Home | History | Annotate | Download | only in IR
      1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements all of the non-inline methods for the LLVM instruction
     11 // classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/IR/Instructions.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/IR/Constants.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Module.h"
     22 #include "llvm/IR/Operator.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ConstantRange.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/MathExtras.h"
     27 using namespace llvm;
     28 
     29 //===----------------------------------------------------------------------===//
     30 //                            CallSite Class
     31 //===----------------------------------------------------------------------===//
     32 
     33 User::op_iterator CallSite::getCallee() const {
     34   Instruction *II(getInstruction());
     35   return isCall()
     36     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
     37     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
     38 }
     39 
     40 //===----------------------------------------------------------------------===//
     41 //                            TerminatorInst Class
     42 //===----------------------------------------------------------------------===//
     43 
     44 // Out of line virtual method, so the vtable, etc has a home.
     45 TerminatorInst::~TerminatorInst() {
     46 }
     47 
     48 //===----------------------------------------------------------------------===//
     49 //                           UnaryInstruction Class
     50 //===----------------------------------------------------------------------===//
     51 
     52 // Out of line virtual method, so the vtable, etc has a home.
     53 UnaryInstruction::~UnaryInstruction() {
     54 }
     55 
     56 //===----------------------------------------------------------------------===//
     57 //                              SelectInst Class
     58 //===----------------------------------------------------------------------===//
     59 
     60 /// areInvalidOperands - Return a string if the specified operands are invalid
     61 /// for a select operation, otherwise return null.
     62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
     63   if (Op1->getType() != Op2->getType())
     64     return "both values to select must have same type";
     65 
     66   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
     67     // Vector select.
     68     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
     69       return "vector select condition element type must be i1";
     70     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
     71     if (ET == 0)
     72       return "selected values for vector select must be vectors";
     73     if (ET->getNumElements() != VT->getNumElements())
     74       return "vector select requires selected vectors to have "
     75                    "the same vector length as select condition";
     76   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
     77     return "select condition must be i1 or <n x i1>";
     78   }
     79   return 0;
     80 }
     81 
     82 
     83 //===----------------------------------------------------------------------===//
     84 //                               PHINode Class
     85 //===----------------------------------------------------------------------===//
     86 
     87 PHINode::PHINode(const PHINode &PN)
     88   : Instruction(PN.getType(), Instruction::PHI,
     89                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
     90     ReservedSpace(PN.getNumOperands()) {
     91   std::copy(PN.op_begin(), PN.op_end(), op_begin());
     92   std::copy(PN.block_begin(), PN.block_end(), block_begin());
     93   SubclassOptionalData = PN.SubclassOptionalData;
     94 }
     95 
     96 PHINode::~PHINode() {
     97   dropHungoffUses();
     98 }
     99 
    100 Use *PHINode::allocHungoffUses(unsigned N) const {
    101   // Allocate the array of Uses of the incoming values, followed by a pointer
    102   // (with bottom bit set) to the User, followed by the array of pointers to
    103   // the incoming basic blocks.
    104   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
    105     + N * sizeof(BasicBlock*);
    106   Use *Begin = static_cast<Use*>(::operator new(size));
    107   Use *End = Begin + N;
    108   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
    109   return Use::initTags(Begin, End);
    110 }
    111 
    112 // removeIncomingValue - Remove an incoming value.  This is useful if a
    113 // predecessor basic block is deleted.
    114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
    115   Value *Removed = getIncomingValue(Idx);
    116 
    117   // Move everything after this operand down.
    118   //
    119   // FIXME: we could just swap with the end of the list, then erase.  However,
    120   // clients might not expect this to happen.  The code as it is thrashes the
    121   // use/def lists, which is kinda lame.
    122   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
    123   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
    124 
    125   // Nuke the last value.
    126   Op<-1>().set(0);
    127   --NumOperands;
    128 
    129   // If the PHI node is dead, because it has zero entries, nuke it now.
    130   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
    131     // If anyone is using this PHI, make them use a dummy value instead...
    132     replaceAllUsesWith(UndefValue::get(getType()));
    133     eraseFromParent();
    134   }
    135   return Removed;
    136 }
    137 
    138 /// growOperands - grow operands - This grows the operand list in response
    139 /// to a push_back style of operation.  This grows the number of ops by 1.5
    140 /// times.
    141 ///
    142 void PHINode::growOperands() {
    143   unsigned e = getNumOperands();
    144   unsigned NumOps = e + e / 2;
    145   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
    146 
    147   Use *OldOps = op_begin();
    148   BasicBlock **OldBlocks = block_begin();
    149 
    150   ReservedSpace = NumOps;
    151   OperandList = allocHungoffUses(ReservedSpace);
    152 
    153   std::copy(OldOps, OldOps + e, op_begin());
    154   std::copy(OldBlocks, OldBlocks + e, block_begin());
    155 
    156   Use::zap(OldOps, OldOps + e, true);
    157 }
    158 
    159 /// hasConstantValue - If the specified PHI node always merges together the same
    160 /// value, return the value, otherwise return null.
    161 Value *PHINode::hasConstantValue() const {
    162   // Exploit the fact that phi nodes always have at least one entry.
    163   Value *ConstantValue = getIncomingValue(0);
    164   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
    165     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
    166       if (ConstantValue != this)
    167         return 0; // Incoming values not all the same.
    168        // The case where the first value is this PHI.
    169       ConstantValue = getIncomingValue(i);
    170     }
    171   if (ConstantValue == this)
    172     return UndefValue::get(getType());
    173   return ConstantValue;
    174 }
    175 
    176 //===----------------------------------------------------------------------===//
    177 //                       LandingPadInst Implementation
    178 //===----------------------------------------------------------------------===//
    179 
    180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    181                                unsigned NumReservedValues, const Twine &NameStr,
    182                                Instruction *InsertBefore)
    183   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
    184   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    185 }
    186 
    187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    188                                unsigned NumReservedValues, const Twine &NameStr,
    189                                BasicBlock *InsertAtEnd)
    190   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
    191   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    192 }
    193 
    194 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
    195   : Instruction(LP.getType(), Instruction::LandingPad,
    196                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
    197     ReservedSpace(LP.getNumOperands()) {
    198   Use *OL = OperandList, *InOL = LP.OperandList;
    199   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
    200     OL[I] = InOL[I];
    201 
    202   setCleanup(LP.isCleanup());
    203 }
    204 
    205 LandingPadInst::~LandingPadInst() {
    206   dropHungoffUses();
    207 }
    208 
    209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    210                                        unsigned NumReservedClauses,
    211                                        const Twine &NameStr,
    212                                        Instruction *InsertBefore) {
    213   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    214                             InsertBefore);
    215 }
    216 
    217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    218                                        unsigned NumReservedClauses,
    219                                        const Twine &NameStr,
    220                                        BasicBlock *InsertAtEnd) {
    221   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    222                             InsertAtEnd);
    223 }
    224 
    225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
    226                           const Twine &NameStr) {
    227   ReservedSpace = NumReservedValues;
    228   NumOperands = 1;
    229   OperandList = allocHungoffUses(ReservedSpace);
    230   OperandList[0] = PersFn;
    231   setName(NameStr);
    232   setCleanup(false);
    233 }
    234 
    235 /// growOperands - grow operands - This grows the operand list in response to a
    236 /// push_back style of operation. This grows the number of ops by 2 times.
    237 void LandingPadInst::growOperands(unsigned Size) {
    238   unsigned e = getNumOperands();
    239   if (ReservedSpace >= e + Size) return;
    240   ReservedSpace = (e + Size / 2) * 2;
    241 
    242   Use *NewOps = allocHungoffUses(ReservedSpace);
    243   Use *OldOps = OperandList;
    244   for (unsigned i = 0; i != e; ++i)
    245       NewOps[i] = OldOps[i];
    246 
    247   OperandList = NewOps;
    248   Use::zap(OldOps, OldOps + e, true);
    249 }
    250 
    251 void LandingPadInst::addClause(Value *Val) {
    252   unsigned OpNo = getNumOperands();
    253   growOperands(1);
    254   assert(OpNo < ReservedSpace && "Growing didn't work!");
    255   ++NumOperands;
    256   OperandList[OpNo] = Val;
    257 }
    258 
    259 //===----------------------------------------------------------------------===//
    260 //                        CallInst Implementation
    261 //===----------------------------------------------------------------------===//
    262 
    263 CallInst::~CallInst() {
    264 }
    265 
    266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
    267   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
    268   Op<-1>() = Func;
    269 
    270 #ifndef NDEBUG
    271   FunctionType *FTy =
    272     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    273 
    274   assert((Args.size() == FTy->getNumParams() ||
    275           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    276          "Calling a function with bad signature!");
    277 
    278   for (unsigned i = 0; i != Args.size(); ++i)
    279     assert((i >= FTy->getNumParams() ||
    280             FTy->getParamType(i) == Args[i]->getType()) &&
    281            "Calling a function with a bad signature!");
    282 #endif
    283 
    284   std::copy(Args.begin(), Args.end(), op_begin());
    285   setName(NameStr);
    286 }
    287 
    288 void CallInst::init(Value *Func, const Twine &NameStr) {
    289   assert(NumOperands == 1 && "NumOperands not set up?");
    290   Op<-1>() = Func;
    291 
    292 #ifndef NDEBUG
    293   FunctionType *FTy =
    294     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    295 
    296   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
    297 #endif
    298 
    299   setName(NameStr);
    300 }
    301 
    302 CallInst::CallInst(Value *Func, const Twine &Name,
    303                    Instruction *InsertBefore)
    304   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    305                                    ->getElementType())->getReturnType(),
    306                 Instruction::Call,
    307                 OperandTraits<CallInst>::op_end(this) - 1,
    308                 1, InsertBefore) {
    309   init(Func, Name);
    310 }
    311 
    312 CallInst::CallInst(Value *Func, const Twine &Name,
    313                    BasicBlock *InsertAtEnd)
    314   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    315                                    ->getElementType())->getReturnType(),
    316                 Instruction::Call,
    317                 OperandTraits<CallInst>::op_end(this) - 1,
    318                 1, InsertAtEnd) {
    319   init(Func, Name);
    320 }
    321 
    322 CallInst::CallInst(const CallInst &CI)
    323   : Instruction(CI.getType(), Instruction::Call,
    324                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
    325                 CI.getNumOperands()) {
    326   setAttributes(CI.getAttributes());
    327   setTailCall(CI.isTailCall());
    328   setCallingConv(CI.getCallingConv());
    329 
    330   std::copy(CI.op_begin(), CI.op_end(), op_begin());
    331   SubclassOptionalData = CI.SubclassOptionalData;
    332 }
    333 
    334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
    335   AttributeSet PAL = getAttributes();
    336   PAL = PAL.addAttribute(getContext(), i, attr);
    337   setAttributes(PAL);
    338 }
    339 
    340 void CallInst::removeAttribute(unsigned i, Attribute attr) {
    341   AttributeSet PAL = getAttributes();
    342   AttrBuilder B(attr);
    343   LLVMContext &Context = getContext();
    344   PAL = PAL.removeAttributes(Context, i,
    345                              AttributeSet::get(Context, i, B));
    346   setAttributes(PAL);
    347 }
    348 
    349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
    350   if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
    351     return true;
    352   if (const Function *F = getCalledFunction())
    353     return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
    354   return false;
    355 }
    356 
    357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
    358   if (AttributeList.hasAttribute(i, A))
    359     return true;
    360   if (const Function *F = getCalledFunction())
    361     return F->getAttributes().hasAttribute(i, A);
    362   return false;
    363 }
    364 
    365 /// IsConstantOne - Return true only if val is constant int 1
    366 static bool IsConstantOne(Value *val) {
    367   assert(val && "IsConstantOne does not work with NULL val");
    368   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
    369 }
    370 
    371 static Instruction *createMalloc(Instruction *InsertBefore,
    372                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
    373                                  Type *AllocTy, Value *AllocSize,
    374                                  Value *ArraySize, Function *MallocF,
    375                                  const Twine &Name) {
    376   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    377          "createMalloc needs either InsertBefore or InsertAtEnd");
    378 
    379   // malloc(type) becomes:
    380   //       bitcast (i8* malloc(typeSize)) to type*
    381   // malloc(type, arraySize) becomes:
    382   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
    383   if (!ArraySize)
    384     ArraySize = ConstantInt::get(IntPtrTy, 1);
    385   else if (ArraySize->getType() != IntPtrTy) {
    386     if (InsertBefore)
    387       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    388                                               "", InsertBefore);
    389     else
    390       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    391                                               "", InsertAtEnd);
    392   }
    393 
    394   if (!IsConstantOne(ArraySize)) {
    395     if (IsConstantOne(AllocSize)) {
    396       AllocSize = ArraySize;         // Operand * 1 = Operand
    397     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
    398       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
    399                                                      false /*ZExt*/);
    400       // Malloc arg is constant product of type size and array size
    401       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
    402     } else {
    403       // Multiply type size by the array size...
    404       if (InsertBefore)
    405         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    406                                               "mallocsize", InsertBefore);
    407       else
    408         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    409                                               "mallocsize", InsertAtEnd);
    410     }
    411   }
    412 
    413   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
    414   // Create the call to Malloc.
    415   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    416   Module* M = BB->getParent()->getParent();
    417   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
    418   Value *MallocFunc = MallocF;
    419   if (!MallocFunc)
    420     // prototype malloc as "void *malloc(size_t)"
    421     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
    422   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
    423   CallInst *MCall = NULL;
    424   Instruction *Result = NULL;
    425   if (InsertBefore) {
    426     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
    427     Result = MCall;
    428     if (Result->getType() != AllocPtrType)
    429       // Create a cast instruction to convert to the right type...
    430       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
    431   } else {
    432     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
    433     Result = MCall;
    434     if (Result->getType() != AllocPtrType) {
    435       InsertAtEnd->getInstList().push_back(MCall);
    436       // Create a cast instruction to convert to the right type...
    437       Result = new BitCastInst(MCall, AllocPtrType, Name);
    438     }
    439   }
    440   MCall->setTailCall();
    441   if (Function *F = dyn_cast<Function>(MallocFunc)) {
    442     MCall->setCallingConv(F->getCallingConv());
    443     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
    444   }
    445   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
    446 
    447   return Result;
    448 }
    449 
    450 /// CreateMalloc - Generate the IR for a call to malloc:
    451 /// 1. Compute the malloc call's argument as the specified type's size,
    452 ///    possibly multiplied by the array size if the array size is not
    453 ///    constant 1.
    454 /// 2. Call malloc with that argument.
    455 /// 3. Bitcast the result of the malloc call to the specified type.
    456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
    457                                     Type *IntPtrTy, Type *AllocTy,
    458                                     Value *AllocSize, Value *ArraySize,
    459                                     Function * MallocF,
    460                                     const Twine &Name) {
    461   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
    462                       ArraySize, MallocF, Name);
    463 }
    464 
    465 /// CreateMalloc - Generate the IR for a call to malloc:
    466 /// 1. Compute the malloc call's argument as the specified type's size,
    467 ///    possibly multiplied by the array size if the array size is not
    468 ///    constant 1.
    469 /// 2. Call malloc with that argument.
    470 /// 3. Bitcast the result of the malloc call to the specified type.
    471 /// Note: This function does not add the bitcast to the basic block, that is the
    472 /// responsibility of the caller.
    473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
    474                                     Type *IntPtrTy, Type *AllocTy,
    475                                     Value *AllocSize, Value *ArraySize,
    476                                     Function *MallocF, const Twine &Name) {
    477   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
    478                       ArraySize, MallocF, Name);
    479 }
    480 
    481 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
    482                                BasicBlock *InsertAtEnd) {
    483   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    484          "createFree needs either InsertBefore or InsertAtEnd");
    485   assert(Source->getType()->isPointerTy() &&
    486          "Can not free something of nonpointer type!");
    487 
    488   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    489   Module* M = BB->getParent()->getParent();
    490 
    491   Type *VoidTy = Type::getVoidTy(M->getContext());
    492   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
    493   // prototype free as "void free(void*)"
    494   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
    495   CallInst* Result = NULL;
    496   Value *PtrCast = Source;
    497   if (InsertBefore) {
    498     if (Source->getType() != IntPtrTy)
    499       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
    500     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
    501   } else {
    502     if (Source->getType() != IntPtrTy)
    503       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
    504     Result = CallInst::Create(FreeFunc, PtrCast, "");
    505   }
    506   Result->setTailCall();
    507   if (Function *F = dyn_cast<Function>(FreeFunc))
    508     Result->setCallingConv(F->getCallingConv());
    509 
    510   return Result;
    511 }
    512 
    513 /// CreateFree - Generate the IR for a call to the builtin free function.
    514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
    515   return createFree(Source, InsertBefore, NULL);
    516 }
    517 
    518 /// CreateFree - Generate the IR for a call to the builtin free function.
    519 /// Note: This function does not add the call to the basic block, that is the
    520 /// responsibility of the caller.
    521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
    522   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
    523   assert(FreeCall && "CreateFree did not create a CallInst");
    524   return FreeCall;
    525 }
    526 
    527 //===----------------------------------------------------------------------===//
    528 //                        InvokeInst Implementation
    529 //===----------------------------------------------------------------------===//
    530 
    531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
    532                       ArrayRef<Value *> Args, const Twine &NameStr) {
    533   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
    534   Op<-3>() = Fn;
    535   Op<-2>() = IfNormal;
    536   Op<-1>() = IfException;
    537 
    538 #ifndef NDEBUG
    539   FunctionType *FTy =
    540     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
    541 
    542   assert(((Args.size() == FTy->getNumParams()) ||
    543           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    544          "Invoking a function with bad signature");
    545 
    546   for (unsigned i = 0, e = Args.size(); i != e; i++)
    547     assert((i >= FTy->getNumParams() ||
    548             FTy->getParamType(i) == Args[i]->getType()) &&
    549            "Invoking a function with a bad signature!");
    550 #endif
    551 
    552   std::copy(Args.begin(), Args.end(), op_begin());
    553   setName(NameStr);
    554 }
    555 
    556 InvokeInst::InvokeInst(const InvokeInst &II)
    557   : TerminatorInst(II.getType(), Instruction::Invoke,
    558                    OperandTraits<InvokeInst>::op_end(this)
    559                    - II.getNumOperands(),
    560                    II.getNumOperands()) {
    561   setAttributes(II.getAttributes());
    562   setCallingConv(II.getCallingConv());
    563   std::copy(II.op_begin(), II.op_end(), op_begin());
    564   SubclassOptionalData = II.SubclassOptionalData;
    565 }
    566 
    567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
    568   return getSuccessor(idx);
    569 }
    570 unsigned InvokeInst::getNumSuccessorsV() const {
    571   return getNumSuccessors();
    572 }
    573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    574   return setSuccessor(idx, B);
    575 }
    576 
    577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
    578   if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
    579     return true;
    580   if (const Function *F = getCalledFunction())
    581     return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
    582   return false;
    583 }
    584 
    585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
    586   if (AttributeList.hasAttribute(i, A))
    587     return true;
    588   if (const Function *F = getCalledFunction())
    589     return F->getAttributes().hasAttribute(i, A);
    590   return false;
    591 }
    592 
    593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
    594   AttributeSet PAL = getAttributes();
    595   PAL = PAL.addAttribute(getContext(), i, attr);
    596   setAttributes(PAL);
    597 }
    598 
    599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
    600   AttributeSet PAL = getAttributes();
    601   AttrBuilder B(attr);
    602   PAL = PAL.removeAttributes(getContext(), i,
    603                              AttributeSet::get(getContext(), i, B));
    604   setAttributes(PAL);
    605 }
    606 
    607 LandingPadInst *InvokeInst::getLandingPadInst() const {
    608   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
    609 }
    610 
    611 //===----------------------------------------------------------------------===//
    612 //                        ReturnInst Implementation
    613 //===----------------------------------------------------------------------===//
    614 
    615 ReturnInst::ReturnInst(const ReturnInst &RI)
    616   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
    617                    OperandTraits<ReturnInst>::op_end(this) -
    618                      RI.getNumOperands(),
    619                    RI.getNumOperands()) {
    620   if (RI.getNumOperands())
    621     Op<0>() = RI.Op<0>();
    622   SubclassOptionalData = RI.SubclassOptionalData;
    623 }
    624 
    625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
    626   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    627                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    628                    InsertBefore) {
    629   if (retVal)
    630     Op<0>() = retVal;
    631 }
    632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
    633   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    634                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    635                    InsertAtEnd) {
    636   if (retVal)
    637     Op<0>() = retVal;
    638 }
    639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    640   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
    641                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
    642 }
    643 
    644 unsigned ReturnInst::getNumSuccessorsV() const {
    645   return getNumSuccessors();
    646 }
    647 
    648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
    649 /// emit the vtable for the class in this translation unit.
    650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    651   llvm_unreachable("ReturnInst has no successors!");
    652 }
    653 
    654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
    655   llvm_unreachable("ReturnInst has no successors!");
    656 }
    657 
    658 ReturnInst::~ReturnInst() {
    659 }
    660 
    661 //===----------------------------------------------------------------------===//
    662 //                        ResumeInst Implementation
    663 //===----------------------------------------------------------------------===//
    664 
    665 ResumeInst::ResumeInst(const ResumeInst &RI)
    666   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
    667                    OperandTraits<ResumeInst>::op_begin(this), 1) {
    668   Op<0>() = RI.Op<0>();
    669 }
    670 
    671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
    672   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    673                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
    674   Op<0>() = Exn;
    675 }
    676 
    677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
    678   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    679                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
    680   Op<0>() = Exn;
    681 }
    682 
    683 unsigned ResumeInst::getNumSuccessorsV() const {
    684   return getNumSuccessors();
    685 }
    686 
    687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    688   llvm_unreachable("ResumeInst has no successors!");
    689 }
    690 
    691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
    692   llvm_unreachable("ResumeInst has no successors!");
    693 }
    694 
    695 //===----------------------------------------------------------------------===//
    696 //                      UnreachableInst Implementation
    697 //===----------------------------------------------------------------------===//
    698 
    699 UnreachableInst::UnreachableInst(LLVMContext &Context,
    700                                  Instruction *InsertBefore)
    701   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    702                    0, 0, InsertBefore) {
    703 }
    704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    705   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    706                    0, 0, InsertAtEnd) {
    707 }
    708 
    709 unsigned UnreachableInst::getNumSuccessorsV() const {
    710   return getNumSuccessors();
    711 }
    712 
    713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    714   llvm_unreachable("UnreachableInst has no successors!");
    715 }
    716 
    717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
    718   llvm_unreachable("UnreachableInst has no successors!");
    719 }
    720 
    721 //===----------------------------------------------------------------------===//
    722 //                        BranchInst Implementation
    723 //===----------------------------------------------------------------------===//
    724 
    725 void BranchInst::AssertOK() {
    726   if (isConditional())
    727     assert(getCondition()->getType()->isIntegerTy(1) &&
    728            "May only branch on boolean predicates!");
    729 }
    730 
    731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
    732   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    733                    OperandTraits<BranchInst>::op_end(this) - 1,
    734                    1, InsertBefore) {
    735   assert(IfTrue != 0 && "Branch destination may not be null!");
    736   Op<-1>() = IfTrue;
    737 }
    738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    739                        Instruction *InsertBefore)
    740   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    741                    OperandTraits<BranchInst>::op_end(this) - 3,
    742                    3, InsertBefore) {
    743   Op<-1>() = IfTrue;
    744   Op<-2>() = IfFalse;
    745   Op<-3>() = Cond;
    746 #ifndef NDEBUG
    747   AssertOK();
    748 #endif
    749 }
    750 
    751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
    752   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    753                    OperandTraits<BranchInst>::op_end(this) - 1,
    754                    1, InsertAtEnd) {
    755   assert(IfTrue != 0 && "Branch destination may not be null!");
    756   Op<-1>() = IfTrue;
    757 }
    758 
    759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    760            BasicBlock *InsertAtEnd)
    761   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    762                    OperandTraits<BranchInst>::op_end(this) - 3,
    763                    3, InsertAtEnd) {
    764   Op<-1>() = IfTrue;
    765   Op<-2>() = IfFalse;
    766   Op<-3>() = Cond;
    767 #ifndef NDEBUG
    768   AssertOK();
    769 #endif
    770 }
    771 
    772 
    773 BranchInst::BranchInst(const BranchInst &BI) :
    774   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
    775                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
    776                  BI.getNumOperands()) {
    777   Op<-1>() = BI.Op<-1>();
    778   if (BI.getNumOperands() != 1) {
    779     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
    780     Op<-3>() = BI.Op<-3>();
    781     Op<-2>() = BI.Op<-2>();
    782   }
    783   SubclassOptionalData = BI.SubclassOptionalData;
    784 }
    785 
    786 void BranchInst::swapSuccessors() {
    787   assert(isConditional() &&
    788          "Cannot swap successors of an unconditional branch");
    789   Op<-1>().swap(Op<-2>());
    790 
    791   // Update profile metadata if present and it matches our structural
    792   // expectations.
    793   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
    794   if (!ProfileData || ProfileData->getNumOperands() != 3)
    795     return;
    796 
    797   // The first operand is the name. Fetch them backwards and build a new one.
    798   Value *Ops[] = {
    799     ProfileData->getOperand(0),
    800     ProfileData->getOperand(2),
    801     ProfileData->getOperand(1)
    802   };
    803   setMetadata(LLVMContext::MD_prof,
    804               MDNode::get(ProfileData->getContext(), Ops));
    805 }
    806 
    807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
    808   return getSuccessor(idx);
    809 }
    810 unsigned BranchInst::getNumSuccessorsV() const {
    811   return getNumSuccessors();
    812 }
    813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    814   setSuccessor(idx, B);
    815 }
    816 
    817 
    818 //===----------------------------------------------------------------------===//
    819 //                        AllocaInst Implementation
    820 //===----------------------------------------------------------------------===//
    821 
    822 static Value *getAISize(LLVMContext &Context, Value *Amt) {
    823   if (!Amt)
    824     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
    825   else {
    826     assert(!isa<BasicBlock>(Amt) &&
    827            "Passed basic block into allocation size parameter! Use other ctor");
    828     assert(Amt->getType()->isIntegerTy() &&
    829            "Allocation array size is not an integer!");
    830   }
    831   return Amt;
    832 }
    833 
    834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    835                        const Twine &Name, Instruction *InsertBefore)
    836   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    837                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    838   setAlignment(0);
    839   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    840   setName(Name);
    841 }
    842 
    843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    844                        const Twine &Name, BasicBlock *InsertAtEnd)
    845   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    846                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    847   setAlignment(0);
    848   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    849   setName(Name);
    850 }
    851 
    852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    853                        Instruction *InsertBefore)
    854   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    855                      getAISize(Ty->getContext(), 0), InsertBefore) {
    856   setAlignment(0);
    857   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    858   setName(Name);
    859 }
    860 
    861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    862                        BasicBlock *InsertAtEnd)
    863   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    864                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
    865   setAlignment(0);
    866   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    867   setName(Name);
    868 }
    869 
    870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    871                        const Twine &Name, Instruction *InsertBefore)
    872   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    873                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    874   setAlignment(Align);
    875   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    876   setName(Name);
    877 }
    878 
    879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    880                        const Twine &Name, BasicBlock *InsertAtEnd)
    881   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    882                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    883   setAlignment(Align);
    884   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    885   setName(Name);
    886 }
    887 
    888 // Out of line virtual method, so the vtable, etc has a home.
    889 AllocaInst::~AllocaInst() {
    890 }
    891 
    892 void AllocaInst::setAlignment(unsigned Align) {
    893   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
    894   assert(Align <= MaximumAlignment &&
    895          "Alignment is greater than MaximumAlignment!");
    896   setInstructionSubclassData(Log2_32(Align) + 1);
    897   assert(getAlignment() == Align && "Alignment representation error!");
    898 }
    899 
    900 bool AllocaInst::isArrayAllocation() const {
    901   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
    902     return !CI->isOne();
    903   return true;
    904 }
    905 
    906 Type *AllocaInst::getAllocatedType() const {
    907   return getType()->getElementType();
    908 }
    909 
    910 /// isStaticAlloca - Return true if this alloca is in the entry block of the
    911 /// function and is a constant size.  If so, the code generator will fold it
    912 /// into the prolog/epilog code, so it is basically free.
    913 bool AllocaInst::isStaticAlloca() const {
    914   // Must be constant size.
    915   if (!isa<ConstantInt>(getArraySize())) return false;
    916 
    917   // Must be in the entry block.
    918   const BasicBlock *Parent = getParent();
    919   return Parent == &Parent->getParent()->front();
    920 }
    921 
    922 //===----------------------------------------------------------------------===//
    923 //                           LoadInst Implementation
    924 //===----------------------------------------------------------------------===//
    925 
    926 void LoadInst::AssertOK() {
    927   assert(getOperand(0)->getType()->isPointerTy() &&
    928          "Ptr must have pointer type.");
    929   assert(!(isAtomic() && getAlignment() == 0) &&
    930          "Alignment required for atomic load");
    931 }
    932 
    933 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
    934   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    935                      Load, Ptr, InsertBef) {
    936   setVolatile(false);
    937   setAlignment(0);
    938   setAtomic(NotAtomic);
    939   AssertOK();
    940   setName(Name);
    941 }
    942 
    943 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
    944   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    945                      Load, Ptr, InsertAE) {
    946   setVolatile(false);
    947   setAlignment(0);
    948   setAtomic(NotAtomic);
    949   AssertOK();
    950   setName(Name);
    951 }
    952 
    953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    954                    Instruction *InsertBef)
    955   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    956                      Load, Ptr, InsertBef) {
    957   setVolatile(isVolatile);
    958   setAlignment(0);
    959   setAtomic(NotAtomic);
    960   AssertOK();
    961   setName(Name);
    962 }
    963 
    964 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    965                    BasicBlock *InsertAE)
    966   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    967                      Load, Ptr, InsertAE) {
    968   setVolatile(isVolatile);
    969   setAlignment(0);
    970   setAtomic(NotAtomic);
    971   AssertOK();
    972   setName(Name);
    973 }
    974 
    975 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    976                    unsigned Align, Instruction *InsertBef)
    977   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    978                      Load, Ptr, InsertBef) {
    979   setVolatile(isVolatile);
    980   setAlignment(Align);
    981   setAtomic(NotAtomic);
    982   AssertOK();
    983   setName(Name);
    984 }
    985 
    986 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    987                    unsigned Align, BasicBlock *InsertAE)
    988   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    989                      Load, Ptr, InsertAE) {
    990   setVolatile(isVolatile);
    991   setAlignment(Align);
    992   setAtomic(NotAtomic);
    993   AssertOK();
    994   setName(Name);
    995 }
    996 
    997 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    998                    unsigned Align, AtomicOrdering Order,
    999                    SynchronizationScope SynchScope,
   1000                    Instruction *InsertBef)
   1001   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1002                      Load, Ptr, InsertBef) {
   1003   setVolatile(isVolatile);
   1004   setAlignment(Align);
   1005   setAtomic(Order, SynchScope);
   1006   AssertOK();
   1007   setName(Name);
   1008 }
   1009 
   1010 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
   1011                    unsigned Align, AtomicOrdering Order,
   1012                    SynchronizationScope SynchScope,
   1013                    BasicBlock *InsertAE)
   1014   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1015                      Load, Ptr, InsertAE) {
   1016   setVolatile(isVolatile);
   1017   setAlignment(Align);
   1018   setAtomic(Order, SynchScope);
   1019   AssertOK();
   1020   setName(Name);
   1021 }
   1022 
   1023 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
   1024   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1025                      Load, Ptr, InsertBef) {
   1026   setVolatile(false);
   1027   setAlignment(0);
   1028   setAtomic(NotAtomic);
   1029   AssertOK();
   1030   if (Name && Name[0]) setName(Name);
   1031 }
   1032 
   1033 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
   1034   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1035                      Load, Ptr, InsertAE) {
   1036   setVolatile(false);
   1037   setAlignment(0);
   1038   setAtomic(NotAtomic);
   1039   AssertOK();
   1040   if (Name && Name[0]) setName(Name);
   1041 }
   1042 
   1043 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1044                    Instruction *InsertBef)
   1045 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1046                    Load, Ptr, InsertBef) {
   1047   setVolatile(isVolatile);
   1048   setAlignment(0);
   1049   setAtomic(NotAtomic);
   1050   AssertOK();
   1051   if (Name && Name[0]) setName(Name);
   1052 }
   1053 
   1054 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1055                    BasicBlock *InsertAE)
   1056   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1057                      Load, Ptr, InsertAE) {
   1058   setVolatile(isVolatile);
   1059   setAlignment(0);
   1060   setAtomic(NotAtomic);
   1061   AssertOK();
   1062   if (Name && Name[0]) setName(Name);
   1063 }
   1064 
   1065 void LoadInst::setAlignment(unsigned Align) {
   1066   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1067   assert(Align <= MaximumAlignment &&
   1068          "Alignment is greater than MaximumAlignment!");
   1069   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1070                              ((Log2_32(Align)+1)<<1));
   1071   assert(getAlignment() == Align && "Alignment representation error!");
   1072 }
   1073 
   1074 //===----------------------------------------------------------------------===//
   1075 //                           StoreInst Implementation
   1076 //===----------------------------------------------------------------------===//
   1077 
   1078 void StoreInst::AssertOK() {
   1079   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
   1080   assert(getOperand(1)->getType()->isPointerTy() &&
   1081          "Ptr must have pointer type!");
   1082   assert(getOperand(0)->getType() ==
   1083                  cast<PointerType>(getOperand(1)->getType())->getElementType()
   1084          && "Ptr must be a pointer to Val type!");
   1085   assert(!(isAtomic() && getAlignment() == 0) &&
   1086          "Alignment required for atomic load");
   1087 }
   1088 
   1089 
   1090 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
   1091   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1092                 OperandTraits<StoreInst>::op_begin(this),
   1093                 OperandTraits<StoreInst>::operands(this),
   1094                 InsertBefore) {
   1095   Op<0>() = val;
   1096   Op<1>() = addr;
   1097   setVolatile(false);
   1098   setAlignment(0);
   1099   setAtomic(NotAtomic);
   1100   AssertOK();
   1101 }
   1102 
   1103 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
   1104   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1105                 OperandTraits<StoreInst>::op_begin(this),
   1106                 OperandTraits<StoreInst>::operands(this),
   1107                 InsertAtEnd) {
   1108   Op<0>() = val;
   1109   Op<1>() = addr;
   1110   setVolatile(false);
   1111   setAlignment(0);
   1112   setAtomic(NotAtomic);
   1113   AssertOK();
   1114 }
   1115 
   1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1117                      Instruction *InsertBefore)
   1118   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1119                 OperandTraits<StoreInst>::op_begin(this),
   1120                 OperandTraits<StoreInst>::operands(this),
   1121                 InsertBefore) {
   1122   Op<0>() = val;
   1123   Op<1>() = addr;
   1124   setVolatile(isVolatile);
   1125   setAlignment(0);
   1126   setAtomic(NotAtomic);
   1127   AssertOK();
   1128 }
   1129 
   1130 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1131                      unsigned Align, Instruction *InsertBefore)
   1132   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1133                 OperandTraits<StoreInst>::op_begin(this),
   1134                 OperandTraits<StoreInst>::operands(this),
   1135                 InsertBefore) {
   1136   Op<0>() = val;
   1137   Op<1>() = addr;
   1138   setVolatile(isVolatile);
   1139   setAlignment(Align);
   1140   setAtomic(NotAtomic);
   1141   AssertOK();
   1142 }
   1143 
   1144 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1145                      unsigned Align, AtomicOrdering Order,
   1146                      SynchronizationScope SynchScope,
   1147                      Instruction *InsertBefore)
   1148   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1149                 OperandTraits<StoreInst>::op_begin(this),
   1150                 OperandTraits<StoreInst>::operands(this),
   1151                 InsertBefore) {
   1152   Op<0>() = val;
   1153   Op<1>() = addr;
   1154   setVolatile(isVolatile);
   1155   setAlignment(Align);
   1156   setAtomic(Order, SynchScope);
   1157   AssertOK();
   1158 }
   1159 
   1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1161                      BasicBlock *InsertAtEnd)
   1162   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1163                 OperandTraits<StoreInst>::op_begin(this),
   1164                 OperandTraits<StoreInst>::operands(this),
   1165                 InsertAtEnd) {
   1166   Op<0>() = val;
   1167   Op<1>() = addr;
   1168   setVolatile(isVolatile);
   1169   setAlignment(0);
   1170   setAtomic(NotAtomic);
   1171   AssertOK();
   1172 }
   1173 
   1174 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1175                      unsigned Align, BasicBlock *InsertAtEnd)
   1176   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1177                 OperandTraits<StoreInst>::op_begin(this),
   1178                 OperandTraits<StoreInst>::operands(this),
   1179                 InsertAtEnd) {
   1180   Op<0>() = val;
   1181   Op<1>() = addr;
   1182   setVolatile(isVolatile);
   1183   setAlignment(Align);
   1184   setAtomic(NotAtomic);
   1185   AssertOK();
   1186 }
   1187 
   1188 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1189                      unsigned Align, AtomicOrdering Order,
   1190                      SynchronizationScope SynchScope,
   1191                      BasicBlock *InsertAtEnd)
   1192   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1193                 OperandTraits<StoreInst>::op_begin(this),
   1194                 OperandTraits<StoreInst>::operands(this),
   1195                 InsertAtEnd) {
   1196   Op<0>() = val;
   1197   Op<1>() = addr;
   1198   setVolatile(isVolatile);
   1199   setAlignment(Align);
   1200   setAtomic(Order, SynchScope);
   1201   AssertOK();
   1202 }
   1203 
   1204 void StoreInst::setAlignment(unsigned Align) {
   1205   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1206   assert(Align <= MaximumAlignment &&
   1207          "Alignment is greater than MaximumAlignment!");
   1208   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1209                              ((Log2_32(Align)+1) << 1));
   1210   assert(getAlignment() == Align && "Alignment representation error!");
   1211 }
   1212 
   1213 //===----------------------------------------------------------------------===//
   1214 //                       AtomicCmpXchgInst Implementation
   1215 //===----------------------------------------------------------------------===//
   1216 
   1217 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
   1218                              AtomicOrdering Ordering,
   1219                              SynchronizationScope SynchScope) {
   1220   Op<0>() = Ptr;
   1221   Op<1>() = Cmp;
   1222   Op<2>() = NewVal;
   1223   setOrdering(Ordering);
   1224   setSynchScope(SynchScope);
   1225 
   1226   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
   1227          "All operands must be non-null!");
   1228   assert(getOperand(0)->getType()->isPointerTy() &&
   1229          "Ptr must have pointer type!");
   1230   assert(getOperand(1)->getType() ==
   1231                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1232          && "Ptr must be a pointer to Cmp type!");
   1233   assert(getOperand(2)->getType() ==
   1234                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1235          && "Ptr must be a pointer to NewVal type!");
   1236   assert(Ordering != NotAtomic &&
   1237          "AtomicCmpXchg instructions must be atomic!");
   1238 }
   1239 
   1240 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1241                                      AtomicOrdering Ordering,
   1242                                      SynchronizationScope SynchScope,
   1243                                      Instruction *InsertBefore)
   1244   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1245                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1246                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1247                 InsertBefore) {
   1248   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1249 }
   1250 
   1251 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1252                                      AtomicOrdering Ordering,
   1253                                      SynchronizationScope SynchScope,
   1254                                      BasicBlock *InsertAtEnd)
   1255   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1256                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1257                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1258                 InsertAtEnd) {
   1259   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1260 }
   1261 
   1262 //===----------------------------------------------------------------------===//
   1263 //                       AtomicRMWInst Implementation
   1264 //===----------------------------------------------------------------------===//
   1265 
   1266 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
   1267                          AtomicOrdering Ordering,
   1268                          SynchronizationScope SynchScope) {
   1269   Op<0>() = Ptr;
   1270   Op<1>() = Val;
   1271   setOperation(Operation);
   1272   setOrdering(Ordering);
   1273   setSynchScope(SynchScope);
   1274 
   1275   assert(getOperand(0) && getOperand(1) &&
   1276          "All operands must be non-null!");
   1277   assert(getOperand(0)->getType()->isPointerTy() &&
   1278          "Ptr must have pointer type!");
   1279   assert(getOperand(1)->getType() ==
   1280          cast<PointerType>(getOperand(0)->getType())->getElementType()
   1281          && "Ptr must be a pointer to Val type!");
   1282   assert(Ordering != NotAtomic &&
   1283          "AtomicRMW instructions must be atomic!");
   1284 }
   1285 
   1286 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1287                              AtomicOrdering Ordering,
   1288                              SynchronizationScope SynchScope,
   1289                              Instruction *InsertBefore)
   1290   : Instruction(Val->getType(), AtomicRMW,
   1291                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1292                 OperandTraits<AtomicRMWInst>::operands(this),
   1293                 InsertBefore) {
   1294   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1295 }
   1296 
   1297 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1298                              AtomicOrdering Ordering,
   1299                              SynchronizationScope SynchScope,
   1300                              BasicBlock *InsertAtEnd)
   1301   : Instruction(Val->getType(), AtomicRMW,
   1302                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1303                 OperandTraits<AtomicRMWInst>::operands(this),
   1304                 InsertAtEnd) {
   1305   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1306 }
   1307 
   1308 //===----------------------------------------------------------------------===//
   1309 //                       FenceInst Implementation
   1310 //===----------------------------------------------------------------------===//
   1311 
   1312 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1313                      SynchronizationScope SynchScope,
   1314                      Instruction *InsertBefore)
   1315   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
   1316   setOrdering(Ordering);
   1317   setSynchScope(SynchScope);
   1318 }
   1319 
   1320 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1321                      SynchronizationScope SynchScope,
   1322                      BasicBlock *InsertAtEnd)
   1323   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
   1324   setOrdering(Ordering);
   1325   setSynchScope(SynchScope);
   1326 }
   1327 
   1328 //===----------------------------------------------------------------------===//
   1329 //                       GetElementPtrInst Implementation
   1330 //===----------------------------------------------------------------------===//
   1331 
   1332 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
   1333                              const Twine &Name) {
   1334   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
   1335   OperandList[0] = Ptr;
   1336   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
   1337   setName(Name);
   1338 }
   1339 
   1340 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
   1341   : Instruction(GEPI.getType(), GetElementPtr,
   1342                 OperandTraits<GetElementPtrInst>::op_end(this)
   1343                 - GEPI.getNumOperands(),
   1344                 GEPI.getNumOperands()) {
   1345   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
   1346   SubclassOptionalData = GEPI.SubclassOptionalData;
   1347 }
   1348 
   1349 /// getIndexedType - Returns the type of the element that would be accessed with
   1350 /// a gep instruction with the specified parameters.
   1351 ///
   1352 /// The Idxs pointer should point to a continuous piece of memory containing the
   1353 /// indices, either as Value* or uint64_t.
   1354 ///
   1355 /// A null type is returned if the indices are invalid for the specified
   1356 /// pointer type.
   1357 ///
   1358 template <typename IndexTy>
   1359 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
   1360   PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
   1361   if (!PTy) return 0;   // Type isn't a pointer type!
   1362   Type *Agg = PTy->getElementType();
   1363 
   1364   // Handle the special case of the empty set index set, which is always valid.
   1365   if (IdxList.empty())
   1366     return Agg;
   1367 
   1368   // If there is at least one index, the top level type must be sized, otherwise
   1369   // it cannot be 'stepped over'.
   1370   if (!Agg->isSized())
   1371     return 0;
   1372 
   1373   unsigned CurIdx = 1;
   1374   for (; CurIdx != IdxList.size(); ++CurIdx) {
   1375     CompositeType *CT = dyn_cast<CompositeType>(Agg);
   1376     if (!CT || CT->isPointerTy()) return 0;
   1377     IndexTy Index = IdxList[CurIdx];
   1378     if (!CT->indexValid(Index)) return 0;
   1379     Agg = CT->getTypeAtIndex(Index);
   1380   }
   1381   return CurIdx == IdxList.size() ? Agg : 0;
   1382 }
   1383 
   1384 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
   1385   return getIndexedTypeInternal(Ptr, IdxList);
   1386 }
   1387 
   1388 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
   1389                                         ArrayRef<Constant *> IdxList) {
   1390   return getIndexedTypeInternal(Ptr, IdxList);
   1391 }
   1392 
   1393 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
   1394   return getIndexedTypeInternal(Ptr, IdxList);
   1395 }
   1396 
   1397 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
   1398 /// zeros.  If so, the result pointer and the first operand have the same
   1399 /// value, just potentially different types.
   1400 bool GetElementPtrInst::hasAllZeroIndices() const {
   1401   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1402     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
   1403       if (!CI->isZero()) return false;
   1404     } else {
   1405       return false;
   1406     }
   1407   }
   1408   return true;
   1409 }
   1410 
   1411 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
   1412 /// constant integers.  If so, the result pointer and the first operand have
   1413 /// a constant offset between them.
   1414 bool GetElementPtrInst::hasAllConstantIndices() const {
   1415   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1416     if (!isa<ConstantInt>(getOperand(i)))
   1417       return false;
   1418   }
   1419   return true;
   1420 }
   1421 
   1422 void GetElementPtrInst::setIsInBounds(bool B) {
   1423   cast<GEPOperator>(this)->setIsInBounds(B);
   1424 }
   1425 
   1426 bool GetElementPtrInst::isInBounds() const {
   1427   return cast<GEPOperator>(this)->isInBounds();
   1428 }
   1429 
   1430 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
   1431                                                  APInt &Offset) const {
   1432   // Delegate to the generic GEPOperator implementation.
   1433   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
   1434 }
   1435 
   1436 //===----------------------------------------------------------------------===//
   1437 //                           ExtractElementInst Implementation
   1438 //===----------------------------------------------------------------------===//
   1439 
   1440 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1441                                        const Twine &Name,
   1442                                        Instruction *InsertBef)
   1443   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1444                 ExtractElement,
   1445                 OperandTraits<ExtractElementInst>::op_begin(this),
   1446                 2, InsertBef) {
   1447   assert(isValidOperands(Val, Index) &&
   1448          "Invalid extractelement instruction operands!");
   1449   Op<0>() = Val;
   1450   Op<1>() = Index;
   1451   setName(Name);
   1452 }
   1453 
   1454 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1455                                        const Twine &Name,
   1456                                        BasicBlock *InsertAE)
   1457   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1458                 ExtractElement,
   1459                 OperandTraits<ExtractElementInst>::op_begin(this),
   1460                 2, InsertAE) {
   1461   assert(isValidOperands(Val, Index) &&
   1462          "Invalid extractelement instruction operands!");
   1463 
   1464   Op<0>() = Val;
   1465   Op<1>() = Index;
   1466   setName(Name);
   1467 }
   1468 
   1469 
   1470 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
   1471   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
   1472     return false;
   1473   return true;
   1474 }
   1475 
   1476 
   1477 //===----------------------------------------------------------------------===//
   1478 //                           InsertElementInst Implementation
   1479 //===----------------------------------------------------------------------===//
   1480 
   1481 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1482                                      const Twine &Name,
   1483                                      Instruction *InsertBef)
   1484   : Instruction(Vec->getType(), InsertElement,
   1485                 OperandTraits<InsertElementInst>::op_begin(this),
   1486                 3, InsertBef) {
   1487   assert(isValidOperands(Vec, Elt, Index) &&
   1488          "Invalid insertelement instruction operands!");
   1489   Op<0>() = Vec;
   1490   Op<1>() = Elt;
   1491   Op<2>() = Index;
   1492   setName(Name);
   1493 }
   1494 
   1495 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1496                                      const Twine &Name,
   1497                                      BasicBlock *InsertAE)
   1498   : Instruction(Vec->getType(), InsertElement,
   1499                 OperandTraits<InsertElementInst>::op_begin(this),
   1500                 3, InsertAE) {
   1501   assert(isValidOperands(Vec, Elt, Index) &&
   1502          "Invalid insertelement instruction operands!");
   1503 
   1504   Op<0>() = Vec;
   1505   Op<1>() = Elt;
   1506   Op<2>() = Index;
   1507   setName(Name);
   1508 }
   1509 
   1510 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
   1511                                         const Value *Index) {
   1512   if (!Vec->getType()->isVectorTy())
   1513     return false;   // First operand of insertelement must be vector type.
   1514 
   1515   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
   1516     return false;// Second operand of insertelement must be vector element type.
   1517 
   1518   if (!Index->getType()->isIntegerTy(32))
   1519     return false;  // Third operand of insertelement must be i32.
   1520   return true;
   1521 }
   1522 
   1523 
   1524 //===----------------------------------------------------------------------===//
   1525 //                      ShuffleVectorInst Implementation
   1526 //===----------------------------------------------------------------------===//
   1527 
   1528 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1529                                      const Twine &Name,
   1530                                      Instruction *InsertBefore)
   1531 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1532                 cast<VectorType>(Mask->getType())->getNumElements()),
   1533               ShuffleVector,
   1534               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1535               OperandTraits<ShuffleVectorInst>::operands(this),
   1536               InsertBefore) {
   1537   assert(isValidOperands(V1, V2, Mask) &&
   1538          "Invalid shuffle vector instruction operands!");
   1539   Op<0>() = V1;
   1540   Op<1>() = V2;
   1541   Op<2>() = Mask;
   1542   setName(Name);
   1543 }
   1544 
   1545 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1546                                      const Twine &Name,
   1547                                      BasicBlock *InsertAtEnd)
   1548 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1549                 cast<VectorType>(Mask->getType())->getNumElements()),
   1550               ShuffleVector,
   1551               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1552               OperandTraits<ShuffleVectorInst>::operands(this),
   1553               InsertAtEnd) {
   1554   assert(isValidOperands(V1, V2, Mask) &&
   1555          "Invalid shuffle vector instruction operands!");
   1556 
   1557   Op<0>() = V1;
   1558   Op<1>() = V2;
   1559   Op<2>() = Mask;
   1560   setName(Name);
   1561 }
   1562 
   1563 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
   1564                                         const Value *Mask) {
   1565   // V1 and V2 must be vectors of the same type.
   1566   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
   1567     return false;
   1568 
   1569   // Mask must be vector of i32.
   1570   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
   1571   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
   1572     return false;
   1573 
   1574   // Check to see if Mask is valid.
   1575   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
   1576     return true;
   1577 
   1578   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
   1579     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1580     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
   1581       if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
   1582         if (CI->uge(V1Size*2))
   1583           return false;
   1584       } else if (!isa<UndefValue>(MV->getOperand(i))) {
   1585         return false;
   1586       }
   1587     }
   1588     return true;
   1589   }
   1590 
   1591   if (const ConstantDataSequential *CDS =
   1592         dyn_cast<ConstantDataSequential>(Mask)) {
   1593     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1594     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
   1595       if (CDS->getElementAsInteger(i) >= V1Size*2)
   1596         return false;
   1597     return true;
   1598   }
   1599 
   1600   // The bitcode reader can create a place holder for a forward reference
   1601   // used as the shuffle mask. When this occurs, the shuffle mask will
   1602   // fall into this case and fail. To avoid this error, do this bit of
   1603   // ugliness to allow such a mask pass.
   1604   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
   1605     if (CE->getOpcode() == Instruction::UserOp1)
   1606       return true;
   1607 
   1608   return false;
   1609 }
   1610 
   1611 /// getMaskValue - Return the index from the shuffle mask for the specified
   1612 /// output result.  This is either -1 if the element is undef or a number less
   1613 /// than 2*numelements.
   1614 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
   1615   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
   1616   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
   1617     return CDS->getElementAsInteger(i);
   1618   Constant *C = Mask->getAggregateElement(i);
   1619   if (isa<UndefValue>(C))
   1620     return -1;
   1621   return cast<ConstantInt>(C)->getZExtValue();
   1622 }
   1623 
   1624 /// getShuffleMask - Return the full mask for this instruction, where each
   1625 /// element is the element number and undef's are returned as -1.
   1626 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
   1627                                        SmallVectorImpl<int> &Result) {
   1628   unsigned NumElts = Mask->getType()->getVectorNumElements();
   1629 
   1630   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
   1631     for (unsigned i = 0; i != NumElts; ++i)
   1632       Result.push_back(CDS->getElementAsInteger(i));
   1633     return;
   1634   }
   1635   for (unsigned i = 0; i != NumElts; ++i) {
   1636     Constant *C = Mask->getAggregateElement(i);
   1637     Result.push_back(isa<UndefValue>(C) ? -1 :
   1638                      cast<ConstantInt>(C)->getZExtValue());
   1639   }
   1640 }
   1641 
   1642 
   1643 //===----------------------------------------------------------------------===//
   1644 //                             InsertValueInst Class
   1645 //===----------------------------------------------------------------------===//
   1646 
   1647 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
   1648                            const Twine &Name) {
   1649   assert(NumOperands == 2 && "NumOperands not initialized?");
   1650 
   1651   // There's no fundamental reason why we require at least one index
   1652   // (other than weirdness with &*IdxBegin being invalid; see
   1653   // getelementptr's init routine for example). But there's no
   1654   // present need to support it.
   1655   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
   1656 
   1657   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
   1658          Val->getType() && "Inserted value must match indexed type!");
   1659   Op<0>() = Agg;
   1660   Op<1>() = Val;
   1661 
   1662   Indices.append(Idxs.begin(), Idxs.end());
   1663   setName(Name);
   1664 }
   1665 
   1666 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
   1667   : Instruction(IVI.getType(), InsertValue,
   1668                 OperandTraits<InsertValueInst>::op_begin(this), 2),
   1669     Indices(IVI.Indices) {
   1670   Op<0>() = IVI.getOperand(0);
   1671   Op<1>() = IVI.getOperand(1);
   1672   SubclassOptionalData = IVI.SubclassOptionalData;
   1673 }
   1674 
   1675 //===----------------------------------------------------------------------===//
   1676 //                             ExtractValueInst Class
   1677 //===----------------------------------------------------------------------===//
   1678 
   1679 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
   1680   assert(NumOperands == 1 && "NumOperands not initialized?");
   1681 
   1682   // There's no fundamental reason why we require at least one index.
   1683   // But there's no present need to support it.
   1684   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
   1685 
   1686   Indices.append(Idxs.begin(), Idxs.end());
   1687   setName(Name);
   1688 }
   1689 
   1690 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
   1691   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
   1692     Indices(EVI.Indices) {
   1693   SubclassOptionalData = EVI.SubclassOptionalData;
   1694 }
   1695 
   1696 // getIndexedType - Returns the type of the element that would be extracted
   1697 // with an extractvalue instruction with the specified parameters.
   1698 //
   1699 // A null type is returned if the indices are invalid for the specified
   1700 // pointer type.
   1701 //
   1702 Type *ExtractValueInst::getIndexedType(Type *Agg,
   1703                                        ArrayRef<unsigned> Idxs) {
   1704   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
   1705     unsigned Index = Idxs[CurIdx];
   1706     // We can't use CompositeType::indexValid(Index) here.
   1707     // indexValid() always returns true for arrays because getelementptr allows
   1708     // out-of-bounds indices. Since we don't allow those for extractvalue and
   1709     // insertvalue we need to check array indexing manually.
   1710     // Since the only other types we can index into are struct types it's just
   1711     // as easy to check those manually as well.
   1712     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
   1713       if (Index >= AT->getNumElements())
   1714         return 0;
   1715     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
   1716       if (Index >= ST->getNumElements())
   1717         return 0;
   1718     } else {
   1719       // Not a valid type to index into.
   1720       return 0;
   1721     }
   1722 
   1723     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
   1724   }
   1725   return const_cast<Type*>(Agg);
   1726 }
   1727 
   1728 //===----------------------------------------------------------------------===//
   1729 //                             BinaryOperator Class
   1730 //===----------------------------------------------------------------------===//
   1731 
   1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1733                                Type *Ty, const Twine &Name,
   1734                                Instruction *InsertBefore)
   1735   : Instruction(Ty, iType,
   1736                 OperandTraits<BinaryOperator>::op_begin(this),
   1737                 OperandTraits<BinaryOperator>::operands(this),
   1738                 InsertBefore) {
   1739   Op<0>() = S1;
   1740   Op<1>() = S2;
   1741   init(iType);
   1742   setName(Name);
   1743 }
   1744 
   1745 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1746                                Type *Ty, const Twine &Name,
   1747                                BasicBlock *InsertAtEnd)
   1748   : Instruction(Ty, iType,
   1749                 OperandTraits<BinaryOperator>::op_begin(this),
   1750                 OperandTraits<BinaryOperator>::operands(this),
   1751                 InsertAtEnd) {
   1752   Op<0>() = S1;
   1753   Op<1>() = S2;
   1754   init(iType);
   1755   setName(Name);
   1756 }
   1757 
   1758 
   1759 void BinaryOperator::init(BinaryOps iType) {
   1760   Value *LHS = getOperand(0), *RHS = getOperand(1);
   1761   (void)LHS; (void)RHS; // Silence warnings.
   1762   assert(LHS->getType() == RHS->getType() &&
   1763          "Binary operator operand types must match!");
   1764 #ifndef NDEBUG
   1765   switch (iType) {
   1766   case Add: case Sub:
   1767   case Mul:
   1768     assert(getType() == LHS->getType() &&
   1769            "Arithmetic operation should return same type as operands!");
   1770     assert(getType()->isIntOrIntVectorTy() &&
   1771            "Tried to create an integer operation on a non-integer type!");
   1772     break;
   1773   case FAdd: case FSub:
   1774   case FMul:
   1775     assert(getType() == LHS->getType() &&
   1776            "Arithmetic operation should return same type as operands!");
   1777     assert(getType()->isFPOrFPVectorTy() &&
   1778            "Tried to create a floating-point operation on a "
   1779            "non-floating-point type!");
   1780     break;
   1781   case UDiv:
   1782   case SDiv:
   1783     assert(getType() == LHS->getType() &&
   1784            "Arithmetic operation should return same type as operands!");
   1785     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1786             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1787            "Incorrect operand type (not integer) for S/UDIV");
   1788     break;
   1789   case FDiv:
   1790     assert(getType() == LHS->getType() &&
   1791            "Arithmetic operation should return same type as operands!");
   1792     assert(getType()->isFPOrFPVectorTy() &&
   1793            "Incorrect operand type (not floating point) for FDIV");
   1794     break;
   1795   case URem:
   1796   case SRem:
   1797     assert(getType() == LHS->getType() &&
   1798            "Arithmetic operation should return same type as operands!");
   1799     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1800             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1801            "Incorrect operand type (not integer) for S/UREM");
   1802     break;
   1803   case FRem:
   1804     assert(getType() == LHS->getType() &&
   1805            "Arithmetic operation should return same type as operands!");
   1806     assert(getType()->isFPOrFPVectorTy() &&
   1807            "Incorrect operand type (not floating point) for FREM");
   1808     break;
   1809   case Shl:
   1810   case LShr:
   1811   case AShr:
   1812     assert(getType() == LHS->getType() &&
   1813            "Shift operation should return same type as operands!");
   1814     assert((getType()->isIntegerTy() ||
   1815             (getType()->isVectorTy() &&
   1816              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1817            "Tried to create a shift operation on a non-integral type!");
   1818     break;
   1819   case And: case Or:
   1820   case Xor:
   1821     assert(getType() == LHS->getType() &&
   1822            "Logical operation should return same type as operands!");
   1823     assert((getType()->isIntegerTy() ||
   1824             (getType()->isVectorTy() &&
   1825              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1826            "Tried to create a logical operation on a non-integral type!");
   1827     break;
   1828   default:
   1829     break;
   1830   }
   1831 #endif
   1832 }
   1833 
   1834 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1835                                        const Twine &Name,
   1836                                        Instruction *InsertBefore) {
   1837   assert(S1->getType() == S2->getType() &&
   1838          "Cannot create binary operator with two operands of differing type!");
   1839   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
   1840 }
   1841 
   1842 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1843                                        const Twine &Name,
   1844                                        BasicBlock *InsertAtEnd) {
   1845   BinaryOperator *Res = Create(Op, S1, S2, Name);
   1846   InsertAtEnd->getInstList().push_back(Res);
   1847   return Res;
   1848 }
   1849 
   1850 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1851                                           Instruction *InsertBefore) {
   1852   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1853   return new BinaryOperator(Instruction::Sub,
   1854                             zero, Op,
   1855                             Op->getType(), Name, InsertBefore);
   1856 }
   1857 
   1858 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1859                                           BasicBlock *InsertAtEnd) {
   1860   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1861   return new BinaryOperator(Instruction::Sub,
   1862                             zero, Op,
   1863                             Op->getType(), Name, InsertAtEnd);
   1864 }
   1865 
   1866 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1867                                              Instruction *InsertBefore) {
   1868   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1869   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
   1870 }
   1871 
   1872 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1873                                              BasicBlock *InsertAtEnd) {
   1874   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1875   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
   1876 }
   1877 
   1878 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1879                                              Instruction *InsertBefore) {
   1880   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1881   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
   1882 }
   1883 
   1884 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1885                                              BasicBlock *InsertAtEnd) {
   1886   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1887   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
   1888 }
   1889 
   1890 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1891                                            Instruction *InsertBefore) {
   1892   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1893   return new BinaryOperator(Instruction::FSub, zero, Op,
   1894                             Op->getType(), Name, InsertBefore);
   1895 }
   1896 
   1897 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1898                                            BasicBlock *InsertAtEnd) {
   1899   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1900   return new BinaryOperator(Instruction::FSub, zero, Op,
   1901                             Op->getType(), Name, InsertAtEnd);
   1902 }
   1903 
   1904 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1905                                           Instruction *InsertBefore) {
   1906   Constant *C = Constant::getAllOnesValue(Op->getType());
   1907   return new BinaryOperator(Instruction::Xor, Op, C,
   1908                             Op->getType(), Name, InsertBefore);
   1909 }
   1910 
   1911 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1912                                           BasicBlock *InsertAtEnd) {
   1913   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
   1914   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
   1915                             Op->getType(), Name, InsertAtEnd);
   1916 }
   1917 
   1918 
   1919 // isConstantAllOnes - Helper function for several functions below
   1920 static inline bool isConstantAllOnes(const Value *V) {
   1921   if (const Constant *C = dyn_cast<Constant>(V))
   1922     return C->isAllOnesValue();
   1923   return false;
   1924 }
   1925 
   1926 bool BinaryOperator::isNeg(const Value *V) {
   1927   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1928     if (Bop->getOpcode() == Instruction::Sub)
   1929       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1930         return C->isNegativeZeroValue();
   1931   return false;
   1932 }
   1933 
   1934 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
   1935   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1936     if (Bop->getOpcode() == Instruction::FSub)
   1937       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
   1938         if (!IgnoreZeroSign)
   1939           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
   1940         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
   1941       }
   1942   return false;
   1943 }
   1944 
   1945 bool BinaryOperator::isNot(const Value *V) {
   1946   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1947     return (Bop->getOpcode() == Instruction::Xor &&
   1948             (isConstantAllOnes(Bop->getOperand(1)) ||
   1949              isConstantAllOnes(Bop->getOperand(0))));
   1950   return false;
   1951 }
   1952 
   1953 Value *BinaryOperator::getNegArgument(Value *BinOp) {
   1954   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1955 }
   1956 
   1957 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
   1958   return getNegArgument(const_cast<Value*>(BinOp));
   1959 }
   1960 
   1961 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
   1962   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1963 }
   1964 
   1965 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
   1966   return getFNegArgument(const_cast<Value*>(BinOp));
   1967 }
   1968 
   1969 Value *BinaryOperator::getNotArgument(Value *BinOp) {
   1970   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
   1971   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
   1972   Value *Op0 = BO->getOperand(0);
   1973   Value *Op1 = BO->getOperand(1);
   1974   if (isConstantAllOnes(Op0)) return Op1;
   1975 
   1976   assert(isConstantAllOnes(Op1));
   1977   return Op0;
   1978 }
   1979 
   1980 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
   1981   return getNotArgument(const_cast<Value*>(BinOp));
   1982 }
   1983 
   1984 
   1985 // swapOperands - Exchange the two operands to this instruction.  This
   1986 // instruction is safe to use on any binary instruction and does not
   1987 // modify the semantics of the instruction.  If the instruction is
   1988 // order dependent (SetLT f.e.) the opcode is changed.
   1989 //
   1990 bool BinaryOperator::swapOperands() {
   1991   if (!isCommutative())
   1992     return true; // Can't commute operands
   1993   Op<0>().swap(Op<1>());
   1994   return false;
   1995 }
   1996 
   1997 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
   1998   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
   1999 }
   2000 
   2001 void BinaryOperator::setHasNoSignedWrap(bool b) {
   2002   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
   2003 }
   2004 
   2005 void BinaryOperator::setIsExact(bool b) {
   2006   cast<PossiblyExactOperator>(this)->setIsExact(b);
   2007 }
   2008 
   2009 bool BinaryOperator::hasNoUnsignedWrap() const {
   2010   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
   2011 }
   2012 
   2013 bool BinaryOperator::hasNoSignedWrap() const {
   2014   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
   2015 }
   2016 
   2017 bool BinaryOperator::isExact() const {
   2018   return cast<PossiblyExactOperator>(this)->isExact();
   2019 }
   2020 
   2021 //===----------------------------------------------------------------------===//
   2022 //                             FPMathOperator Class
   2023 //===----------------------------------------------------------------------===//
   2024 
   2025 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
   2026 /// An accuracy of 0.0 means that the operation should be performed with the
   2027 /// default precision.
   2028 float FPMathOperator::getFPAccuracy() const {
   2029   const MDNode *MD =
   2030     cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
   2031   if (!MD)
   2032     return 0.0;
   2033   ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
   2034   return Accuracy->getValueAPF().convertToFloat();
   2035 }
   2036 
   2037 
   2038 //===----------------------------------------------------------------------===//
   2039 //                                CastInst Class
   2040 //===----------------------------------------------------------------------===//
   2041 
   2042 void CastInst::anchor() {}
   2043 
   2044 // Just determine if this cast only deals with integral->integral conversion.
   2045 bool CastInst::isIntegerCast() const {
   2046   switch (getOpcode()) {
   2047     default: return false;
   2048     case Instruction::ZExt:
   2049     case Instruction::SExt:
   2050     case Instruction::Trunc:
   2051       return true;
   2052     case Instruction::BitCast:
   2053       return getOperand(0)->getType()->isIntegerTy() &&
   2054         getType()->isIntegerTy();
   2055   }
   2056 }
   2057 
   2058 bool CastInst::isLosslessCast() const {
   2059   // Only BitCast can be lossless, exit fast if we're not BitCast
   2060   if (getOpcode() != Instruction::BitCast)
   2061     return false;
   2062 
   2063   // Identity cast is always lossless
   2064   Type* SrcTy = getOperand(0)->getType();
   2065   Type* DstTy = getType();
   2066   if (SrcTy == DstTy)
   2067     return true;
   2068 
   2069   // Pointer to pointer is always lossless.
   2070   if (SrcTy->isPointerTy())
   2071     return DstTy->isPointerTy();
   2072   return false;  // Other types have no identity values
   2073 }
   2074 
   2075 /// This function determines if the CastInst does not require any bits to be
   2076 /// changed in order to effect the cast. Essentially, it identifies cases where
   2077 /// no code gen is necessary for the cast, hence the name no-op cast.  For
   2078 /// example, the following are all no-op casts:
   2079 /// # bitcast i32* %x to i8*
   2080 /// # bitcast <2 x i32> %x to <4 x i16>
   2081 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
   2082 /// @brief Determine if the described cast is a no-op.
   2083 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
   2084                           Type *SrcTy,
   2085                           Type *DestTy,
   2086                           Type *IntPtrTy) {
   2087   switch (Opcode) {
   2088     default: llvm_unreachable("Invalid CastOp");
   2089     case Instruction::Trunc:
   2090     case Instruction::ZExt:
   2091     case Instruction::SExt:
   2092     case Instruction::FPTrunc:
   2093     case Instruction::FPExt:
   2094     case Instruction::UIToFP:
   2095     case Instruction::SIToFP:
   2096     case Instruction::FPToUI:
   2097     case Instruction::FPToSI:
   2098       return false; // These always modify bits
   2099     case Instruction::BitCast:
   2100       return true;  // BitCast never modifies bits.
   2101     case Instruction::PtrToInt:
   2102       return IntPtrTy->getScalarSizeInBits() ==
   2103              DestTy->getScalarSizeInBits();
   2104     case Instruction::IntToPtr:
   2105       return IntPtrTy->getScalarSizeInBits() ==
   2106              SrcTy->getScalarSizeInBits();
   2107   }
   2108 }
   2109 
   2110 /// @brief Determine if a cast is a no-op.
   2111 bool CastInst::isNoopCast(Type *IntPtrTy) const {
   2112   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
   2113 }
   2114 
   2115 /// This function determines if a pair of casts can be eliminated and what
   2116 /// opcode should be used in the elimination. This assumes that there are two
   2117 /// instructions like this:
   2118 /// *  %F = firstOpcode SrcTy %x to MidTy
   2119 /// *  %S = secondOpcode MidTy %F to DstTy
   2120 /// The function returns a resultOpcode so these two casts can be replaced with:
   2121 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
   2122 /// If no such cast is permited, the function returns 0.
   2123 unsigned CastInst::isEliminableCastPair(
   2124   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
   2125   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
   2126   Type *DstIntPtrTy) {
   2127   // Define the 144 possibilities for these two cast instructions. The values
   2128   // in this matrix determine what to do in a given situation and select the
   2129   // case in the switch below.  The rows correspond to firstOp, the columns
   2130   // correspond to secondOp.  In looking at the table below, keep in  mind
   2131   // the following cast properties:
   2132   //
   2133   //          Size Compare       Source               Destination
   2134   // Operator  Src ? Size   Type       Sign         Type       Sign
   2135   // -------- ------------ -------------------   ---------------------
   2136   // TRUNC         >       Integer      Any        Integral     Any
   2137   // ZEXT          <       Integral   Unsigned     Integer      Any
   2138   // SEXT          <       Integral    Signed      Integer      Any
   2139   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
   2140   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
   2141   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
   2142   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
   2143   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
   2144   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
   2145   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
   2146   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
   2147   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
   2148   //
   2149   // NOTE: some transforms are safe, but we consider them to be non-profitable.
   2150   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
   2151   // into "fptoui double to i64", but this loses information about the range
   2152   // of the produced value (we no longer know the top-part is all zeros).
   2153   // Further this conversion is often much more expensive for typical hardware,
   2154   // and causes issues when building libgcc.  We disallow fptosi+sext for the
   2155   // same reason.
   2156   const unsigned numCastOps =
   2157     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
   2158   static const uint8_t CastResults[numCastOps][numCastOps] = {
   2159     // T        F  F  U  S  F  F  P  I  B   -+
   2160     // R  Z  S  P  P  I  I  T  P  2  N  T    |
   2161     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
   2162     // N  X  X  U  S  F  F  N  X  N  2  V    |
   2163     // C  T  T  I  I  P  P  C  T  T  P  T   -+
   2164     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
   2165     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
   2166     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
   2167     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
   2168     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
   2169     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
   2170     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
   2171     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
   2172     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
   2173     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
   2174     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
   2175     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
   2176   };
   2177 
   2178   // If either of the casts are a bitcast from scalar to vector, disallow the
   2179   // merging. However, bitcast of A->B->A are allowed.
   2180   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
   2181   bool isSecondBitcast = (secondOp == Instruction::BitCast);
   2182   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
   2183 
   2184   // Check if any of the bitcasts convert scalars<->vectors.
   2185   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
   2186       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
   2187     // Unless we are bitcasing to the original type, disallow optimizations.
   2188     if (!chainedBitcast) return 0;
   2189 
   2190   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
   2191                             [secondOp-Instruction::CastOpsBegin];
   2192   switch (ElimCase) {
   2193     case 0:
   2194       // categorically disallowed
   2195       return 0;
   2196     case 1:
   2197       // allowed, use first cast's opcode
   2198       return firstOp;
   2199     case 2:
   2200       // allowed, use second cast's opcode
   2201       return secondOp;
   2202     case 3:
   2203       // no-op cast in second op implies firstOp as long as the DestTy
   2204       // is integer and we are not converting between a vector and a
   2205       // non vector type.
   2206       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
   2207         return firstOp;
   2208       return 0;
   2209     case 4:
   2210       // no-op cast in second op implies firstOp as long as the DestTy
   2211       // is floating point.
   2212       if (DstTy->isFloatingPointTy())
   2213         return firstOp;
   2214       return 0;
   2215     case 5:
   2216       // no-op cast in first op implies secondOp as long as the SrcTy
   2217       // is an integer.
   2218       if (SrcTy->isIntegerTy())
   2219         return secondOp;
   2220       return 0;
   2221     case 6:
   2222       // no-op cast in first op implies secondOp as long as the SrcTy
   2223       // is a floating point.
   2224       if (SrcTy->isFloatingPointTy())
   2225         return secondOp;
   2226       return 0;
   2227     case 7: {
   2228       unsigned MidSize = MidTy->getScalarSizeInBits();
   2229       // Check the address spaces first. If we know they are in the same address
   2230       // space, the pointer sizes must be the same so we can still fold this
   2231       // without knowing the actual sizes as long we know that the intermediate
   2232       // pointer is the largest possible pointer size.
   2233       if (MidSize == 64 &&
   2234           SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace())
   2235         return Instruction::BitCast;
   2236 
   2237       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
   2238       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
   2239         return 0;
   2240       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
   2241       if (MidSize >= PtrSize)
   2242         return Instruction::BitCast;
   2243       return 0;
   2244     }
   2245     case 8: {
   2246       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
   2247       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
   2248       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
   2249       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2250       unsigned DstSize = DstTy->getScalarSizeInBits();
   2251       if (SrcSize == DstSize)
   2252         return Instruction::BitCast;
   2253       else if (SrcSize < DstSize)
   2254         return firstOp;
   2255       return secondOp;
   2256     }
   2257     case 9: // zext, sext -> zext, because sext can't sign extend after zext
   2258       return Instruction::ZExt;
   2259     case 10:
   2260       // fpext followed by ftrunc is allowed if the bit size returned to is
   2261       // the same as the original, in which case its just a bitcast
   2262       if (SrcTy == DstTy)
   2263         return Instruction::BitCast;
   2264       return 0; // If the types are not the same we can't eliminate it.
   2265     case 11: {
   2266       // bitcast followed by ptrtoint is allowed as long as the bitcast is a
   2267       // pointer to pointer cast, and the pointers are the same size.
   2268       PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy);
   2269       PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
   2270       if (!SrcPtrTy || !MidPtrTy)
   2271         return 0;
   2272 
   2273       // If the address spaces are the same, we know they are the same size
   2274       // without size information
   2275       if (SrcPtrTy->getAddressSpace() == MidPtrTy->getAddressSpace())
   2276         return secondOp;
   2277 
   2278       if (!SrcIntPtrTy || !MidIntPtrTy)
   2279         return 0;
   2280 
   2281       if (SrcIntPtrTy->getScalarSizeInBits() ==
   2282           MidIntPtrTy->getScalarSizeInBits())
   2283         return secondOp;
   2284 
   2285       return 0;
   2286     }
   2287     case 12: {
   2288       // inttoptr, bitcast -> inttoptr if bitcast is a ptr to ptr cast
   2289       // and the ptrs are to address spaces of the same size
   2290       PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
   2291       PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy);
   2292       if (!MidPtrTy || !DstPtrTy)
   2293         return 0;
   2294 
   2295       if (MidPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
   2296         return firstOp;
   2297 
   2298       if (MidIntPtrTy &&
   2299           DstIntPtrTy &&
   2300           MidIntPtrTy->getScalarSizeInBits() ==
   2301           DstIntPtrTy->getScalarSizeInBits())
   2302         return firstOp;
   2303       return 0;
   2304     }
   2305     case 13: {
   2306       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
   2307       if (!MidIntPtrTy)
   2308         return 0;
   2309       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
   2310       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2311       unsigned DstSize = DstTy->getScalarSizeInBits();
   2312       if (SrcSize <= PtrSize && SrcSize == DstSize)
   2313         return Instruction::BitCast;
   2314       return 0;
   2315     }
   2316     case 99:
   2317       // cast combination can't happen (error in input). This is for all cases
   2318       // where the MidTy is not the same for the two cast instructions.
   2319       llvm_unreachable("Invalid Cast Combination");
   2320     default:
   2321       llvm_unreachable("Error in CastResults table!!!");
   2322   }
   2323 }
   2324 
   2325 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2326   const Twine &Name, Instruction *InsertBefore) {
   2327   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2328   // Construct and return the appropriate CastInst subclass
   2329   switch (op) {
   2330     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
   2331     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
   2332     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
   2333     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
   2334     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
   2335     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
   2336     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
   2337     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
   2338     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
   2339     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
   2340     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
   2341     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
   2342     default: llvm_unreachable("Invalid opcode provided");
   2343   }
   2344 }
   2345 
   2346 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2347   const Twine &Name, BasicBlock *InsertAtEnd) {
   2348   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2349   // Construct and return the appropriate CastInst subclass
   2350   switch (op) {
   2351     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
   2352     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
   2353     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
   2354     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
   2355     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
   2356     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
   2357     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
   2358     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
   2359     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
   2360     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
   2361     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
   2362     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
   2363     default: llvm_unreachable("Invalid opcode provided");
   2364   }
   2365 }
   2366 
   2367 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2368                                         const Twine &Name,
   2369                                         Instruction *InsertBefore) {
   2370   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2371     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2372   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
   2373 }
   2374 
   2375 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2376                                         const Twine &Name,
   2377                                         BasicBlock *InsertAtEnd) {
   2378   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2379     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2380   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
   2381 }
   2382 
   2383 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2384                                         const Twine &Name,
   2385                                         Instruction *InsertBefore) {
   2386   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2387     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2388   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
   2389 }
   2390 
   2391 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2392                                         const Twine &Name,
   2393                                         BasicBlock *InsertAtEnd) {
   2394   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2395     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2396   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
   2397 }
   2398 
   2399 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2400                                          const Twine &Name,
   2401                                          Instruction *InsertBefore) {
   2402   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2403     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2404   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
   2405 }
   2406 
   2407 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2408                                          const Twine &Name,
   2409                                          BasicBlock *InsertAtEnd) {
   2410   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2411     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2412   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
   2413 }
   2414 
   2415 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2416                                       const Twine &Name,
   2417                                       BasicBlock *InsertAtEnd) {
   2418   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   2419   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   2420          "Invalid cast");
   2421   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
   2422   assert((!Ty->isVectorTy() ||
   2423           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
   2424          "Invalid cast");
   2425 
   2426   if (Ty->isIntOrIntVectorTy())
   2427     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
   2428   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2429 }
   2430 
   2431 /// @brief Create a BitCast or a PtrToInt cast instruction
   2432 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2433                                       const Twine &Name,
   2434                                       Instruction *InsertBefore) {
   2435   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   2436   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   2437          "Invalid cast");
   2438   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
   2439   assert((!Ty->isVectorTy() ||
   2440           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
   2441          "Invalid cast");
   2442 
   2443   if (Ty->isIntOrIntVectorTy())
   2444     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
   2445   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2446 }
   2447 
   2448 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2449                                       bool isSigned, const Twine &Name,
   2450                                       Instruction *InsertBefore) {
   2451   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2452          "Invalid integer cast");
   2453   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2454   unsigned DstBits = Ty->getScalarSizeInBits();
   2455   Instruction::CastOps opcode =
   2456     (SrcBits == DstBits ? Instruction::BitCast :
   2457      (SrcBits > DstBits ? Instruction::Trunc :
   2458       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2459   return Create(opcode, C, Ty, Name, InsertBefore);
   2460 }
   2461 
   2462 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2463                                       bool isSigned, const Twine &Name,
   2464                                       BasicBlock *InsertAtEnd) {
   2465   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2466          "Invalid cast");
   2467   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2468   unsigned DstBits = Ty->getScalarSizeInBits();
   2469   Instruction::CastOps opcode =
   2470     (SrcBits == DstBits ? Instruction::BitCast :
   2471      (SrcBits > DstBits ? Instruction::Trunc :
   2472       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2473   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2474 }
   2475 
   2476 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2477                                  const Twine &Name,
   2478                                  Instruction *InsertBefore) {
   2479   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2480          "Invalid cast");
   2481   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2482   unsigned DstBits = Ty->getScalarSizeInBits();
   2483   Instruction::CastOps opcode =
   2484     (SrcBits == DstBits ? Instruction::BitCast :
   2485      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2486   return Create(opcode, C, Ty, Name, InsertBefore);
   2487 }
   2488 
   2489 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2490                                  const Twine &Name,
   2491                                  BasicBlock *InsertAtEnd) {
   2492   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2493          "Invalid cast");
   2494   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2495   unsigned DstBits = Ty->getScalarSizeInBits();
   2496   Instruction::CastOps opcode =
   2497     (SrcBits == DstBits ? Instruction::BitCast :
   2498      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2499   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2500 }
   2501 
   2502 // Check whether it is valid to call getCastOpcode for these types.
   2503 // This routine must be kept in sync with getCastOpcode.
   2504 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
   2505   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
   2506     return false;
   2507 
   2508   if (SrcTy == DestTy)
   2509     return true;
   2510 
   2511   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2512     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2513       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2514         // An element by element cast.  Valid if casting the elements is valid.
   2515         SrcTy = SrcVecTy->getElementType();
   2516         DestTy = DestVecTy->getElementType();
   2517       }
   2518 
   2519   // Get the bit sizes, we'll need these
   2520   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2521   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2522 
   2523   // Run through the possibilities ...
   2524   if (DestTy->isIntegerTy()) {               // Casting to integral
   2525     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2526         return true;
   2527     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2528       return true;
   2529     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2530       return DestBits == SrcBits;
   2531     } else {                                   // Casting from something else
   2532       return SrcTy->isPointerTy();
   2533     }
   2534   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
   2535     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2536       return true;
   2537     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2538       return true;
   2539     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2540       return DestBits == SrcBits;
   2541     } else {                                   // Casting from something else
   2542       return false;
   2543     }
   2544   } else if (DestTy->isVectorTy()) {         // Casting to vector
   2545     return DestBits == SrcBits;
   2546   } else if (DestTy->isPointerTy()) {        // Casting to pointer
   2547     if (SrcTy->isPointerTy()) {                // Casting from pointer
   2548       return true;
   2549     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
   2550       return true;
   2551     } else {                                   // Casting from something else
   2552       return false;
   2553     }
   2554   } else if (DestTy->isX86_MMXTy()) {
   2555     if (SrcTy->isVectorTy()) {
   2556       return DestBits == SrcBits;       // 64-bit vector to MMX
   2557     } else {
   2558       return false;
   2559     }
   2560   } else {                                   // Casting to something else
   2561     return false;
   2562   }
   2563 }
   2564 
   2565 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
   2566   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
   2567     return false;
   2568 
   2569   if (SrcTy == DestTy)
   2570     return true;
   2571 
   2572   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
   2573     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
   2574       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2575         // An element by element cast. Valid if casting the elements is valid.
   2576         SrcTy = SrcVecTy->getElementType();
   2577         DestTy = DestVecTy->getElementType();
   2578       }
   2579     }
   2580   }
   2581 
   2582   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
   2583     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
   2584       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
   2585     }
   2586   }
   2587 
   2588   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2589   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2590 
   2591   // Could still have vectors of pointers if the number of elements doesn't
   2592   // match
   2593   if (SrcBits == 0 || DestBits == 0)
   2594     return false;
   2595 
   2596   if (SrcBits != DestBits)
   2597     return false;
   2598 
   2599   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
   2600     return false;
   2601 
   2602   return true;
   2603 }
   2604 
   2605 // Provide a way to get a "cast" where the cast opcode is inferred from the
   2606 // types and size of the operand. This, basically, is a parallel of the
   2607 // logic in the castIsValid function below.  This axiom should hold:
   2608 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
   2609 // should not assert in castIsValid. In other words, this produces a "correct"
   2610 // casting opcode for the arguments passed to it.
   2611 // This routine must be kept in sync with isCastable.
   2612 Instruction::CastOps
   2613 CastInst::getCastOpcode(
   2614   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
   2615   Type *SrcTy = Src->getType();
   2616 
   2617   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
   2618          "Only first class types are castable!");
   2619 
   2620   if (SrcTy == DestTy)
   2621     return BitCast;
   2622 
   2623   // FIXME: Check address space sizes here
   2624   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2625     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2626       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2627         // An element by element cast.  Find the appropriate opcode based on the
   2628         // element types.
   2629         SrcTy = SrcVecTy->getElementType();
   2630         DestTy = DestVecTy->getElementType();
   2631       }
   2632 
   2633   // Get the bit sizes, we'll need these
   2634   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2635   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2636 
   2637   // Run through the possibilities ...
   2638   if (DestTy->isIntegerTy()) {                      // Casting to integral
   2639     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2640       if (DestBits < SrcBits)
   2641         return Trunc;                               // int -> smaller int
   2642       else if (DestBits > SrcBits) {                // its an extension
   2643         if (SrcIsSigned)
   2644           return SExt;                              // signed -> SEXT
   2645         else
   2646           return ZExt;                              // unsigned -> ZEXT
   2647       } else {
   2648         return BitCast;                             // Same size, No-op cast
   2649       }
   2650     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2651       if (DestIsSigned)
   2652         return FPToSI;                              // FP -> sint
   2653       else
   2654         return FPToUI;                              // FP -> uint
   2655     } else if (SrcTy->isVectorTy()) {
   2656       assert(DestBits == SrcBits &&
   2657              "Casting vector to integer of different width");
   2658       return BitCast;                             // Same size, no-op cast
   2659     } else {
   2660       assert(SrcTy->isPointerTy() &&
   2661              "Casting from a value that is not first-class type");
   2662       return PtrToInt;                              // ptr -> int
   2663     }
   2664   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
   2665     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2666       if (SrcIsSigned)
   2667         return SIToFP;                              // sint -> FP
   2668       else
   2669         return UIToFP;                              // uint -> FP
   2670     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2671       if (DestBits < SrcBits) {
   2672         return FPTrunc;                             // FP -> smaller FP
   2673       } else if (DestBits > SrcBits) {
   2674         return FPExt;                               // FP -> larger FP
   2675       } else  {
   2676         return BitCast;                             // same size, no-op cast
   2677       }
   2678     } else if (SrcTy->isVectorTy()) {
   2679       assert(DestBits == SrcBits &&
   2680              "Casting vector to floating point of different width");
   2681       return BitCast;                             // same size, no-op cast
   2682     }
   2683     llvm_unreachable("Casting pointer or non-first class to float");
   2684   } else if (DestTy->isVectorTy()) {
   2685     assert(DestBits == SrcBits &&
   2686            "Illegal cast to vector (wrong type or size)");
   2687     return BitCast;
   2688   } else if (DestTy->isPointerTy()) {
   2689     if (SrcTy->isPointerTy()) {
   2690       // TODO: Address space pointer sizes may not match
   2691       return BitCast;                               // ptr -> ptr
   2692     } else if (SrcTy->isIntegerTy()) {
   2693       return IntToPtr;                              // int -> ptr
   2694     }
   2695     llvm_unreachable("Casting pointer to other than pointer or int");
   2696   } else if (DestTy->isX86_MMXTy()) {
   2697     if (SrcTy->isVectorTy()) {
   2698       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
   2699       return BitCast;                               // 64-bit vector to MMX
   2700     }
   2701     llvm_unreachable("Illegal cast to X86_MMX");
   2702   }
   2703   llvm_unreachable("Casting to type that is not first-class");
   2704 }
   2705 
   2706 //===----------------------------------------------------------------------===//
   2707 //                    CastInst SubClass Constructors
   2708 //===----------------------------------------------------------------------===//
   2709 
   2710 /// Check that the construction parameters for a CastInst are correct. This
   2711 /// could be broken out into the separate constructors but it is useful to have
   2712 /// it in one place and to eliminate the redundant code for getting the sizes
   2713 /// of the types involved.
   2714 bool
   2715 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
   2716 
   2717   // Check for type sanity on the arguments
   2718   Type *SrcTy = S->getType();
   2719 
   2720   // If this is a cast to the same type then it's trivially true.
   2721   if (SrcTy == DstTy)
   2722     return true;
   2723 
   2724   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
   2725       SrcTy->isAggregateType() || DstTy->isAggregateType())
   2726     return false;
   2727 
   2728   // Get the size of the types in bits, we'll need this later
   2729   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2730   unsigned DstBitSize = DstTy->getScalarSizeInBits();
   2731 
   2732   // If these are vector types, get the lengths of the vectors (using zero for
   2733   // scalar types means that checking that vector lengths match also checks that
   2734   // scalars are not being converted to vectors or vectors to scalars).
   2735   unsigned SrcLength = SrcTy->isVectorTy() ?
   2736     cast<VectorType>(SrcTy)->getNumElements() : 0;
   2737   unsigned DstLength = DstTy->isVectorTy() ?
   2738     cast<VectorType>(DstTy)->getNumElements() : 0;
   2739 
   2740   // Switch on the opcode provided
   2741   switch (op) {
   2742   default: return false; // This is an input error
   2743   case Instruction::Trunc:
   2744     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2745       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2746   case Instruction::ZExt:
   2747     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2748       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2749   case Instruction::SExt:
   2750     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2751       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2752   case Instruction::FPTrunc:
   2753     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2754       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2755   case Instruction::FPExt:
   2756     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2757       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2758   case Instruction::UIToFP:
   2759   case Instruction::SIToFP:
   2760     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2761       SrcLength == DstLength;
   2762   case Instruction::FPToUI:
   2763   case Instruction::FPToSI:
   2764     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2765       SrcLength == DstLength;
   2766   case Instruction::PtrToInt:
   2767     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2768       return false;
   2769     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2770       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2771         return false;
   2772     return SrcTy->getScalarType()->isPointerTy() &&
   2773            DstTy->getScalarType()->isIntegerTy();
   2774   case Instruction::IntToPtr:
   2775     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2776       return false;
   2777     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2778       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2779         return false;
   2780     return SrcTy->getScalarType()->isIntegerTy() &&
   2781            DstTy->getScalarType()->isPointerTy();
   2782   case Instruction::BitCast:
   2783     // BitCast implies a no-op cast of type only. No bits change.
   2784     // However, you can't cast pointers to anything but pointers.
   2785     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
   2786       return false;
   2787 
   2788     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
   2789     // these cases, the cast is okay if the source and destination bit widths
   2790     // are identical.
   2791     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
   2792   }
   2793 }
   2794 
   2795 TruncInst::TruncInst(
   2796   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2797 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
   2798   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2799 }
   2800 
   2801 TruncInst::TruncInst(
   2802   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2803 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
   2804   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2805 }
   2806 
   2807 ZExtInst::ZExtInst(
   2808   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2809 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
   2810   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2811 }
   2812 
   2813 ZExtInst::ZExtInst(
   2814   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2815 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
   2816   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2817 }
   2818 SExtInst::SExtInst(
   2819   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2820 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
   2821   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2822 }
   2823 
   2824 SExtInst::SExtInst(
   2825   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2826 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
   2827   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2828 }
   2829 
   2830 FPTruncInst::FPTruncInst(
   2831   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2832 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
   2833   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2834 }
   2835 
   2836 FPTruncInst::FPTruncInst(
   2837   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2838 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
   2839   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2840 }
   2841 
   2842 FPExtInst::FPExtInst(
   2843   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2844 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
   2845   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2846 }
   2847 
   2848 FPExtInst::FPExtInst(
   2849   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2850 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
   2851   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2852 }
   2853 
   2854 UIToFPInst::UIToFPInst(
   2855   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2856 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
   2857   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2858 }
   2859 
   2860 UIToFPInst::UIToFPInst(
   2861   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2862 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
   2863   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2864 }
   2865 
   2866 SIToFPInst::SIToFPInst(
   2867   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2868 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
   2869   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2870 }
   2871 
   2872 SIToFPInst::SIToFPInst(
   2873   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2874 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
   2875   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2876 }
   2877 
   2878 FPToUIInst::FPToUIInst(
   2879   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2880 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
   2881   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2882 }
   2883 
   2884 FPToUIInst::FPToUIInst(
   2885   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2886 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
   2887   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2888 }
   2889 
   2890 FPToSIInst::FPToSIInst(
   2891   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2892 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
   2893   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2894 }
   2895 
   2896 FPToSIInst::FPToSIInst(
   2897   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2898 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
   2899   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2900 }
   2901 
   2902 PtrToIntInst::PtrToIntInst(
   2903   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2904 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
   2905   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2906 }
   2907 
   2908 PtrToIntInst::PtrToIntInst(
   2909   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2910 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
   2911   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2912 }
   2913 
   2914 IntToPtrInst::IntToPtrInst(
   2915   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2916 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
   2917   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2918 }
   2919 
   2920 IntToPtrInst::IntToPtrInst(
   2921   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2922 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
   2923   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2924 }
   2925 
   2926 BitCastInst::BitCastInst(
   2927   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2928 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
   2929   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2930 }
   2931 
   2932 BitCastInst::BitCastInst(
   2933   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2934 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
   2935   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2936 }
   2937 
   2938 //===----------------------------------------------------------------------===//
   2939 //                               CmpInst Classes
   2940 //===----------------------------------------------------------------------===//
   2941 
   2942 void CmpInst::anchor() {}
   2943 
   2944 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2945                  Value *LHS, Value *RHS, const Twine &Name,
   2946                  Instruction *InsertBefore)
   2947   : Instruction(ty, op,
   2948                 OperandTraits<CmpInst>::op_begin(this),
   2949                 OperandTraits<CmpInst>::operands(this),
   2950                 InsertBefore) {
   2951     Op<0>() = LHS;
   2952     Op<1>() = RHS;
   2953   setPredicate((Predicate)predicate);
   2954   setName(Name);
   2955 }
   2956 
   2957 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2958                  Value *LHS, Value *RHS, const Twine &Name,
   2959                  BasicBlock *InsertAtEnd)
   2960   : Instruction(ty, op,
   2961                 OperandTraits<CmpInst>::op_begin(this),
   2962                 OperandTraits<CmpInst>::operands(this),
   2963                 InsertAtEnd) {
   2964   Op<0>() = LHS;
   2965   Op<1>() = RHS;
   2966   setPredicate((Predicate)predicate);
   2967   setName(Name);
   2968 }
   2969 
   2970 CmpInst *
   2971 CmpInst::Create(OtherOps Op, unsigned short predicate,
   2972                 Value *S1, Value *S2,
   2973                 const Twine &Name, Instruction *InsertBefore) {
   2974   if (Op == Instruction::ICmp) {
   2975     if (InsertBefore)
   2976       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2977                           S1, S2, Name);
   2978     else
   2979       return new ICmpInst(CmpInst::Predicate(predicate),
   2980                           S1, S2, Name);
   2981   }
   2982 
   2983   if (InsertBefore)
   2984     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2985                         S1, S2, Name);
   2986   else
   2987     return new FCmpInst(CmpInst::Predicate(predicate),
   2988                         S1, S2, Name);
   2989 }
   2990 
   2991 CmpInst *
   2992 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
   2993                 const Twine &Name, BasicBlock *InsertAtEnd) {
   2994   if (Op == Instruction::ICmp) {
   2995     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2996                         S1, S2, Name);
   2997   }
   2998   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2999                       S1, S2, Name);
   3000 }
   3001 
   3002 void CmpInst::swapOperands() {
   3003   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
   3004     IC->swapOperands();
   3005   else
   3006     cast<FCmpInst>(this)->swapOperands();
   3007 }
   3008 
   3009 bool CmpInst::isCommutative() const {
   3010   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   3011     return IC->isCommutative();
   3012   return cast<FCmpInst>(this)->isCommutative();
   3013 }
   3014 
   3015 bool CmpInst::isEquality() const {
   3016   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   3017     return IC->isEquality();
   3018   return cast<FCmpInst>(this)->isEquality();
   3019 }
   3020 
   3021 
   3022 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
   3023   switch (pred) {
   3024     default: llvm_unreachable("Unknown cmp predicate!");
   3025     case ICMP_EQ: return ICMP_NE;
   3026     case ICMP_NE: return ICMP_EQ;
   3027     case ICMP_UGT: return ICMP_ULE;
   3028     case ICMP_ULT: return ICMP_UGE;
   3029     case ICMP_UGE: return ICMP_ULT;
   3030     case ICMP_ULE: return ICMP_UGT;
   3031     case ICMP_SGT: return ICMP_SLE;
   3032     case ICMP_SLT: return ICMP_SGE;
   3033     case ICMP_SGE: return ICMP_SLT;
   3034     case ICMP_SLE: return ICMP_SGT;
   3035 
   3036     case FCMP_OEQ: return FCMP_UNE;
   3037     case FCMP_ONE: return FCMP_UEQ;
   3038     case FCMP_OGT: return FCMP_ULE;
   3039     case FCMP_OLT: return FCMP_UGE;
   3040     case FCMP_OGE: return FCMP_ULT;
   3041     case FCMP_OLE: return FCMP_UGT;
   3042     case FCMP_UEQ: return FCMP_ONE;
   3043     case FCMP_UNE: return FCMP_OEQ;
   3044     case FCMP_UGT: return FCMP_OLE;
   3045     case FCMP_ULT: return FCMP_OGE;
   3046     case FCMP_UGE: return FCMP_OLT;
   3047     case FCMP_ULE: return FCMP_OGT;
   3048     case FCMP_ORD: return FCMP_UNO;
   3049     case FCMP_UNO: return FCMP_ORD;
   3050     case FCMP_TRUE: return FCMP_FALSE;
   3051     case FCMP_FALSE: return FCMP_TRUE;
   3052   }
   3053 }
   3054 
   3055 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
   3056   switch (pred) {
   3057     default: llvm_unreachable("Unknown icmp predicate!");
   3058     case ICMP_EQ: case ICMP_NE:
   3059     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
   3060        return pred;
   3061     case ICMP_UGT: return ICMP_SGT;
   3062     case ICMP_ULT: return ICMP_SLT;
   3063     case ICMP_UGE: return ICMP_SGE;
   3064     case ICMP_ULE: return ICMP_SLE;
   3065   }
   3066 }
   3067 
   3068 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
   3069   switch (pred) {
   3070     default: llvm_unreachable("Unknown icmp predicate!");
   3071     case ICMP_EQ: case ICMP_NE:
   3072     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
   3073        return pred;
   3074     case ICMP_SGT: return ICMP_UGT;
   3075     case ICMP_SLT: return ICMP_ULT;
   3076     case ICMP_SGE: return ICMP_UGE;
   3077     case ICMP_SLE: return ICMP_ULE;
   3078   }
   3079 }
   3080 
   3081 /// Initialize a set of values that all satisfy the condition with C.
   3082 ///
   3083 ConstantRange
   3084 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
   3085   APInt Lower(C);
   3086   APInt Upper(C);
   3087   uint32_t BitWidth = C.getBitWidth();
   3088   switch (pred) {
   3089   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
   3090   case ICmpInst::ICMP_EQ: ++Upper; break;
   3091   case ICmpInst::ICMP_NE: ++Lower; break;
   3092   case ICmpInst::ICMP_ULT:
   3093     Lower = APInt::getMinValue(BitWidth);
   3094     // Check for an empty-set condition.
   3095     if (Lower == Upper)
   3096       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3097     break;
   3098   case ICmpInst::ICMP_SLT:
   3099     Lower = APInt::getSignedMinValue(BitWidth);
   3100     // Check for an empty-set condition.
   3101     if (Lower == Upper)
   3102       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3103     break;
   3104   case ICmpInst::ICMP_UGT:
   3105     ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   3106     // Check for an empty-set condition.
   3107     if (Lower == Upper)
   3108       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3109     break;
   3110   case ICmpInst::ICMP_SGT:
   3111     ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3112     // Check for an empty-set condition.
   3113     if (Lower == Upper)
   3114       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3115     break;
   3116   case ICmpInst::ICMP_ULE:
   3117     Lower = APInt::getMinValue(BitWidth); ++Upper;
   3118     // Check for a full-set condition.
   3119     if (Lower == Upper)
   3120       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3121     break;
   3122   case ICmpInst::ICMP_SLE:
   3123     Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
   3124     // Check for a full-set condition.
   3125     if (Lower == Upper)
   3126       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3127     break;
   3128   case ICmpInst::ICMP_UGE:
   3129     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   3130     // Check for a full-set condition.
   3131     if (Lower == Upper)
   3132       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3133     break;
   3134   case ICmpInst::ICMP_SGE:
   3135     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3136     // Check for a full-set condition.
   3137     if (Lower == Upper)
   3138       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3139     break;
   3140   }
   3141   return ConstantRange(Lower, Upper);
   3142 }
   3143 
   3144 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
   3145   switch (pred) {
   3146     default: llvm_unreachable("Unknown cmp predicate!");
   3147     case ICMP_EQ: case ICMP_NE:
   3148       return pred;
   3149     case ICMP_SGT: return ICMP_SLT;
   3150     case ICMP_SLT: return ICMP_SGT;
   3151     case ICMP_SGE: return ICMP_SLE;
   3152     case ICMP_SLE: return ICMP_SGE;
   3153     case ICMP_UGT: return ICMP_ULT;
   3154     case ICMP_ULT: return ICMP_UGT;
   3155     case ICMP_UGE: return ICMP_ULE;
   3156     case ICMP_ULE: return ICMP_UGE;
   3157 
   3158     case FCMP_FALSE: case FCMP_TRUE:
   3159     case FCMP_OEQ: case FCMP_ONE:
   3160     case FCMP_UEQ: case FCMP_UNE:
   3161     case FCMP_ORD: case FCMP_UNO:
   3162       return pred;
   3163     case FCMP_OGT: return FCMP_OLT;
   3164     case FCMP_OLT: return FCMP_OGT;
   3165     case FCMP_OGE: return FCMP_OLE;
   3166     case FCMP_OLE: return FCMP_OGE;
   3167     case FCMP_UGT: return FCMP_ULT;
   3168     case FCMP_ULT: return FCMP_UGT;
   3169     case FCMP_UGE: return FCMP_ULE;
   3170     case FCMP_ULE: return FCMP_UGE;
   3171   }
   3172 }
   3173 
   3174 bool CmpInst::isUnsigned(unsigned short predicate) {
   3175   switch (predicate) {
   3176     default: return false;
   3177     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
   3178     case ICmpInst::ICMP_UGE: return true;
   3179   }
   3180 }
   3181 
   3182 bool CmpInst::isSigned(unsigned short predicate) {
   3183   switch (predicate) {
   3184     default: return false;
   3185     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
   3186     case ICmpInst::ICMP_SGE: return true;
   3187   }
   3188 }
   3189 
   3190 bool CmpInst::isOrdered(unsigned short predicate) {
   3191   switch (predicate) {
   3192     default: return false;
   3193     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
   3194     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
   3195     case FCmpInst::FCMP_ORD: return true;
   3196   }
   3197 }
   3198 
   3199 bool CmpInst::isUnordered(unsigned short predicate) {
   3200   switch (predicate) {
   3201     default: return false;
   3202     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
   3203     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
   3204     case FCmpInst::FCMP_UNO: return true;
   3205   }
   3206 }
   3207 
   3208 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
   3209   switch(predicate) {
   3210     default: return false;
   3211     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
   3212     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
   3213   }
   3214 }
   3215 
   3216 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
   3217   switch(predicate) {
   3218   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
   3219   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
   3220   default: return false;
   3221   }
   3222 }
   3223 
   3224 
   3225 //===----------------------------------------------------------------------===//
   3226 //                        SwitchInst Implementation
   3227 //===----------------------------------------------------------------------===//
   3228 
   3229 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
   3230   assert(Value && Default && NumReserved);
   3231   ReservedSpace = NumReserved;
   3232   NumOperands = 2;
   3233   OperandList = allocHungoffUses(ReservedSpace);
   3234 
   3235   OperandList[0] = Value;
   3236   OperandList[1] = Default;
   3237 }
   3238 
   3239 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3240 /// switch on and a default destination.  The number of additional cases can
   3241 /// be specified here to make memory allocation more efficient.  This
   3242 /// constructor can also autoinsert before another instruction.
   3243 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3244                        Instruction *InsertBefore)
   3245   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3246                    0, 0, InsertBefore) {
   3247   init(Value, Default, 2+NumCases*2);
   3248 }
   3249 
   3250 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3251 /// switch on and a default destination.  The number of additional cases can
   3252 /// be specified here to make memory allocation more efficient.  This
   3253 /// constructor also autoinserts at the end of the specified BasicBlock.
   3254 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3255                        BasicBlock *InsertAtEnd)
   3256   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3257                    0, 0, InsertAtEnd) {
   3258   init(Value, Default, 2+NumCases*2);
   3259 }
   3260 
   3261 SwitchInst::SwitchInst(const SwitchInst &SI)
   3262   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
   3263   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
   3264   NumOperands = SI.getNumOperands();
   3265   Use *OL = OperandList, *InOL = SI.OperandList;
   3266   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
   3267     OL[i] = InOL[i];
   3268     OL[i+1] = InOL[i+1];
   3269   }
   3270   TheSubsets = SI.TheSubsets;
   3271   SubclassOptionalData = SI.SubclassOptionalData;
   3272 }
   3273 
   3274 SwitchInst::~SwitchInst() {
   3275   dropHungoffUses();
   3276 }
   3277 
   3278 
   3279 /// addCase - Add an entry to the switch instruction...
   3280 ///
   3281 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
   3282   IntegersSubsetToBB Mapping;
   3283 
   3284   // FIXME: Currently we work with ConstantInt based cases.
   3285   // So inititalize IntItem container directly from ConstantInt.
   3286   Mapping.add(IntItem::fromConstantInt(OnVal));
   3287   IntegersSubset CaseRanges = Mapping.getCase();
   3288   addCase(CaseRanges, Dest);
   3289 }
   3290 
   3291 void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
   3292   unsigned NewCaseIdx = getNumCases();
   3293   unsigned OpNo = NumOperands;
   3294   if (OpNo+2 > ReservedSpace)
   3295     growOperands();  // Get more space!
   3296   // Initialize some new operands.
   3297   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
   3298   NumOperands = OpNo+2;
   3299 
   3300   SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
   3301 
   3302   CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
   3303   Case.updateCaseValueOperand(OnVal);
   3304   Case.setSuccessor(Dest);
   3305 }
   3306 
   3307 /// removeCase - This method removes the specified case and its successor
   3308 /// from the switch instruction.
   3309 void SwitchInst::removeCase(CaseIt& i) {
   3310   unsigned idx = i.getCaseIndex();
   3311 
   3312   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
   3313 
   3314   unsigned NumOps = getNumOperands();
   3315   Use *OL = OperandList;
   3316 
   3317   // Overwrite this case with the end of the list.
   3318   if (2 + (idx + 1) * 2 != NumOps) {
   3319     OL[2 + idx * 2] = OL[NumOps - 2];
   3320     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
   3321   }
   3322 
   3323   // Nuke the last value.
   3324   OL[NumOps-2].set(0);
   3325   OL[NumOps-2+1].set(0);
   3326 
   3327   // Do the same with TheCases collection:
   3328   if (i.SubsetIt != --TheSubsets.end()) {
   3329     *i.SubsetIt = TheSubsets.back();
   3330     TheSubsets.pop_back();
   3331   } else {
   3332     TheSubsets.pop_back();
   3333     i.SubsetIt = TheSubsets.end();
   3334   }
   3335 
   3336   NumOperands = NumOps-2;
   3337 }
   3338 
   3339 /// growOperands - grow operands - This grows the operand list in response
   3340 /// to a push_back style of operation.  This grows the number of ops by 3 times.
   3341 ///
   3342 void SwitchInst::growOperands() {
   3343   unsigned e = getNumOperands();
   3344   unsigned NumOps = e*3;
   3345 
   3346   ReservedSpace = NumOps;
   3347   Use *NewOps = allocHungoffUses(NumOps);
   3348   Use *OldOps = OperandList;
   3349   for (unsigned i = 0; i != e; ++i) {
   3350       NewOps[i] = OldOps[i];
   3351   }
   3352   OperandList = NewOps;
   3353   Use::zap(OldOps, OldOps + e, true);
   3354 }
   3355 
   3356 
   3357 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
   3358   return getSuccessor(idx);
   3359 }
   3360 unsigned SwitchInst::getNumSuccessorsV() const {
   3361   return getNumSuccessors();
   3362 }
   3363 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3364   setSuccessor(idx, B);
   3365 }
   3366 
   3367 //===----------------------------------------------------------------------===//
   3368 //                        IndirectBrInst Implementation
   3369 //===----------------------------------------------------------------------===//
   3370 
   3371 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
   3372   assert(Address && Address->getType()->isPointerTy() &&
   3373          "Address of indirectbr must be a pointer");
   3374   ReservedSpace = 1+NumDests;
   3375   NumOperands = 1;
   3376   OperandList = allocHungoffUses(ReservedSpace);
   3377 
   3378   OperandList[0] = Address;
   3379 }
   3380 
   3381 
   3382 /// growOperands - grow operands - This grows the operand list in response
   3383 /// to a push_back style of operation.  This grows the number of ops by 2 times.
   3384 ///
   3385 void IndirectBrInst::growOperands() {
   3386   unsigned e = getNumOperands();
   3387   unsigned NumOps = e*2;
   3388 
   3389   ReservedSpace = NumOps;
   3390   Use *NewOps = allocHungoffUses(NumOps);
   3391   Use *OldOps = OperandList;
   3392   for (unsigned i = 0; i != e; ++i)
   3393     NewOps[i] = OldOps[i];
   3394   OperandList = NewOps;
   3395   Use::zap(OldOps, OldOps + e, true);
   3396 }
   3397 
   3398 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3399                                Instruction *InsertBefore)
   3400 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3401                  0, 0, InsertBefore) {
   3402   init(Address, NumCases);
   3403 }
   3404 
   3405 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3406                                BasicBlock *InsertAtEnd)
   3407 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3408                  0, 0, InsertAtEnd) {
   3409   init(Address, NumCases);
   3410 }
   3411 
   3412 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
   3413   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
   3414                    allocHungoffUses(IBI.getNumOperands()),
   3415                    IBI.getNumOperands()) {
   3416   Use *OL = OperandList, *InOL = IBI.OperandList;
   3417   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
   3418     OL[i] = InOL[i];
   3419   SubclassOptionalData = IBI.SubclassOptionalData;
   3420 }
   3421 
   3422 IndirectBrInst::~IndirectBrInst() {
   3423   dropHungoffUses();
   3424 }
   3425 
   3426 /// addDestination - Add a destination.
   3427 ///
   3428 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
   3429   unsigned OpNo = NumOperands;
   3430   if (OpNo+1 > ReservedSpace)
   3431     growOperands();  // Get more space!
   3432   // Initialize some new operands.
   3433   assert(OpNo < ReservedSpace && "Growing didn't work!");
   3434   NumOperands = OpNo+1;
   3435   OperandList[OpNo] = DestBB;
   3436 }
   3437 
   3438 /// removeDestination - This method removes the specified successor from the
   3439 /// indirectbr instruction.
   3440 void IndirectBrInst::removeDestination(unsigned idx) {
   3441   assert(idx < getNumOperands()-1 && "Successor index out of range!");
   3442 
   3443   unsigned NumOps = getNumOperands();
   3444   Use *OL = OperandList;
   3445 
   3446   // Replace this value with the last one.
   3447   OL[idx+1] = OL[NumOps-1];
   3448 
   3449   // Nuke the last value.
   3450   OL[NumOps-1].set(0);
   3451   NumOperands = NumOps-1;
   3452 }
   3453 
   3454 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
   3455   return getSuccessor(idx);
   3456 }
   3457 unsigned IndirectBrInst::getNumSuccessorsV() const {
   3458   return getNumSuccessors();
   3459 }
   3460 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3461   setSuccessor(idx, B);
   3462 }
   3463 
   3464 //===----------------------------------------------------------------------===//
   3465 //                           clone_impl() implementations
   3466 //===----------------------------------------------------------------------===//
   3467 
   3468 // Define these methods here so vtables don't get emitted into every translation
   3469 // unit that uses these classes.
   3470 
   3471 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
   3472   return new (getNumOperands()) GetElementPtrInst(*this);
   3473 }
   3474 
   3475 BinaryOperator *BinaryOperator::clone_impl() const {
   3476   return Create(getOpcode(), Op<0>(), Op<1>());
   3477 }
   3478 
   3479 FCmpInst* FCmpInst::clone_impl() const {
   3480   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
   3481 }
   3482 
   3483 ICmpInst* ICmpInst::clone_impl() const {
   3484   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
   3485 }
   3486 
   3487 ExtractValueInst *ExtractValueInst::clone_impl() const {
   3488   return new ExtractValueInst(*this);
   3489 }
   3490 
   3491 InsertValueInst *InsertValueInst::clone_impl() const {
   3492   return new InsertValueInst(*this);
   3493 }
   3494 
   3495 AllocaInst *AllocaInst::clone_impl() const {
   3496   return new AllocaInst(getAllocatedType(),
   3497                         (Value*)getOperand(0),
   3498                         getAlignment());
   3499 }
   3500 
   3501 LoadInst *LoadInst::clone_impl() const {
   3502   return new LoadInst(getOperand(0), Twine(), isVolatile(),
   3503                       getAlignment(), getOrdering(), getSynchScope());
   3504 }
   3505 
   3506 StoreInst *StoreInst::clone_impl() const {
   3507   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
   3508                        getAlignment(), getOrdering(), getSynchScope());
   3509 
   3510 }
   3511 
   3512 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
   3513   AtomicCmpXchgInst *Result =
   3514     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
   3515                           getOrdering(), getSynchScope());
   3516   Result->setVolatile(isVolatile());
   3517   return Result;
   3518 }
   3519 
   3520 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
   3521   AtomicRMWInst *Result =
   3522     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
   3523                       getOrdering(), getSynchScope());
   3524   Result->setVolatile(isVolatile());
   3525   return Result;
   3526 }
   3527 
   3528 FenceInst *FenceInst::clone_impl() const {
   3529   return new FenceInst(getContext(), getOrdering(), getSynchScope());
   3530 }
   3531 
   3532 TruncInst *TruncInst::clone_impl() const {
   3533   return new TruncInst(getOperand(0), getType());
   3534 }
   3535 
   3536 ZExtInst *ZExtInst::clone_impl() const {
   3537   return new ZExtInst(getOperand(0), getType());
   3538 }
   3539 
   3540 SExtInst *SExtInst::clone_impl() const {
   3541   return new SExtInst(getOperand(0), getType());
   3542 }
   3543 
   3544 FPTruncInst *FPTruncInst::clone_impl() const {
   3545   return new FPTruncInst(getOperand(0), getType());
   3546 }
   3547 
   3548 FPExtInst *FPExtInst::clone_impl() const {
   3549   return new FPExtInst(getOperand(0), getType());
   3550 }
   3551 
   3552 UIToFPInst *UIToFPInst::clone_impl() const {
   3553   return new UIToFPInst(getOperand(0), getType());
   3554 }
   3555 
   3556 SIToFPInst *SIToFPInst::clone_impl() const {
   3557   return new SIToFPInst(getOperand(0), getType());
   3558 }
   3559 
   3560 FPToUIInst *FPToUIInst::clone_impl() const {
   3561   return new FPToUIInst(getOperand(0), getType());
   3562 }
   3563 
   3564 FPToSIInst *FPToSIInst::clone_impl() const {
   3565   return new FPToSIInst(getOperand(0), getType());
   3566 }
   3567 
   3568 PtrToIntInst *PtrToIntInst::clone_impl() const {
   3569   return new PtrToIntInst(getOperand(0), getType());
   3570 }
   3571 
   3572 IntToPtrInst *IntToPtrInst::clone_impl() const {
   3573   return new IntToPtrInst(getOperand(0), getType());
   3574 }
   3575 
   3576 BitCastInst *BitCastInst::clone_impl() const {
   3577   return new BitCastInst(getOperand(0), getType());
   3578 }
   3579 
   3580 CallInst *CallInst::clone_impl() const {
   3581   return  new(getNumOperands()) CallInst(*this);
   3582 }
   3583 
   3584 SelectInst *SelectInst::clone_impl() const {
   3585   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3586 }
   3587 
   3588 VAArgInst *VAArgInst::clone_impl() const {
   3589   return new VAArgInst(getOperand(0), getType());
   3590 }
   3591 
   3592 ExtractElementInst *ExtractElementInst::clone_impl() const {
   3593   return ExtractElementInst::Create(getOperand(0), getOperand(1));
   3594 }
   3595 
   3596 InsertElementInst *InsertElementInst::clone_impl() const {
   3597   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3598 }
   3599 
   3600 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
   3601   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
   3602 }
   3603 
   3604 PHINode *PHINode::clone_impl() const {
   3605   return new PHINode(*this);
   3606 }
   3607 
   3608 LandingPadInst *LandingPadInst::clone_impl() const {
   3609   return new LandingPadInst(*this);
   3610 }
   3611 
   3612 ReturnInst *ReturnInst::clone_impl() const {
   3613   return new(getNumOperands()) ReturnInst(*this);
   3614 }
   3615 
   3616 BranchInst *BranchInst::clone_impl() const {
   3617   return new(getNumOperands()) BranchInst(*this);
   3618 }
   3619 
   3620 SwitchInst *SwitchInst::clone_impl() const {
   3621   return new SwitchInst(*this);
   3622 }
   3623 
   3624 IndirectBrInst *IndirectBrInst::clone_impl() const {
   3625   return new IndirectBrInst(*this);
   3626 }
   3627 
   3628 
   3629 InvokeInst *InvokeInst::clone_impl() const {
   3630   return new(getNumOperands()) InvokeInst(*this);
   3631 }
   3632 
   3633 ResumeInst *ResumeInst::clone_impl() const {
   3634   return new(1) ResumeInst(*this);
   3635 }
   3636 
   3637 UnreachableInst *UnreachableInst::clone_impl() const {
   3638   LLVMContext &Context = getContext();
   3639   return new UnreachableInst(Context);
   3640 }
   3641