Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the PowerPC-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // PPCGenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "PPC.h"
     17 #include "MCTargetDesc/PPCPredicates.h"
     18 #include "PPCISelLowering.h"
     19 #include "PPCSubtarget.h"
     20 #include "PPCTargetMachine.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/CodeGen/CallingConvLower.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/IR/CallingConv.h"
     30 #include "llvm/IR/GetElementPtrTypeIterator.h"
     31 #include "llvm/IR/GlobalAlias.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Target/TargetLowering.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 
     39 //===----------------------------------------------------------------------===//
     40 //
     41 // TBD:
     42 //   FastLowerArguments: Handle simple cases.
     43 //   PPCMaterializeGV: Handle TLS.
     44 //   SelectCall: Handle function pointers.
     45 //   SelectCall: Handle multi-register return values.
     46 //   SelectCall: Optimize away nops for local calls.
     47 //   processCallArgs: Handle bit-converted arguments.
     48 //   finishCall: Handle multi-register return values.
     49 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
     50 //   PPCEmitCmp: Handle immediate as operand 1.
     51 //   SelectCall: Handle small byval arguments.
     52 //   SelectIntrinsicCall: Implement.
     53 //   SelectSelect: Implement.
     54 //   Consider factoring isTypeLegal into the base class.
     55 //   Implement switches and jump tables.
     56 //
     57 //===----------------------------------------------------------------------===//
     58 using namespace llvm;
     59 
     60 #define DEBUG_TYPE "ppcfastisel"
     61 
     62 namespace {
     63 
     64 typedef struct Address {
     65   enum {
     66     RegBase,
     67     FrameIndexBase
     68   } BaseType;
     69 
     70   union {
     71     unsigned Reg;
     72     int FI;
     73   } Base;
     74 
     75   long Offset;
     76 
     77   // Innocuous defaults for our address.
     78   Address()
     79    : BaseType(RegBase), Offset(0) {
     80      Base.Reg = 0;
     81    }
     82 } Address;
     83 
     84 class PPCFastISel final : public FastISel {
     85 
     86   const TargetMachine &TM;
     87   const TargetInstrInfo &TII;
     88   const TargetLowering &TLI;
     89   const PPCSubtarget *PPCSubTarget;
     90   LLVMContext *Context;
     91 
     92   public:
     93     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
     94                          const TargetLibraryInfo *LibInfo)
     95     : FastISel(FuncInfo, LibInfo),
     96       TM(FuncInfo.MF->getTarget()),
     97       TII(*TM.getInstrInfo()),
     98       TLI(*TM.getTargetLowering()),
     99       PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()),
    100       Context(&FuncInfo.Fn->getContext()) { }
    101 
    102   // Backend specific FastISel code.
    103   private:
    104     bool TargetSelectInstruction(const Instruction *I) override;
    105     unsigned TargetMaterializeConstant(const Constant *C) override;
    106     unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
    107     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
    108                              const LoadInst *LI) override;
    109     bool FastLowerArguments() override;
    110     unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
    111     unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
    112                              const TargetRegisterClass *RC,
    113                              unsigned Op0, bool Op0IsKill,
    114                              uint64_t Imm);
    115     unsigned FastEmitInst_r(unsigned MachineInstOpcode,
    116                             const TargetRegisterClass *RC,
    117                             unsigned Op0, bool Op0IsKill);
    118     unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
    119                              const TargetRegisterClass *RC,
    120                              unsigned Op0, bool Op0IsKill,
    121                              unsigned Op1, bool Op1IsKill);
    122 
    123   // Instruction selection routines.
    124   private:
    125     bool SelectLoad(const Instruction *I);
    126     bool SelectStore(const Instruction *I);
    127     bool SelectBranch(const Instruction *I);
    128     bool SelectIndirectBr(const Instruction *I);
    129     bool SelectFPExt(const Instruction *I);
    130     bool SelectFPTrunc(const Instruction *I);
    131     bool SelectIToFP(const Instruction *I, bool IsSigned);
    132     bool SelectFPToI(const Instruction *I, bool IsSigned);
    133     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    134     bool SelectCall(const Instruction *I);
    135     bool SelectRet(const Instruction *I);
    136     bool SelectTrunc(const Instruction *I);
    137     bool SelectIntExt(const Instruction *I);
    138 
    139   // Utility routines.
    140   private:
    141     bool isTypeLegal(Type *Ty, MVT &VT);
    142     bool isLoadTypeLegal(Type *Ty, MVT &VT);
    143     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
    144                     bool isZExt, unsigned DestReg);
    145     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    146                      const TargetRegisterClass *RC, bool IsZExt = true,
    147                      unsigned FP64LoadOpc = PPC::LFD);
    148     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
    149     bool PPCComputeAddress(const Value *Obj, Address &Addr);
    150     void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
    151                             unsigned &IndexReg);
    152     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
    153                            unsigned DestReg, bool IsZExt);
    154     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
    155     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
    156     unsigned PPCMaterializeInt(const Constant *C, MVT VT);
    157     unsigned PPCMaterialize32BitInt(int64_t Imm,
    158                                     const TargetRegisterClass *RC);
    159     unsigned PPCMaterialize64BitInt(int64_t Imm,
    160                                     const TargetRegisterClass *RC);
    161     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
    162                              unsigned SrcReg, bool IsSigned);
    163     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
    164 
    165   // Call handling routines.
    166   private:
    167     bool processCallArgs(SmallVectorImpl<Value*> &Args,
    168                          SmallVectorImpl<unsigned> &ArgRegs,
    169                          SmallVectorImpl<MVT> &ArgVTs,
    170                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    171                          SmallVectorImpl<unsigned> &RegArgs,
    172                          CallingConv::ID CC,
    173                          unsigned &NumBytes,
    174                          bool IsVarArg);
    175     void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
    176                     const Instruction *I, CallingConv::ID CC,
    177                     unsigned &NumBytes, bool IsVarArg);
    178     CCAssignFn *usePPC32CCs(unsigned Flag);
    179 
    180   private:
    181   #include "PPCGenFastISel.inc"
    182 
    183 };
    184 
    185 } // end anonymous namespace
    186 
    187 #include "PPCGenCallingConv.inc"
    188 
    189 // Function whose sole purpose is to kill compiler warnings
    190 // stemming from unused functions included from PPCGenCallingConv.inc.
    191 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
    192   if (Flag == 1)
    193     return CC_PPC32_SVR4;
    194   else if (Flag == 2)
    195     return CC_PPC32_SVR4_ByVal;
    196   else if (Flag == 3)
    197     return CC_PPC32_SVR4_VarArg;
    198   else
    199     return RetCC_PPC;
    200 }
    201 
    202 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
    203   switch (Pred) {
    204     // These are not representable with any single compare.
    205     case CmpInst::FCMP_FALSE:
    206     case CmpInst::FCMP_UEQ:
    207     case CmpInst::FCMP_UGT:
    208     case CmpInst::FCMP_UGE:
    209     case CmpInst::FCMP_ULT:
    210     case CmpInst::FCMP_ULE:
    211     case CmpInst::FCMP_UNE:
    212     case CmpInst::FCMP_TRUE:
    213     default:
    214       return Optional<PPC::Predicate>();
    215 
    216     case CmpInst::FCMP_OEQ:
    217     case CmpInst::ICMP_EQ:
    218       return PPC::PRED_EQ;
    219 
    220     case CmpInst::FCMP_OGT:
    221     case CmpInst::ICMP_UGT:
    222     case CmpInst::ICMP_SGT:
    223       return PPC::PRED_GT;
    224 
    225     case CmpInst::FCMP_OGE:
    226     case CmpInst::ICMP_UGE:
    227     case CmpInst::ICMP_SGE:
    228       return PPC::PRED_GE;
    229 
    230     case CmpInst::FCMP_OLT:
    231     case CmpInst::ICMP_ULT:
    232     case CmpInst::ICMP_SLT:
    233       return PPC::PRED_LT;
    234 
    235     case CmpInst::FCMP_OLE:
    236     case CmpInst::ICMP_ULE:
    237     case CmpInst::ICMP_SLE:
    238       return PPC::PRED_LE;
    239 
    240     case CmpInst::FCMP_ONE:
    241     case CmpInst::ICMP_NE:
    242       return PPC::PRED_NE;
    243 
    244     case CmpInst::FCMP_ORD:
    245       return PPC::PRED_NU;
    246 
    247     case CmpInst::FCMP_UNO:
    248       return PPC::PRED_UN;
    249   }
    250 }
    251 
    252 // Determine whether the type Ty is simple enough to be handled by
    253 // fast-isel, and return its equivalent machine type in VT.
    254 // FIXME: Copied directly from ARM -- factor into base class?
    255 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    256   EVT Evt = TLI.getValueType(Ty, true);
    257 
    258   // Only handle simple types.
    259   if (Evt == MVT::Other || !Evt.isSimple()) return false;
    260   VT = Evt.getSimpleVT();
    261 
    262   // Handle all legal types, i.e. a register that will directly hold this
    263   // value.
    264   return TLI.isTypeLegal(VT);
    265 }
    266 
    267 // Determine whether the type Ty is simple enough to be handled by
    268 // fast-isel as a load target, and return its equivalent machine type in VT.
    269 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    270   if (isTypeLegal(Ty, VT)) return true;
    271 
    272   // If this is a type than can be sign or zero-extended to a basic operation
    273   // go ahead and accept it now.
    274   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
    275     return true;
    276   }
    277 
    278   return false;
    279 }
    280 
    281 // Given a value Obj, create an Address object Addr that represents its
    282 // address.  Return false if we can't handle it.
    283 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
    284   const User *U = nullptr;
    285   unsigned Opcode = Instruction::UserOp1;
    286   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    287     // Don't walk into other basic blocks unless the object is an alloca from
    288     // another block, otherwise it may not have a virtual register assigned.
    289     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    290         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    291       Opcode = I->getOpcode();
    292       U = I;
    293     }
    294   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    295     Opcode = C->getOpcode();
    296     U = C;
    297   }
    298 
    299   switch (Opcode) {
    300     default:
    301       break;
    302     case Instruction::BitCast:
    303       // Look through bitcasts.
    304       return PPCComputeAddress(U->getOperand(0), Addr);
    305     case Instruction::IntToPtr:
    306       // Look past no-op inttoptrs.
    307       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    308         return PPCComputeAddress(U->getOperand(0), Addr);
    309       break;
    310     case Instruction::PtrToInt:
    311       // Look past no-op ptrtoints.
    312       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    313         return PPCComputeAddress(U->getOperand(0), Addr);
    314       break;
    315     case Instruction::GetElementPtr: {
    316       Address SavedAddr = Addr;
    317       long TmpOffset = Addr.Offset;
    318 
    319       // Iterate through the GEP folding the constants into offsets where
    320       // we can.
    321       gep_type_iterator GTI = gep_type_begin(U);
    322       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
    323            II != IE; ++II, ++GTI) {
    324         const Value *Op = *II;
    325         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    326           const StructLayout *SL = DL.getStructLayout(STy);
    327           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    328           TmpOffset += SL->getElementOffset(Idx);
    329         } else {
    330           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    331           for (;;) {
    332             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    333               // Constant-offset addressing.
    334               TmpOffset += CI->getSExtValue() * S;
    335               break;
    336             }
    337             if (canFoldAddIntoGEP(U, Op)) {
    338               // A compatible add with a constant operand. Fold the constant.
    339               ConstantInt *CI =
    340               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    341               TmpOffset += CI->getSExtValue() * S;
    342               // Iterate on the other operand.
    343               Op = cast<AddOperator>(Op)->getOperand(0);
    344               continue;
    345             }
    346             // Unsupported
    347             goto unsupported_gep;
    348           }
    349         }
    350       }
    351 
    352       // Try to grab the base operand now.
    353       Addr.Offset = TmpOffset;
    354       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
    355 
    356       // We failed, restore everything and try the other options.
    357       Addr = SavedAddr;
    358 
    359       unsupported_gep:
    360       break;
    361     }
    362     case Instruction::Alloca: {
    363       const AllocaInst *AI = cast<AllocaInst>(Obj);
    364       DenseMap<const AllocaInst*, int>::iterator SI =
    365         FuncInfo.StaticAllocaMap.find(AI);
    366       if (SI != FuncInfo.StaticAllocaMap.end()) {
    367         Addr.BaseType = Address::FrameIndexBase;
    368         Addr.Base.FI = SI->second;
    369         return true;
    370       }
    371       break;
    372     }
    373   }
    374 
    375   // FIXME: References to parameters fall through to the behavior
    376   // below.  They should be able to reference a frame index since
    377   // they are stored to the stack, so we can get "ld rx, offset(r1)"
    378   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
    379   // just contain the parameter.  Try to handle this with a FI.
    380 
    381   // Try to get this in a register if nothing else has worked.
    382   if (Addr.Base.Reg == 0)
    383     Addr.Base.Reg = getRegForValue(Obj);
    384 
    385   // Prevent assignment of base register to X0, which is inappropriate
    386   // for loads and stores alike.
    387   if (Addr.Base.Reg != 0)
    388     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
    389 
    390   return Addr.Base.Reg != 0;
    391 }
    392 
    393 // Fix up some addresses that can't be used directly.  For example, if
    394 // an offset won't fit in an instruction field, we may need to move it
    395 // into an index register.
    396 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
    397                                      unsigned &IndexReg) {
    398 
    399   // Check whether the offset fits in the instruction field.
    400   if (!isInt<16>(Addr.Offset))
    401     UseOffset = false;
    402 
    403   // If this is a stack pointer and the offset needs to be simplified then
    404   // put the alloca address into a register, set the base type back to
    405   // register and continue. This should almost never happen.
    406   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
    407     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
    408     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
    409             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
    410     Addr.Base.Reg = ResultReg;
    411     Addr.BaseType = Address::RegBase;
    412   }
    413 
    414   if (!UseOffset) {
    415     IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
    416                              : Type::getInt64Ty(*Context));
    417     const ConstantInt *Offset =
    418       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
    419     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
    420     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
    421   }
    422 }
    423 
    424 // Emit a load instruction if possible, returning true if we succeeded,
    425 // otherwise false.  See commentary below for how the register class of
    426 // the load is determined.
    427 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    428                               const TargetRegisterClass *RC,
    429                               bool IsZExt, unsigned FP64LoadOpc) {
    430   unsigned Opc;
    431   bool UseOffset = true;
    432 
    433   // If ResultReg is given, it determines the register class of the load.
    434   // Otherwise, RC is the register class to use.  If the result of the
    435   // load isn't anticipated in this block, both may be zero, in which
    436   // case we must make a conservative guess.  In particular, don't assign
    437   // R0 or X0 to the result register, as the result may be used in a load,
    438   // store, add-immediate, or isel that won't permit this.  (Though
    439   // perhaps the spill and reload of live-exit values would handle this?)
    440   const TargetRegisterClass *UseRC =
    441     (ResultReg ? MRI.getRegClass(ResultReg) :
    442      (RC ? RC :
    443       (VT == MVT::f64 ? &PPC::F8RCRegClass :
    444        (VT == MVT::f32 ? &PPC::F4RCRegClass :
    445         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
    446          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
    447 
    448   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
    449 
    450   switch (VT.SimpleTy) {
    451     default: // e.g., vector types not handled
    452       return false;
    453     case MVT::i8:
    454       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
    455       break;
    456     case MVT::i16:
    457       Opc = (IsZExt ?
    458              (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
    459              (Is32BitInt ? PPC::LHA : PPC::LHA8));
    460       break;
    461     case MVT::i32:
    462       Opc = (IsZExt ?
    463              (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
    464              (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
    465       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
    466         UseOffset = false;
    467       break;
    468     case MVT::i64:
    469       Opc = PPC::LD;
    470       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
    471              "64-bit load with 32-bit target??");
    472       UseOffset = ((Addr.Offset & 3) == 0);
    473       break;
    474     case MVT::f32:
    475       Opc = PPC::LFS;
    476       break;
    477     case MVT::f64:
    478       Opc = FP64LoadOpc;
    479       break;
    480   }
    481 
    482   // If necessary, materialize the offset into a register and use
    483   // the indexed form.  Also handle stack pointers with special needs.
    484   unsigned IndexReg = 0;
    485   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
    486   if (ResultReg == 0)
    487     ResultReg = createResultReg(UseRC);
    488 
    489   // Note: If we still have a frame index here, we know the offset is
    490   // in range, as otherwise PPCSimplifyAddress would have converted it
    491   // into a RegBase.
    492   if (Addr.BaseType == Address::FrameIndexBase) {
    493 
    494     MachineMemOperand *MMO =
    495       FuncInfo.MF->getMachineMemOperand(
    496         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
    497         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
    498         MFI.getObjectAlignment(Addr.Base.FI));
    499 
    500     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    501       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
    502 
    503   // Base reg with offset in range.
    504   } else if (UseOffset) {
    505 
    506     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    507       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
    508 
    509   // Indexed form.
    510   } else {
    511     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
    512     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
    513     // is hard to get at.
    514     switch (Opc) {
    515       default:        llvm_unreachable("Unexpected opcode!");
    516       case PPC::LBZ:    Opc = PPC::LBZX;    break;
    517       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
    518       case PPC::LHZ:    Opc = PPC::LHZX;    break;
    519       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
    520       case PPC::LHA:    Opc = PPC::LHAX;    break;
    521       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
    522       case PPC::LWZ:    Opc = PPC::LWZX;    break;
    523       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
    524       case PPC::LWA:    Opc = PPC::LWAX;    break;
    525       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
    526       case PPC::LD:     Opc = PPC::LDX;     break;
    527       case PPC::LFS:    Opc = PPC::LFSX;    break;
    528       case PPC::LFD:    Opc = PPC::LFDX;    break;
    529     }
    530     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    531       .addReg(Addr.Base.Reg).addReg(IndexReg);
    532   }
    533 
    534   return true;
    535 }
    536 
    537 // Attempt to fast-select a load instruction.
    538 bool PPCFastISel::SelectLoad(const Instruction *I) {
    539   // FIXME: No atomic loads are supported.
    540   if (cast<LoadInst>(I)->isAtomic())
    541     return false;
    542 
    543   // Verify we have a legal type before going any further.
    544   MVT VT;
    545   if (!isLoadTypeLegal(I->getType(), VT))
    546     return false;
    547 
    548   // See if we can handle this address.
    549   Address Addr;
    550   if (!PPCComputeAddress(I->getOperand(0), Addr))
    551     return false;
    552 
    553   // Look at the currently assigned register for this instruction
    554   // to determine the required register class.  This is necessary
    555   // to constrain RA from using R0/X0 when this is not legal.
    556   unsigned AssignedReg = FuncInfo.ValueMap[I];
    557   const TargetRegisterClass *RC =
    558     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
    559 
    560   unsigned ResultReg = 0;
    561   if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
    562     return false;
    563   UpdateValueMap(I, ResultReg);
    564   return true;
    565 }
    566 
    567 // Emit a store instruction to store SrcReg at Addr.
    568 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
    569   assert(SrcReg && "Nothing to store!");
    570   unsigned Opc;
    571   bool UseOffset = true;
    572 
    573   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
    574   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
    575 
    576   switch (VT.SimpleTy) {
    577     default: // e.g., vector types not handled
    578       return false;
    579     case MVT::i8:
    580       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
    581       break;
    582     case MVT::i16:
    583       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
    584       break;
    585     case MVT::i32:
    586       assert(Is32BitInt && "Not GPRC for i32??");
    587       Opc = PPC::STW;
    588       break;
    589     case MVT::i64:
    590       Opc = PPC::STD;
    591       UseOffset = ((Addr.Offset & 3) == 0);
    592       break;
    593     case MVT::f32:
    594       Opc = PPC::STFS;
    595       break;
    596     case MVT::f64:
    597       Opc = PPC::STFD;
    598       break;
    599   }
    600 
    601   // If necessary, materialize the offset into a register and use
    602   // the indexed form.  Also handle stack pointers with special needs.
    603   unsigned IndexReg = 0;
    604   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
    605 
    606   // Note: If we still have a frame index here, we know the offset is
    607   // in range, as otherwise PPCSimplifyAddress would have converted it
    608   // into a RegBase.
    609   if (Addr.BaseType == Address::FrameIndexBase) {
    610     MachineMemOperand *MMO =
    611       FuncInfo.MF->getMachineMemOperand(
    612         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
    613         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
    614         MFI.getObjectAlignment(Addr.Base.FI));
    615 
    616     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
    617         .addReg(SrcReg)
    618         .addImm(Addr.Offset)
    619         .addFrameIndex(Addr.Base.FI)
    620         .addMemOperand(MMO);
    621 
    622   // Base reg with offset in range.
    623   } else if (UseOffset)
    624     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
    625       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
    626 
    627   // Indexed form.
    628   else {
    629     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
    630     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
    631     // is hard to get at.
    632     switch (Opc) {
    633       default:        llvm_unreachable("Unexpected opcode!");
    634       case PPC::STB:  Opc = PPC::STBX;  break;
    635       case PPC::STH : Opc = PPC::STHX;  break;
    636       case PPC::STW : Opc = PPC::STWX;  break;
    637       case PPC::STB8: Opc = PPC::STBX8; break;
    638       case PPC::STH8: Opc = PPC::STHX8; break;
    639       case PPC::STW8: Opc = PPC::STWX8; break;
    640       case PPC::STD:  Opc = PPC::STDX;  break;
    641       case PPC::STFS: Opc = PPC::STFSX; break;
    642       case PPC::STFD: Opc = PPC::STFDX; break;
    643     }
    644     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
    645       .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
    646   }
    647 
    648   return true;
    649 }
    650 
    651 // Attempt to fast-select a store instruction.
    652 bool PPCFastISel::SelectStore(const Instruction *I) {
    653   Value *Op0 = I->getOperand(0);
    654   unsigned SrcReg = 0;
    655 
    656   // FIXME: No atomics loads are supported.
    657   if (cast<StoreInst>(I)->isAtomic())
    658     return false;
    659 
    660   // Verify we have a legal type before going any further.
    661   MVT VT;
    662   if (!isLoadTypeLegal(Op0->getType(), VT))
    663     return false;
    664 
    665   // Get the value to be stored into a register.
    666   SrcReg = getRegForValue(Op0);
    667   if (SrcReg == 0)
    668     return false;
    669 
    670   // See if we can handle this address.
    671   Address Addr;
    672   if (!PPCComputeAddress(I->getOperand(1), Addr))
    673     return false;
    674 
    675   if (!PPCEmitStore(VT, SrcReg, Addr))
    676     return false;
    677 
    678   return true;
    679 }
    680 
    681 // Attempt to fast-select a branch instruction.
    682 bool PPCFastISel::SelectBranch(const Instruction *I) {
    683   const BranchInst *BI = cast<BranchInst>(I);
    684   MachineBasicBlock *BrBB = FuncInfo.MBB;
    685   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
    686   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
    687 
    688   // For now, just try the simplest case where it's fed by a compare.
    689   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    690     Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
    691     if (!OptPPCPred)
    692       return false;
    693 
    694     PPC::Predicate PPCPred = OptPPCPred.getValue();
    695 
    696     // Take advantage of fall-through opportunities.
    697     if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
    698       std::swap(TBB, FBB);
    699       PPCPred = PPC::InvertPredicate(PPCPred);
    700     }
    701 
    702     unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
    703 
    704     if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
    705                     CondReg))
    706       return false;
    707 
    708     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
    709       .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
    710     FastEmitBranch(FBB, DbgLoc);
    711     FuncInfo.MBB->addSuccessor(TBB);
    712     return true;
    713 
    714   } else if (const ConstantInt *CI =
    715              dyn_cast<ConstantInt>(BI->getCondition())) {
    716     uint64_t Imm = CI->getZExtValue();
    717     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
    718     FastEmitBranch(Target, DbgLoc);
    719     return true;
    720   }
    721 
    722   // FIXME: ARM looks for a case where the block containing the compare
    723   // has been split from the block containing the branch.  If this happens,
    724   // there is a vreg available containing the result of the compare.  I'm
    725   // not sure we can do much, as we've lost the predicate information with
    726   // the compare instruction -- we have a 4-bit CR but don't know which bit
    727   // to test here.
    728   return false;
    729 }
    730 
    731 // Attempt to emit a compare of the two source values.  Signed and unsigned
    732 // comparisons are supported.  Return false if we can't handle it.
    733 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
    734                              bool IsZExt, unsigned DestReg) {
    735   Type *Ty = SrcValue1->getType();
    736   EVT SrcEVT = TLI.getValueType(Ty, true);
    737   if (!SrcEVT.isSimple())
    738     return false;
    739   MVT SrcVT = SrcEVT.getSimpleVT();
    740 
    741   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
    742     return false;
    743 
    744   // See if operand 2 is an immediate encodeable in the compare.
    745   // FIXME: Operands are not in canonical order at -O0, so an immediate
    746   // operand in position 1 is a lost opportunity for now.  We are
    747   // similar to ARM in this regard.
    748   long Imm = 0;
    749   bool UseImm = false;
    750 
    751   // Only 16-bit integer constants can be represented in compares for
    752   // PowerPC.  Others will be materialized into a register.
    753   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
    754     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
    755         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
    756       const APInt &CIVal = ConstInt->getValue();
    757       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
    758       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
    759         UseImm = true;
    760     }
    761   }
    762 
    763   unsigned CmpOpc;
    764   bool NeedsExt = false;
    765   switch (SrcVT.SimpleTy) {
    766     default: return false;
    767     case MVT::f32:
    768       CmpOpc = PPC::FCMPUS;
    769       break;
    770     case MVT::f64:
    771       CmpOpc = PPC::FCMPUD;
    772       break;
    773     case MVT::i1:
    774     case MVT::i8:
    775     case MVT::i16:
    776       NeedsExt = true;
    777       // Intentional fall-through.
    778     case MVT::i32:
    779       if (!UseImm)
    780         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
    781       else
    782         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
    783       break;
    784     case MVT::i64:
    785       if (!UseImm)
    786         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
    787       else
    788         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
    789       break;
    790   }
    791 
    792   unsigned SrcReg1 = getRegForValue(SrcValue1);
    793   if (SrcReg1 == 0)
    794     return false;
    795 
    796   unsigned SrcReg2 = 0;
    797   if (!UseImm) {
    798     SrcReg2 = getRegForValue(SrcValue2);
    799     if (SrcReg2 == 0)
    800       return false;
    801   }
    802 
    803   if (NeedsExt) {
    804     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
    805     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
    806       return false;
    807     SrcReg1 = ExtReg;
    808 
    809     if (!UseImm) {
    810       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
    811       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
    812         return false;
    813       SrcReg2 = ExtReg;
    814     }
    815   }
    816 
    817   if (!UseImm)
    818     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
    819       .addReg(SrcReg1).addReg(SrcReg2);
    820   else
    821     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
    822       .addReg(SrcReg1).addImm(Imm);
    823 
    824   return true;
    825 }
    826 
    827 // Attempt to fast-select a floating-point extend instruction.
    828 bool PPCFastISel::SelectFPExt(const Instruction *I) {
    829   Value *Src  = I->getOperand(0);
    830   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
    831   EVT DestVT = TLI.getValueType(I->getType(), true);
    832 
    833   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
    834     return false;
    835 
    836   unsigned SrcReg = getRegForValue(Src);
    837   if (!SrcReg)
    838     return false;
    839 
    840   // No code is generated for a FP extend.
    841   UpdateValueMap(I, SrcReg);
    842   return true;
    843 }
    844 
    845 // Attempt to fast-select a floating-point truncate instruction.
    846 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
    847   Value *Src  = I->getOperand(0);
    848   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
    849   EVT DestVT = TLI.getValueType(I->getType(), true);
    850 
    851   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
    852     return false;
    853 
    854   unsigned SrcReg = getRegForValue(Src);
    855   if (!SrcReg)
    856     return false;
    857 
    858   // Round the result to single precision.
    859   unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
    860   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
    861     .addReg(SrcReg);
    862 
    863   UpdateValueMap(I, DestReg);
    864   return true;
    865 }
    866 
    867 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
    868 // FIXME: When direct register moves are implemented (see PowerISA 2.08),
    869 // those should be used instead of moving via a stack slot when the
    870 // subtarget permits.
    871 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
    872 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
    873 // case to 8 bytes which produces tighter code but wastes stack space.
    874 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
    875                                      bool IsSigned) {
    876 
    877   // If necessary, extend 32-bit int to 64-bit.
    878   if (SrcVT == MVT::i32) {
    879     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
    880     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
    881       return 0;
    882     SrcReg = TmpReg;
    883   }
    884 
    885   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
    886   Address Addr;
    887   Addr.BaseType = Address::FrameIndexBase;
    888   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
    889 
    890   // Store the value from the GPR.
    891   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
    892     return 0;
    893 
    894   // Load the integer value into an FPR.  The kind of load used depends
    895   // on a number of conditions.
    896   unsigned LoadOpc = PPC::LFD;
    897 
    898   if (SrcVT == MVT::i32) {
    899     if (!IsSigned) {
    900       LoadOpc = PPC::LFIWZX;
    901       Addr.Offset = 4;
    902     } else if (PPCSubTarget->hasLFIWAX()) {
    903       LoadOpc = PPC::LFIWAX;
    904       Addr.Offset = 4;
    905     }
    906   }
    907 
    908   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
    909   unsigned ResultReg = 0;
    910   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
    911     return 0;
    912 
    913   return ResultReg;
    914 }
    915 
    916 // Attempt to fast-select an integer-to-floating-point conversion.
    917 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
    918   MVT DstVT;
    919   Type *DstTy = I->getType();
    920   if (!isTypeLegal(DstTy, DstVT))
    921     return false;
    922 
    923   if (DstVT != MVT::f32 && DstVT != MVT::f64)
    924     return false;
    925 
    926   Value *Src = I->getOperand(0);
    927   EVT SrcEVT = TLI.getValueType(Src->getType(), true);
    928   if (!SrcEVT.isSimple())
    929     return false;
    930 
    931   MVT SrcVT = SrcEVT.getSimpleVT();
    932 
    933   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
    934       SrcVT != MVT::i32 && SrcVT != MVT::i64)
    935     return false;
    936 
    937   unsigned SrcReg = getRegForValue(Src);
    938   if (SrcReg == 0)
    939     return false;
    940 
    941   // We can only lower an unsigned convert if we have the newer
    942   // floating-point conversion operations.
    943   if (!IsSigned && !PPCSubTarget->hasFPCVT())
    944     return false;
    945 
    946   // FIXME: For now we require the newer floating-point conversion operations
    947   // (which are present only on P7 and A2 server models) when converting
    948   // to single-precision float.  Otherwise we have to generate a lot of
    949   // fiddly code to avoid double rounding.  If necessary, the fiddly code
    950   // can be found in PPCTargetLowering::LowerINT_TO_FP().
    951   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
    952     return false;
    953 
    954   // Extend the input if necessary.
    955   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
    956     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
    957     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
    958       return false;
    959     SrcVT = MVT::i64;
    960     SrcReg = TmpReg;
    961   }
    962 
    963   // Move the integer value to an FPR.
    964   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
    965   if (FPReg == 0)
    966     return false;
    967 
    968   // Determine the opcode for the conversion.
    969   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
    970   unsigned DestReg = createResultReg(RC);
    971   unsigned Opc;
    972 
    973   if (DstVT == MVT::f32)
    974     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
    975   else
    976     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
    977 
    978   // Generate the convert.
    979   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
    980     .addReg(FPReg);
    981 
    982   UpdateValueMap(I, DestReg);
    983   return true;
    984 }
    985 
    986 // Move the floating-point value in SrcReg into an integer destination
    987 // register, and return the register (or zero if we can't handle it).
    988 // FIXME: When direct register moves are implemented (see PowerISA 2.08),
    989 // those should be used instead of moving via a stack slot when the
    990 // subtarget permits.
    991 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
    992                                       unsigned SrcReg, bool IsSigned) {
    993   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
    994   // Note that if have STFIWX available, we could use a 4-byte stack
    995   // slot for i32, but this being fast-isel we'll just go with the
    996   // easiest code gen possible.
    997   Address Addr;
    998   Addr.BaseType = Address::FrameIndexBase;
    999   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
   1000 
   1001   // Store the value from the FPR.
   1002   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
   1003     return 0;
   1004 
   1005   // Reload it into a GPR.  If we want an i32, modify the address
   1006   // to have a 4-byte offset so we load from the right place.
   1007   if (VT == MVT::i32)
   1008     Addr.Offset = 4;
   1009 
   1010   // Look at the currently assigned register for this instruction
   1011   // to determine the required register class.
   1012   unsigned AssignedReg = FuncInfo.ValueMap[I];
   1013   const TargetRegisterClass *RC =
   1014     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
   1015 
   1016   unsigned ResultReg = 0;
   1017   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
   1018     return 0;
   1019 
   1020   return ResultReg;
   1021 }
   1022 
   1023 // Attempt to fast-select a floating-point-to-integer conversion.
   1024 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
   1025   MVT DstVT, SrcVT;
   1026   Type *DstTy = I->getType();
   1027   if (!isTypeLegal(DstTy, DstVT))
   1028     return false;
   1029 
   1030   if (DstVT != MVT::i32 && DstVT != MVT::i64)
   1031     return false;
   1032 
   1033   // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
   1034   if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
   1035     return false;
   1036 
   1037   Value *Src = I->getOperand(0);
   1038   Type *SrcTy = Src->getType();
   1039   if (!isTypeLegal(SrcTy, SrcVT))
   1040     return false;
   1041 
   1042   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
   1043     return false;
   1044 
   1045   unsigned SrcReg = getRegForValue(Src);
   1046   if (SrcReg == 0)
   1047     return false;
   1048 
   1049   // Convert f32 to f64 if necessary.  This is just a meaningless copy
   1050   // to get the register class right.  COPY_TO_REGCLASS is needed since
   1051   // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
   1052   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
   1053   if (InRC == &PPC::F4RCRegClass) {
   1054     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
   1055     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1056             TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
   1057       .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
   1058     SrcReg = TmpReg;
   1059   }
   1060 
   1061   // Determine the opcode for the conversion, which takes place
   1062   // entirely within FPRs.
   1063   unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
   1064   unsigned Opc;
   1065 
   1066   if (DstVT == MVT::i32)
   1067     if (IsSigned)
   1068       Opc = PPC::FCTIWZ;
   1069     else
   1070       Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
   1071   else
   1072     Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
   1073 
   1074   // Generate the convert.
   1075   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   1076     .addReg(SrcReg);
   1077 
   1078   // Now move the integer value from a float register to an integer register.
   1079   unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
   1080   if (IntReg == 0)
   1081     return false;
   1082 
   1083   UpdateValueMap(I, IntReg);
   1084   return true;
   1085 }
   1086 
   1087 // Attempt to fast-select a binary integer operation that isn't already
   1088 // handled automatically.
   1089 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
   1090   EVT DestVT  = TLI.getValueType(I->getType(), true);
   1091 
   1092   // We can get here in the case when we have a binary operation on a non-legal
   1093   // type and the target independent selector doesn't know how to handle it.
   1094   if (DestVT != MVT::i16 && DestVT != MVT::i8)
   1095     return false;
   1096 
   1097   // Look at the currently assigned register for this instruction
   1098   // to determine the required register class.  If there is no register,
   1099   // make a conservative choice (don't assign R0).
   1100   unsigned AssignedReg = FuncInfo.ValueMap[I];
   1101   const TargetRegisterClass *RC =
   1102     (AssignedReg ? MRI.getRegClass(AssignedReg) :
   1103      &PPC::GPRC_and_GPRC_NOR0RegClass);
   1104   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
   1105 
   1106   unsigned Opc;
   1107   switch (ISDOpcode) {
   1108     default: return false;
   1109     case ISD::ADD:
   1110       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
   1111       break;
   1112     case ISD::OR:
   1113       Opc = IsGPRC ? PPC::OR : PPC::OR8;
   1114       break;
   1115     case ISD::SUB:
   1116       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
   1117       break;
   1118   }
   1119 
   1120   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
   1121   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
   1122   if (SrcReg1 == 0) return false;
   1123 
   1124   // Handle case of small immediate operand.
   1125   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1126     const APInt &CIVal = ConstInt->getValue();
   1127     int Imm = (int)CIVal.getSExtValue();
   1128     bool UseImm = true;
   1129     if (isInt<16>(Imm)) {
   1130       switch (Opc) {
   1131         default:
   1132           llvm_unreachable("Missing case!");
   1133         case PPC::ADD4:
   1134           Opc = PPC::ADDI;
   1135           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
   1136           break;
   1137         case PPC::ADD8:
   1138           Opc = PPC::ADDI8;
   1139           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
   1140           break;
   1141         case PPC::OR:
   1142           Opc = PPC::ORI;
   1143           break;
   1144         case PPC::OR8:
   1145           Opc = PPC::ORI8;
   1146           break;
   1147         case PPC::SUBF:
   1148           if (Imm == -32768)
   1149             UseImm = false;
   1150           else {
   1151             Opc = PPC::ADDI;
   1152             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
   1153             Imm = -Imm;
   1154           }
   1155           break;
   1156         case PPC::SUBF8:
   1157           if (Imm == -32768)
   1158             UseImm = false;
   1159           else {
   1160             Opc = PPC::ADDI8;
   1161             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
   1162             Imm = -Imm;
   1163           }
   1164           break;
   1165       }
   1166 
   1167       if (UseImm) {
   1168         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
   1169                 ResultReg)
   1170             .addReg(SrcReg1)
   1171             .addImm(Imm);
   1172         UpdateValueMap(I, ResultReg);
   1173         return true;
   1174       }
   1175     }
   1176   }
   1177 
   1178   // Reg-reg case.
   1179   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
   1180   if (SrcReg2 == 0) return false;
   1181 
   1182   // Reverse operands for subtract-from.
   1183   if (ISDOpcode == ISD::SUB)
   1184     std::swap(SrcReg1, SrcReg2);
   1185 
   1186   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
   1187     .addReg(SrcReg1).addReg(SrcReg2);
   1188   UpdateValueMap(I, ResultReg);
   1189   return true;
   1190 }
   1191 
   1192 // Handle arguments to a call that we're attempting to fast-select.
   1193 // Return false if the arguments are too complex for us at the moment.
   1194 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
   1195                                   SmallVectorImpl<unsigned> &ArgRegs,
   1196                                   SmallVectorImpl<MVT> &ArgVTs,
   1197                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
   1198                                   SmallVectorImpl<unsigned> &RegArgs,
   1199                                   CallingConv::ID CC,
   1200                                   unsigned &NumBytes,
   1201                                   bool IsVarArg) {
   1202   SmallVector<CCValAssign, 16> ArgLocs;
   1203   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
   1204 
   1205   // Reserve space for the linkage area on the stack.
   1206   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
   1207   CCInfo.AllocateStack(LinkageSize, 8);
   1208 
   1209   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
   1210 
   1211   // Bail out if we can't handle any of the arguments.
   1212   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1213     CCValAssign &VA = ArgLocs[I];
   1214     MVT ArgVT = ArgVTs[VA.getValNo()];
   1215 
   1216     // Skip vector arguments for now, as well as long double and
   1217     // uint128_t, and anything that isn't passed in a register.
   1218     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
   1219         !VA.isRegLoc() || VA.needsCustom())
   1220       return false;
   1221 
   1222     // Skip bit-converted arguments for now.
   1223     if (VA.getLocInfo() == CCValAssign::BCvt)
   1224       return false;
   1225   }
   1226 
   1227   // Get a count of how many bytes are to be pushed onto the stack.
   1228   NumBytes = CCInfo.getNextStackOffset();
   1229 
   1230   // The prolog code of the callee may store up to 8 GPR argument registers to
   1231   // the stack, allowing va_start to index over them in memory if its varargs.
   1232   // Because we cannot tell if this is needed on the caller side, we have to
   1233   // conservatively assume that it is needed.  As such, make sure we have at
   1234   // least enough stack space for the caller to store the 8 GPRs.
   1235   NumBytes = std::max(NumBytes, LinkageSize + 64);
   1236 
   1237   // Issue CALLSEQ_START.
   1238   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1239           TII.get(TII.getCallFrameSetupOpcode()))
   1240     .addImm(NumBytes);
   1241 
   1242   // Prepare to assign register arguments.  Every argument uses up a
   1243   // GPR protocol register even if it's passed in a floating-point
   1244   // register.
   1245   unsigned NextGPR = PPC::X3;
   1246   unsigned NextFPR = PPC::F1;
   1247 
   1248   // Process arguments.
   1249   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1250     CCValAssign &VA = ArgLocs[I];
   1251     unsigned Arg = ArgRegs[VA.getValNo()];
   1252     MVT ArgVT = ArgVTs[VA.getValNo()];
   1253 
   1254     // Handle argument promotion and bitcasts.
   1255     switch (VA.getLocInfo()) {
   1256       default:
   1257         llvm_unreachable("Unknown loc info!");
   1258       case CCValAssign::Full:
   1259         break;
   1260       case CCValAssign::SExt: {
   1261         MVT DestVT = VA.getLocVT();
   1262         const TargetRegisterClass *RC =
   1263           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   1264         unsigned TmpReg = createResultReg(RC);
   1265         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
   1266           llvm_unreachable("Failed to emit a sext!");
   1267         ArgVT = DestVT;
   1268         Arg = TmpReg;
   1269         break;
   1270       }
   1271       case CCValAssign::AExt:
   1272       case CCValAssign::ZExt: {
   1273         MVT DestVT = VA.getLocVT();
   1274         const TargetRegisterClass *RC =
   1275           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   1276         unsigned TmpReg = createResultReg(RC);
   1277         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
   1278           llvm_unreachable("Failed to emit a zext!");
   1279         ArgVT = DestVT;
   1280         Arg = TmpReg;
   1281         break;
   1282       }
   1283       case CCValAssign::BCvt: {
   1284         // FIXME: Not yet handled.
   1285         llvm_unreachable("Should have bailed before getting here!");
   1286         break;
   1287       }
   1288     }
   1289 
   1290     // Copy this argument to the appropriate register.
   1291     unsigned ArgReg;
   1292     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
   1293       ArgReg = NextFPR++;
   1294       ++NextGPR;
   1295     } else
   1296       ArgReg = NextGPR++;
   1297 
   1298     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1299             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
   1300     RegArgs.push_back(ArgReg);
   1301   }
   1302 
   1303   return true;
   1304 }
   1305 
   1306 // For a call that we've determined we can fast-select, finish the
   1307 // call sequence and generate a copy to obtain the return value (if any).
   1308 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
   1309                              const Instruction *I, CallingConv::ID CC,
   1310                              unsigned &NumBytes, bool IsVarArg) {
   1311   // Issue CallSEQ_END.
   1312   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1313           TII.get(TII.getCallFrameDestroyOpcode()))
   1314     .addImm(NumBytes).addImm(0);
   1315 
   1316   // Next, generate a copy to obtain the return value.
   1317   // FIXME: No multi-register return values yet, though I don't foresee
   1318   // any real difficulties there.
   1319   if (RetVT != MVT::isVoid) {
   1320     SmallVector<CCValAssign, 16> RVLocs;
   1321     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
   1322     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
   1323     CCValAssign &VA = RVLocs[0];
   1324     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
   1325     assert(VA.isRegLoc() && "Can only return in registers!");
   1326 
   1327     MVT DestVT = VA.getValVT();
   1328     MVT CopyVT = DestVT;
   1329 
   1330     // Ints smaller than a register still arrive in a full 64-bit
   1331     // register, so make sure we recognize this.
   1332     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
   1333       CopyVT = MVT::i64;
   1334 
   1335     unsigned SourcePhysReg = VA.getLocReg();
   1336     unsigned ResultReg = 0;
   1337 
   1338     if (RetVT == CopyVT) {
   1339       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
   1340       ResultReg = createResultReg(CpyRC);
   1341 
   1342       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1343               TII.get(TargetOpcode::COPY), ResultReg)
   1344         .addReg(SourcePhysReg);
   1345 
   1346     // If necessary, round the floating result to single precision.
   1347     } else if (CopyVT == MVT::f64) {
   1348       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
   1349       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
   1350               ResultReg).addReg(SourcePhysReg);
   1351 
   1352     // If only the low half of a general register is needed, generate
   1353     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
   1354     // used along the fast-isel path (not lowered), and downstream logic
   1355     // also doesn't like a direct subreg copy on a physical reg.)
   1356     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
   1357       ResultReg = createResultReg(&PPC::GPRCRegClass);
   1358       // Convert physical register from G8RC to GPRC.
   1359       SourcePhysReg -= PPC::X0 - PPC::R0;
   1360       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1361               TII.get(TargetOpcode::COPY), ResultReg)
   1362         .addReg(SourcePhysReg);
   1363     }
   1364 
   1365     assert(ResultReg && "ResultReg unset!");
   1366     UsedRegs.push_back(SourcePhysReg);
   1367     UpdateValueMap(I, ResultReg);
   1368   }
   1369 }
   1370 
   1371 // Attempt to fast-select a call instruction.
   1372 bool PPCFastISel::SelectCall(const Instruction *I) {
   1373   const CallInst *CI = cast<CallInst>(I);
   1374   const Value *Callee = CI->getCalledValue();
   1375 
   1376   // Can't handle inline asm.
   1377   if (isa<InlineAsm>(Callee))
   1378     return false;
   1379 
   1380   // Allow SelectionDAG isel to handle tail calls.
   1381   if (CI->isTailCall())
   1382     return false;
   1383 
   1384   // Obtain calling convention.
   1385   ImmutableCallSite CS(CI);
   1386   CallingConv::ID CC = CS.getCallingConv();
   1387 
   1388   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   1389   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   1390   bool IsVarArg = FTy->isVarArg();
   1391 
   1392   // Not ready for varargs yet.
   1393   if (IsVarArg)
   1394     return false;
   1395 
   1396   // Handle simple calls for now, with legal return types and
   1397   // those that can be extended.
   1398   Type *RetTy = I->getType();
   1399   MVT RetVT;
   1400   if (RetTy->isVoidTy())
   1401     RetVT = MVT::isVoid;
   1402   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
   1403            RetVT != MVT::i8)
   1404     return false;
   1405 
   1406   // FIXME: No multi-register return values yet.
   1407   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
   1408       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
   1409       RetVT != MVT::f64) {
   1410     SmallVector<CCValAssign, 16> RVLocs;
   1411     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
   1412     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
   1413     if (RVLocs.size() > 1)
   1414       return false;
   1415   }
   1416 
   1417   // Bail early if more than 8 arguments, as we only currently
   1418   // handle arguments passed in registers.
   1419   unsigned NumArgs = CS.arg_size();
   1420   if (NumArgs > 8)
   1421     return false;
   1422 
   1423   // Set up the argument vectors.
   1424   SmallVector<Value*, 8> Args;
   1425   SmallVector<unsigned, 8> ArgRegs;
   1426   SmallVector<MVT, 8> ArgVTs;
   1427   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   1428 
   1429   Args.reserve(NumArgs);
   1430   ArgRegs.reserve(NumArgs);
   1431   ArgVTs.reserve(NumArgs);
   1432   ArgFlags.reserve(NumArgs);
   1433 
   1434   for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
   1435        II != IE; ++II) {
   1436     // FIXME: ARM does something for intrinsic calls here, check into that.
   1437 
   1438     unsigned AttrIdx = II - CS.arg_begin() + 1;
   1439 
   1440     // Only handle easy calls for now.  It would be reasonably easy
   1441     // to handle <= 8-byte structures passed ByVal in registers, but we
   1442     // have to ensure they are right-justified in the register.
   1443     if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
   1444         CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
   1445         CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
   1446         CS.paramHasAttr(AttrIdx, Attribute::ByVal))
   1447       return false;
   1448 
   1449     ISD::ArgFlagsTy Flags;
   1450     if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
   1451       Flags.setSExt();
   1452     if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
   1453       Flags.setZExt();
   1454 
   1455     Type *ArgTy = (*II)->getType();
   1456     MVT ArgVT;
   1457     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
   1458       return false;
   1459 
   1460     if (ArgVT.isVector())
   1461       return false;
   1462 
   1463     unsigned Arg = getRegForValue(*II);
   1464     if (Arg == 0)
   1465       return false;
   1466 
   1467     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   1468     Flags.setOrigAlign(OriginalAlignment);
   1469 
   1470     Args.push_back(*II);
   1471     ArgRegs.push_back(Arg);
   1472     ArgVTs.push_back(ArgVT);
   1473     ArgFlags.push_back(Flags);
   1474   }
   1475 
   1476   // Process the arguments.
   1477   SmallVector<unsigned, 8> RegArgs;
   1478   unsigned NumBytes;
   1479 
   1480   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
   1481                        RegArgs, CC, NumBytes, IsVarArg))
   1482     return false;
   1483 
   1484   // FIXME: No handling for function pointers yet.  This requires
   1485   // implementing the function descriptor (OPD) setup.
   1486   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
   1487   if (!GV)
   1488     return false;
   1489 
   1490   // Build direct call with NOP for TOC restore.
   1491   // FIXME: We can and should optimize away the NOP for local calls.
   1492   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1493                                     TII.get(PPC::BL8_NOP));
   1494   // Add callee.
   1495   MIB.addGlobalAddress(GV);
   1496 
   1497   // Add implicit physical register uses to the call.
   1498   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
   1499     MIB.addReg(RegArgs[II], RegState::Implicit);
   1500 
   1501   // Add a register mask with the call-preserved registers.  Proper
   1502   // defs for return values will be added by setPhysRegsDeadExcept().
   1503   MIB.addRegMask(TRI.getCallPreservedMask(CC));
   1504 
   1505   // Finish off the call including any return values.
   1506   SmallVector<unsigned, 4> UsedRegs;
   1507   finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
   1508 
   1509   // Set all unused physregs defs as dead.
   1510   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   1511 
   1512   return true;
   1513 }
   1514 
   1515 // Attempt to fast-select a return instruction.
   1516 bool PPCFastISel::SelectRet(const Instruction *I) {
   1517 
   1518   if (!FuncInfo.CanLowerReturn)
   1519     return false;
   1520 
   1521   const ReturnInst *Ret = cast<ReturnInst>(I);
   1522   const Function &F = *I->getParent()->getParent();
   1523 
   1524   // Build a list of return value registers.
   1525   SmallVector<unsigned, 4> RetRegs;
   1526   CallingConv::ID CC = F.getCallingConv();
   1527 
   1528   if (Ret->getNumOperands() > 0) {
   1529     SmallVector<ISD::OutputArg, 4> Outs;
   1530     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
   1531 
   1532     // Analyze operands of the call, assigning locations to each operand.
   1533     SmallVector<CCValAssign, 16> ValLocs;
   1534     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
   1535     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
   1536     const Value *RV = Ret->getOperand(0);
   1537 
   1538     // FIXME: Only one output register for now.
   1539     if (ValLocs.size() > 1)
   1540       return false;
   1541 
   1542     // Special case for returning a constant integer of any size.
   1543     // Materialize the constant as an i64 and copy it to the return
   1544     // register.  This avoids an unnecessary extend or truncate.
   1545     if (isa<ConstantInt>(*RV)) {
   1546       const Constant *C = cast<Constant>(RV);
   1547       unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
   1548       unsigned RetReg = ValLocs[0].getLocReg();
   1549       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1550               TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
   1551       RetRegs.push_back(RetReg);
   1552 
   1553     } else {
   1554       unsigned Reg = getRegForValue(RV);
   1555 
   1556       if (Reg == 0)
   1557         return false;
   1558 
   1559       // Copy the result values into the output registers.
   1560       for (unsigned i = 0; i < ValLocs.size(); ++i) {
   1561 
   1562         CCValAssign &VA = ValLocs[i];
   1563         assert(VA.isRegLoc() && "Can only return in registers!");
   1564         RetRegs.push_back(VA.getLocReg());
   1565         unsigned SrcReg = Reg + VA.getValNo();
   1566 
   1567         EVT RVEVT = TLI.getValueType(RV->getType());
   1568         if (!RVEVT.isSimple())
   1569           return false;
   1570         MVT RVVT = RVEVT.getSimpleVT();
   1571         MVT DestVT = VA.getLocVT();
   1572 
   1573         if (RVVT != DestVT && RVVT != MVT::i8 &&
   1574             RVVT != MVT::i16 && RVVT != MVT::i32)
   1575           return false;
   1576 
   1577         if (RVVT != DestVT) {
   1578           switch (VA.getLocInfo()) {
   1579             default:
   1580               llvm_unreachable("Unknown loc info!");
   1581             case CCValAssign::Full:
   1582               llvm_unreachable("Full value assign but types don't match?");
   1583             case CCValAssign::AExt:
   1584             case CCValAssign::ZExt: {
   1585               const TargetRegisterClass *RC =
   1586                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   1587               unsigned TmpReg = createResultReg(RC);
   1588               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
   1589                 return false;
   1590               SrcReg = TmpReg;
   1591               break;
   1592             }
   1593             case CCValAssign::SExt: {
   1594               const TargetRegisterClass *RC =
   1595                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   1596               unsigned TmpReg = createResultReg(RC);
   1597               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
   1598                 return false;
   1599               SrcReg = TmpReg;
   1600               break;
   1601             }
   1602           }
   1603         }
   1604 
   1605         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1606                 TII.get(TargetOpcode::COPY), RetRegs[i])
   1607           .addReg(SrcReg);
   1608       }
   1609     }
   1610   }
   1611 
   1612   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1613                                     TII.get(PPC::BLR));
   1614 
   1615   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   1616     MIB.addReg(RetRegs[i], RegState::Implicit);
   1617 
   1618   return true;
   1619 }
   1620 
   1621 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
   1622 // signed and zero extensions are supported.  Return false if we
   1623 // can't handle it.
   1624 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   1625                                 unsigned DestReg, bool IsZExt) {
   1626   if (DestVT != MVT::i32 && DestVT != MVT::i64)
   1627     return false;
   1628   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
   1629     return false;
   1630 
   1631   // Signed extensions use EXTSB, EXTSH, EXTSW.
   1632   if (!IsZExt) {
   1633     unsigned Opc;
   1634     if (SrcVT == MVT::i8)
   1635       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
   1636     else if (SrcVT == MVT::i16)
   1637       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
   1638     else {
   1639       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
   1640       Opc = PPC::EXTSW_32_64;
   1641     }
   1642     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   1643       .addReg(SrcReg);
   1644 
   1645   // Unsigned 32-bit extensions use RLWINM.
   1646   } else if (DestVT == MVT::i32) {
   1647     unsigned MB;
   1648     if (SrcVT == MVT::i8)
   1649       MB = 24;
   1650     else {
   1651       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
   1652       MB = 16;
   1653     }
   1654     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
   1655             DestReg)
   1656       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
   1657 
   1658   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
   1659   } else {
   1660     unsigned MB;
   1661     if (SrcVT == MVT::i8)
   1662       MB = 56;
   1663     else if (SrcVT == MVT::i16)
   1664       MB = 48;
   1665     else
   1666       MB = 32;
   1667     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1668             TII.get(PPC::RLDICL_32_64), DestReg)
   1669       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
   1670   }
   1671 
   1672   return true;
   1673 }
   1674 
   1675 // Attempt to fast-select an indirect branch instruction.
   1676 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
   1677   unsigned AddrReg = getRegForValue(I->getOperand(0));
   1678   if (AddrReg == 0)
   1679     return false;
   1680 
   1681   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
   1682     .addReg(AddrReg);
   1683   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
   1684 
   1685   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
   1686   for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
   1687     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
   1688 
   1689   return true;
   1690 }
   1691 
   1692 // Attempt to fast-select an integer truncate instruction.
   1693 bool PPCFastISel::SelectTrunc(const Instruction *I) {
   1694   Value *Src  = I->getOperand(0);
   1695   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
   1696   EVT DestVT = TLI.getValueType(I->getType(), true);
   1697 
   1698   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
   1699     return false;
   1700 
   1701   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
   1702     return false;
   1703 
   1704   unsigned SrcReg = getRegForValue(Src);
   1705   if (!SrcReg)
   1706     return false;
   1707 
   1708   // The only interesting case is when we need to switch register classes.
   1709   if (SrcVT == MVT::i64) {
   1710     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
   1711     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1712             TII.get(TargetOpcode::COPY),
   1713             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
   1714     SrcReg = ResultReg;
   1715   }
   1716 
   1717   UpdateValueMap(I, SrcReg);
   1718   return true;
   1719 }
   1720 
   1721 // Attempt to fast-select an integer extend instruction.
   1722 bool PPCFastISel::SelectIntExt(const Instruction *I) {
   1723   Type *DestTy = I->getType();
   1724   Value *Src = I->getOperand(0);
   1725   Type *SrcTy = Src->getType();
   1726 
   1727   bool IsZExt = isa<ZExtInst>(I);
   1728   unsigned SrcReg = getRegForValue(Src);
   1729   if (!SrcReg) return false;
   1730 
   1731   EVT SrcEVT, DestEVT;
   1732   SrcEVT = TLI.getValueType(SrcTy, true);
   1733   DestEVT = TLI.getValueType(DestTy, true);
   1734   if (!SrcEVT.isSimple())
   1735     return false;
   1736   if (!DestEVT.isSimple())
   1737     return false;
   1738 
   1739   MVT SrcVT = SrcEVT.getSimpleVT();
   1740   MVT DestVT = DestEVT.getSimpleVT();
   1741 
   1742   // If we know the register class needed for the result of this
   1743   // instruction, use it.  Otherwise pick the register class of the
   1744   // correct size that does not contain X0/R0, since we don't know
   1745   // whether downstream uses permit that assignment.
   1746   unsigned AssignedReg = FuncInfo.ValueMap[I];
   1747   const TargetRegisterClass *RC =
   1748     (AssignedReg ? MRI.getRegClass(AssignedReg) :
   1749      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
   1750       &PPC::GPRC_and_GPRC_NOR0RegClass));
   1751   unsigned ResultReg = createResultReg(RC);
   1752 
   1753   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
   1754     return false;
   1755 
   1756   UpdateValueMap(I, ResultReg);
   1757   return true;
   1758 }
   1759 
   1760 // Attempt to fast-select an instruction that wasn't handled by
   1761 // the table-generated machinery.
   1762 bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
   1763 
   1764   switch (I->getOpcode()) {
   1765     case Instruction::Load:
   1766       return SelectLoad(I);
   1767     case Instruction::Store:
   1768       return SelectStore(I);
   1769     case Instruction::Br:
   1770       return SelectBranch(I);
   1771     case Instruction::IndirectBr:
   1772       return SelectIndirectBr(I);
   1773     case Instruction::FPExt:
   1774       return SelectFPExt(I);
   1775     case Instruction::FPTrunc:
   1776       return SelectFPTrunc(I);
   1777     case Instruction::SIToFP:
   1778       return SelectIToFP(I, /*IsSigned*/ true);
   1779     case Instruction::UIToFP:
   1780       return SelectIToFP(I, /*IsSigned*/ false);
   1781     case Instruction::FPToSI:
   1782       return SelectFPToI(I, /*IsSigned*/ true);
   1783     case Instruction::FPToUI:
   1784       return SelectFPToI(I, /*IsSigned*/ false);
   1785     case Instruction::Add:
   1786       return SelectBinaryIntOp(I, ISD::ADD);
   1787     case Instruction::Or:
   1788       return SelectBinaryIntOp(I, ISD::OR);
   1789     case Instruction::Sub:
   1790       return SelectBinaryIntOp(I, ISD::SUB);
   1791     case Instruction::Call:
   1792       if (dyn_cast<IntrinsicInst>(I))
   1793         return false;
   1794       return SelectCall(I);
   1795     case Instruction::Ret:
   1796       return SelectRet(I);
   1797     case Instruction::Trunc:
   1798       return SelectTrunc(I);
   1799     case Instruction::ZExt:
   1800     case Instruction::SExt:
   1801       return SelectIntExt(I);
   1802     // Here add other flavors of Instruction::XXX that automated
   1803     // cases don't catch.  For example, switches are terminators
   1804     // that aren't yet handled.
   1805     default:
   1806       break;
   1807   }
   1808   return false;
   1809 }
   1810 
   1811 // Materialize a floating-point constant into a register, and return
   1812 // the register number (or zero if we failed to handle it).
   1813 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
   1814   // No plans to handle long double here.
   1815   if (VT != MVT::f32 && VT != MVT::f64)
   1816     return 0;
   1817 
   1818   // All FP constants are loaded from the constant pool.
   1819   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
   1820   assert(Align > 0 && "Unexpectedly missing alignment information!");
   1821   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
   1822   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
   1823   CodeModel::Model CModel = TM.getCodeModel();
   1824 
   1825   MachineMemOperand *MMO =
   1826     FuncInfo.MF->getMachineMemOperand(
   1827       MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
   1828       (VT == MVT::f32) ? 4 : 8, Align);
   1829 
   1830   unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
   1831   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
   1832 
   1833   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
   1834   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
   1835     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
   1836             TmpReg)
   1837       .addConstantPoolIndex(Idx).addReg(PPC::X2);
   1838     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   1839       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
   1840   } else {
   1841     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
   1842     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
   1843             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
   1844     // But for large code model, we must generate a LDtocL followed
   1845     // by the LF[SD].
   1846     if (CModel == CodeModel::Large) {
   1847       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
   1848       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
   1849               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
   1850       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   1851         .addImm(0).addReg(TmpReg2);
   1852     } else
   1853       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
   1854         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
   1855         .addReg(TmpReg)
   1856         .addMemOperand(MMO);
   1857   }
   1858 
   1859   return DestReg;
   1860 }
   1861 
   1862 // Materialize the address of a global value into a register, and return
   1863 // the register number (or zero if we failed to handle it).
   1864 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
   1865   assert(VT == MVT::i64 && "Non-address!");
   1866   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
   1867   unsigned DestReg = createResultReg(RC);
   1868 
   1869   // Global values may be plain old object addresses, TLS object
   1870   // addresses, constant pool entries, or jump tables.  How we generate
   1871   // code for these may depend on small, medium, or large code model.
   1872   CodeModel::Model CModel = TM.getCodeModel();
   1873 
   1874   // FIXME: Jump tables are not yet required because fast-isel doesn't
   1875   // handle switches; if that changes, we need them as well.  For now,
   1876   // what follows assumes everything's a generic (or TLS) global address.
   1877 
   1878   // FIXME: We don't yet handle the complexity of TLS.
   1879   if (GV->isThreadLocal())
   1880     return 0;
   1881 
   1882   // For small code model, generate a simple TOC load.
   1883   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
   1884     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
   1885             DestReg)
   1886         .addGlobalAddress(GV)
   1887         .addReg(PPC::X2);
   1888   else {
   1889     // If the address is an externally defined symbol, a symbol with common
   1890     // or externally available linkage, a non-local function address, or a
   1891     // jump table address (not yet needed), or if we are generating code
   1892     // for large code model, we generate:
   1893     //       LDtocL(GV, ADDIStocHA(%X2, GV))
   1894     // Otherwise we generate:
   1895     //       ADDItocL(ADDIStocHA(%X2, GV), GV)
   1896     // Either way, start with the ADDIStocHA:
   1897     unsigned HighPartReg = createResultReg(RC);
   1898     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
   1899             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
   1900 
   1901     // If/when switches are implemented, jump tables should be handled
   1902     // on the "if" path here.
   1903     if (CModel == CodeModel::Large ||
   1904         (GV->getType()->getElementType()->isFunctionTy() &&
   1905          (GV->isDeclaration() || GV->isWeakForLinker())) ||
   1906         GV->isDeclaration() || GV->hasCommonLinkage() ||
   1907         GV->hasAvailableExternallyLinkage())
   1908       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
   1909               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
   1910     else
   1911       // Otherwise generate the ADDItocL.
   1912       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
   1913               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
   1914   }
   1915 
   1916   return DestReg;
   1917 }
   1918 
   1919 // Materialize a 32-bit integer constant into a register, and return
   1920 // the register number (or zero if we failed to handle it).
   1921 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
   1922                                              const TargetRegisterClass *RC) {
   1923   unsigned Lo = Imm & 0xFFFF;
   1924   unsigned Hi = (Imm >> 16) & 0xFFFF;
   1925 
   1926   unsigned ResultReg = createResultReg(RC);
   1927   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
   1928 
   1929   if (isInt<16>(Imm))
   1930     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1931             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
   1932       .addImm(Imm);
   1933   else if (Lo) {
   1934     // Both Lo and Hi have nonzero bits.
   1935     unsigned TmpReg = createResultReg(RC);
   1936     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1937             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
   1938       .addImm(Hi);
   1939     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1940             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
   1941       .addReg(TmpReg).addImm(Lo);
   1942   } else
   1943     // Just Hi bits.
   1944     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1945             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
   1946       .addImm(Hi);
   1947 
   1948   return ResultReg;
   1949 }
   1950 
   1951 // Materialize a 64-bit integer constant into a register, and return
   1952 // the register number (or zero if we failed to handle it).
   1953 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
   1954                                              const TargetRegisterClass *RC) {
   1955   unsigned Remainder = 0;
   1956   unsigned Shift = 0;
   1957 
   1958   // If the value doesn't fit in 32 bits, see if we can shift it
   1959   // so that it fits in 32 bits.
   1960   if (!isInt<32>(Imm)) {
   1961     Shift = countTrailingZeros<uint64_t>(Imm);
   1962     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
   1963 
   1964     if (isInt<32>(ImmSh))
   1965       Imm = ImmSh;
   1966     else {
   1967       Remainder = Imm;
   1968       Shift = 32;
   1969       Imm >>= 32;
   1970     }
   1971   }
   1972 
   1973   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
   1974   // (if not shifted).
   1975   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
   1976   if (!Shift)
   1977     return TmpReg1;
   1978 
   1979   // If upper 32 bits were not zero, we've built them and need to shift
   1980   // them into place.
   1981   unsigned TmpReg2;
   1982   if (Imm) {
   1983     TmpReg2 = createResultReg(RC);
   1984     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
   1985             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
   1986   } else
   1987     TmpReg2 = TmpReg1;
   1988 
   1989   unsigned TmpReg3, Hi, Lo;
   1990   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
   1991     TmpReg3 = createResultReg(RC);
   1992     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
   1993             TmpReg3).addReg(TmpReg2).addImm(Hi);
   1994   } else
   1995     TmpReg3 = TmpReg2;
   1996 
   1997   if ((Lo = Remainder & 0xFFFF)) {
   1998     unsigned ResultReg = createResultReg(RC);
   1999     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
   2000             ResultReg).addReg(TmpReg3).addImm(Lo);
   2001     return ResultReg;
   2002   }
   2003 
   2004   return TmpReg3;
   2005 }
   2006 
   2007 
   2008 // Materialize an integer constant into a register, and return
   2009 // the register number (or zero if we failed to handle it).
   2010 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
   2011   // If we're using CR bit registers for i1 values, handle that as a special
   2012   // case first.
   2013   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
   2014     const ConstantInt *CI = cast<ConstantInt>(C);
   2015     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
   2016     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2017             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
   2018     return ImmReg;
   2019   }
   2020 
   2021   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
   2022       VT != MVT::i8 && VT != MVT::i1)
   2023     return 0;
   2024 
   2025   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
   2026                                    &PPC::GPRCRegClass);
   2027 
   2028   // If the constant is in range, use a load-immediate.
   2029   const ConstantInt *CI = cast<ConstantInt>(C);
   2030   if (isInt<16>(CI->getSExtValue())) {
   2031     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
   2032     unsigned ImmReg = createResultReg(RC);
   2033     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
   2034       .addImm(CI->getSExtValue());
   2035     return ImmReg;
   2036   }
   2037 
   2038   // Construct the constant piecewise.
   2039   int64_t Imm = CI->getZExtValue();
   2040 
   2041   if (VT == MVT::i64)
   2042     return PPCMaterialize64BitInt(Imm, RC);
   2043   else if (VT == MVT::i32)
   2044     return PPCMaterialize32BitInt(Imm, RC);
   2045 
   2046   return 0;
   2047 }
   2048 
   2049 // Materialize a constant into a register, and return the register
   2050 // number (or zero if we failed to handle it).
   2051 unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
   2052   EVT CEVT = TLI.getValueType(C->getType(), true);
   2053 
   2054   // Only handle simple types.
   2055   if (!CEVT.isSimple()) return 0;
   2056   MVT VT = CEVT.getSimpleVT();
   2057 
   2058   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   2059     return PPCMaterializeFP(CFP, VT);
   2060   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   2061     return PPCMaterializeGV(GV, VT);
   2062   else if (isa<ConstantInt>(C))
   2063     return PPCMaterializeInt(C, VT);
   2064 
   2065   return 0;
   2066 }
   2067 
   2068 // Materialize the address created by an alloca into a register, and
   2069 // return the register number (or zero if we failed to handle it).
   2070 unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
   2071   // Don't handle dynamic allocas.
   2072   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
   2073 
   2074   MVT VT;
   2075   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
   2076 
   2077   DenseMap<const AllocaInst*, int>::iterator SI =
   2078     FuncInfo.StaticAllocaMap.find(AI);
   2079 
   2080   if (SI != FuncInfo.StaticAllocaMap.end()) {
   2081     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
   2082     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
   2083             ResultReg).addFrameIndex(SI->second).addImm(0);
   2084     return ResultReg;
   2085   }
   2086 
   2087   return 0;
   2088 }
   2089 
   2090 // Fold loads into extends when possible.
   2091 // FIXME: We can have multiple redundant extend/trunc instructions
   2092 // following a load.  The folding only picks up one.  Extend this
   2093 // to check subsequent instructions for the same pattern and remove
   2094 // them.  Thus ResultReg should be the def reg for the last redundant
   2095 // instruction in a chain, and all intervening instructions can be
   2096 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
   2097 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
   2098 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   2099                                       const LoadInst *LI) {
   2100   // Verify we have a legal type before going any further.
   2101   MVT VT;
   2102   if (!isLoadTypeLegal(LI->getType(), VT))
   2103     return false;
   2104 
   2105   // Combine load followed by zero- or sign-extend.
   2106   bool IsZExt = false;
   2107   switch(MI->getOpcode()) {
   2108     default:
   2109       return false;
   2110 
   2111     case PPC::RLDICL:
   2112     case PPC::RLDICL_32_64: {
   2113       IsZExt = true;
   2114       unsigned MB = MI->getOperand(3).getImm();
   2115       if ((VT == MVT::i8 && MB <= 56) ||
   2116           (VT == MVT::i16 && MB <= 48) ||
   2117           (VT == MVT::i32 && MB <= 32))
   2118         break;
   2119       return false;
   2120     }
   2121 
   2122     case PPC::RLWINM:
   2123     case PPC::RLWINM8: {
   2124       IsZExt = true;
   2125       unsigned MB = MI->getOperand(3).getImm();
   2126       if ((VT == MVT::i8 && MB <= 24) ||
   2127           (VT == MVT::i16 && MB <= 16))
   2128         break;
   2129       return false;
   2130     }
   2131 
   2132     case PPC::EXTSB:
   2133     case PPC::EXTSB8:
   2134     case PPC::EXTSB8_32_64:
   2135       /* There is no sign-extending load-byte instruction. */
   2136       return false;
   2137 
   2138     case PPC::EXTSH:
   2139     case PPC::EXTSH8:
   2140     case PPC::EXTSH8_32_64: {
   2141       if (VT != MVT::i16 && VT != MVT::i8)
   2142         return false;
   2143       break;
   2144     }
   2145 
   2146     case PPC::EXTSW:
   2147     case PPC::EXTSW_32_64: {
   2148       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
   2149         return false;
   2150       break;
   2151     }
   2152   }
   2153 
   2154   // See if we can handle this address.
   2155   Address Addr;
   2156   if (!PPCComputeAddress(LI->getOperand(0), Addr))
   2157     return false;
   2158 
   2159   unsigned ResultReg = MI->getOperand(0).getReg();
   2160 
   2161   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
   2162     return false;
   2163 
   2164   MI->eraseFromParent();
   2165   return true;
   2166 }
   2167 
   2168 // Attempt to lower call arguments in a faster way than done by
   2169 // the selection DAG code.
   2170 bool PPCFastISel::FastLowerArguments() {
   2171   // Defer to normal argument lowering for now.  It's reasonably
   2172   // efficient.  Consider doing something like ARM to handle the
   2173   // case where all args fit in registers, no varargs, no float
   2174   // or vector args.
   2175   return false;
   2176 }
   2177 
   2178 // Handle materializing integer constants into a register.  This is not
   2179 // automatically generated for PowerPC, so must be explicitly created here.
   2180 unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
   2181 
   2182   if (Opc != ISD::Constant)
   2183     return 0;
   2184 
   2185   // If we're using CR bit registers for i1 values, handle that as a special
   2186   // case first.
   2187   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
   2188     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
   2189     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2190             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
   2191     return ImmReg;
   2192   }
   2193 
   2194   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
   2195       VT != MVT::i8 && VT != MVT::i1)
   2196     return 0;
   2197 
   2198   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
   2199                                    &PPC::GPRCRegClass);
   2200   if (VT == MVT::i64)
   2201     return PPCMaterialize64BitInt(Imm, RC);
   2202   else
   2203     return PPCMaterialize32BitInt(Imm, RC);
   2204 }
   2205 
   2206 // Override for ADDI and ADDI8 to set the correct register class
   2207 // on RHS operand 0.  The automatic infrastructure naively assumes
   2208 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
   2209 // for these cases.  At the moment, none of the other automatically
   2210 // generated RI instructions require special treatment.  However, once
   2211 // SelectSelect is implemented, "isel" requires similar handling.
   2212 //
   2213 // Also be conservative about the output register class.  Avoid
   2214 // assigning R0 or X0 to the output register for GPRC and G8RC
   2215 // register classes, as any such result could be used in ADDI, etc.,
   2216 // where those regs have another meaning.
   2217 unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
   2218                                       const TargetRegisterClass *RC,
   2219                                       unsigned Op0, bool Op0IsKill,
   2220                                       uint64_t Imm) {
   2221   if (MachineInstOpcode == PPC::ADDI)
   2222     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
   2223   else if (MachineInstOpcode == PPC::ADDI8)
   2224     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
   2225 
   2226   const TargetRegisterClass *UseRC =
   2227     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
   2228      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
   2229 
   2230   return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
   2231                                    Op0, Op0IsKill, Imm);
   2232 }
   2233 
   2234 // Override for instructions with one register operand to avoid use of
   2235 // R0/X0.  The automatic infrastructure isn't aware of the context so
   2236 // we must be conservative.
   2237 unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
   2238                                      const TargetRegisterClass* RC,
   2239                                      unsigned Op0, bool Op0IsKill) {
   2240   const TargetRegisterClass *UseRC =
   2241     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
   2242      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
   2243 
   2244   return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
   2245 }
   2246 
   2247 // Override for instructions with two register operands to avoid use
   2248 // of R0/X0.  The automatic infrastructure isn't aware of the context
   2249 // so we must be conservative.
   2250 unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
   2251                                       const TargetRegisterClass* RC,
   2252                                       unsigned Op0, bool Op0IsKill,
   2253                                       unsigned Op1, bool Op1IsKill) {
   2254   const TargetRegisterClass *UseRC =
   2255     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
   2256      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
   2257 
   2258   return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
   2259                                    Op1, Op1IsKill);
   2260 }
   2261 
   2262 namespace llvm {
   2263   // Create the fast instruction selector for PowerPC64 ELF.
   2264   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
   2265                                 const TargetLibraryInfo *LibInfo) {
   2266     const TargetMachine &TM = FuncInfo.MF->getTarget();
   2267 
   2268     // Only available on 64-bit ELF for now.
   2269     const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
   2270     if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
   2271       return new PPCFastISel(FuncInfo, LibInfo);
   2272 
   2273     return nullptr;
   2274   }
   2275 }
   2276