1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a wrapper around MCSchedModel that allows the interface 11 // to benefit from information currently only available in TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/raw_ostream.h" 18 #include "llvm/Target/TargetInstrInfo.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/Target/TargetRegisterInfo.h" 21 #include "llvm/Target/TargetSubtargetInfo.h" 22 23 using namespace llvm; 24 25 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 26 cl::desc("Use TargetSchedModel for latency lookup")); 27 28 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 29 cl::desc("Use InstrItineraryData for latency lookup")); 30 31 bool TargetSchedModel::hasInstrSchedModel() const { 32 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 33 } 34 35 bool TargetSchedModel::hasInstrItineraries() const { 36 return EnableSchedItins && !InstrItins.isEmpty(); 37 } 38 39 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 40 // Dividend and Divisor will be naturally swapped as needed. 41 while(Divisor) { 42 unsigned Rem = Dividend % Divisor; 43 Dividend = Divisor; 44 Divisor = Rem; 45 }; 46 return Dividend; 47 } 48 static unsigned lcm(unsigned A, unsigned B) { 49 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 50 assert((LCM >= A && LCM >= B) && "LCM overflow"); 51 return LCM; 52 } 53 54 void TargetSchedModel::init(const MCSchedModel &sm, 55 const TargetSubtargetInfo *sti, 56 const TargetInstrInfo *tii) { 57 SchedModel = sm; 58 STI = sti; 59 TII = tii; 60 STI->initInstrItins(InstrItins); 61 62 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 63 ResourceFactors.resize(NumRes); 64 ResourceLCM = SchedModel.IssueWidth; 65 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 66 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 67 if (NumUnits > 0) 68 ResourceLCM = lcm(ResourceLCM, NumUnits); 69 } 70 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 71 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 72 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 73 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 74 } 75 } 76 77 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 78 const MCSchedClassDesc *SC) const { 79 if (hasInstrItineraries()) { 80 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 81 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI); 82 } 83 if (hasInstrSchedModel()) { 84 if (!SC) 85 SC = resolveSchedClass(MI); 86 if (SC->isValid()) 87 return SC->NumMicroOps; 88 } 89 return MI->isTransient() ? 0 : 1; 90 } 91 92 // The machine model may explicitly specify an invalid latency, which 93 // effectively means infinite latency. Since users of the TargetSchedule API 94 // don't know how to handle this, we convert it to a very large latency that is 95 // easy to distinguish when debugging the DAG but won't induce overflow. 96 static unsigned capLatency(int Cycles) { 97 return Cycles >= 0 ? Cycles : 1000; 98 } 99 100 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 101 /// evaluation of predicates that depend on instruction operands or flags. 102 const MCSchedClassDesc *TargetSchedModel:: 103 resolveSchedClass(const MachineInstr *MI) const { 104 105 // Get the definition's scheduling class descriptor from this machine model. 106 unsigned SchedClass = MI->getDesc().getSchedClass(); 107 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 108 if (!SCDesc->isValid()) 109 return SCDesc; 110 111 #ifndef NDEBUG 112 unsigned NIter = 0; 113 #endif 114 while (SCDesc->isVariant()) { 115 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 116 117 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 118 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 119 } 120 return SCDesc; 121 } 122 123 /// Find the def index of this operand. This index maps to the machine model and 124 /// is independent of use operands. Def operands may be reordered with uses or 125 /// merged with uses without affecting the def index (e.g. before/after 126 /// regalloc). However, an instruction's def operands must never be reordered 127 /// with respect to each other. 128 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 129 unsigned DefIdx = 0; 130 for (unsigned i = 0; i != DefOperIdx; ++i) { 131 const MachineOperand &MO = MI->getOperand(i); 132 if (MO.isReg() && MO.isDef()) 133 ++DefIdx; 134 } 135 return DefIdx; 136 } 137 138 /// Find the use index of this operand. This is independent of the instruction's 139 /// def operands. 140 /// 141 /// Note that uses are not determined by the operand's isUse property, which 142 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 143 /// a "use". The machine model allows an operand to be both a Def and Use. 144 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 145 unsigned UseIdx = 0; 146 for (unsigned i = 0; i != UseOperIdx; ++i) { 147 const MachineOperand &MO = MI->getOperand(i); 148 if (MO.isReg() && MO.readsReg()) 149 ++UseIdx; 150 } 151 return UseIdx; 152 } 153 154 // Top-level API for clients that know the operand indices. 155 unsigned TargetSchedModel::computeOperandLatency( 156 const MachineInstr *DefMI, unsigned DefOperIdx, 157 const MachineInstr *UseMI, unsigned UseOperIdx) const { 158 159 if (!hasInstrSchedModel() && !hasInstrItineraries()) 160 return TII->defaultDefLatency(&SchedModel, DefMI); 161 162 if (hasInstrItineraries()) { 163 int OperLatency = 0; 164 if (UseMI) { 165 OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, 166 UseMI, UseOperIdx); 167 } 168 else { 169 unsigned DefClass = DefMI->getDesc().getSchedClass(); 170 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 171 } 172 if (OperLatency >= 0) 173 return OperLatency; 174 175 // No operand latency was found. 176 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI); 177 178 // Expected latency is the max of the stage latency and itinerary props. 179 // Rather than directly querying InstrItins stage latency, we call a TII 180 // hook to allow subtargets to specialize latency. This hook is only 181 // applicable to the InstrItins model. InstrSchedModel should model all 182 // special cases without TII hooks. 183 InstrLatency = std::max(InstrLatency, 184 TII->defaultDefLatency(&SchedModel, DefMI)); 185 return InstrLatency; 186 } 187 // hasInstrSchedModel() 188 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 189 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 190 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 191 // Lookup the definition's write latency in SubtargetInfo. 192 const MCWriteLatencyEntry *WLEntry = 193 STI->getWriteLatencyEntry(SCDesc, DefIdx); 194 unsigned WriteID = WLEntry->WriteResourceID; 195 unsigned Latency = capLatency(WLEntry->Cycles); 196 if (!UseMI) 197 return Latency; 198 199 // Lookup the use's latency adjustment in SubtargetInfo. 200 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 201 if (UseDesc->NumReadAdvanceEntries == 0) 202 return Latency; 203 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 204 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 205 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 206 return 0; 207 return Latency - Advance; 208 } 209 // If DefIdx does not exist in the model (e.g. implicit defs), then return 210 // unit latency (defaultDefLatency may be too conservative). 211 #ifndef NDEBUG 212 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 213 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) { 214 std::string Err; 215 raw_string_ostream ss(Err); 216 ss << "DefIdx " << DefIdx << " exceeds machine model writes for " 217 << *DefMI; 218 report_fatal_error(ss.str()); 219 } 220 #endif 221 // FIXME: Automatically giving all implicit defs defaultDefLatency is 222 // undesirable. We should only do it for defs that are known to the MC 223 // desc like flags. Truly implicit defs should get 1 cycle latency. 224 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI); 225 } 226 227 unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const { 228 // For the itinerary model, fall back to the old subtarget hook. 229 // Allow subtargets to compute Bundle latencies outside the machine model. 230 if (hasInstrItineraries() || MI->isBundle()) 231 return TII->getInstrLatency(&InstrItins, MI); 232 233 if (hasInstrSchedModel()) { 234 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 235 if (SCDesc->isValid()) { 236 unsigned Latency = 0; 237 for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries; 238 DefIdx != DefEnd; ++DefIdx) { 239 // Lookup the definition's write latency in SubtargetInfo. 240 const MCWriteLatencyEntry *WLEntry = 241 STI->getWriteLatencyEntry(SCDesc, DefIdx); 242 Latency = std::max(Latency, capLatency(WLEntry->Cycles)); 243 } 244 return Latency; 245 } 246 } 247 return TII->defaultDefLatency(&SchedModel, MI); 248 } 249 250 unsigned TargetSchedModel:: 251 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 252 const MachineInstr *DepMI) const { 253 if (SchedModel.MicroOpBufferSize <= 1) 254 return 1; 255 256 // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch 257 // WAW dependencies in the same cycle. 258 259 // Treat predication as a data dependency for out-of-order cpus. In-order 260 // cpus do not need to treat predicated writes specially. 261 // 262 // TODO: The following hack exists because predication passes do not 263 // correctly append imp-use operands, and readsReg() strangely returns false 264 // for predicated defs. 265 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); 266 const MachineFunction &MF = *DefMI->getParent()->getParent(); 267 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 268 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI)) 269 return computeInstrLatency(DefMI); 270 271 // If we have a per operand scheduling model, check if this def is writing 272 // an unbuffered resource. If so, it treated like an in-order cpu. 273 if (hasInstrSchedModel()) { 274 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 275 if (SCDesc->isValid()) { 276 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 277 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 278 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 279 return 1; 280 } 281 } 282 } 283 return 0; 284 } 285