1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/CodeMetrics.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/Cloning.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include <algorithm> 51 #include <map> 52 #include <set> 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-unswitch" 56 57 STATISTIC(NumBranches, "Number of branches unswitched"); 58 STATISTIC(NumSwitches, "Number of switches unswitched"); 59 STATISTIC(NumSelects , "Number of selects unswitched"); 60 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 61 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 62 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 63 64 // The specific value of 100 here was chosen based only on intuition and a 65 // few specific examples. 66 static cl::opt<unsigned> 67 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 68 cl::init(100), cl::Hidden); 69 70 namespace { 71 72 class LUAnalysisCache { 73 74 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > 75 UnswitchedValsMap; 76 77 typedef UnswitchedValsMap::iterator UnswitchedValsIt; 78 79 struct LoopProperties { 80 unsigned CanBeUnswitchedCount; 81 unsigned SizeEstimation; 82 UnswitchedValsMap UnswitchedVals; 83 }; 84 85 // Here we use std::map instead of DenseMap, since we need to keep valid 86 // LoopProperties pointer for current loop for better performance. 87 typedef std::map<const Loop*, LoopProperties> LoopPropsMap; 88 typedef LoopPropsMap::iterator LoopPropsMapIt; 89 90 LoopPropsMap LoopsProperties; 91 UnswitchedValsMap *CurLoopInstructions; 92 LoopProperties *CurrentLoopProperties; 93 94 // Max size of code we can produce on remained iterations. 95 unsigned MaxSize; 96 97 public: 98 99 LUAnalysisCache() : 100 CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr), 101 MaxSize(Threshold) 102 {} 103 104 // Analyze loop. Check its size, calculate is it possible to unswitch 105 // it. Returns true if we can unswitch this loop. 106 bool countLoop(const Loop *L, const TargetTransformInfo &TTI); 107 108 // Clean all data related to given loop. 109 void forgetLoop(const Loop *L); 110 111 // Mark case value as unswitched. 112 // Since SI instruction can be partly unswitched, in order to avoid 113 // extra unswitching in cloned loops keep track all unswitched values. 114 void setUnswitched(const SwitchInst *SI, const Value *V); 115 116 // Check was this case value unswitched before or not. 117 bool isUnswitched(const SwitchInst *SI, const Value *V); 118 119 // Clone all loop-unswitch related loop properties. 120 // Redistribute unswitching quotas. 121 // Note, that new loop data is stored inside the VMap. 122 void cloneData(const Loop *NewLoop, const Loop *OldLoop, 123 const ValueToValueMapTy &VMap); 124 }; 125 126 class LoopUnswitch : public LoopPass { 127 LoopInfo *LI; // Loop information 128 LPPassManager *LPM; 129 130 // LoopProcessWorklist - Used to check if second loop needs processing 131 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 132 std::vector<Loop*> LoopProcessWorklist; 133 134 LUAnalysisCache BranchesInfo; 135 136 bool OptimizeForSize; 137 bool redoLoop; 138 139 Loop *currentLoop; 140 DominatorTree *DT; 141 BasicBlock *loopHeader; 142 BasicBlock *loopPreheader; 143 144 // LoopBlocks contains all of the basic blocks of the loop, including the 145 // preheader of the loop, the body of the loop, and the exit blocks of the 146 // loop, in that order. 147 std::vector<BasicBlock*> LoopBlocks; 148 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 149 std::vector<BasicBlock*> NewBlocks; 150 151 public: 152 static char ID; // Pass ID, replacement for typeid 153 explicit LoopUnswitch(bool Os = false) : 154 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 155 currentLoop(nullptr), DT(nullptr), loopHeader(nullptr), 156 loopPreheader(nullptr) { 157 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 158 } 159 160 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 161 bool processCurrentLoop(); 162 163 /// This transformation requires natural loop information & requires that 164 /// loop preheaders be inserted into the CFG. 165 /// 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.addRequiredID(LoopSimplifyID); 168 AU.addPreservedID(LoopSimplifyID); 169 AU.addRequired<LoopInfo>(); 170 AU.addPreserved<LoopInfo>(); 171 AU.addRequiredID(LCSSAID); 172 AU.addPreservedID(LCSSAID); 173 AU.addPreserved<DominatorTreeWrapperPass>(); 174 AU.addPreserved<ScalarEvolution>(); 175 AU.addRequired<TargetTransformInfo>(); 176 } 177 178 private: 179 180 void releaseMemory() override { 181 BranchesInfo.forgetLoop(currentLoop); 182 } 183 184 void initLoopData() { 185 loopHeader = currentLoop->getHeader(); 186 loopPreheader = currentLoop->getLoopPreheader(); 187 } 188 189 /// Split all of the edges from inside the loop to their exit blocks. 190 /// Update the appropriate Phi nodes as we do so. 191 void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks); 192 193 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val); 194 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 195 BasicBlock *ExitBlock); 196 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); 197 198 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 199 Constant *Val, bool isEqual); 200 201 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 202 BasicBlock *TrueDest, 203 BasicBlock *FalseDest, 204 Instruction *InsertPt); 205 206 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 207 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = nullptr, 208 BasicBlock **LoopExit = nullptr); 209 210 }; 211 } 212 213 // Analyze loop. Check its size, calculate is it possible to unswitch 214 // it. Returns true if we can unswitch this loop. 215 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) { 216 217 LoopPropsMapIt PropsIt; 218 bool Inserted; 219 std::tie(PropsIt, Inserted) = 220 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 221 222 LoopProperties &Props = PropsIt->second; 223 224 if (Inserted) { 225 // New loop. 226 227 // Limit the number of instructions to avoid causing significant code 228 // expansion, and the number of basic blocks, to avoid loops with 229 // large numbers of branches which cause loop unswitching to go crazy. 230 // This is a very ad-hoc heuristic. 231 232 // FIXME: This is overly conservative because it does not take into 233 // consideration code simplification opportunities and code that can 234 // be shared by the resultant unswitched loops. 235 CodeMetrics Metrics; 236 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 237 I != E; ++I) 238 Metrics.analyzeBasicBlock(*I, TTI); 239 240 Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5); 241 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 242 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 243 244 if (Metrics.notDuplicatable) { 245 DEBUG(dbgs() << "NOT unswitching loop %" 246 << L->getHeader()->getName() << ", contents cannot be " 247 << "duplicated!\n"); 248 return false; 249 } 250 } 251 252 if (!Props.CanBeUnswitchedCount) { 253 DEBUG(dbgs() << "NOT unswitching loop %" 254 << L->getHeader()->getName() << ", cost too high: " 255 << L->getBlocks().size() << "\n"); 256 return false; 257 } 258 259 // Be careful. This links are good only before new loop addition. 260 CurrentLoopProperties = &Props; 261 CurLoopInstructions = &Props.UnswitchedVals; 262 263 return true; 264 } 265 266 // Clean all data related to given loop. 267 void LUAnalysisCache::forgetLoop(const Loop *L) { 268 269 LoopPropsMapIt LIt = LoopsProperties.find(L); 270 271 if (LIt != LoopsProperties.end()) { 272 LoopProperties &Props = LIt->second; 273 MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation; 274 LoopsProperties.erase(LIt); 275 } 276 277 CurrentLoopProperties = nullptr; 278 CurLoopInstructions = nullptr; 279 } 280 281 // Mark case value as unswitched. 282 // Since SI instruction can be partly unswitched, in order to avoid 283 // extra unswitching in cloned loops keep track all unswitched values. 284 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { 285 (*CurLoopInstructions)[SI].insert(V); 286 } 287 288 // Check was this case value unswitched before or not. 289 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { 290 return (*CurLoopInstructions)[SI].count(V); 291 } 292 293 // Clone all loop-unswitch related loop properties. 294 // Redistribute unswitching quotas. 295 // Note, that new loop data is stored inside the VMap. 296 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, 297 const ValueToValueMapTy &VMap) { 298 299 LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; 300 LoopProperties &OldLoopProps = *CurrentLoopProperties; 301 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; 302 303 // Reallocate "can-be-unswitched quota" 304 305 --OldLoopProps.CanBeUnswitchedCount; 306 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 307 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 308 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 309 310 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 311 312 // Clone unswitched values info: 313 // for new loop switches we clone info about values that was 314 // already unswitched and has redundant successors. 315 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 316 const SwitchInst *OldInst = I->first; 317 Value *NewI = VMap.lookup(OldInst); 318 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); 319 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 320 321 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 322 } 323 } 324 325 char LoopUnswitch::ID = 0; 326 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 327 false, false) 328 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 329 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 330 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 331 INITIALIZE_PASS_DEPENDENCY(LCSSA) 332 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 333 false, false) 334 335 Pass *llvm::createLoopUnswitchPass(bool Os) { 336 return new LoopUnswitch(Os); 337 } 338 339 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 340 /// invariant in the loop, or has an invariant piece, return the invariant. 341 /// Otherwise, return null. 342 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 343 344 // We started analyze new instruction, increment scanned instructions counter. 345 ++TotalInsts; 346 347 // We can never unswitch on vector conditions. 348 if (Cond->getType()->isVectorTy()) 349 return nullptr; 350 351 // Constants should be folded, not unswitched on! 352 if (isa<Constant>(Cond)) return nullptr; 353 354 // TODO: Handle: br (VARIANT|INVARIANT). 355 356 // Hoist simple values out. 357 if (L->makeLoopInvariant(Cond, Changed)) 358 return Cond; 359 360 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 361 if (BO->getOpcode() == Instruction::And || 362 BO->getOpcode() == Instruction::Or) { 363 // If either the left or right side is invariant, we can unswitch on this, 364 // which will cause the branch to go away in one loop and the condition to 365 // simplify in the other one. 366 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 367 return LHS; 368 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 369 return RHS; 370 } 371 372 return nullptr; 373 } 374 375 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 376 if (skipOptnoneFunction(L)) 377 return false; 378 379 LI = &getAnalysis<LoopInfo>(); 380 LPM = &LPM_Ref; 381 DominatorTreeWrapperPass *DTWP = 382 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 383 DT = DTWP ? &DTWP->getDomTree() : nullptr; 384 currentLoop = L; 385 Function *F = currentLoop->getHeader()->getParent(); 386 bool Changed = false; 387 do { 388 assert(currentLoop->isLCSSAForm(*DT)); 389 redoLoop = false; 390 Changed |= processCurrentLoop(); 391 } while(redoLoop); 392 393 if (Changed) { 394 // FIXME: Reconstruct dom info, because it is not preserved properly. 395 if (DT) 396 DT->recalculate(*F); 397 } 398 return Changed; 399 } 400 401 /// processCurrentLoop - Do actual work and unswitch loop if possible 402 /// and profitable. 403 bool LoopUnswitch::processCurrentLoop() { 404 bool Changed = false; 405 406 initLoopData(); 407 408 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 409 if (!loopPreheader) 410 return false; 411 412 // Loops with indirectbr cannot be cloned. 413 if (!currentLoop->isSafeToClone()) 414 return false; 415 416 // Without dedicated exits, splitting the exit edge may fail. 417 if (!currentLoop->hasDedicatedExits()) 418 return false; 419 420 LLVMContext &Context = loopHeader->getContext(); 421 422 // Probably we reach the quota of branches for this loop. If so 423 // stop unswitching. 424 if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>())) 425 return false; 426 427 // Loop over all of the basic blocks in the loop. If we find an interior 428 // block that is branching on a loop-invariant condition, we can unswitch this 429 // loop. 430 for (Loop::block_iterator I = currentLoop->block_begin(), 431 E = currentLoop->block_end(); I != E; ++I) { 432 TerminatorInst *TI = (*I)->getTerminator(); 433 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 434 // If this isn't branching on an invariant condition, we can't unswitch 435 // it. 436 if (BI->isConditional()) { 437 // See if this, or some part of it, is loop invariant. If so, we can 438 // unswitch on it if we desire. 439 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 440 currentLoop, Changed); 441 if (LoopCond && UnswitchIfProfitable(LoopCond, 442 ConstantInt::getTrue(Context))) { 443 ++NumBranches; 444 return true; 445 } 446 } 447 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 448 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 449 currentLoop, Changed); 450 unsigned NumCases = SI->getNumCases(); 451 if (LoopCond && NumCases) { 452 // Find a value to unswitch on: 453 // FIXME: this should chose the most expensive case! 454 // FIXME: scan for a case with a non-critical edge? 455 Constant *UnswitchVal = nullptr; 456 457 // Do not process same value again and again. 458 // At this point we have some cases already unswitched and 459 // some not yet unswitched. Let's find the first not yet unswitched one. 460 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 461 i != e; ++i) { 462 Constant *UnswitchValCandidate = i.getCaseValue(); 463 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 464 UnswitchVal = UnswitchValCandidate; 465 break; 466 } 467 } 468 469 if (!UnswitchVal) 470 continue; 471 472 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 473 ++NumSwitches; 474 return true; 475 } 476 } 477 } 478 479 // Scan the instructions to check for unswitchable values. 480 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 481 BBI != E; ++BBI) 482 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 483 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 484 currentLoop, Changed); 485 if (LoopCond && UnswitchIfProfitable(LoopCond, 486 ConstantInt::getTrue(Context))) { 487 ++NumSelects; 488 return true; 489 } 490 } 491 } 492 return Changed; 493 } 494 495 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 496 /// loop with no side effects (including infinite loops). 497 /// 498 /// If true, we return true and set ExitBB to the block we 499 /// exit through. 500 /// 501 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 502 BasicBlock *&ExitBB, 503 std::set<BasicBlock*> &Visited) { 504 if (!Visited.insert(BB).second) { 505 // Already visited. Without more analysis, this could indicate an infinite 506 // loop. 507 return false; 508 } 509 if (!L->contains(BB)) { 510 // Otherwise, this is a loop exit, this is fine so long as this is the 511 // first exit. 512 if (ExitBB) return false; 513 ExitBB = BB; 514 return true; 515 } 516 517 // Otherwise, this is an unvisited intra-loop node. Check all successors. 518 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 519 // Check to see if the successor is a trivial loop exit. 520 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 521 return false; 522 } 523 524 // Okay, everything after this looks good, check to make sure that this block 525 // doesn't include any side effects. 526 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 527 if (I->mayHaveSideEffects()) 528 return false; 529 530 return true; 531 } 532 533 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 534 /// leads to an exit from the specified loop, and has no side-effects in the 535 /// process. If so, return the block that is exited to, otherwise return null. 536 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 537 std::set<BasicBlock*> Visited; 538 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 539 BasicBlock *ExitBB = nullptr; 540 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 541 return ExitBB; 542 return nullptr; 543 } 544 545 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 546 /// trivial: that is, that the condition controls whether or not the loop does 547 /// anything at all. If this is a trivial condition, unswitching produces no 548 /// code duplications (equivalently, it produces a simpler loop and a new empty 549 /// loop, which gets deleted). 550 /// 551 /// If this is a trivial condition, return true, otherwise return false. When 552 /// returning true, this sets Cond and Val to the condition that controls the 553 /// trivial condition: when Cond dynamically equals Val, the loop is known to 554 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 555 /// Cond == Val. 556 /// 557 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 558 BasicBlock **LoopExit) { 559 BasicBlock *Header = currentLoop->getHeader(); 560 TerminatorInst *HeaderTerm = Header->getTerminator(); 561 LLVMContext &Context = Header->getContext(); 562 563 BasicBlock *LoopExitBB = nullptr; 564 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 565 // If the header block doesn't end with a conditional branch on Cond, we 566 // can't handle it. 567 if (!BI->isConditional() || BI->getCondition() != Cond) 568 return false; 569 570 // Check to see if a successor of the branch is guaranteed to 571 // exit through a unique exit block without having any 572 // side-effects. If so, determine the value of Cond that causes it to do 573 // this. 574 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 575 BI->getSuccessor(0)))) { 576 if (Val) *Val = ConstantInt::getTrue(Context); 577 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 578 BI->getSuccessor(1)))) { 579 if (Val) *Val = ConstantInt::getFalse(Context); 580 } 581 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 582 // If this isn't a switch on Cond, we can't handle it. 583 if (SI->getCondition() != Cond) return false; 584 585 // Check to see if a successor of the switch is guaranteed to go to the 586 // latch block or exit through a one exit block without having any 587 // side-effects. If so, determine the value of Cond that causes it to do 588 // this. 589 // Note that we can't trivially unswitch on the default case or 590 // on already unswitched cases. 591 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 592 i != e; ++i) { 593 BasicBlock *LoopExitCandidate; 594 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop, 595 i.getCaseSuccessor()))) { 596 // Okay, we found a trivial case, remember the value that is trivial. 597 ConstantInt *CaseVal = i.getCaseValue(); 598 599 // Check that it was not unswitched before, since already unswitched 600 // trivial vals are looks trivial too. 601 if (BranchesInfo.isUnswitched(SI, CaseVal)) 602 continue; 603 LoopExitBB = LoopExitCandidate; 604 if (Val) *Val = CaseVal; 605 break; 606 } 607 } 608 } 609 610 // If we didn't find a single unique LoopExit block, or if the loop exit block 611 // contains phi nodes, this isn't trivial. 612 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 613 return false; // Can't handle this. 614 615 if (LoopExit) *LoopExit = LoopExitBB; 616 617 // We already know that nothing uses any scalar values defined inside of this 618 // loop. As such, we just have to check to see if this loop will execute any 619 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 620 // part of the loop that the code *would* execute. We already checked the 621 // tail, check the header now. 622 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 623 if (I->mayHaveSideEffects()) 624 return false; 625 return true; 626 } 627 628 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 629 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 630 /// unswitch the loop, reprocess the pieces, then return true. 631 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { 632 Function *F = loopHeader->getParent(); 633 Constant *CondVal = nullptr; 634 BasicBlock *ExitBlock = nullptr; 635 636 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 637 // If the condition is trivial, always unswitch. There is no code growth 638 // for this case. 639 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock); 640 return true; 641 } 642 643 // Check to see if it would be profitable to unswitch current loop. 644 645 // Do not do non-trivial unswitch while optimizing for size. 646 if (OptimizeForSize || 647 F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 648 Attribute::OptimizeForSize)) 649 return false; 650 651 UnswitchNontrivialCondition(LoopCond, Val, currentLoop); 652 return true; 653 } 654 655 /// CloneLoop - Recursively clone the specified loop and all of its children, 656 /// mapping the blocks with the specified map. 657 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 658 LoopInfo *LI, LPPassManager *LPM) { 659 Loop *New = new Loop(); 660 LPM->insertLoop(New, PL); 661 662 // Add all of the blocks in L to the new loop. 663 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 664 I != E; ++I) 665 if (LI->getLoopFor(*I) == L) 666 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase()); 667 668 // Add all of the subloops to the new loop. 669 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 670 CloneLoop(*I, New, VM, LI, LPM); 671 672 return New; 673 } 674 675 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 676 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 677 /// code immediately before InsertPt. 678 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 679 BasicBlock *TrueDest, 680 BasicBlock *FalseDest, 681 Instruction *InsertPt) { 682 // Insert a conditional branch on LIC to the two preheaders. The original 683 // code is the true version and the new code is the false version. 684 Value *BranchVal = LIC; 685 if (!isa<ConstantInt>(Val) || 686 Val->getType() != Type::getInt1Ty(LIC->getContext())) 687 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val); 688 else if (Val != ConstantInt::getTrue(Val->getContext())) 689 // We want to enter the new loop when the condition is true. 690 std::swap(TrueDest, FalseDest); 691 692 // Insert the new branch. 693 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 694 695 // If either edge is critical, split it. This helps preserve LoopSimplify 696 // form for enclosing loops. 697 SplitCriticalEdge(BI, 0, this, false, false, true); 698 SplitCriticalEdge(BI, 1, this, false, false, true); 699 } 700 701 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 702 /// condition in it (a cond branch from its header block to its latch block, 703 /// where the path through the loop that doesn't execute its body has no 704 /// side-effects), unswitch it. This doesn't involve any code duplication, just 705 /// moving the conditional branch outside of the loop and updating loop info. 706 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 707 Constant *Val, 708 BasicBlock *ExitBlock) { 709 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 710 << loopHeader->getName() << " [" << L->getBlocks().size() 711 << " blocks] in Function " << L->getHeader()->getParent()->getName() 712 << " on cond: " << *Val << " == " << *Cond << "\n"); 713 714 // First step, split the preheader, so that we know that there is a safe place 715 // to insert the conditional branch. We will change loopPreheader to have a 716 // conditional branch on Cond. 717 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this); 718 719 // Now that we have a place to insert the conditional branch, create a place 720 // to branch to: this is the exit block out of the loop that we should 721 // short-circuit to. 722 723 // Split this block now, so that the loop maintains its exit block, and so 724 // that the jump from the preheader can execute the contents of the exit block 725 // without actually branching to it (the exit block should be dominated by the 726 // loop header, not the preheader). 727 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 728 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); 729 730 // Okay, now we have a position to branch from and a position to branch to, 731 // insert the new conditional branch. 732 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 733 loopPreheader->getTerminator()); 734 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 735 loopPreheader->getTerminator()->eraseFromParent(); 736 737 // We need to reprocess this loop, it could be unswitched again. 738 redoLoop = true; 739 740 // Now that we know that the loop is never entered when this condition is a 741 // particular value, rewrite the loop with this info. We know that this will 742 // at least eliminate the old branch. 743 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 744 ++NumTrivial; 745 } 746 747 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 748 /// blocks. Update the appropriate Phi nodes as we do so. 749 void LoopUnswitch::SplitExitEdges(Loop *L, 750 const SmallVectorImpl<BasicBlock *> &ExitBlocks){ 751 752 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 753 BasicBlock *ExitBlock = ExitBlocks[i]; 754 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 755 pred_end(ExitBlock)); 756 757 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 758 // general, if we call it on all predecessors of all exits then it does. 759 if (!ExitBlock->isLandingPad()) { 760 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this); 761 } else { 762 SmallVector<BasicBlock*, 2> NewBBs; 763 SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa", 764 this, NewBBs); 765 } 766 } 767 } 768 769 /// UnswitchNontrivialCondition - We determined that the loop is profitable 770 /// to unswitch when LIC equal Val. Split it into loop versions and test the 771 /// condition outside of either loop. Return the loops created as Out1/Out2. 772 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 773 Loop *L) { 774 Function *F = loopHeader->getParent(); 775 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 776 << loopHeader->getName() << " [" << L->getBlocks().size() 777 << " blocks] in Function " << F->getName() 778 << " when '" << *Val << "' == " << *LIC << "\n"); 779 780 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 781 SE->forgetLoop(L); 782 783 LoopBlocks.clear(); 784 NewBlocks.clear(); 785 786 // First step, split the preheader and exit blocks, and add these blocks to 787 // the LoopBlocks list. 788 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this); 789 LoopBlocks.push_back(NewPreheader); 790 791 // We want the loop to come after the preheader, but before the exit blocks. 792 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 793 794 SmallVector<BasicBlock*, 8> ExitBlocks; 795 L->getUniqueExitBlocks(ExitBlocks); 796 797 // Split all of the edges from inside the loop to their exit blocks. Update 798 // the appropriate Phi nodes as we do so. 799 SplitExitEdges(L, ExitBlocks); 800 801 // The exit blocks may have been changed due to edge splitting, recompute. 802 ExitBlocks.clear(); 803 L->getUniqueExitBlocks(ExitBlocks); 804 805 // Add exit blocks to the loop blocks. 806 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 807 808 // Next step, clone all of the basic blocks that make up the loop (including 809 // the loop preheader and exit blocks), keeping track of the mapping between 810 // the instructions and blocks. 811 NewBlocks.reserve(LoopBlocks.size()); 812 ValueToValueMapTy VMap; 813 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 814 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 815 816 NewBlocks.push_back(NewBB); 817 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 818 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 819 } 820 821 // Splice the newly inserted blocks into the function right before the 822 // original preheader. 823 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 824 NewBlocks[0], F->end()); 825 826 // Now we create the new Loop object for the versioned loop. 827 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 828 829 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 830 // Probably clone more loop-unswitch related loop properties. 831 BranchesInfo.cloneData(NewLoop, L, VMap); 832 833 Loop *ParentLoop = L->getParentLoop(); 834 if (ParentLoop) { 835 // Make sure to add the cloned preheader and exit blocks to the parent loop 836 // as well. 837 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase()); 838 } 839 840 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 841 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 842 // The new exit block should be in the same loop as the old one. 843 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 844 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); 845 846 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 847 "Exit block should have been split to have one successor!"); 848 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 849 850 // If the successor of the exit block had PHI nodes, add an entry for 851 // NewExit. 852 for (BasicBlock::iterator I = ExitSucc->begin(); 853 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 854 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 855 ValueToValueMapTy::iterator It = VMap.find(V); 856 if (It != VMap.end()) V = It->second; 857 PN->addIncoming(V, NewExit); 858 } 859 860 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 861 PHINode *PN = PHINode::Create(LPad->getType(), 0, "", 862 ExitSucc->getFirstInsertionPt()); 863 864 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 865 I != E; ++I) { 866 BasicBlock *BB = *I; 867 LandingPadInst *LPI = BB->getLandingPadInst(); 868 LPI->replaceAllUsesWith(PN); 869 PN->addIncoming(LPI, BB); 870 } 871 } 872 } 873 874 // Rewrite the code to refer to itself. 875 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 876 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 877 E = NewBlocks[i]->end(); I != E; ++I) 878 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 879 880 // Rewrite the original preheader to select between versions of the loop. 881 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 882 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 883 "Preheader splitting did not work correctly!"); 884 885 // Emit the new branch that selects between the two versions of this loop. 886 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); 887 LPM->deleteSimpleAnalysisValue(OldBR, L); 888 OldBR->eraseFromParent(); 889 890 LoopProcessWorklist.push_back(NewLoop); 891 redoLoop = true; 892 893 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 894 // deletes the instruction (for example by simplifying a PHI that feeds into 895 // the condition that we're unswitching on), we don't rewrite the second 896 // iteration. 897 WeakVH LICHandle(LIC); 898 899 // Now we rewrite the original code to know that the condition is true and the 900 // new code to know that the condition is false. 901 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 902 903 // It's possible that simplifying one loop could cause the other to be 904 // changed to another value or a constant. If its a constant, don't simplify 905 // it. 906 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 907 LICHandle && !isa<Constant>(LICHandle)) 908 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 909 } 910 911 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 912 /// specified. 913 static void RemoveFromWorklist(Instruction *I, 914 std::vector<Instruction*> &Worklist) { 915 916 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), 917 Worklist.end()); 918 } 919 920 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 921 /// program, replacing all uses with V and update the worklist. 922 static void ReplaceUsesOfWith(Instruction *I, Value *V, 923 std::vector<Instruction*> &Worklist, 924 Loop *L, LPPassManager *LPM) { 925 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 926 927 // Add uses to the worklist, which may be dead now. 928 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 929 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 930 Worklist.push_back(Use); 931 932 // Add users to the worklist which may be simplified now. 933 for (User *U : I->users()) 934 Worklist.push_back(cast<Instruction>(U)); 935 LPM->deleteSimpleAnalysisValue(I, L); 936 RemoveFromWorklist(I, Worklist); 937 I->replaceAllUsesWith(V); 938 I->eraseFromParent(); 939 ++NumSimplify; 940 } 941 942 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 943 // the value specified by Val in the specified loop, or we know it does NOT have 944 // that value. Rewrite any uses of LIC or of properties correlated to it. 945 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 946 Constant *Val, 947 bool IsEqual) { 948 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 949 950 // FIXME: Support correlated properties, like: 951 // for (...) 952 // if (li1 < li2) 953 // ... 954 // if (li1 > li2) 955 // ... 956 957 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 958 // selects, switches. 959 std::vector<Instruction*> Worklist; 960 LLVMContext &Context = Val->getContext(); 961 962 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 963 // in the loop with the appropriate one directly. 964 if (IsEqual || (isa<ConstantInt>(Val) && 965 Val->getType()->isIntegerTy(1))) { 966 Value *Replacement; 967 if (IsEqual) 968 Replacement = Val; 969 else 970 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 971 !cast<ConstantInt>(Val)->getZExtValue()); 972 973 for (User *U : LIC->users()) { 974 Instruction *UI = dyn_cast<Instruction>(U); 975 if (!UI || !L->contains(UI)) 976 continue; 977 Worklist.push_back(UI); 978 } 979 980 for (std::vector<Instruction*>::iterator UI = Worklist.begin(), 981 UE = Worklist.end(); UI != UE; ++UI) 982 (*UI)->replaceUsesOfWith(LIC, Replacement); 983 984 SimplifyCode(Worklist, L); 985 return; 986 } 987 988 // Otherwise, we don't know the precise value of LIC, but we do know that it 989 // is certainly NOT "Val". As such, simplify any uses in the loop that we 990 // can. This case occurs when we unswitch switch statements. 991 for (User *U : LIC->users()) { 992 Instruction *UI = dyn_cast<Instruction>(U); 993 if (!UI || !L->contains(UI)) 994 continue; 995 996 Worklist.push_back(UI); 997 998 // TODO: We could do other simplifications, for example, turning 999 // 'icmp eq LIC, Val' -> false. 1000 1001 // If we know that LIC is not Val, use this info to simplify code. 1002 SwitchInst *SI = dyn_cast<SwitchInst>(UI); 1003 if (!SI || !isa<ConstantInt>(Val)) continue; 1004 1005 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 1006 // Default case is live for multiple values. 1007 if (DeadCase == SI->case_default()) continue; 1008 1009 // Found a dead case value. Don't remove PHI nodes in the 1010 // successor if they become single-entry, those PHI nodes may 1011 // be in the Users list. 1012 1013 BasicBlock *Switch = SI->getParent(); 1014 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1015 BasicBlock *Latch = L->getLoopLatch(); 1016 1017 BranchesInfo.setUnswitched(SI, Val); 1018 1019 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1020 // If the DeadCase successor dominates the loop latch, then the 1021 // transformation isn't safe since it will delete the sole predecessor edge 1022 // to the latch. 1023 if (Latch && DT->dominates(SISucc, Latch)) 1024 continue; 1025 1026 // FIXME: This is a hack. We need to keep the successor around 1027 // and hooked up so as to preserve the loop structure, because 1028 // trying to update it is complicated. So instead we preserve the 1029 // loop structure and put the block on a dead code path. 1030 SplitEdge(Switch, SISucc, this); 1031 // Compute the successors instead of relying on the return value 1032 // of SplitEdge, since it may have split the switch successor 1033 // after PHI nodes. 1034 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1035 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1036 // Create an "unreachable" destination. 1037 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1038 Switch->getParent(), 1039 OldSISucc); 1040 new UnreachableInst(Context, Abort); 1041 // Force the new case destination to branch to the "unreachable" 1042 // block while maintaining a (dead) CFG edge to the old block. 1043 NewSISucc->getTerminator()->eraseFromParent(); 1044 BranchInst::Create(Abort, OldSISucc, 1045 ConstantInt::getTrue(Context), NewSISucc); 1046 // Release the PHI operands for this edge. 1047 for (BasicBlock::iterator II = NewSISucc->begin(); 1048 PHINode *PN = dyn_cast<PHINode>(II); ++II) 1049 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 1050 UndefValue::get(PN->getType())); 1051 // Tell the domtree about the new block. We don't fully update the 1052 // domtree here -- instead we force it to do a full recomputation 1053 // after the pass is complete -- but we do need to inform it of 1054 // new blocks. 1055 if (DT) 1056 DT->addNewBlock(Abort, NewSISucc); 1057 } 1058 1059 SimplifyCode(Worklist, L); 1060 } 1061 1062 /// SimplifyCode - Okay, now that we have simplified some instructions in the 1063 /// loop, walk over it and constant prop, dce, and fold control flow where 1064 /// possible. Note that this is effectively a very simple loop-structure-aware 1065 /// optimizer. During processing of this loop, L could very well be deleted, so 1066 /// it must not be used. 1067 /// 1068 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1069 /// pass. 1070 /// 1071 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1072 while (!Worklist.empty()) { 1073 Instruction *I = Worklist.back(); 1074 Worklist.pop_back(); 1075 1076 // Simple DCE. 1077 if (isInstructionTriviallyDead(I)) { 1078 DEBUG(dbgs() << "Remove dead instruction '" << *I); 1079 1080 // Add uses to the worklist, which may be dead now. 1081 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1082 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1083 Worklist.push_back(Use); 1084 LPM->deleteSimpleAnalysisValue(I, L); 1085 RemoveFromWorklist(I, Worklist); 1086 I->eraseFromParent(); 1087 ++NumSimplify; 1088 continue; 1089 } 1090 1091 // See if instruction simplification can hack this up. This is common for 1092 // things like "select false, X, Y" after unswitching made the condition be 1093 // 'false'. TODO: update the domtree properly so we can pass it here. 1094 if (Value *V = SimplifyInstruction(I)) 1095 if (LI->replacementPreservesLCSSAForm(I, V)) { 1096 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1097 continue; 1098 } 1099 1100 // Special case hacks that appear commonly in unswitched code. 1101 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1102 if (BI->isUnconditional()) { 1103 // If BI's parent is the only pred of the successor, fold the two blocks 1104 // together. 1105 BasicBlock *Pred = BI->getParent(); 1106 BasicBlock *Succ = BI->getSuccessor(0); 1107 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1108 if (!SinglePred) continue; // Nothing to do. 1109 assert(SinglePred == Pred && "CFG broken"); 1110 1111 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1112 << Succ->getName() << "\n"); 1113 1114 // Resolve any single entry PHI nodes in Succ. 1115 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1116 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1117 1118 // If Succ has any successors with PHI nodes, update them to have 1119 // entries coming from Pred instead of Succ. 1120 Succ->replaceAllUsesWith(Pred); 1121 1122 // Move all of the successor contents from Succ to Pred. 1123 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1124 Succ->end()); 1125 LPM->deleteSimpleAnalysisValue(BI, L); 1126 BI->eraseFromParent(); 1127 RemoveFromWorklist(BI, Worklist); 1128 1129 // Remove Succ from the loop tree. 1130 LI->removeBlock(Succ); 1131 LPM->deleteSimpleAnalysisValue(Succ, L); 1132 Succ->eraseFromParent(); 1133 ++NumSimplify; 1134 continue; 1135 } 1136 1137 continue; 1138 } 1139 } 1140 } 1141