Home | History | Annotate | Download | only in Analysis
      1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the primary stateless implementation of the
     11 // Alias Analysis interface that implements identities (two different
     12 // globals cannot alias, etc), but does no stateful analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/Passes.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/CFG.h"
     21 #include "llvm/Analysis/CaptureTracking.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/LoopInfo.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/GetElementPtrTypeIterator.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/LLVMContext.h"
     37 #include "llvm/IR/Operator.h"
     38 #include "llvm/Pass.h"
     39 #include "llvm/Support/ErrorHandling.h"
     40 #include "llvm/Target/TargetLibraryInfo.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
     45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be
     46 /// careful with value equivalence. We use reachability to make sure a value
     47 /// cannot be involved in a cycle.
     48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
     49 
     50 // The max limit of the search depth in DecomposeGEPExpression() and
     51 // GetUnderlyingObject(), both functions need to use the same search
     52 // depth otherwise the algorithm in aliasGEP will assert.
     53 static const unsigned MaxLookupSearchDepth = 6;
     54 
     55 //===----------------------------------------------------------------------===//
     56 // Useful predicates
     57 //===----------------------------------------------------------------------===//
     58 
     59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
     60 /// object that never escapes from the function.
     61 static bool isNonEscapingLocalObject(const Value *V) {
     62   // If this is a local allocation, check to see if it escapes.
     63   if (isa<AllocaInst>(V) || isNoAliasCall(V))
     64     // Set StoreCaptures to True so that we can assume in our callers that the
     65     // pointer is not the result of a load instruction. Currently
     66     // PointerMayBeCaptured doesn't have any special analysis for the
     67     // StoreCaptures=false case; if it did, our callers could be refined to be
     68     // more precise.
     69     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     70 
     71   // If this is an argument that corresponds to a byval or noalias argument,
     72   // then it has not escaped before entering the function.  Check if it escapes
     73   // inside the function.
     74   if (const Argument *A = dyn_cast<Argument>(V))
     75     if (A->hasByValAttr() || A->hasNoAliasAttr())
     76       // Note even if the argument is marked nocapture we still need to check
     77       // for copies made inside the function. The nocapture attribute only
     78       // specifies that there are no copies made that outlive the function.
     79       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     80 
     81   return false;
     82 }
     83 
     84 /// isEscapeSource - Return true if the pointer is one which would have
     85 /// been considered an escape by isNonEscapingLocalObject.
     86 static bool isEscapeSource(const Value *V) {
     87   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
     88     return true;
     89 
     90   // The load case works because isNonEscapingLocalObject considers all
     91   // stores to be escapes (it passes true for the StoreCaptures argument
     92   // to PointerMayBeCaptured).
     93   if (isa<LoadInst>(V))
     94     return true;
     95 
     96   return false;
     97 }
     98 
     99 /// getObjectSize - Return the size of the object specified by V, or
    100 /// UnknownSize if unknown.
    101 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
    102                               const TargetLibraryInfo &TLI,
    103                               bool RoundToAlign = false) {
    104   uint64_t Size;
    105   if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
    106     return Size;
    107   return AliasAnalysis::UnknownSize;
    108 }
    109 
    110 /// isObjectSmallerThan - Return true if we can prove that the object specified
    111 /// by V is smaller than Size.
    112 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
    113                                 const DataLayout &DL,
    114                                 const TargetLibraryInfo &TLI) {
    115   // Note that the meanings of the "object" are slightly different in the
    116   // following contexts:
    117   //    c1: llvm::getObjectSize()
    118   //    c2: llvm.objectsize() intrinsic
    119   //    c3: isObjectSmallerThan()
    120   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
    121   // refers to the "entire object".
    122   //
    123   //  Consider this example:
    124   //     char *p = (char*)malloc(100)
    125   //     char *q = p+80;
    126   //
    127   //  In the context of c1 and c2, the "object" pointed by q refers to the
    128   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
    129   //
    130   //  However, in the context of c3, the "object" refers to the chunk of memory
    131   // being allocated. So, the "object" has 100 bytes, and q points to the middle
    132   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
    133   // parameter, before the llvm::getObjectSize() is called to get the size of
    134   // entire object, we should:
    135   //    - either rewind the pointer q to the base-address of the object in
    136   //      question (in this case rewind to p), or
    137   //    - just give up. It is up to caller to make sure the pointer is pointing
    138   //      to the base address the object.
    139   //
    140   // We go for 2nd option for simplicity.
    141   if (!isIdentifiedObject(V))
    142     return false;
    143 
    144   // This function needs to use the aligned object size because we allow
    145   // reads a bit past the end given sufficient alignment.
    146   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
    147 
    148   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
    149 }
    150 
    151 /// isObjectSize - Return true if we can prove that the object specified
    152 /// by V has size Size.
    153 static bool isObjectSize(const Value *V, uint64_t Size,
    154                          const DataLayout &DL, const TargetLibraryInfo &TLI) {
    155   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
    156   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
    157 }
    158 
    159 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
    160 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
    161 /// Further, an IdentifiedFunctionLocal can not alias with any function
    162 /// arguments other than itself, which is not necessarily true for
    163 /// IdentifiedObjects.
    164 static bool isIdentifiedFunctionLocal(const Value *V)
    165 {
    166   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
    167 }
    168 
    169 
    170 //===----------------------------------------------------------------------===//
    171 // GetElementPtr Instruction Decomposition and Analysis
    172 //===----------------------------------------------------------------------===//
    173 
    174 namespace {
    175   enum ExtensionKind {
    176     EK_NotExtended,
    177     EK_SignExt,
    178     EK_ZeroExt
    179   };
    180 
    181   struct VariableGEPIndex {
    182     const Value *V;
    183     ExtensionKind Extension;
    184     int64_t Scale;
    185 
    186     bool operator==(const VariableGEPIndex &Other) const {
    187       return V == Other.V && Extension == Other.Extension &&
    188         Scale == Other.Scale;
    189     }
    190 
    191     bool operator!=(const VariableGEPIndex &Other) const {
    192       return !operator==(Other);
    193     }
    194   };
    195 }
    196 
    197 
    198 /// GetLinearExpression - Analyze the specified value as a linear expression:
    199 /// "A*V + B", where A and B are constant integers.  Return the scale and offset
    200 /// values as APInts and return V as a Value*, and return whether we looked
    201 /// through any sign or zero extends.  The incoming Value is known to have
    202 /// IntegerType and it may already be sign or zero extended.
    203 ///
    204 /// Note that this looks through extends, so the high bits may not be
    205 /// represented in the result.
    206 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
    207                                   ExtensionKind &Extension,
    208                                   const DataLayout &DL, unsigned Depth) {
    209   assert(V->getType()->isIntegerTy() && "Not an integer value");
    210 
    211   // Limit our recursion depth.
    212   if (Depth == 6) {
    213     Scale = 1;
    214     Offset = 0;
    215     return V;
    216   }
    217 
    218   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    219     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    220       switch (BOp->getOpcode()) {
    221       default: break;
    222       case Instruction::Or:
    223         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
    224         // analyze it.
    225         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
    226           break;
    227         // FALL THROUGH.
    228       case Instruction::Add:
    229         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    230                                 DL, Depth+1);
    231         Offset += RHSC->getValue();
    232         return V;
    233       case Instruction::Mul:
    234         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    235                                 DL, Depth+1);
    236         Offset *= RHSC->getValue();
    237         Scale *= RHSC->getValue();
    238         return V;
    239       case Instruction::Shl:
    240         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    241                                 DL, Depth+1);
    242         Offset <<= RHSC->getValue().getLimitedValue();
    243         Scale <<= RHSC->getValue().getLimitedValue();
    244         return V;
    245       }
    246     }
    247   }
    248 
    249   // Since GEP indices are sign extended anyway, we don't care about the high
    250   // bits of a sign or zero extended value - just scales and offsets.  The
    251   // extensions have to be consistent though.
    252   if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
    253       (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
    254     Value *CastOp = cast<CastInst>(V)->getOperand(0);
    255     unsigned OldWidth = Scale.getBitWidth();
    256     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    257     Scale = Scale.trunc(SmallWidth);
    258     Offset = Offset.trunc(SmallWidth);
    259     Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
    260 
    261     Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
    262                                         DL, Depth+1);
    263     Scale = Scale.zext(OldWidth);
    264     Offset = Offset.zext(OldWidth);
    265 
    266     return Result;
    267   }
    268 
    269   Scale = 1;
    270   Offset = 0;
    271   return V;
    272 }
    273 
    274 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
    275 /// into a base pointer with a constant offset and a number of scaled symbolic
    276 /// offsets.
    277 ///
    278 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
    279 /// the VarIndices vector) are Value*'s that are known to be scaled by the
    280 /// specified amount, but which may have other unrepresented high bits. As such,
    281 /// the gep cannot necessarily be reconstructed from its decomposed form.
    282 ///
    283 /// When DataLayout is around, this function is capable of analyzing everything
    284 /// that GetUnderlyingObject can look through. To be able to do that
    285 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
    286 /// depth (MaxLookupSearchDepth).
    287 /// When DataLayout not is around, it just looks through pointer casts.
    288 ///
    289 static const Value *
    290 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
    291                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
    292                        bool &MaxLookupReached, const DataLayout *DL) {
    293   // Limit recursion depth to limit compile time in crazy cases.
    294   unsigned MaxLookup = MaxLookupSearchDepth;
    295   MaxLookupReached = false;
    296 
    297   BaseOffs = 0;
    298   do {
    299     // See if this is a bitcast or GEP.
    300     const Operator *Op = dyn_cast<Operator>(V);
    301     if (!Op) {
    302       // The only non-operator case we can handle are GlobalAliases.
    303       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    304         if (!GA->mayBeOverridden()) {
    305           V = GA->getAliasee();
    306           continue;
    307         }
    308       }
    309       return V;
    310     }
    311 
    312     if (Op->getOpcode() == Instruction::BitCast) {
    313       V = Op->getOperand(0);
    314       continue;
    315     }
    316 
    317     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    318     if (!GEPOp) {
    319       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
    320       // can come up with something. This matches what GetUnderlyingObject does.
    321       if (const Instruction *I = dyn_cast<Instruction>(V))
    322         // TODO: Get a DominatorTree and use it here.
    323         if (const Value *Simplified =
    324               SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
    325           V = Simplified;
    326           continue;
    327         }
    328 
    329       return V;
    330     }
    331 
    332     // Don't attempt to analyze GEPs over unsized objects.
    333     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
    334       return V;
    335 
    336     // If we are lacking DataLayout information, we can't compute the offets of
    337     // elements computed by GEPs.  However, we can handle bitcast equivalent
    338     // GEPs.
    339     if (!DL) {
    340       if (!GEPOp->hasAllZeroIndices())
    341         return V;
    342       V = GEPOp->getOperand(0);
    343       continue;
    344     }
    345 
    346     unsigned AS = GEPOp->getPointerAddressSpace();
    347     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    348     gep_type_iterator GTI = gep_type_begin(GEPOp);
    349     for (User::const_op_iterator I = GEPOp->op_begin()+1,
    350          E = GEPOp->op_end(); I != E; ++I) {
    351       Value *Index = *I;
    352       // Compute the (potentially symbolic) offset in bytes for this index.
    353       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
    354         // For a struct, add the member offset.
    355         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
    356         if (FieldNo == 0) continue;
    357 
    358         BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
    359         continue;
    360       }
    361 
    362       // For an array/pointer, add the element offset, explicitly scaled.
    363       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
    364         if (CIdx->isZero()) continue;
    365         BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
    366         continue;
    367       }
    368 
    369       uint64_t Scale = DL->getTypeAllocSize(*GTI);
    370       ExtensionKind Extension = EK_NotExtended;
    371 
    372       // If the integer type is smaller than the pointer size, it is implicitly
    373       // sign extended to pointer size.
    374       unsigned Width = Index->getType()->getIntegerBitWidth();
    375       if (DL->getPointerSizeInBits(AS) > Width)
    376         Extension = EK_SignExt;
    377 
    378       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
    379       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
    380       Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
    381                                   *DL, 0);
    382 
    383       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
    384       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
    385       BaseOffs += IndexOffset.getSExtValue()*Scale;
    386       Scale *= IndexScale.getSExtValue();
    387 
    388       // If we already had an occurrence of this index variable, merge this
    389       // scale into it.  For example, we want to handle:
    390       //   A[x][x] -> x*16 + x*4 -> x*20
    391       // This also ensures that 'x' only appears in the index list once.
    392       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
    393         if (VarIndices[i].V == Index &&
    394             VarIndices[i].Extension == Extension) {
    395           Scale += VarIndices[i].Scale;
    396           VarIndices.erase(VarIndices.begin()+i);
    397           break;
    398         }
    399       }
    400 
    401       // Make sure that we have a scale that makes sense for this target's
    402       // pointer size.
    403       if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
    404         Scale <<= ShiftBits;
    405         Scale = (int64_t)Scale >> ShiftBits;
    406       }
    407 
    408       if (Scale) {
    409         VariableGEPIndex Entry = {Index, Extension,
    410                                   static_cast<int64_t>(Scale)};
    411         VarIndices.push_back(Entry);
    412       }
    413     }
    414 
    415     // Analyze the base pointer next.
    416     V = GEPOp->getOperand(0);
    417   } while (--MaxLookup);
    418 
    419   // If the chain of expressions is too deep, just return early.
    420   MaxLookupReached = true;
    421   return V;
    422 }
    423 
    424 //===----------------------------------------------------------------------===//
    425 // BasicAliasAnalysis Pass
    426 //===----------------------------------------------------------------------===//
    427 
    428 #ifndef NDEBUG
    429 static const Function *getParent(const Value *V) {
    430   if (const Instruction *inst = dyn_cast<Instruction>(V))
    431     return inst->getParent()->getParent();
    432 
    433   if (const Argument *arg = dyn_cast<Argument>(V))
    434     return arg->getParent();
    435 
    436   return nullptr;
    437 }
    438 
    439 static bool notDifferentParent(const Value *O1, const Value *O2) {
    440 
    441   const Function *F1 = getParent(O1);
    442   const Function *F2 = getParent(O2);
    443 
    444   return !F1 || !F2 || F1 == F2;
    445 }
    446 #endif
    447 
    448 namespace {
    449   /// BasicAliasAnalysis - This is the primary alias analysis implementation.
    450   struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
    451     static char ID; // Class identification, replacement for typeinfo
    452     BasicAliasAnalysis() : ImmutablePass(ID) {
    453       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
    454     }
    455 
    456     void initializePass() override {
    457       InitializeAliasAnalysis(this);
    458     }
    459 
    460     void getAnalysisUsage(AnalysisUsage &AU) const override {
    461       AU.addRequired<AliasAnalysis>();
    462       AU.addRequired<TargetLibraryInfo>();
    463     }
    464 
    465     AliasResult alias(const Location &LocA, const Location &LocB) override {
    466       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
    467       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
    468              "BasicAliasAnalysis doesn't support interprocedural queries.");
    469       AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
    470                                      LocB.Ptr, LocB.Size, LocB.TBAATag);
    471       // AliasCache rarely has more than 1 or 2 elements, always use
    472       // shrink_and_clear so it quickly returns to the inline capacity of the
    473       // SmallDenseMap if it ever grows larger.
    474       // FIXME: This should really be shrink_to_inline_capacity_and_clear().
    475       AliasCache.shrink_and_clear();
    476       VisitedPhiBBs.clear();
    477       return Alias;
    478     }
    479 
    480     ModRefResult getModRefInfo(ImmutableCallSite CS,
    481                                const Location &Loc) override;
    482 
    483     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    484                                ImmutableCallSite CS2) override {
    485       // The AliasAnalysis base class has some smarts, lets use them.
    486       return AliasAnalysis::getModRefInfo(CS1, CS2);
    487     }
    488 
    489     /// pointsToConstantMemory - Chase pointers until we find a (constant
    490     /// global) or not.
    491     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
    492 
    493     /// Get the location associated with a pointer argument of a callsite.
    494     Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    495                             ModRefResult &Mask) override;
    496 
    497     /// getModRefBehavior - Return the behavior when calling the given
    498     /// call site.
    499     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
    500 
    501     /// getModRefBehavior - Return the behavior when calling the given function.
    502     /// For use when the call site is not known.
    503     ModRefBehavior getModRefBehavior(const Function *F) override;
    504 
    505     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    506     /// an analysis interface through multiple inheritance.  If needed, it
    507     /// should override this to adjust the this pointer as needed for the
    508     /// specified pass info.
    509     void *getAdjustedAnalysisPointer(const void *ID) override {
    510       if (ID == &AliasAnalysis::ID)
    511         return (AliasAnalysis*)this;
    512       return this;
    513     }
    514 
    515   private:
    516     // AliasCache - Track alias queries to guard against recursion.
    517     typedef std::pair<Location, Location> LocPair;
    518     typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
    519     AliasCacheTy AliasCache;
    520 
    521     /// \brief Track phi nodes we have visited. When interpret "Value" pointer
    522     /// equality as value equality we need to make sure that the "Value" is not
    523     /// part of a cycle. Otherwise, two uses could come from different
    524     /// "iterations" of a cycle and see different values for the same "Value"
    525     /// pointer.
    526     /// The following example shows the problem:
    527     ///   %p = phi(%alloca1, %addr2)
    528     ///   %l = load %ptr
    529     ///   %addr1 = gep, %alloca2, 0, %l
    530     ///   %addr2 = gep  %alloca2, 0, (%l + 1)
    531     ///      alias(%p, %addr1) -> MayAlias !
    532     ///   store %l, ...
    533     SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
    534 
    535     // Visited - Track instructions visited by pointsToConstantMemory.
    536     SmallPtrSet<const Value*, 16> Visited;
    537 
    538     /// \brief Check whether two Values can be considered equivalent.
    539     ///
    540     /// In addition to pointer equivalence of \p V1 and \p V2 this checks
    541     /// whether they can not be part of a cycle in the value graph by looking at
    542     /// all visited phi nodes an making sure that the phis cannot reach the
    543     /// value. We have to do this because we are looking through phi nodes (That
    544     /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
    545     bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
    546 
    547     /// \brief Dest and Src are the variable indices from two decomposed
    548     /// GetElementPtr instructions GEP1 and GEP2 which have common base
    549     /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
    550     /// difference between the two pointers.
    551     void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
    552                             const SmallVectorImpl<VariableGEPIndex> &Src);
    553 
    554     // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
    555     // instruction against another.
    556     AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
    557                          const MDNode *V1TBAAInfo,
    558                          const Value *V2, uint64_t V2Size,
    559                          const MDNode *V2TBAAInfo,
    560                          const Value *UnderlyingV1, const Value *UnderlyingV2);
    561 
    562     // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
    563     // instruction against another.
    564     AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
    565                          const MDNode *PNTBAAInfo,
    566                          const Value *V2, uint64_t V2Size,
    567                          const MDNode *V2TBAAInfo);
    568 
    569     /// aliasSelect - Disambiguate a Select instruction against another value.
    570     AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
    571                             const MDNode *SITBAAInfo,
    572                             const Value *V2, uint64_t V2Size,
    573                             const MDNode *V2TBAAInfo);
    574 
    575     AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
    576                            const MDNode *V1TBAATag,
    577                            const Value *V2, uint64_t V2Size,
    578                            const MDNode *V2TBAATag);
    579   };
    580 }  // End of anonymous namespace
    581 
    582 // Register this pass...
    583 char BasicAliasAnalysis::ID = 0;
    584 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    585                    "Basic Alias Analysis (stateless AA impl)",
    586                    false, true, false)
    587 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    588 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    589                    "Basic Alias Analysis (stateless AA impl)",
    590                    false, true, false)
    591 
    592 
    593 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
    594   return new BasicAliasAnalysis();
    595 }
    596 
    597 /// pointsToConstantMemory - Returns whether the given pointer value
    598 /// points to memory that is local to the function, with global constants being
    599 /// considered local to all functions.
    600 bool
    601 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
    602   assert(Visited.empty() && "Visited must be cleared after use!");
    603 
    604   unsigned MaxLookup = 8;
    605   SmallVector<const Value *, 16> Worklist;
    606   Worklist.push_back(Loc.Ptr);
    607   do {
    608     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
    609     if (!Visited.insert(V)) {
    610       Visited.clear();
    611       return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    612     }
    613 
    614     // An alloca instruction defines local memory.
    615     if (OrLocal && isa<AllocaInst>(V))
    616       continue;
    617 
    618     // A global constant counts as local memory for our purposes.
    619     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    620       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    621       // global to be marked constant in some modules and non-constant in
    622       // others.  GV may even be a declaration, not a definition.
    623       if (!GV->isConstant()) {
    624         Visited.clear();
    625         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    626       }
    627       continue;
    628     }
    629 
    630     // If both select values point to local memory, then so does the select.
    631     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    632       Worklist.push_back(SI->getTrueValue());
    633       Worklist.push_back(SI->getFalseValue());
    634       continue;
    635     }
    636 
    637     // If all values incoming to a phi node point to local memory, then so does
    638     // the phi.
    639     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    640       // Don't bother inspecting phi nodes with many operands.
    641       if (PN->getNumIncomingValues() > MaxLookup) {
    642         Visited.clear();
    643         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    644       }
    645       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    646         Worklist.push_back(PN->getIncomingValue(i));
    647       continue;
    648     }
    649 
    650     // Otherwise be conservative.
    651     Visited.clear();
    652     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    653 
    654   } while (!Worklist.empty() && --MaxLookup);
    655 
    656   Visited.clear();
    657   return Worklist.empty();
    658 }
    659 
    660 static bool isMemsetPattern16(const Function *MS,
    661                               const TargetLibraryInfo &TLI) {
    662   if (TLI.has(LibFunc::memset_pattern16) &&
    663       MS->getName() == "memset_pattern16") {
    664     FunctionType *MemsetType = MS->getFunctionType();
    665     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
    666         isa<PointerType>(MemsetType->getParamType(0)) &&
    667         isa<PointerType>(MemsetType->getParamType(1)) &&
    668         isa<IntegerType>(MemsetType->getParamType(2)))
    669       return true;
    670   }
    671 
    672   return false;
    673 }
    674 
    675 /// getModRefBehavior - Return the behavior when calling the given call site.
    676 AliasAnalysis::ModRefBehavior
    677 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    678   if (CS.doesNotAccessMemory())
    679     // Can't do better than this.
    680     return DoesNotAccessMemory;
    681 
    682   ModRefBehavior Min = UnknownModRefBehavior;
    683 
    684   // If the callsite knows it only reads memory, don't return worse
    685   // than that.
    686   if (CS.onlyReadsMemory())
    687     Min = OnlyReadsMemory;
    688 
    689   // The AliasAnalysis base class has some smarts, lets use them.
    690   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    691 }
    692 
    693 /// getModRefBehavior - Return the behavior when calling the given function.
    694 /// For use when the call site is not known.
    695 AliasAnalysis::ModRefBehavior
    696 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
    697   // If the function declares it doesn't access memory, we can't do better.
    698   if (F->doesNotAccessMemory())
    699     return DoesNotAccessMemory;
    700 
    701   // For intrinsics, we can check the table.
    702   if (unsigned iid = F->getIntrinsicID()) {
    703 #define GET_INTRINSIC_MODREF_BEHAVIOR
    704 #include "llvm/IR/Intrinsics.gen"
    705 #undef GET_INTRINSIC_MODREF_BEHAVIOR
    706   }
    707 
    708   ModRefBehavior Min = UnknownModRefBehavior;
    709 
    710   // If the function declares it only reads memory, go with that.
    711   if (F->onlyReadsMemory())
    712     Min = OnlyReadsMemory;
    713 
    714   const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
    715   if (isMemsetPattern16(F, TLI))
    716     Min = OnlyAccessesArgumentPointees;
    717 
    718   // Otherwise be conservative.
    719   return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
    720 }
    721 
    722 AliasAnalysis::Location
    723 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    724                                    ModRefResult &Mask) {
    725   Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
    726   const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
    727   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    728   if (II != nullptr)
    729     switch (II->getIntrinsicID()) {
    730     default: break;
    731     case Intrinsic::memset:
    732     case Intrinsic::memcpy:
    733     case Intrinsic::memmove: {
    734       assert((ArgIdx == 0 || ArgIdx == 1) &&
    735              "Invalid argument index for memory intrinsic");
    736       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
    737         Loc.Size = LenCI->getZExtValue();
    738       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    739              "Memory intrinsic location pointer not argument?");
    740       Mask = ArgIdx ? Ref : Mod;
    741       break;
    742     }
    743     case Intrinsic::lifetime_start:
    744     case Intrinsic::lifetime_end:
    745     case Intrinsic::invariant_start: {
    746       assert(ArgIdx == 1 && "Invalid argument index");
    747       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    748              "Intrinsic location pointer not argument?");
    749       Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    750       break;
    751     }
    752     case Intrinsic::invariant_end: {
    753       assert(ArgIdx == 2 && "Invalid argument index");
    754       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    755              "Intrinsic location pointer not argument?");
    756       Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
    757       break;
    758     }
    759     case Intrinsic::arm_neon_vld1: {
    760       assert(ArgIdx == 0 && "Invalid argument index");
    761       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    762              "Intrinsic location pointer not argument?");
    763       // LLVM's vld1 and vst1 intrinsics currently only support a single
    764       // vector register.
    765       if (DL)
    766         Loc.Size = DL->getTypeStoreSize(II->getType());
    767       break;
    768     }
    769     case Intrinsic::arm_neon_vst1: {
    770       assert(ArgIdx == 0 && "Invalid argument index");
    771       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    772              "Intrinsic location pointer not argument?");
    773       if (DL)
    774         Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
    775       break;
    776     }
    777     }
    778 
    779   // We can bound the aliasing properties of memset_pattern16 just as we can
    780   // for memcpy/memset.  This is particularly important because the
    781   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
    782   // whenever possible.
    783   else if (CS.getCalledFunction() &&
    784            isMemsetPattern16(CS.getCalledFunction(), TLI)) {
    785     assert((ArgIdx == 0 || ArgIdx == 1) &&
    786            "Invalid argument index for memset_pattern16");
    787     if (ArgIdx == 1)
    788       Loc.Size = 16;
    789     else if (const ConstantInt *LenCI =
    790              dyn_cast<ConstantInt>(CS.getArgument(2)))
    791       Loc.Size = LenCI->getZExtValue();
    792     assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
    793            "memset_pattern16 location pointer not argument?");
    794     Mask = ArgIdx ? Ref : Mod;
    795   }
    796   // FIXME: Handle memset_pattern4 and memset_pattern8 also.
    797 
    798   return Loc;
    799 }
    800 
    801 /// getModRefInfo - Check to see if the specified callsite can clobber the
    802 /// specified memory object.  Since we only look at local properties of this
    803 /// function, we really can't say much about this query.  We do, however, use
    804 /// simple "address taken" analysis on local objects.
    805 AliasAnalysis::ModRefResult
    806 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    807                                   const Location &Loc) {
    808   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
    809          "AliasAnalysis query involving multiple functions!");
    810 
    811   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
    812 
    813   // If this is a tail call and Loc.Ptr points to a stack location, we know that
    814   // the tail call cannot access or modify the local stack.
    815   // We cannot exclude byval arguments here; these belong to the caller of
    816   // the current function not to the current function, and a tail callee
    817   // may reference them.
    818   if (isa<AllocaInst>(Object))
    819     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
    820       if (CI->isTailCall())
    821         return NoModRef;
    822 
    823   // If the pointer is to a locally allocated object that does not escape,
    824   // then the call can not mod/ref the pointer unless the call takes the pointer
    825   // as an argument, and itself doesn't capture it.
    826   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
    827       isNonEscapingLocalObject(Object)) {
    828     bool PassedAsArg = false;
    829     unsigned ArgNo = 0;
    830     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    831          CI != CE; ++CI, ++ArgNo) {
    832       // Only look at the no-capture or byval pointer arguments.  If this
    833       // pointer were passed to arguments that were neither of these, then it
    834       // couldn't be no-capture.
    835       if (!(*CI)->getType()->isPointerTy() ||
    836           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    837         continue;
    838 
    839       // If this is a no-capture pointer argument, see if we can tell that it
    840       // is impossible to alias the pointer we're checking.  If not, we have to
    841       // assume that the call could touch the pointer, even though it doesn't
    842       // escape.
    843       if (!isNoAlias(Location(*CI), Location(Object))) {
    844         PassedAsArg = true;
    845         break;
    846       }
    847     }
    848 
    849     if (!PassedAsArg)
    850       return NoModRef;
    851   }
    852 
    853   // The AliasAnalysis base class has some smarts, lets use them.
    854   return AliasAnalysis::getModRefInfo(CS, Loc);
    855 }
    856 
    857 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
    858 /// against another pointer.  We know that V1 is a GEP, but we don't know
    859 /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
    860 /// UnderlyingV2 is the same for V2.
    861 ///
    862 AliasAnalysis::AliasResult
    863 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
    864                              const MDNode *V1TBAAInfo,
    865                              const Value *V2, uint64_t V2Size,
    866                              const MDNode *V2TBAAInfo,
    867                              const Value *UnderlyingV1,
    868                              const Value *UnderlyingV2) {
    869   int64_t GEP1BaseOffset;
    870   bool GEP1MaxLookupReached;
    871   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
    872 
    873   // If we have two gep instructions with must-alias or not-alias'ing base
    874   // pointers, figure out if the indexes to the GEP tell us anything about the
    875   // derived pointer.
    876   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    877     // Do the base pointers alias?
    878     AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
    879                                        UnderlyingV2, UnknownSize, nullptr);
    880 
    881     // Check for geps of non-aliasing underlying pointers where the offsets are
    882     // identical.
    883     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
    884       // Do the base pointers alias assuming type and size.
    885       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
    886                                                 V1TBAAInfo, UnderlyingV2,
    887                                                 V2Size, V2TBAAInfo);
    888       if (PreciseBaseAlias == NoAlias) {
    889         // See if the computed offset from the common pointer tells us about the
    890         // relation of the resulting pointer.
    891         int64_t GEP2BaseOffset;
    892         bool GEP2MaxLookupReached;
    893         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    894         const Value *GEP2BasePtr =
    895           DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
    896                                  GEP2MaxLookupReached, DL);
    897         const Value *GEP1BasePtr =
    898           DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
    899                                  GEP1MaxLookupReached, DL);
    900         // DecomposeGEPExpression and GetUnderlyingObject should return the
    901         // same result except when DecomposeGEPExpression has no DataLayout.
    902         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
    903           assert(!DL &&
    904                  "DecomposeGEPExpression and GetUnderlyingObject disagree!");
    905           return MayAlias;
    906         }
    907         // If the max search depth is reached the result is undefined
    908         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
    909           return MayAlias;
    910 
    911         // Same offsets.
    912         if (GEP1BaseOffset == GEP2BaseOffset &&
    913             GEP1VariableIndices == GEP2VariableIndices)
    914           return NoAlias;
    915         GEP1VariableIndices.clear();
    916       }
    917     }
    918 
    919     // If we get a No or May, then return it immediately, no amount of analysis
    920     // will improve this situation.
    921     if (BaseAlias != MustAlias) return BaseAlias;
    922 
    923     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    924     // exactly, see if the computed offset from the common pointer tells us
    925     // about the relation of the resulting pointer.
    926     const Value *GEP1BasePtr =
    927       DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
    928                              GEP1MaxLookupReached, DL);
    929 
    930     int64_t GEP2BaseOffset;
    931     bool GEP2MaxLookupReached;
    932     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    933     const Value *GEP2BasePtr =
    934       DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
    935                              GEP2MaxLookupReached, DL);
    936 
    937     // DecomposeGEPExpression and GetUnderlyingObject should return the
    938     // same result except when DecomposeGEPExpression has no DataLayout.
    939     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
    940       assert(!DL &&
    941              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
    942       return MayAlias;
    943     }
    944     // If the max search depth is reached the result is undefined
    945     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
    946       return MayAlias;
    947 
    948     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    949     // symbolic difference.
    950     GEP1BaseOffset -= GEP2BaseOffset;
    951     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
    952 
    953   } else {
    954     // Check to see if these two pointers are related by the getelementptr
    955     // instruction.  If one pointer is a GEP with a non-zero index of the other
    956     // pointer, we know they cannot alias.
    957 
    958     // If both accesses are unknown size, we can't do anything useful here.
    959     if (V1Size == UnknownSize && V2Size == UnknownSize)
    960       return MayAlias;
    961 
    962     AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
    963                                V2, V2Size, V2TBAAInfo);
    964     if (R != MustAlias)
    965       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
    966       // If V2 is known not to alias GEP base pointer, then the two values
    967       // cannot alias per GEP semantics: "A pointer value formed from a
    968       // getelementptr instruction is associated with the addresses associated
    969       // with the first operand of the getelementptr".
    970       return R;
    971 
    972     const Value *GEP1BasePtr =
    973       DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
    974                              GEP1MaxLookupReached, DL);
    975 
    976     // DecomposeGEPExpression and GetUnderlyingObject should return the
    977     // same result except when DecomposeGEPExpression has no DataLayout.
    978     if (GEP1BasePtr != UnderlyingV1) {
    979       assert(!DL &&
    980              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
    981       return MayAlias;
    982     }
    983     // If the max search depth is reached the result is undefined
    984     if (GEP1MaxLookupReached)
    985       return MayAlias;
    986   }
    987 
    988   // In the two GEP Case, if there is no difference in the offsets of the
    989   // computed pointers, the resultant pointers are a must alias.  This
    990   // hapens when we have two lexically identical GEP's (for example).
    991   //
    992   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
    993   // must aliases the GEP, the end result is a must alias also.
    994   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
    995     return MustAlias;
    996 
    997   // If there is a constant difference between the pointers, but the difference
    998   // is less than the size of the associated memory object, then we know
    999   // that the objects are partially overlapping.  If the difference is
   1000   // greater, we know they do not overlap.
   1001   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
   1002     if (GEP1BaseOffset >= 0) {
   1003       if (V2Size != UnknownSize) {
   1004         if ((uint64_t)GEP1BaseOffset < V2Size)
   1005           return PartialAlias;
   1006         return NoAlias;
   1007       }
   1008     } else {
   1009       // We have the situation where:
   1010       // +                +
   1011       // | BaseOffset     |
   1012       // ---------------->|
   1013       // |-->V1Size       |-------> V2Size
   1014       // GEP1             V2
   1015       // We need to know that V2Size is not unknown, otherwise we might have
   1016       // stripped a gep with negative index ('gep <ptr>, -1, ...).
   1017       if (V1Size != UnknownSize && V2Size != UnknownSize) {
   1018         if (-(uint64_t)GEP1BaseOffset < V1Size)
   1019           return PartialAlias;
   1020         return NoAlias;
   1021       }
   1022     }
   1023   }
   1024 
   1025   // Try to distinguish something like &A[i][1] against &A[42][0].
   1026   // Grab the least significant bit set in any of the scales.
   1027   if (!GEP1VariableIndices.empty()) {
   1028     uint64_t Modulo = 0;
   1029     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
   1030       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
   1031     Modulo = Modulo ^ (Modulo & (Modulo - 1));
   1032 
   1033     // We can compute the difference between the two addresses
   1034     // mod Modulo. Check whether that difference guarantees that the
   1035     // two locations do not alias.
   1036     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
   1037     if (V1Size != UnknownSize && V2Size != UnknownSize &&
   1038         ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
   1039       return NoAlias;
   1040   }
   1041 
   1042   // Statically, we can see that the base objects are the same, but the
   1043   // pointers have dynamic offsets which we can't resolve. And none of our
   1044   // little tricks above worked.
   1045   //
   1046   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
   1047   // practical effect of this is protecting TBAA in the case of dynamic
   1048   // indices into arrays of unions or malloc'd memory.
   1049   return PartialAlias;
   1050 }
   1051 
   1052 static AliasAnalysis::AliasResult
   1053 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
   1054   // If the results agree, take it.
   1055   if (A == B)
   1056     return A;
   1057   // A mix of PartialAlias and MustAlias is PartialAlias.
   1058   if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
   1059       (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
   1060     return AliasAnalysis::PartialAlias;
   1061   // Otherwise, we don't know anything.
   1062   return AliasAnalysis::MayAlias;
   1063 }
   1064 
   1065 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
   1066 /// instruction against another.
   1067 AliasAnalysis::AliasResult
   1068 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
   1069                                 const MDNode *SITBAAInfo,
   1070                                 const Value *V2, uint64_t V2Size,
   1071                                 const MDNode *V2TBAAInfo) {
   1072   // If the values are Selects with the same condition, we can do a more precise
   1073   // check: just check for aliases between the values on corresponding arms.
   1074   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
   1075     if (SI->getCondition() == SI2->getCondition()) {
   1076       AliasResult Alias =
   1077         aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
   1078                    SI2->getTrueValue(), V2Size, V2TBAAInfo);
   1079       if (Alias == MayAlias)
   1080         return MayAlias;
   1081       AliasResult ThisAlias =
   1082         aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
   1083                    SI2->getFalseValue(), V2Size, V2TBAAInfo);
   1084       return MergeAliasResults(ThisAlias, Alias);
   1085     }
   1086 
   1087   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   1088   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1089   AliasResult Alias =
   1090     aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
   1091   if (Alias == MayAlias)
   1092     return MayAlias;
   1093 
   1094   AliasResult ThisAlias =
   1095     aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
   1096   return MergeAliasResults(ThisAlias, Alias);
   1097 }
   1098 
   1099 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
   1100 // against another.
   1101 AliasAnalysis::AliasResult
   1102 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
   1103                              const MDNode *PNTBAAInfo,
   1104                              const Value *V2, uint64_t V2Size,
   1105                              const MDNode *V2TBAAInfo) {
   1106   // Track phi nodes we have visited. We use this information when we determine
   1107   // value equivalence.
   1108   VisitedPhiBBs.insert(PN->getParent());
   1109 
   1110   // If the values are PHIs in the same block, we can do a more precise
   1111   // as well as efficient check: just check for aliases between the values
   1112   // on corresponding edges.
   1113   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
   1114     if (PN2->getParent() == PN->getParent()) {
   1115       LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
   1116                    Location(V2, V2Size, V2TBAAInfo));
   1117       if (PN > V2)
   1118         std::swap(Locs.first, Locs.second);
   1119       // Analyse the PHIs' inputs under the assumption that the PHIs are
   1120       // NoAlias.
   1121       // If the PHIs are May/MustAlias there must be (recursively) an input
   1122       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
   1123       // there must be an operation on the PHIs within the PHIs' value cycle
   1124       // that causes a MayAlias.
   1125       // Pretend the phis do not alias.
   1126       AliasResult Alias = NoAlias;
   1127       assert(AliasCache.count(Locs) &&
   1128              "There must exist an entry for the phi node");
   1129       AliasResult OrigAliasResult = AliasCache[Locs];
   1130       AliasCache[Locs] = NoAlias;
   1131 
   1132       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1133         AliasResult ThisAlias =
   1134           aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
   1135                      PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
   1136                      V2Size, V2TBAAInfo);
   1137         Alias = MergeAliasResults(ThisAlias, Alias);
   1138         if (Alias == MayAlias)
   1139           break;
   1140       }
   1141 
   1142       // Reset if speculation failed.
   1143       if (Alias != NoAlias)
   1144         AliasCache[Locs] = OrigAliasResult;
   1145 
   1146       return Alias;
   1147     }
   1148 
   1149   SmallPtrSet<Value*, 4> UniqueSrc;
   1150   SmallVector<Value*, 4> V1Srcs;
   1151   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1152     Value *PV1 = PN->getIncomingValue(i);
   1153     if (isa<PHINode>(PV1))
   1154       // If any of the source itself is a PHI, return MayAlias conservatively
   1155       // to avoid compile time explosion. The worst possible case is if both
   1156       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
   1157       // and 'n' are the number of PHI sources.
   1158       return MayAlias;
   1159     if (UniqueSrc.insert(PV1))
   1160       V1Srcs.push_back(PV1);
   1161   }
   1162 
   1163   AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
   1164                                  V1Srcs[0], PNSize, PNTBAAInfo);
   1165   // Early exit if the check of the first PHI source against V2 is MayAlias.
   1166   // Other results are not possible.
   1167   if (Alias == MayAlias)
   1168     return MayAlias;
   1169 
   1170   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
   1171   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1172   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
   1173     Value *V = V1Srcs[i];
   1174 
   1175     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
   1176                                        V, PNSize, PNTBAAInfo);
   1177     Alias = MergeAliasResults(ThisAlias, Alias);
   1178     if (Alias == MayAlias)
   1179       break;
   1180   }
   1181 
   1182   return Alias;
   1183 }
   1184 
   1185 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
   1186 // such as array references.
   1187 //
   1188 AliasAnalysis::AliasResult
   1189 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
   1190                                const MDNode *V1TBAAInfo,
   1191                                const Value *V2, uint64_t V2Size,
   1192                                const MDNode *V2TBAAInfo) {
   1193   // If either of the memory references is empty, it doesn't matter what the
   1194   // pointer values are.
   1195   if (V1Size == 0 || V2Size == 0)
   1196     return NoAlias;
   1197 
   1198   // Strip off any casts if they exist.
   1199   V1 = V1->stripPointerCasts();
   1200   V2 = V2->stripPointerCasts();
   1201 
   1202   // Are we checking for alias of the same value?
   1203   // Because we look 'through' phi nodes we could look at "Value" pointers from
   1204   // different iterations. We must therefore make sure that this is not the
   1205   // case. The function isValueEqualInPotentialCycles ensures that this cannot
   1206   // happen by looking at the visited phi nodes and making sure they cannot
   1207   // reach the value.
   1208   if (isValueEqualInPotentialCycles(V1, V2))
   1209     return MustAlias;
   1210 
   1211   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
   1212     return NoAlias;  // Scalars cannot alias each other
   1213 
   1214   // Figure out what objects these things are pointing to if we can.
   1215   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
   1216   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
   1217 
   1218   // Null values in the default address space don't point to any object, so they
   1219   // don't alias any other pointer.
   1220   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
   1221     if (CPN->getType()->getAddressSpace() == 0)
   1222       return NoAlias;
   1223   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
   1224     if (CPN->getType()->getAddressSpace() == 0)
   1225       return NoAlias;
   1226 
   1227   if (O1 != O2) {
   1228     // If V1/V2 point to two different objects we know that we have no alias.
   1229     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
   1230       return NoAlias;
   1231 
   1232     // Constant pointers can't alias with non-const isIdentifiedObject objects.
   1233     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
   1234         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
   1235       return NoAlias;
   1236 
   1237     // Function arguments can't alias with things that are known to be
   1238     // unambigously identified at the function level.
   1239     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
   1240         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
   1241       return NoAlias;
   1242 
   1243     // Most objects can't alias null.
   1244     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
   1245         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
   1246       return NoAlias;
   1247 
   1248     // If one pointer is the result of a call/invoke or load and the other is a
   1249     // non-escaping local object within the same function, then we know the
   1250     // object couldn't escape to a point where the call could return it.
   1251     //
   1252     // Note that if the pointers are in different functions, there are a
   1253     // variety of complications. A call with a nocapture argument may still
   1254     // temporary store the nocapture argument's value in a temporary memory
   1255     // location if that memory location doesn't escape. Or it may pass a
   1256     // nocapture value to other functions as long as they don't capture it.
   1257     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
   1258       return NoAlias;
   1259     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
   1260       return NoAlias;
   1261   }
   1262 
   1263   // If the size of one access is larger than the entire object on the other
   1264   // side, then we know such behavior is undefined and can assume no alias.
   1265   if (DL)
   1266     if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
   1267         (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
   1268       return NoAlias;
   1269 
   1270   // Check the cache before climbing up use-def chains. This also terminates
   1271   // otherwise infinitely recursive queries.
   1272   LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
   1273                Location(V2, V2Size, V2TBAAInfo));
   1274   if (V1 > V2)
   1275     std::swap(Locs.first, Locs.second);
   1276   std::pair<AliasCacheTy::iterator, bool> Pair =
   1277     AliasCache.insert(std::make_pair(Locs, MayAlias));
   1278   if (!Pair.second)
   1279     return Pair.first->second;
   1280 
   1281   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
   1282   // GEP can't simplify, we don't even look at the PHI cases.
   1283   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
   1284     std::swap(V1, V2);
   1285     std::swap(V1Size, V2Size);
   1286     std::swap(O1, O2);
   1287     std::swap(V1TBAAInfo, V2TBAAInfo);
   1288   }
   1289   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
   1290     AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
   1291     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1292   }
   1293 
   1294   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
   1295     std::swap(V1, V2);
   1296     std::swap(V1Size, V2Size);
   1297     std::swap(V1TBAAInfo, V2TBAAInfo);
   1298   }
   1299   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
   1300     AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
   1301                                   V2, V2Size, V2TBAAInfo);
   1302     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1303   }
   1304 
   1305   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
   1306     std::swap(V1, V2);
   1307     std::swap(V1Size, V2Size);
   1308     std::swap(V1TBAAInfo, V2TBAAInfo);
   1309   }
   1310   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
   1311     AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
   1312                                      V2, V2Size, V2TBAAInfo);
   1313     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1314   }
   1315 
   1316   // If both pointers are pointing into the same object and one of them
   1317   // accesses is accessing the entire object, then the accesses must
   1318   // overlap in some way.
   1319   if (DL && O1 == O2)
   1320     if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
   1321         (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
   1322       return AliasCache[Locs] = PartialAlias;
   1323 
   1324   AliasResult Result =
   1325     AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
   1326                          Location(V2, V2Size, V2TBAAInfo));
   1327   return AliasCache[Locs] = Result;
   1328 }
   1329 
   1330 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
   1331                                                        const Value *V2) {
   1332   if (V != V2)
   1333     return false;
   1334 
   1335   const Instruction *Inst = dyn_cast<Instruction>(V);
   1336   if (!Inst)
   1337     return true;
   1338 
   1339   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
   1340     return false;
   1341 
   1342   // Use dominance or loop info if available.
   1343   DominatorTreeWrapperPass *DTWP =
   1344       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1345   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
   1346   LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
   1347 
   1348   // Make sure that the visited phis cannot reach the Value. This ensures that
   1349   // the Values cannot come from different iterations of a potential cycle the
   1350   // phi nodes could be involved in.
   1351   for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(),
   1352                                                     PE = VisitedPhiBBs.end();
   1353        PI != PE; ++PI)
   1354     if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI))
   1355       return false;
   1356 
   1357   return true;
   1358 }
   1359 
   1360 /// GetIndexDifference - Dest and Src are the variable indices from two
   1361 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
   1362 /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
   1363 /// difference between the two pointers.
   1364 void BasicAliasAnalysis::GetIndexDifference(
   1365     SmallVectorImpl<VariableGEPIndex> &Dest,
   1366     const SmallVectorImpl<VariableGEPIndex> &Src) {
   1367   if (Src.empty())
   1368     return;
   1369 
   1370   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
   1371     const Value *V = Src[i].V;
   1372     ExtensionKind Extension = Src[i].Extension;
   1373     int64_t Scale = Src[i].Scale;
   1374 
   1375     // Find V in Dest.  This is N^2, but pointer indices almost never have more
   1376     // than a few variable indexes.
   1377     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
   1378       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
   1379           Dest[j].Extension != Extension)
   1380         continue;
   1381 
   1382       // If we found it, subtract off Scale V's from the entry in Dest.  If it
   1383       // goes to zero, remove the entry.
   1384       if (Dest[j].Scale != Scale)
   1385         Dest[j].Scale -= Scale;
   1386       else
   1387         Dest.erase(Dest.begin() + j);
   1388       Scale = 0;
   1389       break;
   1390     }
   1391 
   1392     // If we didn't consume this entry, add it to the end of the Dest list.
   1393     if (Scale) {
   1394       VariableGEPIndex Entry = { V, Extension, -Scale };
   1395       Dest.push_back(Entry);
   1396     }
   1397   }
   1398 }
   1399