Home | History | Annotate | Download | only in output
      1 // Copyright 2010 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/output/gl_renderer.h"
      6 
      7 #include <algorithm>
      8 #include <limits>
      9 #include <set>
     10 #include <string>
     11 #include <vector>
     12 
     13 #include "base/debug/trace_event.h"
     14 #include "base/logging.h"
     15 #include "base/strings/string_split.h"
     16 #include "base/strings/string_util.h"
     17 #include "base/strings/stringprintf.h"
     18 #include "build/build_config.h"
     19 #include "cc/base/math_util.h"
     20 #include "cc/layers/video_layer_impl.h"
     21 #include "cc/output/compositor_frame.h"
     22 #include "cc/output/compositor_frame_metadata.h"
     23 #include "cc/output/context_provider.h"
     24 #include "cc/output/copy_output_request.h"
     25 #include "cc/output/geometry_binding.h"
     26 #include "cc/output/gl_frame_data.h"
     27 #include "cc/output/output_surface.h"
     28 #include "cc/output/render_surface_filters.h"
     29 #include "cc/quads/picture_draw_quad.h"
     30 #include "cc/quads/render_pass.h"
     31 #include "cc/quads/stream_video_draw_quad.h"
     32 #include "cc/quads/texture_draw_quad.h"
     33 #include "cc/resources/layer_quad.h"
     34 #include "cc/resources/scoped_resource.h"
     35 #include "cc/resources/texture_mailbox_deleter.h"
     36 #include "cc/trees/damage_tracker.h"
     37 #include "cc/trees/proxy.h"
     38 #include "cc/trees/single_thread_proxy.h"
     39 #include "gpu/GLES2/gl2extchromium.h"
     40 #include "gpu/command_buffer/client/context_support.h"
     41 #include "gpu/command_buffer/client/gles2_interface.h"
     42 #include "gpu/command_buffer/common/gpu_memory_allocation.h"
     43 #include "third_party/WebKit/public/platform/WebGraphicsContext3D.h"
     44 #include "third_party/khronos/GLES2/gl2.h"
     45 #include "third_party/khronos/GLES2/gl2ext.h"
     46 #include "third_party/skia/include/core/SkBitmap.h"
     47 #include "third_party/skia/include/core/SkColor.h"
     48 #include "third_party/skia/include/core/SkColorFilter.h"
     49 #include "third_party/skia/include/core/SkSurface.h"
     50 #include "third_party/skia/include/gpu/GrContext.h"
     51 #include "third_party/skia/include/gpu/GrTexture.h"
     52 #include "third_party/skia/include/gpu/SkGpuDevice.h"
     53 #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h"
     54 #include "third_party/skia/include/gpu/gl/GrGLInterface.h"
     55 #include "ui/gfx/quad_f.h"
     56 #include "ui/gfx/rect_conversions.h"
     57 
     58 using blink::WebGraphicsContext3D;
     59 using gpu::gles2::GLES2Interface;
     60 
     61 namespace cc {
     62 
     63 namespace {
     64 
     65 // TODO(epenner): This should probably be moved to output surface.
     66 //
     67 // This implements a simple fence based on client side swaps.
     68 // This is to isolate the ResourceProvider from 'frames' which
     69 // it shouldn't need to care about, while still allowing us to
     70 // enforce good texture recycling behavior strictly throughout
     71 // the compositor (don't recycle a texture while it's in use).
     72 class SimpleSwapFence : public ResourceProvider::Fence {
     73  public:
     74   SimpleSwapFence() : has_passed_(false) {}
     75   virtual bool HasPassed() OVERRIDE { return has_passed_; }
     76   void SetHasPassed() { has_passed_ = true; }
     77 
     78  private:
     79   virtual ~SimpleSwapFence() {}
     80   bool has_passed_;
     81 };
     82 
     83 bool NeedsIOSurfaceReadbackWorkaround() {
     84 #if defined(OS_MACOSX)
     85   // This isn't strictly required in DumpRenderTree-mode when Mesa is used,
     86   // but it doesn't seem to hurt.
     87   return true;
     88 #else
     89   return false;
     90 #endif
     91 }
     92 
     93 Float4 UVTransform(const TextureDrawQuad* quad) {
     94   gfx::PointF uv0 = quad->uv_top_left;
     95   gfx::PointF uv1 = quad->uv_bottom_right;
     96   Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
     97   if (quad->flipped) {
     98     xform.data[1] = 1.0f - xform.data[1];
     99     xform.data[3] = -xform.data[3];
    100   }
    101   return xform;
    102 }
    103 
    104 Float4 PremultipliedColor(SkColor color) {
    105   const float factor = 1.0f / 255.0f;
    106   const float alpha = SkColorGetA(color) * factor;
    107 
    108   Float4 result = {
    109       {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
    110        SkColorGetB(color) * factor * alpha, alpha}};
    111   return result;
    112 }
    113 
    114 SamplerType SamplerTypeFromTextureTarget(GLenum target) {
    115   switch (target) {
    116     case GL_TEXTURE_2D:
    117       return SamplerType2D;
    118     case GL_TEXTURE_RECTANGLE_ARB:
    119       return SamplerType2DRect;
    120     case GL_TEXTURE_EXTERNAL_OES:
    121       return SamplerTypeExternalOES;
    122     default:
    123       NOTREACHED();
    124       return SamplerType2D;
    125   }
    126 }
    127 
    128 // Smallest unit that impact anti-aliasing output. We use this to
    129 // determine when anti-aliasing is unnecessary.
    130 const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
    131 
    132 }  // anonymous namespace
    133 
    134 struct GLRenderer::PendingAsyncReadPixels {
    135   PendingAsyncReadPixels() : buffer(0) {}
    136 
    137   scoped_ptr<CopyOutputRequest> copy_request;
    138   base::CancelableClosure finished_read_pixels_callback;
    139   unsigned buffer;
    140 
    141  private:
    142   DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
    143 };
    144 
    145 scoped_ptr<GLRenderer> GLRenderer::Create(
    146     RendererClient* client,
    147     const LayerTreeSettings* settings,
    148     OutputSurface* output_surface,
    149     ResourceProvider* resource_provider,
    150     TextureMailboxDeleter* texture_mailbox_deleter,
    151     int highp_threshold_min) {
    152   return make_scoped_ptr(new GLRenderer(client,
    153                                         settings,
    154                                         output_surface,
    155                                         resource_provider,
    156                                         texture_mailbox_deleter,
    157                                         highp_threshold_min));
    158 }
    159 
    160 GLRenderer::GLRenderer(RendererClient* client,
    161                        const LayerTreeSettings* settings,
    162                        OutputSurface* output_surface,
    163                        ResourceProvider* resource_provider,
    164                        TextureMailboxDeleter* texture_mailbox_deleter,
    165                        int highp_threshold_min)
    166     : DirectRenderer(client, settings, output_surface, resource_provider),
    167       offscreen_framebuffer_id_(0),
    168       shared_geometry_quad_(gfx::RectF(-0.5f, -0.5f, 1.0f, 1.0f)),
    169       context_(output_surface->context_provider()->Context3d()),
    170       gl_(output_surface->context_provider()->ContextGL()),
    171       context_support_(output_surface->context_provider()->ContextSupport()),
    172       texture_mailbox_deleter_(texture_mailbox_deleter),
    173       is_backbuffer_discarded_(false),
    174       visible_(true),
    175       is_scissor_enabled_(false),
    176       scissor_rect_needs_reset_(true),
    177       stencil_shadow_(false),
    178       blend_shadow_(false),
    179       highp_threshold_min_(highp_threshold_min),
    180       highp_threshold_cache_(0),
    181       on_demand_tile_raster_resource_id_(0) {
    182   DCHECK(context_);
    183   DCHECK(context_support_);
    184 
    185   ContextProvider::Capabilities context_caps =
    186       output_surface_->context_provider()->ContextCapabilities();
    187 
    188   capabilities_.using_partial_swap =
    189       settings_->partial_swap_enabled && context_caps.post_sub_buffer;
    190 
    191   DCHECK(!context_caps.iosurface || context_caps.texture_rectangle);
    192 
    193   capabilities_.using_egl_image = context_caps.egl_image_external;
    194 
    195   capabilities_.max_texture_size = resource_provider_->max_texture_size();
    196   capabilities_.best_texture_format = resource_provider_->best_texture_format();
    197 
    198   // The updater can access textures while the GLRenderer is using them.
    199   capabilities_.allow_partial_texture_updates = true;
    200 
    201   // Check for texture fast paths. Currently we always use MO8 textures,
    202   // so we only need to avoid POT textures if we have an NPOT fast-path.
    203   capabilities_.avoid_pow2_textures = context_caps.fast_npot_mo8_textures;
    204 
    205   capabilities_.using_offscreen_context3d = true;
    206 
    207   capabilities_.using_map_image =
    208       settings_->use_map_image && context_caps.map_image;
    209 
    210   capabilities_.using_discard_framebuffer = context_caps.discard_framebuffer;
    211 
    212   InitializeSharedObjects();
    213 }
    214 
    215 GLRenderer::~GLRenderer() {
    216   while (!pending_async_read_pixels_.empty()) {
    217     PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back();
    218     pending_read->finished_read_pixels_callback.Cancel();
    219     pending_async_read_pixels_.pop_back();
    220   }
    221 
    222   CleanupSharedObjects();
    223 }
    224 
    225 const RendererCapabilitiesImpl& GLRenderer::Capabilities() const {
    226   return capabilities_;
    227 }
    228 
    229 WebGraphicsContext3D* GLRenderer::Context() { return context_; }
    230 
    231 void GLRenderer::DebugGLCall(GLES2Interface* gl,
    232                              const char* command,
    233                              const char* file,
    234                              int line) {
    235   GLuint error = gl->GetError();
    236   if (error != GL_NO_ERROR)
    237     LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line
    238                << "\n\tcommand: " << command << ", error "
    239                << static_cast<int>(error) << "\n";
    240 }
    241 
    242 void GLRenderer::SetVisible(bool visible) {
    243   if (visible_ == visible)
    244     return;
    245   visible_ = visible;
    246 
    247   EnforceMemoryPolicy();
    248 
    249   context_support_->SetSurfaceVisible(visible);
    250 }
    251 
    252 void GLRenderer::SendManagedMemoryStats(size_t bytes_visible,
    253                                         size_t bytes_visible_and_nearby,
    254                                         size_t bytes_allocated) {
    255   gpu::ManagedMemoryStats stats;
    256   stats.bytes_required = bytes_visible;
    257   stats.bytes_nice_to_have = bytes_visible_and_nearby;
    258   stats.bytes_allocated = bytes_allocated;
    259   stats.backbuffer_requested = !is_backbuffer_discarded_;
    260   context_support_->SendManagedMemoryStats(stats);
    261 }
    262 
    263 void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
    264 
    265 void GLRenderer::DiscardPixels(bool has_external_stencil_test,
    266                                bool draw_rect_covers_full_surface) {
    267   if (has_external_stencil_test || !draw_rect_covers_full_surface ||
    268       !capabilities_.using_discard_framebuffer)
    269     return;
    270   bool using_default_framebuffer =
    271       !current_framebuffer_lock_ &&
    272       output_surface_->capabilities().uses_default_gl_framebuffer;
    273   GLenum attachments[] = {static_cast<GLenum>(
    274       using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
    275   gl_->DiscardFramebufferEXT(
    276       GL_FRAMEBUFFER, arraysize(attachments), attachments);
    277 }
    278 
    279 void GLRenderer::ClearFramebuffer(DrawingFrame* frame,
    280                                   bool has_external_stencil_test) {
    281   // It's unsafe to clear when we have a stencil test because glClear ignores
    282   // stencil.
    283   if (has_external_stencil_test) {
    284     DCHECK(!frame->current_render_pass->has_transparent_background);
    285     return;
    286   }
    287 
    288   // On DEBUG builds, opaque render passes are cleared to blue to easily see
    289   // regions that were not drawn on the screen.
    290   if (frame->current_render_pass->has_transparent_background)
    291     GLC(gl_, gl_->ClearColor(0, 0, 0, 0));
    292   else
    293     GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
    294 
    295   bool always_clear = false;
    296 #ifndef NDEBUG
    297   always_clear = true;
    298 #endif
    299   if (always_clear || frame->current_render_pass->has_transparent_background) {
    300     GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
    301     if (always_clear)
    302       clear_bits |= GL_STENCIL_BUFFER_BIT;
    303     gl_->Clear(clear_bits);
    304   }
    305 }
    306 
    307 void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
    308   if (frame->device_viewport_rect.IsEmpty())
    309     return;
    310 
    311   TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
    312 
    313   // TODO(enne): Do we need to reinitialize all of this state per frame?
    314   ReinitializeGLState();
    315 }
    316 
    317 void GLRenderer::DoNoOp() {
    318   GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
    319   GLC(gl_, gl_->Flush());
    320 }
    321 
    322 void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) {
    323   DCHECK(quad->rect.Contains(quad->visible_rect));
    324   if (quad->material != DrawQuad::TEXTURE_CONTENT) {
    325     FlushTextureQuadCache();
    326   }
    327 
    328   switch (quad->material) {
    329     case DrawQuad::INVALID:
    330       NOTREACHED();
    331       break;
    332     case DrawQuad::CHECKERBOARD:
    333       DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad));
    334       break;
    335     case DrawQuad::DEBUG_BORDER:
    336       DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
    337       break;
    338     case DrawQuad::IO_SURFACE_CONTENT:
    339       DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad));
    340       break;
    341     case DrawQuad::PICTURE_CONTENT:
    342       DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad));
    343       break;
    344     case DrawQuad::RENDER_PASS:
    345       DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad));
    346       break;
    347     case DrawQuad::SOLID_COLOR:
    348       DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad));
    349       break;
    350     case DrawQuad::STREAM_VIDEO_CONTENT:
    351       DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad));
    352       break;
    353     case DrawQuad::TEXTURE_CONTENT:
    354       EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad));
    355       break;
    356     case DrawQuad::TILED_CONTENT:
    357       DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad));
    358       break;
    359     case DrawQuad::YUV_VIDEO_CONTENT:
    360       DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad));
    361       break;
    362   }
    363 }
    364 
    365 void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame,
    366                                       const CheckerboardDrawQuad* quad) {
    367   SetBlendEnabled(quad->ShouldDrawWithBlending());
    368 
    369   const TileCheckerboardProgram* program = GetTileCheckerboardProgram();
    370   DCHECK(program && (program->initialized() || IsContextLost()));
    371   SetUseProgram(program->program());
    372 
    373   SkColor color = quad->color;
    374   GLC(gl_,
    375       gl_->Uniform4f(program->fragment_shader().color_location(),
    376                      SkColorGetR(color) * (1.0f / 255.0f),
    377                      SkColorGetG(color) * (1.0f / 255.0f),
    378                      SkColorGetB(color) * (1.0f / 255.0f),
    379                      1));
    380 
    381   const int checkerboard_width = 16;
    382   float frequency = 1.0f / checkerboard_width;
    383 
    384   gfx::Rect tile_rect = quad->rect;
    385   float tex_offset_x = tile_rect.x() % checkerboard_width;
    386   float tex_offset_y = tile_rect.y() % checkerboard_width;
    387   float tex_scale_x = tile_rect.width();
    388   float tex_scale_y = tile_rect.height();
    389   GLC(gl_,
    390       gl_->Uniform4f(program->fragment_shader().tex_transform_location(),
    391                      tex_offset_x,
    392                      tex_offset_y,
    393                      tex_scale_x,
    394                      tex_scale_y));
    395 
    396   GLC(gl_,
    397       gl_->Uniform1f(program->fragment_shader().frequency_location(),
    398                      frequency));
    399 
    400   SetShaderOpacity(quad->opacity(),
    401                    program->fragment_shader().alpha_location());
    402   DrawQuadGeometry(frame,
    403                    quad->quadTransform(),
    404                    quad->rect,
    405                    program->vertex_shader().matrix_location());
    406 }
    407 
    408 void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
    409                                      const DebugBorderDrawQuad* quad) {
    410   SetBlendEnabled(quad->ShouldDrawWithBlending());
    411 
    412   static float gl_matrix[16];
    413   const DebugBorderProgram* program = GetDebugBorderProgram();
    414   DCHECK(program && (program->initialized() || IsContextLost()));
    415   SetUseProgram(program->program());
    416 
    417   // Use the full quad_rect for debug quads to not move the edges based on
    418   // partial swaps.
    419   gfx::Rect layer_rect = quad->rect;
    420   gfx::Transform render_matrix = quad->quadTransform();
    421   render_matrix.Translate(0.5f * layer_rect.width() + layer_rect.x(),
    422                           0.5f * layer_rect.height() + layer_rect.y());
    423   render_matrix.Scale(layer_rect.width(), layer_rect.height());
    424   GLRenderer::ToGLMatrix(&gl_matrix[0],
    425                          frame->projection_matrix * render_matrix);
    426   GLC(gl_,
    427       gl_->UniformMatrix4fv(
    428           program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]));
    429 
    430   SkColor color = quad->color;
    431   float alpha = SkColorGetA(color) * (1.0f / 255.0f);
    432 
    433   GLC(gl_,
    434       gl_->Uniform4f(program->fragment_shader().color_location(),
    435                      (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
    436                      (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
    437                      (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
    438                      alpha));
    439 
    440   GLC(gl_, gl_->LineWidth(quad->width));
    441 
    442   // The indices for the line are stored in the same array as the triangle
    443   // indices.
    444   GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0));
    445 }
    446 
    447 static SkBitmap ApplyImageFilter(GLRenderer* renderer,
    448                                  ContextProvider* offscreen_contexts,
    449                                  gfx::Point origin,
    450                                  SkImageFilter* filter,
    451                                  ScopedResource* source_texture_resource) {
    452   if (!filter)
    453     return SkBitmap();
    454 
    455   if (!offscreen_contexts || !offscreen_contexts->GrContext())
    456     return SkBitmap();
    457 
    458   ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(),
    459                                            source_texture_resource->id());
    460 
    461   // Flush the compositor context to ensure that textures there are available
    462   // in the shared context.  Do this after locking/creating the compositor
    463   // texture.
    464   renderer->resource_provider()->Flush();
    465 
    466   // Make sure skia uses the correct GL context.
    467   offscreen_contexts->MakeGrContextCurrent();
    468 
    469   // Wrap the source texture in a Ganesh platform texture.
    470   GrBackendTextureDesc backend_texture_description;
    471   backend_texture_description.fWidth = source_texture_resource->size().width();
    472   backend_texture_description.fHeight =
    473       source_texture_resource->size().height();
    474   backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
    475   backend_texture_description.fTextureHandle = lock.texture_id();
    476   backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
    477   skia::RefPtr<GrTexture> texture =
    478       skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
    479           backend_texture_description));
    480 
    481   SkImageInfo info = {
    482     source_texture_resource->size().width(),
    483     source_texture_resource->size().height(),
    484     kPMColor_SkColorType,
    485     kPremul_SkAlphaType
    486   };
    487   // Place the platform texture inside an SkBitmap.
    488   SkBitmap source;
    489   source.setConfig(info);
    490   skia::RefPtr<SkGrPixelRef> pixel_ref =
    491       skia::AdoptRef(new SkGrPixelRef(info, texture.get()));
    492   source.setPixelRef(pixel_ref.get());
    493 
    494   // Create a scratch texture for backing store.
    495   GrTextureDesc desc;
    496   desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
    497   desc.fSampleCnt = 0;
    498   desc.fWidth = source.width();
    499   desc.fHeight = source.height();
    500   desc.fConfig = kSkia8888_GrPixelConfig;
    501   desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
    502   GrAutoScratchTexture scratch_texture(
    503       offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
    504   skia::RefPtr<GrTexture> backing_store =
    505       skia::AdoptRef(scratch_texture.detach());
    506 
    507   // Create a device and canvas using that backing store.
    508   SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
    509   SkCanvas canvas(&device);
    510 
    511   // Draw the source bitmap through the filter to the canvas.
    512   SkPaint paint;
    513   paint.setImageFilter(filter);
    514   canvas.clear(SK_ColorTRANSPARENT);
    515 
    516   // TODO(senorblanco): in addition to the origin translation here, the canvas
    517   // should also be scaled to accomodate device pixel ratio and pinch zoom. See
    518   // crbug.com/281516 and crbug.com/281518.
    519   canvas.translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y()));
    520   canvas.drawSprite(source, 0, 0, &paint);
    521 
    522   // Flush skia context so that all the rendered stuff appears on the
    523   // texture.
    524   offscreen_contexts->GrContext()->flush();
    525 
    526   // Flush the GL context so rendering results from this context are
    527   // visible in the compositor's context.
    528   offscreen_contexts->Context3d()->flush();
    529 
    530   return device.accessBitmap(false);
    531 }
    532 
    533 static SkBitmap ApplyBlendModeWithBackdrop(
    534     GLRenderer* renderer,
    535     ContextProvider* offscreen_contexts,
    536     SkBitmap source_bitmap_with_filters,
    537     ScopedResource* source_texture_resource,
    538     ScopedResource* background_texture_resource,
    539     SkXfermode::Mode blend_mode) {
    540   if (!offscreen_contexts || !offscreen_contexts->GrContext())
    541     return source_bitmap_with_filters;
    542 
    543   DCHECK(background_texture_resource);
    544   DCHECK(source_texture_resource);
    545 
    546   gfx::Size source_size = source_texture_resource->size();
    547   gfx::Size background_size = background_texture_resource->size();
    548 
    549   DCHECK_LE(background_size.width(), source_size.width());
    550   DCHECK_LE(background_size.height(), source_size.height());
    551 
    552   int source_texture_with_filters_id;
    553   scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
    554   if (source_bitmap_with_filters.getTexture()) {
    555     DCHECK_EQ(source_size.width(), source_bitmap_with_filters.width());
    556     DCHECK_EQ(source_size.height(), source_bitmap_with_filters.height());
    557     GrTexture* texture =
    558         reinterpret_cast<GrTexture*>(source_bitmap_with_filters.getTexture());
    559     source_texture_with_filters_id = texture->getTextureHandle();
    560   } else {
    561     lock.reset(new ResourceProvider::ScopedReadLockGL(
    562         renderer->resource_provider(), source_texture_resource->id()));
    563     source_texture_with_filters_id = lock->texture_id();
    564   }
    565 
    566   ResourceProvider::ScopedReadLockGL lock_background(
    567       renderer->resource_provider(), background_texture_resource->id());
    568 
    569   // Flush the compositor context to ensure that textures there are available
    570   // in the shared context.  Do this after locking/creating the compositor
    571   // texture.
    572   renderer->resource_provider()->Flush();
    573 
    574   // Make sure skia uses the correct GL context.
    575   offscreen_contexts->MakeGrContextCurrent();
    576 
    577   // Wrap the source texture in a Ganesh platform texture.
    578   GrBackendTextureDesc backend_texture_description;
    579   backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
    580   backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
    581 
    582   backend_texture_description.fWidth = source_size.width();
    583   backend_texture_description.fHeight = source_size.height();
    584   backend_texture_description.fTextureHandle = source_texture_with_filters_id;
    585   skia::RefPtr<GrTexture> source_texture =
    586       skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
    587           backend_texture_description));
    588 
    589   backend_texture_description.fWidth = background_size.width();
    590   backend_texture_description.fHeight = background_size.height();
    591   backend_texture_description.fTextureHandle = lock_background.texture_id();
    592   skia::RefPtr<GrTexture> background_texture =
    593       skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
    594           backend_texture_description));
    595 
    596   SkImageInfo source_info = {
    597     source_size.width(),
    598     source_size.height(),
    599     kPMColor_SkColorType,
    600     kPremul_SkAlphaType
    601   };
    602   // Place the platform texture inside an SkBitmap.
    603   SkBitmap source;
    604   source.setConfig(source_info);
    605   skia::RefPtr<SkGrPixelRef> source_pixel_ref =
    606       skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get()));
    607   source.setPixelRef(source_pixel_ref.get());
    608 
    609   SkImageInfo background_info = {
    610     background_size.width(),
    611     background_size.height(),
    612     kPMColor_SkColorType,
    613     kPremul_SkAlphaType
    614   };
    615 
    616   SkBitmap background;
    617   background.setConfig(background_info);
    618   skia::RefPtr<SkGrPixelRef> background_pixel_ref =
    619       skia::AdoptRef(new SkGrPixelRef(
    620           background_info, background_texture.get()));
    621   background.setPixelRef(background_pixel_ref.get());
    622 
    623   // Create a scratch texture for backing store.
    624   GrTextureDesc desc;
    625   desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
    626   desc.fSampleCnt = 0;
    627   desc.fWidth = source.width();
    628   desc.fHeight = source.height();
    629   desc.fConfig = kSkia8888_GrPixelConfig;
    630   desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
    631   GrAutoScratchTexture scratch_texture(
    632       offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
    633   skia::RefPtr<GrTexture> backing_store =
    634       skia::AdoptRef(scratch_texture.detach());
    635 
    636   // Create a device and canvas using that backing store.
    637   SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
    638   SkCanvas canvas(&device);
    639 
    640   // Draw the source bitmap through the filter to the canvas.
    641   canvas.clear(SK_ColorTRANSPARENT);
    642   canvas.drawSprite(background, 0, 0);
    643   SkPaint paint;
    644   paint.setXfermodeMode(blend_mode);
    645   canvas.drawSprite(source, 0, 0, &paint);
    646 
    647   // Flush skia context so that all the rendered stuff appears on the
    648   // texture.
    649   offscreen_contexts->GrContext()->flush();
    650 
    651   // Flush the GL context so rendering results from this context are
    652   // visible in the compositor's context.
    653   offscreen_contexts->Context3d()->flush();
    654 
    655   return device.accessBitmap(false);
    656 }
    657 
    658 scoped_ptr<ScopedResource> GLRenderer::GetBackgroundWithFilters(
    659     DrawingFrame* frame,
    660     const RenderPassDrawQuad* quad,
    661     const gfx::Transform& contents_device_transform,
    662     const gfx::Transform& contents_device_transform_inverse,
    663     bool* background_changed) {
    664   // This method draws a background filter, which applies a filter to any pixels
    665   // behind the quad and seen through its background.  The algorithm works as
    666   // follows:
    667   // 1. Compute a bounding box around the pixels that will be visible through
    668   // the quad.
    669   // 2. Read the pixels in the bounding box into a buffer R.
    670   // 3. Apply the background filter to R, so that it is applied in the pixels'
    671   // coordinate space.
    672   // 4. Apply the quad's inverse transform to map the pixels in R into the
    673   // quad's content space. This implicitly clips R by the content bounds of the
    674   // quad since the destination texture has bounds matching the quad's content.
    675   // 5. Draw the background texture for the contents using the same transform as
    676   // used to draw the contents itself. This is done without blending to replace
    677   // the current background pixels with the new filtered background.
    678   // 6. Draw the contents of the quad over drop of the new background with
    679   // blending, as per usual. The filtered background pixels will show through
    680   // any non-opaque pixels in this draws.
    681   //
    682   // Pixel copies in this algorithm occur at steps 2, 3, 4, and 5.
    683 
    684   // TODO(danakj): When this algorithm changes, update
    685   // LayerTreeHost::PrioritizeTextures() accordingly.
    686 
    687   // TODO(danakj): We only allow background filters on an opaque render surface
    688   // because other surfaces may contain translucent pixels, and the contents
    689   // behind those translucent pixels wouldn't have the filter applied.
    690   bool apply_background_filters =
    691       !frame->current_render_pass->has_transparent_background;
    692   DCHECK(!frame->current_texture);
    693 
    694   // TODO(ajuma): Add support for reference filters once
    695   // FilterOperations::GetOutsets supports reference filters.
    696   if (apply_background_filters && quad->background_filters.HasReferenceFilter())
    697     apply_background_filters = false;
    698 
    699   // TODO(danakj): Do a single readback for both the surface and replica and
    700   // cache the filtered results (once filter textures are not reused).
    701   gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
    702       contents_device_transform, SharedGeometryQuad().BoundingBox()));
    703 
    704   int top, right, bottom, left;
    705   quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
    706   window_rect.Inset(-left, -top, -right, -bottom);
    707 
    708   window_rect.Intersect(
    709       MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect));
    710 
    711   scoped_ptr<ScopedResource> device_background_texture =
    712       ScopedResource::Create(resource_provider_);
    713   // The TextureUsageFramebuffer hint makes ResourceProvider avoid immutable
    714   // storage allocation (texStorage2DEXT) for this texture. copyTexImage2D fails
    715   // when called on a texture having immutable storage.
    716   device_background_texture->Allocate(
    717       window_rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
    718   {
    719     ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
    720                                              device_background_texture->id());
    721     GetFramebufferTexture(
    722         lock.texture_id(), device_background_texture->format(), window_rect);
    723   }
    724 
    725   skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
    726       quad->background_filters, device_background_texture->size());
    727 
    728   SkBitmap filtered_device_background;
    729   if (apply_background_filters) {
    730     filtered_device_background =
    731         ApplyImageFilter(this,
    732                          frame->offscreen_context_provider,
    733                          quad->rect.origin(),
    734                          filter.get(),
    735                          device_background_texture.get());
    736   }
    737   *background_changed = (filtered_device_background.getTexture() != NULL);
    738 
    739   int filtered_device_background_texture_id = 0;
    740   scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
    741   if (filtered_device_background.getTexture()) {
    742     GrTexture* texture =
    743         reinterpret_cast<GrTexture*>(filtered_device_background.getTexture());
    744     filtered_device_background_texture_id = texture->getTextureHandle();
    745   } else {
    746     lock.reset(new ResourceProvider::ScopedReadLockGL(
    747         resource_provider_, device_background_texture->id()));
    748     filtered_device_background_texture_id = lock->texture_id();
    749   }
    750 
    751   scoped_ptr<ScopedResource> background_texture =
    752       ScopedResource::Create(resource_provider_);
    753   background_texture->Allocate(
    754       quad->rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
    755 
    756   const RenderPass* target_render_pass = frame->current_render_pass;
    757   bool using_background_texture =
    758       UseScopedTexture(frame, background_texture.get(), quad->rect);
    759 
    760   if (using_background_texture) {
    761     // Copy the readback pixels from device to the background texture for the
    762     // surface.
    763     gfx::Transform device_to_framebuffer_transform;
    764     device_to_framebuffer_transform.Translate(
    765         quad->rect.width() * 0.5f + quad->rect.x(),
    766         quad->rect.height() * 0.5f + quad->rect.y());
    767     device_to_framebuffer_transform.Scale(quad->rect.width(),
    768                                           quad->rect.height());
    769     device_to_framebuffer_transform.PreconcatTransform(
    770         contents_device_transform_inverse);
    771 
    772 #ifndef NDEBUG
    773     GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
    774     gl_->Clear(GL_COLOR_BUFFER_BIT);
    775 #endif
    776 
    777     // The filtered_deveice_background_texture is oriented the same as the frame
    778     // buffer. The transform we are copying with has a vertical flip, as well as
    779     // the |device_to_framebuffer_transform|, which cancel each other out. So do
    780     // not flip the contents in the shader to maintain orientation.
    781     bool flip_vertically = false;
    782 
    783     CopyTextureToFramebuffer(frame,
    784                              filtered_device_background_texture_id,
    785                              window_rect,
    786                              device_to_framebuffer_transform,
    787                              flip_vertically);
    788   }
    789 
    790   UseRenderPass(frame, target_render_pass);
    791 
    792   if (!using_background_texture)
    793     return scoped_ptr<ScopedResource>();
    794   return background_texture.Pass();
    795 }
    796 
    797 void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
    798                                     const RenderPassDrawQuad* quad) {
    799   SetBlendEnabled(quad->ShouldDrawWithBlending());
    800 
    801   ScopedResource* contents_texture =
    802       render_pass_textures_.get(quad->render_pass_id);
    803   if (!contents_texture || !contents_texture->id())
    804     return;
    805 
    806   gfx::Transform quad_rect_matrix;
    807   QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
    808   gfx::Transform contents_device_transform =
    809       frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
    810   contents_device_transform.FlattenTo2d();
    811 
    812   // Can only draw surface if device matrix is invertible.
    813   gfx::Transform contents_device_transform_inverse(
    814       gfx::Transform::kSkipInitialization);
    815   if (!contents_device_transform.GetInverse(&contents_device_transform_inverse))
    816     return;
    817 
    818   bool need_background_texture =
    819       quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode ||
    820       !quad->background_filters.IsEmpty();
    821   bool background_changed = false;
    822   scoped_ptr<ScopedResource> background_texture;
    823   if (need_background_texture) {
    824     // The pixels from the filtered background should completely replace the
    825     // current pixel values.
    826     bool disable_blending = blend_enabled();
    827     if (disable_blending)
    828       SetBlendEnabled(false);
    829 
    830     background_texture =
    831         GetBackgroundWithFilters(frame,
    832                                  quad,
    833                                  contents_device_transform,
    834                                  contents_device_transform_inverse,
    835                                  &background_changed);
    836 
    837     if (disable_blending)
    838       SetBlendEnabled(true);
    839   }
    840 
    841   // TODO(senorblanco): Cache this value so that we don't have to do it for both
    842   // the surface and its replica.  Apply filters to the contents texture.
    843   SkBitmap filter_bitmap;
    844   SkScalar color_matrix[20];
    845   bool use_color_matrix = false;
    846   // TODO(ajuma): Always use RenderSurfaceFilters::BuildImageFilter, not just
    847   // when we have a reference filter.
    848   if (!quad->filters.IsEmpty()) {
    849     skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
    850         quad->filters, contents_texture->size());
    851     if (filter) {
    852       skia::RefPtr<SkColorFilter> cf;
    853 
    854       {
    855         SkColorFilter* colorfilter_rawptr = NULL;
    856         filter->asColorFilter(&colorfilter_rawptr);
    857         cf = skia::AdoptRef(colorfilter_rawptr);
    858       }
    859 
    860       if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
    861         // We have a single color matrix as a filter; apply it locally
    862         // in the compositor.
    863         use_color_matrix = true;
    864       } else {
    865         filter_bitmap = ApplyImageFilter(this,
    866                                          frame->offscreen_context_provider,
    867                                          quad->rect.origin(),
    868                                          filter.get(),
    869                                          contents_texture);
    870       }
    871     }
    872   }
    873 
    874   if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode &&
    875       background_texture) {
    876     filter_bitmap =
    877         ApplyBlendModeWithBackdrop(this,
    878                                    frame->offscreen_context_provider,
    879                                    filter_bitmap,
    880                                    contents_texture,
    881                                    background_texture.get(),
    882                                    quad->shared_quad_state->blend_mode);
    883   }
    884 
    885   // Draw the background texture if it has some filters applied.
    886   if (background_texture && background_changed) {
    887     DCHECK(background_texture->size() == quad->rect.size());
    888     ResourceProvider::ScopedReadLockGL lock(resource_provider_,
    889                                             background_texture->id());
    890 
    891     // The background_texture is oriented the same as the frame buffer. The
    892     // transform we are copying with has a vertical flip, so flip the contents
    893     // in the shader to maintain orientation
    894     bool flip_vertically = true;
    895 
    896     CopyTextureToFramebuffer(frame,
    897                              lock.texture_id(),
    898                              quad->rect,
    899                              quad->quadTransform(),
    900                              flip_vertically);
    901   }
    902 
    903   bool clipped = false;
    904   gfx::QuadF device_quad = MathUtil::MapQuad(
    905       contents_device_transform, SharedGeometryQuad(), &clipped);
    906   LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox()));
    907   LayerQuad device_layer_edges(device_quad);
    908 
    909   // Use anti-aliasing programs only when necessary.
    910   bool use_aa =
    911       !clipped && (!device_quad.IsRectilinear() ||
    912                    !gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(),
    913                                                      kAntiAliasingEpsilon));
    914   if (use_aa) {
    915     device_layer_bounds.InflateAntiAliasingDistance();
    916     device_layer_edges.InflateAntiAliasingDistance();
    917   }
    918 
    919   scoped_ptr<ResourceProvider::ScopedReadLockGL> mask_resource_lock;
    920   unsigned mask_texture_id = 0;
    921   if (quad->mask_resource_id) {
    922     mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL(
    923         resource_provider_, quad->mask_resource_id));
    924     mask_texture_id = mask_resource_lock->texture_id();
    925   }
    926 
    927   // TODO(danakj): use the background_texture and blend the background in with
    928   // this draw instead of having a separate copy of the background texture.
    929 
    930   scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
    931   if (filter_bitmap.getTexture()) {
    932     GrTexture* texture =
    933         reinterpret_cast<GrTexture*>(filter_bitmap.getTexture());
    934     DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
    935     gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle());
    936   } else {
    937     contents_resource_lock =
    938         make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
    939             resource_provider_, contents_texture->id(), GL_LINEAR));
    940     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
    941               contents_resource_lock->target());
    942   }
    943 
    944   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
    945       gl_,
    946       &highp_threshold_cache_,
    947       highp_threshold_min_,
    948       quad->shared_quad_state->visible_content_rect.bottom_right());
    949 
    950   int shader_quad_location = -1;
    951   int shader_edge_location = -1;
    952   int shader_viewport_location = -1;
    953   int shader_mask_sampler_location = -1;
    954   int shader_mask_tex_coord_scale_location = -1;
    955   int shader_mask_tex_coord_offset_location = -1;
    956   int shader_matrix_location = -1;
    957   int shader_alpha_location = -1;
    958   int shader_color_matrix_location = -1;
    959   int shader_color_offset_location = -1;
    960   int shader_tex_transform_location = -1;
    961 
    962   if (use_aa && mask_texture_id && !use_color_matrix) {
    963     const RenderPassMaskProgramAA* program =
    964         GetRenderPassMaskProgramAA(tex_coord_precision);
    965     SetUseProgram(program->program());
    966     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
    967 
    968     shader_quad_location = program->vertex_shader().quad_location();
    969     shader_edge_location = program->vertex_shader().edge_location();
    970     shader_viewport_location = program->vertex_shader().viewport_location();
    971     shader_mask_sampler_location =
    972         program->fragment_shader().mask_sampler_location();
    973     shader_mask_tex_coord_scale_location =
    974         program->fragment_shader().mask_tex_coord_scale_location();
    975     shader_mask_tex_coord_offset_location =
    976         program->fragment_shader().mask_tex_coord_offset_location();
    977     shader_matrix_location = program->vertex_shader().matrix_location();
    978     shader_alpha_location = program->fragment_shader().alpha_location();
    979     shader_tex_transform_location =
    980         program->vertex_shader().tex_transform_location();
    981   } else if (!use_aa && mask_texture_id && !use_color_matrix) {
    982     const RenderPassMaskProgram* program =
    983         GetRenderPassMaskProgram(tex_coord_precision);
    984     SetUseProgram(program->program());
    985     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
    986 
    987     shader_mask_sampler_location =
    988         program->fragment_shader().mask_sampler_location();
    989     shader_mask_tex_coord_scale_location =
    990         program->fragment_shader().mask_tex_coord_scale_location();
    991     shader_mask_tex_coord_offset_location =
    992         program->fragment_shader().mask_tex_coord_offset_location();
    993     shader_matrix_location = program->vertex_shader().matrix_location();
    994     shader_alpha_location = program->fragment_shader().alpha_location();
    995     shader_tex_transform_location =
    996         program->vertex_shader().tex_transform_location();
    997   } else if (use_aa && !mask_texture_id && !use_color_matrix) {
    998     const RenderPassProgramAA* program =
    999         GetRenderPassProgramAA(tex_coord_precision);
   1000     SetUseProgram(program->program());
   1001     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1002 
   1003     shader_quad_location = program->vertex_shader().quad_location();
   1004     shader_edge_location = program->vertex_shader().edge_location();
   1005     shader_viewport_location = program->vertex_shader().viewport_location();
   1006     shader_matrix_location = program->vertex_shader().matrix_location();
   1007     shader_alpha_location = program->fragment_shader().alpha_location();
   1008     shader_tex_transform_location =
   1009         program->vertex_shader().tex_transform_location();
   1010   } else if (use_aa && mask_texture_id && use_color_matrix) {
   1011     const RenderPassMaskColorMatrixProgramAA* program =
   1012         GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision);
   1013     SetUseProgram(program->program());
   1014     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1015 
   1016     shader_matrix_location = program->vertex_shader().matrix_location();
   1017     shader_quad_location = program->vertex_shader().quad_location();
   1018     shader_tex_transform_location =
   1019         program->vertex_shader().tex_transform_location();
   1020     shader_edge_location = program->vertex_shader().edge_location();
   1021     shader_viewport_location = program->vertex_shader().viewport_location();
   1022     shader_alpha_location = program->fragment_shader().alpha_location();
   1023     shader_mask_sampler_location =
   1024         program->fragment_shader().mask_sampler_location();
   1025     shader_mask_tex_coord_scale_location =
   1026         program->fragment_shader().mask_tex_coord_scale_location();
   1027     shader_mask_tex_coord_offset_location =
   1028         program->fragment_shader().mask_tex_coord_offset_location();
   1029     shader_color_matrix_location =
   1030         program->fragment_shader().color_matrix_location();
   1031     shader_color_offset_location =
   1032         program->fragment_shader().color_offset_location();
   1033   } else if (use_aa && !mask_texture_id && use_color_matrix) {
   1034     const RenderPassColorMatrixProgramAA* program =
   1035         GetRenderPassColorMatrixProgramAA(tex_coord_precision);
   1036     SetUseProgram(program->program());
   1037     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1038 
   1039     shader_matrix_location = program->vertex_shader().matrix_location();
   1040     shader_quad_location = program->vertex_shader().quad_location();
   1041     shader_tex_transform_location =
   1042         program->vertex_shader().tex_transform_location();
   1043     shader_edge_location = program->vertex_shader().edge_location();
   1044     shader_viewport_location = program->vertex_shader().viewport_location();
   1045     shader_alpha_location = program->fragment_shader().alpha_location();
   1046     shader_color_matrix_location =
   1047         program->fragment_shader().color_matrix_location();
   1048     shader_color_offset_location =
   1049         program->fragment_shader().color_offset_location();
   1050   } else if (!use_aa && mask_texture_id && use_color_matrix) {
   1051     const RenderPassMaskColorMatrixProgram* program =
   1052         GetRenderPassMaskColorMatrixProgram(tex_coord_precision);
   1053     SetUseProgram(program->program());
   1054     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1055 
   1056     shader_matrix_location = program->vertex_shader().matrix_location();
   1057     shader_tex_transform_location =
   1058         program->vertex_shader().tex_transform_location();
   1059     shader_mask_sampler_location =
   1060         program->fragment_shader().mask_sampler_location();
   1061     shader_mask_tex_coord_scale_location =
   1062         program->fragment_shader().mask_tex_coord_scale_location();
   1063     shader_mask_tex_coord_offset_location =
   1064         program->fragment_shader().mask_tex_coord_offset_location();
   1065     shader_alpha_location = program->fragment_shader().alpha_location();
   1066     shader_color_matrix_location =
   1067         program->fragment_shader().color_matrix_location();
   1068     shader_color_offset_location =
   1069         program->fragment_shader().color_offset_location();
   1070   } else if (!use_aa && !mask_texture_id && use_color_matrix) {
   1071     const RenderPassColorMatrixProgram* program =
   1072         GetRenderPassColorMatrixProgram(tex_coord_precision);
   1073     SetUseProgram(program->program());
   1074     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1075 
   1076     shader_matrix_location = program->vertex_shader().matrix_location();
   1077     shader_tex_transform_location =
   1078         program->vertex_shader().tex_transform_location();
   1079     shader_alpha_location = program->fragment_shader().alpha_location();
   1080     shader_color_matrix_location =
   1081         program->fragment_shader().color_matrix_location();
   1082     shader_color_offset_location =
   1083         program->fragment_shader().color_offset_location();
   1084   } else {
   1085     const RenderPassProgram* program =
   1086         GetRenderPassProgram(tex_coord_precision);
   1087     SetUseProgram(program->program());
   1088     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1089 
   1090     shader_matrix_location = program->vertex_shader().matrix_location();
   1091     shader_alpha_location = program->fragment_shader().alpha_location();
   1092     shader_tex_transform_location =
   1093         program->vertex_shader().tex_transform_location();
   1094   }
   1095   float tex_scale_x =
   1096       quad->rect.width() / static_cast<float>(contents_texture->size().width());
   1097   float tex_scale_y = quad->rect.height() /
   1098                       static_cast<float>(contents_texture->size().height());
   1099   DCHECK_LE(tex_scale_x, 1.0f);
   1100   DCHECK_LE(tex_scale_y, 1.0f);
   1101 
   1102   DCHECK(shader_tex_transform_location != -1 || IsContextLost());
   1103   // Flip the content vertically in the shader, as the RenderPass input
   1104   // texture is already oriented the same way as the framebuffer, but the
   1105   // projection transform does a flip.
   1106   GLC(gl_,
   1107       gl_->Uniform4f(shader_tex_transform_location,
   1108                      0.0f,
   1109                      tex_scale_y,
   1110                      tex_scale_x,
   1111                      -tex_scale_y));
   1112 
   1113   scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_mask_sampler_lock;
   1114   if (shader_mask_sampler_location != -1) {
   1115     DCHECK_NE(shader_mask_tex_coord_scale_location, 1);
   1116     DCHECK_NE(shader_mask_tex_coord_offset_location, 1);
   1117     GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1));
   1118 
   1119     float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x;
   1120     float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y;
   1121 
   1122     // Mask textures are oriented vertically flipped relative to the framebuffer
   1123     // and the RenderPass contents texture, so we flip the tex coords from the
   1124     // RenderPass texture to find the mask texture coords.
   1125     GLC(gl_,
   1126         gl_->Uniform2f(shader_mask_tex_coord_offset_location,
   1127                        quad->mask_uv_rect.x(),
   1128                        quad->mask_uv_rect.y() + quad->mask_uv_rect.height()));
   1129     GLC(gl_,
   1130         gl_->Uniform2f(shader_mask_tex_coord_scale_location,
   1131                        mask_tex_scale_x,
   1132                        -mask_tex_scale_y));
   1133     shader_mask_sampler_lock = make_scoped_ptr(
   1134         new ResourceProvider::ScopedSamplerGL(resource_provider_,
   1135                                               quad->mask_resource_id,
   1136                                               GL_TEXTURE1,
   1137                                               GL_LINEAR));
   1138     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
   1139               shader_mask_sampler_lock->target());
   1140   }
   1141 
   1142   if (shader_edge_location != -1) {
   1143     float edge[24];
   1144     device_layer_edges.ToFloatArray(edge);
   1145     device_layer_bounds.ToFloatArray(&edge[12]);
   1146     GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge));
   1147   }
   1148 
   1149   if (shader_viewport_location != -1) {
   1150     float viewport[4] = {static_cast<float>(viewport_.x()),
   1151                          static_cast<float>(viewport_.y()),
   1152                          static_cast<float>(viewport_.width()),
   1153                          static_cast<float>(viewport_.height()), };
   1154     GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport));
   1155   }
   1156 
   1157   if (shader_color_matrix_location != -1) {
   1158     float matrix[16];
   1159     for (int i = 0; i < 4; ++i) {
   1160       for (int j = 0; j < 4; ++j)
   1161         matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
   1162     }
   1163     GLC(gl_,
   1164         gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix));
   1165   }
   1166   static const float kScale = 1.0f / 255.0f;
   1167   if (shader_color_offset_location != -1) {
   1168     float offset[4];
   1169     for (int i = 0; i < 4; ++i)
   1170       offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
   1171 
   1172     GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset));
   1173   }
   1174 
   1175   // Map device space quad to surface space. contents_device_transform has no 3d
   1176   // component since it was flattened, so we don't need to project.
   1177   gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse,
   1178                                               device_layer_edges.ToQuadF(),
   1179                                               &clipped);
   1180 
   1181   SetShaderOpacity(quad->opacity(), shader_alpha_location);
   1182   SetShaderQuadF(surface_quad, shader_quad_location);
   1183   DrawQuadGeometry(
   1184       frame, quad->quadTransform(), quad->rect, shader_matrix_location);
   1185 
   1186   // Flush the compositor context before the filter bitmap goes out of
   1187   // scope, so the draw gets processed before the filter texture gets deleted.
   1188   if (filter_bitmap.getTexture())
   1189     GLC(gl_, gl_->Flush());
   1190 }
   1191 
   1192 struct SolidColorProgramUniforms {
   1193   unsigned program;
   1194   unsigned matrix_location;
   1195   unsigned viewport_location;
   1196   unsigned quad_location;
   1197   unsigned edge_location;
   1198   unsigned color_location;
   1199 };
   1200 
   1201 template <class T>
   1202 static void SolidColorUniformLocation(T program,
   1203                                       SolidColorProgramUniforms* uniforms) {
   1204   uniforms->program = program->program();
   1205   uniforms->matrix_location = program->vertex_shader().matrix_location();
   1206   uniforms->viewport_location = program->vertex_shader().viewport_location();
   1207   uniforms->quad_location = program->vertex_shader().quad_location();
   1208   uniforms->edge_location = program->vertex_shader().edge_location();
   1209   uniforms->color_location = program->fragment_shader().color_location();
   1210 }
   1211 
   1212 // static
   1213 bool GLRenderer::SetupQuadForAntialiasing(
   1214     const gfx::Transform& device_transform,
   1215     const DrawQuad* quad,
   1216     gfx::QuadF* local_quad,
   1217     float edge[24]) {
   1218   gfx::Rect tile_rect = quad->visible_rect;
   1219 
   1220   bool clipped = false;
   1221   gfx::QuadF device_layer_quad = MathUtil::MapQuad(
   1222       device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped);
   1223 
   1224   bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
   1225   bool is_nearest_rect_within_epsilon =
   1226       is_axis_aligned_in_target &&
   1227       gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
   1228                                        kAntiAliasingEpsilon);
   1229   // AAing clipped quads is not supported by the code yet.
   1230   bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge();
   1231   if (!use_aa)
   1232     return false;
   1233 
   1234   LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox()));
   1235   device_layer_bounds.InflateAntiAliasingDistance();
   1236 
   1237   LayerQuad device_layer_edges(device_layer_quad);
   1238   device_layer_edges.InflateAntiAliasingDistance();
   1239 
   1240   device_layer_edges.ToFloatArray(edge);
   1241   device_layer_bounds.ToFloatArray(&edge[12]);
   1242 
   1243   gfx::PointF bottom_right = tile_rect.bottom_right();
   1244   gfx::PointF bottom_left = tile_rect.bottom_left();
   1245   gfx::PointF top_left = tile_rect.origin();
   1246   gfx::PointF top_right = tile_rect.top_right();
   1247 
   1248   // Map points to device space.
   1249   bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
   1250   DCHECK(!clipped);
   1251   bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
   1252   DCHECK(!clipped);
   1253   top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
   1254   DCHECK(!clipped);
   1255   top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
   1256   DCHECK(!clipped);
   1257 
   1258   LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
   1259   LayerQuad::Edge left_edge(bottom_left, top_left);
   1260   LayerQuad::Edge top_edge(top_left, top_right);
   1261   LayerQuad::Edge right_edge(top_right, bottom_right);
   1262 
   1263   // Only apply anti-aliasing to edges not clipped by culling or scissoring.
   1264   if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y())
   1265     top_edge = device_layer_edges.top();
   1266   if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x())
   1267     left_edge = device_layer_edges.left();
   1268   if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right())
   1269     right_edge = device_layer_edges.right();
   1270   if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom())
   1271     bottom_edge = device_layer_edges.bottom();
   1272 
   1273   float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1;
   1274   bottom_edge.scale(sign);
   1275   left_edge.scale(sign);
   1276   top_edge.scale(sign);
   1277   right_edge.scale(sign);
   1278 
   1279   // Create device space quad.
   1280   LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge);
   1281 
   1282   // Map device space quad to local space. device_transform has no 3d
   1283   // component since it was flattened, so we don't need to project.  We should
   1284   // have already checked that the transform was uninvertible above.
   1285   gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
   1286   bool did_invert = device_transform.GetInverse(&inverse_device_transform);
   1287   DCHECK(did_invert);
   1288   *local_quad = MathUtil::MapQuad(
   1289       inverse_device_transform, device_quad.ToQuadF(), &clipped);
   1290   // We should not DCHECK(!clipped) here, because anti-aliasing inflation may
   1291   // cause device_quad to become clipped. To our knowledge this scenario does
   1292   // not need to be handled differently than the unclipped case.
   1293 
   1294   return true;
   1295 }
   1296 
   1297 void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
   1298                                     const SolidColorDrawQuad* quad) {
   1299   gfx::Rect tile_rect = quad->visible_rect;
   1300 
   1301   SkColor color = quad->color;
   1302   float opacity = quad->opacity();
   1303   float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
   1304 
   1305   // Early out if alpha is small enough that quad doesn't contribute to output.
   1306   if (alpha < std::numeric_limits<float>::epsilon() &&
   1307       quad->ShouldDrawWithBlending())
   1308     return;
   1309 
   1310   gfx::Transform device_transform =
   1311       frame->window_matrix * frame->projection_matrix * quad->quadTransform();
   1312   device_transform.FlattenTo2d();
   1313   if (!device_transform.IsInvertible())
   1314     return;
   1315 
   1316   gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
   1317   float edge[24];
   1318   bool use_aa =
   1319       settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
   1320       SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
   1321 
   1322   SolidColorProgramUniforms uniforms;
   1323   if (use_aa)
   1324     SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
   1325   else
   1326     SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
   1327   SetUseProgram(uniforms.program);
   1328 
   1329   GLC(gl_,
   1330       gl_->Uniform4f(uniforms.color_location,
   1331                      (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
   1332                      (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
   1333                      (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
   1334                      alpha));
   1335   if (use_aa) {
   1336     float viewport[4] = {static_cast<float>(viewport_.x()),
   1337                          static_cast<float>(viewport_.y()),
   1338                          static_cast<float>(viewport_.width()),
   1339                          static_cast<float>(viewport_.height()), };
   1340     GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
   1341     GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
   1342   }
   1343 
   1344   // Enable blending when the quad properties require it or if we decided
   1345   // to use antialiasing.
   1346   SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
   1347 
   1348   // Normalize to tile_rect.
   1349   local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
   1350 
   1351   SetShaderQuadF(local_quad, uniforms.quad_location);
   1352 
   1353   // The transform and vertex data are used to figure out the extents that the
   1354   // un-antialiased quad should have and which vertex this is and the float
   1355   // quad passed in via uniform is the actual geometry that gets used to draw
   1356   // it. This is why this centered rect is used and not the original quad_rect.
   1357   gfx::RectF centered_rect(
   1358       gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
   1359       tile_rect.size());
   1360   DrawQuadGeometry(
   1361       frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
   1362 }
   1363 
   1364 struct TileProgramUniforms {
   1365   unsigned program;
   1366   unsigned matrix_location;
   1367   unsigned viewport_location;
   1368   unsigned quad_location;
   1369   unsigned edge_location;
   1370   unsigned vertex_tex_transform_location;
   1371   unsigned sampler_location;
   1372   unsigned fragment_tex_transform_location;
   1373   unsigned alpha_location;
   1374 };
   1375 
   1376 template <class T>
   1377 static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
   1378   uniforms->program = program->program();
   1379   uniforms->matrix_location = program->vertex_shader().matrix_location();
   1380   uniforms->viewport_location = program->vertex_shader().viewport_location();
   1381   uniforms->quad_location = program->vertex_shader().quad_location();
   1382   uniforms->edge_location = program->vertex_shader().edge_location();
   1383   uniforms->vertex_tex_transform_location =
   1384       program->vertex_shader().vertex_tex_transform_location();
   1385 
   1386   uniforms->sampler_location = program->fragment_shader().sampler_location();
   1387   uniforms->alpha_location = program->fragment_shader().alpha_location();
   1388   uniforms->fragment_tex_transform_location =
   1389       program->fragment_shader().fragment_tex_transform_location();
   1390 }
   1391 
   1392 void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
   1393                               const TileDrawQuad* quad) {
   1394   DrawContentQuad(frame, quad, quad->resource_id);
   1395 }
   1396 
   1397 void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
   1398                                  const ContentDrawQuadBase* quad,
   1399                                  ResourceProvider::ResourceId resource_id) {
   1400   gfx::Rect tile_rect = quad->visible_rect;
   1401 
   1402   gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
   1403       quad->tex_coord_rect, quad->rect, tile_rect);
   1404   float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
   1405   float tex_to_geom_scale_y =
   1406       quad->rect.height() / quad->tex_coord_rect.height();
   1407 
   1408   gfx::RectF clamp_geom_rect(tile_rect);
   1409   gfx::RectF clamp_tex_rect(tex_coord_rect);
   1410   // Clamp texture coordinates to avoid sampling outside the layer
   1411   // by deflating the tile region half a texel or half a texel
   1412   // minus epsilon for one pixel layers. The resulting clamp region
   1413   // is mapped to the unit square by the vertex shader and mapped
   1414   // back to normalized texture coordinates by the fragment shader
   1415   // after being clamped to 0-1 range.
   1416   float tex_clamp_x =
   1417       std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
   1418   float tex_clamp_y =
   1419       std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
   1420   float geom_clamp_x =
   1421       std::min(tex_clamp_x * tex_to_geom_scale_x,
   1422                0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
   1423   float geom_clamp_y =
   1424       std::min(tex_clamp_y * tex_to_geom_scale_y,
   1425                0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
   1426   clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
   1427   clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
   1428 
   1429   // Map clamping rectangle to unit square.
   1430   float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
   1431   float vertex_tex_translate_y =
   1432       -clamp_geom_rect.y() / clamp_geom_rect.height();
   1433   float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
   1434   float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
   1435 
   1436   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1437       gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
   1438 
   1439   gfx::Transform device_transform =
   1440       frame->window_matrix * frame->projection_matrix * quad->quadTransform();
   1441   device_transform.FlattenTo2d();
   1442   if (!device_transform.IsInvertible())
   1443     return;
   1444 
   1445   gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
   1446   float edge[24];
   1447   bool use_aa =
   1448       settings_->allow_antialiasing &&
   1449       SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
   1450 
   1451   bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
   1452   GLenum filter = (use_aa || scaled ||
   1453                    !quad->quadTransform().IsIdentityOrIntegerTranslation())
   1454                       ? GL_LINEAR
   1455                       : GL_NEAREST;
   1456   ResourceProvider::ScopedSamplerGL quad_resource_lock(
   1457       resource_provider_, resource_id, filter);
   1458   SamplerType sampler =
   1459       SamplerTypeFromTextureTarget(quad_resource_lock.target());
   1460 
   1461   float fragment_tex_translate_x = clamp_tex_rect.x();
   1462   float fragment_tex_translate_y = clamp_tex_rect.y();
   1463   float fragment_tex_scale_x = clamp_tex_rect.width();
   1464   float fragment_tex_scale_y = clamp_tex_rect.height();
   1465 
   1466   // Map to normalized texture coordinates.
   1467   if (sampler != SamplerType2DRect) {
   1468     gfx::Size texture_size = quad->texture_size;
   1469     DCHECK(!texture_size.IsEmpty());
   1470     fragment_tex_translate_x /= texture_size.width();
   1471     fragment_tex_translate_y /= texture_size.height();
   1472     fragment_tex_scale_x /= texture_size.width();
   1473     fragment_tex_scale_y /= texture_size.height();
   1474   }
   1475 
   1476   TileProgramUniforms uniforms;
   1477   if (use_aa) {
   1478     if (quad->swizzle_contents) {
   1479       TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
   1480                           &uniforms);
   1481     } else {
   1482       TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
   1483                           &uniforms);
   1484     }
   1485   } else {
   1486     if (quad->ShouldDrawWithBlending()) {
   1487       if (quad->swizzle_contents) {
   1488         TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
   1489                             &uniforms);
   1490       } else {
   1491         TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
   1492                             &uniforms);
   1493       }
   1494     } else {
   1495       if (quad->swizzle_contents) {
   1496         TileUniformLocation(
   1497             GetTileProgramSwizzleOpaque(tex_coord_precision, sampler),
   1498             &uniforms);
   1499       } else {
   1500         TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
   1501                             &uniforms);
   1502       }
   1503     }
   1504   }
   1505 
   1506   SetUseProgram(uniforms.program);
   1507   GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0));
   1508 
   1509   if (use_aa) {
   1510     float viewport[4] = {static_cast<float>(viewport_.x()),
   1511                          static_cast<float>(viewport_.y()),
   1512                          static_cast<float>(viewport_.width()),
   1513                          static_cast<float>(viewport_.height()), };
   1514     GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
   1515     GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
   1516 
   1517     GLC(gl_,
   1518         gl_->Uniform4f(uniforms.vertex_tex_transform_location,
   1519                        vertex_tex_translate_x,
   1520                        vertex_tex_translate_y,
   1521                        vertex_tex_scale_x,
   1522                        vertex_tex_scale_y));
   1523     GLC(gl_,
   1524         gl_->Uniform4f(uniforms.fragment_tex_transform_location,
   1525                        fragment_tex_translate_x,
   1526                        fragment_tex_translate_y,
   1527                        fragment_tex_scale_x,
   1528                        fragment_tex_scale_y));
   1529   } else {
   1530     // Move fragment shader transform to vertex shader. We can do this while
   1531     // still producing correct results as fragment_tex_transform_location
   1532     // should always be non-negative when tiles are transformed in a way
   1533     // that could result in sampling outside the layer.
   1534     vertex_tex_scale_x *= fragment_tex_scale_x;
   1535     vertex_tex_scale_y *= fragment_tex_scale_y;
   1536     vertex_tex_translate_x *= fragment_tex_scale_x;
   1537     vertex_tex_translate_y *= fragment_tex_scale_y;
   1538     vertex_tex_translate_x += fragment_tex_translate_x;
   1539     vertex_tex_translate_y += fragment_tex_translate_y;
   1540 
   1541     GLC(gl_,
   1542         gl_->Uniform4f(uniforms.vertex_tex_transform_location,
   1543                        vertex_tex_translate_x,
   1544                        vertex_tex_translate_y,
   1545                        vertex_tex_scale_x,
   1546                        vertex_tex_scale_y));
   1547   }
   1548 
   1549   // Enable blending when the quad properties require it or if we decided
   1550   // to use antialiasing.
   1551   SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
   1552 
   1553   // Normalize to tile_rect.
   1554   local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
   1555 
   1556   SetShaderOpacity(quad->opacity(), uniforms.alpha_location);
   1557   SetShaderQuadF(local_quad, uniforms.quad_location);
   1558 
   1559   // The transform and vertex data are used to figure out the extents that the
   1560   // un-antialiased quad should have and which vertex this is and the float
   1561   // quad passed in via uniform is the actual geometry that gets used to draw
   1562   // it. This is why this centered rect is used and not the original quad_rect.
   1563   gfx::RectF centered_rect(
   1564       gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
   1565       tile_rect.size());
   1566   DrawQuadGeometry(
   1567       frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
   1568 }
   1569 
   1570 void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
   1571                                   const YUVVideoDrawQuad* quad) {
   1572   SetBlendEnabled(quad->ShouldDrawWithBlending());
   1573 
   1574   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1575       gl_,
   1576       &highp_threshold_cache_,
   1577       highp_threshold_min_,
   1578       quad->shared_quad_state->visible_content_rect.bottom_right());
   1579 
   1580   bool use_alpha_plane = quad->a_plane_resource_id != 0;
   1581 
   1582   ResourceProvider::ScopedSamplerGL y_plane_lock(
   1583       resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR);
   1584   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target());
   1585   ResourceProvider::ScopedSamplerGL u_plane_lock(
   1586       resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR);
   1587   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target());
   1588   ResourceProvider::ScopedSamplerGL v_plane_lock(
   1589       resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR);
   1590   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target());
   1591   scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
   1592   if (use_alpha_plane) {
   1593     a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
   1594         resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR));
   1595     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target());
   1596   }
   1597 
   1598   int tex_scale_location = -1;
   1599   int matrix_location = -1;
   1600   int y_texture_location = -1;
   1601   int u_texture_location = -1;
   1602   int v_texture_location = -1;
   1603   int a_texture_location = -1;
   1604   int yuv_matrix_location = -1;
   1605   int yuv_adj_location = -1;
   1606   int alpha_location = -1;
   1607   if (use_alpha_plane) {
   1608     const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision);
   1609     DCHECK(program && (program->initialized() || IsContextLost()));
   1610     SetUseProgram(program->program());
   1611     tex_scale_location = program->vertex_shader().tex_scale_location();
   1612     matrix_location = program->vertex_shader().matrix_location();
   1613     y_texture_location = program->fragment_shader().y_texture_location();
   1614     u_texture_location = program->fragment_shader().u_texture_location();
   1615     v_texture_location = program->fragment_shader().v_texture_location();
   1616     a_texture_location = program->fragment_shader().a_texture_location();
   1617     yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
   1618     yuv_adj_location = program->fragment_shader().yuv_adj_location();
   1619     alpha_location = program->fragment_shader().alpha_location();
   1620   } else {
   1621     const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision);
   1622     DCHECK(program && (program->initialized() || IsContextLost()));
   1623     SetUseProgram(program->program());
   1624     tex_scale_location = program->vertex_shader().tex_scale_location();
   1625     matrix_location = program->vertex_shader().matrix_location();
   1626     y_texture_location = program->fragment_shader().y_texture_location();
   1627     u_texture_location = program->fragment_shader().u_texture_location();
   1628     v_texture_location = program->fragment_shader().v_texture_location();
   1629     yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
   1630     yuv_adj_location = program->fragment_shader().yuv_adj_location();
   1631     alpha_location = program->fragment_shader().alpha_location();
   1632   }
   1633 
   1634   GLC(gl_,
   1635       gl_->Uniform2f(tex_scale_location,
   1636                      quad->tex_scale.width(),
   1637                      quad->tex_scale.height()));
   1638   GLC(gl_, gl_->Uniform1i(y_texture_location, 1));
   1639   GLC(gl_, gl_->Uniform1i(u_texture_location, 2));
   1640   GLC(gl_, gl_->Uniform1i(v_texture_location, 3));
   1641   if (use_alpha_plane)
   1642     GLC(gl_, gl_->Uniform1i(a_texture_location, 4));
   1643 
   1644   // These values are magic numbers that are used in the transformation from YUV
   1645   // to RGB color values.  They are taken from the following webpage:
   1646   // http://www.fourcc.org/fccyvrgb.php
   1647   float yuv_to_rgb[9] = {1.164f, 1.164f, 1.164f, 0.0f, -.391f,
   1648                          2.018f, 1.596f, -.813f, 0.0f, };
   1649   GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb));
   1650 
   1651   // These values map to 16, 128, and 128 respectively, and are computed
   1652   // as a fraction over 256 (e.g. 16 / 256 = 0.0625).
   1653   // They are used in the YUV to RGBA conversion formula:
   1654   //   Y - 16   : Gives 16 values of head and footroom for overshooting
   1655   //   U - 128  : Turns unsigned U into signed U [-128,127]
   1656   //   V - 128  : Turns unsigned V into signed V [-128,127]
   1657   float yuv_adjust[3] = {-0.0625f, -0.5f, -0.5f, };
   1658   GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust));
   1659 
   1660   SetShaderOpacity(quad->opacity(), alpha_location);
   1661   DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location);
   1662 }
   1663 
   1664 void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
   1665                                      const StreamVideoDrawQuad* quad) {
   1666   SetBlendEnabled(quad->ShouldDrawWithBlending());
   1667 
   1668   static float gl_matrix[16];
   1669 
   1670   DCHECK(capabilities_.using_egl_image);
   1671 
   1672   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1673       gl_,
   1674       &highp_threshold_cache_,
   1675       highp_threshold_min_,
   1676       quad->shared_quad_state->visible_content_rect.bottom_right());
   1677 
   1678   const VideoStreamTextureProgram* program =
   1679       GetVideoStreamTextureProgram(tex_coord_precision);
   1680   SetUseProgram(program->program());
   1681 
   1682   ToGLMatrix(&gl_matrix[0], quad->matrix);
   1683   GLC(gl_,
   1684       gl_->UniformMatrix4fv(
   1685           program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix));
   1686 
   1687   ResourceProvider::ScopedReadLockGL lock(resource_provider_,
   1688                                           quad->resource_id);
   1689   DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
   1690   GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()));
   1691 
   1692   GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1693 
   1694   SetShaderOpacity(quad->opacity(),
   1695                    program->fragment_shader().alpha_location());
   1696   DrawQuadGeometry(frame,
   1697                    quad->quadTransform(),
   1698                    quad->rect,
   1699                    program->vertex_shader().matrix_location());
   1700 }
   1701 
   1702 void GLRenderer::DrawPictureQuad(const DrawingFrame* frame,
   1703                                  const PictureDrawQuad* quad) {
   1704   if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() ||
   1705       on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) {
   1706     on_demand_tile_raster_bitmap_.setConfig(SkBitmap::kARGB_8888_Config,
   1707                                             quad->texture_size.width(),
   1708                                             quad->texture_size.height());
   1709     on_demand_tile_raster_bitmap_.allocPixels();
   1710 
   1711     if (on_demand_tile_raster_resource_id_)
   1712       resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
   1713 
   1714     on_demand_tile_raster_resource_id_ =
   1715         resource_provider_->CreateGLTexture(quad->texture_size,
   1716                                             GL_TEXTURE_2D,
   1717                                             GL_TEXTURE_POOL_UNMANAGED_CHROMIUM,
   1718                                             GL_CLAMP_TO_EDGE,
   1719                                             ResourceProvider::TextureUsageAny,
   1720                                             quad->texture_format);
   1721   }
   1722 
   1723   SkBitmapDevice device(on_demand_tile_raster_bitmap_);
   1724   SkCanvas canvas(&device);
   1725 
   1726   quad->picture_pile->RasterToBitmap(
   1727       &canvas, quad->content_rect, quad->contents_scale, NULL);
   1728 
   1729   uint8_t* bitmap_pixels = NULL;
   1730   SkBitmap on_demand_tile_raster_bitmap_dest;
   1731   SkBitmap::Config config = SkBitmapConfig(quad->texture_format);
   1732   if (on_demand_tile_raster_bitmap_.getConfig() != config) {
   1733     on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest,
   1734                                          config);
   1735     // TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the
   1736     // bitmap data. This check will be removed once crbug.com/293728 is fixed.
   1737     CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4);
   1738     bitmap_pixels = reinterpret_cast<uint8_t*>(
   1739         on_demand_tile_raster_bitmap_dest.getPixels());
   1740   } else {
   1741     bitmap_pixels =
   1742         reinterpret_cast<uint8_t*>(on_demand_tile_raster_bitmap_.getPixels());
   1743   }
   1744 
   1745   resource_provider_->SetPixels(on_demand_tile_raster_resource_id_,
   1746                                 bitmap_pixels,
   1747                                 gfx::Rect(quad->texture_size),
   1748                                 gfx::Rect(quad->texture_size),
   1749                                 gfx::Vector2d());
   1750 
   1751   DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_);
   1752 }
   1753 
   1754 struct TextureProgramBinding {
   1755   template <class Program>
   1756   void Set(Program* program) {
   1757     DCHECK(program);
   1758     program_id = program->program();
   1759     sampler_location = program->fragment_shader().sampler_location();
   1760     matrix_location = program->vertex_shader().matrix_location();
   1761     background_color_location =
   1762         program->fragment_shader().background_color_location();
   1763   }
   1764   int program_id;
   1765   int sampler_location;
   1766   int matrix_location;
   1767   int background_color_location;
   1768 };
   1769 
   1770 struct TexTransformTextureProgramBinding : TextureProgramBinding {
   1771   template <class Program>
   1772   void Set(Program* program) {
   1773     TextureProgramBinding::Set(program);
   1774     tex_transform_location = program->vertex_shader().tex_transform_location();
   1775     vertex_opacity_location =
   1776         program->vertex_shader().vertex_opacity_location();
   1777   }
   1778   int tex_transform_location;
   1779   int vertex_opacity_location;
   1780 };
   1781 
   1782 void GLRenderer::FlushTextureQuadCache() {
   1783   // Check to see if we have anything to draw.
   1784   if (draw_cache_.program_id == 0)
   1785     return;
   1786 
   1787   // Set the correct blending mode.
   1788   SetBlendEnabled(draw_cache_.needs_blending);
   1789 
   1790   // Bind the program to the GL state.
   1791   SetUseProgram(draw_cache_.program_id);
   1792 
   1793   // Bind the correct texture sampler location.
   1794   GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0));
   1795 
   1796   // Assume the current active textures is 0.
   1797   ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_,
   1798                                                  draw_cache_.resource_id);
   1799   DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
   1800   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id()));
   1801 
   1802   COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float),  // NOLINT(runtime/sizeof)
   1803                  struct_is_densely_packed);
   1804   COMPILE_ASSERT(
   1805       sizeof(Float16) == 16 * sizeof(float),  // NOLINT(runtime/sizeof)
   1806       struct_is_densely_packed);
   1807 
   1808   // Upload the tranforms for both points and uvs.
   1809   GLC(gl_,
   1810       gl_->UniformMatrix4fv(
   1811           static_cast<int>(draw_cache_.matrix_location),
   1812           static_cast<int>(draw_cache_.matrix_data.size()),
   1813           false,
   1814           reinterpret_cast<float*>(&draw_cache_.matrix_data.front())));
   1815   GLC(gl_,
   1816       gl_->Uniform4fv(
   1817           static_cast<int>(draw_cache_.uv_xform_location),
   1818           static_cast<int>(draw_cache_.uv_xform_data.size()),
   1819           reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front())));
   1820 
   1821   if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
   1822     Float4 background_color = PremultipliedColor(draw_cache_.background_color);
   1823     GLC(gl_,
   1824         gl_->Uniform4fv(
   1825             draw_cache_.background_color_location, 1, background_color.data));
   1826   }
   1827 
   1828   GLC(gl_,
   1829       gl_->Uniform1fv(
   1830           static_cast<int>(draw_cache_.vertex_opacity_location),
   1831           static_cast<int>(draw_cache_.vertex_opacity_data.size()),
   1832           static_cast<float*>(&draw_cache_.vertex_opacity_data.front())));
   1833 
   1834   // Draw the quads!
   1835   GLC(gl_,
   1836       gl_->DrawElements(GL_TRIANGLES,
   1837                         6 * draw_cache_.matrix_data.size(),
   1838                         GL_UNSIGNED_SHORT,
   1839                         0));
   1840 
   1841   // Clear the cache.
   1842   draw_cache_.program_id = 0;
   1843   draw_cache_.uv_xform_data.resize(0);
   1844   draw_cache_.vertex_opacity_data.resize(0);
   1845   draw_cache_.matrix_data.resize(0);
   1846 }
   1847 
   1848 void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
   1849                                     const TextureDrawQuad* quad) {
   1850   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1851       gl_,
   1852       &highp_threshold_cache_,
   1853       highp_threshold_min_,
   1854       quad->shared_quad_state->visible_content_rect.bottom_right());
   1855 
   1856   // Choose the correct texture program binding
   1857   TexTransformTextureProgramBinding binding;
   1858   if (quad->premultiplied_alpha) {
   1859     if (quad->background_color == SK_ColorTRANSPARENT) {
   1860       binding.Set(GetTextureProgram(tex_coord_precision));
   1861     } else {
   1862       binding.Set(GetTextureBackgroundProgram(tex_coord_precision));
   1863     }
   1864   } else {
   1865     if (quad->background_color == SK_ColorTRANSPARENT) {
   1866       binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision));
   1867     } else {
   1868       binding.Set(
   1869           GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision));
   1870     }
   1871   }
   1872 
   1873   int resource_id = quad->resource_id;
   1874 
   1875   if (draw_cache_.program_id != binding.program_id ||
   1876       draw_cache_.resource_id != resource_id ||
   1877       draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
   1878       draw_cache_.background_color != quad->background_color ||
   1879       draw_cache_.matrix_data.size() >= 8) {
   1880     FlushTextureQuadCache();
   1881     draw_cache_.program_id = binding.program_id;
   1882     draw_cache_.resource_id = resource_id;
   1883     draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
   1884     draw_cache_.background_color = quad->background_color;
   1885 
   1886     draw_cache_.uv_xform_location = binding.tex_transform_location;
   1887     draw_cache_.background_color_location = binding.background_color_location;
   1888     draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
   1889     draw_cache_.matrix_location = binding.matrix_location;
   1890     draw_cache_.sampler_location = binding.sampler_location;
   1891   }
   1892 
   1893   // Generate the uv-transform
   1894   draw_cache_.uv_xform_data.push_back(UVTransform(quad));
   1895 
   1896   // Generate the vertex opacity
   1897   const float opacity = quad->opacity();
   1898   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
   1899   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
   1900   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
   1901   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
   1902 
   1903   // Generate the transform matrix
   1904   gfx::Transform quad_rect_matrix;
   1905   QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
   1906   quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
   1907 
   1908   Float16 m;
   1909   quad_rect_matrix.matrix().asColMajorf(m.data);
   1910   draw_cache_.matrix_data.push_back(m);
   1911 }
   1912 
   1913 void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
   1914                                    const IOSurfaceDrawQuad* quad) {
   1915   SetBlendEnabled(quad->ShouldDrawWithBlending());
   1916 
   1917   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1918       gl_,
   1919       &highp_threshold_cache_,
   1920       highp_threshold_min_,
   1921       quad->shared_quad_state->visible_content_rect.bottom_right());
   1922 
   1923   TexTransformTextureProgramBinding binding;
   1924   binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
   1925 
   1926   SetUseProgram(binding.program_id);
   1927   GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0));
   1928   if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
   1929     GLC(gl_,
   1930         gl_->Uniform4f(binding.tex_transform_location,
   1931                        0,
   1932                        quad->io_surface_size.height(),
   1933                        quad->io_surface_size.width(),
   1934                        quad->io_surface_size.height() * -1.0f));
   1935   } else {
   1936     GLC(gl_,
   1937         gl_->Uniform4f(binding.tex_transform_location,
   1938                        0,
   1939                        0,
   1940                        quad->io_surface_size.width(),
   1941                        quad->io_surface_size.height()));
   1942   }
   1943 
   1944   const float vertex_opacity[] = {quad->opacity(), quad->opacity(),
   1945                                   quad->opacity(), quad->opacity()};
   1946   GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity));
   1947 
   1948   ResourceProvider::ScopedReadLockGL lock(resource_provider_,
   1949                                           quad->io_surface_resource_id);
   1950   DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
   1951   GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()));
   1952 
   1953   DrawQuadGeometry(
   1954       frame, quad->quadTransform(), quad->rect, binding.matrix_location);
   1955 
   1956   GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0));
   1957 }
   1958 
   1959 void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
   1960   current_framebuffer_lock_.reset();
   1961   swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect));
   1962 
   1963   GLC(gl_, gl_->Disable(GL_BLEND));
   1964   blend_shadow_ = false;
   1965 }
   1966 
   1967 void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); }
   1968 
   1969 bool GLRenderer::FlippedFramebuffer() const { return true; }
   1970 
   1971 void GLRenderer::EnsureScissorTestEnabled() {
   1972   if (is_scissor_enabled_)
   1973     return;
   1974 
   1975   FlushTextureQuadCache();
   1976   GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
   1977   is_scissor_enabled_ = true;
   1978 }
   1979 
   1980 void GLRenderer::EnsureScissorTestDisabled() {
   1981   if (!is_scissor_enabled_)
   1982     return;
   1983 
   1984   FlushTextureQuadCache();
   1985   GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
   1986   is_scissor_enabled_ = false;
   1987 }
   1988 
   1989 void GLRenderer::CopyCurrentRenderPassToBitmap(
   1990     DrawingFrame* frame,
   1991     scoped_ptr<CopyOutputRequest> request) {
   1992   gfx::Rect copy_rect = frame->current_render_pass->output_rect;
   1993   if (request->has_area())
   1994     copy_rect.Intersect(request->area());
   1995   GetFramebufferPixelsAsync(copy_rect, request.Pass());
   1996 }
   1997 
   1998 void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
   1999   transform.matrix().asColMajorf(gl_matrix);
   2000 }
   2001 
   2002 void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
   2003   if (quad_location == -1)
   2004     return;
   2005 
   2006   float gl_quad[8];
   2007   gl_quad[0] = quad.p1().x();
   2008   gl_quad[1] = quad.p1().y();
   2009   gl_quad[2] = quad.p2().x();
   2010   gl_quad[3] = quad.p2().y();
   2011   gl_quad[4] = quad.p3().x();
   2012   gl_quad[5] = quad.p3().y();
   2013   gl_quad[6] = quad.p4().x();
   2014   gl_quad[7] = quad.p4().y();
   2015   GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad));
   2016 }
   2017 
   2018 void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) {
   2019   if (alpha_location != -1)
   2020     GLC(gl_, gl_->Uniform1f(alpha_location, opacity));
   2021 }
   2022 
   2023 void GLRenderer::SetStencilEnabled(bool enabled) {
   2024   if (enabled == stencil_shadow_)
   2025     return;
   2026 
   2027   if (enabled)
   2028     GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
   2029   else
   2030     GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
   2031   stencil_shadow_ = enabled;
   2032 }
   2033 
   2034 void GLRenderer::SetBlendEnabled(bool enabled) {
   2035   if (enabled == blend_shadow_)
   2036     return;
   2037 
   2038   if (enabled)
   2039     GLC(gl_, gl_->Enable(GL_BLEND));
   2040   else
   2041     GLC(gl_, gl_->Disable(GL_BLEND));
   2042   blend_shadow_ = enabled;
   2043 }
   2044 
   2045 void GLRenderer::SetUseProgram(unsigned program) {
   2046   if (program == program_shadow_)
   2047     return;
   2048   gl_->UseProgram(program);
   2049   program_shadow_ = program;
   2050 }
   2051 
   2052 void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame,
   2053                                   const gfx::Transform& draw_transform,
   2054                                   const gfx::RectF& quad_rect,
   2055                                   int matrix_location) {
   2056   gfx::Transform quad_rect_matrix;
   2057   QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
   2058   static float gl_matrix[16];
   2059   ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix);
   2060   GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]));
   2061 
   2062   GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0));
   2063 }
   2064 
   2065 void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame,
   2066                                           int texture_id,
   2067                                           gfx::Rect rect,
   2068                                           const gfx::Transform& draw_matrix,
   2069                                           bool flip_vertically) {
   2070   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   2071       gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right());
   2072 
   2073   const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision);
   2074   SetUseProgram(program->program());
   2075 
   2076   GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   2077 
   2078   if (flip_vertically) {
   2079     GLC(gl_,
   2080         gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
   2081                        0.f,
   2082                        1.f,
   2083                        1.f,
   2084                        -1.f));
   2085   } else {
   2086     GLC(gl_,
   2087         gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
   2088                        0.f,
   2089                        0.f,
   2090                        1.f,
   2091                        1.f));
   2092   }
   2093 
   2094   SetShaderOpacity(1.f, program->fragment_shader().alpha_location());
   2095   DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
   2096   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2097   DrawQuadGeometry(
   2098       frame, draw_matrix, rect, program->vertex_shader().matrix_location());
   2099 }
   2100 
   2101 void GLRenderer::Finish() {
   2102   TRACE_EVENT0("cc", "GLRenderer::Finish");
   2103   GLC(gl_, gl_->Finish());
   2104 }
   2105 
   2106 void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) {
   2107   DCHECK(!is_backbuffer_discarded_);
   2108 
   2109   TRACE_EVENT0("cc", "GLRenderer::SwapBuffers");
   2110   // We're done! Time to swapbuffers!
   2111 
   2112   gfx::Size surface_size = output_surface_->SurfaceSize();
   2113 
   2114   CompositorFrame compositor_frame;
   2115   compositor_frame.metadata = metadata;
   2116   compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData);
   2117   compositor_frame.gl_frame_data->size = surface_size;
   2118   if (capabilities_.using_partial_swap) {
   2119     // If supported, we can save significant bandwidth by only swapping the
   2120     // damaged/scissored region (clamped to the viewport).
   2121     swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
   2122     int flipped_y_pos_of_rect_bottom = surface_size.height() -
   2123                                        swap_buffer_rect_.y() -
   2124                                        swap_buffer_rect_.height();
   2125     compositor_frame.gl_frame_data->sub_buffer_rect =
   2126         gfx::Rect(swap_buffer_rect_.x(),
   2127                   flipped_y_pos_of_rect_bottom,
   2128                   swap_buffer_rect_.width(),
   2129                   swap_buffer_rect_.height());
   2130   } else {
   2131     compositor_frame.gl_frame_data->sub_buffer_rect =
   2132         gfx::Rect(output_surface_->SurfaceSize());
   2133   }
   2134   output_surface_->SwapBuffers(&compositor_frame);
   2135 
   2136   swap_buffer_rect_ = gfx::Rect();
   2137 
   2138   // We don't have real fences, so we mark read fences as passed
   2139   // assuming a double-buffered GPU pipeline. A texture can be
   2140   // written to after one full frame has past since it was last read.
   2141   if (last_swap_fence_.get())
   2142     static_cast<SimpleSwapFence*>(last_swap_fence_.get())->SetHasPassed();
   2143   last_swap_fence_ = resource_provider_->GetReadLockFence();
   2144   resource_provider_->SetReadLockFence(new SimpleSwapFence());
   2145 }
   2146 
   2147 void GLRenderer::EnforceMemoryPolicy() {
   2148   if (!visible_) {
   2149     TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources");
   2150     ReleaseRenderPassTextures();
   2151     DiscardBackbuffer();
   2152     resource_provider_->ReleaseCachedData();
   2153     GLC(gl_, gl_->Flush());
   2154   }
   2155 }
   2156 
   2157 void GLRenderer::DiscardBackbuffer() {
   2158   if (is_backbuffer_discarded_)
   2159     return;
   2160 
   2161   output_surface_->DiscardBackbuffer();
   2162 
   2163   is_backbuffer_discarded_ = true;
   2164 
   2165   // Damage tracker needs a full reset every time framebuffer is discarded.
   2166   client_->SetFullRootLayerDamage();
   2167 }
   2168 
   2169 void GLRenderer::EnsureBackbuffer() {
   2170   if (!is_backbuffer_discarded_)
   2171     return;
   2172 
   2173   output_surface_->EnsureBackbuffer();
   2174   is_backbuffer_discarded_ = false;
   2175 }
   2176 
   2177 void GLRenderer::GetFramebufferPixels(void* pixels, gfx::Rect rect) {
   2178   if (!pixels || rect.IsEmpty())
   2179     return;
   2180 
   2181   // This function assumes that it is reading the root frame buffer.
   2182   DCHECK(!current_framebuffer_lock_);
   2183 
   2184   scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
   2185   pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
   2186                                     pending_read.Pass());
   2187 
   2188   // This is a syncronous call since the callback is null.
   2189   gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
   2190   DoGetFramebufferPixels(static_cast<uint8*>(pixels),
   2191                          window_rect,
   2192                          AsyncGetFramebufferPixelsCleanupCallback());
   2193 }
   2194 
   2195 void GLRenderer::GetFramebufferPixelsAsync(
   2196     gfx::Rect rect,
   2197     scoped_ptr<CopyOutputRequest> request) {
   2198   DCHECK(!request->IsEmpty());
   2199   if (request->IsEmpty())
   2200     return;
   2201   if (rect.IsEmpty())
   2202     return;
   2203 
   2204   gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
   2205 
   2206   if (!request->force_bitmap_result()) {
   2207     bool own_mailbox = !request->has_texture_mailbox();
   2208 
   2209     GLuint texture_id = 0;
   2210     gl_->GenTextures(1, &texture_id);
   2211 
   2212     gpu::Mailbox mailbox;
   2213     if (own_mailbox) {
   2214       GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name));
   2215       if (mailbox.IsZero()) {
   2216         gl_->DeleteTextures(1, &texture_id);
   2217         request->SendEmptyResult();
   2218         return;
   2219       }
   2220     } else {
   2221       mailbox = request->texture_mailbox().name();
   2222       DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D),
   2223                 request->texture_mailbox().target());
   2224       DCHECK(!mailbox.IsZero());
   2225       unsigned incoming_sync_point = request->texture_mailbox().sync_point();
   2226       if (incoming_sync_point)
   2227         GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point));
   2228     }
   2229 
   2230     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2231     if (own_mailbox) {
   2232       GLC(gl_,
   2233           gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
   2234       GLC(gl_,
   2235           gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
   2236       GLC(gl_,
   2237           gl_->TexParameteri(
   2238               GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
   2239       GLC(gl_,
   2240           gl_->TexParameteri(
   2241               GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
   2242       GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
   2243     } else {
   2244       GLC(gl_, gl_->ConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
   2245     }
   2246     GetFramebufferTexture(texture_id, RGBA_8888, window_rect);
   2247     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2248 
   2249     unsigned sync_point = gl_->InsertSyncPointCHROMIUM();
   2250     TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point);
   2251 
   2252     scoped_ptr<SingleReleaseCallback> release_callback;
   2253     if (own_mailbox) {
   2254       release_callback = texture_mailbox_deleter_->GetReleaseCallback(
   2255           output_surface_->context_provider(), texture_id);
   2256     } else {
   2257       gl_->DeleteTextures(1, &texture_id);
   2258     }
   2259 
   2260     request->SendTextureResult(
   2261         window_rect.size(), texture_mailbox, release_callback.Pass());
   2262     return;
   2263   }
   2264 
   2265   DCHECK(request->force_bitmap_result());
   2266 
   2267   scoped_ptr<SkBitmap> bitmap(new SkBitmap);
   2268   bitmap->setConfig(
   2269       SkBitmap::kARGB_8888_Config, window_rect.width(), window_rect.height());
   2270   bitmap->allocPixels();
   2271 
   2272   scoped_ptr<SkAutoLockPixels> lock(new SkAutoLockPixels(*bitmap));
   2273 
   2274   // Save a pointer to the pixels, the bitmap is owned by the cleanup_callback.
   2275   uint8* pixels = static_cast<uint8*>(bitmap->getPixels());
   2276 
   2277   AsyncGetFramebufferPixelsCleanupCallback cleanup_callback =
   2278       base::Bind(&GLRenderer::PassOnSkBitmap,
   2279                  base::Unretained(this),
   2280                  base::Passed(&bitmap),
   2281                  base::Passed(&lock));
   2282 
   2283   scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
   2284   pending_read->copy_request = request.Pass();
   2285   pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
   2286                                     pending_read.Pass());
   2287 
   2288   // This is an asyncronous call since the callback is not null.
   2289   DoGetFramebufferPixels(pixels, window_rect, cleanup_callback);
   2290 }
   2291 
   2292 void GLRenderer::DoGetFramebufferPixels(
   2293     uint8* dest_pixels,
   2294     gfx::Rect window_rect,
   2295     const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback) {
   2296   DCHECK_GE(window_rect.x(), 0);
   2297   DCHECK_GE(window_rect.y(), 0);
   2298   DCHECK_LE(window_rect.right(), current_surface_size_.width());
   2299   DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
   2300 
   2301   bool is_async = !cleanup_callback.is_null();
   2302 
   2303   bool do_workaround = NeedsIOSurfaceReadbackWorkaround();
   2304 
   2305   unsigned temporary_texture = 0;
   2306   unsigned temporary_fbo = 0;
   2307 
   2308   if (do_workaround) {
   2309     // On Mac OS X, calling glReadPixels() against an FBO whose color attachment
   2310     // is an IOSurface-backed texture causes corruption of future glReadPixels()
   2311     // calls, even those on different OpenGL contexts. It is believed that this
   2312     // is the root cause of top crasher
   2313     // http://crbug.com/99393. <rdar://problem/10949687>
   2314 
   2315     gl_->GenTextures(1, &temporary_texture);
   2316     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture));
   2317     GLC(gl_,
   2318         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
   2319     GLC(gl_,
   2320         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
   2321     GLC(gl_,
   2322         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
   2323     GLC(gl_,
   2324         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
   2325     // Copy the contents of the current (IOSurface-backed) framebuffer into a
   2326     // temporary texture.
   2327     GetFramebufferTexture(
   2328         temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_));
   2329     gl_->GenFramebuffers(1, &temporary_fbo);
   2330     // Attach this texture to an FBO, and perform the readback from that FBO.
   2331     GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo));
   2332     GLC(gl_,
   2333         gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
   2334                                   GL_COLOR_ATTACHMENT0,
   2335                                   GL_TEXTURE_2D,
   2336                                   temporary_texture,
   2337                                   0));
   2338 
   2339     DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE),
   2340               gl_->CheckFramebufferStatus(GL_FRAMEBUFFER));
   2341   }
   2342 
   2343   GLuint buffer = 0;
   2344   gl_->GenBuffers(1, &buffer);
   2345   GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer));
   2346   GLC(gl_,
   2347       gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM,
   2348                       4 * window_rect.size().GetArea(),
   2349                       NULL,
   2350                       GL_STREAM_READ));
   2351 
   2352   GLuint query = 0;
   2353   if (is_async) {
   2354     gl_->GenQueriesEXT(1, &query);
   2355     GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query));
   2356   }
   2357 
   2358   GLC(gl_,
   2359       gl_->ReadPixels(window_rect.x(),
   2360                       window_rect.y(),
   2361                       window_rect.width(),
   2362                       window_rect.height(),
   2363                       GL_RGBA,
   2364                       GL_UNSIGNED_BYTE,
   2365                       NULL));
   2366 
   2367   GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
   2368 
   2369   if (do_workaround) {
   2370     // Clean up.
   2371     GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
   2372     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2373     GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo));
   2374     GLC(gl_, gl_->DeleteTextures(1, &temporary_texture));
   2375   }
   2376 
   2377   base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback,
   2378                                                base::Unretained(this),
   2379                                                cleanup_callback,
   2380                                                buffer,
   2381                                                query,
   2382                                                dest_pixels,
   2383                                                window_rect.size());
   2384   // Save the finished_callback so it can be cancelled.
   2385   pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset(
   2386       finished_callback);
   2387 
   2388   // Save the buffer to verify the callbacks happen in the expected order.
   2389   pending_async_read_pixels_.front()->buffer = buffer;
   2390 
   2391   if (is_async) {
   2392     GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM));
   2393     context_support_->SignalQuery(query, finished_callback);
   2394   } else {
   2395     resource_provider_->Finish();
   2396     finished_callback.Run();
   2397   }
   2398 
   2399   EnforceMemoryPolicy();
   2400 }
   2401 
   2402 void GLRenderer::FinishedReadback(
   2403     const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback,
   2404     unsigned source_buffer,
   2405     unsigned query,
   2406     uint8* dest_pixels,
   2407     gfx::Size size) {
   2408   DCHECK(!pending_async_read_pixels_.empty());
   2409 
   2410   if (query != 0) {
   2411     GLC(gl_, gl_->DeleteQueriesEXT(1, &query));
   2412   }
   2413 
   2414   PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back();
   2415   // Make sure we service the readbacks in order.
   2416   DCHECK_EQ(source_buffer, current_read->buffer);
   2417 
   2418   uint8* src_pixels = NULL;
   2419 
   2420   if (source_buffer != 0) {
   2421     GLC(gl_,
   2422         gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer));
   2423     src_pixels = static_cast<uint8*>(gl_->MapBufferCHROMIUM(
   2424         GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY));
   2425 
   2426     if (src_pixels) {
   2427       size_t row_bytes = size.width() * 4;
   2428       int num_rows = size.height();
   2429       size_t total_bytes = num_rows * row_bytes;
   2430       for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) {
   2431         // Flip Y axis.
   2432         size_t src_y = total_bytes - dest_y - row_bytes;
   2433         // Swizzle OpenGL -> Skia byte order.
   2434         for (size_t x = 0; x < row_bytes; x += 4) {
   2435           dest_pixels[dest_y + x + SK_R32_SHIFT / 8] =
   2436               src_pixels[src_y + x + 0];
   2437           dest_pixels[dest_y + x + SK_G32_SHIFT / 8] =
   2438               src_pixels[src_y + x + 1];
   2439           dest_pixels[dest_y + x + SK_B32_SHIFT / 8] =
   2440               src_pixels[src_y + x + 2];
   2441           dest_pixels[dest_y + x + SK_A32_SHIFT / 8] =
   2442               src_pixels[src_y + x + 3];
   2443         }
   2444       }
   2445 
   2446       GLC(gl_,
   2447           gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM));
   2448     }
   2449     GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
   2450     GLC(gl_, gl_->DeleteBuffers(1, &source_buffer));
   2451   }
   2452 
   2453   // TODO(danakj): This can go away when synchronous readback is no more and its
   2454   // contents can just move here.
   2455   if (!cleanup_callback.is_null())
   2456     cleanup_callback.Run(current_read->copy_request.Pass(), src_pixels != NULL);
   2457 
   2458   pending_async_read_pixels_.pop_back();
   2459 }
   2460 
   2461 void GLRenderer::PassOnSkBitmap(scoped_ptr<SkBitmap> bitmap,
   2462                                 scoped_ptr<SkAutoLockPixels> lock,
   2463                                 scoped_ptr<CopyOutputRequest> request,
   2464                                 bool success) {
   2465   DCHECK(request->force_bitmap_result());
   2466 
   2467   lock.reset();
   2468   if (success)
   2469     request->SendBitmapResult(bitmap.Pass());
   2470 }
   2471 
   2472 void GLRenderer::GetFramebufferTexture(unsigned texture_id,
   2473                                        ResourceFormat texture_format,
   2474                                        gfx::Rect window_rect) {
   2475   DCHECK(texture_id);
   2476   DCHECK_GE(window_rect.x(), 0);
   2477   DCHECK_GE(window_rect.y(), 0);
   2478   DCHECK_LE(window_rect.right(), current_surface_size_.width());
   2479   DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
   2480 
   2481   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2482   GLC(gl_,
   2483       gl_->CopyTexImage2D(GL_TEXTURE_2D,
   2484                           0,
   2485                           GLDataFormat(texture_format),
   2486                           window_rect.x(),
   2487                           window_rect.y(),
   2488                           window_rect.width(),
   2489                           window_rect.height(),
   2490                           0));
   2491   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2492 }
   2493 
   2494 bool GLRenderer::UseScopedTexture(DrawingFrame* frame,
   2495                                   const ScopedResource* texture,
   2496                                   gfx::Rect viewport_rect) {
   2497   DCHECK(texture->id());
   2498   frame->current_render_pass = NULL;
   2499   frame->current_texture = texture;
   2500 
   2501   return BindFramebufferToTexture(frame, texture, viewport_rect);
   2502 }
   2503 
   2504 void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) {
   2505   current_framebuffer_lock_.reset();
   2506   output_surface_->BindFramebuffer();
   2507 
   2508   if (output_surface_->HasExternalStencilTest()) {
   2509     SetStencilEnabled(true);
   2510     GLC(gl_, gl_->StencilFunc(GL_EQUAL, 1, 1));
   2511   } else {
   2512     SetStencilEnabled(false);
   2513   }
   2514 }
   2515 
   2516 bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame,
   2517                                           const ScopedResource* texture,
   2518                                           gfx::Rect target_rect) {
   2519   DCHECK(texture->id());
   2520 
   2521   current_framebuffer_lock_.reset();
   2522 
   2523   SetStencilEnabled(false);
   2524   GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_));
   2525   current_framebuffer_lock_ =
   2526       make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL(
   2527           resource_provider_, texture->id()));
   2528   unsigned texture_id = current_framebuffer_lock_->texture_id();
   2529   GLC(gl_,
   2530       gl_->FramebufferTexture2D(
   2531           GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0));
   2532 
   2533   DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
   2534              GL_FRAMEBUFFER_COMPLETE ||
   2535          IsContextLost());
   2536 
   2537   InitializeViewport(
   2538       frame, target_rect, gfx::Rect(target_rect.size()), target_rect.size());
   2539   return true;
   2540 }
   2541 
   2542 void GLRenderer::SetScissorTestRect(gfx::Rect scissor_rect) {
   2543   EnsureScissorTestEnabled();
   2544 
   2545   // Don't unnecessarily ask the context to change the scissor, because it
   2546   // may cause undesired GPU pipeline flushes.
   2547   if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_)
   2548     return;
   2549 
   2550   scissor_rect_ = scissor_rect;
   2551   FlushTextureQuadCache();
   2552   GLC(gl_,
   2553       gl_->Scissor(scissor_rect.x(),
   2554                    scissor_rect.y(),
   2555                    scissor_rect.width(),
   2556                    scissor_rect.height()));
   2557 
   2558   scissor_rect_needs_reset_ = false;
   2559 }
   2560 
   2561 void GLRenderer::SetDrawViewport(gfx::Rect window_space_viewport) {
   2562   viewport_ = window_space_viewport;
   2563   GLC(gl_,
   2564       gl_->Viewport(window_space_viewport.x(),
   2565                     window_space_viewport.y(),
   2566                     window_space_viewport.width(),
   2567                     window_space_viewport.height()));
   2568 }
   2569 
   2570 void GLRenderer::InitializeSharedObjects() {
   2571   TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects");
   2572 
   2573   // Create an FBO for doing offscreen rendering.
   2574   GLC(gl_, gl_->GenFramebuffers(1, &offscreen_framebuffer_id_));
   2575 
   2576   shared_geometry_ = make_scoped_ptr(
   2577       new GeometryBinding(gl_, QuadVertexRect()));
   2578 }
   2579 
   2580 const GLRenderer::TileCheckerboardProgram*
   2581 GLRenderer::GetTileCheckerboardProgram() {
   2582   if (!tile_checkerboard_program_.initialized()) {
   2583     TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize");
   2584     tile_checkerboard_program_.Initialize(output_surface_->context_provider(),
   2585                                           TexCoordPrecisionNA,
   2586                                           SamplerTypeNA);
   2587   }
   2588   return &tile_checkerboard_program_;
   2589 }
   2590 
   2591 const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() {
   2592   if (!debug_border_program_.initialized()) {
   2593     TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize");
   2594     debug_border_program_.Initialize(output_surface_->context_provider(),
   2595                                      TexCoordPrecisionNA,
   2596                                      SamplerTypeNA);
   2597   }
   2598   return &debug_border_program_;
   2599 }
   2600 
   2601 const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() {
   2602   if (!solid_color_program_.initialized()) {
   2603     TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize");
   2604     solid_color_program_.Initialize(output_surface_->context_provider(),
   2605                                     TexCoordPrecisionNA,
   2606                                     SamplerTypeNA);
   2607   }
   2608   return &solid_color_program_;
   2609 }
   2610 
   2611 const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() {
   2612   if (!solid_color_program_aa_.initialized()) {
   2613     TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize");
   2614     solid_color_program_aa_.Initialize(output_surface_->context_provider(),
   2615                                        TexCoordPrecisionNA,
   2616                                        SamplerTypeNA);
   2617   }
   2618   return &solid_color_program_aa_;
   2619 }
   2620 
   2621 const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram(
   2622     TexCoordPrecision precision) {
   2623   DCHECK_GE(precision, 0);
   2624   DCHECK_LT(precision, NumTexCoordPrecisions);
   2625   RenderPassProgram* program = &render_pass_program_[precision];
   2626   if (!program->initialized()) {
   2627     TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize");
   2628     program->Initialize(
   2629         output_surface_->context_provider(), precision, SamplerType2D);
   2630   }
   2631   return program;
   2632 }
   2633 
   2634 const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA(
   2635     TexCoordPrecision precision) {
   2636   DCHECK_GE(precision, 0);
   2637   DCHECK_LT(precision, NumTexCoordPrecisions);
   2638   RenderPassProgramAA* program = &render_pass_program_aa_[precision];
   2639   if (!program->initialized()) {
   2640     TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize");
   2641     program->Initialize(
   2642         output_surface_->context_provider(), precision, SamplerType2D);
   2643   }
   2644   return program;
   2645 }
   2646 
   2647 const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram(
   2648     TexCoordPrecision precision) {
   2649   DCHECK_GE(precision, 0);
   2650   DCHECK_LT(precision, NumTexCoordPrecisions);
   2651   RenderPassMaskProgram* program = &render_pass_mask_program_[precision];
   2652   if (!program->initialized()) {
   2653     TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize");
   2654     program->Initialize(
   2655         output_surface_->context_provider(), precision, SamplerType2D);
   2656   }
   2657   return program;
   2658 }
   2659 
   2660 const GLRenderer::RenderPassMaskProgramAA*
   2661 GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) {
   2662   DCHECK_GE(precision, 0);
   2663   DCHECK_LT(precision, NumTexCoordPrecisions);
   2664   RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision];
   2665   if (!program->initialized()) {
   2666     TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize");
   2667     program->Initialize(
   2668         output_surface_->context_provider(), precision, SamplerType2D);
   2669   }
   2670   return program;
   2671 }
   2672 
   2673 const GLRenderer::RenderPassColorMatrixProgram*
   2674 GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) {
   2675   DCHECK_GE(precision, 0);
   2676   DCHECK_LT(precision, NumTexCoordPrecisions);
   2677   RenderPassColorMatrixProgram* program =
   2678       &render_pass_color_matrix_program_[precision];
   2679   if (!program->initialized()) {
   2680     TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize");
   2681     program->Initialize(
   2682         output_surface_->context_provider(), precision, SamplerType2D);
   2683   }
   2684   return program;
   2685 }
   2686 
   2687 const GLRenderer::RenderPassColorMatrixProgramAA*
   2688 GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) {
   2689   DCHECK_GE(precision, 0);
   2690   DCHECK_LT(precision, NumTexCoordPrecisions);
   2691   RenderPassColorMatrixProgramAA* program =
   2692       &render_pass_color_matrix_program_aa_[precision];
   2693   if (!program->initialized()) {
   2694     TRACE_EVENT0("cc",
   2695                  "GLRenderer::renderPassColorMatrixProgramAA::initialize");
   2696     program->Initialize(
   2697         output_surface_->context_provider(), precision, SamplerType2D);
   2698   }
   2699   return program;
   2700 }
   2701 
   2702 const GLRenderer::RenderPassMaskColorMatrixProgram*
   2703 GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) {
   2704   DCHECK_GE(precision, 0);
   2705   DCHECK_LT(precision, NumTexCoordPrecisions);
   2706   RenderPassMaskColorMatrixProgram* program =
   2707       &render_pass_mask_color_matrix_program_[precision];
   2708   if (!program->initialized()) {
   2709     TRACE_EVENT0("cc",
   2710                  "GLRenderer::renderPassMaskColorMatrixProgram::initialize");
   2711     program->Initialize(
   2712         output_surface_->context_provider(), precision, SamplerType2D);
   2713   }
   2714   return program;
   2715 }
   2716 
   2717 const GLRenderer::RenderPassMaskColorMatrixProgramAA*
   2718 GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) {
   2719   DCHECK_GE(precision, 0);
   2720   DCHECK_LT(precision, NumTexCoordPrecisions);
   2721   RenderPassMaskColorMatrixProgramAA* program =
   2722       &render_pass_mask_color_matrix_program_aa_[precision];
   2723   if (!program->initialized()) {
   2724     TRACE_EVENT0("cc",
   2725                  "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize");
   2726     program->Initialize(
   2727         output_surface_->context_provider(), precision, SamplerType2D);
   2728   }
   2729   return program;
   2730 }
   2731 
   2732 const GLRenderer::TileProgram* GLRenderer::GetTileProgram(
   2733     TexCoordPrecision precision,
   2734     SamplerType sampler) {
   2735   DCHECK_GE(precision, 0);
   2736   DCHECK_LT(precision, NumTexCoordPrecisions);
   2737   DCHECK_GE(sampler, 0);
   2738   DCHECK_LT(sampler, NumSamplerTypes);
   2739   TileProgram* program = &tile_program_[precision][sampler];
   2740   if (!program->initialized()) {
   2741     TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize");
   2742     program->Initialize(
   2743         output_surface_->context_provider(), precision, sampler);
   2744   }
   2745   return program;
   2746 }
   2747 
   2748 const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque(
   2749     TexCoordPrecision precision,
   2750     SamplerType sampler) {
   2751   DCHECK_GE(precision, 0);
   2752   DCHECK_LT(precision, NumTexCoordPrecisions);
   2753   DCHECK_GE(sampler, 0);
   2754   DCHECK_LT(sampler, NumSamplerTypes);
   2755   TileProgramOpaque* program = &tile_program_opaque_[precision][sampler];
   2756   if (!program->initialized()) {
   2757     TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize");
   2758     program->Initialize(
   2759         output_surface_->context_provider(), precision, sampler);
   2760   }
   2761   return program;
   2762 }
   2763 
   2764 const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA(
   2765     TexCoordPrecision precision,
   2766     SamplerType sampler) {
   2767   DCHECK_GE(precision, 0);
   2768   DCHECK_LT(precision, NumTexCoordPrecisions);
   2769   DCHECK_GE(sampler, 0);
   2770   DCHECK_LT(sampler, NumSamplerTypes);
   2771   TileProgramAA* program = &tile_program_aa_[precision][sampler];
   2772   if (!program->initialized()) {
   2773     TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize");
   2774     program->Initialize(
   2775         output_surface_->context_provider(), precision, sampler);
   2776   }
   2777   return program;
   2778 }
   2779 
   2780 const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle(
   2781     TexCoordPrecision precision,
   2782     SamplerType sampler) {
   2783   DCHECK_GE(precision, 0);
   2784   DCHECK_LT(precision, NumTexCoordPrecisions);
   2785   DCHECK_GE(sampler, 0);
   2786   DCHECK_LT(sampler, NumSamplerTypes);
   2787   TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler];
   2788   if (!program->initialized()) {
   2789     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize");
   2790     program->Initialize(
   2791         output_surface_->context_provider(), precision, sampler);
   2792   }
   2793   return program;
   2794 }
   2795 
   2796 const GLRenderer::TileProgramSwizzleOpaque*
   2797 GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision,
   2798                                         SamplerType sampler) {
   2799   DCHECK_GE(precision, 0);
   2800   DCHECK_LT(precision, NumTexCoordPrecisions);
   2801   DCHECK_GE(sampler, 0);
   2802   DCHECK_LT(sampler, NumSamplerTypes);
   2803   TileProgramSwizzleOpaque* program =
   2804       &tile_program_swizzle_opaque_[precision][sampler];
   2805   if (!program->initialized()) {
   2806     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize");
   2807     program->Initialize(
   2808         output_surface_->context_provider(), precision, sampler);
   2809   }
   2810   return program;
   2811 }
   2812 
   2813 const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA(
   2814     TexCoordPrecision precision,
   2815     SamplerType sampler) {
   2816   DCHECK_GE(precision, 0);
   2817   DCHECK_LT(precision, NumTexCoordPrecisions);
   2818   DCHECK_GE(sampler, 0);
   2819   DCHECK_LT(sampler, NumSamplerTypes);
   2820   TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler];
   2821   if (!program->initialized()) {
   2822     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize");
   2823     program->Initialize(
   2824         output_surface_->context_provider(), precision, sampler);
   2825   }
   2826   return program;
   2827 }
   2828 
   2829 const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram(
   2830     TexCoordPrecision precision) {
   2831   DCHECK_GE(precision, 0);
   2832   DCHECK_LT(precision, NumTexCoordPrecisions);
   2833   TextureProgram* program = &texture_program_[precision];
   2834   if (!program->initialized()) {
   2835     TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
   2836     program->Initialize(
   2837         output_surface_->context_provider(), precision, SamplerType2D);
   2838   }
   2839   return program;
   2840 }
   2841 
   2842 const GLRenderer::NonPremultipliedTextureProgram*
   2843 GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision) {
   2844   DCHECK_GE(precision, 0);
   2845   DCHECK_LT(precision, NumTexCoordPrecisions);
   2846   NonPremultipliedTextureProgram* program =
   2847       &nonpremultiplied_texture_program_[precision];
   2848   if (!program->initialized()) {
   2849     TRACE_EVENT0("cc",
   2850                  "GLRenderer::NonPremultipliedTextureProgram::Initialize");
   2851     program->Initialize(
   2852         output_surface_->context_provider(), precision, SamplerType2D);
   2853   }
   2854   return program;
   2855 }
   2856 
   2857 const GLRenderer::TextureBackgroundProgram*
   2858 GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision) {
   2859   DCHECK_GE(precision, 0);
   2860   DCHECK_LT(precision, NumTexCoordPrecisions);
   2861   TextureBackgroundProgram* program = &texture_background_program_[precision];
   2862   if (!program->initialized()) {
   2863     TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
   2864     program->Initialize(
   2865         output_surface_->context_provider(), precision, SamplerType2D);
   2866   }
   2867   return program;
   2868 }
   2869 
   2870 const GLRenderer::NonPremultipliedTextureBackgroundProgram*
   2871 GLRenderer::GetNonPremultipliedTextureBackgroundProgram(
   2872     TexCoordPrecision precision) {
   2873   DCHECK_GE(precision, 0);
   2874   DCHECK_LT(precision, NumTexCoordPrecisions);
   2875   NonPremultipliedTextureBackgroundProgram* program =
   2876       &nonpremultiplied_texture_background_program_[precision];
   2877   if (!program->initialized()) {
   2878     TRACE_EVENT0("cc",
   2879                  "GLRenderer::NonPremultipliedTextureProgram::Initialize");
   2880     program->Initialize(
   2881         output_surface_->context_provider(), precision, SamplerType2D);
   2882   }
   2883   return program;
   2884 }
   2885 
   2886 const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram(
   2887     TexCoordPrecision precision) {
   2888   DCHECK_GE(precision, 0);
   2889   DCHECK_LT(precision, NumTexCoordPrecisions);
   2890   TextureProgram* program = &texture_io_surface_program_[precision];
   2891   if (!program->initialized()) {
   2892     TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize");
   2893     program->Initialize(
   2894         output_surface_->context_provider(), precision, SamplerType2DRect);
   2895   }
   2896   return program;
   2897 }
   2898 
   2899 const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram(
   2900     TexCoordPrecision precision) {
   2901   DCHECK_GE(precision, 0);
   2902   DCHECK_LT(precision, NumTexCoordPrecisions);
   2903   VideoYUVProgram* program = &video_yuv_program_[precision];
   2904   if (!program->initialized()) {
   2905     TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize");
   2906     program->Initialize(
   2907         output_surface_->context_provider(), precision, SamplerType2D);
   2908   }
   2909   return program;
   2910 }
   2911 
   2912 const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram(
   2913     TexCoordPrecision precision) {
   2914   DCHECK_GE(precision, 0);
   2915   DCHECK_LT(precision, NumTexCoordPrecisions);
   2916   VideoYUVAProgram* program = &video_yuva_program_[precision];
   2917   if (!program->initialized()) {
   2918     TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize");
   2919     program->Initialize(
   2920         output_surface_->context_provider(), precision, SamplerType2D);
   2921   }
   2922   return program;
   2923 }
   2924 
   2925 const GLRenderer::VideoStreamTextureProgram*
   2926 GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) {
   2927   if (!Capabilities().using_egl_image)
   2928     return NULL;
   2929   DCHECK_GE(precision, 0);
   2930   DCHECK_LT(precision, NumTexCoordPrecisions);
   2931   VideoStreamTextureProgram* program =
   2932       &video_stream_texture_program_[precision];
   2933   if (!program->initialized()) {
   2934     TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize");
   2935     program->Initialize(
   2936         output_surface_->context_provider(), precision, SamplerTypeExternalOES);
   2937   }
   2938   return program;
   2939 }
   2940 
   2941 void GLRenderer::CleanupSharedObjects() {
   2942   shared_geometry_.reset();
   2943 
   2944   for (int i = 0; i < NumTexCoordPrecisions; ++i) {
   2945     for (int j = 0; j < NumSamplerTypes; ++j) {
   2946       tile_program_[i][j].Cleanup(gl_);
   2947       tile_program_opaque_[i][j].Cleanup(gl_);
   2948       tile_program_swizzle_[i][j].Cleanup(gl_);
   2949       tile_program_swizzle_opaque_[i][j].Cleanup(gl_);
   2950       tile_program_aa_[i][j].Cleanup(gl_);
   2951       tile_program_swizzle_aa_[i][j].Cleanup(gl_);
   2952     }
   2953 
   2954     render_pass_mask_program_[i].Cleanup(gl_);
   2955     render_pass_program_[i].Cleanup(gl_);
   2956     render_pass_mask_program_aa_[i].Cleanup(gl_);
   2957     render_pass_program_aa_[i].Cleanup(gl_);
   2958     render_pass_color_matrix_program_[i].Cleanup(gl_);
   2959     render_pass_mask_color_matrix_program_aa_[i].Cleanup(gl_);
   2960     render_pass_color_matrix_program_aa_[i].Cleanup(gl_);
   2961     render_pass_mask_color_matrix_program_[i].Cleanup(gl_);
   2962 
   2963     texture_program_[i].Cleanup(gl_);
   2964     nonpremultiplied_texture_program_[i].Cleanup(gl_);
   2965     texture_background_program_[i].Cleanup(gl_);
   2966     nonpremultiplied_texture_background_program_[i].Cleanup(gl_);
   2967     texture_io_surface_program_[i].Cleanup(gl_);
   2968 
   2969     video_yuv_program_[i].Cleanup(gl_);
   2970     video_yuva_program_[i].Cleanup(gl_);
   2971     video_stream_texture_program_[i].Cleanup(gl_);
   2972   }
   2973 
   2974   tile_checkerboard_program_.Cleanup(gl_);
   2975 
   2976   debug_border_program_.Cleanup(gl_);
   2977   solid_color_program_.Cleanup(gl_);
   2978   solid_color_program_aa_.Cleanup(gl_);
   2979 
   2980   if (offscreen_framebuffer_id_)
   2981     GLC(gl_, gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_));
   2982 
   2983   if (on_demand_tile_raster_resource_id_)
   2984     resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
   2985 
   2986   ReleaseRenderPassTextures();
   2987 }
   2988 
   2989 void GLRenderer::ReinitializeGLState() {
   2990   // Bind the common vertex attributes used for drawing all the layers.
   2991   shared_geometry_->PrepareForDraw();
   2992 
   2993   GLC(gl_, gl_->Disable(GL_DEPTH_TEST));
   2994   GLC(gl_, gl_->Disable(GL_CULL_FACE));
   2995   GLC(gl_, gl_->ColorMask(true, true, true, true));
   2996   GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
   2997   stencil_shadow_ = false;
   2998   GLC(gl_, gl_->Enable(GL_BLEND));
   2999   blend_shadow_ = true;
   3000   GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
   3001   GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0));
   3002   program_shadow_ = 0;
   3003 
   3004   // Make sure scissoring starts as disabled.
   3005   is_scissor_enabled_ = false;
   3006   GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
   3007   scissor_rect_needs_reset_ = true;
   3008 }
   3009 
   3010 bool GLRenderer::IsContextLost() {
   3011   return output_surface_->context_provider()->IsContextLost();
   3012 }
   3013 
   3014 }  // namespace cc
   3015