Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global common subexpression elimination on machine
     11 // instructions using a scoped hash table based value numbering scheme. It
     12 // must be run while the machine function is still in SSA form.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "machine-cse"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/ScopedHashTable.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/RecyclingAllocator.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 using namespace llvm;
     30 
     31 STATISTIC(NumCoalesces, "Number of copies coalesced");
     32 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
     33 STATISTIC(NumPhysCSEs,
     34           "Number of physreg referencing common subexpr eliminated");
     35 STATISTIC(NumCrossBBCSEs,
     36           "Number of cross-MBB physreg referencing CS eliminated");
     37 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
     38 
     39 namespace {
     40   class MachineCSE : public MachineFunctionPass {
     41     const TargetInstrInfo *TII;
     42     const TargetRegisterInfo *TRI;
     43     AliasAnalysis *AA;
     44     MachineDominatorTree *DT;
     45     MachineRegisterInfo *MRI;
     46   public:
     47     static char ID; // Pass identification
     48     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
     49       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &MF);
     53 
     54     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     55       AU.setPreservesCFG();
     56       MachineFunctionPass::getAnalysisUsage(AU);
     57       AU.addRequired<AliasAnalysis>();
     58       AU.addPreservedID(MachineLoopInfoID);
     59       AU.addRequired<MachineDominatorTree>();
     60       AU.addPreserved<MachineDominatorTree>();
     61     }
     62 
     63     virtual void releaseMemory() {
     64       ScopeMap.clear();
     65       Exps.clear();
     66     }
     67 
     68   private:
     69     const unsigned LookAheadLimit;
     70     typedef RecyclingAllocator<BumpPtrAllocator,
     71         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
     72     typedef ScopedHashTable<MachineInstr*, unsigned,
     73         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
     74     typedef ScopedHTType::ScopeTy ScopeType;
     75     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
     76     ScopedHTType VNT;
     77     SmallVector<MachineInstr*, 64> Exps;
     78     unsigned CurrVN;
     79 
     80     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
     81     bool isPhysDefTriviallyDead(unsigned Reg,
     82                                 MachineBasicBlock::const_iterator I,
     83                                 MachineBasicBlock::const_iterator E) const;
     84     bool hasLivePhysRegDefUses(const MachineInstr *MI,
     85                                const MachineBasicBlock *MBB,
     86                                SmallSet<unsigned,8> &PhysRefs,
     87                                SmallVectorImpl<unsigned> &PhysDefs,
     88                                bool &PhysUseDef) const;
     89     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
     90                           SmallSet<unsigned,8> &PhysRefs,
     91                           SmallVectorImpl<unsigned> &PhysDefs,
     92                           bool &NonLocal) const;
     93     bool isCSECandidate(MachineInstr *MI);
     94     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
     95                            MachineInstr *CSMI, MachineInstr *MI);
     96     void EnterScope(MachineBasicBlock *MBB);
     97     void ExitScope(MachineBasicBlock *MBB);
     98     bool ProcessBlock(MachineBasicBlock *MBB);
     99     void ExitScopeIfDone(MachineDomTreeNode *Node,
    100                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    101     bool PerformCSE(MachineDomTreeNode *Node);
    102   };
    103 } // end anonymous namespace
    104 
    105 char MachineCSE::ID = 0;
    106 char &llvm::MachineCSEID = MachineCSE::ID;
    107 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
    108                 "Machine Common Subexpression Elimination", false, false)
    109 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    111 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
    112                 "Machine Common Subexpression Elimination", false, false)
    113 
    114 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
    115                                           MachineBasicBlock *MBB) {
    116   bool Changed = false;
    117   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    118     MachineOperand &MO = MI->getOperand(i);
    119     if (!MO.isReg() || !MO.isUse())
    120       continue;
    121     unsigned Reg = MO.getReg();
    122     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    123       continue;
    124     if (!MRI->hasOneNonDBGUse(Reg))
    125       // Only coalesce single use copies. This ensure the copy will be
    126       // deleted.
    127       continue;
    128     MachineInstr *DefMI = MRI->getVRegDef(Reg);
    129     if (!DefMI->isCopy())
    130       continue;
    131     unsigned SrcReg = DefMI->getOperand(1).getReg();
    132     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    133       continue;
    134     if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
    135       continue;
    136     if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
    137       continue;
    138     DEBUG(dbgs() << "Coalescing: " << *DefMI);
    139     DEBUG(dbgs() << "***     to: " << *MI);
    140     MO.setReg(SrcReg);
    141     MRI->clearKillFlags(SrcReg);
    142     DefMI->eraseFromParent();
    143     ++NumCoalesces;
    144     Changed = true;
    145   }
    146 
    147   return Changed;
    148 }
    149 
    150 bool
    151 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
    152                                    MachineBasicBlock::const_iterator I,
    153                                    MachineBasicBlock::const_iterator E) const {
    154   unsigned LookAheadLeft = LookAheadLimit;
    155   while (LookAheadLeft) {
    156     // Skip over dbg_value's.
    157     while (I != E && I->isDebugValue())
    158       ++I;
    159 
    160     if (I == E)
    161       // Reached end of block, register is obviously dead.
    162       return true;
    163 
    164     bool SeenDef = false;
    165     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    166       const MachineOperand &MO = I->getOperand(i);
    167       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
    168         SeenDef = true;
    169       if (!MO.isReg() || !MO.getReg())
    170         continue;
    171       if (!TRI->regsOverlap(MO.getReg(), Reg))
    172         continue;
    173       if (MO.isUse())
    174         // Found a use!
    175         return false;
    176       SeenDef = true;
    177     }
    178     if (SeenDef)
    179       // See a def of Reg (or an alias) before encountering any use, it's
    180       // trivially dead.
    181       return true;
    182 
    183     --LookAheadLeft;
    184     ++I;
    185   }
    186   return false;
    187 }
    188 
    189 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
    190 /// physical registers (except for dead defs of physical registers). It also
    191 /// returns the physical register def by reference if it's the only one and the
    192 /// instruction does not uses a physical register.
    193 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
    194                                        const MachineBasicBlock *MBB,
    195                                        SmallSet<unsigned,8> &PhysRefs,
    196                                        SmallVectorImpl<unsigned> &PhysDefs,
    197                                        bool &PhysUseDef) const{
    198   // First, add all uses to PhysRefs.
    199   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    200     const MachineOperand &MO = MI->getOperand(i);
    201     if (!MO.isReg() || MO.isDef())
    202       continue;
    203     unsigned Reg = MO.getReg();
    204     if (!Reg)
    205       continue;
    206     if (TargetRegisterInfo::isVirtualRegister(Reg))
    207       continue;
    208     // Reading constant physregs is ok.
    209     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    210       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    211         PhysRefs.insert(*AI);
    212   }
    213 
    214   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
    215   // (which currently contains only uses), set the PhysUseDef flag.
    216   PhysUseDef = false;
    217   MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
    218   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    219     const MachineOperand &MO = MI->getOperand(i);
    220     if (!MO.isReg() || !MO.isDef())
    221       continue;
    222     unsigned Reg = MO.getReg();
    223     if (!Reg)
    224       continue;
    225     if (TargetRegisterInfo::isVirtualRegister(Reg))
    226       continue;
    227     // Check against PhysRefs even if the def is "dead".
    228     if (PhysRefs.count(Reg))
    229       PhysUseDef = true;
    230     // If the def is dead, it's ok. But the def may not marked "dead". That's
    231     // common since this pass is run before livevariables. We can scan
    232     // forward a few instructions and check if it is obviously dead.
    233     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
    234       PhysDefs.push_back(Reg);
    235   }
    236 
    237   // Finally, add all defs to PhysRefs as well.
    238   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
    239     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
    240       PhysRefs.insert(*AI);
    241 
    242   return !PhysRefs.empty();
    243 }
    244 
    245 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
    246                                   SmallSet<unsigned,8> &PhysRefs,
    247                                   SmallVectorImpl<unsigned> &PhysDefs,
    248                                   bool &NonLocal) const {
    249   // For now conservatively returns false if the common subexpression is
    250   // not in the same basic block as the given instruction. The only exception
    251   // is if the common subexpression is in the sole predecessor block.
    252   const MachineBasicBlock *MBB = MI->getParent();
    253   const MachineBasicBlock *CSMBB = CSMI->getParent();
    254 
    255   bool CrossMBB = false;
    256   if (CSMBB != MBB) {
    257     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
    258       return false;
    259 
    260     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
    261       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
    262         // Avoid extending live range of physical registers if they are
    263         //allocatable or reserved.
    264         return false;
    265     }
    266     CrossMBB = true;
    267   }
    268   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
    269   MachineBasicBlock::const_iterator E = MI;
    270   MachineBasicBlock::const_iterator EE = CSMBB->end();
    271   unsigned LookAheadLeft = LookAheadLimit;
    272   while (LookAheadLeft) {
    273     // Skip over dbg_value's.
    274     while (I != E && I != EE && I->isDebugValue())
    275       ++I;
    276 
    277     if (I == EE) {
    278       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
    279       (void)CrossMBB;
    280       CrossMBB = false;
    281       NonLocal = true;
    282       I = MBB->begin();
    283       EE = MBB->end();
    284       continue;
    285     }
    286 
    287     if (I == E)
    288       return true;
    289 
    290     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    291       const MachineOperand &MO = I->getOperand(i);
    292       // RegMasks go on instructions like calls that clobber lots of physregs.
    293       // Don't attempt to CSE across such an instruction.
    294       if (MO.isRegMask())
    295         return false;
    296       if (!MO.isReg() || !MO.isDef())
    297         continue;
    298       unsigned MOReg = MO.getReg();
    299       if (TargetRegisterInfo::isVirtualRegister(MOReg))
    300         continue;
    301       if (PhysRefs.count(MOReg))
    302         return false;
    303     }
    304 
    305     --LookAheadLeft;
    306     ++I;
    307   }
    308 
    309   return false;
    310 }
    311 
    312 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
    313   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
    314       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
    315     return false;
    316 
    317   // Ignore copies.
    318   if (MI->isCopyLike())
    319     return false;
    320 
    321   // Ignore stuff that we obviously can't move.
    322   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
    323       MI->hasUnmodeledSideEffects())
    324     return false;
    325 
    326   if (MI->mayLoad()) {
    327     // Okay, this instruction does a load. As a refinement, we allow the target
    328     // to decide whether the loaded value is actually a constant. If so, we can
    329     // actually use it as a load.
    330     if (!MI->isInvariantLoad(AA))
    331       // FIXME: we should be able to hoist loads with no other side effects if
    332       // there are no other instructions which can change memory in this loop.
    333       // This is a trivial form of alias analysis.
    334       return false;
    335   }
    336   return true;
    337 }
    338 
    339 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
    340 /// common expression that defines Reg.
    341 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
    342                                    MachineInstr *CSMI, MachineInstr *MI) {
    343   // FIXME: Heuristics that works around the lack the live range splitting.
    344 
    345   // If CSReg is used at all uses of Reg, CSE should not increase register
    346   // pressure of CSReg.
    347   bool MayIncreasePressure = true;
    348   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
    349       TargetRegisterInfo::isVirtualRegister(Reg)) {
    350     MayIncreasePressure = false;
    351     SmallPtrSet<MachineInstr*, 8> CSUses;
    352     for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
    353          E = MRI->use_nodbg_end(); I != E; ++I) {
    354       MachineInstr *Use = &*I;
    355       CSUses.insert(Use);
    356     }
    357     for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
    358          E = MRI->use_nodbg_end(); I != E; ++I) {
    359       MachineInstr *Use = &*I;
    360       if (!CSUses.count(Use)) {
    361         MayIncreasePressure = true;
    362         break;
    363       }
    364     }
    365   }
    366   if (!MayIncreasePressure) return true;
    367 
    368   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
    369   // an immediate predecessor. We don't want to increase register pressure and
    370   // end up causing other computation to be spilled.
    371   if (MI->isAsCheapAsAMove()) {
    372     MachineBasicBlock *CSBB = CSMI->getParent();
    373     MachineBasicBlock *BB = MI->getParent();
    374     if (CSBB != BB && !CSBB->isSuccessor(BB))
    375       return false;
    376   }
    377 
    378   // Heuristics #2: If the expression doesn't not use a vr and the only use
    379   // of the redundant computation are copies, do not cse.
    380   bool HasVRegUse = false;
    381   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    382     const MachineOperand &MO = MI->getOperand(i);
    383     if (MO.isReg() && MO.isUse() &&
    384         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    385       HasVRegUse = true;
    386       break;
    387     }
    388   }
    389   if (!HasVRegUse) {
    390     bool HasNonCopyUse = false;
    391     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
    392            E = MRI->use_nodbg_end(); I != E; ++I) {
    393       MachineInstr *Use = &*I;
    394       // Ignore copies.
    395       if (!Use->isCopyLike()) {
    396         HasNonCopyUse = true;
    397         break;
    398       }
    399     }
    400     if (!HasNonCopyUse)
    401       return false;
    402   }
    403 
    404   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
    405   // it unless the defined value is already used in the BB of the new use.
    406   bool HasPHI = false;
    407   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
    408   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
    409        E = MRI->use_nodbg_end(); I != E; ++I) {
    410     MachineInstr *Use = &*I;
    411     HasPHI |= Use->isPHI();
    412     CSBBs.insert(Use->getParent());
    413   }
    414 
    415   if (!HasPHI)
    416     return true;
    417   return CSBBs.count(MI->getParent());
    418 }
    419 
    420 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
    421   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    422   ScopeType *Scope = new ScopeType(VNT);
    423   ScopeMap[MBB] = Scope;
    424 }
    425 
    426 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
    427   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    428   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
    429   assert(SI != ScopeMap.end());
    430   delete SI->second;
    431   ScopeMap.erase(SI);
    432 }
    433 
    434 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
    435   bool Changed = false;
    436 
    437   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
    438   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
    439   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    440     MachineInstr *MI = &*I;
    441     ++I;
    442 
    443     if (!isCSECandidate(MI))
    444       continue;
    445 
    446     bool FoundCSE = VNT.count(MI);
    447     if (!FoundCSE) {
    448       // Look for trivial copy coalescing opportunities.
    449       if (PerformTrivialCoalescing(MI, MBB)) {
    450         Changed = true;
    451 
    452         // After coalescing MI itself may become a copy.
    453         if (MI->isCopyLike())
    454           continue;
    455         FoundCSE = VNT.count(MI);
    456       }
    457     }
    458 
    459     // Commute commutable instructions.
    460     bool Commuted = false;
    461     if (!FoundCSE && MI->isCommutable()) {
    462       MachineInstr *NewMI = TII->commuteInstruction(MI);
    463       if (NewMI) {
    464         Commuted = true;
    465         FoundCSE = VNT.count(NewMI);
    466         if (NewMI != MI) {
    467           // New instruction. It doesn't need to be kept.
    468           NewMI->eraseFromParent();
    469           Changed = true;
    470         } else if (!FoundCSE)
    471           // MI was changed but it didn't help, commute it back!
    472           (void)TII->commuteInstruction(MI);
    473       }
    474     }
    475 
    476     // If the instruction defines physical registers and the values *may* be
    477     // used, then it's not safe to replace it with a common subexpression.
    478     // It's also not safe if the instruction uses physical registers.
    479     bool CrossMBBPhysDef = false;
    480     SmallSet<unsigned, 8> PhysRefs;
    481     SmallVector<unsigned, 2> PhysDefs;
    482     bool PhysUseDef = false;
    483     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
    484                                           PhysDefs, PhysUseDef)) {
    485       FoundCSE = false;
    486 
    487       // ... Unless the CS is local or is in the sole predecessor block
    488       // and it also defines the physical register which is not clobbered
    489       // in between and the physical register uses were not clobbered.
    490       // This can never be the case if the instruction both uses and
    491       // defines the same physical register, which was detected above.
    492       if (!PhysUseDef) {
    493         unsigned CSVN = VNT.lookup(MI);
    494         MachineInstr *CSMI = Exps[CSVN];
    495         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
    496           FoundCSE = true;
    497       }
    498     }
    499 
    500     if (!FoundCSE) {
    501       VNT.insert(MI, CurrVN++);
    502       Exps.push_back(MI);
    503       continue;
    504     }
    505 
    506     // Found a common subexpression, eliminate it.
    507     unsigned CSVN = VNT.lookup(MI);
    508     MachineInstr *CSMI = Exps[CSVN];
    509     DEBUG(dbgs() << "Examining: " << *MI);
    510     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    511 
    512     // Check if it's profitable to perform this CSE.
    513     bool DoCSE = true;
    514     unsigned NumDefs = MI->getDesc().getNumDefs() +
    515                        MI->getDesc().getNumImplicitDefs();
    516 
    517     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
    518       MachineOperand &MO = MI->getOperand(i);
    519       if (!MO.isReg() || !MO.isDef())
    520         continue;
    521       unsigned OldReg = MO.getReg();
    522       unsigned NewReg = CSMI->getOperand(i).getReg();
    523 
    524       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    525       // we should make sure it is not dead at CSMI.
    526       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
    527         ImplicitDefsToUpdate.push_back(i);
    528       if (OldReg == NewReg) {
    529         --NumDefs;
    530         continue;
    531       }
    532 
    533       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
    534              TargetRegisterInfo::isVirtualRegister(NewReg) &&
    535              "Do not CSE physical register defs!");
    536 
    537       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
    538         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
    539         DoCSE = false;
    540         break;
    541       }
    542 
    543       // Don't perform CSE if the result of the old instruction cannot exist
    544       // within the register class of the new instruction.
    545       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
    546       if (!MRI->constrainRegClass(NewReg, OldRC)) {
    547         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
    548         DoCSE = false;
    549         break;
    550       }
    551 
    552       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
    553       --NumDefs;
    554     }
    555 
    556     // Actually perform the elimination.
    557     if (DoCSE) {
    558       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
    559         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
    560         MRI->clearKillFlags(CSEPairs[i].second);
    561       }
    562 
    563       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    564       // we should make sure it is not dead at CSMI.
    565       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
    566         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
    567 
    568       if (CrossMBBPhysDef) {
    569         // Add physical register defs now coming in from a predecessor to MBB
    570         // livein list.
    571         while (!PhysDefs.empty()) {
    572           unsigned LiveIn = PhysDefs.pop_back_val();
    573           if (!MBB->isLiveIn(LiveIn))
    574             MBB->addLiveIn(LiveIn);
    575         }
    576         ++NumCrossBBCSEs;
    577       }
    578 
    579       MI->eraseFromParent();
    580       ++NumCSEs;
    581       if (!PhysRefs.empty())
    582         ++NumPhysCSEs;
    583       if (Commuted)
    584         ++NumCommutes;
    585       Changed = true;
    586     } else {
    587       VNT.insert(MI, CurrVN++);
    588       Exps.push_back(MI);
    589     }
    590     CSEPairs.clear();
    591     ImplicitDefsToUpdate.clear();
    592   }
    593 
    594   return Changed;
    595 }
    596 
    597 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    598 /// dominator tree node if its a leaf or all of its children are done. Walk
    599 /// up the dominator tree to destroy ancestors which are now done.
    600 void
    601 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
    602                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
    603   if (OpenChildren[Node])
    604     return;
    605 
    606   // Pop scope.
    607   ExitScope(Node->getBlock());
    608 
    609   // Now traverse upwards to pop ancestors whose offsprings are all done.
    610   while (MachineDomTreeNode *Parent = Node->getIDom()) {
    611     unsigned Left = --OpenChildren[Parent];
    612     if (Left != 0)
    613       break;
    614     ExitScope(Parent->getBlock());
    615     Node = Parent;
    616   }
    617 }
    618 
    619 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
    620   SmallVector<MachineDomTreeNode*, 32> Scopes;
    621   SmallVector<MachineDomTreeNode*, 8> WorkList;
    622   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    623 
    624   CurrVN = 0;
    625 
    626   // Perform a DFS walk to determine the order of visit.
    627   WorkList.push_back(Node);
    628   do {
    629     Node = WorkList.pop_back_val();
    630     Scopes.push_back(Node);
    631     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    632     unsigned NumChildren = Children.size();
    633     OpenChildren[Node] = NumChildren;
    634     for (unsigned i = 0; i != NumChildren; ++i) {
    635       MachineDomTreeNode *Child = Children[i];
    636       WorkList.push_back(Child);
    637     }
    638   } while (!WorkList.empty());
    639 
    640   // Now perform CSE.
    641   bool Changed = false;
    642   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    643     MachineDomTreeNode *Node = Scopes[i];
    644     MachineBasicBlock *MBB = Node->getBlock();
    645     EnterScope(MBB);
    646     Changed |= ProcessBlock(MBB);
    647     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    648     ExitScopeIfDone(Node, OpenChildren);
    649   }
    650 
    651   return Changed;
    652 }
    653 
    654 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
    655   TII = MF.getTarget().getInstrInfo();
    656   TRI = MF.getTarget().getRegisterInfo();
    657   MRI = &MF.getRegInfo();
    658   AA = &getAnalysis<AliasAnalysis>();
    659   DT = &getAnalysis<MachineDominatorTree>();
    660   return PerformCSE(DT->getRootNode());
    661 }
    662