Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/CodeGen/DFAPacketizer.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/MC/MCInstrInfo.h"
     21 
     22 namespace llvm {
     23 
     24 class InstrItineraryData;
     25 class LiveVariables;
     26 class MCAsmInfo;
     27 class MachineMemOperand;
     28 class MachineRegisterInfo;
     29 class MDNode;
     30 class MCInst;
     31 class MCSchedModel;
     32 class MCSymbolRefExpr;
     33 class SDNode;
     34 class ScheduleHazardRecognizer;
     35 class SelectionDAG;
     36 class ScheduleDAG;
     37 class TargetRegisterClass;
     38 class TargetRegisterInfo;
     39 class BranchProbability;
     40 class TargetSubtargetInfo;
     41 
     42 template<class T> class SmallVectorImpl;
     43 
     44 
     45 //---------------------------------------------------------------------------
     46 ///
     47 /// TargetInstrInfo - Interface to description of machine instruction set
     48 ///
     49 class TargetInstrInfo : public MCInstrInfo {
     50   TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     51   void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     52 public:
     53   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     54     : CallFrameSetupOpcode(CFSetupOpcode),
     55       CallFrameDestroyOpcode(CFDestroyOpcode) {
     56   }
     57 
     58   virtual ~TargetInstrInfo();
     59 
     60   /// getRegClass - Givem a machine instruction descriptor, returns the register
     61   /// class constraint for OpNum, or NULL.
     62   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     63                                          unsigned OpNum,
     64                                          const TargetRegisterInfo *TRI,
     65                                          const MachineFunction &MF) const;
     66 
     67   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     68   /// rematerializable, meaning it has no side effects and requires no operands
     69   /// that aren't always available.
     70   bool isTriviallyReMaterializable(const MachineInstr *MI,
     71                                    AliasAnalysis *AA = nullptr) const {
     72     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     73            (MI->getDesc().isRematerializable() &&
     74             (isReallyTriviallyReMaterializable(MI, AA) ||
     75              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     76   }
     77 
     78 protected:
     79   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     80   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     81   /// specify whether the instruction is actually trivially rematerializable,
     82   /// taking into consideration its operands. This predicate must return false
     83   /// if the instruction has any side effects other than producing a value, or
     84   /// if it requres any address registers that are not always available.
     85   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     86                                                  AliasAnalysis *AA) const {
     87     return false;
     88   }
     89 
     90 private:
     91   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     92   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     93   /// isReallyTriviallyReMaterializable returns false, this function does
     94   /// target-independent tests to determine if the instruction is really
     95   /// trivially rematerializable.
     96   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     97                                                 AliasAnalysis *AA) const;
     98 
     99 public:
    100   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
    101   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
    102   /// targets use pseudo instructions in order to abstract away the difference
    103   /// between operating with a frame pointer and operating without, through the
    104   /// use of these two instructions.
    105   ///
    106   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    107   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    108 
    109   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    110   /// extension instruction. That is, it's like a copy where it's legal for the
    111   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    112   /// true, then it's expected the pre-extension value is available as a subreg
    113   /// of the result register. This also returns the sub-register index in
    114   /// SubIdx.
    115   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    116                                      unsigned &SrcReg, unsigned &DstReg,
    117                                      unsigned &SubIdx) const {
    118     return false;
    119   }
    120 
    121   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    122   /// load from a stack slot, return the virtual or physical register number of
    123   /// the destination along with the FrameIndex of the loaded stack slot.  If
    124   /// not, return 0.  This predicate must return 0 if the instruction has
    125   /// any side effects other than loading from the stack slot.
    126   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    127                                        int &FrameIndex) const {
    128     return 0;
    129   }
    130 
    131   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    132   /// stack locations as well.  This uses a heuristic so it isn't
    133   /// reliable for correctness.
    134   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    135                                              int &FrameIndex) const {
    136     return 0;
    137   }
    138 
    139   /// hasLoadFromStackSlot - If the specified machine instruction has
    140   /// a load from a stack slot, return true along with the FrameIndex
    141   /// of the loaded stack slot and the machine mem operand containing
    142   /// the reference.  If not, return false.  Unlike
    143   /// isLoadFromStackSlot, this returns true for any instructions that
    144   /// loads from the stack.  This is just a hint, as some cases may be
    145   /// missed.
    146   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    147                                     const MachineMemOperand *&MMO,
    148                                     int &FrameIndex) const;
    149 
    150   /// isStoreToStackSlot - If the specified machine instruction is a direct
    151   /// store to a stack slot, return the virtual or physical register number of
    152   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    153   /// not, return 0.  This predicate must return 0 if the instruction has
    154   /// any side effects other than storing to the stack slot.
    155   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    156                                       int &FrameIndex) const {
    157     return 0;
    158   }
    159 
    160   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    161   /// stack locations as well.  This uses a heuristic so it isn't
    162   /// reliable for correctness.
    163   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    164                                             int &FrameIndex) const {
    165     return 0;
    166   }
    167 
    168   /// hasStoreToStackSlot - If the specified machine instruction has a
    169   /// store to a stack slot, return true along with the FrameIndex of
    170   /// the loaded stack slot and the machine mem operand containing the
    171   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    172   /// this returns true for any instructions that stores to the
    173   /// stack.  This is just a hint, as some cases may be missed.
    174   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    175                                    const MachineMemOperand *&MMO,
    176                                    int &FrameIndex) const;
    177 
    178   /// isStackSlotCopy - Return true if the specified machine instruction
    179   /// is a copy of one stack slot to another and has no other effect.
    180   /// Provide the identity of the two frame indices.
    181   virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
    182                                int &SrcFrameIndex) const {
    183     return false;
    184   }
    185 
    186   /// Compute the size in bytes and offset within a stack slot of a spilled
    187   /// register or subregister.
    188   ///
    189   /// \param [out] Size in bytes of the spilled value.
    190   /// \param [out] Offset in bytes within the stack slot.
    191   /// \returns true if both Size and Offset are successfully computed.
    192   ///
    193   /// Not all subregisters have computable spill slots. For example,
    194   /// subregisters registers may not be byte-sized, and a pair of discontiguous
    195   /// subregisters has no single offset.
    196   ///
    197   /// Targets with nontrivial bigendian implementations may need to override
    198   /// this, particularly to support spilled vector registers.
    199   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
    200                                  unsigned &Size, unsigned &Offset,
    201                                  const TargetMachine *TM) const;
    202 
    203   /// reMaterialize - Re-issue the specified 'original' instruction at the
    204   /// specific location targeting a new destination register.
    205   /// The register in Orig->getOperand(0).getReg() will be substituted by
    206   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    207   /// SubIdx.
    208   virtual void reMaterialize(MachineBasicBlock &MBB,
    209                              MachineBasicBlock::iterator MI,
    210                              unsigned DestReg, unsigned SubIdx,
    211                              const MachineInstr *Orig,
    212                              const TargetRegisterInfo &TRI) const;
    213 
    214   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    215   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    216   /// that are required to be unique.
    217   ///
    218   /// The instruction must be duplicable as indicated by isNotDuplicable().
    219   virtual MachineInstr *duplicate(MachineInstr *Orig,
    220                                   MachineFunction &MF) const;
    221 
    222   /// convertToThreeAddress - This method must be implemented by targets that
    223   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    224   /// may be able to convert a two-address instruction into one or more true
    225   /// three-address instructions on demand.  This allows the X86 target (for
    226   /// example) to convert ADD and SHL instructions into LEA instructions if they
    227   /// would require register copies due to two-addressness.
    228   ///
    229   /// This method returns a null pointer if the transformation cannot be
    230   /// performed, otherwise it returns the last new instruction.
    231   ///
    232   virtual MachineInstr *
    233   convertToThreeAddress(MachineFunction::iterator &MFI,
    234                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    235     return nullptr;
    236   }
    237 
    238   /// commuteInstruction - If a target has any instructions that are
    239   /// commutable but require converting to different instructions or making
    240   /// non-trivial changes to commute them, this method can overloaded to do
    241   /// that.  The default implementation simply swaps the commutable operands.
    242   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    243   /// new machine instruction is created and returned.  Do not call this
    244   /// method for a non-commutable instruction, but there may be some cases
    245   /// where this method fails and returns null.
    246   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    247                                            bool NewMI = false) const;
    248 
    249   /// findCommutedOpIndices - If specified MI is commutable, return the two
    250   /// operand indices that would swap value. Return false if the instruction
    251   /// is not in a form which this routine understands.
    252   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    253                                      unsigned &SrcOpIdx2) const;
    254 
    255   /// produceSameValue - Return true if two machine instructions would produce
    256   /// identical values. By default, this is only true when the two instructions
    257   /// are deemed identical except for defs. If this function is called when the
    258   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    259   /// aggressive checks.
    260   virtual bool produceSameValue(const MachineInstr *MI0,
    261                                 const MachineInstr *MI1,
    262                                 const MachineRegisterInfo *MRI = nullptr) const;
    263 
    264   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    265   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    266   /// implemented for a target).  Upon success, this returns false and returns
    267   /// with the following information in various cases:
    268   ///
    269   /// 1. If this block ends with no branches (it just falls through to its succ)
    270   ///    just return false, leaving TBB/FBB null.
    271   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    272   ///    the destination block.
    273   /// 3. If this block ends with a conditional branch and it falls through to a
    274   ///    successor block, it sets TBB to be the branch destination block and a
    275   ///    list of operands that evaluate the condition. These operands can be
    276   ///    passed to other TargetInstrInfo methods to create new branches.
    277   /// 4. If this block ends with a conditional branch followed by an
    278   ///    unconditional branch, it returns the 'true' destination in TBB, the
    279   ///    'false' destination in FBB, and a list of operands that evaluate the
    280   ///    condition.  These operands can be passed to other TargetInstrInfo
    281   ///    methods to create new branches.
    282   ///
    283   /// Note that RemoveBranch and InsertBranch must be implemented to support
    284   /// cases where this method returns success.
    285   ///
    286   /// If AllowModify is true, then this routine is allowed to modify the basic
    287   /// block (e.g. delete instructions after the unconditional branch).
    288   ///
    289   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    290                              MachineBasicBlock *&FBB,
    291                              SmallVectorImpl<MachineOperand> &Cond,
    292                              bool AllowModify = false) const {
    293     return true;
    294   }
    295 
    296   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    297   /// This is only invoked in cases where AnalyzeBranch returns success. It
    298   /// returns the number of instructions that were removed.
    299   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    300     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    301   }
    302 
    303   /// InsertBranch - Insert branch code into the end of the specified
    304   /// MachineBasicBlock.  The operands to this method are the same as those
    305   /// returned by AnalyzeBranch.  This is only invoked in cases where
    306   /// AnalyzeBranch returns success. It returns the number of instructions
    307   /// inserted.
    308   ///
    309   /// It is also invoked by tail merging to add unconditional branches in
    310   /// cases where AnalyzeBranch doesn't apply because there was no original
    311   /// branch to analyze.  At least this much must be implemented, else tail
    312   /// merging needs to be disabled.
    313   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    314                                 MachineBasicBlock *FBB,
    315                                 const SmallVectorImpl<MachineOperand> &Cond,
    316                                 DebugLoc DL) const {
    317     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    318   }
    319 
    320   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    321   /// after it, replacing it with an unconditional branch to NewDest. This is
    322   /// used by the tail merging pass.
    323   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    324                                        MachineBasicBlock *NewDest) const;
    325 
    326   /// getUnconditionalBranch - Get an instruction that performs an unconditional
    327   /// branch to the given symbol.
    328   virtual void
    329   getUnconditionalBranch(MCInst &MI,
    330                          const MCSymbolRefExpr *BranchTarget) const {
    331     llvm_unreachable("Target didn't implement "
    332                      "TargetInstrInfo::getUnconditionalBranch!");
    333   }
    334 
    335   /// getTrap - Get a machine trap instruction
    336   virtual void getTrap(MCInst &MI) const {
    337     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
    338   }
    339 
    340   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    341   /// block at the specified instruction (i.e. instruction would be the start
    342   /// of a new basic block).
    343   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    344                                    MachineBasicBlock::iterator MBBI) const {
    345     return true;
    346   }
    347 
    348   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    349   /// instructions with accumulated instruction latency of "NumCycles"
    350   /// of the specified basic block, where the probability of the instructions
    351   /// being executed is given by Probability, and Confidence is a measure
    352   /// of our confidence that it will be properly predicted.
    353   virtual
    354   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    355                            unsigned ExtraPredCycles,
    356                            const BranchProbability &Probability) const {
    357     return false;
    358   }
    359 
    360   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    361   /// checks for the case where two basic blocks from true and false path
    362   /// of a if-then-else (diamond) are predicated on mutally exclusive
    363   /// predicates, where the probability of the true path being taken is given
    364   /// by Probability, and Confidence is a measure of our confidence that it
    365   /// will be properly predicted.
    366   virtual bool
    367   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    368                       unsigned NumTCycles, unsigned ExtraTCycles,
    369                       MachineBasicBlock &FMBB,
    370                       unsigned NumFCycles, unsigned ExtraFCycles,
    371                       const BranchProbability &Probability) const {
    372     return false;
    373   }
    374 
    375   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    376   /// if-converter to duplicate instructions of specified accumulated
    377   /// instruction latencies in the specified MBB to enable if-conversion.
    378   /// The probability of the instructions being executed is given by
    379   /// Probability, and Confidence is a measure of our confidence that it
    380   /// will be properly predicted.
    381   virtual bool
    382   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    383                             const BranchProbability &Probability) const {
    384     return false;
    385   }
    386 
    387   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
    388   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    389   /// exclusive predicates.
    390   /// e.g.
    391   ///   subeq  r0, r1, #1
    392   ///   addne  r0, r1, #1
    393   /// =>
    394   ///   sub    r0, r1, #1
    395   ///   addne  r0, r1, #1
    396   ///
    397   /// This may be profitable is conditional instructions are always executed.
    398   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    399                                          MachineBasicBlock &FMBB) const {
    400     return false;
    401   }
    402 
    403   /// canInsertSelect - Return true if it is possible to insert a select
    404   /// instruction that chooses between TrueReg and FalseReg based on the
    405   /// condition code in Cond.
    406   ///
    407   /// When successful, also return the latency in cycles from TrueReg,
    408   /// FalseReg, and Cond to the destination register. In most cases, a select
    409   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
    410   ///
    411   /// Some x86 implementations have 2-cycle cmov instructions.
    412   ///
    413   /// @param MBB         Block where select instruction would be inserted.
    414   /// @param Cond        Condition returned by AnalyzeBranch.
    415   /// @param TrueReg     Virtual register to select when Cond is true.
    416   /// @param FalseReg    Virtual register to select when Cond is false.
    417   /// @param CondCycles  Latency from Cond+Branch to select output.
    418   /// @param TrueCycles  Latency from TrueReg to select output.
    419   /// @param FalseCycles Latency from FalseReg to select output.
    420   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    421                                const SmallVectorImpl<MachineOperand> &Cond,
    422                                unsigned TrueReg, unsigned FalseReg,
    423                                int &CondCycles,
    424                                int &TrueCycles, int &FalseCycles) const {
    425     return false;
    426   }
    427 
    428   /// insertSelect - Insert a select instruction into MBB before I that will
    429   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
    430   /// Cond is false.
    431   ///
    432   /// This function can only be called after canInsertSelect() returned true.
    433   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    434   /// that the same flags or registers required by Cond are available at the
    435   /// insertion point.
    436   ///
    437   /// @param MBB      Block where select instruction should be inserted.
    438   /// @param I        Insertion point.
    439   /// @param DL       Source location for debugging.
    440   /// @param DstReg   Virtual register to be defined by select instruction.
    441   /// @param Cond     Condition as computed by AnalyzeBranch.
    442   /// @param TrueReg  Virtual register to copy when Cond is true.
    443   /// @param FalseReg Virtual register to copy when Cons is false.
    444   virtual void insertSelect(MachineBasicBlock &MBB,
    445                             MachineBasicBlock::iterator I, DebugLoc DL,
    446                             unsigned DstReg,
    447                             const SmallVectorImpl<MachineOperand> &Cond,
    448                             unsigned TrueReg, unsigned FalseReg) const {
    449     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    450   }
    451 
    452   /// analyzeSelect - Analyze the given select instruction, returning true if
    453   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    454   ///
    455   /// When successful, return the controlling condition and the operands that
    456   /// determine the true and false result values.
    457   ///
    458   ///   Result = SELECT Cond, TrueOp, FalseOp
    459   ///
    460   /// Some targets can optimize select instructions, for example by predicating
    461   /// the instruction defining one of the operands. Such targets should set
    462   /// Optimizable.
    463   ///
    464   /// @param         MI Select instruction to analyze.
    465   /// @param Cond    Condition controlling the select.
    466   /// @param TrueOp  Operand number of the value selected when Cond is true.
    467   /// @param FalseOp Operand number of the value selected when Cond is false.
    468   /// @param Optimizable Returned as true if MI is optimizable.
    469   /// @returns False on success.
    470   virtual bool analyzeSelect(const MachineInstr *MI,
    471                              SmallVectorImpl<MachineOperand> &Cond,
    472                              unsigned &TrueOp, unsigned &FalseOp,
    473                              bool &Optimizable) const {
    474     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
    475     return true;
    476   }
    477 
    478   /// optimizeSelect - Given a select instruction that was understood by
    479   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    480   /// merging it with one of its operands. Returns NULL on failure.
    481   ///
    482   /// When successful, returns the new select instruction. The client is
    483   /// responsible for deleting MI.
    484   ///
    485   /// If both sides of the select can be optimized, PreferFalse is used to pick
    486   /// a side.
    487   ///
    488   /// @param MI          Optimizable select instruction.
    489   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    490   /// @returns Optimized instruction or NULL.
    491   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
    492                                        bool PreferFalse = false) const {
    493     // This function must be implemented if Optimizable is ever set.
    494     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    495   }
    496 
    497   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    498   ///
    499   /// This function should support copies within any legal register class as
    500   /// well as any cross-class copies created during instruction selection.
    501   ///
    502   /// The source and destination registers may overlap, which may require a
    503   /// careful implementation when multiple copy instructions are required for
    504   /// large registers. See for example the ARM target.
    505   virtual void copyPhysReg(MachineBasicBlock &MBB,
    506                            MachineBasicBlock::iterator MI, DebugLoc DL,
    507                            unsigned DestReg, unsigned SrcReg,
    508                            bool KillSrc) const {
    509     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    510   }
    511 
    512   /// storeRegToStackSlot - Store the specified register of the given register
    513   /// class to the specified stack frame index. The store instruction is to be
    514   /// added to the given machine basic block before the specified machine
    515   /// instruction. If isKill is true, the register operand is the last use and
    516   /// must be marked kill.
    517   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    518                                    MachineBasicBlock::iterator MI,
    519                                    unsigned SrcReg, bool isKill, int FrameIndex,
    520                                    const TargetRegisterClass *RC,
    521                                    const TargetRegisterInfo *TRI) const {
    522     llvm_unreachable("Target didn't implement "
    523                      "TargetInstrInfo::storeRegToStackSlot!");
    524   }
    525 
    526   /// loadRegFromStackSlot - Load the specified register of the given register
    527   /// class from the specified stack frame index. The load instruction is to be
    528   /// added to the given machine basic block before the specified machine
    529   /// instruction.
    530   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    531                                     MachineBasicBlock::iterator MI,
    532                                     unsigned DestReg, int FrameIndex,
    533                                     const TargetRegisterClass *RC,
    534                                     const TargetRegisterInfo *TRI) const {
    535     llvm_unreachable("Target didn't implement "
    536                      "TargetInstrInfo::loadRegFromStackSlot!");
    537   }
    538 
    539   /// expandPostRAPseudo - This function is called for all pseudo instructions
    540   /// that remain after register allocation. Many pseudo instructions are
    541   /// created to help register allocation. This is the place to convert them
    542   /// into real instructions. The target can edit MI in place, or it can insert
    543   /// new instructions and erase MI. The function should return true if
    544   /// anything was changed.
    545   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    546     return false;
    547   }
    548 
    549   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    550   /// slot into the specified machine instruction for the specified operand(s).
    551   /// If this is possible, a new instruction is returned with the specified
    552   /// operand folded, otherwise NULL is returned.
    553   /// The new instruction is inserted before MI, and the client is responsible
    554   /// for removing the old instruction.
    555   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    556                                   const SmallVectorImpl<unsigned> &Ops,
    557                                   int FrameIndex) const;
    558 
    559   /// foldMemoryOperand - Same as the previous version except it allows folding
    560   /// of any load and store from / to any address, not just from a specific
    561   /// stack slot.
    562   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    563                                   const SmallVectorImpl<unsigned> &Ops,
    564                                   MachineInstr* LoadMI) const;
    565 
    566 protected:
    567   /// foldMemoryOperandImpl - Target-dependent implementation for
    568   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    569   /// take care of adding a MachineMemOperand to the newly created instruction.
    570   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    571                                           MachineInstr* MI,
    572                                           const SmallVectorImpl<unsigned> &Ops,
    573                                           int FrameIndex) const {
    574     return nullptr;
    575   }
    576 
    577   /// foldMemoryOperandImpl - Target-dependent implementation for
    578   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    579   /// take care of adding a MachineMemOperand to the newly created instruction.
    580   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    581                                               MachineInstr* MI,
    582                                           const SmallVectorImpl<unsigned> &Ops,
    583                                               MachineInstr* LoadMI) const {
    584     return nullptr;
    585   }
    586 
    587 public:
    588   /// canFoldMemoryOperand - Returns true for the specified load / store if
    589   /// folding is possible.
    590   virtual
    591   bool canFoldMemoryOperand(const MachineInstr *MI,
    592                             const SmallVectorImpl<unsigned> &Ops) const;
    593 
    594   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    595   /// a store or a load and a store into two or more instruction. If this is
    596   /// possible, returns true as well as the new instructions by reference.
    597   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    598                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    599                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    600     return false;
    601   }
    602 
    603   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    604                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    605     return false;
    606   }
    607 
    608   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    609   /// instruction after load / store are unfolded from an instruction of the
    610   /// specified opcode. It returns zero if the specified unfolding is not
    611   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    612   /// index of the operand which will hold the register holding the loaded
    613   /// value.
    614   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    615                                       bool UnfoldLoad, bool UnfoldStore,
    616                                       unsigned *LoadRegIndex = nullptr) const {
    617     return 0;
    618   }
    619 
    620   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    621   /// to determine if two loads are loading from the same base address. It
    622   /// should only return true if the base pointers are the same and the
    623   /// only differences between the two addresses are the offset. It also returns
    624   /// the offsets by reference.
    625   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    626                                     int64_t &Offset1, int64_t &Offset2) const {
    627     return false;
    628   }
    629 
    630   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    631   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    632   /// be scheduled togther. On some targets if two loads are loading from
    633   /// addresses in the same cache line, it's better if they are scheduled
    634   /// together. This function takes two integers that represent the load offsets
    635   /// from the common base address. It returns true if it decides it's desirable
    636   /// to schedule the two loads together. "NumLoads" is the number of loads that
    637   /// have already been scheduled after Load1.
    638   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    639                                        int64_t Offset1, int64_t Offset2,
    640                                        unsigned NumLoads) const {
    641     return false;
    642   }
    643 
    644   /// \brief Get the base register and byte offset of a load/store instr.
    645   virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
    646                                     unsigned &BaseReg, unsigned &Offset,
    647                                     const TargetRegisterInfo *TRI) const {
    648     return false;
    649   }
    650 
    651   virtual bool enableClusterLoads() const { return false; }
    652 
    653   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
    654                                   MachineInstr *SecondLdSt,
    655                                   unsigned NumLoads) const {
    656     return false;
    657   }
    658 
    659   /// \brief Can this target fuse the given instructions if they are scheduled
    660   /// adjacent.
    661   virtual bool shouldScheduleAdjacent(MachineInstr* First,
    662                                       MachineInstr *Second) const {
    663     return false;
    664   }
    665 
    666   /// ReverseBranchCondition - Reverses the branch condition of the specified
    667   /// condition list, returning false on success and true if it cannot be
    668   /// reversed.
    669   virtual
    670   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    671     return true;
    672   }
    673 
    674   /// insertNoop - Insert a noop into the instruction stream at the specified
    675   /// point.
    676   virtual void insertNoop(MachineBasicBlock &MBB,
    677                           MachineBasicBlock::iterator MI) const;
    678 
    679 
    680   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    681   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    682     // Default to just using 'nop' string.
    683   }
    684 
    685 
    686   /// isPredicated - Returns true if the instruction is already predicated.
    687   ///
    688   virtual bool isPredicated(const MachineInstr *MI) const {
    689     return false;
    690   }
    691 
    692   /// isUnpredicatedTerminator - Returns true if the instruction is a
    693   /// terminator instruction that has not been predicated.
    694   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    695 
    696   /// PredicateInstruction - Convert the instruction into a predicated
    697   /// instruction. It returns true if the operation was successful.
    698   virtual
    699   bool PredicateInstruction(MachineInstr *MI,
    700                         const SmallVectorImpl<MachineOperand> &Pred) const;
    701 
    702   /// SubsumesPredicate - Returns true if the first specified predicate
    703   /// subsumes the second, e.g. GE subsumes GT.
    704   virtual
    705   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    706                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    707     return false;
    708   }
    709 
    710   /// DefinesPredicate - If the specified instruction defines any predicate
    711   /// or condition code register(s) used for predication, returns true as well
    712   /// as the definition predicate(s) by reference.
    713   virtual bool DefinesPredicate(MachineInstr *MI,
    714                                 std::vector<MachineOperand> &Pred) const {
    715     return false;
    716   }
    717 
    718   /// isPredicable - Return true if the specified instruction can be predicated.
    719   /// By default, this returns true for every instruction with a
    720   /// PredicateOperand.
    721   virtual bool isPredicable(MachineInstr *MI) const {
    722     return MI->getDesc().isPredicable();
    723   }
    724 
    725   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    726   /// instruction that defines the specified register class.
    727   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    728     return true;
    729   }
    730 
    731   /// isSchedulingBoundary - Test if the given instruction should be
    732   /// considered a scheduling boundary. This primarily includes labels and
    733   /// terminators.
    734   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    735                                     const MachineBasicBlock *MBB,
    736                                     const MachineFunction &MF) const;
    737 
    738   /// Measure the specified inline asm to determine an approximation of its
    739   /// length.
    740   virtual unsigned getInlineAsmLength(const char *Str,
    741                                       const MCAsmInfo &MAI) const;
    742 
    743   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    744   /// use for this target when scheduling the machine instructions before
    745   /// register allocation.
    746   virtual ScheduleHazardRecognizer*
    747   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    748                                const ScheduleDAG *DAG) const;
    749 
    750   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
    751   /// to use for this target when scheduling the machine instructions before
    752   /// register allocation.
    753   virtual ScheduleHazardRecognizer*
    754   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
    755                                  const ScheduleDAG *DAG) const;
    756 
    757   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    758   /// recognizer to use for this target when scheduling the machine instructions
    759   /// after register allocation.
    760   virtual ScheduleHazardRecognizer*
    761   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    762                                      const ScheduleDAG *DAG) const;
    763 
    764   /// Provide a global flag for disabling the PreRA hazard recognizer that
    765   /// targets may choose to honor.
    766   bool usePreRAHazardRecognizer() const;
    767 
    768   /// analyzeCompare - For a comparison instruction, return the source registers
    769   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    770   /// compares against in CmpValue. Return true if the comparison instruction
    771   /// can be analyzed.
    772   virtual bool analyzeCompare(const MachineInstr *MI,
    773                               unsigned &SrcReg, unsigned &SrcReg2,
    774                               int &Mask, int &Value) const {
    775     return false;
    776   }
    777 
    778   /// optimizeCompareInstr - See if the comparison instruction can be converted
    779   /// into something more efficient. E.g., on ARM most instructions can set the
    780   /// flags register, obviating the need for a separate CMP.
    781   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
    782                                     unsigned SrcReg, unsigned SrcReg2,
    783                                     int Mask, int Value,
    784                                     const MachineRegisterInfo *MRI) const {
    785     return false;
    786   }
    787 
    788   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    789   /// operand at the use. We fold the load instructions if and only if the
    790   /// def and use are in the same BB. We only look at one load and see
    791   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    792   /// defined by the load we are trying to fold. DefMI returns the machine
    793   /// instruction that defines FoldAsLoadDefReg, and the function returns
    794   /// the machine instruction generated due to folding.
    795   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    796                         const MachineRegisterInfo *MRI,
    797                         unsigned &FoldAsLoadDefReg,
    798                         MachineInstr *&DefMI) const {
    799     return nullptr;
    800   }
    801 
    802   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    803   /// instruction, try to fold the immediate into the use instruction.
    804   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
    805   /// then the caller may assume that DefMI has been erased from its parent
    806   /// block. The caller may assume that it will not be erased by this
    807   /// function otherwise.
    808   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    809                              unsigned Reg, MachineRegisterInfo *MRI) const {
    810     return false;
    811   }
    812 
    813   /// getNumMicroOps - Return the number of u-operations the given machine
    814   /// instruction will be decoded to on the target cpu. The itinerary's
    815   /// IssueWidth is the number of microops that can be dispatched each
    816   /// cycle. An instruction with zero microops takes no dispatch resources.
    817   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    818                                   const MachineInstr *MI) const;
    819 
    820   /// isZeroCost - Return true for pseudo instructions that don't consume any
    821   /// machine resources in their current form. These are common cases that the
    822   /// scheduler should consider free, rather than conservatively handling them
    823   /// as instructions with no itinerary.
    824   bool isZeroCost(unsigned Opcode) const {
    825     return Opcode <= TargetOpcode::COPY;
    826   }
    827 
    828   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    829                                 SDNode *DefNode, unsigned DefIdx,
    830                                 SDNode *UseNode, unsigned UseIdx) const;
    831 
    832   /// getOperandLatency - Compute and return the use operand latency of a given
    833   /// pair of def and use.
    834   /// In most cases, the static scheduling itinerary was enough to determine the
    835   /// operand latency. But it may not be possible for instructions with variable
    836   /// number of defs / uses.
    837   ///
    838   /// This is a raw interface to the itinerary that may be directly overriden by
    839   /// a target. Use computeOperandLatency to get the best estimate of latency.
    840   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    841                                 const MachineInstr *DefMI, unsigned DefIdx,
    842                                 const MachineInstr *UseMI,
    843                                 unsigned UseIdx) const;
    844 
    845   /// computeOperandLatency - Compute and return the latency of the given data
    846   /// dependent def and use when the operand indices are already known.
    847   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
    848                                  const MachineInstr *DefMI, unsigned DefIdx,
    849                                  const MachineInstr *UseMI, unsigned UseIdx)
    850     const;
    851 
    852   /// getInstrLatency - Compute the instruction latency of a given instruction.
    853   /// If the instruction has higher cost when predicated, it's returned via
    854   /// PredCost.
    855   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
    856                                    const MachineInstr *MI,
    857                                    unsigned *PredCost = nullptr) const;
    858 
    859   virtual unsigned getPredicationCost(const MachineInstr *MI) const;
    860 
    861   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    862                               SDNode *Node) const;
    863 
    864   /// Return the default expected latency for a def based on it's opcode.
    865   unsigned defaultDefLatency(const MCSchedModel *SchedModel,
    866                              const MachineInstr *DefMI) const;
    867 
    868   int computeDefOperandLatency(const InstrItineraryData *ItinData,
    869                                const MachineInstr *DefMI) const;
    870 
    871   /// isHighLatencyDef - Return true if this opcode has high latency to its
    872   /// result.
    873   virtual bool isHighLatencyDef(int opc) const { return false; }
    874 
    875   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    876   /// and an use in the current loop, return true if the target considered
    877   /// it 'high'. This is used by optimization passes such as machine LICM to
    878   /// determine whether it makes sense to hoist an instruction out even in
    879   /// high register pressure situation.
    880   virtual
    881   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    882                              const MachineRegisterInfo *MRI,
    883                              const MachineInstr *DefMI, unsigned DefIdx,
    884                              const MachineInstr *UseMI, unsigned UseIdx) const {
    885     return false;
    886   }
    887 
    888   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    889   /// if the target considered it 'low'.
    890   virtual
    891   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    892                         const MachineInstr *DefMI, unsigned DefIdx) const;
    893 
    894   /// verifyInstruction - Perform target specific instruction verification.
    895   virtual
    896   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    897     return true;
    898   }
    899 
    900   /// getExecutionDomain - Return the current execution domain and bit mask of
    901   /// possible domains for instruction.
    902   ///
    903   /// Some micro-architectures have multiple execution domains, and multiple
    904   /// opcodes that perform the same operation in different domains.  For
    905   /// example, the x86 architecture provides the por, orps, and orpd
    906   /// instructions that all do the same thing.  There is a latency penalty if a
    907   /// register is written in one domain and read in another.
    908   ///
    909   /// This function returns a pair (domain, mask) containing the execution
    910   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    911   /// function can be used to change the opcode to one of the domains in the
    912   /// bit mask.  Instructions whose execution domain can't be changed should
    913   /// return a 0 mask.
    914   ///
    915   /// The execution domain numbers don't have any special meaning except domain
    916   /// 0 is used for instructions that are not associated with any interesting
    917   /// execution domain.
    918   ///
    919   virtual std::pair<uint16_t, uint16_t>
    920   getExecutionDomain(const MachineInstr *MI) const {
    921     return std::make_pair(0, 0);
    922   }
    923 
    924   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    925   ///
    926   /// The bit (1 << Domain) must be set in the mask returned from
    927   /// getExecutionDomain(MI).
    928   ///
    929   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    930 
    931 
    932   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
    933   /// before an instruction with an unwanted partial register update.
    934   ///
    935   /// Some instructions only write part of a register, and implicitly need to
    936   /// read the other parts of the register.  This may cause unwanted stalls
    937   /// preventing otherwise unrelated instructions from executing in parallel in
    938   /// an out-of-order CPU.
    939   ///
    940   /// For example, the x86 instruction cvtsi2ss writes its result to bits
    941   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
    942   /// the instruction needs to wait for the old value of the register to become
    943   /// available:
    944   ///
    945   ///   addps %xmm1, %xmm0
    946   ///   movaps %xmm0, (%rax)
    947   ///   cvtsi2ss %rbx, %xmm0
    948   ///
    949   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
    950   /// instruction before it can issue, even though the high bits of %xmm0
    951   /// probably aren't needed.
    952   ///
    953   /// This hook returns the preferred clearance before MI, measured in
    954   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
    955   /// instructions before MI.  It should only return a positive value for
    956   /// unwanted dependencies.  If the old bits of the defined register have
    957   /// useful values, or if MI is determined to otherwise read the dependency,
    958   /// the hook should return 0.
    959   ///
    960   /// The unwanted dependency may be handled by:
    961   ///
    962   /// 1. Allocating the same register for an MI def and use.  That makes the
    963   ///    unwanted dependency identical to a required dependency.
    964   ///
    965   /// 2. Allocating a register for the def that has no defs in the previous N
    966   ///    instructions.
    967   ///
    968   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
    969   ///    allows the target to insert a dependency breaking instruction.
    970   ///
    971   virtual unsigned
    972   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    973                                const TargetRegisterInfo *TRI) const {
    974     // The default implementation returns 0 for no partial register dependency.
    975     return 0;
    976   }
    977 
    978   /// \brief Return the minimum clearance before an instruction that reads an
    979   /// unused register.
    980   ///
    981   /// For example, AVX instructions may copy part of an register operand into
    982   /// the unused high bits of the destination register.
    983   ///
    984   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
    985   ///
    986   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
    987   /// false dependence on any previous write to %xmm0.
    988   ///
    989   /// This hook works similarly to getPartialRegUpdateClearance, except that it
    990   /// does not take an operand index. Instead sets \p OpNum to the index of the
    991   /// unused register.
    992   virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
    993                                         const TargetRegisterInfo *TRI) const {
    994     // The default implementation returns 0 for no undef register dependency.
    995     return 0;
    996   }
    997 
    998   /// breakPartialRegDependency - Insert a dependency-breaking instruction
    999   /// before MI to eliminate an unwanted dependency on OpNum.
   1000   ///
   1001   /// If it wasn't possible to avoid a def in the last N instructions before MI
   1002   /// (see getPartialRegUpdateClearance), this hook will be called to break the
   1003   /// unwanted dependency.
   1004   ///
   1005   /// On x86, an xorps instruction can be used as a dependency breaker:
   1006   ///
   1007   ///   addps %xmm1, %xmm0
   1008   ///   movaps %xmm0, (%rax)
   1009   ///   xorps %xmm0, %xmm0
   1010   ///   cvtsi2ss %rbx, %xmm0
   1011   ///
   1012   /// An <imp-kill> operand should be added to MI if an instruction was
   1013   /// inserted.  This ties the instructions together in the post-ra scheduler.
   1014   ///
   1015   virtual void
   1016   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   1017                             const TargetRegisterInfo *TRI) const {}
   1018 
   1019   /// Create machine specific model for scheduling.
   1020   virtual DFAPacketizer*
   1021     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
   1022     return nullptr;
   1023   }
   1024 
   1025 private:
   1026   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
   1027 };
   1028 
   1029 } // End llvm namespace
   1030 
   1031 #endif
   1032