1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global value numbering to eliminate fully redundant 11 // instructions. It also performs simple dead load elimination. 12 // 13 // Note that this pass does the value numbering itself; it does not use the 14 // ValueNumbering analysis passes. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "gvn" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/Hashing.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/CFG.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/Dominators.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 33 #include "llvm/Analysis/PHITransAddr.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Assembly/Writer.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/Support/Allocator.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/PatternMatch.h" 46 #include "llvm/Target/TargetLibraryInfo.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/SSAUpdater.h" 49 #include <vector> 50 using namespace llvm; 51 using namespace PatternMatch; 52 53 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 54 STATISTIC(NumGVNLoad, "Number of loads deleted"); 55 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 56 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 57 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 58 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 59 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 60 61 static cl::opt<bool> EnablePRE("enable-pre", 62 cl::init(true), cl::Hidden); 63 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 64 65 // Maximum allowed recursion depth. 66 static cl::opt<uint32_t> 67 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 68 cl::desc("Max recurse depth (default = 1000)")); 69 70 //===----------------------------------------------------------------------===// 71 // ValueTable Class 72 //===----------------------------------------------------------------------===// 73 74 /// This class holds the mapping between values and value numbers. It is used 75 /// as an efficient mechanism to determine the expression-wise equivalence of 76 /// two values. 77 namespace { 78 struct Expression { 79 uint32_t opcode; 80 Type *type; 81 SmallVector<uint32_t, 4> varargs; 82 83 Expression(uint32_t o = ~2U) : opcode(o) { } 84 85 bool operator==(const Expression &other) const { 86 if (opcode != other.opcode) 87 return false; 88 if (opcode == ~0U || opcode == ~1U) 89 return true; 90 if (type != other.type) 91 return false; 92 if (varargs != other.varargs) 93 return false; 94 return true; 95 } 96 97 friend hash_code hash_value(const Expression &Value) { 98 return hash_combine(Value.opcode, Value.type, 99 hash_combine_range(Value.varargs.begin(), 100 Value.varargs.end())); 101 } 102 }; 103 104 class ValueTable { 105 DenseMap<Value*, uint32_t> valueNumbering; 106 DenseMap<Expression, uint32_t> expressionNumbering; 107 AliasAnalysis *AA; 108 MemoryDependenceAnalysis *MD; 109 DominatorTree *DT; 110 111 uint32_t nextValueNumber; 112 113 Expression create_expression(Instruction* I); 114 Expression create_cmp_expression(unsigned Opcode, 115 CmpInst::Predicate Predicate, 116 Value *LHS, Value *RHS); 117 Expression create_extractvalue_expression(ExtractValueInst* EI); 118 uint32_t lookup_or_add_call(CallInst* C); 119 public: 120 ValueTable() : nextValueNumber(1) { } 121 uint32_t lookup_or_add(Value *V); 122 uint32_t lookup(Value *V) const; 123 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred, 124 Value *LHS, Value *RHS); 125 void add(Value *V, uint32_t num); 126 void clear(); 127 void erase(Value *v); 128 void setAliasAnalysis(AliasAnalysis* A) { AA = A; } 129 AliasAnalysis *getAliasAnalysis() const { return AA; } 130 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } 131 void setDomTree(DominatorTree* D) { DT = D; } 132 uint32_t getNextUnusedValueNumber() { return nextValueNumber; } 133 void verifyRemoved(const Value *) const; 134 }; 135 } 136 137 namespace llvm { 138 template <> struct DenseMapInfo<Expression> { 139 static inline Expression getEmptyKey() { 140 return ~0U; 141 } 142 143 static inline Expression getTombstoneKey() { 144 return ~1U; 145 } 146 147 static unsigned getHashValue(const Expression e) { 148 using llvm::hash_value; 149 return static_cast<unsigned>(hash_value(e)); 150 } 151 static bool isEqual(const Expression &LHS, const Expression &RHS) { 152 return LHS == RHS; 153 } 154 }; 155 156 } 157 158 //===----------------------------------------------------------------------===// 159 // ValueTable Internal Functions 160 //===----------------------------------------------------------------------===// 161 162 Expression ValueTable::create_expression(Instruction *I) { 163 Expression e; 164 e.type = I->getType(); 165 e.opcode = I->getOpcode(); 166 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 167 OI != OE; ++OI) 168 e.varargs.push_back(lookup_or_add(*OI)); 169 if (I->isCommutative()) { 170 // Ensure that commutative instructions that only differ by a permutation 171 // of their operands get the same value number by sorting the operand value 172 // numbers. Since all commutative instructions have two operands it is more 173 // efficient to sort by hand rather than using, say, std::sort. 174 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 175 if (e.varargs[0] > e.varargs[1]) 176 std::swap(e.varargs[0], e.varargs[1]); 177 } 178 179 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 180 // Sort the operand value numbers so x<y and y>x get the same value number. 181 CmpInst::Predicate Predicate = C->getPredicate(); 182 if (e.varargs[0] > e.varargs[1]) { 183 std::swap(e.varargs[0], e.varargs[1]); 184 Predicate = CmpInst::getSwappedPredicate(Predicate); 185 } 186 e.opcode = (C->getOpcode() << 8) | Predicate; 187 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 188 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 189 II != IE; ++II) 190 e.varargs.push_back(*II); 191 } 192 193 return e; 194 } 195 196 Expression ValueTable::create_cmp_expression(unsigned Opcode, 197 CmpInst::Predicate Predicate, 198 Value *LHS, Value *RHS) { 199 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 200 "Not a comparison!"); 201 Expression e; 202 e.type = CmpInst::makeCmpResultType(LHS->getType()); 203 e.varargs.push_back(lookup_or_add(LHS)); 204 e.varargs.push_back(lookup_or_add(RHS)); 205 206 // Sort the operand value numbers so x<y and y>x get the same value number. 207 if (e.varargs[0] > e.varargs[1]) { 208 std::swap(e.varargs[0], e.varargs[1]); 209 Predicate = CmpInst::getSwappedPredicate(Predicate); 210 } 211 e.opcode = (Opcode << 8) | Predicate; 212 return e; 213 } 214 215 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) { 216 assert(EI != 0 && "Not an ExtractValueInst?"); 217 Expression e; 218 e.type = EI->getType(); 219 e.opcode = 0; 220 221 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); 222 if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { 223 // EI might be an extract from one of our recognised intrinsics. If it 224 // is we'll synthesize a semantically equivalent expression instead on 225 // an extract value expression. 226 switch (I->getIntrinsicID()) { 227 case Intrinsic::sadd_with_overflow: 228 case Intrinsic::uadd_with_overflow: 229 e.opcode = Instruction::Add; 230 break; 231 case Intrinsic::ssub_with_overflow: 232 case Intrinsic::usub_with_overflow: 233 e.opcode = Instruction::Sub; 234 break; 235 case Intrinsic::smul_with_overflow: 236 case Intrinsic::umul_with_overflow: 237 e.opcode = Instruction::Mul; 238 break; 239 default: 240 break; 241 } 242 243 if (e.opcode != 0) { 244 // Intrinsic recognized. Grab its args to finish building the expression. 245 assert(I->getNumArgOperands() == 2 && 246 "Expect two args for recognised intrinsics."); 247 e.varargs.push_back(lookup_or_add(I->getArgOperand(0))); 248 e.varargs.push_back(lookup_or_add(I->getArgOperand(1))); 249 return e; 250 } 251 } 252 253 // Not a recognised intrinsic. Fall back to producing an extract value 254 // expression. 255 e.opcode = EI->getOpcode(); 256 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 257 OI != OE; ++OI) 258 e.varargs.push_back(lookup_or_add(*OI)); 259 260 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 261 II != IE; ++II) 262 e.varargs.push_back(*II); 263 264 return e; 265 } 266 267 //===----------------------------------------------------------------------===// 268 // ValueTable External Functions 269 //===----------------------------------------------------------------------===// 270 271 /// add - Insert a value into the table with a specified value number. 272 void ValueTable::add(Value *V, uint32_t num) { 273 valueNumbering.insert(std::make_pair(V, num)); 274 } 275 276 uint32_t ValueTable::lookup_or_add_call(CallInst *C) { 277 if (AA->doesNotAccessMemory(C)) { 278 Expression exp = create_expression(C); 279 uint32_t &e = expressionNumbering[exp]; 280 if (!e) e = nextValueNumber++; 281 valueNumbering[C] = e; 282 return e; 283 } else if (AA->onlyReadsMemory(C)) { 284 Expression exp = create_expression(C); 285 uint32_t &e = expressionNumbering[exp]; 286 if (!e) { 287 e = nextValueNumber++; 288 valueNumbering[C] = e; 289 return e; 290 } 291 if (!MD) { 292 e = nextValueNumber++; 293 valueNumbering[C] = e; 294 return e; 295 } 296 297 MemDepResult local_dep = MD->getDependency(C); 298 299 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 300 valueNumbering[C] = nextValueNumber; 301 return nextValueNumber++; 302 } 303 304 if (local_dep.isDef()) { 305 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 306 307 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 308 valueNumbering[C] = nextValueNumber; 309 return nextValueNumber++; 310 } 311 312 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 313 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 314 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i)); 315 if (c_vn != cd_vn) { 316 valueNumbering[C] = nextValueNumber; 317 return nextValueNumber++; 318 } 319 } 320 321 uint32_t v = lookup_or_add(local_cdep); 322 valueNumbering[C] = v; 323 return v; 324 } 325 326 // Non-local case. 327 const MemoryDependenceAnalysis::NonLocalDepInfo &deps = 328 MD->getNonLocalCallDependency(CallSite(C)); 329 // FIXME: Move the checking logic to MemDep! 330 CallInst* cdep = 0; 331 332 // Check to see if we have a single dominating call instruction that is 333 // identical to C. 334 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 335 const NonLocalDepEntry *I = &deps[i]; 336 if (I->getResult().isNonLocal()) 337 continue; 338 339 // We don't handle non-definitions. If we already have a call, reject 340 // instruction dependencies. 341 if (!I->getResult().isDef() || cdep != 0) { 342 cdep = 0; 343 break; 344 } 345 346 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 347 // FIXME: All duplicated with non-local case. 348 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 349 cdep = NonLocalDepCall; 350 continue; 351 } 352 353 cdep = 0; 354 break; 355 } 356 357 if (!cdep) { 358 valueNumbering[C] = nextValueNumber; 359 return nextValueNumber++; 360 } 361 362 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 363 valueNumbering[C] = nextValueNumber; 364 return nextValueNumber++; 365 } 366 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 367 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 368 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i)); 369 if (c_vn != cd_vn) { 370 valueNumbering[C] = nextValueNumber; 371 return nextValueNumber++; 372 } 373 } 374 375 uint32_t v = lookup_or_add(cdep); 376 valueNumbering[C] = v; 377 return v; 378 379 } else { 380 valueNumbering[C] = nextValueNumber; 381 return nextValueNumber++; 382 } 383 } 384 385 /// lookup_or_add - Returns the value number for the specified value, assigning 386 /// it a new number if it did not have one before. 387 uint32_t ValueTable::lookup_or_add(Value *V) { 388 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 389 if (VI != valueNumbering.end()) 390 return VI->second; 391 392 if (!isa<Instruction>(V)) { 393 valueNumbering[V] = nextValueNumber; 394 return nextValueNumber++; 395 } 396 397 Instruction* I = cast<Instruction>(V); 398 Expression exp; 399 switch (I->getOpcode()) { 400 case Instruction::Call: 401 return lookup_or_add_call(cast<CallInst>(I)); 402 case Instruction::Add: 403 case Instruction::FAdd: 404 case Instruction::Sub: 405 case Instruction::FSub: 406 case Instruction::Mul: 407 case Instruction::FMul: 408 case Instruction::UDiv: 409 case Instruction::SDiv: 410 case Instruction::FDiv: 411 case Instruction::URem: 412 case Instruction::SRem: 413 case Instruction::FRem: 414 case Instruction::Shl: 415 case Instruction::LShr: 416 case Instruction::AShr: 417 case Instruction::And: 418 case Instruction::Or: 419 case Instruction::Xor: 420 case Instruction::ICmp: 421 case Instruction::FCmp: 422 case Instruction::Trunc: 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 case Instruction::FPToUI: 426 case Instruction::FPToSI: 427 case Instruction::UIToFP: 428 case Instruction::SIToFP: 429 case Instruction::FPTrunc: 430 case Instruction::FPExt: 431 case Instruction::PtrToInt: 432 case Instruction::IntToPtr: 433 case Instruction::BitCast: 434 case Instruction::Select: 435 case Instruction::ExtractElement: 436 case Instruction::InsertElement: 437 case Instruction::ShuffleVector: 438 case Instruction::InsertValue: 439 case Instruction::GetElementPtr: 440 exp = create_expression(I); 441 break; 442 case Instruction::ExtractValue: 443 exp = create_extractvalue_expression(cast<ExtractValueInst>(I)); 444 break; 445 default: 446 valueNumbering[V] = nextValueNumber; 447 return nextValueNumber++; 448 } 449 450 uint32_t& e = expressionNumbering[exp]; 451 if (!e) e = nextValueNumber++; 452 valueNumbering[V] = e; 453 return e; 454 } 455 456 /// lookup - Returns the value number of the specified value. Fails if 457 /// the value has not yet been numbered. 458 uint32_t ValueTable::lookup(Value *V) const { 459 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 460 assert(VI != valueNumbering.end() && "Value not numbered?"); 461 return VI->second; 462 } 463 464 /// lookup_or_add_cmp - Returns the value number of the given comparison, 465 /// assigning it a new number if it did not have one before. Useful when 466 /// we deduced the result of a comparison, but don't immediately have an 467 /// instruction realizing that comparison to hand. 468 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode, 469 CmpInst::Predicate Predicate, 470 Value *LHS, Value *RHS) { 471 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS); 472 uint32_t& e = expressionNumbering[exp]; 473 if (!e) e = nextValueNumber++; 474 return e; 475 } 476 477 /// clear - Remove all entries from the ValueTable. 478 void ValueTable::clear() { 479 valueNumbering.clear(); 480 expressionNumbering.clear(); 481 nextValueNumber = 1; 482 } 483 484 /// erase - Remove a value from the value numbering. 485 void ValueTable::erase(Value *V) { 486 valueNumbering.erase(V); 487 } 488 489 /// verifyRemoved - Verify that the value is removed from all internal data 490 /// structures. 491 void ValueTable::verifyRemoved(const Value *V) const { 492 for (DenseMap<Value*, uint32_t>::const_iterator 493 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 494 assert(I->first != V && "Inst still occurs in value numbering map!"); 495 } 496 } 497 498 //===----------------------------------------------------------------------===// 499 // GVN Pass 500 //===----------------------------------------------------------------------===// 501 502 namespace { 503 class GVN; 504 struct AvailableValueInBlock { 505 /// BB - The basic block in question. 506 BasicBlock *BB; 507 enum ValType { 508 SimpleVal, // A simple offsetted value that is accessed. 509 LoadVal, // A value produced by a load. 510 MemIntrin // A memory intrinsic which is loaded from. 511 }; 512 513 /// V - The value that is live out of the block. 514 PointerIntPair<Value *, 2, ValType> Val; 515 516 /// Offset - The byte offset in Val that is interesting for the load query. 517 unsigned Offset; 518 519 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 520 unsigned Offset = 0) { 521 AvailableValueInBlock Res; 522 Res.BB = BB; 523 Res.Val.setPointer(V); 524 Res.Val.setInt(SimpleVal); 525 Res.Offset = Offset; 526 return Res; 527 } 528 529 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI, 530 unsigned Offset = 0) { 531 AvailableValueInBlock Res; 532 Res.BB = BB; 533 Res.Val.setPointer(MI); 534 Res.Val.setInt(MemIntrin); 535 Res.Offset = Offset; 536 return Res; 537 } 538 539 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI, 540 unsigned Offset = 0) { 541 AvailableValueInBlock Res; 542 Res.BB = BB; 543 Res.Val.setPointer(LI); 544 Res.Val.setInt(LoadVal); 545 Res.Offset = Offset; 546 return Res; 547 } 548 549 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 550 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 551 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 552 553 Value *getSimpleValue() const { 554 assert(isSimpleValue() && "Wrong accessor"); 555 return Val.getPointer(); 556 } 557 558 LoadInst *getCoercedLoadValue() const { 559 assert(isCoercedLoadValue() && "Wrong accessor"); 560 return cast<LoadInst>(Val.getPointer()); 561 } 562 563 MemIntrinsic *getMemIntrinValue() const { 564 assert(isMemIntrinValue() && "Wrong accessor"); 565 return cast<MemIntrinsic>(Val.getPointer()); 566 } 567 568 /// MaterializeAdjustedValue - Emit code into this block to adjust the value 569 /// defined here to the specified type. This handles various coercion cases. 570 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const; 571 }; 572 573 class GVN : public FunctionPass { 574 bool NoLoads; 575 MemoryDependenceAnalysis *MD; 576 DominatorTree *DT; 577 const DataLayout *TD; 578 const TargetLibraryInfo *TLI; 579 580 ValueTable VN; 581 582 /// LeaderTable - A mapping from value numbers to lists of Value*'s that 583 /// have that value number. Use findLeader to query it. 584 struct LeaderTableEntry { 585 Value *Val; 586 const BasicBlock *BB; 587 LeaderTableEntry *Next; 588 }; 589 DenseMap<uint32_t, LeaderTableEntry> LeaderTable; 590 BumpPtrAllocator TableAllocator; 591 592 SmallVector<Instruction*, 8> InstrsToErase; 593 594 typedef SmallVector<NonLocalDepResult, 64> LoadDepVect; 595 typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect; 596 typedef SmallVector<BasicBlock*, 64> UnavailBlkVect; 597 598 public: 599 static char ID; // Pass identification, replacement for typeid 600 explicit GVN(bool noloads = false) 601 : FunctionPass(ID), NoLoads(noloads), MD(0) { 602 initializeGVNPass(*PassRegistry::getPassRegistry()); 603 } 604 605 bool runOnFunction(Function &F); 606 607 /// markInstructionForDeletion - This removes the specified instruction from 608 /// our various maps and marks it for deletion. 609 void markInstructionForDeletion(Instruction *I) { 610 VN.erase(I); 611 InstrsToErase.push_back(I); 612 } 613 614 const DataLayout *getDataLayout() const { return TD; } 615 DominatorTree &getDominatorTree() const { return *DT; } 616 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); } 617 MemoryDependenceAnalysis &getMemDep() const { return *MD; } 618 private: 619 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for 620 /// its value number. 621 void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) { 622 LeaderTableEntry &Curr = LeaderTable[N]; 623 if (!Curr.Val) { 624 Curr.Val = V; 625 Curr.BB = BB; 626 return; 627 } 628 629 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>(); 630 Node->Val = V; 631 Node->BB = BB; 632 Node->Next = Curr.Next; 633 Curr.Next = Node; 634 } 635 636 /// removeFromLeaderTable - Scan the list of values corresponding to a given 637 /// value number, and remove the given instruction if encountered. 638 void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) { 639 LeaderTableEntry* Prev = 0; 640 LeaderTableEntry* Curr = &LeaderTable[N]; 641 642 while (Curr->Val != I || Curr->BB != BB) { 643 Prev = Curr; 644 Curr = Curr->Next; 645 } 646 647 if (Prev) { 648 Prev->Next = Curr->Next; 649 } else { 650 if (!Curr->Next) { 651 Curr->Val = 0; 652 Curr->BB = 0; 653 } else { 654 LeaderTableEntry* Next = Curr->Next; 655 Curr->Val = Next->Val; 656 Curr->BB = Next->BB; 657 Curr->Next = Next->Next; 658 } 659 } 660 } 661 662 // List of critical edges to be split between iterations. 663 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit; 664 665 // This transformation requires dominator postdominator info 666 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 667 AU.addRequired<DominatorTree>(); 668 AU.addRequired<TargetLibraryInfo>(); 669 if (!NoLoads) 670 AU.addRequired<MemoryDependenceAnalysis>(); 671 AU.addRequired<AliasAnalysis>(); 672 673 AU.addPreserved<DominatorTree>(); 674 AU.addPreserved<AliasAnalysis>(); 675 } 676 677 678 // Helper fuctions of redundant load elimination 679 bool processLoad(LoadInst *L); 680 bool processNonLocalLoad(LoadInst *L); 681 void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 682 AvailValInBlkVect &ValuesPerBlock, 683 UnavailBlkVect &UnavailableBlocks); 684 bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 685 UnavailBlkVect &UnavailableBlocks); 686 687 // Other helper routines 688 bool processInstruction(Instruction *I); 689 bool processBlock(BasicBlock *BB); 690 void dump(DenseMap<uint32_t, Value*> &d); 691 bool iterateOnFunction(Function &F); 692 bool performPRE(Function &F); 693 Value *findLeader(const BasicBlock *BB, uint32_t num); 694 void cleanupGlobalSets(); 695 void verifyRemoved(const Instruction *I) const; 696 bool splitCriticalEdges(); 697 BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ); 698 unsigned replaceAllDominatedUsesWith(Value *From, Value *To, 699 const BasicBlockEdge &Root); 700 bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root); 701 }; 702 703 char GVN::ID = 0; 704 } 705 706 // createGVNPass - The public interface to this file... 707 FunctionPass *llvm::createGVNPass(bool NoLoads) { 708 return new GVN(NoLoads); 709 } 710 711 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false) 712 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 713 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 714 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 715 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 716 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false) 717 718 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 719 void GVN::dump(DenseMap<uint32_t, Value*>& d) { 720 errs() << "{\n"; 721 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 722 E = d.end(); I != E; ++I) { 723 errs() << I->first << "\n"; 724 I->second->dump(); 725 } 726 errs() << "}\n"; 727 } 728 #endif 729 730 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value 731 /// we're analyzing is fully available in the specified block. As we go, keep 732 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 733 /// map is actually a tri-state map with the following values: 734 /// 0) we know the block *is not* fully available. 735 /// 1) we know the block *is* fully available. 736 /// 2) we do not know whether the block is fully available or not, but we are 737 /// currently speculating that it will be. 738 /// 3) we are speculating for this block and have used that to speculate for 739 /// other blocks. 740 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 741 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 742 uint32_t RecurseDepth) { 743 if (RecurseDepth > MaxRecurseDepth) 744 return false; 745 746 // Optimistically assume that the block is fully available and check to see 747 // if we already know about this block in one lookup. 748 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 749 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 750 751 // If the entry already existed for this block, return the precomputed value. 752 if (!IV.second) { 753 // If this is a speculative "available" value, mark it as being used for 754 // speculation of other blocks. 755 if (IV.first->second == 2) 756 IV.first->second = 3; 757 return IV.first->second != 0; 758 } 759 760 // Otherwise, see if it is fully available in all predecessors. 761 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 762 763 // If this block has no predecessors, it isn't live-in here. 764 if (PI == PE) 765 goto SpeculationFailure; 766 767 for (; PI != PE; ++PI) 768 // If the value isn't fully available in one of our predecessors, then it 769 // isn't fully available in this block either. Undo our previous 770 // optimistic assumption and bail out. 771 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 772 goto SpeculationFailure; 773 774 return true; 775 776 // SpeculationFailure - If we get here, we found out that this is not, after 777 // all, a fully-available block. We have a problem if we speculated on this and 778 // used the speculation to mark other blocks as available. 779 SpeculationFailure: 780 char &BBVal = FullyAvailableBlocks[BB]; 781 782 // If we didn't speculate on this, just return with it set to false. 783 if (BBVal == 2) { 784 BBVal = 0; 785 return false; 786 } 787 788 // If we did speculate on this value, we could have blocks set to 1 that are 789 // incorrect. Walk the (transitive) successors of this block and mark them as 790 // 0 if set to one. 791 SmallVector<BasicBlock*, 32> BBWorklist; 792 BBWorklist.push_back(BB); 793 794 do { 795 BasicBlock *Entry = BBWorklist.pop_back_val(); 796 // Note that this sets blocks to 0 (unavailable) if they happen to not 797 // already be in FullyAvailableBlocks. This is safe. 798 char &EntryVal = FullyAvailableBlocks[Entry]; 799 if (EntryVal == 0) continue; // Already unavailable. 800 801 // Mark as unavailable. 802 EntryVal = 0; 803 804 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) 805 BBWorklist.push_back(*I); 806 } while (!BBWorklist.empty()); 807 808 return false; 809 } 810 811 812 /// CanCoerceMustAliasedValueToLoad - Return true if 813 /// CoerceAvailableValueToLoadType will succeed. 814 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, 815 Type *LoadTy, 816 const DataLayout &TD) { 817 // If the loaded or stored value is an first class array or struct, don't try 818 // to transform them. We need to be able to bitcast to integer. 819 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || 820 StoredVal->getType()->isStructTy() || 821 StoredVal->getType()->isArrayTy()) 822 return false; 823 824 // The store has to be at least as big as the load. 825 if (TD.getTypeSizeInBits(StoredVal->getType()) < 826 TD.getTypeSizeInBits(LoadTy)) 827 return false; 828 829 return true; 830 } 831 832 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and 833 /// then a load from a must-aliased pointer of a different type, try to coerce 834 /// the stored value. LoadedTy is the type of the load we want to replace and 835 /// InsertPt is the place to insert new instructions. 836 /// 837 /// If we can't do it, return null. 838 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, 839 Type *LoadedTy, 840 Instruction *InsertPt, 841 const DataLayout &TD) { 842 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD)) 843 return 0; 844 845 // If this is already the right type, just return it. 846 Type *StoredValTy = StoredVal->getType(); 847 848 uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy); 849 uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy); 850 851 // If the store and reload are the same size, we can always reuse it. 852 if (StoreSize == LoadSize) { 853 // Pointer to Pointer -> use bitcast. 854 if (StoredValTy->getScalarType()->isPointerTy() && 855 LoadedTy->getScalarType()->isPointerTy()) 856 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); 857 858 // Convert source pointers to integers, which can be bitcast. 859 if (StoredValTy->getScalarType()->isPointerTy()) { 860 StoredValTy = TD.getIntPtrType(StoredValTy); 861 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 862 } 863 864 Type *TypeToCastTo = LoadedTy; 865 if (TypeToCastTo->getScalarType()->isPointerTy()) 866 TypeToCastTo = TD.getIntPtrType(TypeToCastTo); 867 868 if (StoredValTy != TypeToCastTo) 869 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); 870 871 // Cast to pointer if the load needs a pointer type. 872 if (LoadedTy->getScalarType()->isPointerTy()) 873 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); 874 875 return StoredVal; 876 } 877 878 // If the loaded value is smaller than the available value, then we can 879 // extract out a piece from it. If the available value is too small, then we 880 // can't do anything. 881 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); 882 883 // Convert source pointers to integers, which can be manipulated. 884 if (StoredValTy->getScalarType()->isPointerTy()) { 885 StoredValTy = TD.getIntPtrType(StoredValTy); 886 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 887 } 888 889 // Convert vectors and fp to integer, which can be manipulated. 890 if (!StoredValTy->isIntegerTy()) { 891 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize); 892 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt); 893 } 894 895 // If this is a big-endian system, we need to shift the value down to the low 896 // bits so that a truncate will work. 897 if (TD.isBigEndian()) { 898 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize); 899 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt); 900 } 901 902 // Truncate the integer to the right size now. 903 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize); 904 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt); 905 906 if (LoadedTy == NewIntTy) 907 return StoredVal; 908 909 // If the result is a pointer, inttoptr. 910 if (LoadedTy->getScalarType()->isPointerTy()) 911 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); 912 913 // Otherwise, bitcast. 914 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt); 915 } 916 917 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a 918 /// memdep query of a load that ends up being a clobbering memory write (store, 919 /// memset, memcpy, memmove). This means that the write *may* provide bits used 920 /// by the load but we can't be sure because the pointers don't mustalias. 921 /// 922 /// Check this case to see if there is anything more we can do before we give 923 /// up. This returns -1 if we have to give up, or a byte number in the stored 924 /// value of the piece that feeds the load. 925 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 926 Value *WritePtr, 927 uint64_t WriteSizeInBits, 928 const DataLayout &TD) { 929 // If the loaded or stored value is a first class array or struct, don't try 930 // to transform them. We need to be able to bitcast to integer. 931 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 932 return -1; 933 934 int64_t StoreOffset = 0, LoadOffset = 0; 935 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD); 936 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD); 937 if (StoreBase != LoadBase) 938 return -1; 939 940 // If the load and store are to the exact same address, they should have been 941 // a must alias. AA must have gotten confused. 942 // FIXME: Study to see if/when this happens. One case is forwarding a memset 943 // to a load from the base of the memset. 944 #if 0 945 if (LoadOffset == StoreOffset) { 946 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" 947 << "Base = " << *StoreBase << "\n" 948 << "Store Ptr = " << *WritePtr << "\n" 949 << "Store Offs = " << StoreOffset << "\n" 950 << "Load Ptr = " << *LoadPtr << "\n"; 951 abort(); 952 } 953 #endif 954 955 // If the load and store don't overlap at all, the store doesn't provide 956 // anything to the load. In this case, they really don't alias at all, AA 957 // must have gotten confused. 958 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy); 959 960 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 961 return -1; 962 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. 963 LoadSize >>= 3; 964 965 966 bool isAAFailure = false; 967 if (StoreOffset < LoadOffset) 968 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; 969 else 970 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; 971 972 if (isAAFailure) { 973 #if 0 974 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" 975 << "Base = " << *StoreBase << "\n" 976 << "Store Ptr = " << *WritePtr << "\n" 977 << "Store Offs = " << StoreOffset << "\n" 978 << "Load Ptr = " << *LoadPtr << "\n"; 979 abort(); 980 #endif 981 return -1; 982 } 983 984 // If the Load isn't completely contained within the stored bits, we don't 985 // have all the bits to feed it. We could do something crazy in the future 986 // (issue a smaller load then merge the bits in) but this seems unlikely to be 987 // valuable. 988 if (StoreOffset > LoadOffset || 989 StoreOffset+StoreSize < LoadOffset+LoadSize) 990 return -1; 991 992 // Okay, we can do this transformation. Return the number of bytes into the 993 // store that the load is. 994 return LoadOffset-StoreOffset; 995 } 996 997 /// AnalyzeLoadFromClobberingStore - This function is called when we have a 998 /// memdep query of a load that ends up being a clobbering store. 999 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 1000 StoreInst *DepSI, 1001 const DataLayout &TD) { 1002 // Cannot handle reading from store of first-class aggregate yet. 1003 if (DepSI->getValueOperand()->getType()->isStructTy() || 1004 DepSI->getValueOperand()->getType()->isArrayTy()) 1005 return -1; 1006 1007 Value *StorePtr = DepSI->getPointerOperand(); 1008 uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 1009 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 1010 StorePtr, StoreSize, TD); 1011 } 1012 1013 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a 1014 /// memdep query of a load that ends up being clobbered by another load. See if 1015 /// the other load can feed into the second load. 1016 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, 1017 LoadInst *DepLI, const DataLayout &TD){ 1018 // Cannot handle reading from store of first-class aggregate yet. 1019 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 1020 return -1; 1021 1022 Value *DepPtr = DepLI->getPointerOperand(); 1023 uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType()); 1024 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD); 1025 if (R != -1) return R; 1026 1027 // If we have a load/load clobber an DepLI can be widened to cover this load, 1028 // then we should widen it! 1029 int64_t LoadOffs = 0; 1030 const Value *LoadBase = 1031 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD); 1032 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 1033 1034 unsigned Size = MemoryDependenceAnalysis:: 1035 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD); 1036 if (Size == 0) return -1; 1037 1038 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD); 1039 } 1040 1041 1042 1043 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 1044 MemIntrinsic *MI, 1045 const DataLayout &TD) { 1046 // If the mem operation is a non-constant size, we can't handle it. 1047 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 1048 if (SizeCst == 0) return -1; 1049 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; 1050 1051 // If this is memset, we just need to see if the offset is valid in the size 1052 // of the memset.. 1053 if (MI->getIntrinsicID() == Intrinsic::memset) 1054 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 1055 MemSizeInBits, TD); 1056 1057 // If we have a memcpy/memmove, the only case we can handle is if this is a 1058 // copy from constant memory. In that case, we can read directly from the 1059 // constant memory. 1060 MemTransferInst *MTI = cast<MemTransferInst>(MI); 1061 1062 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 1063 if (Src == 0) return -1; 1064 1065 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD)); 1066 if (GV == 0 || !GV->isConstant()) return -1; 1067 1068 // See if the access is within the bounds of the transfer. 1069 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 1070 MI->getDest(), MemSizeInBits, TD); 1071 if (Offset == -1) 1072 return Offset; 1073 1074 // Otherwise, see if we can constant fold a load from the constant with the 1075 // offset applied as appropriate. 1076 Src = ConstantExpr::getBitCast(Src, 1077 llvm::Type::getInt8PtrTy(Src->getContext())); 1078 Constant *OffsetCst = 1079 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 1080 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 1081 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 1082 if (ConstantFoldLoadFromConstPtr(Src, &TD)) 1083 return Offset; 1084 return -1; 1085 } 1086 1087 1088 /// GetStoreValueForLoad - This function is called when we have a 1089 /// memdep query of a load that ends up being a clobbering store. This means 1090 /// that the store provides bits used by the load but we the pointers don't 1091 /// mustalias. Check this case to see if there is anything more we can do 1092 /// before we give up. 1093 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, 1094 Type *LoadTy, 1095 Instruction *InsertPt, const DataLayout &TD){ 1096 LLVMContext &Ctx = SrcVal->getType()->getContext(); 1097 1098 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 1099 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8; 1100 1101 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1102 1103 // Compute which bits of the stored value are being used by the load. Convert 1104 // to an integer type to start with. 1105 if (SrcVal->getType()->getScalarType()->isPointerTy()) 1106 SrcVal = Builder.CreatePtrToInt(SrcVal, 1107 TD.getIntPtrType(SrcVal->getType())); 1108 if (!SrcVal->getType()->isIntegerTy()) 1109 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); 1110 1111 // Shift the bits to the least significant depending on endianness. 1112 unsigned ShiftAmt; 1113 if (TD.isLittleEndian()) 1114 ShiftAmt = Offset*8; 1115 else 1116 ShiftAmt = (StoreSize-LoadSize-Offset)*8; 1117 1118 if (ShiftAmt) 1119 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt); 1120 1121 if (LoadSize != StoreSize) 1122 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8)); 1123 1124 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); 1125 } 1126 1127 /// GetLoadValueForLoad - This function is called when we have a 1128 /// memdep query of a load that ends up being a clobbering load. This means 1129 /// that the load *may* provide bits used by the load but we can't be sure 1130 /// because the pointers don't mustalias. Check this case to see if there is 1131 /// anything more we can do before we give up. 1132 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, 1133 Type *LoadTy, Instruction *InsertPt, 1134 GVN &gvn) { 1135 const DataLayout &TD = *gvn.getDataLayout(); 1136 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 1137 // widen SrcVal out to a larger load. 1138 unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType()); 1139 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 1140 if (Offset+LoadSize > SrcValSize) { 1141 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 1142 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 1143 // If we have a load/load clobber an DepLI can be widened to cover this 1144 // load, then we should widen it to the next power of 2 size big enough! 1145 unsigned NewLoadSize = Offset+LoadSize; 1146 if (!isPowerOf2_32(NewLoadSize)) 1147 NewLoadSize = NextPowerOf2(NewLoadSize); 1148 1149 Value *PtrVal = SrcVal->getPointerOperand(); 1150 1151 // Insert the new load after the old load. This ensures that subsequent 1152 // memdep queries will find the new load. We can't easily remove the old 1153 // load completely because it is already in the value numbering table. 1154 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 1155 Type *DestPTy = 1156 IntegerType::get(LoadTy->getContext(), NewLoadSize*8); 1157 DestPTy = PointerType::get(DestPTy, 1158 cast<PointerType>(PtrVal->getType())->getAddressSpace()); 1159 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 1160 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 1161 LoadInst *NewLoad = Builder.CreateLoad(PtrVal); 1162 NewLoad->takeName(SrcVal); 1163 NewLoad->setAlignment(SrcVal->getAlignment()); 1164 1165 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 1166 DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 1167 1168 // Replace uses of the original load with the wider load. On a big endian 1169 // system, we need to shift down to get the relevant bits. 1170 Value *RV = NewLoad; 1171 if (TD.isBigEndian()) 1172 RV = Builder.CreateLShr(RV, 1173 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits()); 1174 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 1175 SrcVal->replaceAllUsesWith(RV); 1176 1177 // We would like to use gvn.markInstructionForDeletion here, but we can't 1178 // because the load is already memoized into the leader map table that GVN 1179 // tracks. It is potentially possible to remove the load from the table, 1180 // but then there all of the operations based on it would need to be 1181 // rehashed. Just leave the dead load around. 1182 gvn.getMemDep().removeInstruction(SrcVal); 1183 SrcVal = NewLoad; 1184 } 1185 1186 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD); 1187 } 1188 1189 1190 /// GetMemInstValueForLoad - This function is called when we have a 1191 /// memdep query of a load that ends up being a clobbering mem intrinsic. 1192 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 1193 Type *LoadTy, Instruction *InsertPt, 1194 const DataLayout &TD){ 1195 LLVMContext &Ctx = LoadTy->getContext(); 1196 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; 1197 1198 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1199 1200 // We know that this method is only called when the mem transfer fully 1201 // provides the bits for the load. 1202 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 1203 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 1204 // independently of what the offset is. 1205 Value *Val = MSI->getValue(); 1206 if (LoadSize != 1) 1207 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); 1208 1209 Value *OneElt = Val; 1210 1211 // Splat the value out to the right number of bits. 1212 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { 1213 // If we can double the number of bytes set, do it. 1214 if (NumBytesSet*2 <= LoadSize) { 1215 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); 1216 Val = Builder.CreateOr(Val, ShVal); 1217 NumBytesSet <<= 1; 1218 continue; 1219 } 1220 1221 // Otherwise insert one byte at a time. 1222 Value *ShVal = Builder.CreateShl(Val, 1*8); 1223 Val = Builder.CreateOr(OneElt, ShVal); 1224 ++NumBytesSet; 1225 } 1226 1227 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD); 1228 } 1229 1230 // Otherwise, this is a memcpy/memmove from a constant global. 1231 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 1232 Constant *Src = cast<Constant>(MTI->getSource()); 1233 1234 // Otherwise, see if we can constant fold a load from the constant with the 1235 // offset applied as appropriate. 1236 Src = ConstantExpr::getBitCast(Src, 1237 llvm::Type::getInt8PtrTy(Src->getContext())); 1238 Constant *OffsetCst = 1239 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 1240 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 1241 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 1242 return ConstantFoldLoadFromConstPtr(Src, &TD); 1243 } 1244 1245 1246 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock, 1247 /// construct SSA form, allowing us to eliminate LI. This returns the value 1248 /// that should be used at LI's definition site. 1249 static Value *ConstructSSAForLoadSet(LoadInst *LI, 1250 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 1251 GVN &gvn) { 1252 // Check for the fully redundant, dominating load case. In this case, we can 1253 // just use the dominating value directly. 1254 if (ValuesPerBlock.size() == 1 && 1255 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 1256 LI->getParent())) 1257 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn); 1258 1259 // Otherwise, we have to construct SSA form. 1260 SmallVector<PHINode*, 8> NewPHIs; 1261 SSAUpdater SSAUpdate(&NewPHIs); 1262 SSAUpdate.Initialize(LI->getType(), LI->getName()); 1263 1264 Type *LoadTy = LI->getType(); 1265 1266 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { 1267 const AvailableValueInBlock &AV = ValuesPerBlock[i]; 1268 BasicBlock *BB = AV.BB; 1269 1270 if (SSAUpdate.HasValueForBlock(BB)) 1271 continue; 1272 1273 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn)); 1274 } 1275 1276 // Perform PHI construction. 1277 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 1278 1279 // If new PHI nodes were created, notify alias analysis. 1280 if (V->getType()->getScalarType()->isPointerTy()) { 1281 AliasAnalysis *AA = gvn.getAliasAnalysis(); 1282 1283 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) 1284 AA->copyValue(LI, NewPHIs[i]); 1285 1286 // Now that we've copied information to the new PHIs, scan through 1287 // them again and inform alias analysis that we've added potentially 1288 // escaping uses to any values that are operands to these PHIs. 1289 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) { 1290 PHINode *P = NewPHIs[i]; 1291 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) { 1292 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 1293 AA->addEscapingUse(P->getOperandUse(jj)); 1294 } 1295 } 1296 } 1297 1298 return V; 1299 } 1300 1301 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const { 1302 Value *Res; 1303 if (isSimpleValue()) { 1304 Res = getSimpleValue(); 1305 if (Res->getType() != LoadTy) { 1306 const DataLayout *TD = gvn.getDataLayout(); 1307 assert(TD && "Need target data to handle type mismatch case"); 1308 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), 1309 *TD); 1310 1311 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " 1312 << *getSimpleValue() << '\n' 1313 << *Res << '\n' << "\n\n\n"); 1314 } 1315 } else if (isCoercedLoadValue()) { 1316 LoadInst *Load = getCoercedLoadValue(); 1317 if (Load->getType() == LoadTy && Offset == 0) { 1318 Res = Load; 1319 } else { 1320 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(), 1321 gvn); 1322 1323 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " 1324 << *getCoercedLoadValue() << '\n' 1325 << *Res << '\n' << "\n\n\n"); 1326 } 1327 } else { 1328 const DataLayout *TD = gvn.getDataLayout(); 1329 assert(TD && "Need target data to handle type mismatch case"); 1330 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, 1331 LoadTy, BB->getTerminator(), *TD); 1332 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1333 << " " << *getMemIntrinValue() << '\n' 1334 << *Res << '\n' << "\n\n\n"); 1335 } 1336 return Res; 1337 } 1338 1339 static bool isLifetimeStart(const Instruction *Inst) { 1340 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1341 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1342 return false; 1343 } 1344 1345 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 1346 AvailValInBlkVect &ValuesPerBlock, 1347 UnavailBlkVect &UnavailableBlocks) { 1348 1349 // Filter out useless results (non-locals, etc). Keep track of the blocks 1350 // where we have a value available in repl, also keep track of whether we see 1351 // dependencies that produce an unknown value for the load (such as a call 1352 // that could potentially clobber the load). 1353 unsigned NumDeps = Deps.size(); 1354 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1355 BasicBlock *DepBB = Deps[i].getBB(); 1356 MemDepResult DepInfo = Deps[i].getResult(); 1357 1358 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1359 UnavailableBlocks.push_back(DepBB); 1360 continue; 1361 } 1362 1363 if (DepInfo.isClobber()) { 1364 // The address being loaded in this non-local block may not be the same as 1365 // the pointer operand of the load if PHI translation occurs. Make sure 1366 // to consider the right address. 1367 Value *Address = Deps[i].getAddress(); 1368 1369 // If the dependence is to a store that writes to a superset of the bits 1370 // read by the load, we can extract the bits we need for the load from the 1371 // stored value. 1372 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { 1373 if (TD && Address) { 1374 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address, 1375 DepSI, *TD); 1376 if (Offset != -1) { 1377 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1378 DepSI->getValueOperand(), 1379 Offset)); 1380 continue; 1381 } 1382 } 1383 } 1384 1385 // Check to see if we have something like this: 1386 // load i32* P 1387 // load i8* (P+1) 1388 // if we have this, replace the later with an extraction from the former. 1389 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { 1390 // If this is a clobber and L is the first instruction in its block, then 1391 // we have the first instruction in the entry block. 1392 if (DepLI != LI && Address && TD) { 1393 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), 1394 LI->getPointerOperand(), 1395 DepLI, *TD); 1396 1397 if (Offset != -1) { 1398 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI, 1399 Offset)); 1400 continue; 1401 } 1402 } 1403 } 1404 1405 // If the clobbering value is a memset/memcpy/memmove, see if we can 1406 // forward a value on from it. 1407 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { 1408 if (TD && Address) { 1409 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, 1410 DepMI, *TD); 1411 if (Offset != -1) { 1412 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI, 1413 Offset)); 1414 continue; 1415 } 1416 } 1417 } 1418 1419 UnavailableBlocks.push_back(DepBB); 1420 continue; 1421 } 1422 1423 // DepInfo.isDef() here 1424 1425 Instruction *DepInst = DepInfo.getInst(); 1426 1427 // Loading the allocation -> undef. 1428 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1429 // Loading immediately after lifetime begin -> undef. 1430 isLifetimeStart(DepInst)) { 1431 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1432 UndefValue::get(LI->getType()))); 1433 continue; 1434 } 1435 1436 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1437 // Reject loads and stores that are to the same address but are of 1438 // different types if we have to. 1439 if (S->getValueOperand()->getType() != LI->getType()) { 1440 // If the stored value is larger or equal to the loaded value, we can 1441 // reuse it. 1442 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(), 1443 LI->getType(), *TD)) { 1444 UnavailableBlocks.push_back(DepBB); 1445 continue; 1446 } 1447 } 1448 1449 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1450 S->getValueOperand())); 1451 continue; 1452 } 1453 1454 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1455 // If the types mismatch and we can't handle it, reject reuse of the load. 1456 if (LD->getType() != LI->getType()) { 1457 // If the stored value is larger or equal to the loaded value, we can 1458 // reuse it. 1459 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){ 1460 UnavailableBlocks.push_back(DepBB); 1461 continue; 1462 } 1463 } 1464 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD)); 1465 continue; 1466 } 1467 1468 UnavailableBlocks.push_back(DepBB); 1469 } 1470 } 1471 1472 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1473 UnavailBlkVect &UnavailableBlocks) { 1474 // Okay, we have *some* definitions of the value. This means that the value 1475 // is available in some of our (transitive) predecessors. Lets think about 1476 // doing PRE of this load. This will involve inserting a new load into the 1477 // predecessor when it's not available. We could do this in general, but 1478 // prefer to not increase code size. As such, we only do this when we know 1479 // that we only have to insert *one* load (which means we're basically moving 1480 // the load, not inserting a new one). 1481 1482 SmallPtrSet<BasicBlock *, 4> Blockers; 1483 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1484 Blockers.insert(UnavailableBlocks[i]); 1485 1486 // Let's find the first basic block with more than one predecessor. Walk 1487 // backwards through predecessors if needed. 1488 BasicBlock *LoadBB = LI->getParent(); 1489 BasicBlock *TmpBB = LoadBB; 1490 1491 while (TmpBB->getSinglePredecessor()) { 1492 TmpBB = TmpBB->getSinglePredecessor(); 1493 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1494 return false; 1495 if (Blockers.count(TmpBB)) 1496 return false; 1497 1498 // If any of these blocks has more than one successor (i.e. if the edge we 1499 // just traversed was critical), then there are other paths through this 1500 // block along which the load may not be anticipated. Hoisting the load 1501 // above this block would be adding the load to execution paths along 1502 // which it was not previously executed. 1503 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1504 return false; 1505 } 1506 1507 assert(TmpBB); 1508 LoadBB = TmpBB; 1509 1510 // Check to see how many predecessors have the loaded value fully 1511 // available. 1512 DenseMap<BasicBlock*, Value*> PredLoads; 1513 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1514 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) 1515 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true; 1516 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1517 FullyAvailableBlocks[UnavailableBlocks[i]] = false; 1518 1519 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1520 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); 1521 PI != E; ++PI) { 1522 BasicBlock *Pred = *PI; 1523 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1524 continue; 1525 } 1526 PredLoads[Pred] = 0; 1527 1528 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1529 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1530 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1531 << Pred->getName() << "': " << *LI << '\n'); 1532 return false; 1533 } 1534 1535 if (LoadBB->isLandingPad()) { 1536 DEBUG(dbgs() 1537 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '" 1538 << Pred->getName() << "': " << *LI << '\n'); 1539 return false; 1540 } 1541 1542 CriticalEdgePred.push_back(Pred); 1543 } 1544 } 1545 1546 // Decide whether PRE is profitable for this load. 1547 unsigned NumUnavailablePreds = PredLoads.size(); 1548 assert(NumUnavailablePreds != 0 && 1549 "Fully available value should already be eliminated!"); 1550 1551 // If this load is unavailable in multiple predecessors, reject it. 1552 // FIXME: If we could restructure the CFG, we could make a common pred with 1553 // all the preds that don't have an available LI and insert a new load into 1554 // that one block. 1555 if (NumUnavailablePreds != 1) 1556 return false; 1557 1558 // Split critical edges, and update the unavailable predecessors accordingly. 1559 for (SmallVectorImpl<BasicBlock *>::iterator I = CriticalEdgePred.begin(), 1560 E = CriticalEdgePred.end(); I != E; I++) { 1561 BasicBlock *OrigPred = *I; 1562 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1563 PredLoads.erase(OrigPred); 1564 PredLoads[NewPred] = 0; 1565 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1566 << LoadBB->getName() << '\n'); 1567 } 1568 1569 // Check if the load can safely be moved to all the unavailable predecessors. 1570 bool CanDoPRE = true; 1571 SmallVector<Instruction*, 8> NewInsts; 1572 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1573 E = PredLoads.end(); I != E; ++I) { 1574 BasicBlock *UnavailablePred = I->first; 1575 1576 // Do PHI translation to get its value in the predecessor if necessary. The 1577 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1578 1579 // If all preds have a single successor, then we know it is safe to insert 1580 // the load on the pred (?!?), so we can insert code to materialize the 1581 // pointer if it is not available. 1582 PHITransAddr Address(LI->getPointerOperand(), TD); 1583 Value *LoadPtr = 0; 1584 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1585 *DT, NewInsts); 1586 1587 // If we couldn't find or insert a computation of this phi translated value, 1588 // we fail PRE. 1589 if (LoadPtr == 0) { 1590 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1591 << *LI->getPointerOperand() << "\n"); 1592 CanDoPRE = false; 1593 break; 1594 } 1595 1596 I->second = LoadPtr; 1597 } 1598 1599 if (!CanDoPRE) { 1600 while (!NewInsts.empty()) { 1601 Instruction *I = NewInsts.pop_back_val(); 1602 if (MD) MD->removeInstruction(I); 1603 I->eraseFromParent(); 1604 } 1605 // HINT:Don't revert the edge-splitting as following transformation may 1606 // also need to split these critial edges. 1607 return !CriticalEdgePred.empty(); 1608 } 1609 1610 // Okay, we can eliminate this load by inserting a reload in the predecessor 1611 // and using PHI construction to get the value in the other predecessors, do 1612 // it. 1613 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1614 DEBUG(if (!NewInsts.empty()) 1615 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " 1616 << *NewInsts.back() << '\n'); 1617 1618 // Assign value numbers to the new instructions. 1619 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) { 1620 // FIXME: We really _ought_ to insert these value numbers into their 1621 // parent's availability map. However, in doing so, we risk getting into 1622 // ordering issues. If a block hasn't been processed yet, we would be 1623 // marking a value as AVAIL-IN, which isn't what we intend. 1624 VN.lookup_or_add(NewInsts[i]); 1625 } 1626 1627 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1628 E = PredLoads.end(); I != E; ++I) { 1629 BasicBlock *UnavailablePred = I->first; 1630 Value *LoadPtr = I->second; 1631 1632 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, 1633 LI->getAlignment(), 1634 UnavailablePred->getTerminator()); 1635 1636 // Transfer the old load's TBAA tag to the new load. 1637 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) 1638 NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag); 1639 1640 // Transfer DebugLoc. 1641 NewLoad->setDebugLoc(LI->getDebugLoc()); 1642 1643 // Add the newly created load. 1644 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1645 NewLoad)); 1646 MD->invalidateCachedPointerInfo(LoadPtr); 1647 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1648 } 1649 1650 // Perform PHI construction. 1651 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1652 LI->replaceAllUsesWith(V); 1653 if (isa<PHINode>(V)) 1654 V->takeName(LI); 1655 if (V->getType()->getScalarType()->isPointerTy()) 1656 MD->invalidateCachedPointerInfo(V); 1657 markInstructionForDeletion(LI); 1658 ++NumPRELoad; 1659 return true; 1660 } 1661 1662 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are 1663 /// non-local by performing PHI construction. 1664 bool GVN::processNonLocalLoad(LoadInst *LI) { 1665 // Step 1: Find the non-local dependencies of the load. 1666 LoadDepVect Deps; 1667 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI); 1668 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps); 1669 1670 // If we had to process more than one hundred blocks to find the 1671 // dependencies, this load isn't worth worrying about. Optimizing 1672 // it will be too expensive. 1673 unsigned NumDeps = Deps.size(); 1674 if (NumDeps > 100) 1675 return false; 1676 1677 // If we had a phi translation failure, we'll have a single entry which is a 1678 // clobber in the current block. Reject this early. 1679 if (NumDeps == 1 && 1680 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1681 DEBUG( 1682 dbgs() << "GVN: non-local load "; 1683 WriteAsOperand(dbgs(), LI); 1684 dbgs() << " has unknown dependencies\n"; 1685 ); 1686 return false; 1687 } 1688 1689 // Step 2: Analyze the availability of the load 1690 AvailValInBlkVect ValuesPerBlock; 1691 UnavailBlkVect UnavailableBlocks; 1692 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1693 1694 // If we have no predecessors that produce a known value for this load, exit 1695 // early. 1696 if (ValuesPerBlock.empty()) 1697 return false; 1698 1699 // Step 3: Eliminate fully redundancy. 1700 // 1701 // If all of the instructions we depend on produce a known value for this 1702 // load, then it is fully redundant and we can use PHI insertion to compute 1703 // its value. Insert PHIs and remove the fully redundant value now. 1704 if (UnavailableBlocks.empty()) { 1705 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1706 1707 // Perform PHI construction. 1708 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1709 LI->replaceAllUsesWith(V); 1710 1711 if (isa<PHINode>(V)) 1712 V->takeName(LI); 1713 if (V->getType()->getScalarType()->isPointerTy()) 1714 MD->invalidateCachedPointerInfo(V); 1715 markInstructionForDeletion(LI); 1716 ++NumGVNLoad; 1717 return true; 1718 } 1719 1720 // Step 4: Eliminate partial redundancy. 1721 if (!EnablePRE || !EnableLoadPRE) 1722 return false; 1723 1724 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1725 } 1726 1727 1728 static void patchReplacementInstruction(Instruction *I, Value *Repl) { 1729 // Patch the replacement so that it is not more restrictive than the value 1730 // being replaced. 1731 BinaryOperator *Op = dyn_cast<BinaryOperator>(I); 1732 BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl); 1733 if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) && 1734 isa<OverflowingBinaryOperator>(ReplOp)) { 1735 if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap()) 1736 ReplOp->setHasNoSignedWrap(false); 1737 if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap()) 1738 ReplOp->setHasNoUnsignedWrap(false); 1739 } 1740 if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) { 1741 SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata; 1742 ReplInst->getAllMetadataOtherThanDebugLoc(Metadata); 1743 for (int i = 0, n = Metadata.size(); i < n; ++i) { 1744 unsigned Kind = Metadata[i].first; 1745 MDNode *IMD = I->getMetadata(Kind); 1746 MDNode *ReplMD = Metadata[i].second; 1747 switch(Kind) { 1748 default: 1749 ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata 1750 break; 1751 case LLVMContext::MD_dbg: 1752 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1753 case LLVMContext::MD_tbaa: 1754 ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD)); 1755 break; 1756 case LLVMContext::MD_range: 1757 ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD)); 1758 break; 1759 case LLVMContext::MD_prof: 1760 llvm_unreachable("MD_prof in a non terminator instruction"); 1761 break; 1762 case LLVMContext::MD_fpmath: 1763 ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD)); 1764 break; 1765 } 1766 } 1767 } 1768 } 1769 1770 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1771 patchReplacementInstruction(I, Repl); 1772 I->replaceAllUsesWith(Repl); 1773 } 1774 1775 /// processLoad - Attempt to eliminate a load, first by eliminating it 1776 /// locally, and then attempting non-local elimination if that fails. 1777 bool GVN::processLoad(LoadInst *L) { 1778 if (!MD) 1779 return false; 1780 1781 if (!L->isSimple()) 1782 return false; 1783 1784 if (L->use_empty()) { 1785 markInstructionForDeletion(L); 1786 return true; 1787 } 1788 1789 // ... to a pointer that has been loaded from before... 1790 MemDepResult Dep = MD->getDependency(L); 1791 1792 // If we have a clobber and target data is around, see if this is a clobber 1793 // that we can fix up through code synthesis. 1794 if (Dep.isClobber() && TD) { 1795 // Check to see if we have something like this: 1796 // store i32 123, i32* %P 1797 // %A = bitcast i32* %P to i8* 1798 // %B = gep i8* %A, i32 1 1799 // %C = load i8* %B 1800 // 1801 // We could do that by recognizing if the clobber instructions are obviously 1802 // a common base + constant offset, and if the previous store (or memset) 1803 // completely covers this load. This sort of thing can happen in bitfield 1804 // access code. 1805 Value *AvailVal = 0; 1806 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) { 1807 int Offset = AnalyzeLoadFromClobberingStore(L->getType(), 1808 L->getPointerOperand(), 1809 DepSI, *TD); 1810 if (Offset != -1) 1811 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset, 1812 L->getType(), L, *TD); 1813 } 1814 1815 // Check to see if we have something like this: 1816 // load i32* P 1817 // load i8* (P+1) 1818 // if we have this, replace the later with an extraction from the former. 1819 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) { 1820 // If this is a clobber and L is the first instruction in its block, then 1821 // we have the first instruction in the entry block. 1822 if (DepLI == L) 1823 return false; 1824 1825 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(), 1826 L->getPointerOperand(), 1827 DepLI, *TD); 1828 if (Offset != -1) 1829 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this); 1830 } 1831 1832 // If the clobbering value is a memset/memcpy/memmove, see if we can forward 1833 // a value on from it. 1834 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) { 1835 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(), 1836 L->getPointerOperand(), 1837 DepMI, *TD); 1838 if (Offset != -1) 1839 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD); 1840 } 1841 1842 if (AvailVal) { 1843 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n' 1844 << *AvailVal << '\n' << *L << "\n\n\n"); 1845 1846 // Replace the load! 1847 L->replaceAllUsesWith(AvailVal); 1848 if (AvailVal->getType()->getScalarType()->isPointerTy()) 1849 MD->invalidateCachedPointerInfo(AvailVal); 1850 markInstructionForDeletion(L); 1851 ++NumGVNLoad; 1852 return true; 1853 } 1854 } 1855 1856 // If the value isn't available, don't do anything! 1857 if (Dep.isClobber()) { 1858 DEBUG( 1859 // fast print dep, using operator<< on instruction is too slow. 1860 dbgs() << "GVN: load "; 1861 WriteAsOperand(dbgs(), L); 1862 Instruction *I = Dep.getInst(); 1863 dbgs() << " is clobbered by " << *I << '\n'; 1864 ); 1865 return false; 1866 } 1867 1868 // If it is defined in another block, try harder. 1869 if (Dep.isNonLocal()) 1870 return processNonLocalLoad(L); 1871 1872 if (!Dep.isDef()) { 1873 DEBUG( 1874 // fast print dep, using operator<< on instruction is too slow. 1875 dbgs() << "GVN: load "; 1876 WriteAsOperand(dbgs(), L); 1877 dbgs() << " has unknown dependence\n"; 1878 ); 1879 return false; 1880 } 1881 1882 Instruction *DepInst = Dep.getInst(); 1883 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1884 Value *StoredVal = DepSI->getValueOperand(); 1885 1886 // The store and load are to a must-aliased pointer, but they may not 1887 // actually have the same type. See if we know how to reuse the stored 1888 // value (depending on its type). 1889 if (StoredVal->getType() != L->getType()) { 1890 if (TD) { 1891 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), 1892 L, *TD); 1893 if (StoredVal == 0) 1894 return false; 1895 1896 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal 1897 << '\n' << *L << "\n\n\n"); 1898 } 1899 else 1900 return false; 1901 } 1902 1903 // Remove it! 1904 L->replaceAllUsesWith(StoredVal); 1905 if (StoredVal->getType()->getScalarType()->isPointerTy()) 1906 MD->invalidateCachedPointerInfo(StoredVal); 1907 markInstructionForDeletion(L); 1908 ++NumGVNLoad; 1909 return true; 1910 } 1911 1912 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 1913 Value *AvailableVal = DepLI; 1914 1915 // The loads are of a must-aliased pointer, but they may not actually have 1916 // the same type. See if we know how to reuse the previously loaded value 1917 // (depending on its type). 1918 if (DepLI->getType() != L->getType()) { 1919 if (TD) { 1920 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), 1921 L, *TD); 1922 if (AvailableVal == 0) 1923 return false; 1924 1925 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal 1926 << "\n" << *L << "\n\n\n"); 1927 } 1928 else 1929 return false; 1930 } 1931 1932 // Remove it! 1933 patchAndReplaceAllUsesWith(L, AvailableVal); 1934 if (DepLI->getType()->getScalarType()->isPointerTy()) 1935 MD->invalidateCachedPointerInfo(DepLI); 1936 markInstructionForDeletion(L); 1937 ++NumGVNLoad; 1938 return true; 1939 } 1940 1941 // If this load really doesn't depend on anything, then we must be loading an 1942 // undef value. This can happen when loading for a fresh allocation with no 1943 // intervening stores, for example. 1944 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) { 1945 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1946 markInstructionForDeletion(L); 1947 ++NumGVNLoad; 1948 return true; 1949 } 1950 1951 // If this load occurs either right after a lifetime begin, 1952 // then the loaded value is undefined. 1953 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) { 1954 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1955 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1956 markInstructionForDeletion(L); 1957 ++NumGVNLoad; 1958 return true; 1959 } 1960 } 1961 1962 return false; 1963 } 1964 1965 // findLeader - In order to find a leader for a given value number at a 1966 // specific basic block, we first obtain the list of all Values for that number, 1967 // and then scan the list to find one whose block dominates the block in 1968 // question. This is fast because dominator tree queries consist of only 1969 // a few comparisons of DFS numbers. 1970 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1971 LeaderTableEntry Vals = LeaderTable[num]; 1972 if (!Vals.Val) return 0; 1973 1974 Value *Val = 0; 1975 if (DT->dominates(Vals.BB, BB)) { 1976 Val = Vals.Val; 1977 if (isa<Constant>(Val)) return Val; 1978 } 1979 1980 LeaderTableEntry* Next = Vals.Next; 1981 while (Next) { 1982 if (DT->dominates(Next->BB, BB)) { 1983 if (isa<Constant>(Next->Val)) return Next->Val; 1984 if (!Val) Val = Next->Val; 1985 } 1986 1987 Next = Next->Next; 1988 } 1989 1990 return Val; 1991 } 1992 1993 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the 1994 /// use is dominated by the given basic block. Returns the number of uses that 1995 /// were replaced. 1996 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To, 1997 const BasicBlockEdge &Root) { 1998 unsigned Count = 0; 1999 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2000 UI != UE; ) { 2001 Use &U = (UI++).getUse(); 2002 2003 if (DT->dominates(Root, U)) { 2004 U.set(To); 2005 ++Count; 2006 } 2007 } 2008 return Count; 2009 } 2010 2011 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return 2012 /// true if every path from the entry block to 'Dst' passes via this edge. In 2013 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2014 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2015 DominatorTree *DT) { 2016 // While in theory it is interesting to consider the case in which Dst has 2017 // more than one predecessor, because Dst might be part of a loop which is 2018 // only reachable from Src, in practice it is pointless since at the time 2019 // GVN runs all such loops have preheaders, which means that Dst will have 2020 // been changed to have only one predecessor, namely Src. 2021 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2022 const BasicBlock *Src = E.getStart(); 2023 assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); 2024 (void)Src; 2025 return Pred != 0; 2026 } 2027 2028 /// propagateEquality - The given values are known to be equal in every block 2029 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2030 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2031 bool GVN::propagateEquality(Value *LHS, Value *RHS, 2032 const BasicBlockEdge &Root) { 2033 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2034 Worklist.push_back(std::make_pair(LHS, RHS)); 2035 bool Changed = false; 2036 // For speed, compute a conservative fast approximation to 2037 // DT->dominates(Root, Root.getEnd()); 2038 bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2039 2040 while (!Worklist.empty()) { 2041 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2042 LHS = Item.first; RHS = Item.second; 2043 2044 if (LHS == RHS) continue; 2045 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2046 2047 // Don't try to propagate equalities between constants. 2048 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue; 2049 2050 // Prefer a constant on the right-hand side, or an Argument if no constants. 2051 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2052 std::swap(LHS, RHS); 2053 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2054 2055 // If there is no obvious reason to prefer the left-hand side over the right- 2056 // hand side, ensure the longest lived term is on the right-hand side, so the 2057 // shortest lived term will be replaced by the longest lived. This tends to 2058 // expose more simplifications. 2059 uint32_t LVN = VN.lookup_or_add(LHS); 2060 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2061 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2062 // Move the 'oldest' value to the right-hand side, using the value number as 2063 // a proxy for age. 2064 uint32_t RVN = VN.lookup_or_add(RHS); 2065 if (LVN < RVN) { 2066 std::swap(LHS, RHS); 2067 LVN = RVN; 2068 } 2069 } 2070 2071 // If value numbering later sees that an instruction in the scope is equal 2072 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2073 // the invariant that instructions only occur in the leader table for their 2074 // own value number (this is used by removeFromLeaderTable), do not do this 2075 // if RHS is an instruction (if an instruction in the scope is morphed into 2076 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2077 // using the leader table is about compiling faster, not optimizing better). 2078 // The leader table only tracks basic blocks, not edges. Only add to if we 2079 // have the simple case where the edge dominates the end. 2080 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2081 addToLeaderTable(LVN, RHS, Root.getEnd()); 2082 2083 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2084 // LHS always has at least one use that is not dominated by Root, this will 2085 // never do anything if LHS has only one use. 2086 if (!LHS->hasOneUse()) { 2087 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root); 2088 Changed |= NumReplacements > 0; 2089 NumGVNEqProp += NumReplacements; 2090 } 2091 2092 // Now try to deduce additional equalities from this one. For example, if the 2093 // known equality was "(A != B)" == "false" then it follows that A and B are 2094 // equal in the scope. Only boolean equalities with an explicit true or false 2095 // RHS are currently supported. 2096 if (!RHS->getType()->isIntegerTy(1)) 2097 // Not a boolean equality - bail out. 2098 continue; 2099 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2100 if (!CI) 2101 // RHS neither 'true' nor 'false' - bail out. 2102 continue; 2103 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2104 bool isKnownTrue = CI->isAllOnesValue(); 2105 bool isKnownFalse = !isKnownTrue; 2106 2107 // If "A && B" is known true then both A and B are known true. If "A || B" 2108 // is known false then both A and B are known false. 2109 Value *A, *B; 2110 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 2111 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 2112 Worklist.push_back(std::make_pair(A, RHS)); 2113 Worklist.push_back(std::make_pair(B, RHS)); 2114 continue; 2115 } 2116 2117 // If we are propagating an equality like "(A == B)" == "true" then also 2118 // propagate the equality A == B. When propagating a comparison such as 2119 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2120 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) { 2121 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2122 2123 // If "A == B" is known true, or "A != B" is known false, then replace 2124 // A with B everywhere in the scope. 2125 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 2126 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 2127 Worklist.push_back(std::make_pair(Op0, Op1)); 2128 2129 // If "A >= B" is known true, replace "A < B" with false everywhere. 2130 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2131 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2132 // Since we don't have the instruction "A < B" immediately to hand, work out 2133 // the value number that it would have and use that to find an appropriate 2134 // instruction (if any). 2135 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2136 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2137 // If the number we were assigned was brand new then there is no point in 2138 // looking for an instruction realizing it: there cannot be one! 2139 if (Num < NextNum) { 2140 Value *NotCmp = findLeader(Root.getEnd(), Num); 2141 if (NotCmp && isa<Instruction>(NotCmp)) { 2142 unsigned NumReplacements = 2143 replaceAllDominatedUsesWith(NotCmp, NotVal, Root); 2144 Changed |= NumReplacements > 0; 2145 NumGVNEqProp += NumReplacements; 2146 } 2147 } 2148 // Ensure that any instruction in scope that gets the "A < B" value number 2149 // is replaced with false. 2150 // The leader table only tracks basic blocks, not edges. Only add to if we 2151 // have the simple case where the edge dominates the end. 2152 if (RootDominatesEnd) 2153 addToLeaderTable(Num, NotVal, Root.getEnd()); 2154 2155 continue; 2156 } 2157 } 2158 2159 return Changed; 2160 } 2161 2162 /// processInstruction - When calculating availability, handle an instruction 2163 /// by inserting it into the appropriate sets 2164 bool GVN::processInstruction(Instruction *I) { 2165 // Ignore dbg info intrinsics. 2166 if (isa<DbgInfoIntrinsic>(I)) 2167 return false; 2168 2169 // If the instruction can be easily simplified then do so now in preference 2170 // to value numbering it. Value numbering often exposes redundancies, for 2171 // example if it determines that %y is equal to %x then the instruction 2172 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2173 if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) { 2174 I->replaceAllUsesWith(V); 2175 if (MD && V->getType()->getScalarType()->isPointerTy()) 2176 MD->invalidateCachedPointerInfo(V); 2177 markInstructionForDeletion(I); 2178 ++NumGVNSimpl; 2179 return true; 2180 } 2181 2182 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2183 if (processLoad(LI)) 2184 return true; 2185 2186 unsigned Num = VN.lookup_or_add(LI); 2187 addToLeaderTable(Num, LI, LI->getParent()); 2188 return false; 2189 } 2190 2191 // For conditional branches, we can perform simple conditional propagation on 2192 // the condition value itself. 2193 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2194 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 2195 return false; 2196 2197 Value *BranchCond = BI->getCondition(); 2198 2199 BasicBlock *TrueSucc = BI->getSuccessor(0); 2200 BasicBlock *FalseSucc = BI->getSuccessor(1); 2201 // Avoid multiple edges early. 2202 if (TrueSucc == FalseSucc) 2203 return false; 2204 2205 BasicBlock *Parent = BI->getParent(); 2206 bool Changed = false; 2207 2208 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2209 BasicBlockEdge TrueE(Parent, TrueSucc); 2210 Changed |= propagateEquality(BranchCond, TrueVal, TrueE); 2211 2212 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2213 BasicBlockEdge FalseE(Parent, FalseSucc); 2214 Changed |= propagateEquality(BranchCond, FalseVal, FalseE); 2215 2216 return Changed; 2217 } 2218 2219 // For switches, propagate the case values into the case destinations. 2220 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2221 Value *SwitchCond = SI->getCondition(); 2222 BasicBlock *Parent = SI->getParent(); 2223 bool Changed = false; 2224 2225 // Remember how many outgoing edges there are to every successor. 2226 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2227 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2228 ++SwitchEdges[SI->getSuccessor(i)]; 2229 2230 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2231 i != e; ++i) { 2232 BasicBlock *Dst = i.getCaseSuccessor(); 2233 // If there is only a single edge, propagate the case value into it. 2234 if (SwitchEdges.lookup(Dst) == 1) { 2235 BasicBlockEdge E(Parent, Dst); 2236 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E); 2237 } 2238 } 2239 return Changed; 2240 } 2241 2242 // Instructions with void type don't return a value, so there's 2243 // no point in trying to find redundancies in them. 2244 if (I->getType()->isVoidTy()) return false; 2245 2246 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2247 unsigned Num = VN.lookup_or_add(I); 2248 2249 // Allocations are always uniquely numbered, so we can save time and memory 2250 // by fast failing them. 2251 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) { 2252 addToLeaderTable(Num, I, I->getParent()); 2253 return false; 2254 } 2255 2256 // If the number we were assigned was a brand new VN, then we don't 2257 // need to do a lookup to see if the number already exists 2258 // somewhere in the domtree: it can't! 2259 if (Num >= NextNum) { 2260 addToLeaderTable(Num, I, I->getParent()); 2261 return false; 2262 } 2263 2264 // Perform fast-path value-number based elimination of values inherited from 2265 // dominators. 2266 Value *repl = findLeader(I->getParent(), Num); 2267 if (repl == 0) { 2268 // Failure, just remember this instance for future use. 2269 addToLeaderTable(Num, I, I->getParent()); 2270 return false; 2271 } 2272 2273 // Remove it! 2274 patchAndReplaceAllUsesWith(I, repl); 2275 if (MD && repl->getType()->getScalarType()->isPointerTy()) 2276 MD->invalidateCachedPointerInfo(repl); 2277 markInstructionForDeletion(I); 2278 return true; 2279 } 2280 2281 /// runOnFunction - This is the main transformation entry point for a function. 2282 bool GVN::runOnFunction(Function& F) { 2283 if (!NoLoads) 2284 MD = &getAnalysis<MemoryDependenceAnalysis>(); 2285 DT = &getAnalysis<DominatorTree>(); 2286 TD = getAnalysisIfAvailable<DataLayout>(); 2287 TLI = &getAnalysis<TargetLibraryInfo>(); 2288 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>()); 2289 VN.setMemDep(MD); 2290 VN.setDomTree(DT); 2291 2292 bool Changed = false; 2293 bool ShouldContinue = true; 2294 2295 // Merge unconditional branches, allowing PRE to catch more 2296 // optimization opportunities. 2297 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2298 BasicBlock *BB = FI++; 2299 2300 bool removedBlock = MergeBlockIntoPredecessor(BB, this); 2301 if (removedBlock) ++NumGVNBlocks; 2302 2303 Changed |= removedBlock; 2304 } 2305 2306 unsigned Iteration = 0; 2307 while (ShouldContinue) { 2308 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2309 ShouldContinue = iterateOnFunction(F); 2310 Changed |= ShouldContinue; 2311 ++Iteration; 2312 } 2313 2314 if (EnablePRE) { 2315 bool PREChanged = true; 2316 while (PREChanged) { 2317 PREChanged = performPRE(F); 2318 Changed |= PREChanged; 2319 } 2320 } 2321 2322 // FIXME: Should perform GVN again after PRE does something. PRE can move 2323 // computations into blocks where they become fully redundant. Note that 2324 // we can't do this until PRE's critical edge splitting updates memdep. 2325 // Actually, when this happens, we should just fully integrate PRE into GVN. 2326 2327 cleanupGlobalSets(); 2328 2329 return Changed; 2330 } 2331 2332 2333 bool GVN::processBlock(BasicBlock *BB) { 2334 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2335 // (and incrementing BI before processing an instruction). 2336 assert(InstrsToErase.empty() && 2337 "We expect InstrsToErase to be empty across iterations"); 2338 bool ChangedFunction = false; 2339 2340 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2341 BI != BE;) { 2342 ChangedFunction |= processInstruction(BI); 2343 if (InstrsToErase.empty()) { 2344 ++BI; 2345 continue; 2346 } 2347 2348 // If we need some instructions deleted, do it now. 2349 NumGVNInstr += InstrsToErase.size(); 2350 2351 // Avoid iterator invalidation. 2352 bool AtStart = BI == BB->begin(); 2353 if (!AtStart) 2354 --BI; 2355 2356 for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(), 2357 E = InstrsToErase.end(); I != E; ++I) { 2358 DEBUG(dbgs() << "GVN removed: " << **I << '\n'); 2359 if (MD) MD->removeInstruction(*I); 2360 DEBUG(verifyRemoved(*I)); 2361 (*I)->eraseFromParent(); 2362 } 2363 InstrsToErase.clear(); 2364 2365 if (AtStart) 2366 BI = BB->begin(); 2367 else 2368 ++BI; 2369 } 2370 2371 return ChangedFunction; 2372 } 2373 2374 /// performPRE - Perform a purely local form of PRE that looks for diamond 2375 /// control flow patterns and attempts to perform simple PRE at the join point. 2376 bool GVN::performPRE(Function &F) { 2377 bool Changed = false; 2378 SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap; 2379 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), 2380 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { 2381 BasicBlock *CurrentBlock = *DI; 2382 2383 // Nothing to PRE in the entry block. 2384 if (CurrentBlock == &F.getEntryBlock()) continue; 2385 2386 // Don't perform PRE on a landing pad. 2387 if (CurrentBlock->isLandingPad()) continue; 2388 2389 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2390 BE = CurrentBlock->end(); BI != BE; ) { 2391 Instruction *CurInst = BI++; 2392 2393 if (isa<AllocaInst>(CurInst) || 2394 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) || 2395 CurInst->getType()->isVoidTy() || 2396 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2397 isa<DbgInfoIntrinsic>(CurInst)) 2398 continue; 2399 2400 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2401 // sinking the compare again, and it would force the code generator to 2402 // move the i1 from processor flags or predicate registers into a general 2403 // purpose register. 2404 if (isa<CmpInst>(CurInst)) 2405 continue; 2406 2407 // We don't currently value number ANY inline asm calls. 2408 if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) 2409 if (CallI->isInlineAsm()) 2410 continue; 2411 2412 uint32_t ValNo = VN.lookup(CurInst); 2413 2414 // Look for the predecessors for PRE opportunities. We're 2415 // only trying to solve the basic diamond case, where 2416 // a value is computed in the successor and one predecessor, 2417 // but not the other. We also explicitly disallow cases 2418 // where the successor is its own predecessor, because they're 2419 // more complicated to get right. 2420 unsigned NumWith = 0; 2421 unsigned NumWithout = 0; 2422 BasicBlock *PREPred = 0; 2423 predMap.clear(); 2424 2425 for (pred_iterator PI = pred_begin(CurrentBlock), 2426 PE = pred_end(CurrentBlock); PI != PE; ++PI) { 2427 BasicBlock *P = *PI; 2428 // We're not interested in PRE where the block is its 2429 // own predecessor, or in blocks with predecessors 2430 // that are not reachable. 2431 if (P == CurrentBlock) { 2432 NumWithout = 2; 2433 break; 2434 } else if (!DT->isReachableFromEntry(P)) { 2435 NumWithout = 2; 2436 break; 2437 } 2438 2439 Value* predV = findLeader(P, ValNo); 2440 if (predV == 0) { 2441 predMap.push_back(std::make_pair(static_cast<Value *>(0), P)); 2442 PREPred = P; 2443 ++NumWithout; 2444 } else if (predV == CurInst) { 2445 /* CurInst dominates this predecessor. */ 2446 NumWithout = 2; 2447 break; 2448 } else { 2449 predMap.push_back(std::make_pair(predV, P)); 2450 ++NumWith; 2451 } 2452 } 2453 2454 // Don't do PRE when it might increase code size, i.e. when 2455 // we would need to insert instructions in more than one pred. 2456 if (NumWithout != 1 || NumWith == 0) 2457 continue; 2458 2459 // Don't do PRE across indirect branch. 2460 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2461 continue; 2462 2463 // We can't do PRE safely on a critical edge, so instead we schedule 2464 // the edge to be split and perform the PRE the next time we iterate 2465 // on the function. 2466 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2467 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2468 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2469 continue; 2470 } 2471 2472 // Instantiate the expression in the predecessor that lacked it. 2473 // Because we are going top-down through the block, all value numbers 2474 // will be available in the predecessor by the time we need them. Any 2475 // that weren't originally present will have been instantiated earlier 2476 // in this loop. 2477 Instruction *PREInstr = CurInst->clone(); 2478 bool success = true; 2479 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { 2480 Value *Op = PREInstr->getOperand(i); 2481 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2482 continue; 2483 2484 if (Value *V = findLeader(PREPred, VN.lookup(Op))) { 2485 PREInstr->setOperand(i, V); 2486 } else { 2487 success = false; 2488 break; 2489 } 2490 } 2491 2492 // Fail out if we encounter an operand that is not available in 2493 // the PRE predecessor. This is typically because of loads which 2494 // are not value numbered precisely. 2495 if (!success) { 2496 DEBUG(verifyRemoved(PREInstr)); 2497 delete PREInstr; 2498 continue; 2499 } 2500 2501 PREInstr->insertBefore(PREPred->getTerminator()); 2502 PREInstr->setName(CurInst->getName() + ".pre"); 2503 PREInstr->setDebugLoc(CurInst->getDebugLoc()); 2504 VN.add(PREInstr, ValNo); 2505 ++NumGVNPRE; 2506 2507 // Update the availability map to include the new instruction. 2508 addToLeaderTable(ValNo, PREInstr, PREPred); 2509 2510 // Create a PHI to make the value available in this block. 2511 PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(), 2512 CurInst->getName() + ".pre-phi", 2513 CurrentBlock->begin()); 2514 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2515 if (Value *V = predMap[i].first) 2516 Phi->addIncoming(V, predMap[i].second); 2517 else 2518 Phi->addIncoming(PREInstr, PREPred); 2519 } 2520 2521 VN.add(Phi, ValNo); 2522 addToLeaderTable(ValNo, Phi, CurrentBlock); 2523 Phi->setDebugLoc(CurInst->getDebugLoc()); 2524 CurInst->replaceAllUsesWith(Phi); 2525 if (Phi->getType()->getScalarType()->isPointerTy()) { 2526 // Because we have added a PHI-use of the pointer value, it has now 2527 // "escaped" from alias analysis' perspective. We need to inform 2528 // AA of this. 2529 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; 2530 ++ii) { 2531 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 2532 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj)); 2533 } 2534 2535 if (MD) 2536 MD->invalidateCachedPointerInfo(Phi); 2537 } 2538 VN.erase(CurInst); 2539 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2540 2541 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2542 if (MD) MD->removeInstruction(CurInst); 2543 DEBUG(verifyRemoved(CurInst)); 2544 CurInst->eraseFromParent(); 2545 Changed = true; 2546 } 2547 } 2548 2549 if (splitCriticalEdges()) 2550 Changed = true; 2551 2552 return Changed; 2553 } 2554 2555 /// Split the critical edge connecting the given two blocks, and return 2556 /// the block inserted to the critical edge. 2557 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2558 BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this); 2559 if (MD) 2560 MD->invalidateCachedPredecessors(); 2561 return BB; 2562 } 2563 2564 /// splitCriticalEdges - Split critical edges found during the previous 2565 /// iteration that may enable further optimization. 2566 bool GVN::splitCriticalEdges() { 2567 if (toSplit.empty()) 2568 return false; 2569 do { 2570 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val(); 2571 SplitCriticalEdge(Edge.first, Edge.second, this); 2572 } while (!toSplit.empty()); 2573 if (MD) MD->invalidateCachedPredecessors(); 2574 return true; 2575 } 2576 2577 /// iterateOnFunction - Executes one iteration of GVN 2578 bool GVN::iterateOnFunction(Function &F) { 2579 cleanupGlobalSets(); 2580 2581 // Top-down walk of the dominator tree 2582 bool Changed = false; 2583 #if 0 2584 // Needed for value numbering with phi construction to work. 2585 ReversePostOrderTraversal<Function*> RPOT(&F); 2586 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(), 2587 RE = RPOT.end(); RI != RE; ++RI) 2588 Changed |= processBlock(*RI); 2589 #else 2590 // Save the blocks this function have before transformation begins. GVN may 2591 // split critical edge, and hence may invalidate the RPO/DT iterator. 2592 // 2593 std::vector<BasicBlock *> BBVect; 2594 BBVect.reserve(256); 2595 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()), 2596 DE = df_end(DT->getRootNode()); DI != DE; ++DI) 2597 BBVect.push_back(DI->getBlock()); 2598 2599 for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end(); 2600 I != E; I++) 2601 Changed |= processBlock(*I); 2602 #endif 2603 2604 return Changed; 2605 } 2606 2607 void GVN::cleanupGlobalSets() { 2608 VN.clear(); 2609 LeaderTable.clear(); 2610 TableAllocator.Reset(); 2611 } 2612 2613 /// verifyRemoved - Verify that the specified instruction does not occur in our 2614 /// internal data structures. 2615 void GVN::verifyRemoved(const Instruction *Inst) const { 2616 VN.verifyRemoved(Inst); 2617 2618 // Walk through the value number scope to make sure the instruction isn't 2619 // ferreted away in it. 2620 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2621 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2622 const LeaderTableEntry *Node = &I->second; 2623 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2624 2625 while (Node->Next) { 2626 Node = Node->Next; 2627 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2628 } 2629 } 2630 } 2631