1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ 18 #define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ 19 20 #include "invoke_type.h" 21 #include "compiled_method.h" 22 #include "dex/compiler_enums.h" 23 #include "dex/compiler_ir.h" 24 #include "dex/reg_location.h" 25 #include "dex/reg_storage.h" 26 #include "dex/backend.h" 27 #include "dex/quick/resource_mask.h" 28 #include "driver/compiler_driver.h" 29 #include "instruction_set.h" 30 #include "leb128.h" 31 #include "entrypoints/quick/quick_entrypoints_enum.h" 32 #include "safe_map.h" 33 #include "utils/array_ref.h" 34 #include "utils/arena_allocator.h" 35 #include "utils/arena_containers.h" 36 #include "utils/growable_array.h" 37 #include "utils/stack_checks.h" 38 39 namespace art { 40 41 /* 42 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to 43 * add type safety (see runtime/offsets.h). 44 */ 45 typedef uint32_t DexOffset; // Dex offset in code units. 46 typedef uint16_t NarrowDexOffset; // For use in structs, Dex offsets range from 0 .. 0xffff. 47 typedef uint32_t CodeOffset; // Native code offset in bytes. 48 49 // Set to 1 to measure cost of suspend check. 50 #define NO_SUSPEND 0 51 52 #define IS_BINARY_OP (1ULL << kIsBinaryOp) 53 #define IS_BRANCH (1ULL << kIsBranch) 54 #define IS_IT (1ULL << kIsIT) 55 #define IS_MOVE (1ULL << kIsMoveOp) 56 #define IS_LOAD (1ULL << kMemLoad) 57 #define IS_QUAD_OP (1ULL << kIsQuadOp) 58 #define IS_QUIN_OP (1ULL << kIsQuinOp) 59 #define IS_SEXTUPLE_OP (1ULL << kIsSextupleOp) 60 #define IS_STORE (1ULL << kMemStore) 61 #define IS_TERTIARY_OP (1ULL << kIsTertiaryOp) 62 #define IS_UNARY_OP (1ULL << kIsUnaryOp) 63 #define IS_VOLATILE (1ULL << kMemVolatile) 64 #define NEEDS_FIXUP (1ULL << kPCRelFixup) 65 #define NO_OPERAND (1ULL << kNoOperand) 66 #define REG_DEF0 (1ULL << kRegDef0) 67 #define REG_DEF1 (1ULL << kRegDef1) 68 #define REG_DEF2 (1ULL << kRegDef2) 69 #define REG_DEFA (1ULL << kRegDefA) 70 #define REG_DEFD (1ULL << kRegDefD) 71 #define REG_DEF_FPCS_LIST0 (1ULL << kRegDefFPCSList0) 72 #define REG_DEF_FPCS_LIST2 (1ULL << kRegDefFPCSList2) 73 #define REG_DEF_LIST0 (1ULL << kRegDefList0) 74 #define REG_DEF_LIST1 (1ULL << kRegDefList1) 75 #define REG_DEF_LR (1ULL << kRegDefLR) 76 #define REG_DEF_SP (1ULL << kRegDefSP) 77 #define REG_USE0 (1ULL << kRegUse0) 78 #define REG_USE1 (1ULL << kRegUse1) 79 #define REG_USE2 (1ULL << kRegUse2) 80 #define REG_USE3 (1ULL << kRegUse3) 81 #define REG_USE4 (1ULL << kRegUse4) 82 #define REG_USEA (1ULL << kRegUseA) 83 #define REG_USEC (1ULL << kRegUseC) 84 #define REG_USED (1ULL << kRegUseD) 85 #define REG_USEB (1ULL << kRegUseB) 86 #define REG_USE_FPCS_LIST0 (1ULL << kRegUseFPCSList0) 87 #define REG_USE_FPCS_LIST2 (1ULL << kRegUseFPCSList2) 88 #define REG_USE_LIST0 (1ULL << kRegUseList0) 89 #define REG_USE_LIST1 (1ULL << kRegUseList1) 90 #define REG_USE_LR (1ULL << kRegUseLR) 91 #define REG_USE_PC (1ULL << kRegUsePC) 92 #define REG_USE_SP (1ULL << kRegUseSP) 93 #define SETS_CCODES (1ULL << kSetsCCodes) 94 #define USES_CCODES (1ULL << kUsesCCodes) 95 #define USE_FP_STACK (1ULL << kUseFpStack) 96 #define REG_USE_LO (1ULL << kUseLo) 97 #define REG_USE_HI (1ULL << kUseHi) 98 #define REG_DEF_LO (1ULL << kDefLo) 99 #define REG_DEF_HI (1ULL << kDefHi) 100 #define SCALED_OFFSET_X0 (1ULL << kMemScaledx0) 101 #define SCALED_OFFSET_X2 (1ULL << kMemScaledx2) 102 #define SCALED_OFFSET_X4 (1ULL << kMemScaledx4) 103 104 // Special load/stores 105 #define IS_LOADX (IS_LOAD | IS_VOLATILE) 106 #define IS_LOAD_OFF (IS_LOAD | SCALED_OFFSET_X0) 107 #define IS_LOAD_OFF2 (IS_LOAD | SCALED_OFFSET_X2) 108 #define IS_LOAD_OFF4 (IS_LOAD | SCALED_OFFSET_X4) 109 110 #define IS_STOREX (IS_STORE | IS_VOLATILE) 111 #define IS_STORE_OFF (IS_STORE | SCALED_OFFSET_X0) 112 #define IS_STORE_OFF2 (IS_STORE | SCALED_OFFSET_X2) 113 #define IS_STORE_OFF4 (IS_STORE | SCALED_OFFSET_X4) 114 115 // Common combo register usage patterns. 116 #define REG_DEF01 (REG_DEF0 | REG_DEF1) 117 #define REG_DEF012 (REG_DEF0 | REG_DEF1 | REG_DEF2) 118 #define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2) 119 #define REG_DEF0_USE01 (REG_DEF0 | REG_USE01) 120 #define REG_DEF0_USE0 (REG_DEF0 | REG_USE0) 121 #define REG_DEF0_USE12 (REG_DEF0 | REG_USE12) 122 #define REG_DEF0_USE123 (REG_DEF0 | REG_USE123) 123 #define REG_DEF0_USE1 (REG_DEF0 | REG_USE1) 124 #define REG_DEF0_USE2 (REG_DEF0 | REG_USE2) 125 #define REG_DEFAD_USEAD (REG_DEFAD_USEA | REG_USED) 126 #define REG_DEFAD_USEA (REG_DEFA_USEA | REG_DEFD) 127 #define REG_DEFA_USEA (REG_DEFA | REG_USEA) 128 #define REG_USE012 (REG_USE01 | REG_USE2) 129 #define REG_USE014 (REG_USE01 | REG_USE4) 130 #define REG_USE01 (REG_USE0 | REG_USE1) 131 #define REG_USE02 (REG_USE0 | REG_USE2) 132 #define REG_USE12 (REG_USE1 | REG_USE2) 133 #define REG_USE23 (REG_USE2 | REG_USE3) 134 #define REG_USE123 (REG_USE1 | REG_USE2 | REG_USE3) 135 136 // TODO: #includes need a cleanup 137 #ifndef INVALID_SREG 138 #define INVALID_SREG (-1) 139 #endif 140 141 struct BasicBlock; 142 struct CallInfo; 143 struct CompilationUnit; 144 struct InlineMethod; 145 struct MIR; 146 struct LIR; 147 struct RegisterInfo; 148 class DexFileMethodInliner; 149 class MIRGraph; 150 class Mir2Lir; 151 152 typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, 153 const MethodReference& target_method, 154 uint32_t method_idx, uintptr_t direct_code, 155 uintptr_t direct_method, InvokeType type); 156 157 typedef std::vector<uint8_t> CodeBuffer; 158 159 struct UseDefMasks { 160 const ResourceMask* use_mask; // Resource mask for use. 161 const ResourceMask* def_mask; // Resource mask for def. 162 }; 163 164 struct AssemblyInfo { 165 LIR* pcrel_next; // Chain of LIR nodes needing pc relative fixups. 166 }; 167 168 struct LIR { 169 CodeOffset offset; // Offset of this instruction. 170 NarrowDexOffset dalvik_offset; // Offset of Dalvik opcode in code units (16-bit words). 171 int16_t opcode; 172 LIR* next; 173 LIR* prev; 174 LIR* target; 175 struct { 176 unsigned int alias_info:17; // For Dalvik register disambiguation. 177 bool is_nop:1; // LIR is optimized away. 178 unsigned int size:4; // Note: size of encoded instruction is in bytes. 179 bool use_def_invalid:1; // If true, masks should not be used. 180 unsigned int generation:1; // Used to track visitation state during fixup pass. 181 unsigned int fixup:8; // Fixup kind. 182 } flags; 183 union { 184 UseDefMasks m; // Use & Def masks used during optimization. 185 AssemblyInfo a; // Instruction info used during assembly phase. 186 } u; 187 int32_t operands[5]; // [0..4] = [dest, src1, src2, extra, extra2]. 188 }; 189 190 // Target-specific initialization. 191 Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, 192 ArenaAllocator* const arena); 193 Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, 194 ArenaAllocator* const arena); 195 Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, 196 ArenaAllocator* const arena); 197 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, 198 ArenaAllocator* const arena); 199 200 // Utility macros to traverse the LIR list. 201 #define NEXT_LIR(lir) (lir->next) 202 #define PREV_LIR(lir) (lir->prev) 203 204 // Defines for alias_info (tracks Dalvik register references). 205 #define DECODE_ALIAS_INFO_REG(X) (X & 0xffff) 206 #define DECODE_ALIAS_INFO_WIDE_FLAG (0x10000) 207 #define DECODE_ALIAS_INFO_WIDE(X) ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0) 208 #define ENCODE_ALIAS_INFO(REG, ISWIDE) (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0)) 209 210 #define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8)) 211 #define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \ 212 do { \ 213 low_reg = both_regs & 0xff; \ 214 high_reg = (both_regs >> 8) & 0xff; \ 215 } while (false) 216 217 // Mask to denote sreg as the start of a 64-bit item. Must not interfere with low 16 bits. 218 #define STARTING_WIDE_SREG 0x10000 219 220 // TODO: replace these macros 221 #define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath)) 222 #define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath)) 223 #define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath)) 224 #define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath)) 225 #define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath)) 226 227 class Mir2Lir : public Backend { 228 public: 229 static constexpr bool kFailOnSizeError = true && kIsDebugBuild; 230 static constexpr bool kReportSizeError = true && kIsDebugBuild; 231 232 // TODO: If necessary, this could be made target-dependent. 233 static constexpr uint16_t kSmallSwitchThreshold = 5; 234 235 /* 236 * Auxiliary information describing the location of data embedded in the Dalvik 237 * byte code stream. 238 */ 239 struct EmbeddedData { 240 CodeOffset offset; // Code offset of data block. 241 const uint16_t* table; // Original dex data. 242 DexOffset vaddr; // Dalvik offset of parent opcode. 243 }; 244 245 struct FillArrayData : EmbeddedData { 246 int32_t size; 247 }; 248 249 struct SwitchTable : EmbeddedData { 250 LIR* anchor; // Reference instruction for relative offsets. 251 LIR** targets; // Array of case targets. 252 }; 253 254 /* Static register use counts */ 255 struct RefCounts { 256 int count; 257 int s_reg; 258 }; 259 260 /* 261 * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits) 262 * and native register storage. The primary purpose is to reuse previuosly 263 * loaded values, if possible, and otherwise to keep the value in register 264 * storage as long as possible. 265 * 266 * NOTE 1: wide_value refers to the width of the Dalvik value contained in 267 * this register (or pair). For example, a 64-bit register containing a 32-bit 268 * Dalvik value would have wide_value==false even though the storage container itself 269 * is wide. Similarly, a 32-bit register containing half of a 64-bit Dalvik value 270 * would have wide_value==true (and additionally would have its partner field set to the 271 * other half whose wide_value field would also be true. 272 * 273 * NOTE 2: In the case of a register pair, you can determine which of the partners 274 * is the low half by looking at the s_reg names. The high s_reg will equal low_sreg + 1. 275 * 276 * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value 277 * will be true and partner==self. s_reg refers to the low-order word of the Dalvik 278 * value, and the s_reg of the high word is implied (s_reg + 1). 279 * 280 * NOTE 4: The reg and is_temp fields should always be correct. If is_temp is false no 281 * other fields have meaning. [perhaps not true, wide should work for promoted regs?] 282 * If is_temp==true and live==false, no other fields have 283 * meaning. If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start 284 * and def_end describe the relationship between the temp register/register pair and 285 * the Dalvik value[s] described by s_reg/s_reg+1. 286 * 287 * The fields used_storage, master_storage and storage_mask are used to track allocation 288 * in light of potential aliasing. For example, consider Arm's d2, which overlaps s4 & s5. 289 * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of 290 * storage use. For s4, it would be 0x0000001; for s5 0x00000002. These values should not 291 * change once initialized. The "used_storage" field tracks current allocation status. 292 * Although each record contains this field, only the field from the largest member of 293 * an aliased group is used. In our case, it would be d2's. The master_storage pointer 294 * of d2, s4 and s5 would all point to d2's used_storage field. Each bit in a used_storage 295 * represents 32 bits of storage. d2's used_storage would be initialized to 0xfffffffc. 296 * Then, if we wanted to determine whether s4 could be allocated, we would "and" 297 * s4's storage_mask with s4's *master_storage. If the result is zero, s4 is free and 298 * to allocate: *master_storage |= storage_mask. To free, *master_storage &= ~storage_mask. 299 * 300 * For an X86 vector register example, storage_mask would be: 301 * 0x00000001 for 32-bit view of xmm1 302 * 0x00000003 for 64-bit view of xmm1 303 * 0x0000000f for 128-bit view of xmm1 304 * 0x000000ff for 256-bit view of ymm1 // future expansion, if needed 305 * 0x0000ffff for 512-bit view of ymm1 // future expansion, if needed 306 * 0xffffffff for 1024-bit view of ymm1 // future expansion, if needed 307 * 308 * The "liveness" of a register is handled in a similar way. The liveness_ storage is 309 * held in the widest member of an aliased set. Note, though, that for a temp register to 310 * reused as live, it must both be marked live and the associated SReg() must match the 311 * desired s_reg. This gets a little complicated when dealing with aliased registers. All 312 * members of an aliased set will share the same liveness flags, but each will individually 313 * maintain s_reg_. In this way we can know that at least one member of an 314 * aliased set is live, but will only fully match on the appropriate alias view. For example, 315 * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9 316 * because it is wide), its aliases s2 and s3 will show as live, but will have 317 * s_reg_ == INVALID_SREG. An attempt to later AllocLiveReg() of v9 with a single-precision 318 * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9. 319 * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will 320 * report that v9 is currently not live as a single (which is what we want). 321 * 322 * NOTE: the x86 usage is still somewhat in flux. There are competing notions of how 323 * to treat xmm registers: 324 * 1. Treat them all as 128-bits wide, but denote how much data used via bytes field. 325 * o This more closely matches reality, but means you'd need to be able to get 326 * to the associated RegisterInfo struct to figure out how it's being used. 327 * o This is how 64-bit core registers will be used - always 64 bits, but the 328 * "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage. 329 * 2. View the xmm registers based on contents. 330 * o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would 331 * be a k64BitVector. 332 * o Note that the two uses above would be considered distinct registers (but with 333 * the aliasing mechanism, we could detect interference). 334 * o This is how aliased double and single float registers will be handled on 335 * Arm and MIPS. 336 * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and 337 * mechanism 2 for aliased float registers and x86 vector registers. 338 */ 339 class RegisterInfo { 340 public: 341 RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll); 342 ~RegisterInfo() {} 343 static void* operator new(size_t size, ArenaAllocator* arena) { 344 return arena->Alloc(size, kArenaAllocRegAlloc); 345 } 346 347 static const uint32_t k32SoloStorageMask = 0x00000001; 348 static const uint32_t kLowSingleStorageMask = 0x00000001; 349 static const uint32_t kHighSingleStorageMask = 0x00000002; 350 static const uint32_t k64SoloStorageMask = 0x00000003; 351 static const uint32_t k128SoloStorageMask = 0x0000000f; 352 static const uint32_t k256SoloStorageMask = 0x000000ff; 353 static const uint32_t k512SoloStorageMask = 0x0000ffff; 354 static const uint32_t k1024SoloStorageMask = 0xffffffff; 355 356 bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; } 357 void MarkInUse() { master_->used_storage_ |= storage_mask_; } 358 void MarkFree() { master_->used_storage_ &= ~storage_mask_; } 359 // No part of the containing storage is live in this view. 360 bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; } 361 // Liveness of this view matches. Note: not equivalent to !IsDead(). 362 bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; } 363 void MarkLive(int s_reg) { 364 // TODO: Anything useful to assert here? 365 s_reg_ = s_reg; 366 master_->liveness_ |= storage_mask_; 367 } 368 void MarkDead() { 369 if (SReg() != INVALID_SREG) { 370 s_reg_ = INVALID_SREG; 371 master_->liveness_ &= ~storage_mask_; 372 ResetDefBody(); 373 } 374 } 375 RegStorage GetReg() { return reg_; } 376 void SetReg(RegStorage reg) { reg_ = reg; } 377 bool IsTemp() { return is_temp_; } 378 void SetIsTemp(bool val) { is_temp_ = val; } 379 bool IsWide() { return wide_value_; } 380 void SetIsWide(bool val) { 381 wide_value_ = val; 382 if (!val) { 383 // If not wide, reset partner to self. 384 SetPartner(GetReg()); 385 } 386 } 387 bool IsDirty() { return dirty_; } 388 void SetIsDirty(bool val) { dirty_ = val; } 389 RegStorage Partner() { return partner_; } 390 void SetPartner(RegStorage partner) { partner_ = partner; } 391 int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; } 392 const ResourceMask& DefUseMask() { return def_use_mask_; } 393 void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; } 394 RegisterInfo* Master() { return master_; } 395 void SetMaster(RegisterInfo* master) { 396 master_ = master; 397 if (master != this) { 398 master_->aliased_ = true; 399 DCHECK(alias_chain_ == nullptr); 400 alias_chain_ = master_->alias_chain_; 401 master_->alias_chain_ = this; 402 } 403 } 404 bool IsAliased() { return aliased_; } 405 RegisterInfo* GetAliasChain() { return alias_chain_; } 406 uint32_t StorageMask() { return storage_mask_; } 407 void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; } 408 LIR* DefStart() { return def_start_; } 409 void SetDefStart(LIR* def_start) { def_start_ = def_start; } 410 LIR* DefEnd() { return def_end_; } 411 void SetDefEnd(LIR* def_end) { def_end_ = def_end; } 412 void ResetDefBody() { def_start_ = def_end_ = nullptr; } 413 // Find member of aliased set matching storage_used; return nullptr if none. 414 RegisterInfo* FindMatchingView(uint32_t storage_used) { 415 RegisterInfo* res = Master(); 416 for (; res != nullptr; res = res->GetAliasChain()) { 417 if (res->StorageMask() == storage_used) 418 break; 419 } 420 return res; 421 } 422 423 private: 424 RegStorage reg_; 425 bool is_temp_; // Can allocate as temp? 426 bool wide_value_; // Holds a Dalvik wide value (either itself, or part of a pair). 427 bool dirty_; // If live, is it dirty? 428 bool aliased_; // Is this the master for other aliased RegisterInfo's? 429 RegStorage partner_; // If wide_value, other reg of pair or self if 64-bit register. 430 int s_reg_; // Name of live value. 431 ResourceMask def_use_mask_; // Resources for this element. 432 uint32_t used_storage_; // 1 bit per 4 bytes of storage. Unused by aliases. 433 uint32_t liveness_; // 1 bit per 4 bytes of storage. Unused by aliases. 434 RegisterInfo* master_; // Pointer to controlling storage mask. 435 uint32_t storage_mask_; // Track allocation of sub-units. 436 LIR *def_start_; // Starting inst in last def sequence. 437 LIR *def_end_; // Ending inst in last def sequence. 438 RegisterInfo* alias_chain_; // Chain of aliased registers. 439 }; 440 441 class RegisterPool { 442 public: 443 RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, 444 const ArrayRef<const RegStorage>& core_regs, 445 const ArrayRef<const RegStorage>& core64_regs, 446 const ArrayRef<const RegStorage>& sp_regs, 447 const ArrayRef<const RegStorage>& dp_regs, 448 const ArrayRef<const RegStorage>& reserved_regs, 449 const ArrayRef<const RegStorage>& reserved64_regs, 450 const ArrayRef<const RegStorage>& core_temps, 451 const ArrayRef<const RegStorage>& core64_temps, 452 const ArrayRef<const RegStorage>& sp_temps, 453 const ArrayRef<const RegStorage>& dp_temps); 454 ~RegisterPool() {} 455 static void* operator new(size_t size, ArenaAllocator* arena) { 456 return arena->Alloc(size, kArenaAllocRegAlloc); 457 } 458 void ResetNextTemp() { 459 next_core_reg_ = 0; 460 next_sp_reg_ = 0; 461 next_dp_reg_ = 0; 462 } 463 GrowableArray<RegisterInfo*> core_regs_; 464 int next_core_reg_; 465 GrowableArray<RegisterInfo*> core64_regs_; 466 int next_core64_reg_; 467 GrowableArray<RegisterInfo*> sp_regs_; // Single precision float. 468 int next_sp_reg_; 469 GrowableArray<RegisterInfo*> dp_regs_; // Double precision float. 470 int next_dp_reg_; 471 GrowableArray<RegisterInfo*>* ref_regs_; // Points to core_regs_ or core64_regs_ 472 int* next_ref_reg_; 473 474 private: 475 Mir2Lir* const m2l_; 476 }; 477 478 struct PromotionMap { 479 RegLocationType core_location:3; 480 uint8_t core_reg; 481 RegLocationType fp_location:3; 482 uint8_t fp_reg; 483 bool first_in_pair; 484 }; 485 486 // 487 // Slow paths. This object is used generate a sequence of code that is executed in the 488 // slow path. For example, resolving a string or class is slow as it will only be executed 489 // once (after that it is resolved and doesn't need to be done again). We want slow paths 490 // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward 491 // branch over them. 492 // 493 // If you want to create a slow path, declare a class derived from LIRSlowPath and provide 494 // the Compile() function that will be called near the end of the code generated by the 495 // method. 496 // 497 // The basic flow for a slow path is: 498 // 499 // CMP reg, #value 500 // BEQ fromfast 501 // cont: 502 // ... 503 // fast path code 504 // ... 505 // more code 506 // ... 507 // RETURN 508 /// 509 // fromfast: 510 // ... 511 // slow path code 512 // ... 513 // B cont 514 // 515 // So you see we need two labels and two branches. The first branch (called fromfast) is 516 // the conditional branch to the slow path code. The second label (called cont) is used 517 // as an unconditional branch target for getting back to the code after the slow path 518 // has completed. 519 // 520 521 class LIRSlowPath { 522 public: 523 LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast, 524 LIR* cont = nullptr) : 525 m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) { 526 m2l->StartSlowPath(this); 527 } 528 virtual ~LIRSlowPath() {} 529 virtual void Compile() = 0; 530 531 static void* operator new(size_t size, ArenaAllocator* arena) { 532 return arena->Alloc(size, kArenaAllocData); 533 } 534 535 LIR *GetContinuationLabel() { 536 return cont_; 537 } 538 539 LIR *GetFromFast() { 540 return fromfast_; 541 } 542 543 protected: 544 LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel); 545 546 Mir2Lir* const m2l_; 547 CompilationUnit* const cu_; 548 const DexOffset current_dex_pc_; 549 LIR* const fromfast_; 550 LIR* const cont_; 551 }; 552 553 // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_. 554 class ScopedMemRefType { 555 public: 556 ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type) 557 : m2l_(m2l), 558 old_mem_ref_type_(m2l->mem_ref_type_) { 559 m2l_->mem_ref_type_ = new_mem_ref_type; 560 } 561 562 ~ScopedMemRefType() { 563 m2l_->mem_ref_type_ = old_mem_ref_type_; 564 } 565 566 private: 567 Mir2Lir* const m2l_; 568 ResourceMask::ResourceBit old_mem_ref_type_; 569 570 DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType); 571 }; 572 573 virtual ~Mir2Lir() {} 574 575 /** 576 * @brief Decodes the LIR offset. 577 * @return Returns the scaled offset of LIR. 578 */ 579 virtual size_t GetInstructionOffset(LIR* lir); 580 581 int32_t s4FromSwitchData(const void* switch_data) { 582 return *reinterpret_cast<const int32_t*>(switch_data); 583 } 584 585 /* 586 * TODO: this is a trace JIT vestige, and its use should be reconsidered. At the time 587 * it was introduced, it was intended to be a quick best guess of type without having to 588 * take the time to do type analysis. Currently, though, we have a much better idea of 589 * the types of Dalvik virtual registers. Instead of using this for a best guess, why not 590 * just use our knowledge of type to select the most appropriate register class? 591 */ 592 RegisterClass RegClassBySize(OpSize size) { 593 if (size == kReference) { 594 return kRefReg; 595 } else { 596 return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte || 597 size == kSignedByte) ? kCoreReg : kAnyReg; 598 } 599 } 600 601 size_t CodeBufferSizeInBytes() { 602 return code_buffer_.size() / sizeof(code_buffer_[0]); 603 } 604 605 static bool IsPseudoLirOp(int opcode) { 606 return (opcode < 0); 607 } 608 609 /* 610 * LIR operands are 32-bit integers. Sometimes, (especially for managing 611 * instructions which require PC-relative fixups), we need the operands to carry 612 * pointers. To do this, we assign these pointers an index in pointer_storage_, and 613 * hold that index in the operand array. 614 * TUNING: If use of these utilities becomes more common on 32-bit builds, it 615 * may be worth conditionally-compiling a set of identity functions here. 616 */ 617 uint32_t WrapPointer(void* pointer) { 618 uint32_t res = pointer_storage_.Size(); 619 pointer_storage_.Insert(pointer); 620 return res; 621 } 622 623 void* UnwrapPointer(size_t index) { 624 return pointer_storage_.Get(index); 625 } 626 627 // strdup(), but allocates from the arena. 628 char* ArenaStrdup(const char* str) { 629 size_t len = strlen(str) + 1; 630 char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc)); 631 if (res != NULL) { 632 strncpy(res, str, len); 633 } 634 return res; 635 } 636 637 // Shared by all targets - implemented in codegen_util.cc 638 void AppendLIR(LIR* lir); 639 void InsertLIRBefore(LIR* current_lir, LIR* new_lir); 640 void InsertLIRAfter(LIR* current_lir, LIR* new_lir); 641 642 /** 643 * @brief Provides the maximum number of compiler temporaries that the backend can/wants 644 * to place in a frame. 645 * @return Returns the maximum number of compiler temporaries. 646 */ 647 size_t GetMaxPossibleCompilerTemps() const; 648 649 /** 650 * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries. 651 * @return Returns the size in bytes for space needed for compiler temporary spill region. 652 */ 653 size_t GetNumBytesForCompilerTempSpillRegion(); 654 655 DexOffset GetCurrentDexPc() const { 656 return current_dalvik_offset_; 657 } 658 659 RegisterClass ShortyToRegClass(char shorty_type); 660 RegisterClass LocToRegClass(RegLocation loc); 661 int ComputeFrameSize(); 662 virtual void Materialize(); 663 virtual CompiledMethod* GetCompiledMethod(); 664 void MarkSafepointPC(LIR* inst); 665 void MarkSafepointPCAfter(LIR* after); 666 void SetupResourceMasks(LIR* lir); 667 void SetMemRefType(LIR* lir, bool is_load, int mem_type); 668 void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit); 669 void SetupRegMask(ResourceMask* mask, int reg); 670 void ClearRegMask(ResourceMask* mask, int reg); 671 void DumpLIRInsn(LIR* arg, unsigned char* base_addr); 672 void EliminateLoad(LIR* lir, int reg_id); 673 void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type); 674 void DumpPromotionMap(); 675 void CodegenDump(); 676 LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0, 677 int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL); 678 LIR* NewLIR0(int opcode); 679 LIR* NewLIR1(int opcode, int dest); 680 LIR* NewLIR2(int opcode, int dest, int src1); 681 LIR* NewLIR2NoDest(int opcode, int src, int info); 682 LIR* NewLIR3(int opcode, int dest, int src1, int src2); 683 LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info); 684 LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2); 685 LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta); 686 LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi); 687 LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method); 688 LIR* AddWordData(LIR* *constant_list_p, int value); 689 LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi); 690 void ProcessSwitchTables(); 691 void DumpSparseSwitchTable(const uint16_t* table); 692 void DumpPackedSwitchTable(const uint16_t* table); 693 void MarkBoundary(DexOffset offset, const char* inst_str); 694 void NopLIR(LIR* lir); 695 void UnlinkLIR(LIR* lir); 696 bool EvaluateBranch(Instruction::Code opcode, int src1, int src2); 697 bool IsInexpensiveConstant(RegLocation rl_src); 698 ConditionCode FlipComparisonOrder(ConditionCode before); 699 ConditionCode NegateComparison(ConditionCode before); 700 virtual void InstallLiteralPools(); 701 void InstallSwitchTables(); 702 void InstallFillArrayData(); 703 bool VerifyCatchEntries(); 704 void CreateMappingTables(); 705 void CreateNativeGcMap(); 706 int AssignLiteralOffset(CodeOffset offset); 707 int AssignSwitchTablesOffset(CodeOffset offset); 708 int AssignFillArrayDataOffset(CodeOffset offset); 709 virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal); 710 void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec); 711 void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec); 712 713 virtual void StartSlowPath(LIRSlowPath* slowpath) {} 714 virtual void BeginInvoke(CallInfo* info) {} 715 virtual void EndInvoke(CallInfo* info) {} 716 717 718 // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation. No code generated. 719 virtual RegLocation NarrowRegLoc(RegLocation loc); 720 721 // Shared by all targets - implemented in local_optimizations.cc 722 void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src); 723 void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir); 724 void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir); 725 virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir); 726 727 // Shared by all targets - implemented in ralloc_util.cc 728 int GetSRegHi(int lowSreg); 729 bool LiveOut(int s_reg); 730 void SimpleRegAlloc(); 731 void ResetRegPool(); 732 void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num); 733 void DumpRegPool(GrowableArray<RegisterInfo*>* regs); 734 void DumpCoreRegPool(); 735 void DumpFpRegPool(); 736 void DumpRegPools(); 737 /* Mark a temp register as dead. Does not affect allocation state. */ 738 void Clobber(RegStorage reg); 739 void ClobberSReg(int s_reg); 740 void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask); 741 int SRegToPMap(int s_reg); 742 void RecordCorePromotion(RegStorage reg, int s_reg); 743 RegStorage AllocPreservedCoreReg(int s_reg); 744 void RecordFpPromotion(RegStorage reg, int s_reg); 745 RegStorage AllocPreservedFpReg(int s_reg); 746 virtual RegStorage AllocPreservedSingle(int s_reg); 747 virtual RegStorage AllocPreservedDouble(int s_reg); 748 RegStorage AllocTempBody(GrowableArray<RegisterInfo*> ®s, int* next_temp, bool required); 749 virtual RegStorage AllocTemp(bool required = true); 750 virtual RegStorage AllocTempWide(bool required = true); 751 virtual RegStorage AllocTempRef(bool required = true); 752 virtual RegStorage AllocTempSingle(bool required = true); 753 virtual RegStorage AllocTempDouble(bool required = true); 754 virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true); 755 virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true); 756 void FlushReg(RegStorage reg); 757 void FlushRegWide(RegStorage reg); 758 RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide); 759 RegStorage FindLiveReg(GrowableArray<RegisterInfo*> ®s, int s_reg); 760 virtual void FreeTemp(RegStorage reg); 761 virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free); 762 virtual bool IsLive(RegStorage reg); 763 virtual bool IsTemp(RegStorage reg); 764 bool IsPromoted(RegStorage reg); 765 bool IsDirty(RegStorage reg); 766 virtual void LockTemp(RegStorage reg); 767 void ResetDef(RegStorage reg); 768 void NullifyRange(RegStorage reg, int s_reg); 769 void MarkDef(RegLocation rl, LIR *start, LIR *finish); 770 void MarkDefWide(RegLocation rl, LIR *start, LIR *finish); 771 void ResetDefLoc(RegLocation rl); 772 void ResetDefLocWide(RegLocation rl); 773 void ResetDefTracking(); 774 void ClobberAllTemps(); 775 void FlushSpecificReg(RegisterInfo* info); 776 void FlushAllRegs(); 777 bool RegClassMatches(int reg_class, RegStorage reg); 778 void MarkLive(RegLocation loc); 779 void MarkTemp(RegStorage reg); 780 void UnmarkTemp(RegStorage reg); 781 void MarkWide(RegStorage reg); 782 void MarkNarrow(RegStorage reg); 783 void MarkClean(RegLocation loc); 784 void MarkDirty(RegLocation loc); 785 void MarkInUse(RegStorage reg); 786 bool CheckCorePoolSanity(); 787 virtual RegLocation UpdateLoc(RegLocation loc); 788 virtual RegLocation UpdateLocWide(RegLocation loc); 789 RegLocation UpdateRawLoc(RegLocation loc); 790 791 /** 792 * @brief Used to prepare a register location to receive a wide value. 793 * @see EvalLoc 794 * @param loc the location where the value will be stored. 795 * @param reg_class Type of register needed. 796 * @param update Whether the liveness information should be updated. 797 * @return Returns the properly typed temporary in physical register pairs. 798 */ 799 virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update); 800 801 /** 802 * @brief Used to prepare a register location to receive a value. 803 * @param loc the location where the value will be stored. 804 * @param reg_class Type of register needed. 805 * @param update Whether the liveness information should be updated. 806 * @return Returns the properly typed temporary in physical register. 807 */ 808 virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update); 809 810 void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs); 811 void DumpCounts(const RefCounts* arr, int size, const char* msg); 812 void DoPromotion(); 813 int VRegOffset(int v_reg); 814 int SRegOffset(int s_reg); 815 RegLocation GetReturnWide(RegisterClass reg_class); 816 RegLocation GetReturn(RegisterClass reg_class); 817 RegisterInfo* GetRegInfo(RegStorage reg); 818 819 // Shared by all targets - implemented in gen_common.cc. 820 void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr); 821 virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, 822 RegLocation rl_src, RegLocation rl_dest, int lit); 823 bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit); 824 virtual void HandleSlowPaths(); 825 void GenBarrier(); 826 void GenDivZeroException(); 827 // c_code holds condition code that's generated from testing divisor against 0. 828 void GenDivZeroCheck(ConditionCode c_code); 829 // reg holds divisor. 830 void GenDivZeroCheck(RegStorage reg); 831 void GenArrayBoundsCheck(RegStorage index, RegStorage length); 832 void GenArrayBoundsCheck(int32_t index, RegStorage length); 833 LIR* GenNullCheck(RegStorage reg); 834 void MarkPossibleNullPointerException(int opt_flags); 835 void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after); 836 void MarkPossibleStackOverflowException(); 837 void ForceImplicitNullCheck(RegStorage reg, int opt_flags); 838 LIR* GenNullCheck(RegStorage m_reg, int opt_flags); 839 LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags); 840 virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags); 841 void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, 842 RegLocation rl_src2, LIR* taken, LIR* fall_through); 843 void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, 844 LIR* taken, LIR* fall_through); 845 virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src); 846 void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, 847 RegLocation rl_src); 848 void GenNewArray(uint32_t type_idx, RegLocation rl_dest, 849 RegLocation rl_src); 850 void GenFilledNewArray(CallInfo* info); 851 void GenSput(MIR* mir, RegLocation rl_src, 852 bool is_long_or_double, bool is_object); 853 void GenSget(MIR* mir, RegLocation rl_dest, 854 bool is_long_or_double, bool is_object); 855 void GenIGet(MIR* mir, int opt_flags, OpSize size, 856 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object); 857 void GenIPut(MIR* mir, int opt_flags, OpSize size, 858 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object); 859 void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index, 860 RegLocation rl_src); 861 862 void GenConstClass(uint32_t type_idx, RegLocation rl_dest); 863 void GenConstString(uint32_t string_idx, RegLocation rl_dest); 864 void GenNewInstance(uint32_t type_idx, RegLocation rl_dest); 865 void GenThrow(RegLocation rl_src); 866 void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src); 867 void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src); 868 void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, 869 RegLocation rl_src1, RegLocation rl_src2); 870 virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, 871 RegLocation rl_src1, RegLocation rl_shift); 872 void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, 873 RegLocation rl_src, int lit); 874 virtual void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, 875 RegLocation rl_src1, RegLocation rl_src2); 876 void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src); 877 virtual void GenSuspendTest(int opt_flags); 878 virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target); 879 880 // This will be overridden by x86 implementation. 881 virtual void GenConstWide(RegLocation rl_dest, int64_t value); 882 virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, 883 RegLocation rl_src1, RegLocation rl_src2); 884 885 // Shared by all targets - implemented in gen_invoke.cc. 886 LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc, 887 bool use_link = true); 888 RegStorage CallHelperSetup(QuickEntrypointEnum trampoline); 889 890 void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc); 891 void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc); 892 void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc); 893 void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0, 894 bool safepoint_pc); 895 void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1, 896 bool safepoint_pc); 897 void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1, 898 bool safepoint_pc); 899 void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1, 900 bool safepoint_pc); 901 void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1, 902 bool safepoint_pc); 903 void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1, 904 bool safepoint_pc); 905 void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc); 906 void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0, 907 bool safepoint_pc); 908 void CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0, 909 RegLocation arg2, bool safepoint_pc); 910 void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0, 911 RegLocation arg1, bool safepoint_pc); 912 void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1, 913 bool safepoint_pc); 914 void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, 915 RegStorage arg1, int arg2, bool safepoint_pc); 916 void CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0, 917 RegLocation arg2, bool safepoint_pc); 918 void CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2, 919 bool safepoint_pc); 920 void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0, 921 RegLocation arg1, RegLocation arg2, 922 bool safepoint_pc); 923 void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline, 924 RegLocation arg0, RegLocation arg1, 925 RegLocation arg2, 926 bool safepoint_pc); 927 void GenInvoke(CallInfo* info); 928 void GenInvokeNoInline(CallInfo* info); 929 virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method); 930 virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel, 931 NextCallInsn next_call_insn, 932 const MethodReference& target_method, 933 uint32_t vtable_idx, 934 uintptr_t direct_code, uintptr_t direct_method, InvokeType type, 935 bool skip_this); 936 virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel, 937 NextCallInsn next_call_insn, 938 const MethodReference& target_method, 939 uint32_t vtable_idx, 940 uintptr_t direct_code, uintptr_t direct_method, InvokeType type, 941 bool skip_this); 942 943 /** 944 * @brief Used to determine the register location of destination. 945 * @details This is needed during generation of inline intrinsics because it finds destination 946 * of return, 947 * either the physical register or the target of move-result. 948 * @param info Information about the invoke. 949 * @return Returns the destination location. 950 */ 951 RegLocation InlineTarget(CallInfo* info); 952 953 /** 954 * @brief Used to determine the wide register location of destination. 955 * @see InlineTarget 956 * @param info Information about the invoke. 957 * @return Returns the destination location. 958 */ 959 RegLocation InlineTargetWide(CallInfo* info); 960 961 bool GenInlinedReferenceGetReferent(CallInfo* info); 962 virtual bool GenInlinedCharAt(CallInfo* info); 963 bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty); 964 virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size); 965 bool GenInlinedReverseBytes(CallInfo* info, OpSize size); 966 bool GenInlinedAbsInt(CallInfo* info); 967 virtual bool GenInlinedAbsLong(CallInfo* info); 968 virtual bool GenInlinedAbsFloat(CallInfo* info) = 0; 969 virtual bool GenInlinedAbsDouble(CallInfo* info) = 0; 970 bool GenInlinedFloatCvt(CallInfo* info); 971 bool GenInlinedDoubleCvt(CallInfo* info); 972 virtual bool GenInlinedCeil(CallInfo* info); 973 virtual bool GenInlinedFloor(CallInfo* info); 974 virtual bool GenInlinedRint(CallInfo* info); 975 virtual bool GenInlinedRound(CallInfo* info, bool is_double); 976 virtual bool GenInlinedArrayCopyCharArray(CallInfo* info); 977 virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based); 978 bool GenInlinedStringCompareTo(CallInfo* info); 979 virtual bool GenInlinedCurrentThread(CallInfo* info); 980 bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile); 981 bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object, 982 bool is_volatile, bool is_ordered); 983 virtual int LoadArgRegs(CallInfo* info, int call_state, 984 NextCallInsn next_call_insn, 985 const MethodReference& target_method, 986 uint32_t vtable_idx, 987 uintptr_t direct_code, uintptr_t direct_method, InvokeType type, 988 bool skip_this); 989 990 // Shared by all targets - implemented in gen_loadstore.cc. 991 RegLocation LoadCurrMethod(); 992 void LoadCurrMethodDirect(RegStorage r_tgt); 993 virtual LIR* LoadConstant(RegStorage r_dest, int value); 994 // Natural word size. 995 virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) { 996 return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile); 997 } 998 // Load 32 bits, regardless of target. 999 virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest) { 1000 return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile); 1001 } 1002 // Load a reference at base + displacement and decompress into register. 1003 virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest, 1004 VolatileKind is_volatile) { 1005 return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile); 1006 } 1007 // Load a reference at base + index and decompress into register. 1008 virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, 1009 int scale) { 1010 return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference); 1011 } 1012 // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. 1013 virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind); 1014 // Same as above, but derive the target register class from the location record. 1015 virtual RegLocation LoadValue(RegLocation rl_src); 1016 // Load Dalvik value with 64-bit memory storage. 1017 virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind); 1018 // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. 1019 virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest); 1020 // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. 1021 virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest); 1022 // Load Dalvik value with 64-bit memory storage. 1023 virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest); 1024 // Load Dalvik value with 64-bit memory storage. 1025 virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest); 1026 // Store an item of natural word size. 1027 virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) { 1028 return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile); 1029 } 1030 // Store an uncompressed reference into a compressed 32-bit container. 1031 virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src, 1032 VolatileKind is_volatile) { 1033 return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile); 1034 } 1035 // Store an uncompressed reference into a compressed 32-bit container by index. 1036 virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, 1037 int scale) { 1038 return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference); 1039 } 1040 // Store 32 bits, regardless of target. 1041 virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) { 1042 return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile); 1043 } 1044 1045 /** 1046 * @brief Used to do the final store in the destination as per bytecode semantics. 1047 * @param rl_dest The destination dalvik register location. 1048 * @param rl_src The source register location. Can be either physical register or dalvik register. 1049 */ 1050 virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src); 1051 1052 /** 1053 * @brief Used to do the final store in a wide destination as per bytecode semantics. 1054 * @see StoreValue 1055 * @param rl_dest The destination dalvik register location. 1056 * @param rl_src The source register location. Can be either physical register or dalvik 1057 * register. 1058 */ 1059 virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src); 1060 1061 /** 1062 * @brief Used to do the final store to a destination as per bytecode semantics. 1063 * @see StoreValue 1064 * @param rl_dest The destination dalvik register location. 1065 * @param rl_src The source register location. It must be kLocPhysReg 1066 * 1067 * This is used for x86 two operand computations, where we have computed the correct 1068 * register value that now needs to be properly registered. This is used to avoid an 1069 * extra register copy that would result if StoreValue was called. 1070 */ 1071 virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src); 1072 1073 /** 1074 * @brief Used to do the final store in a wide destination as per bytecode semantics. 1075 * @see StoreValueWide 1076 * @param rl_dest The destination dalvik register location. 1077 * @param rl_src The source register location. It must be kLocPhysReg 1078 * 1079 * This is used for x86 two operand computations, where we have computed the correct 1080 * register values that now need to be properly registered. This is used to avoid an 1081 * extra pair of register copies that would result if StoreValueWide was called. 1082 */ 1083 virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src); 1084 1085 // Shared by all targets - implemented in mir_to_lir.cc. 1086 void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list); 1087 virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir); 1088 bool MethodBlockCodeGen(BasicBlock* bb); 1089 bool SpecialMIR2LIR(const InlineMethod& special); 1090 virtual void MethodMIR2LIR(); 1091 // Update LIR for verbose listings. 1092 void UpdateLIROffsets(); 1093 1094 /* 1095 * @brief Load the address of the dex method into the register. 1096 * @param target_method The MethodReference of the method to be invoked. 1097 * @param type How the method will be invoked. 1098 * @param register that will contain the code address. 1099 * @note register will be passed to TargetReg to get physical register. 1100 */ 1101 void LoadCodeAddress(const MethodReference& target_method, InvokeType type, 1102 SpecialTargetRegister symbolic_reg); 1103 1104 /* 1105 * @brief Load the Method* of a dex method into the register. 1106 * @param target_method The MethodReference of the method to be invoked. 1107 * @param type How the method will be invoked. 1108 * @param register that will contain the code address. 1109 * @note register will be passed to TargetReg to get physical register. 1110 */ 1111 virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type, 1112 SpecialTargetRegister symbolic_reg); 1113 1114 /* 1115 * @brief Load the Class* of a Dex Class type into the register. 1116 * @param type How the method will be invoked. 1117 * @param register that will contain the code address. 1118 * @note register will be passed to TargetReg to get physical register. 1119 */ 1120 virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg); 1121 1122 // Routines that work for the generic case, but may be overriden by target. 1123 /* 1124 * @brief Compare memory to immediate, and branch if condition true. 1125 * @param cond The condition code that when true will branch to the target. 1126 * @param temp_reg A temporary register that can be used if compare to memory is not 1127 * supported by the architecture. 1128 * @param base_reg The register holding the base address. 1129 * @param offset The offset from the base. 1130 * @param check_value The immediate to compare to. 1131 * @param target branch target (or nullptr) 1132 * @param compare output for getting LIR for comparison (or nullptr) 1133 * @returns The branch instruction that was generated. 1134 */ 1135 virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, 1136 int offset, int check_value, LIR* target, LIR** compare); 1137 1138 // Required for target - codegen helpers. 1139 virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, 1140 RegLocation rl_src, RegLocation rl_dest, int lit) = 0; 1141 virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0; 1142 virtual LIR* CheckSuspendUsingLoad() = 0; 1143 1144 virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0; 1145 1146 virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, 1147 OpSize size, VolatileKind is_volatile) = 0; 1148 virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, 1149 int scale, OpSize size) = 0; 1150 virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0; 1151 virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0; 1152 virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, 1153 OpSize size, VolatileKind is_volatile) = 0; 1154 virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, 1155 int scale, OpSize size) = 0; 1156 virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0; 1157 1158 // Required for target - register utilities. 1159 1160 bool IsSameReg(RegStorage reg1, RegStorage reg2) { 1161 RegisterInfo* info1 = GetRegInfo(reg1); 1162 RegisterInfo* info2 = GetRegInfo(reg2); 1163 return (info1->Master() == info2->Master() && 1164 (info1->StorageMask() & info2->StorageMask()) != 0); 1165 } 1166 1167 /** 1168 * @brief Portable way of getting special registers from the backend. 1169 * @param reg Enumeration describing the purpose of the register. 1170 * @return Return the #RegStorage corresponding to the given purpose @p reg. 1171 * @note This function is currently allowed to return any suitable view of the registers 1172 * (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends). 1173 */ 1174 virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0; 1175 1176 /** 1177 * @brief Portable way of getting special registers from the backend. 1178 * @param reg Enumeration describing the purpose of the register. 1179 * @param wide_kind What kind of view of the special register is required. 1180 * @return Return the #RegStorage corresponding to the given purpose @p reg. 1181 * 1182 * @note For 32b system, wide (kWide) views only make sense for the argument registers and the 1183 * return. In that case, this function should return a pair where the first component of 1184 * the result will be the indicated special register. 1185 */ 1186 virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) { 1187 if (wide_kind == kWide) { 1188 DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg)); 1189 COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) && 1190 (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) && 1191 (kArg7 == kArg6 + 1), kargs_range_unexpected); 1192 COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) && 1193 (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) && 1194 (kFArg7 == kFArg6 + 1), kfargs_range_unexpected); 1195 COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected); 1196 return RegStorage::MakeRegPair(TargetReg(reg), 1197 TargetReg(static_cast<SpecialTargetRegister>(reg + 1))); 1198 } else { 1199 return TargetReg(reg); 1200 } 1201 } 1202 1203 /** 1204 * @brief Portable way of getting a special register for storing a pointer. 1205 * @see TargetReg() 1206 */ 1207 virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) { 1208 return TargetReg(reg); 1209 } 1210 1211 // Get a reg storage corresponding to the wide & ref flags of the reg location. 1212 virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) { 1213 if (loc.ref) { 1214 return TargetReg(reg, kRef); 1215 } else { 1216 return TargetReg(reg, loc.wide ? kWide : kNotWide); 1217 } 1218 } 1219 1220 virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0; 1221 virtual RegLocation GetReturnAlt() = 0; 1222 virtual RegLocation GetReturnWideAlt() = 0; 1223 virtual RegLocation LocCReturn() = 0; 1224 virtual RegLocation LocCReturnRef() = 0; 1225 virtual RegLocation LocCReturnDouble() = 0; 1226 virtual RegLocation LocCReturnFloat() = 0; 1227 virtual RegLocation LocCReturnWide() = 0; 1228 virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0; 1229 virtual void AdjustSpillMask() = 0; 1230 virtual void ClobberCallerSave() = 0; 1231 virtual void FreeCallTemps() = 0; 1232 virtual void LockCallTemps() = 0; 1233 virtual void CompilerInitializeRegAlloc() = 0; 1234 1235 // Required for target - miscellaneous. 1236 virtual void AssembleLIR() = 0; 1237 virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0; 1238 virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags, 1239 ResourceMask* use_mask, ResourceMask* def_mask) = 0; 1240 virtual const char* GetTargetInstFmt(int opcode) = 0; 1241 virtual const char* GetTargetInstName(int opcode) = 0; 1242 virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0; 1243 1244 // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must 1245 // take care of this. 1246 virtual ResourceMask GetPCUseDefEncoding() const = 0; 1247 virtual uint64_t GetTargetInstFlags(int opcode) = 0; 1248 virtual size_t GetInsnSize(LIR* lir) = 0; 1249 virtual bool IsUnconditionalBranch(LIR* lir) = 0; 1250 1251 // Get the register class for load/store of a field. 1252 virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0; 1253 1254 // Required for target - Dalvik-level generators. 1255 virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, 1256 RegLocation rl_src1, RegLocation rl_src2) = 0; 1257 virtual void GenArithOpDouble(Instruction::Code opcode, 1258 RegLocation rl_dest, RegLocation rl_src1, 1259 RegLocation rl_src2) = 0; 1260 virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, 1261 RegLocation rl_src1, RegLocation rl_src2) = 0; 1262 virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, 1263 RegLocation rl_src1, RegLocation rl_src2) = 0; 1264 virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest, 1265 RegLocation rl_src) = 0; 1266 virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0; 1267 1268 /** 1269 * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max. 1270 * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm 1271 * that applies on integers. The generated code will write the smallest or largest value 1272 * directly into the destination register as specified by the invoke information. 1273 * @param info Information about the invoke. 1274 * @param is_min If true generates code that computes minimum. Otherwise computes maximum. 1275 * @param is_long If true the value value is Long. Otherwise the value is Int. 1276 * @return Returns true if successfully generated 1277 */ 1278 virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0; 1279 virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double); 1280 1281 virtual bool GenInlinedSqrt(CallInfo* info) = 0; 1282 virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0; 1283 virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0; 1284 virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, 1285 bool is_div) = 0; 1286 virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, 1287 bool is_div) = 0; 1288 /* 1289 * @brief Generate an integer div or rem operation by a literal. 1290 * @param rl_dest Destination Location. 1291 * @param rl_src1 Numerator Location. 1292 * @param rl_src2 Divisor Location. 1293 * @param is_div 'true' if this is a division, 'false' for a remainder. 1294 * @param check_zero 'true' if an exception should be generated if the divisor is 0. 1295 */ 1296 virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, 1297 RegLocation rl_src2, bool is_div, bool check_zero) = 0; 1298 /* 1299 * @brief Generate an integer div or rem operation by a literal. 1300 * @param rl_dest Destination Location. 1301 * @param rl_src Numerator Location. 1302 * @param lit Divisor. 1303 * @param is_div 'true' if this is a division, 'false' for a remainder. 1304 */ 1305 virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, 1306 bool is_div) = 0; 1307 virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0; 1308 1309 /** 1310 * @brief Used for generating code that throws ArithmeticException if both registers are zero. 1311 * @details This is used for generating DivideByZero checks when divisor is held in two 1312 * separate registers. 1313 * @param reg The register holding the pair of 32-bit values. 1314 */ 1315 virtual void GenDivZeroCheckWide(RegStorage reg) = 0; 1316 1317 virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0; 1318 virtual void GenExitSequence() = 0; 1319 virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0; 1320 virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0; 1321 virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0; 1322 1323 /* 1324 * @brief Handle Machine Specific MIR Extended opcodes. 1325 * @param bb The basic block in which the MIR is from. 1326 * @param mir The MIR whose opcode is not standard extended MIR. 1327 * @note Base class implementation will abort for unknown opcodes. 1328 */ 1329 virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir); 1330 1331 /** 1332 * @brief Lowers the kMirOpSelect MIR into LIR. 1333 * @param bb The basic block in which the MIR is from. 1334 * @param mir The MIR whose opcode is kMirOpSelect. 1335 */ 1336 virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0; 1337 1338 /** 1339 * @brief Generates code to select one of the given constants depending on the given opcode. 1340 */ 1341 virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, 1342 int32_t true_val, int32_t false_val, RegStorage rs_dest, 1343 int dest_reg_class) = 0; 1344 1345 /** 1346 * @brief Used to generate a memory barrier in an architecture specific way. 1347 * @details The last generated LIR will be considered for use as barrier. Namely, 1348 * if the last LIR can be updated in a way where it will serve the semantics of 1349 * barrier, then it will be used as such. Otherwise, a new LIR will be generated 1350 * that can keep the semantics. 1351 * @param barrier_kind The kind of memory barrier to generate. 1352 * @return whether a new instruction was generated. 1353 */ 1354 virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0; 1355 1356 virtual void GenMoveException(RegLocation rl_dest) = 0; 1357 virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, 1358 int first_bit, int second_bit) = 0; 1359 virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0; 1360 virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0; 1361 1362 // Create code for switch statements. Will decide between short and long versions below. 1363 void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src); 1364 void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src); 1365 1366 // Potentially backend-specific versions of switch instructions for shorter switch statements. 1367 // The default implementation will create a chained compare-and-branch. 1368 virtual void GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src); 1369 virtual void GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src); 1370 // Backend-specific versions of switch instructions for longer switch statements. 1371 virtual void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0; 1372 virtual void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0; 1373 1374 virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, 1375 RegLocation rl_index, RegLocation rl_dest, int scale) = 0; 1376 virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, 1377 RegLocation rl_index, RegLocation rl_src, int scale, 1378 bool card_mark) = 0; 1379 virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, 1380 RegLocation rl_src1, RegLocation rl_shift) = 0; 1381 1382 // Required for target - single operation generators. 1383 virtual LIR* OpUnconditionalBranch(LIR* target) = 0; 1384 virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0; 1385 virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, 1386 LIR* target) = 0; 1387 virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0; 1388 virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0; 1389 virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0; 1390 virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0; 1391 virtual void OpEndIT(LIR* it) = 0; 1392 virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0; 1393 virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0; 1394 virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0; 1395 virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0; 1396 virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0; 1397 virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0; 1398 virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0; 1399 1400 /** 1401 * @brief Used to generate an LIR that does a load from mem to reg. 1402 * @param r_dest The destination physical register. 1403 * @param r_base The base physical register for memory operand. 1404 * @param offset The displacement for memory operand. 1405 * @param move_type Specification on the move desired (size, alignment, register kind). 1406 * @return Returns the generate move LIR. 1407 */ 1408 virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, 1409 MoveType move_type) = 0; 1410 1411 /** 1412 * @brief Used to generate an LIR that does a store from reg to mem. 1413 * @param r_base The base physical register for memory operand. 1414 * @param offset The displacement for memory operand. 1415 * @param r_src The destination physical register. 1416 * @param bytes_to_move The number of bytes to move. 1417 * @param is_aligned Whether the memory location is known to be aligned. 1418 * @return Returns the generate move LIR. 1419 */ 1420 virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, 1421 MoveType move_type) = 0; 1422 1423 /** 1424 * @brief Used for generating a conditional register to register operation. 1425 * @param op The opcode kind. 1426 * @param cc The condition code that when true will perform the opcode. 1427 * @param r_dest The destination physical register. 1428 * @param r_src The source physical register. 1429 * @return Returns the newly created LIR or null in case of creation failure. 1430 */ 1431 virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0; 1432 1433 virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0; 1434 virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, 1435 RegStorage r_src2) = 0; 1436 virtual LIR* OpTestSuspend(LIR* target) = 0; 1437 virtual LIR* OpVldm(RegStorage r_base, int count) = 0; 1438 virtual LIR* OpVstm(RegStorage r_base, int count) = 0; 1439 virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0; 1440 virtual bool InexpensiveConstantInt(int32_t value) = 0; 1441 virtual bool InexpensiveConstantFloat(int32_t value) = 0; 1442 virtual bool InexpensiveConstantLong(int64_t value) = 0; 1443 virtual bool InexpensiveConstantDouble(int64_t value) = 0; 1444 virtual bool InexpensiveConstantInt(int32_t value, Instruction::Code opcode) { 1445 return InexpensiveConstantInt(value); 1446 } 1447 1448 // May be optimized by targets. 1449 virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src); 1450 virtual void GenMonitorExit(int opt_flags, RegLocation rl_src); 1451 1452 // Temp workaround 1453 void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg); 1454 1455 virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0; 1456 1457 protected: 1458 Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena); 1459 1460 CompilationUnit* GetCompilationUnit() { 1461 return cu_; 1462 } 1463 /* 1464 * @brief Returns the index of the lowest set bit in 'x'. 1465 * @param x Value to be examined. 1466 * @returns The bit number of the lowest bit set in the value. 1467 */ 1468 int32_t LowestSetBit(uint64_t x); 1469 /* 1470 * @brief Is this value a power of two? 1471 * @param x Value to be examined. 1472 * @returns 'true' if only 1 bit is set in the value. 1473 */ 1474 bool IsPowerOfTwo(uint64_t x); 1475 /* 1476 * @brief Do these SRs overlap? 1477 * @param rl_op1 One RegLocation 1478 * @param rl_op2 The other RegLocation 1479 * @return 'true' if the VR pairs overlap 1480 * 1481 * Check to see if a result pair has a misaligned overlap with an operand pair. This 1482 * is not usual for dx to generate, but it is legal (for now). In a future rev of 1483 * dex, we'll want to make this case illegal. 1484 */ 1485 bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2); 1486 1487 /* 1488 * @brief Force a location (in a register) into a temporary register 1489 * @param loc location of result 1490 * @returns update location 1491 */ 1492 virtual RegLocation ForceTemp(RegLocation loc); 1493 1494 /* 1495 * @brief Force a wide location (in registers) into temporary registers 1496 * @param loc location of result 1497 * @returns update location 1498 */ 1499 virtual RegLocation ForceTempWide(RegLocation loc); 1500 1501 static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) { 1502 return wide ? k64 : ref ? kReference : k32; 1503 } 1504 1505 virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, 1506 RegLocation rl_dest, RegLocation rl_src); 1507 1508 void AddSlowPath(LIRSlowPath* slowpath); 1509 1510 /* 1511 * 1512 * @brief Implement Set up instanceof a class. 1513 * @param needs_access_check 'true' if we must check the access. 1514 * @param type_known_final 'true' if the type is known to be a final class. 1515 * @param type_known_abstract 'true' if the type is known to be an abstract class. 1516 * @param use_declaring_class 'true' if the type can be loaded off the current Method*. 1517 * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache. 1518 * @param type_idx Type index to use if use_declaring_class is 'false'. 1519 * @param rl_dest Result to be set to 0 or 1. 1520 * @param rl_src Object to be tested. 1521 */ 1522 void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, 1523 bool type_known_abstract, bool use_declaring_class, 1524 bool can_assume_type_is_in_dex_cache, 1525 uint32_t type_idx, RegLocation rl_dest, 1526 RegLocation rl_src); 1527 /* 1528 * @brief Generate the debug_frame FDE information if possible. 1529 * @returns pointer to vector containg CFE information, or NULL. 1530 */ 1531 virtual std::vector<uint8_t>* ReturnCallFrameInformation(); 1532 1533 /** 1534 * @brief Used to insert marker that can be used to associate MIR with LIR. 1535 * @details Only inserts marker if verbosity is enabled. 1536 * @param mir The mir that is currently being generated. 1537 */ 1538 void GenPrintLabel(MIR* mir); 1539 1540 /** 1541 * @brief Used to generate return sequence when there is no frame. 1542 * @details Assumes that the return registers have already been populated. 1543 */ 1544 virtual void GenSpecialExitSequence() = 0; 1545 1546 /** 1547 * @brief Used to generate code for special methods that are known to be 1548 * small enough to work in frameless mode. 1549 * @param bb The basic block of the first MIR. 1550 * @param mir The first MIR of the special method. 1551 * @param special Information about the special method. 1552 * @return Returns whether or not this was handled successfully. Returns false 1553 * if caller should punt to normal MIR2LIR conversion. 1554 */ 1555 virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special); 1556 1557 protected: 1558 void ClobberBody(RegisterInfo* p); 1559 void SetCurrentDexPc(DexOffset dexpc) { 1560 current_dalvik_offset_ = dexpc; 1561 } 1562 1563 /** 1564 * @brief Used to lock register if argument at in_position was passed that way. 1565 * @details Does nothing if the argument is passed via stack. 1566 * @param in_position The argument number whose register to lock. 1567 * @param wide Whether the argument is wide. 1568 */ 1569 void LockArg(int in_position, bool wide = false); 1570 1571 /** 1572 * @brief Used to load VR argument to a physical register. 1573 * @details The load is only done if the argument is not already in physical register. 1574 * LockArg must have been previously called. 1575 * @param in_position The argument number to load. 1576 * @param wide Whether the argument is 64-bit or not. 1577 * @return Returns the register (or register pair) for the loaded argument. 1578 */ 1579 RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false); 1580 1581 /** 1582 * @brief Used to load a VR argument directly to a specified register location. 1583 * @param in_position The argument number to place in register. 1584 * @param rl_dest The register location where to place argument. 1585 */ 1586 void LoadArgDirect(int in_position, RegLocation rl_dest); 1587 1588 /** 1589 * @brief Used to generate LIR for special getter method. 1590 * @param mir The mir that represents the iget. 1591 * @param special Information about the special getter method. 1592 * @return Returns whether LIR was successfully generated. 1593 */ 1594 bool GenSpecialIGet(MIR* mir, const InlineMethod& special); 1595 1596 /** 1597 * @brief Used to generate LIR for special setter method. 1598 * @param mir The mir that represents the iput. 1599 * @param special Information about the special setter method. 1600 * @return Returns whether LIR was successfully generated. 1601 */ 1602 bool GenSpecialIPut(MIR* mir, const InlineMethod& special); 1603 1604 /** 1605 * @brief Used to generate LIR for special return-args method. 1606 * @param mir The mir that represents the return of argument. 1607 * @param special Information about the special return-args method. 1608 * @return Returns whether LIR was successfully generated. 1609 */ 1610 bool GenSpecialIdentity(MIR* mir, const InlineMethod& special); 1611 1612 void AddDivZeroCheckSlowPath(LIR* branch); 1613 1614 // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using 1615 // kArg2 as temp. 1616 virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1); 1617 1618 /** 1619 * @brief Load Constant into RegLocation 1620 * @param rl_dest Destination RegLocation 1621 * @param value Constant value 1622 */ 1623 virtual void GenConst(RegLocation rl_dest, int value); 1624 1625 /** 1626 * Returns true iff wide GPRs are just different views on the same physical register. 1627 */ 1628 virtual bool WideGPRsAreAliases() = 0; 1629 1630 /** 1631 * Returns true iff wide FPRs are just different views on the same physical register. 1632 */ 1633 virtual bool WideFPRsAreAliases() = 0; 1634 1635 1636 enum class WidenessCheck { // private 1637 kIgnoreWide, 1638 kCheckWide, 1639 kCheckNotWide 1640 }; 1641 1642 enum class RefCheck { // private 1643 kIgnoreRef, 1644 kCheckRef, 1645 kCheckNotRef 1646 }; 1647 1648 enum class FPCheck { // private 1649 kIgnoreFP, 1650 kCheckFP, 1651 kCheckNotFP 1652 }; 1653 1654 /** 1655 * Check whether a reg storage seems well-formed, that is, if a reg storage is valid, 1656 * that it has the expected form for the flags. 1657 * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true. 1658 */ 1659 void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail, 1660 bool report) 1661 const; 1662 1663 /** 1664 * Check whether a reg location seems well-formed, that is, if a reg storage is encoded, 1665 * that it has the expected size. 1666 */ 1667 void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const; 1668 1669 // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and 1670 // kReportSizeError. 1671 void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const; 1672 // See CheckRegLocationImpl. 1673 void CheckRegLocation(RegLocation rl) const; 1674 1675 public: 1676 // TODO: add accessors for these. 1677 LIR* literal_list_; // Constants. 1678 LIR* method_literal_list_; // Method literals requiring patching. 1679 LIR* class_literal_list_; // Class literals requiring patching. 1680 LIR* code_literal_list_; // Code literals requiring patching. 1681 LIR* first_fixup_; // Doubly-linked list of LIR nodes requiring fixups. 1682 1683 protected: 1684 CompilationUnit* const cu_; 1685 MIRGraph* const mir_graph_; 1686 GrowableArray<SwitchTable*> switch_tables_; 1687 GrowableArray<FillArrayData*> fill_array_data_; 1688 GrowableArray<RegisterInfo*> tempreg_info_; 1689 GrowableArray<RegisterInfo*> reginfo_map_; 1690 GrowableArray<void*> pointer_storage_; 1691 CodeOffset current_code_offset_; // Working byte offset of machine instructons. 1692 CodeOffset data_offset_; // starting offset of literal pool. 1693 size_t total_size_; // header + code size. 1694 LIR* block_label_list_; 1695 PromotionMap* promotion_map_; 1696 /* 1697 * TODO: The code generation utilities don't have a built-in 1698 * mechanism to propagate the original Dalvik opcode address to the 1699 * associated generated instructions. For the trace compiler, this wasn't 1700 * necessary because the interpreter handled all throws and debugging 1701 * requests. For now we'll handle this by placing the Dalvik offset 1702 * in the CompilationUnit struct before codegen for each instruction. 1703 * The low-level LIR creation utilites will pull it from here. Rework this. 1704 */ 1705 DexOffset current_dalvik_offset_; 1706 size_t estimated_native_code_size_; // Just an estimate; used to reserve code_buffer_ size. 1707 RegisterPool* reg_pool_; 1708 /* 1709 * Sanity checking for the register temp tracking. The same ssa 1710 * name should never be associated with one temp register per 1711 * instruction compilation. 1712 */ 1713 int live_sreg_; 1714 CodeBuffer code_buffer_; 1715 // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix. 1716 std::vector<uint8_t> encoded_mapping_table_; 1717 ArenaVector<uint32_t> core_vmap_table_; 1718 ArenaVector<uint32_t> fp_vmap_table_; 1719 std::vector<uint8_t> native_gc_map_; 1720 int num_core_spills_; 1721 int num_fp_spills_; 1722 int frame_size_; 1723 unsigned int core_spill_mask_; 1724 unsigned int fp_spill_mask_; 1725 LIR* first_lir_insn_; 1726 LIR* last_lir_insn_; 1727 1728 GrowableArray<LIRSlowPath*> slow_paths_; 1729 1730 // The memory reference type for new LIRs. 1731 // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly 1732 // invoke RawLIR() would clutter the code and reduce the readability. 1733 ResourceMask::ResourceBit mem_ref_type_; 1734 1735 // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR 1736 // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks 1737 // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache 1738 // to deduplicate the masks. 1739 ResourceMaskCache mask_cache_; 1740 }; // Class Mir2Lir 1741 1742 } // namespace art 1743 1744 #endif // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ 1745