1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "machine-sink" 20 #include "llvm/CodeGen/Passes.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetInstrInfo.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 using namespace llvm; 34 35 static cl::opt<bool> 36 SplitEdges("machine-sink-split", 37 cl::desc("Split critical edges during machine sinking"), 38 cl::init(true), cl::Hidden); 39 40 STATISTIC(NumSunk, "Number of machine instructions sunk"); 41 STATISTIC(NumSplit, "Number of critical edges split"); 42 STATISTIC(NumCoalesces, "Number of copies coalesced"); 43 44 namespace { 45 class MachineSinking : public MachineFunctionPass { 46 const TargetInstrInfo *TII; 47 const TargetRegisterInfo *TRI; 48 MachineRegisterInfo *MRI; // Machine register information 49 MachineDominatorTree *DT; // Machine dominator tree 50 MachineLoopInfo *LI; 51 AliasAnalysis *AA; 52 53 // Remember which edges have been considered for breaking. 54 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 55 CEBCandidates; 56 57 public: 58 static char ID; // Pass identification 59 MachineSinking() : MachineFunctionPass(ID) { 60 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 61 } 62 63 virtual bool runOnMachineFunction(MachineFunction &MF); 64 65 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 66 AU.setPreservesCFG(); 67 MachineFunctionPass::getAnalysisUsage(AU); 68 AU.addRequired<AliasAnalysis>(); 69 AU.addRequired<MachineDominatorTree>(); 70 AU.addRequired<MachineLoopInfo>(); 71 AU.addPreserved<MachineDominatorTree>(); 72 AU.addPreserved<MachineLoopInfo>(); 73 } 74 75 virtual void releaseMemory() { 76 CEBCandidates.clear(); 77 } 78 79 private: 80 bool ProcessBlock(MachineBasicBlock &MBB); 81 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 82 MachineBasicBlock *From, 83 MachineBasicBlock *To); 84 MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI, 85 MachineBasicBlock *From, 86 MachineBasicBlock *To, 87 bool BreakPHIEdge); 88 bool SinkInstruction(MachineInstr *MI, bool &SawStore); 89 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 90 MachineBasicBlock *DefMBB, 91 bool &BreakPHIEdge, bool &LocalUse) const; 92 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 93 bool &BreakPHIEdge); 94 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 95 MachineBasicBlock *MBB, 96 MachineBasicBlock *SuccToSinkTo); 97 98 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 99 MachineBasicBlock *MBB); 100 }; 101 102 // SuccessorSorter - Sort Successors according to their loop depth. 103 struct SuccessorSorter { 104 SuccessorSorter(MachineLoopInfo *LoopInfo) : LI(LoopInfo) {} 105 bool operator()(const MachineBasicBlock *LHS, 106 const MachineBasicBlock *RHS) const { 107 return LI->getLoopDepth(LHS) < LI->getLoopDepth(RHS); 108 } 109 MachineLoopInfo *LI; 110 }; 111 } // end anonymous namespace 112 113 char MachineSinking::ID = 0; 114 char &llvm::MachineSinkingID = MachineSinking::ID; 115 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 116 "Machine code sinking", false, false) 117 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 118 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 119 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 120 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 121 "Machine code sinking", false, false) 122 123 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 124 MachineBasicBlock *MBB) { 125 if (!MI->isCopy()) 126 return false; 127 128 unsigned SrcReg = MI->getOperand(1).getReg(); 129 unsigned DstReg = MI->getOperand(0).getReg(); 130 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 131 !TargetRegisterInfo::isVirtualRegister(DstReg) || 132 !MRI->hasOneNonDBGUse(SrcReg)) 133 return false; 134 135 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 136 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 137 if (SRC != DRC) 138 return false; 139 140 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 141 if (DefMI->isCopyLike()) 142 return false; 143 DEBUG(dbgs() << "Coalescing: " << *DefMI); 144 DEBUG(dbgs() << "*** to: " << *MI); 145 MRI->replaceRegWith(DstReg, SrcReg); 146 MI->eraseFromParent(); 147 ++NumCoalesces; 148 return true; 149 } 150 151 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 152 /// occur in blocks dominated by the specified block. If any use is in the 153 /// definition block, then return false since it is never legal to move def 154 /// after uses. 155 bool 156 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 157 MachineBasicBlock *MBB, 158 MachineBasicBlock *DefMBB, 159 bool &BreakPHIEdge, 160 bool &LocalUse) const { 161 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 162 "Only makes sense for vregs"); 163 164 // Ignore debug uses because debug info doesn't affect the code. 165 if (MRI->use_nodbg_empty(Reg)) 166 return true; 167 168 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 169 // into and they are all PHI nodes. In this case, machine-sink must break 170 // the critical edge first. e.g. 171 // 172 // BB#1: derived from LLVM BB %bb4.preheader 173 // Predecessors according to CFG: BB#0 174 // ... 175 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 176 // ... 177 // JE_4 <BB#37>, %EFLAGS<imp-use> 178 // Successors according to CFG: BB#37 BB#2 179 // 180 // BB#2: derived from LLVM BB %bb.nph 181 // Predecessors according to CFG: BB#0 BB#1 182 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 183 BreakPHIEdge = true; 184 for (MachineRegisterInfo::use_nodbg_iterator 185 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 186 I != E; ++I) { 187 MachineInstr *UseInst = &*I; 188 MachineBasicBlock *UseBlock = UseInst->getParent(); 189 if (!(UseBlock == MBB && UseInst->isPHI() && 190 UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) { 191 BreakPHIEdge = false; 192 break; 193 } 194 } 195 if (BreakPHIEdge) 196 return true; 197 198 for (MachineRegisterInfo::use_nodbg_iterator 199 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 200 I != E; ++I) { 201 // Determine the block of the use. 202 MachineInstr *UseInst = &*I; 203 MachineBasicBlock *UseBlock = UseInst->getParent(); 204 if (UseInst->isPHI()) { 205 // PHI nodes use the operand in the predecessor block, not the block with 206 // the PHI. 207 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); 208 } else if (UseBlock == DefMBB) { 209 LocalUse = true; 210 return false; 211 } 212 213 // Check that it dominates. 214 if (!DT->dominates(MBB, UseBlock)) 215 return false; 216 } 217 218 return true; 219 } 220 221 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 222 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 223 224 const TargetMachine &TM = MF.getTarget(); 225 TII = TM.getInstrInfo(); 226 TRI = TM.getRegisterInfo(); 227 MRI = &MF.getRegInfo(); 228 DT = &getAnalysis<MachineDominatorTree>(); 229 LI = &getAnalysis<MachineLoopInfo>(); 230 AA = &getAnalysis<AliasAnalysis>(); 231 232 bool EverMadeChange = false; 233 234 while (1) { 235 bool MadeChange = false; 236 237 // Process all basic blocks. 238 CEBCandidates.clear(); 239 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 240 I != E; ++I) 241 MadeChange |= ProcessBlock(*I); 242 243 // If this iteration over the code changed anything, keep iterating. 244 if (!MadeChange) break; 245 EverMadeChange = true; 246 } 247 return EverMadeChange; 248 } 249 250 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 251 // Can't sink anything out of a block that has less than two successors. 252 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 253 254 // Don't bother sinking code out of unreachable blocks. In addition to being 255 // unprofitable, it can also lead to infinite looping, because in an 256 // unreachable loop there may be nowhere to stop. 257 if (!DT->isReachableFromEntry(&MBB)) return false; 258 259 bool MadeChange = false; 260 261 // Walk the basic block bottom-up. Remember if we saw a store. 262 MachineBasicBlock::iterator I = MBB.end(); 263 --I; 264 bool ProcessedBegin, SawStore = false; 265 do { 266 MachineInstr *MI = I; // The instruction to sink. 267 268 // Predecrement I (if it's not begin) so that it isn't invalidated by 269 // sinking. 270 ProcessedBegin = I == MBB.begin(); 271 if (!ProcessedBegin) 272 --I; 273 274 if (MI->isDebugValue()) 275 continue; 276 277 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 278 if (Joined) { 279 MadeChange = true; 280 continue; 281 } 282 283 if (SinkInstruction(MI, SawStore)) 284 ++NumSunk, MadeChange = true; 285 286 // If we just processed the first instruction in the block, we're done. 287 } while (!ProcessedBegin); 288 289 return MadeChange; 290 } 291 292 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 293 MachineBasicBlock *From, 294 MachineBasicBlock *To) { 295 // FIXME: Need much better heuristics. 296 297 // If the pass has already considered breaking this edge (during this pass 298 // through the function), then let's go ahead and break it. This means 299 // sinking multiple "cheap" instructions into the same block. 300 if (!CEBCandidates.insert(std::make_pair(From, To))) 301 return true; 302 303 if (!MI->isCopy() && !MI->isAsCheapAsAMove()) 304 return true; 305 306 // MI is cheap, we probably don't want to break the critical edge for it. 307 // However, if this would allow some definitions of its source operands 308 // to be sunk then it's probably worth it. 309 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 310 const MachineOperand &MO = MI->getOperand(i); 311 if (!MO.isReg()) continue; 312 unsigned Reg = MO.getReg(); 313 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) 314 continue; 315 if (MRI->hasOneNonDBGUse(Reg)) 316 return true; 317 } 318 319 return false; 320 } 321 322 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI, 323 MachineBasicBlock *FromBB, 324 MachineBasicBlock *ToBB, 325 bool BreakPHIEdge) { 326 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 327 return 0; 328 329 // Avoid breaking back edge. From == To means backedge for single BB loop. 330 if (!SplitEdges || FromBB == ToBB) 331 return 0; 332 333 // Check for backedges of more "complex" loops. 334 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 335 LI->isLoopHeader(ToBB)) 336 return 0; 337 338 // It's not always legal to break critical edges and sink the computation 339 // to the edge. 340 // 341 // BB#1: 342 // v1024 343 // Beq BB#3 344 // <fallthrough> 345 // BB#2: 346 // ... no uses of v1024 347 // <fallthrough> 348 // BB#3: 349 // ... 350 // = v1024 351 // 352 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 353 // 354 // BB#1: 355 // ... 356 // Bne BB#2 357 // BB#4: 358 // v1024 = 359 // B BB#3 360 // BB#2: 361 // ... no uses of v1024 362 // <fallthrough> 363 // BB#3: 364 // ... 365 // = v1024 366 // 367 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 368 // flow. We need to ensure the new basic block where the computation is 369 // sunk to dominates all the uses. 370 // It's only legal to break critical edge and sink the computation to the 371 // new block if all the predecessors of "To", except for "From", are 372 // not dominated by "From". Given SSA property, this means these 373 // predecessors are dominated by "To". 374 // 375 // There is no need to do this check if all the uses are PHI nodes. PHI 376 // sources are only defined on the specific predecessor edges. 377 if (!BreakPHIEdge) { 378 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 379 E = ToBB->pred_end(); PI != E; ++PI) { 380 if (*PI == FromBB) 381 continue; 382 if (!DT->dominates(ToBB, *PI)) 383 return 0; 384 } 385 } 386 387 return FromBB->SplitCriticalEdge(ToBB, this); 388 } 389 390 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 391 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 392 } 393 394 /// collectDebgValues - Scan instructions following MI and collect any 395 /// matching DBG_VALUEs. 396 static void collectDebugValues(MachineInstr *MI, 397 SmallVectorImpl<MachineInstr *> &DbgValues) { 398 DbgValues.clear(); 399 if (!MI->getOperand(0).isReg()) 400 return; 401 402 MachineBasicBlock::iterator DI = MI; ++DI; 403 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 404 DI != DE; ++DI) { 405 if (!DI->isDebugValue()) 406 return; 407 if (DI->getOperand(0).isReg() && 408 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 409 DbgValues.push_back(DI); 410 } 411 } 412 413 /// isPostDominatedBy - Return true if A is post dominated by B. 414 static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) { 415 416 // FIXME - Use real post dominator. 417 if (A->succ_size() != 2) 418 return false; 419 MachineBasicBlock::succ_iterator I = A->succ_begin(); 420 if (B == *I) 421 ++I; 422 MachineBasicBlock *OtherSuccBlock = *I; 423 if (OtherSuccBlock->succ_size() != 1 || 424 *(OtherSuccBlock->succ_begin()) != B) 425 return false; 426 427 return true; 428 } 429 430 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 431 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 432 MachineBasicBlock *MBB, 433 MachineBasicBlock *SuccToSinkTo) { 434 assert (MI && "Invalid MachineInstr!"); 435 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 436 437 if (MBB == SuccToSinkTo) 438 return false; 439 440 // It is profitable if SuccToSinkTo does not post dominate current block. 441 if (!isPostDominatedBy(MBB, SuccToSinkTo)) 442 return true; 443 444 // Check if only use in post dominated block is PHI instruction. 445 bool NonPHIUse = false; 446 for (MachineRegisterInfo::use_nodbg_iterator 447 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 448 I != E; ++I) { 449 MachineInstr *UseInst = &*I; 450 MachineBasicBlock *UseBlock = UseInst->getParent(); 451 if (UseBlock == SuccToSinkTo && !UseInst->isPHI()) 452 NonPHIUse = true; 453 } 454 if (!NonPHIUse) 455 return true; 456 457 // If SuccToSinkTo post dominates then also it may be profitable if MI 458 // can further profitably sinked into another block in next round. 459 bool BreakPHIEdge = false; 460 // FIXME - If finding successor is compile time expensive then catch results. 461 if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge)) 462 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2); 463 464 // If SuccToSinkTo is final destination and it is a post dominator of current 465 // block then it is not profitable to sink MI into SuccToSinkTo block. 466 return false; 467 } 468 469 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 470 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 471 MachineBasicBlock *MBB, 472 bool &BreakPHIEdge) { 473 474 assert (MI && "Invalid MachineInstr!"); 475 assert (MBB && "Invalid MachineBasicBlock!"); 476 477 // Loop over all the operands of the specified instruction. If there is 478 // anything we can't handle, bail out. 479 480 // SuccToSinkTo - This is the successor to sink this instruction to, once we 481 // decide. 482 MachineBasicBlock *SuccToSinkTo = 0; 483 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 484 const MachineOperand &MO = MI->getOperand(i); 485 if (!MO.isReg()) continue; // Ignore non-register operands. 486 487 unsigned Reg = MO.getReg(); 488 if (Reg == 0) continue; 489 490 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 491 if (MO.isUse()) { 492 // If the physreg has no defs anywhere, it's just an ambient register 493 // and we can freely move its uses. Alternatively, if it's allocatable, 494 // it could get allocated to something with a def during allocation. 495 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 496 return NULL; 497 } else if (!MO.isDead()) { 498 // A def that isn't dead. We can't move it. 499 return NULL; 500 } 501 } else { 502 // Virtual register uses are always safe to sink. 503 if (MO.isUse()) continue; 504 505 // If it's not safe to move defs of the register class, then abort. 506 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 507 return NULL; 508 509 // FIXME: This picks a successor to sink into based on having one 510 // successor that dominates all the uses. However, there are cases where 511 // sinking can happen but where the sink point isn't a successor. For 512 // example: 513 // 514 // x = computation 515 // if () {} else {} 516 // use x 517 // 518 // the instruction could be sunk over the whole diamond for the 519 // if/then/else (or loop, etc), allowing it to be sunk into other blocks 520 // after that. 521 522 // Virtual register defs can only be sunk if all their uses are in blocks 523 // dominated by one of the successors. 524 if (SuccToSinkTo) { 525 // If a previous operand picked a block to sink to, then this operand 526 // must be sinkable to the same block. 527 bool LocalUse = false; 528 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 529 BreakPHIEdge, LocalUse)) 530 return NULL; 531 532 continue; 533 } 534 535 // Otherwise, we should look at all the successors and decide which one 536 // we should sink to. 537 // We give successors with smaller loop depth higher priority. 538 SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), MBB->succ_end()); 539 std::stable_sort(Succs.begin(), Succs.end(), SuccessorSorter(LI)); 540 for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(), 541 E = Succs.end(); SI != E; ++SI) { 542 MachineBasicBlock *SuccBlock = *SI; 543 bool LocalUse = false; 544 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 545 BreakPHIEdge, LocalUse)) { 546 SuccToSinkTo = SuccBlock; 547 break; 548 } 549 if (LocalUse) 550 // Def is used locally, it's never safe to move this def. 551 return NULL; 552 } 553 554 // If we couldn't find a block to sink to, ignore this instruction. 555 if (SuccToSinkTo == 0) 556 return NULL; 557 else if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo)) 558 return NULL; 559 } 560 } 561 562 // It is not possible to sink an instruction into its own block. This can 563 // happen with loops. 564 if (MBB == SuccToSinkTo) 565 return NULL; 566 567 // It's not safe to sink instructions to EH landing pad. Control flow into 568 // landing pad is implicitly defined. 569 if (SuccToSinkTo && SuccToSinkTo->isLandingPad()) 570 return NULL; 571 572 return SuccToSinkTo; 573 } 574 575 /// SinkInstruction - Determine whether it is safe to sink the specified machine 576 /// instruction out of its current block into a successor. 577 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { 578 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 579 // be close to the source to make it easier to coalesce. 580 if (AvoidsSinking(MI, MRI)) 581 return false; 582 583 // Check if it's safe to move the instruction. 584 if (!MI->isSafeToMove(TII, AA, SawStore)) 585 return false; 586 587 // FIXME: This should include support for sinking instructions within the 588 // block they are currently in to shorten the live ranges. We often get 589 // instructions sunk into the top of a large block, but it would be better to 590 // also sink them down before their first use in the block. This xform has to 591 // be careful not to *increase* register pressure though, e.g. sinking 592 // "x = y + z" down if it kills y and z would increase the live ranges of y 593 // and z and only shrink the live range of x. 594 595 bool BreakPHIEdge = false; 596 MachineBasicBlock *ParentBlock = MI->getParent(); 597 MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge); 598 599 // If there are no outputs, it must have side-effects. 600 if (SuccToSinkTo == 0) 601 return false; 602 603 604 // If the instruction to move defines a dead physical register which is live 605 // when leaving the basic block, don't move it because it could turn into a 606 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 607 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 608 const MachineOperand &MO = MI->getOperand(I); 609 if (!MO.isReg()) continue; 610 unsigned Reg = MO.getReg(); 611 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 612 if (SuccToSinkTo->isLiveIn(Reg)) 613 return false; 614 } 615 616 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 617 618 // If the block has multiple predecessors, this would introduce computation on 619 // a path that it doesn't already exist. We could split the critical edge, 620 // but for now we just punt. 621 if (SuccToSinkTo->pred_size() > 1) { 622 // We cannot sink a load across a critical edge - there may be stores in 623 // other code paths. 624 bool TryBreak = false; 625 bool store = true; 626 if (!MI->isSafeToMove(TII, AA, store)) { 627 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 628 TryBreak = true; 629 } 630 631 // We don't want to sink across a critical edge if we don't dominate the 632 // successor. We could be introducing calculations to new code paths. 633 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 634 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 635 TryBreak = true; 636 } 637 638 // Don't sink instructions into a loop. 639 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 640 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 641 TryBreak = true; 642 } 643 644 // Otherwise we are OK with sinking along a critical edge. 645 if (!TryBreak) 646 DEBUG(dbgs() << "Sinking along critical edge.\n"); 647 else { 648 MachineBasicBlock *NewSucc = 649 SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 650 if (!NewSucc) { 651 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 652 "break critical edge\n"); 653 return false; 654 } else { 655 DEBUG(dbgs() << " *** Splitting critical edge:" 656 " BB#" << ParentBlock->getNumber() 657 << " -- BB#" << NewSucc->getNumber() 658 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 659 SuccToSinkTo = NewSucc; 660 ++NumSplit; 661 BreakPHIEdge = false; 662 } 663 } 664 } 665 666 if (BreakPHIEdge) { 667 // BreakPHIEdge is true if all the uses are in the successor MBB being 668 // sunken into and they are all PHI nodes. In this case, machine-sink must 669 // break the critical edge first. 670 MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock, 671 SuccToSinkTo, BreakPHIEdge); 672 if (!NewSucc) { 673 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 674 "break critical edge\n"); 675 return false; 676 } 677 678 DEBUG(dbgs() << " *** Splitting critical edge:" 679 " BB#" << ParentBlock->getNumber() 680 << " -- BB#" << NewSucc->getNumber() 681 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 682 SuccToSinkTo = NewSucc; 683 ++NumSplit; 684 } 685 686 // Determine where to insert into. Skip phi nodes. 687 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 688 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 689 ++InsertPos; 690 691 // collect matching debug values. 692 SmallVector<MachineInstr *, 2> DbgValuesToSink; 693 collectDebugValues(MI, DbgValuesToSink); 694 695 // Move the instruction. 696 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 697 ++MachineBasicBlock::iterator(MI)); 698 699 // Move debug values. 700 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 701 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 702 MachineInstr *DbgMI = *DBI; 703 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 704 ++MachineBasicBlock::iterator(DbgMI)); 705 } 706 707 // Conservatively, clear any kill flags, since it's possible that they are no 708 // longer correct. 709 MI->clearKillInfo(); 710 711 return true; 712 } 713