1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live interval for register v if there is no instruction with number j' > j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation intervals can have holes, 15 // i.e. an interval might look like [1,20), [50,65), [1000,1001). Each 16 // individual range is represented as an instance of LiveRange, and the whole 17 // interval is represented as an instance of LiveInterval. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 LiveInterval::iterator LiveInterval::find(SlotIndex Pos) { 35 // This algorithm is basically std::upper_bound. 36 // Unfortunately, std::upper_bound cannot be used with mixed types until we 37 // adopt C++0x. Many libraries can do it, but not all. 38 if (empty() || Pos >= endIndex()) 39 return end(); 40 iterator I = begin(); 41 size_t Len = ranges.size(); 42 do { 43 size_t Mid = Len >> 1; 44 if (Pos < I[Mid].end) 45 Len = Mid; 46 else 47 I += Mid + 1, Len -= Mid + 1; 48 } while (Len); 49 return I; 50 } 51 52 VNInfo *LiveInterval::createDeadDef(SlotIndex Def, 53 VNInfo::Allocator &VNInfoAllocator) { 54 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 55 iterator I = find(Def); 56 if (I == end()) { 57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 58 ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI)); 59 return VNI; 60 } 61 if (SlotIndex::isSameInstr(Def, I->start)) { 62 assert(I->valno->def == I->start && "Inconsistent existing value def"); 63 64 // It is possible to have both normal and early-clobber defs of the same 65 // register on an instruction. It doesn't make a lot of sense, but it is 66 // possible to specify in inline assembly. 67 // 68 // Just convert everything to early-clobber. 69 Def = std::min(Def, I->start); 70 if (Def != I->start) 71 I->start = I->valno->def = Def; 72 return I->valno; 73 } 74 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 75 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 76 ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI)); 77 return VNI; 78 } 79 80 // overlaps - Return true if the intersection of the two live intervals is 81 // not empty. 82 // 83 // An example for overlaps(): 84 // 85 // 0: A = ... 86 // 4: B = ... 87 // 8: C = A + B ;; last use of A 88 // 89 // The live intervals should look like: 90 // 91 // A = [3, 11) 92 // B = [7, x) 93 // C = [11, y) 94 // 95 // A->overlaps(C) should return false since we want to be able to join 96 // A and C. 97 // 98 bool LiveInterval::overlapsFrom(const LiveInterval& other, 99 const_iterator StartPos) const { 100 assert(!empty() && "empty interval"); 101 const_iterator i = begin(); 102 const_iterator ie = end(); 103 const_iterator j = StartPos; 104 const_iterator je = other.end(); 105 106 assert((StartPos->start <= i->start || StartPos == other.begin()) && 107 StartPos != other.end() && "Bogus start position hint!"); 108 109 if (i->start < j->start) { 110 i = std::upper_bound(i, ie, j->start); 111 if (i != ranges.begin()) --i; 112 } else if (j->start < i->start) { 113 ++StartPos; 114 if (StartPos != other.end() && StartPos->start <= i->start) { 115 assert(StartPos < other.end() && i < end()); 116 j = std::upper_bound(j, je, i->start); 117 if (j != other.ranges.begin()) --j; 118 } 119 } else { 120 return true; 121 } 122 123 if (j == je) return false; 124 125 while (i != ie) { 126 if (i->start > j->start) { 127 std::swap(i, j); 128 std::swap(ie, je); 129 } 130 131 if (i->end > j->start) 132 return true; 133 ++i; 134 } 135 136 return false; 137 } 138 139 bool LiveInterval::overlaps(const LiveInterval &Other, 140 const CoalescerPair &CP, 141 const SlotIndexes &Indexes) const { 142 assert(!empty() && "empty interval"); 143 if (Other.empty()) 144 return false; 145 146 // Use binary searches to find initial positions. 147 const_iterator I = find(Other.beginIndex()); 148 const_iterator IE = end(); 149 if (I == IE) 150 return false; 151 const_iterator J = Other.find(I->start); 152 const_iterator JE = Other.end(); 153 if (J == JE) 154 return false; 155 156 for (;;) { 157 // J has just been advanced to satisfy: 158 assert(J->end >= I->start); 159 // Check for an overlap. 160 if (J->start < I->end) { 161 // I and J are overlapping. Find the later start. 162 SlotIndex Def = std::max(I->start, J->start); 163 // Allow the overlap if Def is a coalescable copy. 164 if (Def.isBlock() || 165 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 166 return true; 167 } 168 // Advance the iterator that ends first to check for more overlaps. 169 if (J->end > I->end) { 170 std::swap(I, J); 171 std::swap(IE, JE); 172 } 173 // Advance J until J->end >= I->start. 174 do 175 if (++J == JE) 176 return false; 177 while (J->end < I->start); 178 } 179 } 180 181 /// overlaps - Return true if the live interval overlaps a range specified 182 /// by [Start, End). 183 bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const { 184 assert(Start < End && "Invalid range"); 185 const_iterator I = std::lower_bound(begin(), end(), End); 186 return I != begin() && (--I)->end > Start; 187 } 188 189 190 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 191 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 192 /// it can be nuked later. 193 void LiveInterval::markValNoForDeletion(VNInfo *ValNo) { 194 if (ValNo->id == getNumValNums()-1) { 195 do { 196 valnos.pop_back(); 197 } while (!valnos.empty() && valnos.back()->isUnused()); 198 } else { 199 ValNo->markUnused(); 200 } 201 } 202 203 /// RenumberValues - Renumber all values in order of appearance and delete the 204 /// remaining unused values. 205 void LiveInterval::RenumberValues(LiveIntervals &lis) { 206 SmallPtrSet<VNInfo*, 8> Seen; 207 valnos.clear(); 208 for (const_iterator I = begin(), E = end(); I != E; ++I) { 209 VNInfo *VNI = I->valno; 210 if (!Seen.insert(VNI)) 211 continue; 212 assert(!VNI->isUnused() && "Unused valno used by live range"); 213 VNI->id = (unsigned)valnos.size(); 214 valnos.push_back(VNI); 215 } 216 } 217 218 /// extendIntervalEndTo - This method is used when we want to extend the range 219 /// specified by I to end at the specified endpoint. To do this, we should 220 /// merge and eliminate all ranges that this will overlap with. The iterator is 221 /// not invalidated. 222 void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) { 223 assert(I != ranges.end() && "Not a valid interval!"); 224 VNInfo *ValNo = I->valno; 225 226 // Search for the first interval that we can't merge with. 227 Ranges::iterator MergeTo = llvm::next(I); 228 for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { 229 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 230 } 231 232 // If NewEnd was in the middle of an interval, make sure to get its endpoint. 233 I->end = std::max(NewEnd, prior(MergeTo)->end); 234 235 // If the newly formed range now touches the range after it and if they have 236 // the same value number, merge the two ranges into one range. 237 if (MergeTo != ranges.end() && MergeTo->start <= I->end && 238 MergeTo->valno == ValNo) { 239 I->end = MergeTo->end; 240 ++MergeTo; 241 } 242 243 // Erase any dead ranges. 244 ranges.erase(llvm::next(I), MergeTo); 245 } 246 247 248 /// extendIntervalStartTo - This method is used when we want to extend the range 249 /// specified by I to start at the specified endpoint. To do this, we should 250 /// merge and eliminate all ranges that this will overlap with. 251 LiveInterval::Ranges::iterator 252 LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) { 253 assert(I != ranges.end() && "Not a valid interval!"); 254 VNInfo *ValNo = I->valno; 255 256 // Search for the first interval that we can't merge with. 257 Ranges::iterator MergeTo = I; 258 do { 259 if (MergeTo == ranges.begin()) { 260 I->start = NewStart; 261 ranges.erase(MergeTo, I); 262 return I; 263 } 264 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 265 --MergeTo; 266 } while (NewStart <= MergeTo->start); 267 268 // If we start in the middle of another interval, just delete a range and 269 // extend that interval. 270 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 271 MergeTo->end = I->end; 272 } else { 273 // Otherwise, extend the interval right after. 274 ++MergeTo; 275 MergeTo->start = NewStart; 276 MergeTo->end = I->end; 277 } 278 279 ranges.erase(llvm::next(MergeTo), llvm::next(I)); 280 return MergeTo; 281 } 282 283 LiveInterval::iterator 284 LiveInterval::addRangeFrom(LiveRange LR, iterator From) { 285 SlotIndex Start = LR.start, End = LR.end; 286 iterator it = std::upper_bound(From, ranges.end(), Start); 287 288 // If the inserted interval starts in the middle or right at the end of 289 // another interval, just extend that interval to contain the range of LR. 290 if (it != ranges.begin()) { 291 iterator B = prior(it); 292 if (LR.valno == B->valno) { 293 if (B->start <= Start && B->end >= Start) { 294 extendIntervalEndTo(B, End); 295 return B; 296 } 297 } else { 298 // Check to make sure that we are not overlapping two live ranges with 299 // different valno's. 300 assert(B->end <= Start && 301 "Cannot overlap two LiveRanges with differing ValID's" 302 " (did you def the same reg twice in a MachineInstr?)"); 303 } 304 } 305 306 // Otherwise, if this range ends in the middle of, or right next to, another 307 // interval, merge it into that interval. 308 if (it != ranges.end()) { 309 if (LR.valno == it->valno) { 310 if (it->start <= End) { 311 it = extendIntervalStartTo(it, Start); 312 313 // If LR is a complete superset of an interval, we may need to grow its 314 // endpoint as well. 315 if (End > it->end) 316 extendIntervalEndTo(it, End); 317 return it; 318 } 319 } else { 320 // Check to make sure that we are not overlapping two live ranges with 321 // different valno's. 322 assert(it->start >= End && 323 "Cannot overlap two LiveRanges with differing ValID's"); 324 } 325 } 326 327 // Otherwise, this is just a new range that doesn't interact with anything. 328 // Insert it. 329 return ranges.insert(it, LR); 330 } 331 332 /// extendInBlock - If this interval is live before Kill in the basic 333 /// block that starts at StartIdx, extend it to be live up to Kill and return 334 /// the value. If there is no live range before Kill, return NULL. 335 VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 336 if (empty()) 337 return 0; 338 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 339 if (I == begin()) 340 return 0; 341 --I; 342 if (I->end <= StartIdx) 343 return 0; 344 if (I->end < Kill) 345 extendIntervalEndTo(I, Kill); 346 return I->valno; 347 } 348 349 /// removeRange - Remove the specified range from this interval. Note that 350 /// the range must be in a single LiveRange in its entirety. 351 void LiveInterval::removeRange(SlotIndex Start, SlotIndex End, 352 bool RemoveDeadValNo) { 353 // Find the LiveRange containing this span. 354 Ranges::iterator I = find(Start); 355 assert(I != ranges.end() && "Range is not in interval!"); 356 assert(I->containsRange(Start, End) && "Range is not entirely in interval!"); 357 358 // If the span we are removing is at the start of the LiveRange, adjust it. 359 VNInfo *ValNo = I->valno; 360 if (I->start == Start) { 361 if (I->end == End) { 362 if (RemoveDeadValNo) { 363 // Check if val# is dead. 364 bool isDead = true; 365 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 366 if (II != I && II->valno == ValNo) { 367 isDead = false; 368 break; 369 } 370 if (isDead) { 371 // Now that ValNo is dead, remove it. 372 markValNoForDeletion(ValNo); 373 } 374 } 375 376 ranges.erase(I); // Removed the whole LiveRange. 377 } else 378 I->start = End; 379 return; 380 } 381 382 // Otherwise if the span we are removing is at the end of the LiveRange, 383 // adjust the other way. 384 if (I->end == End) { 385 I->end = Start; 386 return; 387 } 388 389 // Otherwise, we are splitting the LiveRange into two pieces. 390 SlotIndex OldEnd = I->end; 391 I->end = Start; // Trim the old interval. 392 393 // Insert the new one. 394 ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo)); 395 } 396 397 /// removeValNo - Remove all the ranges defined by the specified value#. 398 /// Also remove the value# from value# list. 399 void LiveInterval::removeValNo(VNInfo *ValNo) { 400 if (empty()) return; 401 Ranges::iterator I = ranges.end(); 402 Ranges::iterator E = ranges.begin(); 403 do { 404 --I; 405 if (I->valno == ValNo) 406 ranges.erase(I); 407 } while (I != E); 408 // Now that ValNo is dead, remove it. 409 markValNoForDeletion(ValNo); 410 } 411 412 /// join - Join two live intervals (this, and other) together. This applies 413 /// mappings to the value numbers in the LHS/RHS intervals as specified. If 414 /// the intervals are not joinable, this aborts. 415 void LiveInterval::join(LiveInterval &Other, 416 const int *LHSValNoAssignments, 417 const int *RHSValNoAssignments, 418 SmallVectorImpl<VNInfo *> &NewVNInfo, 419 MachineRegisterInfo *MRI) { 420 verify(); 421 422 // Determine if any of our live range values are mapped. This is uncommon, so 423 // we want to avoid the interval scan if not. 424 bool MustMapCurValNos = false; 425 unsigned NumVals = getNumValNums(); 426 unsigned NumNewVals = NewVNInfo.size(); 427 for (unsigned i = 0; i != NumVals; ++i) { 428 unsigned LHSValID = LHSValNoAssignments[i]; 429 if (i != LHSValID || 430 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 431 MustMapCurValNos = true; 432 break; 433 } 434 } 435 436 // If we have to apply a mapping to our base interval assignment, rewrite it 437 // now. 438 if (MustMapCurValNos && !empty()) { 439 // Map the first live range. 440 441 iterator OutIt = begin(); 442 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 443 for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) { 444 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 445 assert(nextValNo != 0 && "Huh?"); 446 447 // If this live range has the same value # as its immediate predecessor, 448 // and if they are neighbors, remove one LiveRange. This happens when we 449 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 450 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 451 OutIt->end = I->end; 452 } else { 453 // Didn't merge. Move OutIt to the next interval, 454 ++OutIt; 455 OutIt->valno = nextValNo; 456 if (OutIt != I) { 457 OutIt->start = I->start; 458 OutIt->end = I->end; 459 } 460 } 461 } 462 // If we merge some live ranges, chop off the end. 463 ++OutIt; 464 ranges.erase(OutIt, end()); 465 } 466 467 // Rewrite Other values before changing the VNInfo ids. 468 // This can leave Other in an invalid state because we're not coalescing 469 // touching segments that now have identical values. That's OK since Other is 470 // not supposed to be valid after calling join(); 471 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 472 I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; 473 474 // Update val# info. Renumber them and make sure they all belong to this 475 // LiveInterval now. Also remove dead val#'s. 476 unsigned NumValNos = 0; 477 for (unsigned i = 0; i < NumNewVals; ++i) { 478 VNInfo *VNI = NewVNInfo[i]; 479 if (VNI) { 480 if (NumValNos >= NumVals) 481 valnos.push_back(VNI); 482 else 483 valnos[NumValNos] = VNI; 484 VNI->id = NumValNos++; // Renumber val#. 485 } 486 } 487 if (NumNewVals < NumVals) 488 valnos.resize(NumNewVals); // shrinkify 489 490 // Okay, now insert the RHS live ranges into the LHS. 491 LiveRangeUpdater Updater(this); 492 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 493 Updater.add(*I); 494 } 495 496 /// MergeRangesInAsValue - Merge all of the intervals in RHS into this live 497 /// interval as the specified value number. The LiveRanges in RHS are 498 /// allowed to overlap with LiveRanges in the current interval, but only if 499 /// the overlapping LiveRanges have the specified value number. 500 void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS, 501 VNInfo *LHSValNo) { 502 LiveRangeUpdater Updater(this); 503 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 504 Updater.add(I->start, I->end, LHSValNo); 505 } 506 507 /// MergeValueInAsValue - Merge all of the live ranges of a specific val# 508 /// in RHS into this live interval as the specified value number. 509 /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the 510 /// current interval, it will replace the value numbers of the overlaped 511 /// live ranges with the specified value number. 512 void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS, 513 const VNInfo *RHSValNo, 514 VNInfo *LHSValNo) { 515 LiveRangeUpdater Updater(this); 516 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 517 if (I->valno == RHSValNo) 518 Updater.add(I->start, I->end, LHSValNo); 519 } 520 521 /// MergeValueNumberInto - This method is called when two value nubmers 522 /// are found to be equivalent. This eliminates V1, replacing all 523 /// LiveRanges with the V1 value number with the V2 value number. This can 524 /// cause merging of V1/V2 values numbers and compaction of the value space. 525 VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 526 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 527 528 // This code actually merges the (numerically) larger value number into the 529 // smaller value number, which is likely to allow us to compactify the value 530 // space. The only thing we have to be careful of is to preserve the 531 // instruction that defines the result value. 532 533 // Make sure V2 is smaller than V1. 534 if (V1->id < V2->id) { 535 V1->copyFrom(*V2); 536 std::swap(V1, V2); 537 } 538 539 // Merge V1 live ranges into V2. 540 for (iterator I = begin(); I != end(); ) { 541 iterator LR = I++; 542 if (LR->valno != V1) continue; // Not a V1 LiveRange. 543 544 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 545 // range, extend it. 546 if (LR != begin()) { 547 iterator Prev = LR-1; 548 if (Prev->valno == V2 && Prev->end == LR->start) { 549 Prev->end = LR->end; 550 551 // Erase this live-range. 552 ranges.erase(LR); 553 I = Prev+1; 554 LR = Prev; 555 } 556 } 557 558 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 559 // Ensure that it is a V2 live-range. 560 LR->valno = V2; 561 562 // If we can merge it into later V2 live ranges, do so now. We ignore any 563 // following V1 live ranges, as they will be merged in subsequent iterations 564 // of the loop. 565 if (I != end()) { 566 if (I->start == LR->end && I->valno == V2) { 567 LR->end = I->end; 568 ranges.erase(I); 569 I = LR+1; 570 } 571 } 572 } 573 574 // Now that V1 is dead, remove it. 575 markValNoForDeletion(V1); 576 577 return V2; 578 } 579 580 unsigned LiveInterval::getSize() const { 581 unsigned Sum = 0; 582 for (const_iterator I = begin(), E = end(); I != E; ++I) 583 Sum += I->start.distance(I->end); 584 return Sum; 585 } 586 587 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) { 588 return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")"; 589 } 590 591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 592 void LiveRange::dump() const { 593 dbgs() << *this << "\n"; 594 } 595 #endif 596 597 void LiveInterval::print(raw_ostream &OS) const { 598 if (empty()) 599 OS << "EMPTY"; 600 else { 601 for (LiveInterval::Ranges::const_iterator I = ranges.begin(), 602 E = ranges.end(); I != E; ++I) { 603 OS << *I; 604 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 605 } 606 } 607 608 // Print value number info. 609 if (getNumValNums()) { 610 OS << " "; 611 unsigned vnum = 0; 612 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 613 ++i, ++vnum) { 614 const VNInfo *vni = *i; 615 if (vnum) OS << " "; 616 OS << vnum << "@"; 617 if (vni->isUnused()) { 618 OS << "x"; 619 } else { 620 OS << vni->def; 621 if (vni->isPHIDef()) 622 OS << "-phi"; 623 } 624 } 625 } 626 } 627 628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 629 void LiveInterval::dump() const { 630 dbgs() << *this << "\n"; 631 } 632 #endif 633 634 #ifndef NDEBUG 635 void LiveInterval::verify() const { 636 for (const_iterator I = begin(), E = end(); I != E; ++I) { 637 assert(I->start.isValid()); 638 assert(I->end.isValid()); 639 assert(I->start < I->end); 640 assert(I->valno != 0); 641 assert(I->valno == valnos[I->valno->id]); 642 if (llvm::next(I) != E) { 643 assert(I->end <= llvm::next(I)->start); 644 if (I->end == llvm::next(I)->start) 645 assert(I->valno != llvm::next(I)->valno); 646 } 647 } 648 } 649 #endif 650 651 652 void LiveRange::print(raw_ostream &os) const { 653 os << *this; 654 } 655 656 //===----------------------------------------------------------------------===// 657 // LiveRangeUpdater class 658 //===----------------------------------------------------------------------===// 659 // 660 // The LiveRangeUpdater class always maintains these invariants: 661 // 662 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 663 // This is the initial state, and the state created by flush(). 664 // In this state, isDirty() returns false. 665 // 666 // Otherwise, segments are kept in three separate areas: 667 // 668 // 1. [begin; WriteI) at the front of LI. 669 // 2. [ReadI; end) at the back of LI. 670 // 3. Spills. 671 // 672 // - LI.begin() <= WriteI <= ReadI <= LI.end(). 673 // - Segments in all three areas are fully ordered and coalesced. 674 // - Segments in area 1 precede and can't coalesce with segments in area 2. 675 // - Segments in Spills precede and can't coalesce with segments in area 2. 676 // - No coalescing is possible between segments in Spills and segments in area 677 // 1, and there are no overlapping segments. 678 // 679 // The segments in Spills are not ordered with respect to the segments in area 680 // 1. They need to be merged. 681 // 682 // When they exist, Spills.back().start <= LastStart, 683 // and WriteI[-1].start <= LastStart. 684 685 void LiveRangeUpdater::print(raw_ostream &OS) const { 686 if (!isDirty()) { 687 if (LI) 688 OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n'; 689 else 690 OS << "Null updater.\n"; 691 return; 692 } 693 assert(LI && "Can't have null LI in dirty updater."); 694 OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI) 695 << ", last start = " << LastStart 696 << ":\n Area 1:"; 697 for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I) 698 OS << ' ' << *I; 699 OS << "\n Spills:"; 700 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 701 OS << ' ' << Spills[I]; 702 OS << "\n Area 2:"; 703 for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I) 704 OS << ' ' << *I; 705 OS << '\n'; 706 } 707 708 void LiveRangeUpdater::dump() const 709 { 710 print(errs()); 711 } 712 713 // Determine if A and B should be coalesced. 714 static inline bool coalescable(const LiveRange &A, const LiveRange &B) { 715 assert(A.start <= B.start && "Unordered live ranges."); 716 if (A.end == B.start) 717 return A.valno == B.valno; 718 if (A.end < B.start) 719 return false; 720 assert(A.valno == B.valno && "Cannot overlap different values"); 721 return true; 722 } 723 724 void LiveRangeUpdater::add(LiveRange Seg) { 725 assert(LI && "Cannot add to a null destination"); 726 727 // Flush the state if Start moves backwards. 728 if (!LastStart.isValid() || LastStart > Seg.start) { 729 if (isDirty()) 730 flush(); 731 // This brings us to an uninitialized state. Reinitialize. 732 assert(Spills.empty() && "Leftover spilled segments"); 733 WriteI = ReadI = LI->begin(); 734 } 735 736 // Remember start for next time. 737 LastStart = Seg.start; 738 739 // Advance ReadI until it ends after Seg.start. 740 LiveInterval::iterator E = LI->end(); 741 if (ReadI != E && ReadI->end <= Seg.start) { 742 // First try to close the gap between WriteI and ReadI with spills. 743 if (ReadI != WriteI) 744 mergeSpills(); 745 // Then advance ReadI. 746 if (ReadI == WriteI) 747 ReadI = WriteI = LI->find(Seg.start); 748 else 749 while (ReadI != E && ReadI->end <= Seg.start) 750 *WriteI++ = *ReadI++; 751 } 752 753 assert(ReadI == E || ReadI->end > Seg.start); 754 755 // Check if the ReadI segment begins early. 756 if (ReadI != E && ReadI->start <= Seg.start) { 757 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 758 // Bail if Seg is completely contained in ReadI. 759 if (ReadI->end >= Seg.end) 760 return; 761 // Coalesce into Seg. 762 Seg.start = ReadI->start; 763 ++ReadI; 764 } 765 766 // Coalesce as much as possible from ReadI into Seg. 767 while (ReadI != E && coalescable(Seg, *ReadI)) { 768 Seg.end = std::max(Seg.end, ReadI->end); 769 ++ReadI; 770 } 771 772 // Try coalescing Spills.back() into Seg. 773 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 774 Seg.start = Spills.back().start; 775 Seg.end = std::max(Spills.back().end, Seg.end); 776 Spills.pop_back(); 777 } 778 779 // Try coalescing Seg into WriteI[-1]. 780 if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) { 781 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 782 return; 783 } 784 785 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 786 if (WriteI != ReadI) { 787 *WriteI++ = Seg; 788 return; 789 } 790 791 // Finally, append to LI or Spills. 792 if (WriteI == E) { 793 LI->ranges.push_back(Seg); 794 WriteI = ReadI = LI->ranges.end(); 795 } else 796 Spills.push_back(Seg); 797 } 798 799 // Merge as many spilled segments as possible into the gap between WriteI 800 // and ReadI. Advance WriteI to reflect the inserted instructions. 801 void LiveRangeUpdater::mergeSpills() { 802 // Perform a backwards merge of Spills and [SpillI;WriteI). 803 size_t GapSize = ReadI - WriteI; 804 size_t NumMoved = std::min(Spills.size(), GapSize); 805 LiveInterval::iterator Src = WriteI; 806 LiveInterval::iterator Dst = Src + NumMoved; 807 LiveInterval::iterator SpillSrc = Spills.end(); 808 LiveInterval::iterator B = LI->begin(); 809 810 // This is the new WriteI position after merging spills. 811 WriteI = Dst; 812 813 // Now merge Src and Spills backwards. 814 while (Src != Dst) { 815 if (Src != B && Src[-1].start > SpillSrc[-1].start) 816 *--Dst = *--Src; 817 else 818 *--Dst = *--SpillSrc; 819 } 820 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 821 Spills.erase(SpillSrc, Spills.end()); 822 } 823 824 void LiveRangeUpdater::flush() { 825 if (!isDirty()) 826 return; 827 // Clear the dirty state. 828 LastStart = SlotIndex(); 829 830 assert(LI && "Cannot add to a null destination"); 831 832 // Nothing to merge? 833 if (Spills.empty()) { 834 LI->ranges.erase(WriteI, ReadI); 835 LI->verify(); 836 return; 837 } 838 839 // Resize the WriteI - ReadI gap to match Spills. 840 size_t GapSize = ReadI - WriteI; 841 if (GapSize < Spills.size()) { 842 // The gap is too small. Make some room. 843 size_t WritePos = WriteI - LI->begin(); 844 LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange()); 845 // This also invalidated ReadI, but it is recomputed below. 846 WriteI = LI->ranges.begin() + WritePos; 847 } else { 848 // Shrink the gap if necessary. 849 LI->ranges.erase(WriteI + Spills.size(), ReadI); 850 } 851 ReadI = WriteI + Spills.size(); 852 mergeSpills(); 853 LI->verify(); 854 } 855 856 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 857 // Create initial equivalence classes. 858 EqClass.clear(); 859 EqClass.grow(LI->getNumValNums()); 860 861 const VNInfo *used = 0, *unused = 0; 862 863 // Determine connections. 864 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 865 I != E; ++I) { 866 const VNInfo *VNI = *I; 867 // Group all unused values into one class. 868 if (VNI->isUnused()) { 869 if (unused) 870 EqClass.join(unused->id, VNI->id); 871 unused = VNI; 872 continue; 873 } 874 used = VNI; 875 if (VNI->isPHIDef()) { 876 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 877 assert(MBB && "Phi-def has no defining MBB"); 878 // Connect to values live out of predecessors. 879 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 880 PE = MBB->pred_end(); PI != PE; ++PI) 881 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 882 EqClass.join(VNI->id, PVNI->id); 883 } else { 884 // Normal value defined by an instruction. Check for two-addr redef. 885 // FIXME: This could be coincidental. Should we really check for a tied 886 // operand constraint? 887 // Note that VNI->def may be a use slot for an early clobber def. 888 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 889 EqClass.join(VNI->id, UVNI->id); 890 } 891 } 892 893 // Lump all the unused values in with the last used value. 894 if (used && unused) 895 EqClass.join(used->id, unused->id); 896 897 EqClass.compress(); 898 return EqClass.getNumClasses(); 899 } 900 901 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 902 MachineRegisterInfo &MRI) { 903 assert(LIV[0] && "LIV[0] must be set"); 904 LiveInterval &LI = *LIV[0]; 905 906 // Rewrite instructions. 907 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 908 RE = MRI.reg_end(); RI != RE;) { 909 MachineOperand &MO = RI.getOperand(); 910 MachineInstr *MI = MO.getParent(); 911 ++RI; 912 // DBG_VALUE instructions don't have slot indexes, so get the index of the 913 // instruction before them. 914 // Normally, DBG_VALUE instructions are removed before this function is 915 // called, but it is not a requirement. 916 SlotIndex Idx; 917 if (MI->isDebugValue()) 918 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 919 else 920 Idx = LIS.getInstructionIndex(MI); 921 LiveRangeQuery LRQ(LI, Idx); 922 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 923 // In the case of an <undef> use that isn't tied to any def, VNI will be 924 // NULL. If the use is tied to a def, VNI will be the defined value. 925 if (!VNI) 926 continue; 927 MO.setReg(LIV[getEqClass(VNI)]->reg); 928 } 929 930 // Move runs to new intervals. 931 LiveInterval::iterator J = LI.begin(), E = LI.end(); 932 while (J != E && EqClass[J->valno->id] == 0) 933 ++J; 934 for (LiveInterval::iterator I = J; I != E; ++I) { 935 if (unsigned eq = EqClass[I->valno->id]) { 936 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 937 "New intervals should be empty"); 938 LIV[eq]->ranges.push_back(*I); 939 } else 940 *J++ = *I; 941 } 942 LI.ranges.erase(J, E); 943 944 // Transfer VNInfos to their new owners and renumber them. 945 unsigned j = 0, e = LI.getNumValNums(); 946 while (j != e && EqClass[j] == 0) 947 ++j; 948 for (unsigned i = j; i != e; ++i) { 949 VNInfo *VNI = LI.getValNumInfo(i); 950 if (unsigned eq = EqClass[i]) { 951 VNI->id = LIV[eq]->getNumValNums(); 952 LIV[eq]->valnos.push_back(VNI); 953 } else { 954 VNI->id = j; 955 LI.valnos[j++] = VNI; 956 } 957 } 958 LI.valnos.resize(j); 959 } 960