Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveRange and LiveInterval classes.  Given some
     11 // numbering of each the machine instructions an interval [i, j) is said to be a
     12 // live interval for register v if there is no instruction with number j' > j
     13 // such that v is live at j' and there is no instruction with number i' < i such
     14 // that v is live at i'. In this implementation intervals can have holes,
     15 // i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
     16 // individual range is represented as an instance of LiveRange, and the whole
     17 // interval is represented as an instance of LiveInterval.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/LiveInterval.h"
     22 #include "RegisterCoalescer.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
     35   // This algorithm is basically std::upper_bound.
     36   // Unfortunately, std::upper_bound cannot be used with mixed types until we
     37   // adopt C++0x. Many libraries can do it, but not all.
     38   if (empty() || Pos >= endIndex())
     39     return end();
     40   iterator I = begin();
     41   size_t Len = ranges.size();
     42   do {
     43     size_t Mid = Len >> 1;
     44     if (Pos < I[Mid].end)
     45       Len = Mid;
     46     else
     47       I += Mid + 1, Len -= Mid + 1;
     48   } while (Len);
     49   return I;
     50 }
     51 
     52 VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
     53                                     VNInfo::Allocator &VNInfoAllocator) {
     54   assert(!Def.isDead() && "Cannot define a value at the dead slot");
     55   iterator I = find(Def);
     56   if (I == end()) {
     57     VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
     58     ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI));
     59     return VNI;
     60   }
     61   if (SlotIndex::isSameInstr(Def, I->start)) {
     62     assert(I->valno->def == I->start && "Inconsistent existing value def");
     63 
     64     // It is possible to have both normal and early-clobber defs of the same
     65     // register on an instruction. It doesn't make a lot of sense, but it is
     66     // possible to specify in inline assembly.
     67     //
     68     // Just convert everything to early-clobber.
     69     Def = std::min(Def, I->start);
     70     if (Def != I->start)
     71       I->start = I->valno->def = Def;
     72     return I->valno;
     73   }
     74   assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
     75   VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
     76   ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI));
     77   return VNI;
     78 }
     79 
     80 // overlaps - Return true if the intersection of the two live intervals is
     81 // not empty.
     82 //
     83 // An example for overlaps():
     84 //
     85 // 0: A = ...
     86 // 4: B = ...
     87 // 8: C = A + B ;; last use of A
     88 //
     89 // The live intervals should look like:
     90 //
     91 // A = [3, 11)
     92 // B = [7, x)
     93 // C = [11, y)
     94 //
     95 // A->overlaps(C) should return false since we want to be able to join
     96 // A and C.
     97 //
     98 bool LiveInterval::overlapsFrom(const LiveInterval& other,
     99                                 const_iterator StartPos) const {
    100   assert(!empty() && "empty interval");
    101   const_iterator i = begin();
    102   const_iterator ie = end();
    103   const_iterator j = StartPos;
    104   const_iterator je = other.end();
    105 
    106   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
    107          StartPos != other.end() && "Bogus start position hint!");
    108 
    109   if (i->start < j->start) {
    110     i = std::upper_bound(i, ie, j->start);
    111     if (i != ranges.begin()) --i;
    112   } else if (j->start < i->start) {
    113     ++StartPos;
    114     if (StartPos != other.end() && StartPos->start <= i->start) {
    115       assert(StartPos < other.end() && i < end());
    116       j = std::upper_bound(j, je, i->start);
    117       if (j != other.ranges.begin()) --j;
    118     }
    119   } else {
    120     return true;
    121   }
    122 
    123   if (j == je) return false;
    124 
    125   while (i != ie) {
    126     if (i->start > j->start) {
    127       std::swap(i, j);
    128       std::swap(ie, je);
    129     }
    130 
    131     if (i->end > j->start)
    132       return true;
    133     ++i;
    134   }
    135 
    136   return false;
    137 }
    138 
    139 bool LiveInterval::overlaps(const LiveInterval &Other,
    140                             const CoalescerPair &CP,
    141                             const SlotIndexes &Indexes) const {
    142   assert(!empty() && "empty interval");
    143   if (Other.empty())
    144     return false;
    145 
    146   // Use binary searches to find initial positions.
    147   const_iterator I = find(Other.beginIndex());
    148   const_iterator IE = end();
    149   if (I == IE)
    150     return false;
    151   const_iterator J = Other.find(I->start);
    152   const_iterator JE = Other.end();
    153   if (J == JE)
    154     return false;
    155 
    156   for (;;) {
    157     // J has just been advanced to satisfy:
    158     assert(J->end >= I->start);
    159     // Check for an overlap.
    160     if (J->start < I->end) {
    161       // I and J are overlapping. Find the later start.
    162       SlotIndex Def = std::max(I->start, J->start);
    163       // Allow the overlap if Def is a coalescable copy.
    164       if (Def.isBlock() ||
    165           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
    166         return true;
    167     }
    168     // Advance the iterator that ends first to check for more overlaps.
    169     if (J->end > I->end) {
    170       std::swap(I, J);
    171       std::swap(IE, JE);
    172     }
    173     // Advance J until J->end >= I->start.
    174     do
    175       if (++J == JE)
    176         return false;
    177     while (J->end < I->start);
    178   }
    179 }
    180 
    181 /// overlaps - Return true if the live interval overlaps a range specified
    182 /// by [Start, End).
    183 bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
    184   assert(Start < End && "Invalid range");
    185   const_iterator I = std::lower_bound(begin(), end(), End);
    186   return I != begin() && (--I)->end > Start;
    187 }
    188 
    189 
    190 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
    191 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
    192 /// it can be nuked later.
    193 void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
    194   if (ValNo->id == getNumValNums()-1) {
    195     do {
    196       valnos.pop_back();
    197     } while (!valnos.empty() && valnos.back()->isUnused());
    198   } else {
    199     ValNo->markUnused();
    200   }
    201 }
    202 
    203 /// RenumberValues - Renumber all values in order of appearance and delete the
    204 /// remaining unused values.
    205 void LiveInterval::RenumberValues(LiveIntervals &lis) {
    206   SmallPtrSet<VNInfo*, 8> Seen;
    207   valnos.clear();
    208   for (const_iterator I = begin(), E = end(); I != E; ++I) {
    209     VNInfo *VNI = I->valno;
    210     if (!Seen.insert(VNI))
    211       continue;
    212     assert(!VNI->isUnused() && "Unused valno used by live range");
    213     VNI->id = (unsigned)valnos.size();
    214     valnos.push_back(VNI);
    215   }
    216 }
    217 
    218 /// extendIntervalEndTo - This method is used when we want to extend the range
    219 /// specified by I to end at the specified endpoint.  To do this, we should
    220 /// merge and eliminate all ranges that this will overlap with.  The iterator is
    221 /// not invalidated.
    222 void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
    223   assert(I != ranges.end() && "Not a valid interval!");
    224   VNInfo *ValNo = I->valno;
    225 
    226   // Search for the first interval that we can't merge with.
    227   Ranges::iterator MergeTo = llvm::next(I);
    228   for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
    229     assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    230   }
    231 
    232   // If NewEnd was in the middle of an interval, make sure to get its endpoint.
    233   I->end = std::max(NewEnd, prior(MergeTo)->end);
    234 
    235   // If the newly formed range now touches the range after it and if they have
    236   // the same value number, merge the two ranges into one range.
    237   if (MergeTo != ranges.end() && MergeTo->start <= I->end &&
    238       MergeTo->valno == ValNo) {
    239     I->end = MergeTo->end;
    240     ++MergeTo;
    241   }
    242 
    243   // Erase any dead ranges.
    244   ranges.erase(llvm::next(I), MergeTo);
    245 }
    246 
    247 
    248 /// extendIntervalStartTo - This method is used when we want to extend the range
    249 /// specified by I to start at the specified endpoint.  To do this, we should
    250 /// merge and eliminate all ranges that this will overlap with.
    251 LiveInterval::Ranges::iterator
    252 LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
    253   assert(I != ranges.end() && "Not a valid interval!");
    254   VNInfo *ValNo = I->valno;
    255 
    256   // Search for the first interval that we can't merge with.
    257   Ranges::iterator MergeTo = I;
    258   do {
    259     if (MergeTo == ranges.begin()) {
    260       I->start = NewStart;
    261       ranges.erase(MergeTo, I);
    262       return I;
    263     }
    264     assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    265     --MergeTo;
    266   } while (NewStart <= MergeTo->start);
    267 
    268   // If we start in the middle of another interval, just delete a range and
    269   // extend that interval.
    270   if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
    271     MergeTo->end = I->end;
    272   } else {
    273     // Otherwise, extend the interval right after.
    274     ++MergeTo;
    275     MergeTo->start = NewStart;
    276     MergeTo->end = I->end;
    277   }
    278 
    279   ranges.erase(llvm::next(MergeTo), llvm::next(I));
    280   return MergeTo;
    281 }
    282 
    283 LiveInterval::iterator
    284 LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
    285   SlotIndex Start = LR.start, End = LR.end;
    286   iterator it = std::upper_bound(From, ranges.end(), Start);
    287 
    288   // If the inserted interval starts in the middle or right at the end of
    289   // another interval, just extend that interval to contain the range of LR.
    290   if (it != ranges.begin()) {
    291     iterator B = prior(it);
    292     if (LR.valno == B->valno) {
    293       if (B->start <= Start && B->end >= Start) {
    294         extendIntervalEndTo(B, End);
    295         return B;
    296       }
    297     } else {
    298       // Check to make sure that we are not overlapping two live ranges with
    299       // different valno's.
    300       assert(B->end <= Start &&
    301              "Cannot overlap two LiveRanges with differing ValID's"
    302              " (did you def the same reg twice in a MachineInstr?)");
    303     }
    304   }
    305 
    306   // Otherwise, if this range ends in the middle of, or right next to, another
    307   // interval, merge it into that interval.
    308   if (it != ranges.end()) {
    309     if (LR.valno == it->valno) {
    310       if (it->start <= End) {
    311         it = extendIntervalStartTo(it, Start);
    312 
    313         // If LR is a complete superset of an interval, we may need to grow its
    314         // endpoint as well.
    315         if (End > it->end)
    316           extendIntervalEndTo(it, End);
    317         return it;
    318       }
    319     } else {
    320       // Check to make sure that we are not overlapping two live ranges with
    321       // different valno's.
    322       assert(it->start >= End &&
    323              "Cannot overlap two LiveRanges with differing ValID's");
    324     }
    325   }
    326 
    327   // Otherwise, this is just a new range that doesn't interact with anything.
    328   // Insert it.
    329   return ranges.insert(it, LR);
    330 }
    331 
    332 /// extendInBlock - If this interval is live before Kill in the basic
    333 /// block that starts at StartIdx, extend it to be live up to Kill and return
    334 /// the value. If there is no live range before Kill, return NULL.
    335 VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
    336   if (empty())
    337     return 0;
    338   iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
    339   if (I == begin())
    340     return 0;
    341   --I;
    342   if (I->end <= StartIdx)
    343     return 0;
    344   if (I->end < Kill)
    345     extendIntervalEndTo(I, Kill);
    346   return I->valno;
    347 }
    348 
    349 /// removeRange - Remove the specified range from this interval.  Note that
    350 /// the range must be in a single LiveRange in its entirety.
    351 void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
    352                                bool RemoveDeadValNo) {
    353   // Find the LiveRange containing this span.
    354   Ranges::iterator I = find(Start);
    355   assert(I != ranges.end() && "Range is not in interval!");
    356   assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
    357 
    358   // If the span we are removing is at the start of the LiveRange, adjust it.
    359   VNInfo *ValNo = I->valno;
    360   if (I->start == Start) {
    361     if (I->end == End) {
    362       if (RemoveDeadValNo) {
    363         // Check if val# is dead.
    364         bool isDead = true;
    365         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
    366           if (II != I && II->valno == ValNo) {
    367             isDead = false;
    368             break;
    369           }
    370         if (isDead) {
    371           // Now that ValNo is dead, remove it.
    372           markValNoForDeletion(ValNo);
    373         }
    374       }
    375 
    376       ranges.erase(I);  // Removed the whole LiveRange.
    377     } else
    378       I->start = End;
    379     return;
    380   }
    381 
    382   // Otherwise if the span we are removing is at the end of the LiveRange,
    383   // adjust the other way.
    384   if (I->end == End) {
    385     I->end = Start;
    386     return;
    387   }
    388 
    389   // Otherwise, we are splitting the LiveRange into two pieces.
    390   SlotIndex OldEnd = I->end;
    391   I->end = Start;   // Trim the old interval.
    392 
    393   // Insert the new one.
    394   ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
    395 }
    396 
    397 /// removeValNo - Remove all the ranges defined by the specified value#.
    398 /// Also remove the value# from value# list.
    399 void LiveInterval::removeValNo(VNInfo *ValNo) {
    400   if (empty()) return;
    401   Ranges::iterator I = ranges.end();
    402   Ranges::iterator E = ranges.begin();
    403   do {
    404     --I;
    405     if (I->valno == ValNo)
    406       ranges.erase(I);
    407   } while (I != E);
    408   // Now that ValNo is dead, remove it.
    409   markValNoForDeletion(ValNo);
    410 }
    411 
    412 /// join - Join two live intervals (this, and other) together.  This applies
    413 /// mappings to the value numbers in the LHS/RHS intervals as specified.  If
    414 /// the intervals are not joinable, this aborts.
    415 void LiveInterval::join(LiveInterval &Other,
    416                         const int *LHSValNoAssignments,
    417                         const int *RHSValNoAssignments,
    418                         SmallVectorImpl<VNInfo *> &NewVNInfo,
    419                         MachineRegisterInfo *MRI) {
    420   verify();
    421 
    422   // Determine if any of our live range values are mapped.  This is uncommon, so
    423   // we want to avoid the interval scan if not.
    424   bool MustMapCurValNos = false;
    425   unsigned NumVals = getNumValNums();
    426   unsigned NumNewVals = NewVNInfo.size();
    427   for (unsigned i = 0; i != NumVals; ++i) {
    428     unsigned LHSValID = LHSValNoAssignments[i];
    429     if (i != LHSValID ||
    430         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
    431       MustMapCurValNos = true;
    432       break;
    433     }
    434   }
    435 
    436   // If we have to apply a mapping to our base interval assignment, rewrite it
    437   // now.
    438   if (MustMapCurValNos && !empty()) {
    439     // Map the first live range.
    440 
    441     iterator OutIt = begin();
    442     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    443     for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
    444       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
    445       assert(nextValNo != 0 && "Huh?");
    446 
    447       // If this live range has the same value # as its immediate predecessor,
    448       // and if they are neighbors, remove one LiveRange.  This happens when we
    449       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
    450       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
    451         OutIt->end = I->end;
    452       } else {
    453         // Didn't merge. Move OutIt to the next interval,
    454         ++OutIt;
    455         OutIt->valno = nextValNo;
    456         if (OutIt != I) {
    457           OutIt->start = I->start;
    458           OutIt->end = I->end;
    459         }
    460       }
    461     }
    462     // If we merge some live ranges, chop off the end.
    463     ++OutIt;
    464     ranges.erase(OutIt, end());
    465   }
    466 
    467   // Rewrite Other values before changing the VNInfo ids.
    468   // This can leave Other in an invalid state because we're not coalescing
    469   // touching segments that now have identical values. That's OK since Other is
    470   // not supposed to be valid after calling join();
    471   for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
    472     I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
    473 
    474   // Update val# info. Renumber them and make sure they all belong to this
    475   // LiveInterval now. Also remove dead val#'s.
    476   unsigned NumValNos = 0;
    477   for (unsigned i = 0; i < NumNewVals; ++i) {
    478     VNInfo *VNI = NewVNInfo[i];
    479     if (VNI) {
    480       if (NumValNos >= NumVals)
    481         valnos.push_back(VNI);
    482       else
    483         valnos[NumValNos] = VNI;
    484       VNI->id = NumValNos++;  // Renumber val#.
    485     }
    486   }
    487   if (NumNewVals < NumVals)
    488     valnos.resize(NumNewVals);  // shrinkify
    489 
    490   // Okay, now insert the RHS live ranges into the LHS.
    491   LiveRangeUpdater Updater(this);
    492   for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
    493     Updater.add(*I);
    494 }
    495 
    496 /// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
    497 /// interval as the specified value number.  The LiveRanges in RHS are
    498 /// allowed to overlap with LiveRanges in the current interval, but only if
    499 /// the overlapping LiveRanges have the specified value number.
    500 void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
    501                                         VNInfo *LHSValNo) {
    502   LiveRangeUpdater Updater(this);
    503   for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    504     Updater.add(I->start, I->end, LHSValNo);
    505 }
    506 
    507 /// MergeValueInAsValue - Merge all of the live ranges of a specific val#
    508 /// in RHS into this live interval as the specified value number.
    509 /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
    510 /// current interval, it will replace the value numbers of the overlaped
    511 /// live ranges with the specified value number.
    512 void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
    513                                        const VNInfo *RHSValNo,
    514                                        VNInfo *LHSValNo) {
    515   LiveRangeUpdater Updater(this);
    516   for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    517     if (I->valno == RHSValNo)
    518       Updater.add(I->start, I->end, LHSValNo);
    519 }
    520 
    521 /// MergeValueNumberInto - This method is called when two value nubmers
    522 /// are found to be equivalent.  This eliminates V1, replacing all
    523 /// LiveRanges with the V1 value number with the V2 value number.  This can
    524 /// cause merging of V1/V2 values numbers and compaction of the value space.
    525 VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
    526   assert(V1 != V2 && "Identical value#'s are always equivalent!");
    527 
    528   // This code actually merges the (numerically) larger value number into the
    529   // smaller value number, which is likely to allow us to compactify the value
    530   // space.  The only thing we have to be careful of is to preserve the
    531   // instruction that defines the result value.
    532 
    533   // Make sure V2 is smaller than V1.
    534   if (V1->id < V2->id) {
    535     V1->copyFrom(*V2);
    536     std::swap(V1, V2);
    537   }
    538 
    539   // Merge V1 live ranges into V2.
    540   for (iterator I = begin(); I != end(); ) {
    541     iterator LR = I++;
    542     if (LR->valno != V1) continue;  // Not a V1 LiveRange.
    543 
    544     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    545     // range, extend it.
    546     if (LR != begin()) {
    547       iterator Prev = LR-1;
    548       if (Prev->valno == V2 && Prev->end == LR->start) {
    549         Prev->end = LR->end;
    550 
    551         // Erase this live-range.
    552         ranges.erase(LR);
    553         I = Prev+1;
    554         LR = Prev;
    555       }
    556     }
    557 
    558     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    559     // Ensure that it is a V2 live-range.
    560     LR->valno = V2;
    561 
    562     // If we can merge it into later V2 live ranges, do so now.  We ignore any
    563     // following V1 live ranges, as they will be merged in subsequent iterations
    564     // of the loop.
    565     if (I != end()) {
    566       if (I->start == LR->end && I->valno == V2) {
    567         LR->end = I->end;
    568         ranges.erase(I);
    569         I = LR+1;
    570       }
    571     }
    572   }
    573 
    574   // Now that V1 is dead, remove it.
    575   markValNoForDeletion(V1);
    576 
    577   return V2;
    578 }
    579 
    580 unsigned LiveInterval::getSize() const {
    581   unsigned Sum = 0;
    582   for (const_iterator I = begin(), E = end(); I != E; ++I)
    583     Sum += I->start.distance(I->end);
    584   return Sum;
    585 }
    586 
    587 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
    588   return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
    589 }
    590 
    591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    592 void LiveRange::dump() const {
    593   dbgs() << *this << "\n";
    594 }
    595 #endif
    596 
    597 void LiveInterval::print(raw_ostream &OS) const {
    598   if (empty())
    599     OS << "EMPTY";
    600   else {
    601     for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
    602            E = ranges.end(); I != E; ++I) {
    603       OS << *I;
    604       assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
    605     }
    606   }
    607 
    608   // Print value number info.
    609   if (getNumValNums()) {
    610     OS << "  ";
    611     unsigned vnum = 0;
    612     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
    613          ++i, ++vnum) {
    614       const VNInfo *vni = *i;
    615       if (vnum) OS << " ";
    616       OS << vnum << "@";
    617       if (vni->isUnused()) {
    618         OS << "x";
    619       } else {
    620         OS << vni->def;
    621         if (vni->isPHIDef())
    622           OS << "-phi";
    623       }
    624     }
    625   }
    626 }
    627 
    628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    629 void LiveInterval::dump() const {
    630   dbgs() << *this << "\n";
    631 }
    632 #endif
    633 
    634 #ifndef NDEBUG
    635 void LiveInterval::verify() const {
    636   for (const_iterator I = begin(), E = end(); I != E; ++I) {
    637     assert(I->start.isValid());
    638     assert(I->end.isValid());
    639     assert(I->start < I->end);
    640     assert(I->valno != 0);
    641     assert(I->valno == valnos[I->valno->id]);
    642     if (llvm::next(I) != E) {
    643       assert(I->end <= llvm::next(I)->start);
    644       if (I->end == llvm::next(I)->start)
    645         assert(I->valno != llvm::next(I)->valno);
    646     }
    647   }
    648 }
    649 #endif
    650 
    651 
    652 void LiveRange::print(raw_ostream &os) const {
    653   os << *this;
    654 }
    655 
    656 //===----------------------------------------------------------------------===//
    657 //                           LiveRangeUpdater class
    658 //===----------------------------------------------------------------------===//
    659 //
    660 // The LiveRangeUpdater class always maintains these invariants:
    661 //
    662 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
    663 //   This is the initial state, and the state created by flush().
    664 //   In this state, isDirty() returns false.
    665 //
    666 // Otherwise, segments are kept in three separate areas:
    667 //
    668 // 1. [begin; WriteI) at the front of LI.
    669 // 2. [ReadI; end) at the back of LI.
    670 // 3. Spills.
    671 //
    672 // - LI.begin() <= WriteI <= ReadI <= LI.end().
    673 // - Segments in all three areas are fully ordered and coalesced.
    674 // - Segments in area 1 precede and can't coalesce with segments in area 2.
    675 // - Segments in Spills precede and can't coalesce with segments in area 2.
    676 // - No coalescing is possible between segments in Spills and segments in area
    677 //   1, and there are no overlapping segments.
    678 //
    679 // The segments in Spills are not ordered with respect to the segments in area
    680 // 1. They need to be merged.
    681 //
    682 // When they exist, Spills.back().start <= LastStart,
    683 //                 and WriteI[-1].start <= LastStart.
    684 
    685 void LiveRangeUpdater::print(raw_ostream &OS) const {
    686   if (!isDirty()) {
    687     if (LI)
    688       OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n';
    689     else
    690       OS << "Null updater.\n";
    691     return;
    692   }
    693   assert(LI && "Can't have null LI in dirty updater.");
    694   OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI)
    695      << ", last start = " << LastStart
    696      << ":\n  Area 1:";
    697   for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I)
    698     OS << ' ' << *I;
    699   OS << "\n  Spills:";
    700   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    701     OS << ' ' << Spills[I];
    702   OS << "\n  Area 2:";
    703   for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I)
    704     OS << ' ' << *I;
    705   OS << '\n';
    706 }
    707 
    708 void LiveRangeUpdater::dump() const
    709 {
    710   print(errs());
    711 }
    712 
    713 // Determine if A and B should be coalesced.
    714 static inline bool coalescable(const LiveRange &A, const LiveRange &B) {
    715   assert(A.start <= B.start && "Unordered live ranges.");
    716   if (A.end == B.start)
    717     return A.valno == B.valno;
    718   if (A.end < B.start)
    719     return false;
    720   assert(A.valno == B.valno && "Cannot overlap different values");
    721   return true;
    722 }
    723 
    724 void LiveRangeUpdater::add(LiveRange Seg) {
    725   assert(LI && "Cannot add to a null destination");
    726 
    727   // Flush the state if Start moves backwards.
    728   if (!LastStart.isValid() || LastStart > Seg.start) {
    729     if (isDirty())
    730       flush();
    731     // This brings us to an uninitialized state. Reinitialize.
    732     assert(Spills.empty() && "Leftover spilled segments");
    733     WriteI = ReadI = LI->begin();
    734   }
    735 
    736   // Remember start for next time.
    737   LastStart = Seg.start;
    738 
    739   // Advance ReadI until it ends after Seg.start.
    740   LiveInterval::iterator E = LI->end();
    741   if (ReadI != E && ReadI->end <= Seg.start) {
    742     // First try to close the gap between WriteI and ReadI with spills.
    743     if (ReadI != WriteI)
    744       mergeSpills();
    745     // Then advance ReadI.
    746     if (ReadI == WriteI)
    747       ReadI = WriteI = LI->find(Seg.start);
    748     else
    749       while (ReadI != E && ReadI->end <= Seg.start)
    750         *WriteI++ = *ReadI++;
    751   }
    752 
    753   assert(ReadI == E || ReadI->end > Seg.start);
    754 
    755   // Check if the ReadI segment begins early.
    756   if (ReadI != E && ReadI->start <= Seg.start) {
    757     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
    758     // Bail if Seg is completely contained in ReadI.
    759     if (ReadI->end >= Seg.end)
    760       return;
    761     // Coalesce into Seg.
    762     Seg.start = ReadI->start;
    763     ++ReadI;
    764   }
    765 
    766   // Coalesce as much as possible from ReadI into Seg.
    767   while (ReadI != E && coalescable(Seg, *ReadI)) {
    768     Seg.end = std::max(Seg.end, ReadI->end);
    769     ++ReadI;
    770   }
    771 
    772   // Try coalescing Spills.back() into Seg.
    773   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
    774     Seg.start = Spills.back().start;
    775     Seg.end = std::max(Spills.back().end, Seg.end);
    776     Spills.pop_back();
    777   }
    778 
    779   // Try coalescing Seg into WriteI[-1].
    780   if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) {
    781     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
    782     return;
    783   }
    784 
    785   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
    786   if (WriteI != ReadI) {
    787     *WriteI++ = Seg;
    788     return;
    789   }
    790 
    791   // Finally, append to LI or Spills.
    792   if (WriteI == E) {
    793     LI->ranges.push_back(Seg);
    794     WriteI = ReadI = LI->ranges.end();
    795   } else
    796     Spills.push_back(Seg);
    797 }
    798 
    799 // Merge as many spilled segments as possible into the gap between WriteI
    800 // and ReadI. Advance WriteI to reflect the inserted instructions.
    801 void LiveRangeUpdater::mergeSpills() {
    802   // Perform a backwards merge of Spills and [SpillI;WriteI).
    803   size_t GapSize = ReadI - WriteI;
    804   size_t NumMoved = std::min(Spills.size(), GapSize);
    805   LiveInterval::iterator Src = WriteI;
    806   LiveInterval::iterator Dst = Src + NumMoved;
    807   LiveInterval::iterator SpillSrc = Spills.end();
    808   LiveInterval::iterator B = LI->begin();
    809 
    810   // This is the new WriteI position after merging spills.
    811   WriteI = Dst;
    812 
    813   // Now merge Src and Spills backwards.
    814   while (Src != Dst) {
    815     if (Src != B && Src[-1].start > SpillSrc[-1].start)
    816       *--Dst = *--Src;
    817     else
    818       *--Dst = *--SpillSrc;
    819   }
    820   assert(NumMoved == size_t(Spills.end() - SpillSrc));
    821   Spills.erase(SpillSrc, Spills.end());
    822 }
    823 
    824 void LiveRangeUpdater::flush() {
    825   if (!isDirty())
    826     return;
    827   // Clear the dirty state.
    828   LastStart = SlotIndex();
    829 
    830   assert(LI && "Cannot add to a null destination");
    831 
    832   // Nothing to merge?
    833   if (Spills.empty()) {
    834     LI->ranges.erase(WriteI, ReadI);
    835     LI->verify();
    836     return;
    837   }
    838 
    839   // Resize the WriteI - ReadI gap to match Spills.
    840   size_t GapSize = ReadI - WriteI;
    841   if (GapSize < Spills.size()) {
    842     // The gap is too small. Make some room.
    843     size_t WritePos = WriteI - LI->begin();
    844     LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange());
    845     // This also invalidated ReadI, but it is recomputed below.
    846     WriteI = LI->ranges.begin() + WritePos;
    847   } else {
    848     // Shrink the gap if necessary.
    849     LI->ranges.erase(WriteI + Spills.size(), ReadI);
    850   }
    851   ReadI = WriteI + Spills.size();
    852   mergeSpills();
    853   LI->verify();
    854 }
    855 
    856 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
    857   // Create initial equivalence classes.
    858   EqClass.clear();
    859   EqClass.grow(LI->getNumValNums());
    860 
    861   const VNInfo *used = 0, *unused = 0;
    862 
    863   // Determine connections.
    864   for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
    865        I != E; ++I) {
    866     const VNInfo *VNI = *I;
    867     // Group all unused values into one class.
    868     if (VNI->isUnused()) {
    869       if (unused)
    870         EqClass.join(unused->id, VNI->id);
    871       unused = VNI;
    872       continue;
    873     }
    874     used = VNI;
    875     if (VNI->isPHIDef()) {
    876       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
    877       assert(MBB && "Phi-def has no defining MBB");
    878       // Connect to values live out of predecessors.
    879       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    880            PE = MBB->pred_end(); PI != PE; ++PI)
    881         if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
    882           EqClass.join(VNI->id, PVNI->id);
    883     } else {
    884       // Normal value defined by an instruction. Check for two-addr redef.
    885       // FIXME: This could be coincidental. Should we really check for a tied
    886       // operand constraint?
    887       // Note that VNI->def may be a use slot for an early clobber def.
    888       if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
    889         EqClass.join(VNI->id, UVNI->id);
    890     }
    891   }
    892 
    893   // Lump all the unused values in with the last used value.
    894   if (used && unused)
    895     EqClass.join(used->id, unused->id);
    896 
    897   EqClass.compress();
    898   return EqClass.getNumClasses();
    899 }
    900 
    901 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
    902                                           MachineRegisterInfo &MRI) {
    903   assert(LIV[0] && "LIV[0] must be set");
    904   LiveInterval &LI = *LIV[0];
    905 
    906   // Rewrite instructions.
    907   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
    908        RE = MRI.reg_end(); RI != RE;) {
    909     MachineOperand &MO = RI.getOperand();
    910     MachineInstr *MI = MO.getParent();
    911     ++RI;
    912     // DBG_VALUE instructions don't have slot indexes, so get the index of the
    913     // instruction before them.
    914     // Normally, DBG_VALUE instructions are removed before this function is
    915     // called, but it is not a requirement.
    916     SlotIndex Idx;
    917     if (MI->isDebugValue())
    918       Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
    919     else
    920       Idx = LIS.getInstructionIndex(MI);
    921     LiveRangeQuery LRQ(LI, Idx);
    922     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
    923     // In the case of an <undef> use that isn't tied to any def, VNI will be
    924     // NULL. If the use is tied to a def, VNI will be the defined value.
    925     if (!VNI)
    926       continue;
    927     MO.setReg(LIV[getEqClass(VNI)]->reg);
    928   }
    929 
    930   // Move runs to new intervals.
    931   LiveInterval::iterator J = LI.begin(), E = LI.end();
    932   while (J != E && EqClass[J->valno->id] == 0)
    933     ++J;
    934   for (LiveInterval::iterator I = J; I != E; ++I) {
    935     if (unsigned eq = EqClass[I->valno->id]) {
    936       assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
    937              "New intervals should be empty");
    938       LIV[eq]->ranges.push_back(*I);
    939     } else
    940       *J++ = *I;
    941   }
    942   LI.ranges.erase(J, E);
    943 
    944   // Transfer VNInfos to their new owners and renumber them.
    945   unsigned j = 0, e = LI.getNumValNums();
    946   while (j != e && EqClass[j] == 0)
    947     ++j;
    948   for (unsigned i = j; i != e; ++i) {
    949     VNInfo *VNI = LI.getValNumInfo(i);
    950     if (unsigned eq = EqClass[i]) {
    951       VNI->id = LIV[eq]->getNumValNums();
    952       LIV[eq]->valnos.push_back(VNI);
    953     } else {
    954       VNI->id = j;
    955       LI.valnos[j++] = VNI;
    956     }
    957   }
    958   LI.valnos.resize(j);
    959 }
    960