid insertelement instruction operands!"); 1489 Op<0>() = Vec; 1490 Op<1>() = Elt; 1491 Op<2>() = Index; 1492 setName(Name); 1493 } 1494 1495 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1496 const Twine &Name, 1497 BasicBlock *InsertAE) 1498 : Instruction(Vec->getType(), InsertElement, 1499 OperandTraits<InsertElementInst>::op_begin(this), 1500 3, InsertAE) { 1501 assert(isValidOperands(Vec, Elt, Index) && 1502 "Invalid insertelement instruction operands!"); 1503 1504 Op<0>() = Vec; 1505 Op<1>() = Elt; 1506 Op<2>() = Index; 1507 setName(Name); 1508 } 1509 1510 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1511 const Value *Index) { 1512 if (!Vec->getType()->isVectorTy()) 1513 return false; // First operand of insertelement must be vector type. 1514 1515 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1516 return false;// Second operand of insertelement must be vector element type. 1517 1518 if (!Index->getType()->isIntegerTy(32)) 1519 return false; // Third operand of insertelement must be i32. 1520 return true; 1521 } 1522 1523 1524 //===----------------------------------------------------------------------===// 1525 // ShuffleVectorInst Implementation 1526 //===----------------------------------------------------------------------===// 1527 1528 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1529 const Twine &Name, 1530 Instruction *InsertBefore) 1531 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1532 cast<VectorType>(Mask->getType())->getNumElements()), 1533 ShuffleVector, 1534 OperandTraits<ShuffleVectorInst>::op_begin(this), 1535 OperandTraits<ShuffleVectorInst>::operands(this), 1536 InsertBefore) { 1537 assert(isValidOperands(V1, V2, Mask) && 1538 "Invalid shuffle vector instruction operands!"); 1539 Op<0>() = V1; 1540 Op<1>() = V2; 1541 Op<2>() = Mask; 1542 setName(Name); 1543 } 1544 1545 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1546 const Twine &Name, 1547 BasicBlock *InsertAtEnd) 1548 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1549 cast<VectorType>(Mask->getType())->getNumElements()), 1550 ShuffleVector, 1551 OperandTraits<ShuffleVectorInst>::op_begin(this), 1552 OperandTraits<ShuffleVectorInst>::operands(this), 1553 InsertAtEnd) { 1554 assert(isValidOperands(V1, V2, Mask) && 1555 "Invalid shuffle vector instruction operands!"); 1556 1557 Op<0>() = V1; 1558 Op<1>() = V2; 1559 Op<2>() = Mask; 1560 setName(Name); 1561 } 1562 1563 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1564 const Value *Mask) { 1565 // V1 and V2 must be vectors of the same type. 1566 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1567 return false; 1568 1569 // Mask must be vector of i32. 1570 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1571 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) 1572 return false; 1573 1574 // Check to see if Mask is valid. 1575 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1576 return true; 1577 1578 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1579 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1580 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { 1581 if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { 1582 if (CI->uge(V1Size*2)) 1583 return false; 1584 } else if (!isa<UndefValue>(MV->getOperand(i))) { 1585 return false; 1586 } 1587 } 1588 return true; 1589 } 1590 1591 if (const ConstantDataSequential *CDS = 1592 dyn_cast<ConstantDataSequential>(Mask)) { 1593 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1594 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1595 if (CDS->getElementAsInteger(i) >= V1Size*2) 1596 return false; 1597 return true; 1598 } 1599 1600 // The bitcode reader can create a place holder for a forward reference 1601 // used as the shuffle mask. When this occurs, the shuffle mask will 1602 // fall into this case and fail. To avoid this error, do this bit of 1603 // ugliness to allow such a mask pass. 1604 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1605 if (CE->getOpcode() == Instruction::UserOp1) 1606 return true; 1607 1608 return false; 1609 } 1610 1611 /// getMaskValue - Return the index from the shuffle mask for the specified 1612 /// output result. This is either -1 if the element is undef or a number less 1613 /// than 2*numelements. 1614 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1615 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1616 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1617 return CDS->getElementAsInteger(i); 1618 Constant *C = Mask->getAggregateElement(i); 1619 if (isa<UndefValue>(C)) 1620 return -1; 1621 return cast<ConstantInt>(C)->getZExtValue(); 1622 } 1623 1624 /// getShuffleMask - Return the full mask for this instruction, where each 1625 /// element is the element number and undef's are returned as -1. 1626 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1627 SmallVectorImpl<int> &Result) { 1628 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1629 1630 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1631 for (unsigned i = 0; i != NumElts; ++i) 1632 Result.push_back(CDS->getElementAsInteger(i)); 1633 return; 1634 } 1635 for (unsigned i = 0; i != NumElts; ++i) { 1636 Constant *C = Mask->getAggregateElement(i); 1637 Result.push_back(isa<UndefValue>(C) ? -1 : 1638 cast<ConstantInt>(C)->getZExtValue()); 1639 } 1640 } 1641 1642 1643 //===----------------------------------------------------------------------===// 1644 // InsertValueInst Class 1645 //===----------------------------------------------------------------------===// 1646 1647 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1648 const Twine &Name) { 1649 assert(NumOperands == 2 && "NumOperands not initialized?"); 1650 1651 // There's no fundamental reason why we require at least one index 1652 // (other than weirdness with &*IdxBegin being invalid; see 1653 // getelementptr's init routine for example). But there's no 1654 // present need to support it. 1655 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1656 1657 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1658 Val->getType() && "Inserted value must match indexed type!"); 1659 Op<0>() = Agg; 1660 Op<1>() = Val; 1661 1662 Indices.append(Idxs.begin(), Idxs.end()); 1663 setName(Name); 1664 } 1665 1666 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1667 : Instruction(IVI.getType(), InsertValue, 1668 OperandTraits<InsertValueInst>::op_begin(this), 2), 1669 Indices(IVI.Indices) { 1670 Op<0>() = IVI.getOperand(0); 1671 Op<1>() = IVI.getOperand(1); 1672 SubclassOptionalData = IVI.SubclassOptionalData; 1673 } 1674 1675 //===----------------------------------------------------------------------===// 1676 // ExtractValueInst Class 1677 //===----------------------------------------------------------------------===// 1678 1679 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1680 assert(NumOperands == 1 && "NumOperands not initialized?"); 1681 1682 // There's no fundamental reason why we require at least one index. 1683 // But there's no present need to support it. 1684 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1685 1686 Indices.append(Idxs.begin(), Idxs.end()); 1687 setName(Name); 1688 } 1689 1690 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1691 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1692 Indices(EVI.Indices) { 1693 SubclassOptionalData = EVI.SubclassOptionalData; 1694 } 1695 1696 // getIndexedType - Returns the type of the element that would be extracted 1697 // with an extractvalue instruction with the specified parameters. 1698 // 1699 // A null type is returned if the indices are invalid for the specified 1700 // pointer type. 1701 // 1702 Type *ExtractValueInst::getIndexedType(Type *Agg, 1703 ArrayRef<unsigned> Idxs) { 1704 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { 1705 unsigned Index = Idxs[CurIdx]; 1706 // We can't use CompositeType::indexValid(Index) here. 1707 // indexValid() always returns true for arrays because getelementptr allows 1708 // out-of-bounds indices. Since we don't allow those for extractvalue and 1709 // insertvalue we need to check array indexing manually. 1710 // Since the only other types we can index into are struct types it's just 1711 // as easy to check those manually as well. 1712 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1713 if (Index >= AT->getNumElements()) 1714 return 0; 1715 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1716 if (Index >= ST->getNumElements()) 1717 return 0; 1718 } else { 1719 // Not a valid type to index into. 1720 return 0; 1721 } 1722 1723 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1724 } 1725 return const_cast<Type*>(Agg); 1726 } 1727 1728 //===----------------------------------------------------------------------===// 1729 // BinaryOperator Class 1730 //===----------------------------------------------------------------------===// 1731 1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1733 Type *Ty, const Twine &Name, 1734 Instruction *InsertBefore) 1735 : Instruction(Ty, iType, 1736 OperandTraits<BinaryOperator>::op_begin(this), 1737 OperandTraits<BinaryOperator>::operands(this), 1738 InsertBefore) { 1739 Op<0>() = S1; 1740 Op<1>() = S2; 1741 init(iType); 1742 setName(Name); 1743 } 1744 1745 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1746 Type *Ty, const Twine &Name, 1747 BasicBlock *InsertAtEnd) 1748 : Instruction(Ty, iType, 1749 OperandTraits<BinaryOperator>::op_begin(this), 1750 OperandTraits<BinaryOperator>::operands(this), 1751 InsertAtEnd) { 1752 Op<0>() = S1; 1753 Op<1>() = S2; 1754 init(iType); 1755 setName(Name); 1756 } 1757 1758 1759 void BinaryOperator::init(BinaryOps iType) { 1760 Value *LHS = getOperand(0), *RHS = getOperand(1); 1761 (void)LHS; (void)RHS; // Silence warnings. 1762 assert(LHS->getType() == RHS->getType() && 1763 "Binary operator operand types must match!"); 1764 #ifndef NDEBUG 1765 switch (iType) { 1766 case Add: case Sub: 1767 case Mul: 1768 assert(getType() == LHS->getType() && 1769 "Arithmetic operation should return same type as operands!"); 1770 assert(getType()->isIntOrIntVectorTy() && 1771 "Tried to create an integer operation on a non-integer type!"); 1772 break; 1773 case FAdd: case FSub: 1774 case FMul: 1775 assert(getType() == LHS->getType() && 1776 "Arithmetic operation should return same type as operands!"); 1777 assert(getType()->isFPOrFPVectorTy() && 1778 "Tried to create a floating-point operation on a " 1779 "non-floating-point type!"); 1780 break; 1781 case UDiv: 1782 case SDiv: 1783 assert(getType() == LHS->getType() && 1784 "Arithmetic operation should return same type as operands!"); 1785 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1786 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1787 "Incorrect operand type (not integer) for S/UDIV"); 1788 break; 1789 case FDiv: 1790 assert(getType() == LHS->getType() && 1791 "Arithmetic operation should return same type as operands!"); 1792 assert(getType()->isFPOrFPVectorTy() && 1793 "Incorrect operand type (not floating point) for FDIV"); 1794 break; 1795 case URem: 1796 case SRem: 1797 assert(getType() == LHS->getType() && 1798 "Arithmetic operation should return same type as operands!"); 1799 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1800 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1801 "Incorrect operand type (not integer) for S/UREM"); 1802 break; 1803 case FRem: 1804 assert(getType() == LHS->getType() && 1805 "Arithmetic operation should return same type as operands!"); 1806 assert(getType()->isFPOrFPVectorTy() && 1807 "Incorrect operand type (not floating point) for FREM"); 1808 break; 1809 case Shl: 1810 case LShr: 1811 case AShr: 1812 assert(getType() == LHS->getType() && 1813 "Shift operation should return same type as operands!"); 1814 assert((getType()->isIntegerTy() || 1815 (getType()->isVectorTy() && 1816 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1817 "Tried to create a shift operation on a non-integral type!"); 1818 break; 1819 case And: case Or: 1820 case Xor: 1821 assert(getType() == LHS->getType() && 1822 "Logical operation should return same type as operands!"); 1823 assert((getType()->isIntegerTy() || 1824 (getType()->isVectorTy() && 1825 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1826 "Tried to create a logical operation on a non-integral type!"); 1827 break; 1828 default: 1829 break; 1830 } 1831 #endif 1832 } 1833 1834 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1835 const Twine &Name, 1836 Instruction *InsertBefore) { 1837 assert(S1->getType() == S2->getType() && 1838 "Cannot create binary operator with two operands of differing type!"); 1839 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 1840 } 1841 1842 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1843 const Twine &Name, 1844 BasicBlock *InsertAtEnd) { 1845 BinaryOperator *Res = Create(Op, S1, S2, Name); 1846 InsertAtEnd->getInstList().push_back(Res); 1847 return Res; 1848 } 1849 1850 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1851 Instruction *InsertBefore) { 1852 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1853 return new BinaryOperator(Instruction::Sub, 1854 zero, Op, 1855 Op->getType(), Name, InsertBefore); 1856 } 1857 1858 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1859 BasicBlock *InsertAtEnd) { 1860 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1861 return new BinaryOperator(Instruction::Sub, 1862 zero, Op, 1863 Op->getType(), Name, InsertAtEnd); 1864 } 1865 1866 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1867 Instruction *InsertBefore) { 1868 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1869 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 1870 } 1871 1872 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1873 BasicBlock *InsertAtEnd) { 1874 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1875 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 1876 } 1877 1878 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1879 Instruction *InsertBefore) { 1880 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1881 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 1882 } 1883 1884 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1885 BasicBlock *InsertAtEnd) { 1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1887 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 1888 } 1889 1890 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1891 Instruction *InsertBefore) { 1892 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1893 return new BinaryOperator(Instruction::FSub, zero, Op, 1894 Op->getType(), Name, InsertBefore); 1895 } 1896 1897 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1898 BasicBlock *InsertAtEnd) { 1899 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1900 return new BinaryOperator(Instruction::FSub, zero, Op, 1901 Op->getType(), Name, InsertAtEnd); 1902 } 1903 1904 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1905 Instruction *InsertBefore) { 1906 Constant *C = Constant::getAllOnesValue(Op->getType()); 1907 return new BinaryOperator(Instruction::Xor, Op, C, 1908 Op->getType(), Name, InsertBefore); 1909 } 1910 1911 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1912 BasicBlock *InsertAtEnd) { 1913 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 1914 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 1915 Op->getType(), Name, InsertAtEnd); 1916 } 1917 1918 1919 // isConstantAllOnes - Helper function for several functions below 1920 static inline bool isConstantAllOnes(const Value *V) { 1921 if (const Constant *C = dyn_cast<Constant>(V)) 1922 return C->isAllOnesValue(); 1923 return false; 1924 } 1925 1926 bool BinaryOperator::isNeg(const Value *V) { 1927 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1928 if (Bop->getOpcode() == Instruction::Sub) 1929 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1930 return C->isNegativeZeroValue(); 1931 return false; 1932 } 1933 1934 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { 1935 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1936 if (Bop->getOpcode() == Instruction::FSub) 1937 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { 1938 if (!IgnoreZeroSign) 1939 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); 1940 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); 1941 } 1942 return false; 1943 } 1944 1945 bool BinaryOperator::isNot(const Value *V) { 1946 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1947 return (Bop->getOpcode() == Instruction::Xor && 1948 (isConstantAllOnes(Bop->getOperand(1)) || 1949 isConstantAllOnes(Bop->getOperand(0)))); 1950 return false; 1951 } 1952 1953 Value *BinaryOperator::getNegArgument(Value *BinOp) { 1954 return cast<BinaryOperator>(BinOp)->getOperand(1); 1955 } 1956 1957 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 1958 return getNegArgument(const_cast<Value*>(BinOp)); 1959 } 1960 1961 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 1962 return cast<BinaryOperator>(BinOp)->getOperand(1); 1963 } 1964 1965 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 1966 return getFNegArgument(const_cast<Value*>(BinOp)); 1967 } 1968 1969 Value *BinaryOperator::getNotArgument(Value *BinOp) { 1970 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 1971 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 1972 Value *Op0 = BO->getOperand(0); 1973 Value *Op1 = BO->getOperand(1); 1974 if (isConstantAllOnes(Op0)) return Op1; 1975 1976 assert(isConstantAllOnes(Op1)); 1977 return Op0; 1978 } 1979 1980 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 1981 return getNotArgument(const_cast<Value*>(BinOp)); 1982 } 1983 1984 1985 // swapOperands - Exchange the two operands to this instruction. This 1986 // instruction is safe to use on any binary instruction and does not 1987 // modify the semantics of the instruction. If the instruction is 1988 // order dependent (SetLT f.e.) the opcode is changed. 1989 // 1990 bool BinaryOperator::swapOperands() { 1991 if (!isCommutative()) 1992 return true; // Can't commute operands 1993 Op<0>().swap(Op<1>()); 1994 return false; 1995 } 1996 1997 void BinaryOperator::setHasNoUnsignedWrap(bool b) { 1998 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); 1999 } 2000 2001 void BinaryOperator::setHasNoSignedWrap(bool b) { 2002 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); 2003 } 2004 2005 void BinaryOperator::setIsExact(bool b) { 2006 cast<PossiblyExactOperator>(this)->setIsExact(b); 2007 } 2008 2009 bool BinaryOperator::hasNoUnsignedWrap() const { 2010 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); 2011 } 2012 2013 bool BinaryOperator::hasNoSignedWrap() const { 2014 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); 2015 } 2016 2017 bool BinaryOperator::isExact() const { 2018 return cast<PossiblyExactOperator>(this)->isExact(); 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // FPMathOperator Class 2023 //===----------------------------------------------------------------------===// 2024 2025 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2026 /// An accuracy of 0.0 means that the operation should be performed with the 2027 /// default precision. 2028 float FPMathOperator::getFPAccuracy() const { 2029 const MDNode *MD = 2030 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2031 if (!MD) 2032 return 0.0; 2033 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); 2034 return Accuracy->getValueAPF().convertToFloat(); 2035 } 2036 2037 2038 //===----------------------------------------------------------------------===// 2039 // CastInst Class 2040 //===----------------------------------------------------------------------===// 2041 2042 void CastInst::anchor() {} 2043 2044 // Just determine if this cast only deals with integral->integral conversion. 2045 bool CastInst::isIntegerCast() const { 2046 switch (getOpcode()) { 2047 default: return false; 2048 case Instruction::ZExt: 2049 case Instruction::SExt: 2050 case Instruction::Trunc: 2051 return true; 2052 case Instruction::BitCast: 2053 return getOperand(0)->getType()->isIntegerTy() && 2054 getType()->isIntegerTy(); 2055 } 2056 } 2057 2058 bool CastInst::isLosslessCast() const { 2059 // Only BitCast can be lossless, exit fast if we're not BitCast 2060 if (getOpcode() != Instruction::BitCast) 2061 return false; 2062 2063 // Identity cast is always lossless 2064 Type* SrcTy = getOperand(0)->getType(); 2065 Type* DstTy = getType(); 2066 if (SrcTy == DstTy) 2067 return true; 2068 2069 // Pointer to pointer is always lossless. 2070 if (SrcTy->isPointerTy()) 2071 return DstTy->isPointerTy(); 2072 return false; // Other types have no identity values 2073 } 2074 2075 /// This function determines if the CastInst does not require any bits to be 2076 /// changed in order to effect the cast. Essentially, it identifies cases where 2077 /// no code gen is necessary for the cast, hence the name no-op cast. For 2078 /// example, the following are all no-op casts: 2079 /// # bitcast i32* %x to i8* 2080 /// # bitcast <2 x i32> %x to <4 x i16> 2081 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2082 /// @brief Determine if the described cast is a no-op. 2083 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2084 Type *SrcTy, 2085 Type *DestTy, 2086 Type *IntPtrTy) { 2087 switch (Opcode) { 2088 default: llvm_unreachable("Invalid CastOp"); 2089 case Instruction::Trunc: 2090 case Instruction::ZExt: 2091 case Instruction::SExt: 2092 case Instruction::FPTrunc: 2093 case Instruction::FPExt: 2094 case Instruction::UIToFP: 2095 case Instruction::SIToFP: 2096 case Instruction::FPToUI: 2097 case Instruction::FPToSI: 2098 return false; // These always modify bits 2099 case Instruction::BitCast: 2100 return true; // BitCast never modifies bits. 2101 case Instruction::PtrToInt: 2102 return IntPtrTy->getScalarSizeInBits() == 2103 DestTy->getScalarSizeInBits(); 2104 case Instruction::IntToPtr: 2105 return IntPtrTy->getScalarSizeInBits() == 2106 SrcTy->getScalarSizeInBits(); 2107 } 2108 } 2109 2110 /// @brief Determine if a cast is a no-op. 2111 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2112 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2113 } 2114 2115 /// This function determines if a pair of casts can be eliminated and what 2116 /// opcode should be used in the elimination. This assumes that there are two 2117 /// instructions like this: 2118 /// * %F = firstOpcode SrcTy %x to MidTy 2119 /// * %S = secondOpcode MidTy %F to DstTy 2120 /// The function returns a resultOpcode so these two casts can be replaced with: 2121 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2122 /// If no such cast is permited, the function returns 0. 2123 unsigned CastInst::isEliminableCastPair( 2124 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2125 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2126 Type *DstIntPtrTy) { 2127 // Define the 144 possibilities for these two cast instructions. The values 2128 // in this matrix determine what to do in a given situation and select the 2129 // case in the switch below. The rows correspond to firstOp, the columns 2130 // correspond to secondOp. In looking at the table below, keep in mind 2131 // the following cast properties: 2132 // 2133 // Size Compare Source Destination 2134 // Operator Src ? Size Type Sign Type Sign 2135 // -------- ------------ ------------------- --------------------- 2136 // TRUNC > Integer Any Integral Any 2137 // ZEXT < Integral Unsigned Integer Any 2138 // SEXT < Integral Signed Integer Any 2139 // FPTOUI n/a FloatPt n/a Integral Unsigned 2140 // FPTOSI n/a FloatPt n/a Integral Signed 2141 // UITOFP n/a Integral Unsigned FloatPt n/a 2142 // SITOFP n/a Integral Signed FloatPt n/a 2143 // FPTRUNC > FloatPt n/a FloatPt n/a 2144 // FPEXT < FloatPt n/a FloatPt n/a 2145 // PTRTOINT n/a Pointer n/a Integral Unsigned 2146 // INTTOPTR n/a Integral Unsigned Pointer n/a 2147 // BITCAST = FirstClass n/a FirstClass n/a 2148 // 2149 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2150 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2151 // into "fptoui double to i64", but this loses information about the range 2152 // of the produced value (we no longer know the top-part is all zeros). 2153 // Further this conversion is often much more expensive for typical hardware, 2154 // and causes issues when building libgcc. We disallow fptosi+sext for the 2155 // same reason. 2156 const unsigned numCastOps = 2157 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2158 static const uint8_t CastResults[numCastOps][numCastOps] = { 2159 // T F F U S F F P I B -+ 2160 // R Z S P P I I T P 2 N T | 2161 // U E E 2 2 2 2 R E I T C +- secondOp 2162 // N X X U S F F N X N 2 V | 2163 // C T T I I P P C T T P T -+ 2164 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ 2165 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | 2166 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | 2167 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | 2168 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | 2169 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp 2170 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | 2171 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | 2172 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | 2173 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | 2174 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | 2175 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ 2176 }; 2177 2178 // If either of the casts are a bitcast from scalar to vector, disallow the 2179 // merging. However, bitcast of A->B->A are allowed. 2180 bool isFirstBitcast = (firstOp == Instruction::BitCast); 2181 bool isSecondBitcast = (secondOp == Instruction::BitCast); 2182 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); 2183 2184 // Check if any of the bitcasts convert scalars<->vectors. 2185 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2186 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2187 // Unless we are bitcasing to the original type, disallow optimizations. 2188 if (!chainedBitcast) return 0; 2189 2190 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2191 [secondOp-Instruction::CastOpsBegin]; 2192 switch (ElimCase) { 2193 case 0: 2194 // categorically disallowed 2195 return 0; 2196 case 1: 2197 // allowed, use first cast's opcode 2198 return firstOp; 2199 case 2: 2200 // allowed, use second cast's opcode 2201 return secondOp; 2202 case 3: 2203 // no-op cast in second op implies firstOp as long as the DestTy 2204 // is integer and we are not converting between a vector and a 2205 // non vector type. 2206 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2207 return firstOp; 2208 return 0; 2209 case 4: 2210 // no-op cast in second op implies firstOp as long as the DestTy 2211 // is floating point. 2212 if (DstTy->isFloatingPointTy()) 2213 return firstOp; 2214 return 0; 2215 case 5: 2216 // no-op cast in first op implies secondOp as long as the SrcTy 2217 // is an integer. 2218 if (SrcTy->isIntegerTy()) 2219 return secondOp; 2220 return 0; 2221 case 6: 2222 // no-op cast in first op implies secondOp as long as the SrcTy 2223 // is a floating point. 2224 if (SrcTy->isFloatingPointTy()) 2225 return secondOp; 2226 return 0; 2227 case 7: { 2228 unsigned MidSize = MidTy->getScalarSizeInBits(); 2229 // Check the address spaces first. If we know they are in the same address 2230 // space, the pointer sizes must be the same so we can still fold this 2231 // without knowing the actual sizes as long we know that the intermediate 2232 // pointer is the largest possible pointer size. 2233 if (MidSize == 64 && 2234 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) 2235 return Instruction::BitCast; 2236 2237 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2238 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2239 return 0; 2240 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2241 if (MidSize >= PtrSize) 2242 return Instruction::BitCast; 2243 return 0; 2244 } 2245 case 8: { 2246 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2247 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2248 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2249 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2250 unsigned DstSize = DstTy->getScalarSizeInBits(); 2251 if (SrcSize == DstSize) 2252 return Instruction::BitCast; 2253 else if (SrcSize < DstSize) 2254 return firstOp; 2255 return secondOp; 2256 } 2257 case 9: // zext, sext -> zext, because sext can't sign extend after zext 2258 return Instruction::ZExt; 2259 case 10: 2260 // fpext followed by ftrunc is allowed if the bit size returned to is 2261 // the same as the original, in which case its just a bitcast 2262 if (SrcTy == DstTy) 2263 return Instruction::BitCast; 2264 return 0; // If the types are not the same we can't eliminate it. 2265 case 11: { 2266 // bitcast followed by ptrtoint is allowed as long as the bitcast is a 2267 // pointer to pointer cast, and the pointers are the same size. 2268 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy); 2269 PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy); 2270 if (!SrcPtrTy || !MidPtrTy) 2271 return 0; 2272 2273 // If the address spaces are the same, we know they are the same size 2274 // without size information 2275 if (SrcPtrTy->getAddressSpace() == MidPtrTy->getAddressSpace()) 2276 return secondOp; 2277 2278 if (!SrcIntPtrTy || !MidIntPtrTy) 2279 return 0; 2280 2281 if (SrcIntPtrTy->getScalarSizeInBits() == 2282 MidIntPtrTy->getScalarSizeInBits()) 2283 return secondOp; 2284 2285 return 0; 2286 } 2287 case 12: { 2288 // inttoptr, bitcast -> inttoptr if bitcast is a ptr to ptr cast 2289 // and the ptrs are to address spaces of the same size 2290 PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy); 2291 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy); 2292 if (!MidPtrTy || !DstPtrTy) 2293 return 0; 2294 2295 if (MidPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2296 return firstOp; 2297 2298 if (MidIntPtrTy && 2299 DstIntPtrTy && 2300 MidIntPtrTy->getScalarSizeInBits() == 2301 DstIntPtrTy->getScalarSizeInBits()) 2302 return firstOp; 2303 return 0; 2304 } 2305 case 13: { 2306 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2307 if (!MidIntPtrTy) 2308 return 0; 2309 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2310 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2311 unsigned DstSize = DstTy->getScalarSizeInBits(); 2312 if (SrcSize <= PtrSize && SrcSize == DstSize) 2313 return Instruction::BitCast; 2314 return 0; 2315 } 2316 case 99: 2317 // cast combination can't happen (error in input). This is for all cases 2318 // where the MidTy is not the same for the two cast instructions. 2319 llvm_unreachable("Invalid Cast Combination"); 2320 default: 2321 llvm_unreachable("Error in CastResults table!!!"); 2322 } 2323 } 2324 2325 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2326 const Twine &Name, Instruction *InsertBefore) { 2327 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2328 // Construct and return the appropriate CastInst subclass 2329 switch (op) { 2330 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2331 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2332 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2333 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2334 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2335 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2336 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2337 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2338 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2339 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2340 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2341 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2342 default: llvm_unreachable("Invalid opcode provided"); 2343 } 2344 } 2345 2346 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2347 const Twine &Name, BasicBlock *InsertAtEnd) { 2348 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2349 // Construct and return the appropriate CastInst subclass 2350 switch (op) { 2351 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2352 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2353 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2354 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2355 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2356 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2357 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2358 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2359 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2360 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2361 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2362 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2363 default: llvm_unreachable("Invalid opcode provided"); 2364 } 2365 } 2366 2367 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2368 const Twine &Name, 2369 Instruction *InsertBefore) { 2370 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2371 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2372 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2373 } 2374 2375 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2376 const Twine &Name, 2377 BasicBlock *InsertAtEnd) { 2378 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2379 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2380 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2381 } 2382 2383 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2384 const Twine &Name, 2385 Instruction *InsertBefore) { 2386 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2387 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2388 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2389 } 2390 2391 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2392 const Twine &Name, 2393 BasicBlock *InsertAtEnd) { 2394 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2395 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2396 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2397 } 2398 2399 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2400 const Twine &Name, 2401 Instruction *InsertBefore) { 2402 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2403 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2404 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2405 } 2406 2407 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2408 const Twine &Name, 2409 BasicBlock *InsertAtEnd) { 2410 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2411 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2412 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2413 } 2414 2415 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2416 const Twine &Name, 2417 BasicBlock *InsertAtEnd) { 2418 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2419 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2420 "Invalid cast"); 2421 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2422 assert((!Ty->isVectorTy() || 2423 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2424 "Invalid cast"); 2425 2426 if (Ty->isIntOrIntVectorTy()) 2427 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2428 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2429 } 2430 2431 /// @brief Create a BitCast or a PtrToInt cast instruction 2432 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2433 const Twine &Name, 2434 Instruction *InsertBefore) { 2435 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2436 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2437 "Invalid cast"); 2438 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2439 assert((!Ty->isVectorTy() || 2440 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2441 "Invalid cast"); 2442 2443 if (Ty->isIntOrIntVectorTy()) 2444 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2445 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2446 } 2447 2448 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2449 bool isSigned, const Twine &Name, 2450 Instruction *InsertBefore) { 2451 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2452 "Invalid integer cast"); 2453 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2454 unsigned DstBits = Ty->getScalarSizeInBits(); 2455 Instruction::CastOps opcode = 2456 (SrcBits == DstBits ? Instruction::BitCast : 2457 (SrcBits > DstBits ? Instruction::Trunc : 2458 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2459 return Create(opcode, C, Ty, Name, InsertBefore); 2460 } 2461 2462 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2463 bool isSigned, const Twine &Name, 2464 BasicBlock *InsertAtEnd) { 2465 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2466 "Invalid cast"); 2467 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2468 unsigned DstBits = Ty->getScalarSizeInBits(); 2469 Instruction::CastOps opcode = 2470 (SrcBits == DstBits ? Instruction::BitCast : 2471 (SrcBits > DstBits ? Instruction::Trunc : 2472 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2473 return Create(opcode, C, Ty, Name, InsertAtEnd); 2474 } 2475 2476 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2477 const Twine &Name, 2478 Instruction *InsertBefore) { 2479 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2480 "Invalid cast"); 2481 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2482 unsigned DstBits = Ty->getScalarSizeInBits(); 2483 Instruction::CastOps opcode = 2484 (SrcBits == DstBits ? Instruction::BitCast : 2485 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2486 return Create(opcode, C, Ty, Name, InsertBefore); 2487 } 2488 2489 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2490 const Twine &Name, 2491 BasicBlock *InsertAtEnd) { 2492 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2493 "Invalid cast"); 2494 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2495 unsigned DstBits = Ty->getScalarSizeInBits(); 2496 Instruction::CastOps opcode = 2497 (SrcBits == DstBits ? Instruction::BitCast : 2498 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2499 return Create(opcode, C, Ty, Name, InsertAtEnd); 2500 } 2501 2502 // Check whether it is valid to call getCastOpcode for these types. 2503 // This routine must be kept in sync with getCastOpcode. 2504 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2505 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2506 return false; 2507 2508 if (SrcTy == DestTy) 2509 return true; 2510 2511 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2512 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2513 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2514 // An element by element cast. Valid if casting the elements is valid. 2515 SrcTy = SrcVecTy->getElementType(); 2516 DestTy = DestVecTy->getElementType(); 2517 } 2518 2519 // Get the bit sizes, we'll need these 2520 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2521 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2522 2523 // Run through the possibilities ... 2524 if (DestTy->isIntegerTy()) { // Casting to integral 2525 if (SrcTy->isIntegerTy()) { // Casting from integral 2526 return true; 2527 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2528 return true; 2529 } else if (SrcTy->isVectorTy()) { // Casting from vector 2530 return DestBits == SrcBits; 2531 } else { // Casting from something else 2532 return SrcTy->isPointerTy(); 2533 } 2534 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2535 if (SrcTy->isIntegerTy()) { // Casting from integral 2536 return true; 2537 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2538 return true; 2539 } else if (SrcTy->isVectorTy()) { // Casting from vector 2540 return DestBits == SrcBits; 2541 } else { // Casting from something else 2542 return false; 2543 } 2544 } else if (DestTy->isVectorTy()) { // Casting to vector 2545 return DestBits == SrcBits; 2546 } else if (DestTy->isPointerTy()) { // Casting to pointer 2547 if (SrcTy->isPointerTy()) { // Casting from pointer 2548 return true; 2549 } else if (SrcTy->isIntegerTy()) { // Casting from integral 2550 return true; 2551 } else { // Casting from something else 2552 return false; 2553 } 2554 } else if (DestTy->isX86_MMXTy()) { 2555 if (SrcTy->isVectorTy()) { 2556 return DestBits == SrcBits; // 64-bit vector to MMX 2557 } else { 2558 return false; 2559 } 2560 } else { // Casting to something else 2561 return false; 2562 } 2563 } 2564 2565 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2566 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2567 return false; 2568 2569 if (SrcTy == DestTy) 2570 return true; 2571 2572 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2573 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2574 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2575 // An element by element cast. Valid if casting the elements is valid. 2576 SrcTy = SrcVecTy->getElementType(); 2577 DestTy = DestVecTy->getElementType(); 2578 } 2579 } 2580 } 2581 2582 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2583 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2584 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2585 } 2586 } 2587 2588 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2589 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2590 2591 // Could still have vectors of pointers if the number of elements doesn't 2592 // match 2593 if (SrcBits == 0 || DestBits == 0) 2594 return false; 2595 2596 if (SrcBits != DestBits) 2597 return false; 2598 2599 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2600 return false; 2601 2602 return true; 2603 } 2604 2605 // Provide a way to get a "cast" where the cast opcode is inferred from the 2606 // types and size of the operand. This, basically, is a parallel of the 2607 // logic in the castIsValid function below. This axiom should hold: 2608 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2609 // should not assert in castIsValid. In other words, this produces a "correct" 2610 // casting opcode for the arguments passed to it. 2611 // This routine must be kept in sync with isCastable. 2612 Instruction::CastOps 2613 CastInst::getCastOpcode( 2614 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2615 Type *SrcTy = Src->getType(); 2616 2617 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2618 "Only first class types are castable!"); 2619 2620 if (SrcTy == DestTy) 2621 return BitCast; 2622 2623 // FIXME: Check address space sizes here 2624 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2625 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2626 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2627 // An element by element cast. Find the appropriate opcode based on the 2628 // element types. 2629 SrcTy = SrcVecTy->getElementType(); 2630 DestTy = DestVecTy->getElementType(); 2631 } 2632 2633 // Get the bit sizes, we'll need these 2634 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2635 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2636 2637 // Run through the possibilities ... 2638 if (DestTy->isIntegerTy()) { // Casting to integral 2639 if (SrcTy->isIntegerTy()) { // Casting from integral 2640 if (DestBits < SrcBits) 2641 return Trunc; // int -> smaller int 2642 else if (DestBits > SrcBits) { // its an extension 2643 if (SrcIsSigned) 2644 return SExt; // signed -> SEXT 2645 else 2646 return ZExt; // unsigned -> ZEXT 2647 } else { 2648 return BitCast; // Same size, No-op cast 2649 } 2650 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2651 if (DestIsSigned) 2652 return FPToSI; // FP -> sint 2653 else 2654 return FPToUI; // FP -> uint 2655 } else if (SrcTy->isVectorTy()) { 2656 assert(DestBits == SrcBits && 2657 "Casting vector to integer of different width"); 2658 return BitCast; // Same size, no-op cast 2659 } else { 2660 assert(SrcTy->isPointerTy() && 2661 "Casting from a value that is not first-class type"); 2662 return PtrToInt; // ptr -> int 2663 } 2664 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2665 if (SrcTy->isIntegerTy()) { // Casting from integral 2666 if (SrcIsSigned) 2667 return SIToFP; // sint -> FP 2668 else 2669 return UIToFP; // uint -> FP 2670 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2671 if (DestBits < SrcBits) { 2672 return FPTrunc; // FP -> smaller FP 2673 } else if (DestBits > SrcBits) { 2674 return FPExt; // FP -> larger FP 2675 } else { 2676 return BitCast; // same size, no-op cast 2677 } 2678 } else if (SrcTy->isVectorTy()) { 2679 assert(DestBits == SrcBits && 2680 "Casting vector to floating point of different width"); 2681 return BitCast; // same size, no-op cast 2682 } 2683 llvm_unreachable("Casting pointer or non-first class to float"); 2684 } else if (DestTy->isVectorTy()) { 2685 assert(DestBits == SrcBits && 2686 "Illegal cast to vector (wrong type or size)"); 2687 return BitCast; 2688 } else if (DestTy->isPointerTy()) { 2689 if (SrcTy->isPointerTy()) { 2690 // TODO: Address space pointer sizes may not match 2691 return BitCast; // ptr -> ptr 2692 } else if (SrcTy->isIntegerTy()) { 2693 return IntToPtr; // int -> ptr 2694 } 2695 llvm_unreachable("Casting pointer to other than pointer or int"); 2696 } else if (DestTy->isX86_MMXTy()) { 2697 if (SrcTy->isVectorTy()) { 2698 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 2699 return BitCast; // 64-bit vector to MMX 2700 } 2701 llvm_unreachable("Illegal cast to X86_MMX"); 2702 } 2703 llvm_unreachable("Casting to type that is not first-class"); 2704 } 2705 2706 //===----------------------------------------------------------------------===// 2707 // CastInst SubClass Constructors 2708 //===----------------------------------------------------------------------===// 2709 2710 /// Check that the construction parameters for a CastInst are correct. This 2711 /// could be broken out into the separate constructors but it is useful to have 2712 /// it in one place and to eliminate the redundant code for getting the sizes 2713 /// of the types involved. 2714 bool 2715 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 2716 2717 // Check for type sanity on the arguments 2718 Type *SrcTy = S->getType(); 2719 2720 // If this is a cast to the same type then it's trivially true. 2721 if (SrcTy == DstTy) 2722 return true; 2723 2724 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 2725 SrcTy->isAggregateType() || DstTy->isAggregateType()) 2726 return false; 2727 2728 // Get the size of the types in bits, we'll need this later 2729 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2730 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 2731 2732 // If these are vector types, get the lengths of the vectors (using zero for 2733 // scalar types means that checking that vector lengths match also checks that 2734 // scalars are not being converted to vectors or vectors to scalars). 2735 unsigned SrcLength = SrcTy->isVectorTy() ? 2736 cast<VectorType>(SrcTy)->getNumElements() : 0; 2737 unsigned DstLength = DstTy->isVectorTy() ? 2738 cast<VectorType>(DstTy)->getNumElements() : 0; 2739 2740 // Switch on the opcode provided 2741 switch (op) { 2742 default: return false; // This is an input error 2743 case Instruction::Trunc: 2744 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2745 SrcLength == DstLength && SrcBitSize > DstBitSize; 2746 case Instruction::ZExt: 2747 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2748 SrcLength == DstLength && SrcBitSize < DstBitSize; 2749 case Instruction::SExt: 2750 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2751 SrcLength == DstLength && SrcBitSize < DstBitSize; 2752 case Instruction::FPTrunc: 2753 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2754 SrcLength == DstLength && SrcBitSize > DstBitSize; 2755 case Instruction::FPExt: 2756 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2757 SrcLength == DstLength && SrcBitSize < DstBitSize; 2758 case Instruction::UIToFP: 2759 case Instruction::SIToFP: 2760 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 2761 SrcLength == DstLength; 2762 case Instruction::FPToUI: 2763 case Instruction::FPToSI: 2764 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 2765 SrcLength == DstLength; 2766 case Instruction::PtrToInt: 2767 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2768 return false; 2769 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2770 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2771 return false; 2772 return SrcTy->getScalarType()->isPointerTy() && 2773 DstTy->getScalarType()->isIntegerTy(); 2774 case Instruction::IntToPtr: 2775 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2776 return false; 2777 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2778 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2779 return false; 2780 return SrcTy->getScalarType()->isIntegerTy() && 2781 DstTy->getScalarType()->isPointerTy(); 2782 case Instruction::BitCast: 2783 // BitCast implies a no-op cast of type only. No bits change. 2784 // However, you can't cast pointers to anything but pointers. 2785 if (SrcTy->isPointerTy() != DstTy->isPointerTy()) 2786 return false; 2787 2788 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all 2789 // these cases, the cast is okay if the source and destination bit widths 2790 // are identical. 2791 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 2792 } 2793 } 2794 2795 TruncInst::TruncInst( 2796 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2797 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 2798 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2799 } 2800 2801 TruncInst::TruncInst( 2802 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2803 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 2804 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2805 } 2806 2807 ZExtInst::ZExtInst( 2808 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2809 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 2810 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2811 } 2812 2813 ZExtInst::ZExtInst( 2814 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2815 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 2816 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2817 } 2818 SExtInst::SExtInst( 2819 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2820 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 2821 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2822 } 2823 2824 SExtInst::SExtInst( 2825 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2826 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 2827 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2828 } 2829 2830 FPTruncInst::FPTruncInst( 2831 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2832 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 2833 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2834 } 2835 2836 FPTruncInst::FPTruncInst( 2837 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2838 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 2839 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2840 } 2841 2842 FPExtInst::FPExtInst( 2843 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2844 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 2845 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2846 } 2847 2848 FPExtInst::FPExtInst( 2849 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2850 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 2851 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2852 } 2853 2854 UIToFPInst::UIToFPInst( 2855 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2856 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 2857 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2858 } 2859 2860 UIToFPInst::UIToFPInst( 2861 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2862 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 2863 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2864 } 2865 2866 SIToFPInst::SIToFPInst( 2867 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2868 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 2869 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2870 } 2871 2872 SIToFPInst::SIToFPInst( 2873 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2874 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 2875 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2876 } 2877 2878 FPToUIInst::FPToUIInst( 2879 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2880 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 2881 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2882 } 2883 2884 FPToUIInst::FPToUIInst( 2885 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2886 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 2887 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2888 } 2889 2890 FPToSIInst::FPToSIInst( 2891 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2892 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 2893 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2894 } 2895 2896 FPToSIInst::FPToSIInst( 2897 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2898 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 2899 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2900 } 2901 2902 PtrToIntInst::PtrToIntInst( 2903 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2904 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 2905 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2906 } 2907 2908 PtrToIntInst::PtrToIntInst( 2909 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2910 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 2911 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2912 } 2913 2914 IntToPtrInst::IntToPtrInst( 2915 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2916 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 2917 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2918 } 2919 2920 IntToPtrInst::IntToPtrInst( 2921 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2922 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 2923 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2924 } 2925 2926 BitCastInst::BitCastInst( 2927 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2928 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 2929 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2930 } 2931 2932 BitCastInst::BitCastInst( 2933 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2934 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 2935 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2936 } 2937 2938 //===----------------------------------------------------------------------===// 2939 // CmpInst Classes 2940 //===----------------------------------------------------------------------===// 2941 2942 void CmpInst::anchor() {} 2943 2944 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2945 Value *LHS, Value *RHS, const Twine &Name, 2946 Instruction *InsertBefore) 2947 : Instruction(ty, op, 2948 OperandTraits<CmpInst>::op_begin(this), 2949 OperandTraits<CmpInst>::operands(this), 2950 InsertBefore) { 2951 Op<0>() = LHS; 2952 Op<1>() = RHS; 2953 setPredicate((Predicate)predicate); 2954 setName(Name); 2955 } 2956 2957 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2958 Value *LHS, Value *RHS, const Twine &Name, 2959 BasicBlock *InsertAtEnd) 2960 : Instruction(ty, op, 2961 OperandTraits<CmpInst>::op_begin(this), 2962 OperandTraits<CmpInst>::operands(this), 2963 InsertAtEnd) { 2964 Op<0>() = LHS; 2965 Op<1>() = RHS; 2966 setPredicate((Predicate)predicate); 2967 setName(Name); 2968 } 2969 2970 CmpInst * 2971 CmpInst::Create(OtherOps Op, unsigned short predicate, 2972 Value *S1, Value *S2, 2973 const Twine &Name, Instruction *InsertBefore) { 2974 if (Op == Instruction::ICmp) { 2975 if (InsertBefore) 2976 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 2977 S1, S2, Name); 2978 else 2979 return new ICmpInst(CmpInst::Predicate(predicate), 2980 S1, S2, Name); 2981 } 2982 2983 if (InsertBefore) 2984 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 2985 S1, S2, Name); 2986 else 2987 return new FCmpInst(CmpInst::Predicate(predicate), 2988 S1, S2, Name); 2989 } 2990 2991 CmpInst * 2992 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 2993 const Twine &Name, BasicBlock *InsertAtEnd) { 2994 if (Op == Instruction::ICmp) { 2995 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2996 S1, S2, Name); 2997 } 2998 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2999 S1, S2, Name); 3000 } 3001 3002 void CmpInst::swapOperands() { 3003 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3004 IC->swapOperands(); 3005 else 3006 cast<FCmpInst>(this)->swapOperands(); 3007 } 3008 3009 bool CmpInst::isCommutative() const { 3010 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3011 return IC->isCommutative(); 3012 return cast<FCmpInst>(this)->isCommutative(); 3013 } 3014 3015 bool CmpInst::isEquality() const { 3016 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3017 return IC->isEquality(); 3018 return cast<FCmpInst>(this)->isEquality(); 3019 } 3020 3021 3022 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3023 switch (pred) { 3024 default: llvm_unreachable("Unknown cmp predicate!"); 3025 case ICMP_EQ: return ICMP_NE; 3026 case ICMP_NE: return ICMP_EQ; 3027 case ICMP_UGT: return ICMP_ULE; 3028 case ICMP_ULT: return ICMP_UGE; 3029 case ICMP_UGE: return ICMP_ULT; 3030 case ICMP_ULE: return ICMP_UGT; 3031 case ICMP_SGT: return ICMP_SLE; 3032 case ICMP_SLT: return ICMP_SGE; 3033 case ICMP_SGE: return ICMP_SLT; 3034 case ICMP_SLE: return ICMP_SGT; 3035 3036 case FCMP_OEQ: return FCMP_UNE; 3037 case FCMP_ONE: return FCMP_UEQ; 3038 case FCMP_OGT: return FCMP_ULE; 3039 case FCMP_OLT: return FCMP_UGE; 3040 case FCMP_OGE: return FCMP_ULT; 3041 case FCMP_OLE: return FCMP_UGT; 3042 case FCMP_UEQ: return FCMP_ONE; 3043 case FCMP_UNE: return FCMP_OEQ; 3044 case FCMP_UGT: return FCMP_OLE; 3045 case FCMP_ULT: return FCMP_OGE; 3046 case FCMP_UGE: return FCMP_OLT; 3047 case FCMP_ULE: return FCMP_OGT; 3048 case FCMP_ORD: return FCMP_UNO; 3049 case FCMP_UNO: return FCMP_ORD; 3050 case FCMP_TRUE: return FCMP_FALSE; 3051 case FCMP_FALSE: return FCMP_TRUE; 3052 } 3053 } 3054 3055 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3056 switch (pred) { 3057 default: llvm_unreachable("Unknown icmp predicate!"); 3058 case ICMP_EQ: case ICMP_NE: 3059 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3060 return pred; 3061 case ICMP_UGT: return ICMP_SGT; 3062 case ICMP_ULT: return ICMP_SLT; 3063 case ICMP_UGE: return ICMP_SGE; 3064 case ICMP_ULE: return ICMP_SLE; 3065 } 3066 } 3067 3068 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3069 switch (pred) { 3070 default: llvm_unreachable("Unknown icmp predicate!"); 3071 case ICMP_EQ: case ICMP_NE: 3072 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3073 return pred; 3074 case ICMP_SGT: return ICMP_UGT; 3075 case ICMP_SLT: return ICMP_ULT; 3076 case ICMP_SGE: return ICMP_UGE; 3077 case ICMP_SLE: return ICMP_ULE; 3078 } 3079 } 3080 3081 /// Initialize a set of values that all satisfy the condition with C. 3082 /// 3083 ConstantRange 3084 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 3085 APInt Lower(C); 3086 APInt Upper(C); 3087 uint32_t BitWidth = C.getBitWidth(); 3088 switch (pred) { 3089 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 3090 case ICmpInst::ICMP_EQ: ++Upper; break; 3091 case ICmpInst::ICMP_NE: ++Lower; break; 3092 case ICmpInst::ICMP_ULT: 3093 Lower = APInt::getMinValue(BitWidth); 3094 // Check for an empty-set condition. 3095 if (Lower == Upper) 3096 return ConstantRange(BitWidth, /*isFullSet=*/false); 3097 break; 3098 case ICmpInst::ICMP_SLT: 3099 Lower = APInt::getSignedMinValue(BitWidth); 3100 // Check for an empty-set condition. 3101 if (Lower == Upper) 3102 return ConstantRange(BitWidth, /*isFullSet=*/false); 3103 break; 3104 case ICmpInst::ICMP_UGT: 3105 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3106 // Check for an empty-set condition. 3107 if (Lower == Upper) 3108 return ConstantRange(BitWidth, /*isFullSet=*/false); 3109 break; 3110 case ICmpInst::ICMP_SGT: 3111 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3112 // Check for an empty-set condition. 3113 if (Lower == Upper) 3114 return ConstantRange(BitWidth, /*isFullSet=*/false); 3115 break; 3116 case ICmpInst::ICMP_ULE: 3117 Lower = APInt::getMinValue(BitWidth); ++Upper; 3118 // Check for a full-set condition. 3119 if (Lower == Upper) 3120 return ConstantRange(BitWidth, /*isFullSet=*/true); 3121 break; 3122 case ICmpInst::ICMP_SLE: 3123 Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 3124 // Check for a full-set condition. 3125 if (Lower == Upper) 3126 return ConstantRange(BitWidth, /*isFullSet=*/true); 3127 break; 3128 case ICmpInst::ICMP_UGE: 3129 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3130 // Check for a full-set condition. 3131 if (Lower == Upper) 3132 return ConstantRange(BitWidth, /*isFullSet=*/true); 3133 break; 3134 case ICmpInst::ICMP_SGE: 3135 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3136 // Check for a full-set condition. 3137 if (Lower == Upper) 3138 return ConstantRange(BitWidth, /*isFullSet=*/true); 3139 break; 3140 } 3141 return ConstantRange(Lower, Upper); 3142 } 3143 3144 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3145 switch (pred) { 3146 default: llvm_unreachable("Unknown cmp predicate!"); 3147 case ICMP_EQ: case ICMP_NE: 3148 return pred; 3149 case ICMP_SGT: return ICMP_SLT; 3150 case ICMP_SLT: return ICMP_SGT; 3151 case ICMP_SGE: return ICMP_SLE; 3152 case ICMP_SLE: return ICMP_SGE; 3153 case ICMP_UGT: return ICMP_ULT; 3154 case ICMP_ULT: return ICMP_UGT; 3155 case ICMP_UGE: return ICMP_ULE; 3156 case ICMP_ULE: return ICMP_UGE; 3157 3158 case FCMP_FALSE: case FCMP_TRUE: 3159 case FCMP_OEQ: case FCMP_ONE: 3160 case FCMP_UEQ: case FCMP_UNE: 3161 case FCMP_ORD: case FCMP_UNO: 3162 return pred; 3163 case FCMP_OGT: return FCMP_OLT; 3164 case FCMP_OLT: return FCMP_OGT; 3165 case FCMP_OGE: return FCMP_OLE; 3166 case FCMP_OLE: return FCMP_OGE; 3167 case FCMP_UGT: return FCMP_ULT; 3168 case FCMP_ULT: return FCMP_UGT; 3169 case FCMP_UGE: return FCMP_ULE; 3170 case FCMP_ULE: return FCMP_UGE; 3171 } 3172 } 3173 3174 bool CmpInst::isUnsigned(unsigned short predicate) { 3175 switch (predicate) { 3176 default: return false; 3177 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3178 case ICmpInst::ICMP_UGE: return true; 3179 } 3180 } 3181 3182 bool CmpInst::isSigned(unsigned short predicate) { 3183 switch (predicate) { 3184 default: return false; 3185 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3186 case ICmpInst::ICMP_SGE: return true; 3187 } 3188 } 3189 3190 bool CmpInst::isOrdered(unsigned short predicate) { 3191 switch (predicate) { 3192 default: return false; 3193 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3194 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3195 case FCmpInst::FCMP_ORD: return true; 3196 } 3197 } 3198 3199 bool CmpInst::isUnordered(unsigned short predicate) { 3200 switch (predicate) { 3201 default: return false; 3202 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3203 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3204 case FCmpInst::FCMP_UNO: return true; 3205 } 3206 } 3207 3208 bool CmpInst::isTrueWhenEqual(unsigned short predicate) { 3209 switch(predicate) { 3210 default: return false; 3211 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3212 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3213 } 3214 } 3215 3216 bool CmpInst::isFalseWhenEqual(unsigned short predicate) { 3217 switch(predicate) { 3218 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3219 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3220 default: return false; 3221 } 3222 } 3223 3224 3225 //===----------------------------------------------------------------------===// 3226 // SwitchInst Implementation 3227 //===----------------------------------------------------------------------===// 3228 3229 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3230 assert(Value && Default && NumReserved); 3231 ReservedSpace = NumReserved; 3232 NumOperands = 2; 3233 OperandList = allocHungoffUses(ReservedSpace); 3234 3235 OperandList[0] = Value; 3236 OperandList[1] = Default; 3237 } 3238 3239 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3240 /// switch on and a default destination. The number of additional cases can 3241 /// be specified here to make memory allocation more efficient. This 3242 /// constructor can also autoinsert before another instruction. 3243 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3244 Instruction *InsertBefore) 3245 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3246 0, 0, InsertBefore) { 3247 init(Value, Default, 2+NumCases*2); 3248 } 3249 3250 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3251 /// switch on and a default destination. The number of additional cases can 3252 /// be specified here to make memory allocation more efficient. This 3253 /// constructor also autoinserts at the end of the specified BasicBlock. 3254 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3255 BasicBlock *InsertAtEnd) 3256 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3257 0, 0, InsertAtEnd) { 3258 init(Value, Default, 2+NumCases*2); 3259 } 3260 3261 SwitchInst::SwitchInst(const SwitchInst &SI) 3262 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { 3263 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3264 NumOperands = SI.getNumOperands(); 3265 Use *OL = OperandList, *InOL = SI.OperandList; 3266 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3267 OL[i] = InOL[i]; 3268 OL[i+1] = InOL[i+1]; 3269 } 3270 TheSubsets = SI.TheSubsets; 3271 SubclassOptionalData = SI.SubclassOptionalData; 3272 } 3273 3274 SwitchInst::~SwitchInst() { 3275 dropHungoffUses(); 3276 } 3277 3278 3279 /// addCase - Add an entry to the switch instruction... 3280 /// 3281 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3282 IntegersSubsetToBB Mapping; 3283 3284 // FIXME: Currently we work with ConstantInt based cases. 3285 // So inititalize IntItem container directly from ConstantInt. 3286 Mapping.add(IntItem::fromConstantInt(OnVal)); 3287 IntegersSubset CaseRanges = Mapping.getCase(); 3288 addCase(CaseRanges, Dest); 3289 } 3290 3291 void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) { 3292 unsigned NewCaseIdx = getNumCases(); 3293 unsigned OpNo = NumOperands; 3294 if (OpNo+2 > ReservedSpace) 3295 growOperands(); // Get more space! 3296 // Initialize some new operands. 3297 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3298 NumOperands = OpNo+2; 3299 3300 SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal); 3301 3302 CaseIt Case(this, NewCaseIdx, TheSubsetsIt); 3303 Case.updateCaseValueOperand(OnVal); 3304 Case.setSuccessor(Dest); 3305 } 3306 3307 /// removeCase - This method removes the specified case and its successor 3308 /// from the switch instruction. 3309 void SwitchInst::removeCase(CaseIt& i) { 3310 unsigned idx = i.getCaseIndex(); 3311 3312 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3313 3314 unsigned NumOps = getNumOperands(); 3315 Use *OL = OperandList; 3316 3317 // Overwrite this case with the end of the list. 3318 if (2 + (idx + 1) * 2 != NumOps) { 3319 OL[2 + idx * 2] = OL[NumOps - 2]; 3320 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3321 } 3322 3323 // Nuke the last value. 3324 OL[NumOps-2].set(0); 3325 OL[NumOps-2+1].set(0); 3326 3327 // Do the same with TheCases collection: 3328 if (i.SubsetIt != --TheSubsets.end()) { 3329 *i.SubsetIt = TheSubsets.back(); 3330 TheSubsets.pop_back(); 3331 } else { 3332 TheSubsets.pop_back(); 3333 i.SubsetIt = TheSubsets.end(); 3334 } 3335 3336 NumOperands = NumOps-2; 3337 } 3338 3339 /// growOperands - grow operands - This grows the operand list in response 3340 /// to a push_back style of operation. This grows the number of ops by 3 times. 3341 /// 3342 void SwitchInst::growOperands() { 3343 unsigned e = getNumOperands(); 3344 unsigned NumOps = e*3; 3345 3346 ReservedSpace = NumOps; 3347 Use *NewOps = allocHungoffUses(NumOps); 3348 Use *OldOps = OperandList; 3349 for (unsigned i = 0; i != e; ++i) { 3350 NewOps[i] = OldOps[i]; 3351 } 3352 OperandList = NewOps; 3353 Use::zap(OldOps, OldOps + e, true); 3354 } 3355 3356 3357 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3358 return getSuccessor(idx); 3359 } 3360 unsigned SwitchInst::getNumSuccessorsV() const { 3361 return getNumSuccessors(); 3362 } 3363 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3364 setSuccessor(idx, B); 3365 } 3366 3367 //===----------------------------------------------------------------------===// 3368 // IndirectBrInst Implementation 3369 //===----------------------------------------------------------------------===// 3370 3371 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3372 assert(Address && Address->getType()->isPointerTy() && 3373 "Address of indirectbr must be a pointer"); 3374 ReservedSpace = 1+NumDests; 3375 NumOperands = 1; 3376 OperandList = allocHungoffUses(ReservedSpace); 3377 3378 OperandList[0] = Address; 3379 } 3380 3381 3382 /// growOperands - grow operands - This grows the operand list in response 3383 /// to a push_back style of operation. This grows the number of ops by 2 times. 3384 /// 3385 void IndirectBrInst::growOperands() { 3386 unsigned e = getNumOperands(); 3387 unsigned NumOps = e*2; 3388 3389 ReservedSpace = NumOps; 3390 Use *NewOps = allocHungoffUses(NumOps); 3391 Use *OldOps = OperandList; 3392 for (unsigned i = 0; i != e; ++i) 3393 NewOps[i] = OldOps[i]; 3394 OperandList = NewOps; 3395 Use::zap(OldOps, OldOps + e, true); 3396 } 3397 3398 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3399 Instruction *InsertBefore) 3400 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3401 0, 0, InsertBefore) { 3402 init(Address, NumCases); 3403 } 3404 3405 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3406 BasicBlock *InsertAtEnd) 3407 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3408 0, 0, InsertAtEnd) { 3409 init(Address, NumCases); 3410 } 3411 3412 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3413 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3414 allocHungoffUses(IBI.getNumOperands()), 3415 IBI.getNumOperands()) { 3416 Use *OL = OperandList, *InOL = IBI.OperandList; 3417 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3418 OL[i] = InOL[i]; 3419 SubclassOptionalData = IBI.SubclassOptionalData; 3420 } 3421 3422 IndirectBrInst::~IndirectBrInst() { 3423 dropHungoffUses(); 3424 } 3425 3426 /// addDestination - Add a destination. 3427 /// 3428 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3429 unsigned OpNo = NumOperands; 3430 if (OpNo+1 > ReservedSpace) 3431 growOperands(); // Get more space! 3432 // Initialize some new operands. 3433 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3434 NumOperands = OpNo+1; 3435 OperandList[OpNo] = DestBB; 3436 } 3437 3438 /// removeDestination - This method removes the specified successor from the 3439 /// indirectbr instruction. 3440 void IndirectBrInst::removeDestination(unsigned idx) { 3441 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3442 3443 unsigned NumOps = getNumOperands(); 3444 Use *OL = OperandList; 3445 3446 // Replace this value with the last one. 3447 OL[idx+1] = OL[NumOps-1]; 3448 3449 // Nuke the last value. 3450 OL[NumOps-1].set(0); 3451 NumOperands = NumOps-1; 3452 } 3453 3454 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3455 return getSuccessor(idx); 3456 } 3457 unsigned IndirectBrInst::getNumSuccessorsV() const { 3458 return getNumSuccessors(); 3459 } 3460 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3461 setSuccessor(idx, B); 3462 } 3463 3464 //===----------------------------------------------------------------------===// 3465 // clone_impl() implementations 3466 //===----------------------------------------------------------------------===// 3467 3468 // Define these methods here so vtables don't get emitted into every translation 3469 // unit that uses these classes. 3470 3471 GetElementPtrInst *GetElementPtrInst::clone_impl() const { 3472 return new (getNumOperands()) GetElementPtrInst(*this); 3473 } 3474 3475 BinaryOperator *BinaryOperator::clone_impl() const { 3476 return Create(getOpcode(), Op<0>(), Op<1>()); 3477 } 3478 3479 FCmpInst* FCmpInst::clone_impl() const { 3480 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3481 } 3482 3483 ICmpInst* ICmpInst::clone_impl() const { 3484 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3485 } 3486 3487 ExtractValueInst *ExtractValueInst::clone_impl() const { 3488 return new ExtractValueInst(*this); 3489 } 3490 3491 InsertValueInst *InsertValueInst::clone_impl() const { 3492 return new InsertValueInst(*this); 3493 } 3494 3495 AllocaInst *AllocaInst::clone_impl() const { 3496 return new AllocaInst(getAllocatedType(), 3497 (Value*)getOperand(0), 3498 getAlignment()); 3499 } 3500 3501 LoadInst *LoadInst::clone_impl() const { 3502 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3503 getAlignment(), getOrdering(), getSynchScope()); 3504 } 3505 3506 StoreInst *StoreInst::clone_impl() const { 3507 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3508 getAlignment(), getOrdering(), getSynchScope()); 3509 3510 } 3511 3512 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { 3513 AtomicCmpXchgInst *Result = 3514 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3515 getOrdering(), getSynchScope()); 3516 Result->setVolatile(isVolatile()); 3517 return Result; 3518 } 3519 3520 AtomicRMWInst *AtomicRMWInst::clone_impl() const { 3521 AtomicRMWInst *Result = 3522 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3523 getOrdering(), getSynchScope()); 3524 Result->setVolatile(isVolatile()); 3525 return Result; 3526 } 3527 3528 FenceInst *FenceInst::clone_impl() const { 3529 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3530 } 3531 3532 TruncInst *TruncInst::clone_impl() const { 3533 return new TruncInst(getOperand(0), getType()); 3534 } 3535 3536 ZExtInst *ZExtInst::clone_impl() const { 3537 return new ZExtInst(getOperand(0), getType()); 3538 } 3539 3540 SExtInst *SExtInst::clone_impl() const { 3541 return new SExtInst(getOperand(0), getType()); 3542 } 3543 3544 FPTruncInst *FPTruncInst::clone_impl() const { 3545 return new FPTruncInst(getOperand(0), getType()); 3546 } 3547 3548 FPExtInst *FPExtInst::clone_impl() const { 3549 return new FPExtInst(getOperand(0), getType()); 3550 } 3551 3552 UIToFPInst *UIToFPInst::clone_impl() const { 3553 return new UIToFPInst(getOperand(0), getType()); 3554 } 3555 3556 SIToFPInst *SIToFPInst::clone_impl() const { 3557 return new SIToFPInst(getOperand(0), getType()); 3558 } 3559 3560 FPToUIInst *FPToUIInst::clone_impl() const { 3561 return new FPToUIInst(getOperand(0), getType()); 3562 } 3563 3564 FPToSIInst *FPToSIInst::clone_impl() const { 3565 return new FPToSIInst(getOperand(0), getType()); 3566 } 3567 3568 PtrToIntInst *PtrToIntInst::clone_impl() const { 3569 return new PtrToIntInst(getOperand(0), getType()); 3570 } 3571 3572 IntToPtrInst *IntToPtrInst::clone_impl() const { 3573 return new IntToPtrInst(getOperand(0), getType()); 3574 } 3575 3576 BitCastInst *BitCastInst::clone_impl() const { 3577 return new BitCastInst(getOperand(0), getType()); 3578 } 3579 3580 CallInst *CallInst::clone_impl() const { 3581 return new(getNumOperands()) CallInst(*this); 3582 } 3583 3584 SelectInst *SelectInst::clone_impl() const { 3585 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3586 } 3587 3588 VAArgInst *VAArgInst::clone_impl() const { 3589 return new VAArgInst(getOperand(0), getType()); 3590 } 3591 3592 ExtractElementInst *ExtractElementInst::clone_impl() const { 3593 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3594 } 3595 3596 InsertElementInst *InsertElementInst::clone_impl() const { 3597 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3598 } 3599 3600 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { 3601 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3602 } 3603 3604 PHINode *PHINode::clone_impl() const { 3605 return new PHINode(*this); 3606 } 3607 3608 LandingPadInst *LandingPadInst::clone_impl() const { 3609 return new LandingPadInst(*this); 3610 } 3611 3612 ReturnInst *ReturnInst::clone_impl() const { 3613 return new(getNumOperands()) ReturnInst(*this); 3614 } 3615 3616 BranchInst *BranchInst::clone_impl() const { 3617 return new(getNumOperands()) BranchInst(*this); 3618 } 3619 3620 SwitchInst *SwitchInst::clone_impl() const { 3621 return new SwitchInst(*this); 3622 } 3623 3624 IndirectBrInst *IndirectBrInst::clone_impl() const { 3625 return new IndirectBrInst(*this); 3626 } 3627 3628 3629 InvokeInst *InvokeInst::clone_impl() const { 3630 return new(getNumOperands()) InvokeInst(*this); 3631 } 3632 3633 ResumeInst *ResumeInst::clone_impl() const { 3634 return new(1) ResumeInst(*this); 3635 } 3636 3637 UnreachableInst *UnreachableInst::clone_impl() const { 3638 LLVMContext &Context = getContext(); 3639 return new UnreachableInst(Context); 3640 } 3641