1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 46 /// careful with value equivalence. We use reachability to make sure a value 47 /// cannot be involved in a cycle. 48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 49 50 // The max limit of the search depth in DecomposeGEPExpression() and 51 // GetUnderlyingObject(), both functions need to use the same search 52 // depth otherwise the algorithm in aliasGEP will assert. 53 static const unsigned MaxLookupSearchDepth = 6; 54 55 //===----------------------------------------------------------------------===// 56 // Useful predicates 57 //===----------------------------------------------------------------------===// 58 59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 60 /// object that never escapes from the function. 61 static bool isNonEscapingLocalObject(const Value *V) { 62 // If this is a local allocation, check to see if it escapes. 63 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 64 // Set StoreCaptures to True so that we can assume in our callers that the 65 // pointer is not the result of a load instruction. Currently 66 // PointerMayBeCaptured doesn't have any special analysis for the 67 // StoreCaptures=false case; if it did, our callers could be refined to be 68 // more precise. 69 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 70 71 // If this is an argument that corresponds to a byval or noalias argument, 72 // then it has not escaped before entering the function. Check if it escapes 73 // inside the function. 74 if (const Argument *A = dyn_cast<Argument>(V)) 75 if (A->hasByValAttr() || A->hasNoAliasAttr()) 76 // Note even if the argument is marked nocapture we still need to check 77 // for copies made inside the function. The nocapture attribute only 78 // specifies that there are no copies made that outlive the function. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 return false; 82 } 83 84 /// isEscapeSource - Return true if the pointer is one which would have 85 /// been considered an escape by isNonEscapingLocalObject. 86 static bool isEscapeSource(const Value *V) { 87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 88 return true; 89 90 // The load case works because isNonEscapingLocalObject considers all 91 // stores to be escapes (it passes true for the StoreCaptures argument 92 // to PointerMayBeCaptured). 93 if (isa<LoadInst>(V)) 94 return true; 95 96 return false; 97 } 98 99 /// getObjectSize - Return the size of the object specified by V, or 100 /// UnknownSize if unknown. 101 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 102 const TargetLibraryInfo &TLI, 103 bool RoundToAlign = false) { 104 uint64_t Size; 105 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 106 return Size; 107 return AliasAnalysis::UnknownSize; 108 } 109 110 /// isObjectSmallerThan - Return true if we can prove that the object specified 111 /// by V is smaller than Size. 112 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 113 const DataLayout &DL, 114 const TargetLibraryInfo &TLI) { 115 // Note that the meanings of the "object" are slightly different in the 116 // following contexts: 117 // c1: llvm::getObjectSize() 118 // c2: llvm.objectsize() intrinsic 119 // c3: isObjectSmallerThan() 120 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 121 // refers to the "entire object". 122 // 123 // Consider this example: 124 // char *p = (char*)malloc(100) 125 // char *q = p+80; 126 // 127 // In the context of c1 and c2, the "object" pointed by q refers to the 128 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 129 // 130 // However, in the context of c3, the "object" refers to the chunk of memory 131 // being allocated. So, the "object" has 100 bytes, and q points to the middle 132 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 133 // parameter, before the llvm::getObjectSize() is called to get the size of 134 // entire object, we should: 135 // - either rewind the pointer q to the base-address of the object in 136 // question (in this case rewind to p), or 137 // - just give up. It is up to caller to make sure the pointer is pointing 138 // to the base address the object. 139 // 140 // We go for 2nd option for simplicity. 141 if (!isIdentifiedObject(V)) 142 return false; 143 144 // This function needs to use the aligned object size because we allow 145 // reads a bit past the end given sufficient alignment. 146 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 147 148 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 149 } 150 151 /// isObjectSize - Return true if we can prove that the object specified 152 /// by V has size Size. 153 static bool isObjectSize(const Value *V, uint64_t Size, 154 const DataLayout &DL, const TargetLibraryInfo &TLI) { 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 156 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 157 } 158 159 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 160 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 161 /// Further, an IdentifiedFunctionLocal can not alias with any function 162 /// arguments other than itself, which is not necessarily true for 163 /// IdentifiedObjects. 164 static bool isIdentifiedFunctionLocal(const Value *V) 165 { 166 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // GetElementPtr Instruction Decomposition and Analysis 172 //===----------------------------------------------------------------------===// 173 174 namespace { 175 enum ExtensionKind { 176 EK_NotExtended, 177 EK_SignExt, 178 EK_ZeroExt 179 }; 180 181 struct VariableGEPIndex { 182 const Value *V; 183 ExtensionKind Extension; 184 int64_t Scale; 185 186 bool operator==(const VariableGEPIndex &Other) const { 187 return V == Other.V && Extension == Other.Extension && 188 Scale == Other.Scale; 189 } 190 191 bool operator!=(const VariableGEPIndex &Other) const { 192 return !operator==(Other); 193 } 194 }; 195 } 196 197 198 /// GetLinearExpression - Analyze the specified value as a linear expression: 199 /// "A*V + B", where A and B are constant integers. Return the scale and offset 200 /// values as APInts and return V as a Value*, and return whether we looked 201 /// through any sign or zero extends. The incoming Value is known to have 202 /// IntegerType and it may already be sign or zero extended. 203 /// 204 /// Note that this looks through extends, so the high bits may not be 205 /// represented in the result. 206 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 207 ExtensionKind &Extension, 208 const DataLayout &DL, unsigned Depth) { 209 assert(V->getType()->isIntegerTy() && "Not an integer value"); 210 211 // Limit our recursion depth. 212 if (Depth == 6) { 213 Scale = 1; 214 Offset = 0; 215 return V; 216 } 217 218 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 219 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 220 switch (BOp->getOpcode()) { 221 default: break; 222 case Instruction::Or: 223 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 224 // analyze it. 225 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth+1); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth+1); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth+1); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 262 DL, Depth+1); 263 Scale = Scale.zext(OldWidth); 264 Offset = Offset.zext(OldWidth); 265 266 return Result; 267 } 268 269 Scale = 1; 270 Offset = 0; 271 return V; 272 } 273 274 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 275 /// into a base pointer with a constant offset and a number of scaled symbolic 276 /// offsets. 277 /// 278 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 279 /// the VarIndices vector) are Value*'s that are known to be scaled by the 280 /// specified amount, but which may have other unrepresented high bits. As such, 281 /// the gep cannot necessarily be reconstructed from its decomposed form. 282 /// 283 /// When DataLayout is around, this function is capable of analyzing everything 284 /// that GetUnderlyingObject can look through. To be able to do that 285 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 286 /// depth (MaxLookupSearchDepth). 287 /// When DataLayout not is around, it just looks through pointer casts. 288 /// 289 static const Value * 290 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 291 SmallVectorImpl<VariableGEPIndex> &VarIndices, 292 bool &MaxLookupReached, const DataLayout *DL) { 293 // Limit recursion depth to limit compile time in crazy cases. 294 unsigned MaxLookup = MaxLookupSearchDepth; 295 MaxLookupReached = false; 296 297 BaseOffs = 0; 298 do { 299 // See if this is a bitcast or GEP. 300 const Operator *Op = dyn_cast<Operator>(V); 301 if (!Op) { 302 // The only non-operator case we can handle are GlobalAliases. 303 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 304 if (!GA->mayBeOverridden()) { 305 V = GA->getAliasee(); 306 continue; 307 } 308 } 309 return V; 310 } 311 312 if (Op->getOpcode() == Instruction::BitCast) { 313 V = Op->getOperand(0); 314 continue; 315 } 316 317 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 318 if (!GEPOp) { 319 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 320 // can come up with something. This matches what GetUnderlyingObject does. 321 if (const Instruction *I = dyn_cast<Instruction>(V)) 322 // TODO: Get a DominatorTree and use it here. 323 if (const Value *Simplified = 324 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 325 V = Simplified; 326 continue; 327 } 328 329 return V; 330 } 331 332 // Don't attempt to analyze GEPs over unsized objects. 333 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 334 return V; 335 336 // If we are lacking DataLayout information, we can't compute the offets of 337 // elements computed by GEPs. However, we can handle bitcast equivalent 338 // GEPs. 339 if (!DL) { 340 if (!GEPOp->hasAllZeroIndices()) 341 return V; 342 V = GEPOp->getOperand(0); 343 continue; 344 } 345 346 unsigned AS = GEPOp->getPointerAddressSpace(); 347 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 348 gep_type_iterator GTI = gep_type_begin(GEPOp); 349 for (User::const_op_iterator I = GEPOp->op_begin()+1, 350 E = GEPOp->op_end(); I != E; ++I) { 351 Value *Index = *I; 352 // Compute the (potentially symbolic) offset in bytes for this index. 353 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 354 // For a struct, add the member offset. 355 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 356 if (FieldNo == 0) continue; 357 358 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 359 continue; 360 } 361 362 // For an array/pointer, add the element offset, explicitly scaled. 363 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 364 if (CIdx->isZero()) continue; 365 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 366 continue; 367 } 368 369 uint64_t Scale = DL->getTypeAllocSize(*GTI); 370 ExtensionKind Extension = EK_NotExtended; 371 372 // If the integer type is smaller than the pointer size, it is implicitly 373 // sign extended to pointer size. 374 unsigned Width = Index->getType()->getIntegerBitWidth(); 375 if (DL->getPointerSizeInBits(AS) > Width) 376 Extension = EK_SignExt; 377 378 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 379 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 380 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 381 *DL, 0); 382 383 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 384 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 385 BaseOffs += IndexOffset.getSExtValue()*Scale; 386 Scale *= IndexScale.getSExtValue(); 387 388 // If we already had an occurrence of this index variable, merge this 389 // scale into it. For example, we want to handle: 390 // A[x][x] -> x*16 + x*4 -> x*20 391 // This also ensures that 'x' only appears in the index list once. 392 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 393 if (VarIndices[i].V == Index && 394 VarIndices[i].Extension == Extension) { 395 Scale += VarIndices[i].Scale; 396 VarIndices.erase(VarIndices.begin()+i); 397 break; 398 } 399 } 400 401 // Make sure that we have a scale that makes sense for this target's 402 // pointer size. 403 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 404 Scale <<= ShiftBits; 405 Scale = (int64_t)Scale >> ShiftBits; 406 } 407 408 if (Scale) { 409 VariableGEPIndex Entry = {Index, Extension, 410 static_cast<int64_t>(Scale)}; 411 VarIndices.push_back(Entry); 412 } 413 } 414 415 // Analyze the base pointer next. 416 V = GEPOp->getOperand(0); 417 } while (--MaxLookup); 418 419 // If the chain of expressions is too deep, just return early. 420 MaxLookupReached = true; 421 return V; 422 } 423 424 //===----------------------------------------------------------------------===// 425 // BasicAliasAnalysis Pass 426 //===----------------------------------------------------------------------===// 427 428 #ifndef NDEBUG 429 static const Function *getParent(const Value *V) { 430 if (const Instruction *inst = dyn_cast<Instruction>(V)) 431 return inst->getParent()->getParent(); 432 433 if (const Argument *arg = dyn_cast<Argument>(V)) 434 return arg->getParent(); 435 436 return nullptr; 437 } 438 439 static bool notDifferentParent(const Value *O1, const Value *O2) { 440 441 const Function *F1 = getParent(O1); 442 const Function *F2 = getParent(O2); 443 444 return !F1 || !F2 || F1 == F2; 445 } 446 #endif 447 448 namespace { 449 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 450 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 451 static char ID; // Class identification, replacement for typeinfo 452 BasicAliasAnalysis() : ImmutablePass(ID) { 453 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 454 } 455 456 void initializePass() override { 457 InitializeAliasAnalysis(this); 458 } 459 460 void getAnalysisUsage(AnalysisUsage &AU) const override { 461 AU.addRequired<AliasAnalysis>(); 462 AU.addRequired<TargetLibraryInfo>(); 463 } 464 465 AliasResult alias(const Location &LocA, const Location &LocB) override { 466 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 467 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 468 "BasicAliasAnalysis doesn't support interprocedural queries."); 469 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 470 LocB.Ptr, LocB.Size, LocB.TBAATag); 471 // AliasCache rarely has more than 1 or 2 elements, always use 472 // shrink_and_clear so it quickly returns to the inline capacity of the 473 // SmallDenseMap if it ever grows larger. 474 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 475 AliasCache.shrink_and_clear(); 476 VisitedPhiBBs.clear(); 477 return Alias; 478 } 479 480 ModRefResult getModRefInfo(ImmutableCallSite CS, 481 const Location &Loc) override; 482 483 ModRefResult getModRefInfo(ImmutableCallSite CS1, 484 ImmutableCallSite CS2) override { 485 // The AliasAnalysis base class has some smarts, lets use them. 486 return AliasAnalysis::getModRefInfo(CS1, CS2); 487 } 488 489 /// pointsToConstantMemory - Chase pointers until we find a (constant 490 /// global) or not. 491 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 492 493 /// Get the location associated with a pointer argument of a callsite. 494 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 495 ModRefResult &Mask) override; 496 497 /// getModRefBehavior - Return the behavior when calling the given 498 /// call site. 499 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 500 501 /// getModRefBehavior - Return the behavior when calling the given function. 502 /// For use when the call site is not known. 503 ModRefBehavior getModRefBehavior(const Function *F) override; 504 505 /// getAdjustedAnalysisPointer - This method is used when a pass implements 506 /// an analysis interface through multiple inheritance. If needed, it 507 /// should override this to adjust the this pointer as needed for the 508 /// specified pass info. 509 void *getAdjustedAnalysisPointer(const void *ID) override { 510 if (ID == &AliasAnalysis::ID) 511 return (AliasAnalysis*)this; 512 return this; 513 } 514 515 private: 516 // AliasCache - Track alias queries to guard against recursion. 517 typedef std::pair<Location, Location> LocPair; 518 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 519 AliasCacheTy AliasCache; 520 521 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 522 /// equality as value equality we need to make sure that the "Value" is not 523 /// part of a cycle. Otherwise, two uses could come from different 524 /// "iterations" of a cycle and see different values for the same "Value" 525 /// pointer. 526 /// The following example shows the problem: 527 /// %p = phi(%alloca1, %addr2) 528 /// %l = load %ptr 529 /// %addr1 = gep, %alloca2, 0, %l 530 /// %addr2 = gep %alloca2, 0, (%l + 1) 531 /// alias(%p, %addr1) -> MayAlias ! 532 /// store %l, ... 533 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 534 535 // Visited - Track instructions visited by pointsToConstantMemory. 536 SmallPtrSet<const Value*, 16> Visited; 537 538 /// \brief Check whether two Values can be considered equivalent. 539 /// 540 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 541 /// whether they can not be part of a cycle in the value graph by looking at 542 /// all visited phi nodes an making sure that the phis cannot reach the 543 /// value. We have to do this because we are looking through phi nodes (That 544 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 545 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 546 547 /// \brief Dest and Src are the variable indices from two decomposed 548 /// GetElementPtr instructions GEP1 and GEP2 which have common base 549 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 550 /// difference between the two pointers. 551 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 552 const SmallVectorImpl<VariableGEPIndex> &Src); 553 554 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 555 // instruction against another. 556 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 557 const MDNode *V1TBAAInfo, 558 const Value *V2, uint64_t V2Size, 559 const MDNode *V2TBAAInfo, 560 const Value *UnderlyingV1, const Value *UnderlyingV2); 561 562 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 563 // instruction against another. 564 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 565 const MDNode *PNTBAAInfo, 566 const Value *V2, uint64_t V2Size, 567 const MDNode *V2TBAAInfo); 568 569 /// aliasSelect - Disambiguate a Select instruction against another value. 570 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 571 const MDNode *SITBAAInfo, 572 const Value *V2, uint64_t V2Size, 573 const MDNode *V2TBAAInfo); 574 575 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 576 const MDNode *V1TBAATag, 577 const Value *V2, uint64_t V2Size, 578 const MDNode *V2TBAATag); 579 }; 580 } // End of anonymous namespace 581 582 // Register this pass... 583 char BasicAliasAnalysis::ID = 0; 584 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 585 "Basic Alias Analysis (stateless AA impl)", 586 false, true, false) 587 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 588 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 589 "Basic Alias Analysis (stateless AA impl)", 590 false, true, false) 591 592 593 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 594 return new BasicAliasAnalysis(); 595 } 596 597 /// pointsToConstantMemory - Returns whether the given pointer value 598 /// points to memory that is local to the function, with global constants being 599 /// considered local to all functions. 600 bool 601 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 602 assert(Visited.empty() && "Visited must be cleared after use!"); 603 604 unsigned MaxLookup = 8; 605 SmallVector<const Value *, 16> Worklist; 606 Worklist.push_back(Loc.Ptr); 607 do { 608 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 609 if (!Visited.insert(V)) { 610 Visited.clear(); 611 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 612 } 613 614 // An alloca instruction defines local memory. 615 if (OrLocal && isa<AllocaInst>(V)) 616 continue; 617 618 // A global constant counts as local memory for our purposes. 619 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 620 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 621 // global to be marked constant in some modules and non-constant in 622 // others. GV may even be a declaration, not a definition. 623 if (!GV->isConstant()) { 624 Visited.clear(); 625 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 626 } 627 continue; 628 } 629 630 // If both select values point to local memory, then so does the select. 631 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 632 Worklist.push_back(SI->getTrueValue()); 633 Worklist.push_back(SI->getFalseValue()); 634 continue; 635 } 636 637 // If all values incoming to a phi node point to local memory, then so does 638 // the phi. 639 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 640 // Don't bother inspecting phi nodes with many operands. 641 if (PN->getNumIncomingValues() > MaxLookup) { 642 Visited.clear(); 643 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 644 } 645 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 646 Worklist.push_back(PN->getIncomingValue(i)); 647 continue; 648 } 649 650 // Otherwise be conservative. 651 Visited.clear(); 652 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 653 654 } while (!Worklist.empty() && --MaxLookup); 655 656 Visited.clear(); 657 return Worklist.empty(); 658 } 659 660 static bool isMemsetPattern16(const Function *MS, 661 const TargetLibraryInfo &TLI) { 662 if (TLI.has(LibFunc::memset_pattern16) && 663 MS->getName() == "memset_pattern16") { 664 FunctionType *MemsetType = MS->getFunctionType(); 665 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 666 isa<PointerType>(MemsetType->getParamType(0)) && 667 isa<PointerType>(MemsetType->getParamType(1)) && 668 isa<IntegerType>(MemsetType->getParamType(2))) 669 return true; 670 } 671 672 return false; 673 } 674 675 /// getModRefBehavior - Return the behavior when calling the given call site. 676 AliasAnalysis::ModRefBehavior 677 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 678 if (CS.doesNotAccessMemory()) 679 // Can't do better than this. 680 return DoesNotAccessMemory; 681 682 ModRefBehavior Min = UnknownModRefBehavior; 683 684 // If the callsite knows it only reads memory, don't return worse 685 // than that. 686 if (CS.onlyReadsMemory()) 687 Min = OnlyReadsMemory; 688 689 // The AliasAnalysis base class has some smarts, lets use them. 690 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 691 } 692 693 /// getModRefBehavior - Return the behavior when calling the given function. 694 /// For use when the call site is not known. 695 AliasAnalysis::ModRefBehavior 696 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 697 // If the function declares it doesn't access memory, we can't do better. 698 if (F->doesNotAccessMemory()) 699 return DoesNotAccessMemory; 700 701 // For intrinsics, we can check the table. 702 if (unsigned iid = F->getIntrinsicID()) { 703 #define GET_INTRINSIC_MODREF_BEHAVIOR 704 #include "llvm/IR/Intrinsics.gen" 705 #undef GET_INTRINSIC_MODREF_BEHAVIOR 706 } 707 708 ModRefBehavior Min = UnknownModRefBehavior; 709 710 // If the function declares it only reads memory, go with that. 711 if (F->onlyReadsMemory()) 712 Min = OnlyReadsMemory; 713 714 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 715 if (isMemsetPattern16(F, TLI)) 716 Min = OnlyAccessesArgumentPointees; 717 718 // Otherwise be conservative. 719 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 720 } 721 722 AliasAnalysis::Location 723 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 724 ModRefResult &Mask) { 725 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); 726 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 727 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 728 if (II != nullptr) 729 switch (II->getIntrinsicID()) { 730 default: break; 731 case Intrinsic::memset: 732 case Intrinsic::memcpy: 733 case Intrinsic::memmove: { 734 assert((ArgIdx == 0 || ArgIdx == 1) && 735 "Invalid argument index for memory intrinsic"); 736 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 737 Loc.Size = LenCI->getZExtValue(); 738 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 739 "Memory intrinsic location pointer not argument?"); 740 Mask = ArgIdx ? Ref : Mod; 741 break; 742 } 743 case Intrinsic::lifetime_start: 744 case Intrinsic::lifetime_end: 745 case Intrinsic::invariant_start: { 746 assert(ArgIdx == 1 && "Invalid argument index"); 747 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 748 "Intrinsic location pointer not argument?"); 749 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 750 break; 751 } 752 case Intrinsic::invariant_end: { 753 assert(ArgIdx == 2 && "Invalid argument index"); 754 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 755 "Intrinsic location pointer not argument?"); 756 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 757 break; 758 } 759 case Intrinsic::arm_neon_vld1: { 760 assert(ArgIdx == 0 && "Invalid argument index"); 761 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 762 "Intrinsic location pointer not argument?"); 763 // LLVM's vld1 and vst1 intrinsics currently only support a single 764 // vector register. 765 if (DL) 766 Loc.Size = DL->getTypeStoreSize(II->getType()); 767 break; 768 } 769 case Intrinsic::arm_neon_vst1: { 770 assert(ArgIdx == 0 && "Invalid argument index"); 771 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 772 "Intrinsic location pointer not argument?"); 773 if (DL) 774 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); 775 break; 776 } 777 } 778 779 // We can bound the aliasing properties of memset_pattern16 just as we can 780 // for memcpy/memset. This is particularly important because the 781 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 782 // whenever possible. 783 else if (CS.getCalledFunction() && 784 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 785 assert((ArgIdx == 0 || ArgIdx == 1) && 786 "Invalid argument index for memset_pattern16"); 787 if (ArgIdx == 1) 788 Loc.Size = 16; 789 else if (const ConstantInt *LenCI = 790 dyn_cast<ConstantInt>(CS.getArgument(2))) 791 Loc.Size = LenCI->getZExtValue(); 792 assert(Loc.Ptr == CS.getArgument(ArgIdx) && 793 "memset_pattern16 location pointer not argument?"); 794 Mask = ArgIdx ? Ref : Mod; 795 } 796 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 797 798 return Loc; 799 } 800 801 /// getModRefInfo - Check to see if the specified callsite can clobber the 802 /// specified memory object. Since we only look at local properties of this 803 /// function, we really can't say much about this query. We do, however, use 804 /// simple "address taken" analysis on local objects. 805 AliasAnalysis::ModRefResult 806 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 807 const Location &Loc) { 808 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 809 "AliasAnalysis query involving multiple functions!"); 810 811 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 812 813 // If this is a tail call and Loc.Ptr points to a stack location, we know that 814 // the tail call cannot access or modify the local stack. 815 // We cannot exclude byval arguments here; these belong to the caller of 816 // the current function not to the current function, and a tail callee 817 // may reference them. 818 if (isa<AllocaInst>(Object)) 819 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 820 if (CI->isTailCall()) 821 return NoModRef; 822 823 // If the pointer is to a locally allocated object that does not escape, 824 // then the call can not mod/ref the pointer unless the call takes the pointer 825 // as an argument, and itself doesn't capture it. 826 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 827 isNonEscapingLocalObject(Object)) { 828 bool PassedAsArg = false; 829 unsigned ArgNo = 0; 830 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 831 CI != CE; ++CI, ++ArgNo) { 832 // Only look at the no-capture or byval pointer arguments. If this 833 // pointer were passed to arguments that were neither of these, then it 834 // couldn't be no-capture. 835 if (!(*CI)->getType()->isPointerTy() || 836 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 837 continue; 838 839 // If this is a no-capture pointer argument, see if we can tell that it 840 // is impossible to alias the pointer we're checking. If not, we have to 841 // assume that the call could touch the pointer, even though it doesn't 842 // escape. 843 if (!isNoAlias(Location(*CI), Location(Object))) { 844 PassedAsArg = true; 845 break; 846 } 847 } 848 849 if (!PassedAsArg) 850 return NoModRef; 851 } 852 853 // The AliasAnalysis base class has some smarts, lets use them. 854 return AliasAnalysis::getModRefInfo(CS, Loc); 855 } 856 857 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 858 /// against another pointer. We know that V1 is a GEP, but we don't know 859 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 860 /// UnderlyingV2 is the same for V2. 861 /// 862 AliasAnalysis::AliasResult 863 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 864 const MDNode *V1TBAAInfo, 865 const Value *V2, uint64_t V2Size, 866 const MDNode *V2TBAAInfo, 867 const Value *UnderlyingV1, 868 const Value *UnderlyingV2) { 869 int64_t GEP1BaseOffset; 870 bool GEP1MaxLookupReached; 871 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 872 873 // If we have two gep instructions with must-alias or not-alias'ing base 874 // pointers, figure out if the indexes to the GEP tell us anything about the 875 // derived pointer. 876 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 877 // Do the base pointers alias? 878 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 879 UnderlyingV2, UnknownSize, nullptr); 880 881 // Check for geps of non-aliasing underlying pointers where the offsets are 882 // identical. 883 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 884 // Do the base pointers alias assuming type and size. 885 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 886 V1TBAAInfo, UnderlyingV2, 887 V2Size, V2TBAAInfo); 888 if (PreciseBaseAlias == NoAlias) { 889 // See if the computed offset from the common pointer tells us about the 890 // relation of the resulting pointer. 891 int64_t GEP2BaseOffset; 892 bool GEP2MaxLookupReached; 893 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 894 const Value *GEP2BasePtr = 895 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 896 GEP2MaxLookupReached, DL); 897 const Value *GEP1BasePtr = 898 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 899 GEP1MaxLookupReached, DL); 900 // DecomposeGEPExpression and GetUnderlyingObject should return the 901 // same result except when DecomposeGEPExpression has no DataLayout. 902 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 903 assert(!DL && 904 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 905 return MayAlias; 906 } 907 // If the max search depth is reached the result is undefined 908 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 909 return MayAlias; 910 911 // Same offsets. 912 if (GEP1BaseOffset == GEP2BaseOffset && 913 GEP1VariableIndices == GEP2VariableIndices) 914 return NoAlias; 915 GEP1VariableIndices.clear(); 916 } 917 } 918 919 // If we get a No or May, then return it immediately, no amount of analysis 920 // will improve this situation. 921 if (BaseAlias != MustAlias) return BaseAlias; 922 923 // Otherwise, we have a MustAlias. Since the base pointers alias each other 924 // exactly, see if the computed offset from the common pointer tells us 925 // about the relation of the resulting pointer. 926 const Value *GEP1BasePtr = 927 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 928 GEP1MaxLookupReached, DL); 929 930 int64_t GEP2BaseOffset; 931 bool GEP2MaxLookupReached; 932 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 933 const Value *GEP2BasePtr = 934 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 935 GEP2MaxLookupReached, DL); 936 937 // DecomposeGEPExpression and GetUnderlyingObject should return the 938 // same result except when DecomposeGEPExpression has no DataLayout. 939 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 940 assert(!DL && 941 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 942 return MayAlias; 943 } 944 // If the max search depth is reached the result is undefined 945 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 946 return MayAlias; 947 948 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 949 // symbolic difference. 950 GEP1BaseOffset -= GEP2BaseOffset; 951 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 952 953 } else { 954 // Check to see if these two pointers are related by the getelementptr 955 // instruction. If one pointer is a GEP with a non-zero index of the other 956 // pointer, we know they cannot alias. 957 958 // If both accesses are unknown size, we can't do anything useful here. 959 if (V1Size == UnknownSize && V2Size == UnknownSize) 960 return MayAlias; 961 962 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 963 V2, V2Size, V2TBAAInfo); 964 if (R != MustAlias) 965 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 966 // If V2 is known not to alias GEP base pointer, then the two values 967 // cannot alias per GEP semantics: "A pointer value formed from a 968 // getelementptr instruction is associated with the addresses associated 969 // with the first operand of the getelementptr". 970 return R; 971 972 const Value *GEP1BasePtr = 973 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 974 GEP1MaxLookupReached, DL); 975 976 // DecomposeGEPExpression and GetUnderlyingObject should return the 977 // same result except when DecomposeGEPExpression has no DataLayout. 978 if (GEP1BasePtr != UnderlyingV1) { 979 assert(!DL && 980 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 981 return MayAlias; 982 } 983 // If the max search depth is reached the result is undefined 984 if (GEP1MaxLookupReached) 985 return MayAlias; 986 } 987 988 // In the two GEP Case, if there is no difference in the offsets of the 989 // computed pointers, the resultant pointers are a must alias. This 990 // hapens when we have two lexically identical GEP's (for example). 991 // 992 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 993 // must aliases the GEP, the end result is a must alias also. 994 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 995 return MustAlias; 996 997 // If there is a constant difference between the pointers, but the difference 998 // is less than the size of the associated memory object, then we know 999 // that the objects are partially overlapping. If the difference is 1000 // greater, we know they do not overlap. 1001 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1002 if (GEP1BaseOffset >= 0) { 1003 if (V2Size != UnknownSize) { 1004 if ((uint64_t)GEP1BaseOffset < V2Size) 1005 return PartialAlias; 1006 return NoAlias; 1007 } 1008 } else { 1009 // We have the situation where: 1010 // + + 1011 // | BaseOffset | 1012 // ---------------->| 1013 // |-->V1Size |-------> V2Size 1014 // GEP1 V2 1015 // We need to know that V2Size is not unknown, otherwise we might have 1016 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1017 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1018 if (-(uint64_t)GEP1BaseOffset < V1Size) 1019 return PartialAlias; 1020 return NoAlias; 1021 } 1022 } 1023 } 1024 1025 // Try to distinguish something like &A[i][1] against &A[42][0]. 1026 // Grab the least significant bit set in any of the scales. 1027 if (!GEP1VariableIndices.empty()) { 1028 uint64_t Modulo = 0; 1029 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1030 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1031 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1032 1033 // We can compute the difference between the two addresses 1034 // mod Modulo. Check whether that difference guarantees that the 1035 // two locations do not alias. 1036 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1037 if (V1Size != UnknownSize && V2Size != UnknownSize && 1038 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1039 return NoAlias; 1040 } 1041 1042 // Statically, we can see that the base objects are the same, but the 1043 // pointers have dynamic offsets which we can't resolve. And none of our 1044 // little tricks above worked. 1045 // 1046 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1047 // practical effect of this is protecting TBAA in the case of dynamic 1048 // indices into arrays of unions or malloc'd memory. 1049 return PartialAlias; 1050 } 1051 1052 static AliasAnalysis::AliasResult 1053 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1054 // If the results agree, take it. 1055 if (A == B) 1056 return A; 1057 // A mix of PartialAlias and MustAlias is PartialAlias. 1058 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1059 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1060 return AliasAnalysis::PartialAlias; 1061 // Otherwise, we don't know anything. 1062 return AliasAnalysis::MayAlias; 1063 } 1064 1065 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1066 /// instruction against another. 1067 AliasAnalysis::AliasResult 1068 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1069 const MDNode *SITBAAInfo, 1070 const Value *V2, uint64_t V2Size, 1071 const MDNode *V2TBAAInfo) { 1072 // If the values are Selects with the same condition, we can do a more precise 1073 // check: just check for aliases between the values on corresponding arms. 1074 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1075 if (SI->getCondition() == SI2->getCondition()) { 1076 AliasResult Alias = 1077 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1078 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1079 if (Alias == MayAlias) 1080 return MayAlias; 1081 AliasResult ThisAlias = 1082 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1083 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1084 return MergeAliasResults(ThisAlias, Alias); 1085 } 1086 1087 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1088 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1089 AliasResult Alias = 1090 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1091 if (Alias == MayAlias) 1092 return MayAlias; 1093 1094 AliasResult ThisAlias = 1095 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1096 return MergeAliasResults(ThisAlias, Alias); 1097 } 1098 1099 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1100 // against another. 1101 AliasAnalysis::AliasResult 1102 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1103 const MDNode *PNTBAAInfo, 1104 const Value *V2, uint64_t V2Size, 1105 const MDNode *V2TBAAInfo) { 1106 // Track phi nodes we have visited. We use this information when we determine 1107 // value equivalence. 1108 VisitedPhiBBs.insert(PN->getParent()); 1109 1110 // If the values are PHIs in the same block, we can do a more precise 1111 // as well as efficient check: just check for aliases between the values 1112 // on corresponding edges. 1113 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1114 if (PN2->getParent() == PN->getParent()) { 1115 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1116 Location(V2, V2Size, V2TBAAInfo)); 1117 if (PN > V2) 1118 std::swap(Locs.first, Locs.second); 1119 // Analyse the PHIs' inputs under the assumption that the PHIs are 1120 // NoAlias. 1121 // If the PHIs are May/MustAlias there must be (recursively) an input 1122 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1123 // there must be an operation on the PHIs within the PHIs' value cycle 1124 // that causes a MayAlias. 1125 // Pretend the phis do not alias. 1126 AliasResult Alias = NoAlias; 1127 assert(AliasCache.count(Locs) && 1128 "There must exist an entry for the phi node"); 1129 AliasResult OrigAliasResult = AliasCache[Locs]; 1130 AliasCache[Locs] = NoAlias; 1131 1132 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1133 AliasResult ThisAlias = 1134 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1135 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1136 V2Size, V2TBAAInfo); 1137 Alias = MergeAliasResults(ThisAlias, Alias); 1138 if (Alias == MayAlias) 1139 break; 1140 } 1141 1142 // Reset if speculation failed. 1143 if (Alias != NoAlias) 1144 AliasCache[Locs] = OrigAliasResult; 1145 1146 return Alias; 1147 } 1148 1149 SmallPtrSet<Value*, 4> UniqueSrc; 1150 SmallVector<Value*, 4> V1Srcs; 1151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1152 Value *PV1 = PN->getIncomingValue(i); 1153 if (isa<PHINode>(PV1)) 1154 // If any of the source itself is a PHI, return MayAlias conservatively 1155 // to avoid compile time explosion. The worst possible case is if both 1156 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1157 // and 'n' are the number of PHI sources. 1158 return MayAlias; 1159 if (UniqueSrc.insert(PV1)) 1160 V1Srcs.push_back(PV1); 1161 } 1162 1163 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1164 V1Srcs[0], PNSize, PNTBAAInfo); 1165 // Early exit if the check of the first PHI source against V2 is MayAlias. 1166 // Other results are not possible. 1167 if (Alias == MayAlias) 1168 return MayAlias; 1169 1170 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1171 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1172 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1173 Value *V = V1Srcs[i]; 1174 1175 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1176 V, PNSize, PNTBAAInfo); 1177 Alias = MergeAliasResults(ThisAlias, Alias); 1178 if (Alias == MayAlias) 1179 break; 1180 } 1181 1182 return Alias; 1183 } 1184 1185 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1186 // such as array references. 1187 // 1188 AliasAnalysis::AliasResult 1189 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1190 const MDNode *V1TBAAInfo, 1191 const Value *V2, uint64_t V2Size, 1192 const MDNode *V2TBAAInfo) { 1193 // If either of the memory references is empty, it doesn't matter what the 1194 // pointer values are. 1195 if (V1Size == 0 || V2Size == 0) 1196 return NoAlias; 1197 1198 // Strip off any casts if they exist. 1199 V1 = V1->stripPointerCasts(); 1200 V2 = V2->stripPointerCasts(); 1201 1202 // Are we checking for alias of the same value? 1203 // Because we look 'through' phi nodes we could look at "Value" pointers from 1204 // different iterations. We must therefore make sure that this is not the 1205 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1206 // happen by looking at the visited phi nodes and making sure they cannot 1207 // reach the value. 1208 if (isValueEqualInPotentialCycles(V1, V2)) 1209 return MustAlias; 1210 1211 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1212 return NoAlias; // Scalars cannot alias each other 1213 1214 // Figure out what objects these things are pointing to if we can. 1215 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1216 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1217 1218 // Null values in the default address space don't point to any object, so they 1219 // don't alias any other pointer. 1220 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1221 if (CPN->getType()->getAddressSpace() == 0) 1222 return NoAlias; 1223 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1224 if (CPN->getType()->getAddressSpace() == 0) 1225 return NoAlias; 1226 1227 if (O1 != O2) { 1228 // If V1/V2 point to two different objects we know that we have no alias. 1229 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1230 return NoAlias; 1231 1232 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1233 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1234 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1235 return NoAlias; 1236 1237 // Function arguments can't alias with things that are known to be 1238 // unambigously identified at the function level. 1239 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1240 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1241 return NoAlias; 1242 1243 // Most objects can't alias null. 1244 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1245 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1246 return NoAlias; 1247 1248 // If one pointer is the result of a call/invoke or load and the other is a 1249 // non-escaping local object within the same function, then we know the 1250 // object couldn't escape to a point where the call could return it. 1251 // 1252 // Note that if the pointers are in different functions, there are a 1253 // variety of complications. A call with a nocapture argument may still 1254 // temporary store the nocapture argument's value in a temporary memory 1255 // location if that memory location doesn't escape. Or it may pass a 1256 // nocapture value to other functions as long as they don't capture it. 1257 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1258 return NoAlias; 1259 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1260 return NoAlias; 1261 } 1262 1263 // If the size of one access is larger than the entire object on the other 1264 // side, then we know such behavior is undefined and can assume no alias. 1265 if (DL) 1266 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1267 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1268 return NoAlias; 1269 1270 // Check the cache before climbing up use-def chains. This also terminates 1271 // otherwise infinitely recursive queries. 1272 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1273 Location(V2, V2Size, V2TBAAInfo)); 1274 if (V1 > V2) 1275 std::swap(Locs.first, Locs.second); 1276 std::pair<AliasCacheTy::iterator, bool> Pair = 1277 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1278 if (!Pair.second) 1279 return Pair.first->second; 1280 1281 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1282 // GEP can't simplify, we don't even look at the PHI cases. 1283 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1284 std::swap(V1, V2); 1285 std::swap(V1Size, V2Size); 1286 std::swap(O1, O2); 1287 std::swap(V1TBAAInfo, V2TBAAInfo); 1288 } 1289 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1290 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1291 if (Result != MayAlias) return AliasCache[Locs] = Result; 1292 } 1293 1294 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1295 std::swap(V1, V2); 1296 std::swap(V1Size, V2Size); 1297 std::swap(V1TBAAInfo, V2TBAAInfo); 1298 } 1299 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1300 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1301 V2, V2Size, V2TBAAInfo); 1302 if (Result != MayAlias) return AliasCache[Locs] = Result; 1303 } 1304 1305 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1306 std::swap(V1, V2); 1307 std::swap(V1Size, V2Size); 1308 std::swap(V1TBAAInfo, V2TBAAInfo); 1309 } 1310 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1311 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1312 V2, V2Size, V2TBAAInfo); 1313 if (Result != MayAlias) return AliasCache[Locs] = Result; 1314 } 1315 1316 // If both pointers are pointing into the same object and one of them 1317 // accesses is accessing the entire object, then the accesses must 1318 // overlap in some way. 1319 if (DL && O1 == O2) 1320 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1321 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1322 return AliasCache[Locs] = PartialAlias; 1323 1324 AliasResult Result = 1325 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1326 Location(V2, V2Size, V2TBAAInfo)); 1327 return AliasCache[Locs] = Result; 1328 } 1329 1330 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1331 const Value *V2) { 1332 if (V != V2) 1333 return false; 1334 1335 const Instruction *Inst = dyn_cast<Instruction>(V); 1336 if (!Inst) 1337 return true; 1338 1339 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1340 return false; 1341 1342 // Use dominance or loop info if available. 1343 DominatorTreeWrapperPass *DTWP = 1344 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1345 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1346 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1347 1348 // Make sure that the visited phis cannot reach the Value. This ensures that 1349 // the Values cannot come from different iterations of a potential cycle the 1350 // phi nodes could be involved in. 1351 for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(), 1352 PE = VisitedPhiBBs.end(); 1353 PI != PE; ++PI) 1354 if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI)) 1355 return false; 1356 1357 return true; 1358 } 1359 1360 /// GetIndexDifference - Dest and Src are the variable indices from two 1361 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1362 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1363 /// difference between the two pointers. 1364 void BasicAliasAnalysis::GetIndexDifference( 1365 SmallVectorImpl<VariableGEPIndex> &Dest, 1366 const SmallVectorImpl<VariableGEPIndex> &Src) { 1367 if (Src.empty()) 1368 return; 1369 1370 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1371 const Value *V = Src[i].V; 1372 ExtensionKind Extension = Src[i].Extension; 1373 int64_t Scale = Src[i].Scale; 1374 1375 // Find V in Dest. This is N^2, but pointer indices almost never have more 1376 // than a few variable indexes. 1377 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1378 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1379 Dest[j].Extension != Extension) 1380 continue; 1381 1382 // If we found it, subtract off Scale V's from the entry in Dest. If it 1383 // goes to zero, remove the entry. 1384 if (Dest[j].Scale != Scale) 1385 Dest[j].Scale -= Scale; 1386 else 1387 Dest.erase(Dest.begin() + j); 1388 Scale = 0; 1389 break; 1390 } 1391 1392 // If we didn't consume this entry, add it to the end of the Dest list. 1393 if (Scale) { 1394 VariableGEPIndex Entry = { V, Extension, -Scale }; 1395 Dest.push_back(Entry); 1396 } 1397 } 1398 } 1399