Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "gvn"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/Hashing.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Analysis/CFG.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/Dominators.h"
     29 #include "llvm/Analysis/InstructionSimplify.h"
     30 #include "llvm/Analysis/Loads.h"
     31 #include "llvm/Analysis/MemoryBuiltins.h"
     32 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     33 #include "llvm/Analysis/PHITransAddr.h"
     34 #include "llvm/Analysis/ValueTracking.h"
     35 #include "llvm/Assembly/Writer.h"
     36 #include "llvm/IR/DataLayout.h"
     37 #include "llvm/IR/GlobalVariable.h"
     38 #include "llvm/IR/IRBuilder.h"
     39 #include "llvm/IR/IntrinsicInst.h"
     40 #include "llvm/IR/LLVMContext.h"
     41 #include "llvm/IR/Metadata.h"
     42 #include "llvm/Support/Allocator.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/PatternMatch.h"
     46 #include "llvm/Target/TargetLibraryInfo.h"
     47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     48 #include "llvm/Transforms/Utils/SSAUpdater.h"
     49 #include <vector>
     50 using namespace llvm;
     51 using namespace PatternMatch;
     52 
     53 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     54 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     55 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     56 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     57 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     58 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     59 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     60 
     61 static cl::opt<bool> EnablePRE("enable-pre",
     62                                cl::init(true), cl::Hidden);
     63 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     64 
     65 // Maximum allowed recursion depth.
     66 static cl::opt<uint32_t>
     67 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
     68                 cl::desc("Max recurse depth (default = 1000)"));
     69 
     70 //===----------------------------------------------------------------------===//
     71 //                         ValueTable Class
     72 //===----------------------------------------------------------------------===//
     73 
     74 /// This class holds the mapping between values and value numbers.  It is used
     75 /// as an efficient mechanism to determine the expression-wise equivalence of
     76 /// two values.
     77 namespace {
     78   struct Expression {
     79     uint32_t opcode;
     80     Type *type;
     81     SmallVector<uint32_t, 4> varargs;
     82 
     83     Expression(uint32_t o = ~2U) : opcode(o) { }
     84 
     85     bool operator==(const Expression &other) const {
     86       if (opcode != other.opcode)
     87         return false;
     88       if (opcode == ~0U || opcode == ~1U)
     89         return true;
     90       if (type != other.type)
     91         return false;
     92       if (varargs != other.varargs)
     93         return false;
     94       return true;
     95     }
     96 
     97     friend hash_code hash_value(const Expression &Value) {
     98       return hash_combine(Value.opcode, Value.type,
     99                           hash_combine_range(Value.varargs.begin(),
    100                                              Value.varargs.end()));
    101     }
    102   };
    103 
    104   class ValueTable {
    105     DenseMap<Value*, uint32_t> valueNumbering;
    106     DenseMap<Expression, uint32_t> expressionNumbering;
    107     AliasAnalysis *AA;
    108     MemoryDependenceAnalysis *MD;
    109     DominatorTree *DT;
    110 
    111     uint32_t nextValueNumber;
    112 
    113     Expression create_expression(Instruction* I);
    114     Expression create_cmp_expression(unsigned Opcode,
    115                                      CmpInst::Predicate Predicate,
    116                                      Value *LHS, Value *RHS);
    117     Expression create_extractvalue_expression(ExtractValueInst* EI);
    118     uint32_t lookup_or_add_call(CallInst* C);
    119   public:
    120     ValueTable() : nextValueNumber(1) { }
    121     uint32_t lookup_or_add(Value *V);
    122     uint32_t lookup(Value *V) const;
    123     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
    124                                Value *LHS, Value *RHS);
    125     void add(Value *V, uint32_t num);
    126     void clear();
    127     void erase(Value *v);
    128     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    129     AliasAnalysis *getAliasAnalysis() const { return AA; }
    130     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    131     void setDomTree(DominatorTree* D) { DT = D; }
    132     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    133     void verifyRemoved(const Value *) const;
    134   };
    135 }
    136 
    137 namespace llvm {
    138 template <> struct DenseMapInfo<Expression> {
    139   static inline Expression getEmptyKey() {
    140     return ~0U;
    141   }
    142 
    143   static inline Expression getTombstoneKey() {
    144     return ~1U;
    145   }
    146 
    147   static unsigned getHashValue(const Expression e) {
    148     using llvm::hash_value;
    149     return static_cast<unsigned>(hash_value(e));
    150   }
    151   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    152     return LHS == RHS;
    153   }
    154 };
    155 
    156 }
    157 
    158 //===----------------------------------------------------------------------===//
    159 //                     ValueTable Internal Functions
    160 //===----------------------------------------------------------------------===//
    161 
    162 Expression ValueTable::create_expression(Instruction *I) {
    163   Expression e;
    164   e.type = I->getType();
    165   e.opcode = I->getOpcode();
    166   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    167        OI != OE; ++OI)
    168     e.varargs.push_back(lookup_or_add(*OI));
    169   if (I->isCommutative()) {
    170     // Ensure that commutative instructions that only differ by a permutation
    171     // of their operands get the same value number by sorting the operand value
    172     // numbers.  Since all commutative instructions have two operands it is more
    173     // efficient to sort by hand rather than using, say, std::sort.
    174     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    175     if (e.varargs[0] > e.varargs[1])
    176       std::swap(e.varargs[0], e.varargs[1]);
    177   }
    178 
    179   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    180     // Sort the operand value numbers so x<y and y>x get the same value number.
    181     CmpInst::Predicate Predicate = C->getPredicate();
    182     if (e.varargs[0] > e.varargs[1]) {
    183       std::swap(e.varargs[0], e.varargs[1]);
    184       Predicate = CmpInst::getSwappedPredicate(Predicate);
    185     }
    186     e.opcode = (C->getOpcode() << 8) | Predicate;
    187   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    188     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    189          II != IE; ++II)
    190       e.varargs.push_back(*II);
    191   }
    192 
    193   return e;
    194 }
    195 
    196 Expression ValueTable::create_cmp_expression(unsigned Opcode,
    197                                              CmpInst::Predicate Predicate,
    198                                              Value *LHS, Value *RHS) {
    199   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    200          "Not a comparison!");
    201   Expression e;
    202   e.type = CmpInst::makeCmpResultType(LHS->getType());
    203   e.varargs.push_back(lookup_or_add(LHS));
    204   e.varargs.push_back(lookup_or_add(RHS));
    205 
    206   // Sort the operand value numbers so x<y and y>x get the same value number.
    207   if (e.varargs[0] > e.varargs[1]) {
    208     std::swap(e.varargs[0], e.varargs[1]);
    209     Predicate = CmpInst::getSwappedPredicate(Predicate);
    210   }
    211   e.opcode = (Opcode << 8) | Predicate;
    212   return e;
    213 }
    214 
    215 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    216   assert(EI != 0 && "Not an ExtractValueInst?");
    217   Expression e;
    218   e.type = EI->getType();
    219   e.opcode = 0;
    220 
    221   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    222   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    223     // EI might be an extract from one of our recognised intrinsics. If it
    224     // is we'll synthesize a semantically equivalent expression instead on
    225     // an extract value expression.
    226     switch (I->getIntrinsicID()) {
    227       case Intrinsic::sadd_with_overflow:
    228       case Intrinsic::uadd_with_overflow:
    229         e.opcode = Instruction::Add;
    230         break;
    231       case Intrinsic::ssub_with_overflow:
    232       case Intrinsic::usub_with_overflow:
    233         e.opcode = Instruction::Sub;
    234         break;
    235       case Intrinsic::smul_with_overflow:
    236       case Intrinsic::umul_with_overflow:
    237         e.opcode = Instruction::Mul;
    238         break;
    239       default:
    240         break;
    241     }
    242 
    243     if (e.opcode != 0) {
    244       // Intrinsic recognized. Grab its args to finish building the expression.
    245       assert(I->getNumArgOperands() == 2 &&
    246              "Expect two args for recognised intrinsics.");
    247       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    248       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    249       return e;
    250     }
    251   }
    252 
    253   // Not a recognised intrinsic. Fall back to producing an extract value
    254   // expression.
    255   e.opcode = EI->getOpcode();
    256   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    257        OI != OE; ++OI)
    258     e.varargs.push_back(lookup_or_add(*OI));
    259 
    260   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    261          II != IE; ++II)
    262     e.varargs.push_back(*II);
    263 
    264   return e;
    265 }
    266 
    267 //===----------------------------------------------------------------------===//
    268 //                     ValueTable External Functions
    269 //===----------------------------------------------------------------------===//
    270 
    271 /// add - Insert a value into the table with a specified value number.
    272 void ValueTable::add(Value *V, uint32_t num) {
    273   valueNumbering.insert(std::make_pair(V, num));
    274 }
    275 
    276 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
    277   if (AA->doesNotAccessMemory(C)) {
    278     Expression exp = create_expression(C);
    279     uint32_t &e = expressionNumbering[exp];
    280     if (!e) e = nextValueNumber++;
    281     valueNumbering[C] = e;
    282     return e;
    283   } else if (AA->onlyReadsMemory(C)) {
    284     Expression exp = create_expression(C);
    285     uint32_t &e = expressionNumbering[exp];
    286     if (!e) {
    287       e = nextValueNumber++;
    288       valueNumbering[C] = e;
    289       return e;
    290     }
    291     if (!MD) {
    292       e = nextValueNumber++;
    293       valueNumbering[C] = e;
    294       return e;
    295     }
    296 
    297     MemDepResult local_dep = MD->getDependency(C);
    298 
    299     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    300       valueNumbering[C] =  nextValueNumber;
    301       return nextValueNumber++;
    302     }
    303 
    304     if (local_dep.isDef()) {
    305       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    306 
    307       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    308         valueNumbering[C] = nextValueNumber;
    309         return nextValueNumber++;
    310       }
    311 
    312       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    313         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    314         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    315         if (c_vn != cd_vn) {
    316           valueNumbering[C] = nextValueNumber;
    317           return nextValueNumber++;
    318         }
    319       }
    320 
    321       uint32_t v = lookup_or_add(local_cdep);
    322       valueNumbering[C] = v;
    323       return v;
    324     }
    325 
    326     // Non-local case.
    327     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    328       MD->getNonLocalCallDependency(CallSite(C));
    329     // FIXME: Move the checking logic to MemDep!
    330     CallInst* cdep = 0;
    331 
    332     // Check to see if we have a single dominating call instruction that is
    333     // identical to C.
    334     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    335       const NonLocalDepEntry *I = &deps[i];
    336       if (I->getResult().isNonLocal())
    337         continue;
    338 
    339       // We don't handle non-definitions.  If we already have a call, reject
    340       // instruction dependencies.
    341       if (!I->getResult().isDef() || cdep != 0) {
    342         cdep = 0;
    343         break;
    344       }
    345 
    346       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    347       // FIXME: All duplicated with non-local case.
    348       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    349         cdep = NonLocalDepCall;
    350         continue;
    351       }
    352 
    353       cdep = 0;
    354       break;
    355     }
    356 
    357     if (!cdep) {
    358       valueNumbering[C] = nextValueNumber;
    359       return nextValueNumber++;
    360     }
    361 
    362     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    363       valueNumbering[C] = nextValueNumber;
    364       return nextValueNumber++;
    365     }
    366     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    367       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    368       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    369       if (c_vn != cd_vn) {
    370         valueNumbering[C] = nextValueNumber;
    371         return nextValueNumber++;
    372       }
    373     }
    374 
    375     uint32_t v = lookup_or_add(cdep);
    376     valueNumbering[C] = v;
    377     return v;
    378 
    379   } else {
    380     valueNumbering[C] = nextValueNumber;
    381     return nextValueNumber++;
    382   }
    383 }
    384 
    385 /// lookup_or_add - Returns the value number for the specified value, assigning
    386 /// it a new number if it did not have one before.
    387 uint32_t ValueTable::lookup_or_add(Value *V) {
    388   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    389   if (VI != valueNumbering.end())
    390     return VI->second;
    391 
    392   if (!isa<Instruction>(V)) {
    393     valueNumbering[V] = nextValueNumber;
    394     return nextValueNumber++;
    395   }
    396 
    397   Instruction* I = cast<Instruction>(V);
    398   Expression exp;
    399   switch (I->getOpcode()) {
    400     case Instruction::Call:
    401       return lookup_or_add_call(cast<CallInst>(I));
    402     case Instruction::Add:
    403     case Instruction::FAdd:
    404     case Instruction::Sub:
    405     case Instruction::FSub:
    406     case Instruction::Mul:
    407     case Instruction::FMul:
    408     case Instruction::UDiv:
    409     case Instruction::SDiv:
    410     case Instruction::FDiv:
    411     case Instruction::URem:
    412     case Instruction::SRem:
    413     case Instruction::FRem:
    414     case Instruction::Shl:
    415     case Instruction::LShr:
    416     case Instruction::AShr:
    417     case Instruction::And:
    418     case Instruction::Or:
    419     case Instruction::Xor:
    420     case Instruction::ICmp:
    421     case Instruction::FCmp:
    422     case Instruction::Trunc:
    423     case Instruction::ZExt:
    424     case Instruction::SExt:
    425     case Instruction::FPToUI:
    426     case Instruction::FPToSI:
    427     case Instruction::UIToFP:
    428     case Instruction::SIToFP:
    429     case Instruction::FPTrunc:
    430     case Instruction::FPExt:
    431     case Instruction::PtrToInt:
    432     case Instruction::IntToPtr:
    433     case Instruction::BitCast:
    434     case Instruction::Select:
    435     case Instruction::ExtractElement:
    436     case Instruction::InsertElement:
    437     case Instruction::ShuffleVector:
    438     case Instruction::InsertValue:
    439     case Instruction::GetElementPtr:
    440       exp = create_expression(I);
    441       break;
    442     case Instruction::ExtractValue:
    443       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    444       break;
    445     default:
    446       valueNumbering[V] = nextValueNumber;
    447       return nextValueNumber++;
    448   }
    449 
    450   uint32_t& e = expressionNumbering[exp];
    451   if (!e) e = nextValueNumber++;
    452   valueNumbering[V] = e;
    453   return e;
    454 }
    455 
    456 /// lookup - Returns the value number of the specified value. Fails if
    457 /// the value has not yet been numbered.
    458 uint32_t ValueTable::lookup(Value *V) const {
    459   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    460   assert(VI != valueNumbering.end() && "Value not numbered?");
    461   return VI->second;
    462 }
    463 
    464 /// lookup_or_add_cmp - Returns the value number of the given comparison,
    465 /// assigning it a new number if it did not have one before.  Useful when
    466 /// we deduced the result of a comparison, but don't immediately have an
    467 /// instruction realizing that comparison to hand.
    468 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
    469                                        CmpInst::Predicate Predicate,
    470                                        Value *LHS, Value *RHS) {
    471   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
    472   uint32_t& e = expressionNumbering[exp];
    473   if (!e) e = nextValueNumber++;
    474   return e;
    475 }
    476 
    477 /// clear - Remove all entries from the ValueTable.
    478 void ValueTable::clear() {
    479   valueNumbering.clear();
    480   expressionNumbering.clear();
    481   nextValueNumber = 1;
    482 }
    483 
    484 /// erase - Remove a value from the value numbering.
    485 void ValueTable::erase(Value *V) {
    486   valueNumbering.erase(V);
    487 }
    488 
    489 /// verifyRemoved - Verify that the value is removed from all internal data
    490 /// structures.
    491 void ValueTable::verifyRemoved(const Value *V) const {
    492   for (DenseMap<Value*, uint32_t>::const_iterator
    493          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    494     assert(I->first != V && "Inst still occurs in value numbering map!");
    495   }
    496 }
    497 
    498 //===----------------------------------------------------------------------===//
    499 //                                GVN Pass
    500 //===----------------------------------------------------------------------===//
    501 
    502 namespace {
    503   class GVN;
    504   struct AvailableValueInBlock {
    505     /// BB - The basic block in question.
    506     BasicBlock *BB;
    507     enum ValType {
    508       SimpleVal,  // A simple offsetted value that is accessed.
    509       LoadVal,    // A value produced by a load.
    510       MemIntrin   // A memory intrinsic which is loaded from.
    511     };
    512 
    513     /// V - The value that is live out of the block.
    514     PointerIntPair<Value *, 2, ValType> Val;
    515 
    516     /// Offset - The byte offset in Val that is interesting for the load query.
    517     unsigned Offset;
    518 
    519     static AvailableValueInBlock get(BasicBlock *BB, Value *V,
    520                                      unsigned Offset = 0) {
    521       AvailableValueInBlock Res;
    522       Res.BB = BB;
    523       Res.Val.setPointer(V);
    524       Res.Val.setInt(SimpleVal);
    525       Res.Offset = Offset;
    526       return Res;
    527     }
    528 
    529     static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
    530                                        unsigned Offset = 0) {
    531       AvailableValueInBlock Res;
    532       Res.BB = BB;
    533       Res.Val.setPointer(MI);
    534       Res.Val.setInt(MemIntrin);
    535       Res.Offset = Offset;
    536       return Res;
    537     }
    538 
    539     static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
    540                                          unsigned Offset = 0) {
    541       AvailableValueInBlock Res;
    542       Res.BB = BB;
    543       Res.Val.setPointer(LI);
    544       Res.Val.setInt(LoadVal);
    545       Res.Offset = Offset;
    546       return Res;
    547     }
    548 
    549     bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
    550     bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
    551     bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
    552 
    553     Value *getSimpleValue() const {
    554       assert(isSimpleValue() && "Wrong accessor");
    555       return Val.getPointer();
    556     }
    557 
    558     LoadInst *getCoercedLoadValue() const {
    559       assert(isCoercedLoadValue() && "Wrong accessor");
    560       return cast<LoadInst>(Val.getPointer());
    561     }
    562 
    563     MemIntrinsic *getMemIntrinValue() const {
    564       assert(isMemIntrinValue() && "Wrong accessor");
    565       return cast<MemIntrinsic>(Val.getPointer());
    566     }
    567 
    568     /// MaterializeAdjustedValue - Emit code into this block to adjust the value
    569     /// defined here to the specified type.  This handles various coercion cases.
    570     Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
    571   };
    572 
    573   class GVN : public FunctionPass {
    574     bool NoLoads;
    575     MemoryDependenceAnalysis *MD;
    576     DominatorTree *DT;
    577     const DataLayout *TD;
    578     const TargetLibraryInfo *TLI;
    579 
    580     ValueTable VN;
    581 
    582     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
    583     /// have that value number.  Use findLeader to query it.
    584     struct LeaderTableEntry {
    585       Value *Val;
    586       const BasicBlock *BB;
    587       LeaderTableEntry *Next;
    588     };
    589     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    590     BumpPtrAllocator TableAllocator;
    591 
    592     SmallVector<Instruction*, 8> InstrsToErase;
    593 
    594     typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
    595     typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
    596     typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
    597 
    598   public:
    599     static char ID; // Pass identification, replacement for typeid
    600     explicit GVN(bool noloads = false)
    601         : FunctionPass(ID), NoLoads(noloads), MD(0) {
    602       initializeGVNPass(*PassRegistry::getPassRegistry());
    603     }
    604 
    605     bool runOnFunction(Function &F);
    606 
    607     /// markInstructionForDeletion - This removes the specified instruction from
    608     /// our various maps and marks it for deletion.
    609     void markInstructionForDeletion(Instruction *I) {
    610       VN.erase(I);
    611       InstrsToErase.push_back(I);
    612     }
    613 
    614     const DataLayout *getDataLayout() const { return TD; }
    615     DominatorTree &getDominatorTree() const { return *DT; }
    616     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    617     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    618   private:
    619     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
    620     /// its value number.
    621     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
    622       LeaderTableEntry &Curr = LeaderTable[N];
    623       if (!Curr.Val) {
    624         Curr.Val = V;
    625         Curr.BB = BB;
    626         return;
    627       }
    628 
    629       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    630       Node->Val = V;
    631       Node->BB = BB;
    632       Node->Next = Curr.Next;
    633       Curr.Next = Node;
    634     }
    635 
    636     /// removeFromLeaderTable - Scan the list of values corresponding to a given
    637     /// value number, and remove the given instruction if encountered.
    638     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
    639       LeaderTableEntry* Prev = 0;
    640       LeaderTableEntry* Curr = &LeaderTable[N];
    641 
    642       while (Curr->Val != I || Curr->BB != BB) {
    643         Prev = Curr;
    644         Curr = Curr->Next;
    645       }
    646 
    647       if (Prev) {
    648         Prev->Next = Curr->Next;
    649       } else {
    650         if (!Curr->Next) {
    651           Curr->Val = 0;
    652           Curr->BB = 0;
    653         } else {
    654           LeaderTableEntry* Next = Curr->Next;
    655           Curr->Val = Next->Val;
    656           Curr->BB = Next->BB;
    657           Curr->Next = Next->Next;
    658         }
    659       }
    660     }
    661 
    662     // List of critical edges to be split between iterations.
    663     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    664 
    665     // This transformation requires dominator postdominator info
    666     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    667       AU.addRequired<DominatorTree>();
    668       AU.addRequired<TargetLibraryInfo>();
    669       if (!NoLoads)
    670         AU.addRequired<MemoryDependenceAnalysis>();
    671       AU.addRequired<AliasAnalysis>();
    672 
    673       AU.addPreserved<DominatorTree>();
    674       AU.addPreserved<AliasAnalysis>();
    675     }
    676 
    677 
    678     // Helper fuctions of redundant load elimination
    679     bool processLoad(LoadInst *L);
    680     bool processNonLocalLoad(LoadInst *L);
    681     void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
    682                                  AvailValInBlkVect &ValuesPerBlock,
    683                                  UnavailBlkVect &UnavailableBlocks);
    684     bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
    685                         UnavailBlkVect &UnavailableBlocks);
    686 
    687     // Other helper routines
    688     bool processInstruction(Instruction *I);
    689     bool processBlock(BasicBlock *BB);
    690     void dump(DenseMap<uint32_t, Value*> &d);
    691     bool iterateOnFunction(Function &F);
    692     bool performPRE(Function &F);
    693     Value *findLeader(const BasicBlock *BB, uint32_t num);
    694     void cleanupGlobalSets();
    695     void verifyRemoved(const Instruction *I) const;
    696     bool splitCriticalEdges();
    697     BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
    698     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
    699                                          const BasicBlockEdge &Root);
    700     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
    701   };
    702 
    703   char GVN::ID = 0;
    704 }
    705 
    706 // createGVNPass - The public interface to this file...
    707 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    708   return new GVN(NoLoads);
    709 }
    710 
    711 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    712 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    713 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    714 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    715 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    716 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    717 
    718 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    719 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    720   errs() << "{\n";
    721   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    722        E = d.end(); I != E; ++I) {
    723       errs() << I->first << "\n";
    724       I->second->dump();
    725   }
    726   errs() << "}\n";
    727 }
    728 #endif
    729 
    730 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
    731 /// we're analyzing is fully available in the specified block.  As we go, keep
    732 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    733 /// map is actually a tri-state map with the following values:
    734 ///   0) we know the block *is not* fully available.
    735 ///   1) we know the block *is* fully available.
    736 ///   2) we do not know whether the block is fully available or not, but we are
    737 ///      currently speculating that it will be.
    738 ///   3) we are speculating for this block and have used that to speculate for
    739 ///      other blocks.
    740 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    741                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
    742                             uint32_t RecurseDepth) {
    743   if (RecurseDepth > MaxRecurseDepth)
    744     return false;
    745 
    746   // Optimistically assume that the block is fully available and check to see
    747   // if we already know about this block in one lookup.
    748   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    749     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    750 
    751   // If the entry already existed for this block, return the precomputed value.
    752   if (!IV.second) {
    753     // If this is a speculative "available" value, mark it as being used for
    754     // speculation of other blocks.
    755     if (IV.first->second == 2)
    756       IV.first->second = 3;
    757     return IV.first->second != 0;
    758   }
    759 
    760   // Otherwise, see if it is fully available in all predecessors.
    761   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    762 
    763   // If this block has no predecessors, it isn't live-in here.
    764   if (PI == PE)
    765     goto SpeculationFailure;
    766 
    767   for (; PI != PE; ++PI)
    768     // If the value isn't fully available in one of our predecessors, then it
    769     // isn't fully available in this block either.  Undo our previous
    770     // optimistic assumption and bail out.
    771     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
    772       goto SpeculationFailure;
    773 
    774   return true;
    775 
    776 // SpeculationFailure - If we get here, we found out that this is not, after
    777 // all, a fully-available block.  We have a problem if we speculated on this and
    778 // used the speculation to mark other blocks as available.
    779 SpeculationFailure:
    780   char &BBVal = FullyAvailableBlocks[BB];
    781 
    782   // If we didn't speculate on this, just return with it set to false.
    783   if (BBVal == 2) {
    784     BBVal = 0;
    785     return false;
    786   }
    787 
    788   // If we did speculate on this value, we could have blocks set to 1 that are
    789   // incorrect.  Walk the (transitive) successors of this block and mark them as
    790   // 0 if set to one.
    791   SmallVector<BasicBlock*, 32> BBWorklist;
    792   BBWorklist.push_back(BB);
    793 
    794   do {
    795     BasicBlock *Entry = BBWorklist.pop_back_val();
    796     // Note that this sets blocks to 0 (unavailable) if they happen to not
    797     // already be in FullyAvailableBlocks.  This is safe.
    798     char &EntryVal = FullyAvailableBlocks[Entry];
    799     if (EntryVal == 0) continue;  // Already unavailable.
    800 
    801     // Mark as unavailable.
    802     EntryVal = 0;
    803 
    804     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
    805       BBWorklist.push_back(*I);
    806   } while (!BBWorklist.empty());
    807 
    808   return false;
    809 }
    810 
    811 
    812 /// CanCoerceMustAliasedValueToLoad - Return true if
    813 /// CoerceAvailableValueToLoadType will succeed.
    814 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    815                                             Type *LoadTy,
    816                                             const DataLayout &TD) {
    817   // If the loaded or stored value is an first class array or struct, don't try
    818   // to transform them.  We need to be able to bitcast to integer.
    819   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    820       StoredVal->getType()->isStructTy() ||
    821       StoredVal->getType()->isArrayTy())
    822     return false;
    823 
    824   // The store has to be at least as big as the load.
    825   if (TD.getTypeSizeInBits(StoredVal->getType()) <
    826         TD.getTypeSizeInBits(LoadTy))
    827     return false;
    828 
    829   return true;
    830 }
    831 
    832 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
    833 /// then a load from a must-aliased pointer of a different type, try to coerce
    834 /// the stored value.  LoadedTy is the type of the load we want to replace and
    835 /// InsertPt is the place to insert new instructions.
    836 ///
    837 /// If we can't do it, return null.
    838 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    839                                              Type *LoadedTy,
    840                                              Instruction *InsertPt,
    841                                              const DataLayout &TD) {
    842   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
    843     return 0;
    844 
    845   // If this is already the right type, just return it.
    846   Type *StoredValTy = StoredVal->getType();
    847 
    848   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
    849   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
    850 
    851   // If the store and reload are the same size, we can always reuse it.
    852   if (StoreSize == LoadSize) {
    853     // Pointer to Pointer -> use bitcast.
    854     if (StoredValTy->getScalarType()->isPointerTy() &&
    855         LoadedTy->getScalarType()->isPointerTy())
    856       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    857 
    858     // Convert source pointers to integers, which can be bitcast.
    859     if (StoredValTy->getScalarType()->isPointerTy()) {
    860       StoredValTy = TD.getIntPtrType(StoredValTy);
    861       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    862     }
    863 
    864     Type *TypeToCastTo = LoadedTy;
    865     if (TypeToCastTo->getScalarType()->isPointerTy())
    866       TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
    867 
    868     if (StoredValTy != TypeToCastTo)
    869       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    870 
    871     // Cast to pointer if the load needs a pointer type.
    872     if (LoadedTy->getScalarType()->isPointerTy())
    873       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    874 
    875     return StoredVal;
    876   }
    877 
    878   // If the loaded value is smaller than the available value, then we can
    879   // extract out a piece from it.  If the available value is too small, then we
    880   // can't do anything.
    881   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    882 
    883   // Convert source pointers to integers, which can be manipulated.
    884   if (StoredValTy->getScalarType()->isPointerTy()) {
    885     StoredValTy = TD.getIntPtrType(StoredValTy);
    886     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    887   }
    888 
    889   // Convert vectors and fp to integer, which can be manipulated.
    890   if (!StoredValTy->isIntegerTy()) {
    891     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    892     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    893   }
    894 
    895   // If this is a big-endian system, we need to shift the value down to the low
    896   // bits so that a truncate will work.
    897   if (TD.isBigEndian()) {
    898     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    899     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    900   }
    901 
    902   // Truncate the integer to the right size now.
    903   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    904   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    905 
    906   if (LoadedTy == NewIntTy)
    907     return StoredVal;
    908 
    909   // If the result is a pointer, inttoptr.
    910   if (LoadedTy->getScalarType()->isPointerTy())
    911     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    912 
    913   // Otherwise, bitcast.
    914   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    915 }
    916 
    917 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
    918 /// memdep query of a load that ends up being a clobbering memory write (store,
    919 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    920 /// by the load but we can't be sure because the pointers don't mustalias.
    921 ///
    922 /// Check this case to see if there is anything more we can do before we give
    923 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    924 /// value of the piece that feeds the load.
    925 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    926                                           Value *WritePtr,
    927                                           uint64_t WriteSizeInBits,
    928                                           const DataLayout &TD) {
    929   // If the loaded or stored value is a first class array or struct, don't try
    930   // to transform them.  We need to be able to bitcast to integer.
    931   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    932     return -1;
    933 
    934   int64_t StoreOffset = 0, LoadOffset = 0;
    935   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
    936   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
    937   if (StoreBase != LoadBase)
    938     return -1;
    939 
    940   // If the load and store are to the exact same address, they should have been
    941   // a must alias.  AA must have gotten confused.
    942   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    943   // to a load from the base of the memset.
    944 #if 0
    945   if (LoadOffset == StoreOffset) {
    946     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    947     << "Base       = " << *StoreBase << "\n"
    948     << "Store Ptr  = " << *WritePtr << "\n"
    949     << "Store Offs = " << StoreOffset << "\n"
    950     << "Load Ptr   = " << *LoadPtr << "\n";
    951     abort();
    952   }
    953 #endif
    954 
    955   // If the load and store don't overlap at all, the store doesn't provide
    956   // anything to the load.  In this case, they really don't alias at all, AA
    957   // must have gotten confused.
    958   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
    959 
    960   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    961     return -1;
    962   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    963   LoadSize >>= 3;
    964 
    965 
    966   bool isAAFailure = false;
    967   if (StoreOffset < LoadOffset)
    968     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    969   else
    970     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    971 
    972   if (isAAFailure) {
    973 #if 0
    974     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    975     << "Base       = " << *StoreBase << "\n"
    976     << "Store Ptr  = " << *WritePtr << "\n"
    977     << "Store Offs = " << StoreOffset << "\n"
    978     << "Load Ptr   = " << *LoadPtr << "\n";
    979     abort();
    980 #endif
    981     return -1;
    982   }
    983 
    984   // If the Load isn't completely contained within the stored bits, we don't
    985   // have all the bits to feed it.  We could do something crazy in the future
    986   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    987   // valuable.
    988   if (StoreOffset > LoadOffset ||
    989       StoreOffset+StoreSize < LoadOffset+LoadSize)
    990     return -1;
    991 
    992   // Okay, we can do this transformation.  Return the number of bytes into the
    993   // store that the load is.
    994   return LoadOffset-StoreOffset;
    995 }
    996 
    997 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
    998 /// memdep query of a load that ends up being a clobbering store.
    999 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
   1000                                           StoreInst *DepSI,
   1001                                           const DataLayout &TD) {
   1002   // Cannot handle reading from store of first-class aggregate yet.
   1003   if (DepSI->getValueOperand()->getType()->isStructTy() ||
   1004       DepSI->getValueOperand()->getType()->isArrayTy())
   1005     return -1;
   1006 
   1007   Value *StorePtr = DepSI->getPointerOperand();
   1008   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
   1009   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1010                                         StorePtr, StoreSize, TD);
   1011 }
   1012 
   1013 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
   1014 /// memdep query of a load that ends up being clobbered by another load.  See if
   1015 /// the other load can feed into the second load.
   1016 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
   1017                                          LoadInst *DepLI, const DataLayout &TD){
   1018   // Cannot handle reading from store of first-class aggregate yet.
   1019   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
   1020     return -1;
   1021 
   1022   Value *DepPtr = DepLI->getPointerOperand();
   1023   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
   1024   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
   1025   if (R != -1) return R;
   1026 
   1027   // If we have a load/load clobber an DepLI can be widened to cover this load,
   1028   // then we should widen it!
   1029   int64_t LoadOffs = 0;
   1030   const Value *LoadBase =
   1031     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
   1032   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
   1033 
   1034   unsigned Size = MemoryDependenceAnalysis::
   1035     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
   1036   if (Size == 0) return -1;
   1037 
   1038   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
   1039 }
   1040 
   1041 
   1042 
   1043 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
   1044                                             MemIntrinsic *MI,
   1045                                             const DataLayout &TD) {
   1046   // If the mem operation is a non-constant size, we can't handle it.
   1047   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
   1048   if (SizeCst == 0) return -1;
   1049   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
   1050 
   1051   // If this is memset, we just need to see if the offset is valid in the size
   1052   // of the memset..
   1053   if (MI->getIntrinsicID() == Intrinsic::memset)
   1054     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
   1055                                           MemSizeInBits, TD);
   1056 
   1057   // If we have a memcpy/memmove, the only case we can handle is if this is a
   1058   // copy from constant memory.  In that case, we can read directly from the
   1059   // constant memory.
   1060   MemTransferInst *MTI = cast<MemTransferInst>(MI);
   1061 
   1062   Constant *Src = dyn_cast<Constant>(MTI->getSource());
   1063   if (Src == 0) return -1;
   1064 
   1065   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
   1066   if (GV == 0 || !GV->isConstant()) return -1;
   1067 
   1068   // See if the access is within the bounds of the transfer.
   1069   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1070                                               MI->getDest(), MemSizeInBits, TD);
   1071   if (Offset == -1)
   1072     return Offset;
   1073 
   1074   // Otherwise, see if we can constant fold a load from the constant with the
   1075   // offset applied as appropriate.
   1076   Src = ConstantExpr::getBitCast(Src,
   1077                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1078   Constant *OffsetCst =
   1079     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1080   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   1081   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1082   if (ConstantFoldLoadFromConstPtr(Src, &TD))
   1083     return Offset;
   1084   return -1;
   1085 }
   1086 
   1087 
   1088 /// GetStoreValueForLoad - This function is called when we have a
   1089 /// memdep query of a load that ends up being a clobbering store.  This means
   1090 /// that the store provides bits used by the load but we the pointers don't
   1091 /// mustalias.  Check this case to see if there is anything more we can do
   1092 /// before we give up.
   1093 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
   1094                                    Type *LoadTy,
   1095                                    Instruction *InsertPt, const DataLayout &TD){
   1096   LLVMContext &Ctx = SrcVal->getType()->getContext();
   1097 
   1098   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
   1099   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
   1100 
   1101   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1102 
   1103   // Compute which bits of the stored value are being used by the load.  Convert
   1104   // to an integer type to start with.
   1105   if (SrcVal->getType()->getScalarType()->isPointerTy())
   1106     SrcVal = Builder.CreatePtrToInt(SrcVal,
   1107         TD.getIntPtrType(SrcVal->getType()));
   1108   if (!SrcVal->getType()->isIntegerTy())
   1109     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1110 
   1111   // Shift the bits to the least significant depending on endianness.
   1112   unsigned ShiftAmt;
   1113   if (TD.isLittleEndian())
   1114     ShiftAmt = Offset*8;
   1115   else
   1116     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1117 
   1118   if (ShiftAmt)
   1119     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1120 
   1121   if (LoadSize != StoreSize)
   1122     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1123 
   1124   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
   1125 }
   1126 
   1127 /// GetLoadValueForLoad - This function is called when we have a
   1128 /// memdep query of a load that ends up being a clobbering load.  This means
   1129 /// that the load *may* provide bits used by the load but we can't be sure
   1130 /// because the pointers don't mustalias.  Check this case to see if there is
   1131 /// anything more we can do before we give up.
   1132 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1133                                   Type *LoadTy, Instruction *InsertPt,
   1134                                   GVN &gvn) {
   1135   const DataLayout &TD = *gvn.getDataLayout();
   1136   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1137   // widen SrcVal out to a larger load.
   1138   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
   1139   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
   1140   if (Offset+LoadSize > SrcValSize) {
   1141     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1142     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1143     // If we have a load/load clobber an DepLI can be widened to cover this
   1144     // load, then we should widen it to the next power of 2 size big enough!
   1145     unsigned NewLoadSize = Offset+LoadSize;
   1146     if (!isPowerOf2_32(NewLoadSize))
   1147       NewLoadSize = NextPowerOf2(NewLoadSize);
   1148 
   1149     Value *PtrVal = SrcVal->getPointerOperand();
   1150 
   1151     // Insert the new load after the old load.  This ensures that subsequent
   1152     // memdep queries will find the new load.  We can't easily remove the old
   1153     // load completely because it is already in the value numbering table.
   1154     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1155     Type *DestPTy =
   1156       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1157     DestPTy = PointerType::get(DestPTy,
   1158                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
   1159     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1160     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1161     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1162     NewLoad->takeName(SrcVal);
   1163     NewLoad->setAlignment(SrcVal->getAlignment());
   1164 
   1165     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1166     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1167 
   1168     // Replace uses of the original load with the wider load.  On a big endian
   1169     // system, we need to shift down to get the relevant bits.
   1170     Value *RV = NewLoad;
   1171     if (TD.isBigEndian())
   1172       RV = Builder.CreateLShr(RV,
   1173                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1174     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1175     SrcVal->replaceAllUsesWith(RV);
   1176 
   1177     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1178     // because the load is already memoized into the leader map table that GVN
   1179     // tracks.  It is potentially possible to remove the load from the table,
   1180     // but then there all of the operations based on it would need to be
   1181     // rehashed.  Just leave the dead load around.
   1182     gvn.getMemDep().removeInstruction(SrcVal);
   1183     SrcVal = NewLoad;
   1184   }
   1185 
   1186   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
   1187 }
   1188 
   1189 
   1190 /// GetMemInstValueForLoad - This function is called when we have a
   1191 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1192 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1193                                      Type *LoadTy, Instruction *InsertPt,
   1194                                      const DataLayout &TD){
   1195   LLVMContext &Ctx = LoadTy->getContext();
   1196   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
   1197 
   1198   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1199 
   1200   // We know that this method is only called when the mem transfer fully
   1201   // provides the bits for the load.
   1202   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1203     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1204     // independently of what the offset is.
   1205     Value *Val = MSI->getValue();
   1206     if (LoadSize != 1)
   1207       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1208 
   1209     Value *OneElt = Val;
   1210 
   1211     // Splat the value out to the right number of bits.
   1212     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1213       // If we can double the number of bytes set, do it.
   1214       if (NumBytesSet*2 <= LoadSize) {
   1215         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1216         Val = Builder.CreateOr(Val, ShVal);
   1217         NumBytesSet <<= 1;
   1218         continue;
   1219       }
   1220 
   1221       // Otherwise insert one byte at a time.
   1222       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1223       Val = Builder.CreateOr(OneElt, ShVal);
   1224       ++NumBytesSet;
   1225     }
   1226 
   1227     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
   1228   }
   1229 
   1230   // Otherwise, this is a memcpy/memmove from a constant global.
   1231   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1232   Constant *Src = cast<Constant>(MTI->getSource());
   1233 
   1234   // Otherwise, see if we can constant fold a load from the constant with the
   1235   // offset applied as appropriate.
   1236   Src = ConstantExpr::getBitCast(Src,
   1237                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1238   Constant *OffsetCst =
   1239   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1240   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   1241   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1242   return ConstantFoldLoadFromConstPtr(Src, &TD);
   1243 }
   1244 
   1245 
   1246 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
   1247 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1248 /// that should be used at LI's definition site.
   1249 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1250                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1251                                      GVN &gvn) {
   1252   // Check for the fully redundant, dominating load case.  In this case, we can
   1253   // just use the dominating value directly.
   1254   if (ValuesPerBlock.size() == 1 &&
   1255       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1256                                                LI->getParent()))
   1257     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
   1258 
   1259   // Otherwise, we have to construct SSA form.
   1260   SmallVector<PHINode*, 8> NewPHIs;
   1261   SSAUpdater SSAUpdate(&NewPHIs);
   1262   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1263 
   1264   Type *LoadTy = LI->getType();
   1265 
   1266   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1267     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1268     BasicBlock *BB = AV.BB;
   1269 
   1270     if (SSAUpdate.HasValueForBlock(BB))
   1271       continue;
   1272 
   1273     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
   1274   }
   1275 
   1276   // Perform PHI construction.
   1277   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1278 
   1279   // If new PHI nodes were created, notify alias analysis.
   1280   if (V->getType()->getScalarType()->isPointerTy()) {
   1281     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1282 
   1283     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1284       AA->copyValue(LI, NewPHIs[i]);
   1285 
   1286     // Now that we've copied information to the new PHIs, scan through
   1287     // them again and inform alias analysis that we've added potentially
   1288     // escaping uses to any values that are operands to these PHIs.
   1289     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1290       PHINode *P = NewPHIs[i];
   1291       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1292         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1293         AA->addEscapingUse(P->getOperandUse(jj));
   1294       }
   1295     }
   1296   }
   1297 
   1298   return V;
   1299 }
   1300 
   1301 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
   1302   Value *Res;
   1303   if (isSimpleValue()) {
   1304     Res = getSimpleValue();
   1305     if (Res->getType() != LoadTy) {
   1306       const DataLayout *TD = gvn.getDataLayout();
   1307       assert(TD && "Need target data to handle type mismatch case");
   1308       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
   1309                                  *TD);
   1310 
   1311       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1312                    << *getSimpleValue() << '\n'
   1313                    << *Res << '\n' << "\n\n\n");
   1314     }
   1315   } else if (isCoercedLoadValue()) {
   1316     LoadInst *Load = getCoercedLoadValue();
   1317     if (Load->getType() == LoadTy && Offset == 0) {
   1318       Res = Load;
   1319     } else {
   1320       Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1321                                 gvn);
   1322 
   1323       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1324                    << *getCoercedLoadValue() << '\n'
   1325                    << *Res << '\n' << "\n\n\n");
   1326     }
   1327   } else {
   1328     const DataLayout *TD = gvn.getDataLayout();
   1329     assert(TD && "Need target data to handle type mismatch case");
   1330     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
   1331                                  LoadTy, BB->getTerminator(), *TD);
   1332     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1333                  << "  " << *getMemIntrinValue() << '\n'
   1334                  << *Res << '\n' << "\n\n\n");
   1335   }
   1336   return Res;
   1337 }
   1338 
   1339 static bool isLifetimeStart(const Instruction *Inst) {
   1340   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1341     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1342   return false;
   1343 }
   1344 
   1345 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
   1346                                   AvailValInBlkVect &ValuesPerBlock,
   1347                                   UnavailBlkVect &UnavailableBlocks) {
   1348 
   1349   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1350   // where we have a value available in repl, also keep track of whether we see
   1351   // dependencies that produce an unknown value for the load (such as a call
   1352   // that could potentially clobber the load).
   1353   unsigned NumDeps = Deps.size();
   1354   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1355     BasicBlock *DepBB = Deps[i].getBB();
   1356     MemDepResult DepInfo = Deps[i].getResult();
   1357 
   1358     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1359       UnavailableBlocks.push_back(DepBB);
   1360       continue;
   1361     }
   1362 
   1363     if (DepInfo.isClobber()) {
   1364       // The address being loaded in this non-local block may not be the same as
   1365       // the pointer operand of the load if PHI translation occurs.  Make sure
   1366       // to consider the right address.
   1367       Value *Address = Deps[i].getAddress();
   1368 
   1369       // If the dependence is to a store that writes to a superset of the bits
   1370       // read by the load, we can extract the bits we need for the load from the
   1371       // stored value.
   1372       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1373         if (TD && Address) {
   1374           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
   1375                                                       DepSI, *TD);
   1376           if (Offset != -1) {
   1377             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1378                                                        DepSI->getValueOperand(),
   1379                                                                 Offset));
   1380             continue;
   1381           }
   1382         }
   1383       }
   1384 
   1385       // Check to see if we have something like this:
   1386       //    load i32* P
   1387       //    load i8* (P+1)
   1388       // if we have this, replace the later with an extraction from the former.
   1389       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1390         // If this is a clobber and L is the first instruction in its block, then
   1391         // we have the first instruction in the entry block.
   1392         if (DepLI != LI && Address && TD) {
   1393           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
   1394                                                      LI->getPointerOperand(),
   1395                                                      DepLI, *TD);
   1396 
   1397           if (Offset != -1) {
   1398             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1399                                                                     Offset));
   1400             continue;
   1401           }
   1402         }
   1403       }
   1404 
   1405       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1406       // forward a value on from it.
   1407       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1408         if (TD && Address) {
   1409           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1410                                                         DepMI, *TD);
   1411           if (Offset != -1) {
   1412             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1413                                                                   Offset));
   1414             continue;
   1415           }
   1416         }
   1417       }
   1418 
   1419       UnavailableBlocks.push_back(DepBB);
   1420       continue;
   1421     }
   1422 
   1423     // DepInfo.isDef() here
   1424 
   1425     Instruction *DepInst = DepInfo.getInst();
   1426 
   1427     // Loading the allocation -> undef.
   1428     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
   1429         // Loading immediately after lifetime begin -> undef.
   1430         isLifetimeStart(DepInst)) {
   1431       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1432                                              UndefValue::get(LI->getType())));
   1433       continue;
   1434     }
   1435 
   1436     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1437       // Reject loads and stores that are to the same address but are of
   1438       // different types if we have to.
   1439       if (S->getValueOperand()->getType() != LI->getType()) {
   1440         // If the stored value is larger or equal to the loaded value, we can
   1441         // reuse it.
   1442         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1443                                                         LI->getType(), *TD)) {
   1444           UnavailableBlocks.push_back(DepBB);
   1445           continue;
   1446         }
   1447       }
   1448 
   1449       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1450                                                          S->getValueOperand()));
   1451       continue;
   1452     }
   1453 
   1454     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1455       // If the types mismatch and we can't handle it, reject reuse of the load.
   1456       if (LD->getType() != LI->getType()) {
   1457         // If the stored value is larger or equal to the loaded value, we can
   1458         // reuse it.
   1459         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
   1460           UnavailableBlocks.push_back(DepBB);
   1461           continue;
   1462         }
   1463       }
   1464       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1465       continue;
   1466     }
   1467 
   1468     UnavailableBlocks.push_back(DepBB);
   1469   }
   1470 }
   1471 
   1472 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
   1473                          UnavailBlkVect &UnavailableBlocks) {
   1474   // Okay, we have *some* definitions of the value.  This means that the value
   1475   // is available in some of our (transitive) predecessors.  Lets think about
   1476   // doing PRE of this load.  This will involve inserting a new load into the
   1477   // predecessor when it's not available.  We could do this in general, but
   1478   // prefer to not increase code size.  As such, we only do this when we know
   1479   // that we only have to insert *one* load (which means we're basically moving
   1480   // the load, not inserting a new one).
   1481 
   1482   SmallPtrSet<BasicBlock *, 4> Blockers;
   1483   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1484     Blockers.insert(UnavailableBlocks[i]);
   1485 
   1486   // Let's find the first basic block with more than one predecessor.  Walk
   1487   // backwards through predecessors if needed.
   1488   BasicBlock *LoadBB = LI->getParent();
   1489   BasicBlock *TmpBB = LoadBB;
   1490 
   1491   while (TmpBB->getSinglePredecessor()) {
   1492     TmpBB = TmpBB->getSinglePredecessor();
   1493     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1494       return false;
   1495     if (Blockers.count(TmpBB))
   1496       return false;
   1497 
   1498     // If any of these blocks has more than one successor (i.e. if the edge we
   1499     // just traversed was critical), then there are other paths through this
   1500     // block along which the load may not be anticipated.  Hoisting the load
   1501     // above this block would be adding the load to execution paths along
   1502     // which it was not previously executed.
   1503     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1504       return false;
   1505   }
   1506 
   1507   assert(TmpBB);
   1508   LoadBB = TmpBB;
   1509 
   1510   // Check to see how many predecessors have the loaded value fully
   1511   // available.
   1512   DenseMap<BasicBlock*, Value*> PredLoads;
   1513   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1514   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1515     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1516   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1517     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1518 
   1519   SmallVector<BasicBlock *, 4> CriticalEdgePred;
   1520   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1521        PI != E; ++PI) {
   1522     BasicBlock *Pred = *PI;
   1523     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
   1524       continue;
   1525     }
   1526     PredLoads[Pred] = 0;
   1527 
   1528     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1529       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1530         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1531               << Pred->getName() << "': " << *LI << '\n');
   1532         return false;
   1533       }
   1534 
   1535       if (LoadBB->isLandingPad()) {
   1536         DEBUG(dbgs()
   1537               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
   1538               << Pred->getName() << "': " << *LI << '\n');
   1539         return false;
   1540       }
   1541 
   1542       CriticalEdgePred.push_back(Pred);
   1543     }
   1544   }
   1545 
   1546   // Decide whether PRE is profitable for this load.
   1547   unsigned NumUnavailablePreds = PredLoads.size();
   1548   assert(NumUnavailablePreds != 0 &&
   1549          "Fully available value should already be eliminated!");
   1550 
   1551   // If this load is unavailable in multiple predecessors, reject it.
   1552   // FIXME: If we could restructure the CFG, we could make a common pred with
   1553   // all the preds that don't have an available LI and insert a new load into
   1554   // that one block.
   1555   if (NumUnavailablePreds != 1)
   1556       return false;
   1557 
   1558   // Split critical edges, and update the unavailable predecessors accordingly.
   1559   for (SmallVectorImpl<BasicBlock *>::iterator I = CriticalEdgePred.begin(),
   1560          E = CriticalEdgePred.end(); I != E; I++) {
   1561     BasicBlock *OrigPred = *I;
   1562     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
   1563     PredLoads.erase(OrigPred);
   1564     PredLoads[NewPred] = 0;
   1565     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
   1566                  << LoadBB->getName() << '\n');
   1567   }
   1568 
   1569   // Check if the load can safely be moved to all the unavailable predecessors.
   1570   bool CanDoPRE = true;
   1571   SmallVector<Instruction*, 8> NewInsts;
   1572   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1573          E = PredLoads.end(); I != E; ++I) {
   1574     BasicBlock *UnavailablePred = I->first;
   1575 
   1576     // Do PHI translation to get its value in the predecessor if necessary.  The
   1577     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1578 
   1579     // If all preds have a single successor, then we know it is safe to insert
   1580     // the load on the pred (?!?), so we can insert code to materialize the
   1581     // pointer if it is not available.
   1582     PHITransAddr Address(LI->getPointerOperand(), TD);
   1583     Value *LoadPtr = 0;
   1584     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1585                                                 *DT, NewInsts);
   1586 
   1587     // If we couldn't find or insert a computation of this phi translated value,
   1588     // we fail PRE.
   1589     if (LoadPtr == 0) {
   1590       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1591             << *LI->getPointerOperand() << "\n");
   1592       CanDoPRE = false;
   1593       break;
   1594     }
   1595 
   1596     I->second = LoadPtr;
   1597   }
   1598 
   1599   if (!CanDoPRE) {
   1600     while (!NewInsts.empty()) {
   1601       Instruction *I = NewInsts.pop_back_val();
   1602       if (MD) MD->removeInstruction(I);
   1603       I->eraseFromParent();
   1604     }
   1605     // HINT:Don't revert the edge-splitting as following transformation may
   1606     // also need to split these critial edges.
   1607     return !CriticalEdgePred.empty();
   1608   }
   1609 
   1610   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1611   // and using PHI construction to get the value in the other predecessors, do
   1612   // it.
   1613   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1614   DEBUG(if (!NewInsts.empty())
   1615           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1616                  << *NewInsts.back() << '\n');
   1617 
   1618   // Assign value numbers to the new instructions.
   1619   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1620     // FIXME: We really _ought_ to insert these value numbers into their
   1621     // parent's availability map.  However, in doing so, we risk getting into
   1622     // ordering issues.  If a block hasn't been processed yet, we would be
   1623     // marking a value as AVAIL-IN, which isn't what we intend.
   1624     VN.lookup_or_add(NewInsts[i]);
   1625   }
   1626 
   1627   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1628          E = PredLoads.end(); I != E; ++I) {
   1629     BasicBlock *UnavailablePred = I->first;
   1630     Value *LoadPtr = I->second;
   1631 
   1632     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1633                                         LI->getAlignment(),
   1634                                         UnavailablePred->getTerminator());
   1635 
   1636     // Transfer the old load's TBAA tag to the new load.
   1637     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
   1638       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1639 
   1640     // Transfer DebugLoc.
   1641     NewLoad->setDebugLoc(LI->getDebugLoc());
   1642 
   1643     // Add the newly created load.
   1644     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1645                                                         NewLoad));
   1646     MD->invalidateCachedPointerInfo(LoadPtr);
   1647     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1648   }
   1649 
   1650   // Perform PHI construction.
   1651   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1652   LI->replaceAllUsesWith(V);
   1653   if (isa<PHINode>(V))
   1654     V->takeName(LI);
   1655   if (V->getType()->getScalarType()->isPointerTy())
   1656     MD->invalidateCachedPointerInfo(V);
   1657   markInstructionForDeletion(LI);
   1658   ++NumPRELoad;
   1659   return true;
   1660 }
   1661 
   1662 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
   1663 /// non-local by performing PHI construction.
   1664 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1665   // Step 1: Find the non-local dependencies of the load.
   1666   LoadDepVect Deps;
   1667   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
   1668   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
   1669 
   1670   // If we had to process more than one hundred blocks to find the
   1671   // dependencies, this load isn't worth worrying about.  Optimizing
   1672   // it will be too expensive.
   1673   unsigned NumDeps = Deps.size();
   1674   if (NumDeps > 100)
   1675     return false;
   1676 
   1677   // If we had a phi translation failure, we'll have a single entry which is a
   1678   // clobber in the current block.  Reject this early.
   1679   if (NumDeps == 1 &&
   1680       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1681     DEBUG(
   1682       dbgs() << "GVN: non-local load ";
   1683       WriteAsOperand(dbgs(), LI);
   1684       dbgs() << " has unknown dependencies\n";
   1685     );
   1686     return false;
   1687   }
   1688 
   1689   // Step 2: Analyze the availability of the load
   1690   AvailValInBlkVect ValuesPerBlock;
   1691   UnavailBlkVect UnavailableBlocks;
   1692   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
   1693 
   1694   // If we have no predecessors that produce a known value for this load, exit
   1695   // early.
   1696   if (ValuesPerBlock.empty())
   1697     return false;
   1698 
   1699   // Step 3: Eliminate fully redundancy.
   1700   //
   1701   // If all of the instructions we depend on produce a known value for this
   1702   // load, then it is fully redundant and we can use PHI insertion to compute
   1703   // its value.  Insert PHIs and remove the fully redundant value now.
   1704   if (UnavailableBlocks.empty()) {
   1705     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1706 
   1707     // Perform PHI construction.
   1708     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1709     LI->replaceAllUsesWith(V);
   1710 
   1711     if (isa<PHINode>(V))
   1712       V->takeName(LI);
   1713     if (V->getType()->getScalarType()->isPointerTy())
   1714       MD->invalidateCachedPointerInfo(V);
   1715     markInstructionForDeletion(LI);
   1716     ++NumGVNLoad;
   1717     return true;
   1718   }
   1719 
   1720   // Step 4: Eliminate partial redundancy.
   1721   if (!EnablePRE || !EnableLoadPRE)
   1722     return false;
   1723 
   1724   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
   1725 }
   1726 
   1727 
   1728 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   1729   // Patch the replacement so that it is not more restrictive than the value
   1730   // being replaced.
   1731   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
   1732   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
   1733   if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
   1734       isa<OverflowingBinaryOperator>(ReplOp)) {
   1735     if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
   1736       ReplOp->setHasNoSignedWrap(false);
   1737     if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
   1738       ReplOp->setHasNoUnsignedWrap(false);
   1739   }
   1740   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
   1741     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
   1742     ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
   1743     for (int i = 0, n = Metadata.size(); i < n; ++i) {
   1744       unsigned Kind = Metadata[i].first;
   1745       MDNode *IMD = I->getMetadata(Kind);
   1746       MDNode *ReplMD = Metadata[i].second;
   1747       switch(Kind) {
   1748       default:
   1749         ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
   1750         break;
   1751       case LLVMContext::MD_dbg:
   1752         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
   1753       case LLVMContext::MD_tbaa:
   1754         ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
   1755         break;
   1756       case LLVMContext::MD_range:
   1757         ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
   1758         break;
   1759       case LLVMContext::MD_prof:
   1760         llvm_unreachable("MD_prof in a non terminator instruction");
   1761         break;
   1762       case LLVMContext::MD_fpmath:
   1763         ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
   1764         break;
   1765       }
   1766     }
   1767   }
   1768 }
   1769 
   1770 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   1771   patchReplacementInstruction(I, Repl);
   1772   I->replaceAllUsesWith(Repl);
   1773 }
   1774 
   1775 /// processLoad - Attempt to eliminate a load, first by eliminating it
   1776 /// locally, and then attempting non-local elimination if that fails.
   1777 bool GVN::processLoad(LoadInst *L) {
   1778   if (!MD)
   1779     return false;
   1780 
   1781   if (!L->isSimple())
   1782     return false;
   1783 
   1784   if (L->use_empty()) {
   1785     markInstructionForDeletion(L);
   1786     return true;
   1787   }
   1788 
   1789   // ... to a pointer that has been loaded from before...
   1790   MemDepResult Dep = MD->getDependency(L);
   1791 
   1792   // If we have a clobber and target data is around, see if this is a clobber
   1793   // that we can fix up through code synthesis.
   1794   if (Dep.isClobber() && TD) {
   1795     // Check to see if we have something like this:
   1796     //   store i32 123, i32* %P
   1797     //   %A = bitcast i32* %P to i8*
   1798     //   %B = gep i8* %A, i32 1
   1799     //   %C = load i8* %B
   1800     //
   1801     // We could do that by recognizing if the clobber instructions are obviously
   1802     // a common base + constant offset, and if the previous store (or memset)
   1803     // completely covers this load.  This sort of thing can happen in bitfield
   1804     // access code.
   1805     Value *AvailVal = 0;
   1806     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1807       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
   1808                                                   L->getPointerOperand(),
   1809                                                   DepSI, *TD);
   1810       if (Offset != -1)
   1811         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1812                                         L->getType(), L, *TD);
   1813     }
   1814 
   1815     // Check to see if we have something like this:
   1816     //    load i32* P
   1817     //    load i8* (P+1)
   1818     // if we have this, replace the later with an extraction from the former.
   1819     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1820       // If this is a clobber and L is the first instruction in its block, then
   1821       // we have the first instruction in the entry block.
   1822       if (DepLI == L)
   1823         return false;
   1824 
   1825       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
   1826                                                  L->getPointerOperand(),
   1827                                                  DepLI, *TD);
   1828       if (Offset != -1)
   1829         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1830     }
   1831 
   1832     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1833     // a value on from it.
   1834     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1835       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
   1836                                                     L->getPointerOperand(),
   1837                                                     DepMI, *TD);
   1838       if (Offset != -1)
   1839         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
   1840     }
   1841 
   1842     if (AvailVal) {
   1843       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1844             << *AvailVal << '\n' << *L << "\n\n\n");
   1845 
   1846       // Replace the load!
   1847       L->replaceAllUsesWith(AvailVal);
   1848       if (AvailVal->getType()->getScalarType()->isPointerTy())
   1849         MD->invalidateCachedPointerInfo(AvailVal);
   1850       markInstructionForDeletion(L);
   1851       ++NumGVNLoad;
   1852       return true;
   1853     }
   1854   }
   1855 
   1856   // If the value isn't available, don't do anything!
   1857   if (Dep.isClobber()) {
   1858     DEBUG(
   1859       // fast print dep, using operator<< on instruction is too slow.
   1860       dbgs() << "GVN: load ";
   1861       WriteAsOperand(dbgs(), L);
   1862       Instruction *I = Dep.getInst();
   1863       dbgs() << " is clobbered by " << *I << '\n';
   1864     );
   1865     return false;
   1866   }
   1867 
   1868   // If it is defined in another block, try harder.
   1869   if (Dep.isNonLocal())
   1870     return processNonLocalLoad(L);
   1871 
   1872   if (!Dep.isDef()) {
   1873     DEBUG(
   1874       // fast print dep, using operator<< on instruction is too slow.
   1875       dbgs() << "GVN: load ";
   1876       WriteAsOperand(dbgs(), L);
   1877       dbgs() << " has unknown dependence\n";
   1878     );
   1879     return false;
   1880   }
   1881 
   1882   Instruction *DepInst = Dep.getInst();
   1883   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1884     Value *StoredVal = DepSI->getValueOperand();
   1885 
   1886     // The store and load are to a must-aliased pointer, but they may not
   1887     // actually have the same type.  See if we know how to reuse the stored
   1888     // value (depending on its type).
   1889     if (StoredVal->getType() != L->getType()) {
   1890       if (TD) {
   1891         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
   1892                                                    L, *TD);
   1893         if (StoredVal == 0)
   1894           return false;
   1895 
   1896         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1897                      << '\n' << *L << "\n\n\n");
   1898       }
   1899       else
   1900         return false;
   1901     }
   1902 
   1903     // Remove it!
   1904     L->replaceAllUsesWith(StoredVal);
   1905     if (StoredVal->getType()->getScalarType()->isPointerTy())
   1906       MD->invalidateCachedPointerInfo(StoredVal);
   1907     markInstructionForDeletion(L);
   1908     ++NumGVNLoad;
   1909     return true;
   1910   }
   1911 
   1912   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1913     Value *AvailableVal = DepLI;
   1914 
   1915     // The loads are of a must-aliased pointer, but they may not actually have
   1916     // the same type.  See if we know how to reuse the previously loaded value
   1917     // (depending on its type).
   1918     if (DepLI->getType() != L->getType()) {
   1919       if (TD) {
   1920         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
   1921                                                       L, *TD);
   1922         if (AvailableVal == 0)
   1923           return false;
   1924 
   1925         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1926                      << "\n" << *L << "\n\n\n");
   1927       }
   1928       else
   1929         return false;
   1930     }
   1931 
   1932     // Remove it!
   1933     patchAndReplaceAllUsesWith(L, AvailableVal);
   1934     if (DepLI->getType()->getScalarType()->isPointerTy())
   1935       MD->invalidateCachedPointerInfo(DepLI);
   1936     markInstructionForDeletion(L);
   1937     ++NumGVNLoad;
   1938     return true;
   1939   }
   1940 
   1941   // If this load really doesn't depend on anything, then we must be loading an
   1942   // undef value.  This can happen when loading for a fresh allocation with no
   1943   // intervening stores, for example.
   1944   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
   1945     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1946     markInstructionForDeletion(L);
   1947     ++NumGVNLoad;
   1948     return true;
   1949   }
   1950 
   1951   // If this load occurs either right after a lifetime begin,
   1952   // then the loaded value is undefined.
   1953   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1954     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1955       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1956       markInstructionForDeletion(L);
   1957       ++NumGVNLoad;
   1958       return true;
   1959     }
   1960   }
   1961 
   1962   return false;
   1963 }
   1964 
   1965 // findLeader - In order to find a leader for a given value number at a
   1966 // specific basic block, we first obtain the list of all Values for that number,
   1967 // and then scan the list to find one whose block dominates the block in
   1968 // question.  This is fast because dominator tree queries consist of only
   1969 // a few comparisons of DFS numbers.
   1970 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
   1971   LeaderTableEntry Vals = LeaderTable[num];
   1972   if (!Vals.Val) return 0;
   1973 
   1974   Value *Val = 0;
   1975   if (DT->dominates(Vals.BB, BB)) {
   1976     Val = Vals.Val;
   1977     if (isa<Constant>(Val)) return Val;
   1978   }
   1979 
   1980   LeaderTableEntry* Next = Vals.Next;
   1981   while (Next) {
   1982     if (DT->dominates(Next->BB, BB)) {
   1983       if (isa<Constant>(Next->Val)) return Next->Val;
   1984       if (!Val) Val = Next->Val;
   1985     }
   1986 
   1987     Next = Next->Next;
   1988   }
   1989 
   1990   return Val;
   1991 }
   1992 
   1993 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
   1994 /// use is dominated by the given basic block.  Returns the number of uses that
   1995 /// were replaced.
   1996 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
   1997                                           const BasicBlockEdge &Root) {
   1998   unsigned Count = 0;
   1999   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   2000        UI != UE; ) {
   2001     Use &U = (UI++).getUse();
   2002 
   2003     if (DT->dominates(Root, U)) {
   2004       U.set(To);
   2005       ++Count;
   2006     }
   2007   }
   2008   return Count;
   2009 }
   2010 
   2011 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
   2012 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   2013 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   2014 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
   2015                                        DominatorTree *DT) {
   2016   // While in theory it is interesting to consider the case in which Dst has
   2017   // more than one predecessor, because Dst might be part of a loop which is
   2018   // only reachable from Src, in practice it is pointless since at the time
   2019   // GVN runs all such loops have preheaders, which means that Dst will have
   2020   // been changed to have only one predecessor, namely Src.
   2021   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
   2022   const BasicBlock *Src = E.getStart();
   2023   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
   2024   (void)Src;
   2025   return Pred != 0;
   2026 }
   2027 
   2028 /// propagateEquality - The given values are known to be equal in every block
   2029 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   2030 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   2031 bool GVN::propagateEquality(Value *LHS, Value *RHS,
   2032                             const BasicBlockEdge &Root) {
   2033   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   2034   Worklist.push_back(std::make_pair(LHS, RHS));
   2035   bool Changed = false;
   2036   // For speed, compute a conservative fast approximation to
   2037   // DT->dominates(Root, Root.getEnd());
   2038   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
   2039 
   2040   while (!Worklist.empty()) {
   2041     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   2042     LHS = Item.first; RHS = Item.second;
   2043 
   2044     if (LHS == RHS) continue;
   2045     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   2046 
   2047     // Don't try to propagate equalities between constants.
   2048     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
   2049 
   2050     // Prefer a constant on the right-hand side, or an Argument if no constants.
   2051     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   2052       std::swap(LHS, RHS);
   2053     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   2054 
   2055     // If there is no obvious reason to prefer the left-hand side over the right-
   2056     // hand side, ensure the longest lived term is on the right-hand side, so the
   2057     // shortest lived term will be replaced by the longest lived.  This tends to
   2058     // expose more simplifications.
   2059     uint32_t LVN = VN.lookup_or_add(LHS);
   2060     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   2061         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   2062       // Move the 'oldest' value to the right-hand side, using the value number as
   2063       // a proxy for age.
   2064       uint32_t RVN = VN.lookup_or_add(RHS);
   2065       if (LVN < RVN) {
   2066         std::swap(LHS, RHS);
   2067         LVN = RVN;
   2068       }
   2069     }
   2070 
   2071     // If value numbering later sees that an instruction in the scope is equal
   2072     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
   2073     // the invariant that instructions only occur in the leader table for their
   2074     // own value number (this is used by removeFromLeaderTable), do not do this
   2075     // if RHS is an instruction (if an instruction in the scope is morphed into
   2076     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
   2077     // using the leader table is about compiling faster, not optimizing better).
   2078     // The leader table only tracks basic blocks, not edges. Only add to if we
   2079     // have the simple case where the edge dominates the end.
   2080     if (RootDominatesEnd && !isa<Instruction>(RHS))
   2081       addToLeaderTable(LVN, RHS, Root.getEnd());
   2082 
   2083     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   2084     // LHS always has at least one use that is not dominated by Root, this will
   2085     // never do anything if LHS has only one use.
   2086     if (!LHS->hasOneUse()) {
   2087       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
   2088       Changed |= NumReplacements > 0;
   2089       NumGVNEqProp += NumReplacements;
   2090     }
   2091 
   2092     // Now try to deduce additional equalities from this one.  For example, if the
   2093     // known equality was "(A != B)" == "false" then it follows that A and B are
   2094     // equal in the scope.  Only boolean equalities with an explicit true or false
   2095     // RHS are currently supported.
   2096     if (!RHS->getType()->isIntegerTy(1))
   2097       // Not a boolean equality - bail out.
   2098       continue;
   2099     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   2100     if (!CI)
   2101       // RHS neither 'true' nor 'false' - bail out.
   2102       continue;
   2103     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   2104     bool isKnownTrue = CI->isAllOnesValue();
   2105     bool isKnownFalse = !isKnownTrue;
   2106 
   2107     // If "A && B" is known true then both A and B are known true.  If "A || B"
   2108     // is known false then both A and B are known false.
   2109     Value *A, *B;
   2110     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   2111         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   2112       Worklist.push_back(std::make_pair(A, RHS));
   2113       Worklist.push_back(std::make_pair(B, RHS));
   2114       continue;
   2115     }
   2116 
   2117     // If we are propagating an equality like "(A == B)" == "true" then also
   2118     // propagate the equality A == B.  When propagating a comparison such as
   2119     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   2120     if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
   2121       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   2122 
   2123       // If "A == B" is known true, or "A != B" is known false, then replace
   2124       // A with B everywhere in the scope.
   2125       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   2126           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   2127         Worklist.push_back(std::make_pair(Op0, Op1));
   2128 
   2129       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2130       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2131       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2132       // Since we don't have the instruction "A < B" immediately to hand, work out
   2133       // the value number that it would have and use that to find an appropriate
   2134       // instruction (if any).
   2135       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2136       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2137       // If the number we were assigned was brand new then there is no point in
   2138       // looking for an instruction realizing it: there cannot be one!
   2139       if (Num < NextNum) {
   2140         Value *NotCmp = findLeader(Root.getEnd(), Num);
   2141         if (NotCmp && isa<Instruction>(NotCmp)) {
   2142           unsigned NumReplacements =
   2143             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
   2144           Changed |= NumReplacements > 0;
   2145           NumGVNEqProp += NumReplacements;
   2146         }
   2147       }
   2148       // Ensure that any instruction in scope that gets the "A < B" value number
   2149       // is replaced with false.
   2150       // The leader table only tracks basic blocks, not edges. Only add to if we
   2151       // have the simple case where the edge dominates the end.
   2152       if (RootDominatesEnd)
   2153         addToLeaderTable(Num, NotVal, Root.getEnd());
   2154 
   2155       continue;
   2156     }
   2157   }
   2158 
   2159   return Changed;
   2160 }
   2161 
   2162 /// processInstruction - When calculating availability, handle an instruction
   2163 /// by inserting it into the appropriate sets
   2164 bool GVN::processInstruction(Instruction *I) {
   2165   // Ignore dbg info intrinsics.
   2166   if (isa<DbgInfoIntrinsic>(I))
   2167     return false;
   2168 
   2169   // If the instruction can be easily simplified then do so now in preference
   2170   // to value numbering it.  Value numbering often exposes redundancies, for
   2171   // example if it determines that %y is equal to %x then the instruction
   2172   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2173   if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
   2174     I->replaceAllUsesWith(V);
   2175     if (MD && V->getType()->getScalarType()->isPointerTy())
   2176       MD->invalidateCachedPointerInfo(V);
   2177     markInstructionForDeletion(I);
   2178     ++NumGVNSimpl;
   2179     return true;
   2180   }
   2181 
   2182   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2183     if (processLoad(LI))
   2184       return true;
   2185 
   2186     unsigned Num = VN.lookup_or_add(LI);
   2187     addToLeaderTable(Num, LI, LI->getParent());
   2188     return false;
   2189   }
   2190 
   2191   // For conditional branches, we can perform simple conditional propagation on
   2192   // the condition value itself.
   2193   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2194     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
   2195       return false;
   2196 
   2197     Value *BranchCond = BI->getCondition();
   2198 
   2199     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2200     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2201     // Avoid multiple edges early.
   2202     if (TrueSucc == FalseSucc)
   2203       return false;
   2204 
   2205     BasicBlock *Parent = BI->getParent();
   2206     bool Changed = false;
   2207 
   2208     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
   2209     BasicBlockEdge TrueE(Parent, TrueSucc);
   2210     Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
   2211 
   2212     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
   2213     BasicBlockEdge FalseE(Parent, FalseSucc);
   2214     Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
   2215 
   2216     return Changed;
   2217   }
   2218 
   2219   // For switches, propagate the case values into the case destinations.
   2220   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2221     Value *SwitchCond = SI->getCondition();
   2222     BasicBlock *Parent = SI->getParent();
   2223     bool Changed = false;
   2224 
   2225     // Remember how many outgoing edges there are to every successor.
   2226     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2227     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
   2228       ++SwitchEdges[SI->getSuccessor(i)];
   2229 
   2230     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2231          i != e; ++i) {
   2232       BasicBlock *Dst = i.getCaseSuccessor();
   2233       // If there is only a single edge, propagate the case value into it.
   2234       if (SwitchEdges.lookup(Dst) == 1) {
   2235         BasicBlockEdge E(Parent, Dst);
   2236         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
   2237       }
   2238     }
   2239     return Changed;
   2240   }
   2241 
   2242   // Instructions with void type don't return a value, so there's
   2243   // no point in trying to find redundancies in them.
   2244   if (I->getType()->isVoidTy()) return false;
   2245 
   2246   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2247   unsigned Num = VN.lookup_or_add(I);
   2248 
   2249   // Allocations are always uniquely numbered, so we can save time and memory
   2250   // by fast failing them.
   2251   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2252     addToLeaderTable(Num, I, I->getParent());
   2253     return false;
   2254   }
   2255 
   2256   // If the number we were assigned was a brand new VN, then we don't
   2257   // need to do a lookup to see if the number already exists
   2258   // somewhere in the domtree: it can't!
   2259   if (Num >= NextNum) {
   2260     addToLeaderTable(Num, I, I->getParent());
   2261     return false;
   2262   }
   2263 
   2264   // Perform fast-path value-number based elimination of values inherited from
   2265   // dominators.
   2266   Value *repl = findLeader(I->getParent(), Num);
   2267   if (repl == 0) {
   2268     // Failure, just remember this instance for future use.
   2269     addToLeaderTable(Num, I, I->getParent());
   2270     return false;
   2271   }
   2272 
   2273   // Remove it!
   2274   patchAndReplaceAllUsesWith(I, repl);
   2275   if (MD && repl->getType()->getScalarType()->isPointerTy())
   2276     MD->invalidateCachedPointerInfo(repl);
   2277   markInstructionForDeletion(I);
   2278   return true;
   2279 }
   2280 
   2281 /// runOnFunction - This is the main transformation entry point for a function.
   2282 bool GVN::runOnFunction(Function& F) {
   2283   if (!NoLoads)
   2284     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2285   DT = &getAnalysis<DominatorTree>();
   2286   TD = getAnalysisIfAvailable<DataLayout>();
   2287   TLI = &getAnalysis<TargetLibraryInfo>();
   2288   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   2289   VN.setMemDep(MD);
   2290   VN.setDomTree(DT);
   2291 
   2292   bool Changed = false;
   2293   bool ShouldContinue = true;
   2294 
   2295   // Merge unconditional branches, allowing PRE to catch more
   2296   // optimization opportunities.
   2297   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2298     BasicBlock *BB = FI++;
   2299 
   2300     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
   2301     if (removedBlock) ++NumGVNBlocks;
   2302 
   2303     Changed |= removedBlock;
   2304   }
   2305 
   2306   unsigned Iteration = 0;
   2307   while (ShouldContinue) {
   2308     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2309     ShouldContinue = iterateOnFunction(F);
   2310     Changed |= ShouldContinue;
   2311     ++Iteration;
   2312   }
   2313 
   2314   if (EnablePRE) {
   2315     bool PREChanged = true;
   2316     while (PREChanged) {
   2317       PREChanged = performPRE(F);
   2318       Changed |= PREChanged;
   2319     }
   2320   }
   2321 
   2322   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2323   // computations into blocks where they become fully redundant.  Note that
   2324   // we can't do this until PRE's critical edge splitting updates memdep.
   2325   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2326 
   2327   cleanupGlobalSets();
   2328 
   2329   return Changed;
   2330 }
   2331 
   2332 
   2333 bool GVN::processBlock(BasicBlock *BB) {
   2334   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2335   // (and incrementing BI before processing an instruction).
   2336   assert(InstrsToErase.empty() &&
   2337          "We expect InstrsToErase to be empty across iterations");
   2338   bool ChangedFunction = false;
   2339 
   2340   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2341        BI != BE;) {
   2342     ChangedFunction |= processInstruction(BI);
   2343     if (InstrsToErase.empty()) {
   2344       ++BI;
   2345       continue;
   2346     }
   2347 
   2348     // If we need some instructions deleted, do it now.
   2349     NumGVNInstr += InstrsToErase.size();
   2350 
   2351     // Avoid iterator invalidation.
   2352     bool AtStart = BI == BB->begin();
   2353     if (!AtStart)
   2354       --BI;
   2355 
   2356     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
   2357          E = InstrsToErase.end(); I != E; ++I) {
   2358       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2359       if (MD) MD->removeInstruction(*I);
   2360       DEBUG(verifyRemoved(*I));
   2361       (*I)->eraseFromParent();
   2362     }
   2363     InstrsToErase.clear();
   2364 
   2365     if (AtStart)
   2366       BI = BB->begin();
   2367     else
   2368       ++BI;
   2369   }
   2370 
   2371   return ChangedFunction;
   2372 }
   2373 
   2374 /// performPRE - Perform a purely local form of PRE that looks for diamond
   2375 /// control flow patterns and attempts to perform simple PRE at the join point.
   2376 bool GVN::performPRE(Function &F) {
   2377   bool Changed = false;
   2378   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
   2379   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
   2380        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
   2381     BasicBlock *CurrentBlock = *DI;
   2382 
   2383     // Nothing to PRE in the entry block.
   2384     if (CurrentBlock == &F.getEntryBlock()) continue;
   2385 
   2386     // Don't perform PRE on a landing pad.
   2387     if (CurrentBlock->isLandingPad()) continue;
   2388 
   2389     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2390          BE = CurrentBlock->end(); BI != BE; ) {
   2391       Instruction *CurInst = BI++;
   2392 
   2393       if (isa<AllocaInst>(CurInst) ||
   2394           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
   2395           CurInst->getType()->isVoidTy() ||
   2396           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2397           isa<DbgInfoIntrinsic>(CurInst))
   2398         continue;
   2399 
   2400       // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2401       // sinking the compare again, and it would force the code generator to
   2402       // move the i1 from processor flags or predicate registers into a general
   2403       // purpose register.
   2404       if (isa<CmpInst>(CurInst))
   2405         continue;
   2406 
   2407       // We don't currently value number ANY inline asm calls.
   2408       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2409         if (CallI->isInlineAsm())
   2410           continue;
   2411 
   2412       uint32_t ValNo = VN.lookup(CurInst);
   2413 
   2414       // Look for the predecessors for PRE opportunities.  We're
   2415       // only trying to solve the basic diamond case, where
   2416       // a value is computed in the successor and one predecessor,
   2417       // but not the other.  We also explicitly disallow cases
   2418       // where the successor is its own predecessor, because they're
   2419       // more complicated to get right.
   2420       unsigned NumWith = 0;
   2421       unsigned NumWithout = 0;
   2422       BasicBlock *PREPred = 0;
   2423       predMap.clear();
   2424 
   2425       for (pred_iterator PI = pred_begin(CurrentBlock),
   2426            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
   2427         BasicBlock *P = *PI;
   2428         // We're not interested in PRE where the block is its
   2429         // own predecessor, or in blocks with predecessors
   2430         // that are not reachable.
   2431         if (P == CurrentBlock) {
   2432           NumWithout = 2;
   2433           break;
   2434         } else if (!DT->isReachableFromEntry(P))  {
   2435           NumWithout = 2;
   2436           break;
   2437         }
   2438 
   2439         Value* predV = findLeader(P, ValNo);
   2440         if (predV == 0) {
   2441           predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
   2442           PREPred = P;
   2443           ++NumWithout;
   2444         } else if (predV == CurInst) {
   2445           /* CurInst dominates this predecessor. */
   2446           NumWithout = 2;
   2447           break;
   2448         } else {
   2449           predMap.push_back(std::make_pair(predV, P));
   2450           ++NumWith;
   2451         }
   2452       }
   2453 
   2454       // Don't do PRE when it might increase code size, i.e. when
   2455       // we would need to insert instructions in more than one pred.
   2456       if (NumWithout != 1 || NumWith == 0)
   2457         continue;
   2458 
   2459       // Don't do PRE across indirect branch.
   2460       if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2461         continue;
   2462 
   2463       // We can't do PRE safely on a critical edge, so instead we schedule
   2464       // the edge to be split and perform the PRE the next time we iterate
   2465       // on the function.
   2466       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2467       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2468         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2469         continue;
   2470       }
   2471 
   2472       // Instantiate the expression in the predecessor that lacked it.
   2473       // Because we are going top-down through the block, all value numbers
   2474       // will be available in the predecessor by the time we need them.  Any
   2475       // that weren't originally present will have been instantiated earlier
   2476       // in this loop.
   2477       Instruction *PREInstr = CurInst->clone();
   2478       bool success = true;
   2479       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
   2480         Value *Op = PREInstr->getOperand(i);
   2481         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2482           continue;
   2483 
   2484         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
   2485           PREInstr->setOperand(i, V);
   2486         } else {
   2487           success = false;
   2488           break;
   2489         }
   2490       }
   2491 
   2492       // Fail out if we encounter an operand that is not available in
   2493       // the PRE predecessor.  This is typically because of loads which
   2494       // are not value numbered precisely.
   2495       if (!success) {
   2496         DEBUG(verifyRemoved(PREInstr));
   2497         delete PREInstr;
   2498         continue;
   2499       }
   2500 
   2501       PREInstr->insertBefore(PREPred->getTerminator());
   2502       PREInstr->setName(CurInst->getName() + ".pre");
   2503       PREInstr->setDebugLoc(CurInst->getDebugLoc());
   2504       VN.add(PREInstr, ValNo);
   2505       ++NumGVNPRE;
   2506 
   2507       // Update the availability map to include the new instruction.
   2508       addToLeaderTable(ValNo, PREInstr, PREPred);
   2509 
   2510       // Create a PHI to make the value available in this block.
   2511       PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
   2512                                      CurInst->getName() + ".pre-phi",
   2513                                      CurrentBlock->begin());
   2514       for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
   2515         if (Value *V = predMap[i].first)
   2516           Phi->addIncoming(V, predMap[i].second);
   2517         else
   2518           Phi->addIncoming(PREInstr, PREPred);
   2519       }
   2520 
   2521       VN.add(Phi, ValNo);
   2522       addToLeaderTable(ValNo, Phi, CurrentBlock);
   2523       Phi->setDebugLoc(CurInst->getDebugLoc());
   2524       CurInst->replaceAllUsesWith(Phi);
   2525       if (Phi->getType()->getScalarType()->isPointerTy()) {
   2526         // Because we have added a PHI-use of the pointer value, it has now
   2527         // "escaped" from alias analysis' perspective.  We need to inform
   2528         // AA of this.
   2529         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
   2530              ++ii) {
   2531           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2532           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2533         }
   2534 
   2535         if (MD)
   2536           MD->invalidateCachedPointerInfo(Phi);
   2537       }
   2538       VN.erase(CurInst);
   2539       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2540 
   2541       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2542       if (MD) MD->removeInstruction(CurInst);
   2543       DEBUG(verifyRemoved(CurInst));
   2544       CurInst->eraseFromParent();
   2545       Changed = true;
   2546     }
   2547   }
   2548 
   2549   if (splitCriticalEdges())
   2550     Changed = true;
   2551 
   2552   return Changed;
   2553 }
   2554 
   2555 /// Split the critical edge connecting the given two blocks, and return
   2556 /// the block inserted to the critical edge.
   2557 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
   2558   BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
   2559   if (MD)
   2560     MD->invalidateCachedPredecessors();
   2561   return BB;
   2562 }
   2563 
   2564 /// splitCriticalEdges - Split critical edges found during the previous
   2565 /// iteration that may enable further optimization.
   2566 bool GVN::splitCriticalEdges() {
   2567   if (toSplit.empty())
   2568     return false;
   2569   do {
   2570     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2571     SplitCriticalEdge(Edge.first, Edge.second, this);
   2572   } while (!toSplit.empty());
   2573   if (MD) MD->invalidateCachedPredecessors();
   2574   return true;
   2575 }
   2576 
   2577 /// iterateOnFunction - Executes one iteration of GVN
   2578 bool GVN::iterateOnFunction(Function &F) {
   2579   cleanupGlobalSets();
   2580 
   2581   // Top-down walk of the dominator tree
   2582   bool Changed = false;
   2583 #if 0
   2584   // Needed for value numbering with phi construction to work.
   2585   ReversePostOrderTraversal<Function*> RPOT(&F);
   2586   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
   2587        RE = RPOT.end(); RI != RE; ++RI)
   2588     Changed |= processBlock(*RI);
   2589 #else
   2590   // Save the blocks this function have before transformation begins. GVN may
   2591   // split critical edge, and hence may invalidate the RPO/DT iterator.
   2592   //
   2593   std::vector<BasicBlock *> BBVect;
   2594   BBVect.reserve(256);
   2595   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
   2596        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
   2597     BBVect.push_back(DI->getBlock());
   2598 
   2599   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
   2600        I != E; I++)
   2601     Changed |= processBlock(*I);
   2602 #endif
   2603 
   2604   return Changed;
   2605 }
   2606 
   2607 void GVN::cleanupGlobalSets() {
   2608   VN.clear();
   2609   LeaderTable.clear();
   2610   TableAllocator.Reset();
   2611 }
   2612 
   2613 /// verifyRemoved - Verify that the specified instruction does not occur in our
   2614 /// internal data structures.
   2615 void GVN::verifyRemoved(const Instruction *Inst) const {
   2616   VN.verifyRemoved(Inst);
   2617 
   2618   // Walk through the value number scope to make sure the instruction isn't
   2619   // ferreted away in it.
   2620   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2621        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2622     const LeaderTableEntry *Node = &I->second;
   2623     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2624 
   2625     while (Node->Next) {
   2626       Node = Node->Next;
   2627       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2628     }
   2629   }
   2630 }
   2631