Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RAGreedy function pass for register allocation in
     11 // optimized builds.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/Passes.h"
     16 #include "AllocationOrder.h"
     17 #include "InterferenceCache.h"
     18 #include "LiveDebugVariables.h"
     19 #include "RegAllocBase.h"
     20 #include "SpillPlacement.h"
     21 #include "Spiller.h"
     22 #include "SplitKit.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/CodeGen/CalcSpillWeights.h"
     26 #include "llvm/CodeGen/EdgeBundles.h"
     27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     28 #include "llvm/CodeGen/LiveRangeEdit.h"
     29 #include "llvm/CodeGen/LiveRegMatrix.h"
     30 #include "llvm/CodeGen/LiveStackAnalysis.h"
     31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     32 #include "llvm/CodeGen/MachineDominators.h"
     33 #include "llvm/CodeGen/MachineFunctionPass.h"
     34 #include "llvm/CodeGen/MachineLoopInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/RegAllocRegistry.h"
     37 #include "llvm/CodeGen/RegisterClassInfo.h"
     38 #include "llvm/CodeGen/VirtRegMap.h"
     39 #include "llvm/IR/LLVMContext.h"
     40 #include "llvm/PassAnalysisSupport.h"
     41 #include "llvm/Support/BranchProbability.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/Timer.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Target/TargetSubtargetInfo.h"
     48 #include <queue>
     49 
     50 using namespace llvm;
     51 
     52 #define DEBUG_TYPE "regalloc"
     53 
     54 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
     55 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
     56 STATISTIC(NumEvicted,      "Number of interferences evicted");
     57 
     58 static cl::opt<SplitEditor::ComplementSpillMode>
     59 SplitSpillMode("split-spill-mode", cl::Hidden,
     60   cl::desc("Spill mode for splitting live ranges"),
     61   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
     62              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
     63              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
     64              clEnumValEnd),
     65   cl::init(SplitEditor::SM_Partition));
     66 
     67 static cl::opt<unsigned>
     68 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
     69                              cl::desc("Last chance recoloring max depth"),
     70                              cl::init(5));
     71 
     72 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
     73     "lcr-max-interf", cl::Hidden,
     74     cl::desc("Last chance recoloring maximum number of considered"
     75              " interference at a time"),
     76     cl::init(8));
     77 
     78 static cl::opt<bool>
     79 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
     80                  cl::desc("Exhaustive Search for registers bypassing the depth "
     81                           "and interference cutoffs of last chance recoloring"));
     82 
     83 static cl::opt<bool> EnableLocalReassignment(
     84     "enable-local-reassign", cl::Hidden,
     85     cl::desc("Local reassignment can yield better allocation decisions, but "
     86              "may be compile time intensive"),
     87     cl::init(false));
     88 
     89 // FIXME: Find a good default for this flag and remove the flag.
     90 static cl::opt<unsigned>
     91 CSRFirstTimeCost("regalloc-csr-first-time-cost",
     92               cl::desc("Cost for first time use of callee-saved register."),
     93               cl::init(0), cl::Hidden);
     94 
     95 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
     96                                        createGreedyRegisterAllocator);
     97 
     98 namespace {
     99 class RAGreedy : public MachineFunctionPass,
    100                  public RegAllocBase,
    101                  private LiveRangeEdit::Delegate {
    102   // Convenient shortcuts.
    103   typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
    104   typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
    105   typedef SmallSet<unsigned, 16> SmallVirtRegSet;
    106 
    107   // context
    108   MachineFunction *MF;
    109 
    110   // Shortcuts to some useful interface.
    111   const TargetInstrInfo *TII;
    112   const TargetRegisterInfo *TRI;
    113   RegisterClassInfo RCI;
    114 
    115   // analyses
    116   SlotIndexes *Indexes;
    117   MachineBlockFrequencyInfo *MBFI;
    118   MachineDominatorTree *DomTree;
    119   MachineLoopInfo *Loops;
    120   EdgeBundles *Bundles;
    121   SpillPlacement *SpillPlacer;
    122   LiveDebugVariables *DebugVars;
    123 
    124   // state
    125   std::unique_ptr<Spiller> SpillerInstance;
    126   PQueue Queue;
    127   unsigned NextCascade;
    128 
    129   // Live ranges pass through a number of stages as we try to allocate them.
    130   // Some of the stages may also create new live ranges:
    131   //
    132   // - Region splitting.
    133   // - Per-block splitting.
    134   // - Local splitting.
    135   // - Spilling.
    136   //
    137   // Ranges produced by one of the stages skip the previous stages when they are
    138   // dequeued. This improves performance because we can skip interference checks
    139   // that are unlikely to give any results. It also guarantees that the live
    140   // range splitting algorithm terminates, something that is otherwise hard to
    141   // ensure.
    142   enum LiveRangeStage {
    143     /// Newly created live range that has never been queued.
    144     RS_New,
    145 
    146     /// Only attempt assignment and eviction. Then requeue as RS_Split.
    147     RS_Assign,
    148 
    149     /// Attempt live range splitting if assignment is impossible.
    150     RS_Split,
    151 
    152     /// Attempt more aggressive live range splitting that is guaranteed to make
    153     /// progress.  This is used for split products that may not be making
    154     /// progress.
    155     RS_Split2,
    156 
    157     /// Live range will be spilled.  No more splitting will be attempted.
    158     RS_Spill,
    159 
    160     /// There is nothing more we can do to this live range.  Abort compilation
    161     /// if it can't be assigned.
    162     RS_Done
    163   };
    164 
    165   // Enum CutOffStage to keep a track whether the register allocation failed
    166   // because of the cutoffs encountered in last chance recoloring.
    167   // Note: This is used as bitmask. New value should be next power of 2.
    168   enum CutOffStage {
    169     // No cutoffs encountered
    170     CO_None = 0,
    171 
    172     // lcr-max-depth cutoff encountered
    173     CO_Depth = 1,
    174 
    175     // lcr-max-interf cutoff encountered
    176     CO_Interf = 2
    177   };
    178 
    179   uint8_t CutOffInfo;
    180 
    181 #ifndef NDEBUG
    182   static const char *const StageName[];
    183 #endif
    184 
    185   // RegInfo - Keep additional information about each live range.
    186   struct RegInfo {
    187     LiveRangeStage Stage;
    188 
    189     // Cascade - Eviction loop prevention. See canEvictInterference().
    190     unsigned Cascade;
    191 
    192     RegInfo() : Stage(RS_New), Cascade(0) {}
    193   };
    194 
    195   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
    196 
    197   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    198     return ExtraRegInfo[VirtReg.reg].Stage;
    199   }
    200 
    201   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    202     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    203     ExtraRegInfo[VirtReg.reg].Stage = Stage;
    204   }
    205 
    206   template<typename Iterator>
    207   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    208     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    209     for (;Begin != End; ++Begin) {
    210       unsigned Reg = *Begin;
    211       if (ExtraRegInfo[Reg].Stage == RS_New)
    212         ExtraRegInfo[Reg].Stage = NewStage;
    213     }
    214   }
    215 
    216   /// Cost of evicting interference.
    217   struct EvictionCost {
    218     unsigned BrokenHints; ///< Total number of broken hints.
    219     float MaxWeight;      ///< Maximum spill weight evicted.
    220 
    221     EvictionCost(): BrokenHints(0), MaxWeight(0) {}
    222 
    223     bool isMax() const { return BrokenHints == ~0u; }
    224 
    225     void setMax() { BrokenHints = ~0u; }
    226 
    227     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
    228 
    229     bool operator<(const EvictionCost &O) const {
    230       return std::tie(BrokenHints, MaxWeight) <
    231              std::tie(O.BrokenHints, O.MaxWeight);
    232     }
    233   };
    234 
    235   // splitting state.
    236   std::unique_ptr<SplitAnalysis> SA;
    237   std::unique_ptr<SplitEditor> SE;
    238 
    239   /// Cached per-block interference maps
    240   InterferenceCache IntfCache;
    241 
    242   /// All basic blocks where the current register has uses.
    243   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
    244 
    245   /// Global live range splitting candidate info.
    246   struct GlobalSplitCandidate {
    247     // Register intended for assignment, or 0.
    248     unsigned PhysReg;
    249 
    250     // SplitKit interval index for this candidate.
    251     unsigned IntvIdx;
    252 
    253     // Interference for PhysReg.
    254     InterferenceCache::Cursor Intf;
    255 
    256     // Bundles where this candidate should be live.
    257     BitVector LiveBundles;
    258     SmallVector<unsigned, 8> ActiveBlocks;
    259 
    260     void reset(InterferenceCache &Cache, unsigned Reg) {
    261       PhysReg = Reg;
    262       IntvIdx = 0;
    263       Intf.setPhysReg(Cache, Reg);
    264       LiveBundles.clear();
    265       ActiveBlocks.clear();
    266     }
    267 
    268     // Set B[i] = C for every live bundle where B[i] was NoCand.
    269     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
    270       unsigned Count = 0;
    271       for (int i = LiveBundles.find_first(); i >= 0;
    272            i = LiveBundles.find_next(i))
    273         if (B[i] == NoCand) {
    274           B[i] = C;
    275           Count++;
    276         }
    277       return Count;
    278     }
    279   };
    280 
    281   /// Candidate info for each PhysReg in AllocationOrder.
    282   /// This vector never shrinks, but grows to the size of the largest register
    283   /// class.
    284   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
    285 
    286   enum : unsigned { NoCand = ~0u };
    287 
    288   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
    289   /// NoCand which indicates the stack interval.
    290   SmallVector<unsigned, 32> BundleCand;
    291 
    292   /// Callee-save register cost, calculated once per machine function.
    293   BlockFrequency CSRCost;
    294 
    295   /// Run or not the local reassignment heuristic. This information is
    296   /// obtained from the TargetSubtargetInfo.
    297   bool EnableLocalReassign;
    298 
    299 public:
    300   RAGreedy();
    301 
    302   /// Return the pass name.
    303   const char* getPassName() const override {
    304     return "Greedy Register Allocator";
    305   }
    306 
    307   /// RAGreedy analysis usage.
    308   void getAnalysisUsage(AnalysisUsage &AU) const override;
    309   void releaseMemory() override;
    310   Spiller &spiller() override { return *SpillerInstance; }
    311   void enqueue(LiveInterval *LI) override;
    312   LiveInterval *dequeue() override;
    313   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
    314 
    315   /// Perform register allocation.
    316   bool runOnMachineFunction(MachineFunction &mf) override;
    317 
    318   static char ID;
    319 
    320 private:
    321   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
    322                              SmallVirtRegSet &, unsigned = 0);
    323 
    324   bool LRE_CanEraseVirtReg(unsigned) override;
    325   void LRE_WillShrinkVirtReg(unsigned) override;
    326   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
    327   void enqueue(PQueue &CurQueue, LiveInterval *LI);
    328   LiveInterval *dequeue(PQueue &CurQueue);
    329 
    330   BlockFrequency calcSpillCost();
    331   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
    332   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
    333   void growRegion(GlobalSplitCandidate &Cand);
    334   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
    335   bool calcCompactRegion(GlobalSplitCandidate&);
    336   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
    337   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
    338   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
    339   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
    340   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
    341   void evictInterference(LiveInterval&, unsigned,
    342                          SmallVectorImpl<unsigned>&);
    343   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
    344                                   SmallLISet &RecoloringCandidates,
    345                                   const SmallVirtRegSet &FixedRegisters);
    346 
    347   unsigned tryAssign(LiveInterval&, AllocationOrder&,
    348                      SmallVectorImpl<unsigned>&);
    349   unsigned tryEvict(LiveInterval&, AllocationOrder&,
    350                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
    351   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
    352                           SmallVectorImpl<unsigned>&);
    353   /// Calculate cost of region splitting.
    354   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
    355                                     AllocationOrder &Order,
    356                                     BlockFrequency &BestCost,
    357                                     unsigned &NumCands, bool IgnoreCSR);
    358   /// Perform region splitting.
    359   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
    360                          bool HasCompact,
    361                          SmallVectorImpl<unsigned> &NewVRegs);
    362   /// Check other options before using a callee-saved register for the first
    363   /// time.
    364   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
    365                                  unsigned PhysReg, unsigned &CostPerUseLimit,
    366                                  SmallVectorImpl<unsigned> &NewVRegs);
    367   void initializeCSRCost();
    368   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
    369                          SmallVectorImpl<unsigned>&);
    370   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
    371                                SmallVectorImpl<unsigned>&);
    372   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    373     SmallVectorImpl<unsigned>&);
    374   unsigned trySplit(LiveInterval&, AllocationOrder&,
    375                     SmallVectorImpl<unsigned>&);
    376   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
    377                                    SmallVectorImpl<unsigned> &,
    378                                    SmallVirtRegSet &, unsigned);
    379   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
    380                                SmallVirtRegSet &, unsigned);
    381 };
    382 } // end anonymous namespace
    383 
    384 char RAGreedy::ID = 0;
    385 
    386 #ifndef NDEBUG
    387 const char *const RAGreedy::StageName[] = {
    388     "RS_New",
    389     "RS_Assign",
    390     "RS_Split",
    391     "RS_Split2",
    392     "RS_Spill",
    393     "RS_Done"
    394 };
    395 #endif
    396 
    397 // Hysteresis to use when comparing floats.
    398 // This helps stabilize decisions based on float comparisons.
    399 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
    400 
    401 
    402 FunctionPass* llvm::createGreedyRegisterAllocator() {
    403   return new RAGreedy();
    404 }
    405 
    406 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
    407   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    408   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    409   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    410   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    411   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    412   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    413   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    414   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    415   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    416   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    417   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
    418   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
    419   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
    420 }
    421 
    422 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
    423   AU.setPreservesCFG();
    424   AU.addRequired<MachineBlockFrequencyInfo>();
    425   AU.addPreserved<MachineBlockFrequencyInfo>();
    426   AU.addRequired<AliasAnalysis>();
    427   AU.addPreserved<AliasAnalysis>();
    428   AU.addRequired<LiveIntervals>();
    429   AU.addPreserved<LiveIntervals>();
    430   AU.addRequired<SlotIndexes>();
    431   AU.addPreserved<SlotIndexes>();
    432   AU.addRequired<LiveDebugVariables>();
    433   AU.addPreserved<LiveDebugVariables>();
    434   AU.addRequired<LiveStacks>();
    435   AU.addPreserved<LiveStacks>();
    436   AU.addRequired<MachineDominatorTree>();
    437   AU.addPreserved<MachineDominatorTree>();
    438   AU.addRequired<MachineLoopInfo>();
    439   AU.addPreserved<MachineLoopInfo>();
    440   AU.addRequired<VirtRegMap>();
    441   AU.addPreserved<VirtRegMap>();
    442   AU.addRequired<LiveRegMatrix>();
    443   AU.addPreserved<LiveRegMatrix>();
    444   AU.addRequired<EdgeBundles>();
    445   AU.addRequired<SpillPlacement>();
    446   MachineFunctionPass::getAnalysisUsage(AU);
    447 }
    448 
    449 
    450 //===----------------------------------------------------------------------===//
    451 //                     LiveRangeEdit delegate methods
    452 //===----------------------------------------------------------------------===//
    453 
    454 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
    455   if (VRM->hasPhys(VirtReg)) {
    456     Matrix->unassign(LIS->getInterval(VirtReg));
    457     return true;
    458   }
    459   // Unassigned virtreg is probably in the priority queue.
    460   // RegAllocBase will erase it after dequeueing.
    461   return false;
    462 }
    463 
    464 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
    465   if (!VRM->hasPhys(VirtReg))
    466     return;
    467 
    468   // Register is assigned, put it back on the queue for reassignment.
    469   LiveInterval &LI = LIS->getInterval(VirtReg);
    470   Matrix->unassign(LI);
    471   enqueue(&LI);
    472 }
    473 
    474 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
    475   // Cloning a register we haven't even heard about yet?  Just ignore it.
    476   if (!ExtraRegInfo.inBounds(Old))
    477     return;
    478 
    479   // LRE may clone a virtual register because dead code elimination causes it to
    480   // be split into connected components. The new components are much smaller
    481   // than the original, so they should get a new chance at being assigned.
    482   // same stage as the parent.
    483   ExtraRegInfo[Old].Stage = RS_Assign;
    484   ExtraRegInfo.grow(New);
    485   ExtraRegInfo[New] = ExtraRegInfo[Old];
    486 }
    487 
    488 void RAGreedy::releaseMemory() {
    489   SpillerInstance.reset(nullptr);
    490   ExtraRegInfo.clear();
    491   GlobalCand.clear();
    492 }
    493 
    494 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
    495 
    496 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
    497   // Prioritize live ranges by size, assigning larger ranges first.
    498   // The queue holds (size, reg) pairs.
    499   const unsigned Size = LI->getSize();
    500   const unsigned Reg = LI->reg;
    501   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    502          "Can only enqueue virtual registers");
    503   unsigned Prio;
    504 
    505   ExtraRegInfo.grow(Reg);
    506   if (ExtraRegInfo[Reg].Stage == RS_New)
    507     ExtraRegInfo[Reg].Stage = RS_Assign;
    508 
    509   if (ExtraRegInfo[Reg].Stage == RS_Split) {
    510     // Unsplit ranges that couldn't be allocated immediately are deferred until
    511     // everything else has been allocated.
    512     Prio = Size;
    513   } else {
    514     // Giant live ranges fall back to the global assignment heuristic, which
    515     // prevents excessive spilling in pathological cases.
    516     bool ReverseLocal = TRI->reverseLocalAssignment();
    517     bool ForceGlobal = !ReverseLocal && TRI->mayOverrideLocalAssignment() &&
    518       (Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
    519 
    520     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
    521         LIS->intervalIsInOneMBB(*LI)) {
    522       // Allocate original local ranges in linear instruction order. Since they
    523       // are singly defined, this produces optimal coloring in the absence of
    524       // global interference and other constraints.
    525       if (!ReverseLocal)
    526         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
    527       else {
    528         // Allocating bottom up may allow many short LRGs to be assigned first
    529         // to one of the cheap registers. This could be much faster for very
    530         // large blocks on targets with many physical registers.
    531         Prio = Indexes->getZeroIndex().getInstrDistance(LI->beginIndex());
    532       }
    533     }
    534     else {
    535       // Allocate global and split ranges in long->short order. Long ranges that
    536       // don't fit should be spilled (or split) ASAP so they don't create
    537       // interference.  Mark a bit to prioritize global above local ranges.
    538       Prio = (1u << 29) + Size;
    539     }
    540     // Mark a higher bit to prioritize global and local above RS_Split.
    541     Prio |= (1u << 31);
    542 
    543     // Boost ranges that have a physical register hint.
    544     if (VRM->hasKnownPreference(Reg))
    545       Prio |= (1u << 30);
    546   }
    547   // The virtual register number is a tie breaker for same-sized ranges.
    548   // Give lower vreg numbers higher priority to assign them first.
    549   CurQueue.push(std::make_pair(Prio, ~Reg));
    550 }
    551 
    552 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
    553 
    554 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
    555   if (CurQueue.empty())
    556     return nullptr;
    557   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
    558   CurQueue.pop();
    559   return LI;
    560 }
    561 
    562 
    563 //===----------------------------------------------------------------------===//
    564 //                            Direct Assignment
    565 //===----------------------------------------------------------------------===//
    566 
    567 /// tryAssign - Try to assign VirtReg to an available register.
    568 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
    569                              AllocationOrder &Order,
    570                              SmallVectorImpl<unsigned> &NewVRegs) {
    571   Order.rewind();
    572   unsigned PhysReg;
    573   while ((PhysReg = Order.next()))
    574     if (!Matrix->checkInterference(VirtReg, PhysReg))
    575       break;
    576   if (!PhysReg || Order.isHint())
    577     return PhysReg;
    578 
    579   // PhysReg is available, but there may be a better choice.
    580 
    581   // If we missed a simple hint, try to cheaply evict interference from the
    582   // preferred register.
    583   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    584     if (Order.isHint(Hint)) {
    585       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
    586       EvictionCost MaxCost;
    587       MaxCost.setBrokenHints(1);
    588       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
    589         evictInterference(VirtReg, Hint, NewVRegs);
    590         return Hint;
    591       }
    592     }
    593 
    594   // Try to evict interference from a cheaper alternative.
    595   unsigned Cost = TRI->getCostPerUse(PhysReg);
    596 
    597   // Most registers have 0 additional cost.
    598   if (!Cost)
    599     return PhysReg;
    600 
    601   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
    602                << '\n');
    603   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
    604   return CheapReg ? CheapReg : PhysReg;
    605 }
    606 
    607 
    608 //===----------------------------------------------------------------------===//
    609 //                         Interference eviction
    610 //===----------------------------------------------------------------------===//
    611 
    612 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
    613   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
    614   unsigned PhysReg;
    615   while ((PhysReg = Order.next())) {
    616     if (PhysReg == PrevReg)
    617       continue;
    618 
    619     MCRegUnitIterator Units(PhysReg, TRI);
    620     for (; Units.isValid(); ++Units) {
    621       // Instantiate a "subquery", not to be confused with the Queries array.
    622       LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
    623       if (subQ.checkInterference())
    624         break;
    625     }
    626     // If no units have interference, break out with the current PhysReg.
    627     if (!Units.isValid())
    628       break;
    629   }
    630   if (PhysReg)
    631     DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
    632           << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
    633           << '\n');
    634   return PhysReg;
    635 }
    636 
    637 /// shouldEvict - determine if A should evict the assigned live range B. The
    638 /// eviction policy defined by this function together with the allocation order
    639 /// defined by enqueue() decides which registers ultimately end up being split
    640 /// and spilled.
    641 ///
    642 /// Cascade numbers are used to prevent infinite loops if this function is a
    643 /// cyclic relation.
    644 ///
    645 /// @param A          The live range to be assigned.
    646 /// @param IsHint     True when A is about to be assigned to its preferred
    647 ///                   register.
    648 /// @param B          The live range to be evicted.
    649 /// @param BreaksHint True when B is already assigned to its preferred register.
    650 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
    651                            LiveInterval &B, bool BreaksHint) {
    652   bool CanSplit = getStage(B) < RS_Spill;
    653 
    654   // Be fairly aggressive about following hints as long as the evictee can be
    655   // split.
    656   if (CanSplit && IsHint && !BreaksHint)
    657     return true;
    658 
    659   if (A.weight > B.weight) {
    660     DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
    661     return true;
    662   }
    663   return false;
    664 }
    665 
    666 /// canEvictInterference - Return true if all interferences between VirtReg and
    667 /// PhysReg can be evicted.
    668 ///
    669 /// @param VirtReg Live range that is about to be assigned.
    670 /// @param PhysReg Desired register for assignment.
    671 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
    672 /// @param MaxCost Only look for cheaper candidates and update with new cost
    673 ///                when returning true.
    674 /// @returns True when interference can be evicted cheaper than MaxCost.
    675 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    676                                     bool IsHint, EvictionCost &MaxCost) {
    677   // It is only possible to evict virtual register interference.
    678   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
    679     return false;
    680 
    681   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
    682 
    683   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
    684   // involved in an eviction before. If a cascade number was assigned, deny
    685   // evicting anything with the same or a newer cascade number. This prevents
    686   // infinite eviction loops.
    687   //
    688   // This works out so a register without a cascade number is allowed to evict
    689   // anything, and it can be evicted by anything.
    690   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    691   if (!Cascade)
    692     Cascade = NextCascade;
    693 
    694   EvictionCost Cost;
    695   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    696     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    697     // If there is 10 or more interferences, chances are one is heavier.
    698     if (Q.collectInterferingVRegs(10) >= 10)
    699       return false;
    700 
    701     // Check if any interfering live range is heavier than MaxWeight.
    702     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
    703       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
    704       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
    705              "Only expecting virtual register interference from query");
    706       // Never evict spill products. They cannot split or spill.
    707       if (getStage(*Intf) == RS_Done)
    708         return false;
    709       // Once a live range becomes small enough, it is urgent that we find a
    710       // register for it. This is indicated by an infinite spill weight. These
    711       // urgent live ranges get to evict almost anything.
    712       //
    713       // Also allow urgent evictions of unspillable ranges from a strictly
    714       // larger allocation order.
    715       bool Urgent = !VirtReg.isSpillable() &&
    716         (Intf->isSpillable() ||
    717          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
    718          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
    719       // Only evict older cascades or live ranges without a cascade.
    720       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
    721       if (Cascade <= IntfCascade) {
    722         if (!Urgent)
    723           return false;
    724         // We permit breaking cascades for urgent evictions. It should be the
    725         // last resort, though, so make it really expensive.
    726         Cost.BrokenHints += 10;
    727       }
    728       // Would this break a satisfied hint?
    729       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
    730       // Update eviction cost.
    731       Cost.BrokenHints += BreaksHint;
    732       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
    733       // Abort if this would be too expensive.
    734       if (!(Cost < MaxCost))
    735         return false;
    736       if (Urgent)
    737         continue;
    738       // Apply the eviction policy for non-urgent evictions.
    739       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
    740         return false;
    741       // If !MaxCost.isMax(), then we're just looking for a cheap register.
    742       // Evicting another local live range in this case could lead to suboptimal
    743       // coloring.
    744       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
    745           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
    746         return false;
    747       }
    748     }
    749   }
    750   MaxCost = Cost;
    751   return true;
    752 }
    753 
    754 /// evictInterference - Evict any interferring registers that prevent VirtReg
    755 /// from being assigned to Physreg. This assumes that canEvictInterference
    756 /// returned true.
    757 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    758                                  SmallVectorImpl<unsigned> &NewVRegs) {
    759   // Make sure that VirtReg has a cascade number, and assign that cascade
    760   // number to every evicted register. These live ranges than then only be
    761   // evicted by a newer cascade, preventing infinite loops.
    762   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    763   if (!Cascade)
    764     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
    765 
    766   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
    767                << " interference: Cascade " << Cascade << '\n');
    768 
    769   // Collect all interfering virtregs first.
    770   SmallVector<LiveInterval*, 8> Intfs;
    771   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    772     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    773     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    774     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
    775     Intfs.append(IVR.begin(), IVR.end());
    776   }
    777 
    778   // Evict them second. This will invalidate the queries.
    779   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
    780     LiveInterval *Intf = Intfs[i];
    781     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
    782     if (!VRM->hasPhys(Intf->reg))
    783       continue;
    784     Matrix->unassign(*Intf);
    785     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
    786             VirtReg.isSpillable() < Intf->isSpillable()) &&
    787            "Cannot decrease cascade number, illegal eviction");
    788     ExtraRegInfo[Intf->reg].Cascade = Cascade;
    789     ++NumEvicted;
    790     NewVRegs.push_back(Intf->reg);
    791   }
    792 }
    793 
    794 /// tryEvict - Try to evict all interferences for a physreg.
    795 /// @param  VirtReg Currently unassigned virtual register.
    796 /// @param  Order   Physregs to try.
    797 /// @return         Physreg to assign VirtReg, or 0.
    798 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
    799                             AllocationOrder &Order,
    800                             SmallVectorImpl<unsigned> &NewVRegs,
    801                             unsigned CostPerUseLimit) {
    802   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
    803 
    804   // Keep track of the cheapest interference seen so far.
    805   EvictionCost BestCost;
    806   BestCost.setMax();
    807   unsigned BestPhys = 0;
    808   unsigned OrderLimit = Order.getOrder().size();
    809 
    810   // When we are just looking for a reduced cost per use, don't break any
    811   // hints, and only evict smaller spill weights.
    812   if (CostPerUseLimit < ~0u) {
    813     BestCost.BrokenHints = 0;
    814     BestCost.MaxWeight = VirtReg.weight;
    815 
    816     // Check of any registers in RC are below CostPerUseLimit.
    817     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
    818     unsigned MinCost = RegClassInfo.getMinCost(RC);
    819     if (MinCost >= CostPerUseLimit) {
    820       DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
    821                    << ", no cheaper registers to be found.\n");
    822       return 0;
    823     }
    824 
    825     // It is normal for register classes to have a long tail of registers with
    826     // the same cost. We don't need to look at them if they're too expensive.
    827     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
    828       OrderLimit = RegClassInfo.getLastCostChange(RC);
    829       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
    830     }
    831   }
    832 
    833   Order.rewind();
    834   while (unsigned PhysReg = Order.next(OrderLimit)) {
    835     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
    836       continue;
    837     // The first use of a callee-saved register in a function has cost 1.
    838     // Don't start using a CSR when the CostPerUseLimit is low.
    839     if (CostPerUseLimit == 1)
    840      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
    841        if (!MRI->isPhysRegUsed(CSR)) {
    842          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
    843                       << PrintReg(CSR, TRI) << '\n');
    844          continue;
    845        }
    846 
    847     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
    848       continue;
    849 
    850     // Best so far.
    851     BestPhys = PhysReg;
    852 
    853     // Stop if the hint can be used.
    854     if (Order.isHint())
    855       break;
    856   }
    857 
    858   if (!BestPhys)
    859     return 0;
    860 
    861   evictInterference(VirtReg, BestPhys, NewVRegs);
    862   return BestPhys;
    863 }
    864 
    865 
    866 //===----------------------------------------------------------------------===//
    867 //                              Region Splitting
    868 //===----------------------------------------------------------------------===//
    869 
    870 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
    871 /// interference pattern in Physreg and its aliases. Add the constraints to
    872 /// SpillPlacement and return the static cost of this split in Cost, assuming
    873 /// that all preferences in SplitConstraints are met.
    874 /// Return false if there are no bundles with positive bias.
    875 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
    876                                    BlockFrequency &Cost) {
    877   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    878 
    879   // Reset interference dependent info.
    880   SplitConstraints.resize(UseBlocks.size());
    881   BlockFrequency StaticCost = 0;
    882   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    883     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    884     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    885 
    886     BC.Number = BI.MBB->getNumber();
    887     Intf.moveToBlock(BC.Number);
    888     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    889     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    890     BC.ChangesValue = BI.FirstDef.isValid();
    891 
    892     if (!Intf.hasInterference())
    893       continue;
    894 
    895     // Number of spill code instructions to insert.
    896     unsigned Ins = 0;
    897 
    898     // Interference for the live-in value.
    899     if (BI.LiveIn) {
    900       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
    901         BC.Entry = SpillPlacement::MustSpill, ++Ins;
    902       else if (Intf.first() < BI.FirstInstr)
    903         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
    904       else if (Intf.first() < BI.LastInstr)
    905         ++Ins;
    906     }
    907 
    908     // Interference for the live-out value.
    909     if (BI.LiveOut) {
    910       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
    911         BC.Exit = SpillPlacement::MustSpill, ++Ins;
    912       else if (Intf.last() > BI.LastInstr)
    913         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
    914       else if (Intf.last() > BI.FirstInstr)
    915         ++Ins;
    916     }
    917 
    918     // Accumulate the total frequency of inserted spill code.
    919     while (Ins--)
    920       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
    921   }
    922   Cost = StaticCost;
    923 
    924   // Add constraints for use-blocks. Note that these are the only constraints
    925   // that may add a positive bias, it is downhill from here.
    926   SpillPlacer->addConstraints(SplitConstraints);
    927   return SpillPlacer->scanActiveBundles();
    928 }
    929 
    930 
    931 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
    932 /// live-through blocks in Blocks.
    933 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
    934                                      ArrayRef<unsigned> Blocks) {
    935   const unsigned GroupSize = 8;
    936   SpillPlacement::BlockConstraint BCS[GroupSize];
    937   unsigned TBS[GroupSize];
    938   unsigned B = 0, T = 0;
    939 
    940   for (unsigned i = 0; i != Blocks.size(); ++i) {
    941     unsigned Number = Blocks[i];
    942     Intf.moveToBlock(Number);
    943 
    944     if (!Intf.hasInterference()) {
    945       assert(T < GroupSize && "Array overflow");
    946       TBS[T] = Number;
    947       if (++T == GroupSize) {
    948         SpillPlacer->addLinks(makeArrayRef(TBS, T));
    949         T = 0;
    950       }
    951       continue;
    952     }
    953 
    954     assert(B < GroupSize && "Array overflow");
    955     BCS[B].Number = Number;
    956 
    957     // Interference for the live-in value.
    958     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
    959       BCS[B].Entry = SpillPlacement::MustSpill;
    960     else
    961       BCS[B].Entry = SpillPlacement::PrefSpill;
    962 
    963     // Interference for the live-out value.
    964     if (Intf.last() >= SA->getLastSplitPoint(Number))
    965       BCS[B].Exit = SpillPlacement::MustSpill;
    966     else
    967       BCS[B].Exit = SpillPlacement::PrefSpill;
    968 
    969     if (++B == GroupSize) {
    970       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    971       SpillPlacer->addConstraints(Array);
    972       B = 0;
    973     }
    974   }
    975 
    976   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    977   SpillPlacer->addConstraints(Array);
    978   SpillPlacer->addLinks(makeArrayRef(TBS, T));
    979 }
    980 
    981 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
    982   // Keep track of through blocks that have not been added to SpillPlacer.
    983   BitVector Todo = SA->getThroughBlocks();
    984   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
    985   unsigned AddedTo = 0;
    986 #ifndef NDEBUG
    987   unsigned Visited = 0;
    988 #endif
    989 
    990   for (;;) {
    991     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    992     // Find new through blocks in the periphery of PrefRegBundles.
    993     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
    994       unsigned Bundle = NewBundles[i];
    995       // Look at all blocks connected to Bundle in the full graph.
    996       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
    997       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    998            I != E; ++I) {
    999         unsigned Block = *I;
   1000         if (!Todo.test(Block))
   1001           continue;
   1002         Todo.reset(Block);
   1003         // This is a new through block. Add it to SpillPlacer later.
   1004         ActiveBlocks.push_back(Block);
   1005 #ifndef NDEBUG
   1006         ++Visited;
   1007 #endif
   1008       }
   1009     }
   1010     // Any new blocks to add?
   1011     if (ActiveBlocks.size() == AddedTo)
   1012       break;
   1013 
   1014     // Compute through constraints from the interference, or assume that all
   1015     // through blocks prefer spilling when forming compact regions.
   1016     ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
   1017     if (Cand.PhysReg)
   1018       addThroughConstraints(Cand.Intf, NewBlocks);
   1019     else
   1020       // Provide a strong negative bias on through blocks to prevent unwanted
   1021       // liveness on loop backedges.
   1022       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
   1023     AddedTo = ActiveBlocks.size();
   1024 
   1025     // Perhaps iterating can enable more bundles?
   1026     SpillPlacer->iterate();
   1027   }
   1028   DEBUG(dbgs() << ", v=" << Visited);
   1029 }
   1030 
   1031 /// calcCompactRegion - Compute the set of edge bundles that should be live
   1032 /// when splitting the current live range into compact regions.  Compact
   1033 /// regions can be computed without looking at interference.  They are the
   1034 /// regions formed by removing all the live-through blocks from the live range.
   1035 ///
   1036 /// Returns false if the current live range is already compact, or if the
   1037 /// compact regions would form single block regions anyway.
   1038 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
   1039   // Without any through blocks, the live range is already compact.
   1040   if (!SA->getNumThroughBlocks())
   1041     return false;
   1042 
   1043   // Compact regions don't correspond to any physreg.
   1044   Cand.reset(IntfCache, 0);
   1045 
   1046   DEBUG(dbgs() << "Compact region bundles");
   1047 
   1048   // Use the spill placer to determine the live bundles. GrowRegion pretends
   1049   // that all the through blocks have interference when PhysReg is unset.
   1050   SpillPlacer->prepare(Cand.LiveBundles);
   1051 
   1052   // The static split cost will be zero since Cand.Intf reports no interference.
   1053   BlockFrequency Cost;
   1054   if (!addSplitConstraints(Cand.Intf, Cost)) {
   1055     DEBUG(dbgs() << ", none.\n");
   1056     return false;
   1057   }
   1058 
   1059   growRegion(Cand);
   1060   SpillPlacer->finish();
   1061 
   1062   if (!Cand.LiveBundles.any()) {
   1063     DEBUG(dbgs() << ", none.\n");
   1064     return false;
   1065   }
   1066 
   1067   DEBUG({
   1068     for (int i = Cand.LiveBundles.find_first(); i>=0;
   1069          i = Cand.LiveBundles.find_next(i))
   1070     dbgs() << " EB#" << i;
   1071     dbgs() << ".\n";
   1072   });
   1073   return true;
   1074 }
   1075 
   1076 /// calcSpillCost - Compute how expensive it would be to split the live range in
   1077 /// SA around all use blocks instead of forming bundle regions.
   1078 BlockFrequency RAGreedy::calcSpillCost() {
   1079   BlockFrequency Cost = 0;
   1080   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1081   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1082     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1083     unsigned Number = BI.MBB->getNumber();
   1084     // We normally only need one spill instruction - a load or a store.
   1085     Cost += SpillPlacer->getBlockFrequency(Number);
   1086 
   1087     // Unless the value is redefined in the block.
   1088     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
   1089       Cost += SpillPlacer->getBlockFrequency(Number);
   1090   }
   1091   return Cost;
   1092 }
   1093 
   1094 /// calcGlobalSplitCost - Return the global split cost of following the split
   1095 /// pattern in LiveBundles. This cost should be added to the local cost of the
   1096 /// interference pattern in SplitConstraints.
   1097 ///
   1098 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
   1099   BlockFrequency GlobalCost = 0;
   1100   const BitVector &LiveBundles = Cand.LiveBundles;
   1101   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1102   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1103     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1104     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
   1105     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
   1106     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
   1107     unsigned Ins = 0;
   1108 
   1109     if (BI.LiveIn)
   1110       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
   1111     if (BI.LiveOut)
   1112       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
   1113     while (Ins--)
   1114       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
   1115   }
   1116 
   1117   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
   1118     unsigned Number = Cand.ActiveBlocks[i];
   1119     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
   1120     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
   1121     if (!RegIn && !RegOut)
   1122       continue;
   1123     if (RegIn && RegOut) {
   1124       // We need double spill code if this block has interference.
   1125       Cand.Intf.moveToBlock(Number);
   1126       if (Cand.Intf.hasInterference()) {
   1127         GlobalCost += SpillPlacer->getBlockFrequency(Number);
   1128         GlobalCost += SpillPlacer->getBlockFrequency(Number);
   1129       }
   1130       continue;
   1131     }
   1132     // live-in / stack-out or stack-in live-out.
   1133     GlobalCost += SpillPlacer->getBlockFrequency(Number);
   1134   }
   1135   return GlobalCost;
   1136 }
   1137 
   1138 /// splitAroundRegion - Split the current live range around the regions
   1139 /// determined by BundleCand and GlobalCand.
   1140 ///
   1141 /// Before calling this function, GlobalCand and BundleCand must be initialized
   1142 /// so each bundle is assigned to a valid candidate, or NoCand for the
   1143 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
   1144 /// objects must be initialized for the current live range, and intervals
   1145 /// created for the used candidates.
   1146 ///
   1147 /// @param LREdit    The LiveRangeEdit object handling the current split.
   1148 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
   1149 ///                  must appear in this list.
   1150 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
   1151                                  ArrayRef<unsigned> UsedCands) {
   1152   // These are the intervals created for new global ranges. We may create more
   1153   // intervals for local ranges.
   1154   const unsigned NumGlobalIntvs = LREdit.size();
   1155   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
   1156   assert(NumGlobalIntvs && "No global intervals configured");
   1157 
   1158   // Isolate even single instructions when dealing with a proper sub-class.
   1159   // That guarantees register class inflation for the stack interval because it
   1160   // is all copies.
   1161   unsigned Reg = SA->getParent().reg;
   1162   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
   1163 
   1164   // First handle all the blocks with uses.
   1165   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1166   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1167     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1168     unsigned Number = BI.MBB->getNumber();
   1169     unsigned IntvIn = 0, IntvOut = 0;
   1170     SlotIndex IntfIn, IntfOut;
   1171     if (BI.LiveIn) {
   1172       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
   1173       if (CandIn != NoCand) {
   1174         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
   1175         IntvIn = Cand.IntvIdx;
   1176         Cand.Intf.moveToBlock(Number);
   1177         IntfIn = Cand.Intf.first();
   1178       }
   1179     }
   1180     if (BI.LiveOut) {
   1181       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1182       if (CandOut != NoCand) {
   1183         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1184         IntvOut = Cand.IntvIdx;
   1185         Cand.Intf.moveToBlock(Number);
   1186         IntfOut = Cand.Intf.last();
   1187       }
   1188     }
   1189 
   1190     // Create separate intervals for isolated blocks with multiple uses.
   1191     if (!IntvIn && !IntvOut) {
   1192       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
   1193       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1194         SE->splitSingleBlock(BI);
   1195       continue;
   1196     }
   1197 
   1198     if (IntvIn && IntvOut)
   1199       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1200     else if (IntvIn)
   1201       SE->splitRegInBlock(BI, IntvIn, IntfIn);
   1202     else
   1203       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
   1204   }
   1205 
   1206   // Handle live-through blocks. The relevant live-through blocks are stored in
   1207   // the ActiveBlocks list with each candidate. We need to filter out
   1208   // duplicates.
   1209   BitVector Todo = SA->getThroughBlocks();
   1210   for (unsigned c = 0; c != UsedCands.size(); ++c) {
   1211     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
   1212     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
   1213       unsigned Number = Blocks[i];
   1214       if (!Todo.test(Number))
   1215         continue;
   1216       Todo.reset(Number);
   1217 
   1218       unsigned IntvIn = 0, IntvOut = 0;
   1219       SlotIndex IntfIn, IntfOut;
   1220 
   1221       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
   1222       if (CandIn != NoCand) {
   1223         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
   1224         IntvIn = Cand.IntvIdx;
   1225         Cand.Intf.moveToBlock(Number);
   1226         IntfIn = Cand.Intf.first();
   1227       }
   1228 
   1229       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1230       if (CandOut != NoCand) {
   1231         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1232         IntvOut = Cand.IntvIdx;
   1233         Cand.Intf.moveToBlock(Number);
   1234         IntfOut = Cand.Intf.last();
   1235       }
   1236       if (!IntvIn && !IntvOut)
   1237         continue;
   1238       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1239     }
   1240   }
   1241 
   1242   ++NumGlobalSplits;
   1243 
   1244   SmallVector<unsigned, 8> IntvMap;
   1245   SE->finish(&IntvMap);
   1246   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
   1247 
   1248   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1249   unsigned OrigBlocks = SA->getNumLiveBlocks();
   1250 
   1251   // Sort out the new intervals created by splitting. We get four kinds:
   1252   // - Remainder intervals should not be split again.
   1253   // - Candidate intervals can be assigned to Cand.PhysReg.
   1254   // - Block-local splits are candidates for local splitting.
   1255   // - DCE leftovers should go back on the queue.
   1256   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1257     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
   1258 
   1259     // Ignore old intervals from DCE.
   1260     if (getStage(Reg) != RS_New)
   1261       continue;
   1262 
   1263     // Remainder interval. Don't try splitting again, spill if it doesn't
   1264     // allocate.
   1265     if (IntvMap[i] == 0) {
   1266       setStage(Reg, RS_Spill);
   1267       continue;
   1268     }
   1269 
   1270     // Global intervals. Allow repeated splitting as long as the number of live
   1271     // blocks is strictly decreasing.
   1272     if (IntvMap[i] < NumGlobalIntvs) {
   1273       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
   1274         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
   1275                      << " blocks as original.\n");
   1276         // Don't allow repeated splitting as a safe guard against looping.
   1277         setStage(Reg, RS_Split2);
   1278       }
   1279       continue;
   1280     }
   1281 
   1282     // Other intervals are treated as new. This includes local intervals created
   1283     // for blocks with multiple uses, and anything created by DCE.
   1284   }
   1285 
   1286   if (VerifyEnabled)
   1287     MF->verify(this, "After splitting live range around region");
   1288 }
   1289 
   1290 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1291                                   SmallVectorImpl<unsigned> &NewVRegs) {
   1292   unsigned NumCands = 0;
   1293   BlockFrequency BestCost;
   1294 
   1295   // Check if we can split this live range around a compact region.
   1296   bool HasCompact = calcCompactRegion(GlobalCand.front());
   1297   if (HasCompact) {
   1298     // Yes, keep GlobalCand[0] as the compact region candidate.
   1299     NumCands = 1;
   1300     BestCost = BlockFrequency::getMaxFrequency();
   1301   } else {
   1302     // No benefit from the compact region, our fallback will be per-block
   1303     // splitting. Make sure we find a solution that is cheaper than spilling.
   1304     BestCost = calcSpillCost();
   1305     DEBUG(dbgs() << "Cost of isolating all blocks = ";
   1306                  MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
   1307   }
   1308 
   1309   unsigned BestCand =
   1310       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
   1311                                false/*IgnoreCSR*/);
   1312 
   1313   // No solutions found, fall back to single block splitting.
   1314   if (!HasCompact && BestCand == NoCand)
   1315     return 0;
   1316 
   1317   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
   1318 }
   1319 
   1320 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
   1321                                             AllocationOrder &Order,
   1322                                             BlockFrequency &BestCost,
   1323                                             unsigned &NumCands,
   1324                                             bool IgnoreCSR) {
   1325   unsigned BestCand = NoCand;
   1326   Order.rewind();
   1327   while (unsigned PhysReg = Order.next()) {
   1328    if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
   1329      if (IgnoreCSR && !MRI->isPhysRegUsed(CSR))
   1330        continue;
   1331 
   1332     // Discard bad candidates before we run out of interference cache cursors.
   1333     // This will only affect register classes with a lot of registers (>32).
   1334     if (NumCands == IntfCache.getMaxCursors()) {
   1335       unsigned WorstCount = ~0u;
   1336       unsigned Worst = 0;
   1337       for (unsigned i = 0; i != NumCands; ++i) {
   1338         if (i == BestCand || !GlobalCand[i].PhysReg)
   1339           continue;
   1340         unsigned Count = GlobalCand[i].LiveBundles.count();
   1341         if (Count < WorstCount)
   1342           Worst = i, WorstCount = Count;
   1343       }
   1344       --NumCands;
   1345       GlobalCand[Worst] = GlobalCand[NumCands];
   1346       if (BestCand == NumCands)
   1347         BestCand = Worst;
   1348     }
   1349 
   1350     if (GlobalCand.size() <= NumCands)
   1351       GlobalCand.resize(NumCands+1);
   1352     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
   1353     Cand.reset(IntfCache, PhysReg);
   1354 
   1355     SpillPlacer->prepare(Cand.LiveBundles);
   1356     BlockFrequency Cost;
   1357     if (!addSplitConstraints(Cand.Intf, Cost)) {
   1358       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
   1359       continue;
   1360     }
   1361     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
   1362                  MBFI->printBlockFreq(dbgs(), Cost));
   1363     if (Cost >= BestCost) {
   1364       DEBUG({
   1365         if (BestCand == NoCand)
   1366           dbgs() << " worse than no bundles\n";
   1367         else
   1368           dbgs() << " worse than "
   1369                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
   1370       });
   1371       continue;
   1372     }
   1373     growRegion(Cand);
   1374 
   1375     SpillPlacer->finish();
   1376 
   1377     // No live bundles, defer to splitSingleBlocks().
   1378     if (!Cand.LiveBundles.any()) {
   1379       DEBUG(dbgs() << " no bundles.\n");
   1380       continue;
   1381     }
   1382 
   1383     Cost += calcGlobalSplitCost(Cand);
   1384     DEBUG({
   1385       dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
   1386                                 << " with bundles";
   1387       for (int i = Cand.LiveBundles.find_first(); i>=0;
   1388            i = Cand.LiveBundles.find_next(i))
   1389         dbgs() << " EB#" << i;
   1390       dbgs() << ".\n";
   1391     });
   1392     if (Cost < BestCost) {
   1393       BestCand = NumCands;
   1394       BestCost = Cost;
   1395     }
   1396     ++NumCands;
   1397   }
   1398   return BestCand;
   1399 }
   1400 
   1401 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
   1402                                  bool HasCompact,
   1403                                  SmallVectorImpl<unsigned> &NewVRegs) {
   1404   SmallVector<unsigned, 8> UsedCands;
   1405   // Prepare split editor.
   1406   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1407   SE->reset(LREdit, SplitSpillMode);
   1408 
   1409   // Assign all edge bundles to the preferred candidate, or NoCand.
   1410   BundleCand.assign(Bundles->getNumBundles(), NoCand);
   1411 
   1412   // Assign bundles for the best candidate region.
   1413   if (BestCand != NoCand) {
   1414     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
   1415     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
   1416       UsedCands.push_back(BestCand);
   1417       Cand.IntvIdx = SE->openIntv();
   1418       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
   1419                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
   1420       (void)B;
   1421     }
   1422   }
   1423 
   1424   // Assign bundles for the compact region.
   1425   if (HasCompact) {
   1426     GlobalSplitCandidate &Cand = GlobalCand.front();
   1427     assert(!Cand.PhysReg && "Compact region has no physreg");
   1428     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
   1429       UsedCands.push_back(0);
   1430       Cand.IntvIdx = SE->openIntv();
   1431       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
   1432                    << Cand.IntvIdx << ".\n");
   1433       (void)B;
   1434     }
   1435   }
   1436 
   1437   splitAroundRegion(LREdit, UsedCands);
   1438   return 0;
   1439 }
   1440 
   1441 
   1442 //===----------------------------------------------------------------------===//
   1443 //                            Per-Block Splitting
   1444 //===----------------------------------------------------------------------===//
   1445 
   1446 /// tryBlockSplit - Split a global live range around every block with uses. This
   1447 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
   1448 /// they don't allocate.
   1449 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1450                                  SmallVectorImpl<unsigned> &NewVRegs) {
   1451   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
   1452   unsigned Reg = VirtReg.reg;
   1453   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
   1454   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1455   SE->reset(LREdit, SplitSpillMode);
   1456   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1457   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1458     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1459     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1460       SE->splitSingleBlock(BI);
   1461   }
   1462   // No blocks were split.
   1463   if (LREdit.empty())
   1464     return 0;
   1465 
   1466   // We did split for some blocks.
   1467   SmallVector<unsigned, 8> IntvMap;
   1468   SE->finish(&IntvMap);
   1469 
   1470   // Tell LiveDebugVariables about the new ranges.
   1471   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
   1472 
   1473   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1474 
   1475   // Sort out the new intervals created by splitting. The remainder interval
   1476   // goes straight to spilling, the new local ranges get to stay RS_New.
   1477   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1478     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
   1479     if (getStage(LI) == RS_New && IntvMap[i] == 0)
   1480       setStage(LI, RS_Spill);
   1481   }
   1482 
   1483   if (VerifyEnabled)
   1484     MF->verify(this, "After splitting live range around basic blocks");
   1485   return 0;
   1486 }
   1487 
   1488 
   1489 //===----------------------------------------------------------------------===//
   1490 //                         Per-Instruction Splitting
   1491 //===----------------------------------------------------------------------===//
   1492 
   1493 /// Get the number of allocatable registers that match the constraints of \p Reg
   1494 /// on \p MI and that are also in \p SuperRC.
   1495 static unsigned getNumAllocatableRegsForConstraints(
   1496     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
   1497     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
   1498     const RegisterClassInfo &RCI) {
   1499   assert(SuperRC && "Invalid register class");
   1500 
   1501   const TargetRegisterClass *ConstrainedRC =
   1502       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
   1503                                              /* ExploreBundle */ true);
   1504   if (!ConstrainedRC)
   1505     return 0;
   1506   return RCI.getNumAllocatableRegs(ConstrainedRC);
   1507 }
   1508 
   1509 /// tryInstructionSplit - Split a live range around individual instructions.
   1510 /// This is normally not worthwhile since the spiller is doing essentially the
   1511 /// same thing. However, when the live range is in a constrained register
   1512 /// class, it may help to insert copies such that parts of the live range can
   1513 /// be moved to a larger register class.
   1514 ///
   1515 /// This is similar to spilling to a larger register class.
   1516 unsigned
   1517 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1518                               SmallVectorImpl<unsigned> &NewVRegs) {
   1519   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
   1520   // There is no point to this if there are no larger sub-classes.
   1521   if (!RegClassInfo.isProperSubClass(CurRC))
   1522     return 0;
   1523 
   1524   // Always enable split spill mode, since we're effectively spilling to a
   1525   // register.
   1526   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1527   SE->reset(LREdit, SplitEditor::SM_Size);
   1528 
   1529   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1530   if (Uses.size() <= 1)
   1531     return 0;
   1532 
   1533   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
   1534 
   1535   const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(CurRC);
   1536   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
   1537   // Split around every non-copy instruction if this split will relax
   1538   // the constraints on the virtual register.
   1539   // Otherwise, splitting just inserts uncoalescable copies that do not help
   1540   // the allocation.
   1541   for (unsigned i = 0; i != Uses.size(); ++i) {
   1542     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
   1543       if (MI->isFullCopy() ||
   1544           SuperRCNumAllocatableRegs ==
   1545               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
   1546                                                   TRI, RCI)) {
   1547         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
   1548         continue;
   1549       }
   1550     SE->openIntv();
   1551     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
   1552     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
   1553     SE->useIntv(SegStart, SegStop);
   1554   }
   1555 
   1556   if (LREdit.empty()) {
   1557     DEBUG(dbgs() << "All uses were copies.\n");
   1558     return 0;
   1559   }
   1560 
   1561   SmallVector<unsigned, 8> IntvMap;
   1562   SE->finish(&IntvMap);
   1563   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
   1564   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1565 
   1566   // Assign all new registers to RS_Spill. This was the last chance.
   1567   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
   1568   return 0;
   1569 }
   1570 
   1571 
   1572 //===----------------------------------------------------------------------===//
   1573 //                             Local Splitting
   1574 //===----------------------------------------------------------------------===//
   1575 
   1576 
   1577 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
   1578 /// in order to use PhysReg between two entries in SA->UseSlots.
   1579 ///
   1580 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
   1581 ///
   1582 void RAGreedy::calcGapWeights(unsigned PhysReg,
   1583                               SmallVectorImpl<float> &GapWeight) {
   1584   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1585   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1586   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1587   const unsigned NumGaps = Uses.size()-1;
   1588 
   1589   // Start and end points for the interference check.
   1590   SlotIndex StartIdx =
   1591     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
   1592   SlotIndex StopIdx =
   1593     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
   1594 
   1595   GapWeight.assign(NumGaps, 0.0f);
   1596 
   1597   // Add interference from each overlapping register.
   1598   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
   1599     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
   1600           .checkInterference())
   1601       continue;
   1602 
   1603     // We know that VirtReg is a continuous interval from FirstInstr to
   1604     // LastInstr, so we don't need InterferenceQuery.
   1605     //
   1606     // Interference that overlaps an instruction is counted in both gaps
   1607     // surrounding the instruction. The exception is interference before
   1608     // StartIdx and after StopIdx.
   1609     //
   1610     LiveIntervalUnion::SegmentIter IntI =
   1611       Matrix->getLiveUnions()[*Units] .find(StartIdx);
   1612     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
   1613       // Skip the gaps before IntI.
   1614       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
   1615         if (++Gap == NumGaps)
   1616           break;
   1617       if (Gap == NumGaps)
   1618         break;
   1619 
   1620       // Update the gaps covered by IntI.
   1621       const float weight = IntI.value()->weight;
   1622       for (; Gap != NumGaps; ++Gap) {
   1623         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
   1624         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
   1625           break;
   1626       }
   1627       if (Gap == NumGaps)
   1628         break;
   1629     }
   1630   }
   1631 
   1632   // Add fixed interference.
   1633   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
   1634     const LiveRange &LR = LIS->getRegUnit(*Units);
   1635     LiveRange::const_iterator I = LR.find(StartIdx);
   1636     LiveRange::const_iterator E = LR.end();
   1637 
   1638     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
   1639     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
   1640       while (Uses[Gap+1].getBoundaryIndex() < I->start)
   1641         if (++Gap == NumGaps)
   1642           break;
   1643       if (Gap == NumGaps)
   1644         break;
   1645 
   1646       for (; Gap != NumGaps; ++Gap) {
   1647         GapWeight[Gap] = llvm::huge_valf;
   1648         if (Uses[Gap+1].getBaseIndex() >= I->end)
   1649           break;
   1650       }
   1651       if (Gap == NumGaps)
   1652         break;
   1653     }
   1654   }
   1655 }
   1656 
   1657 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
   1658 /// basic block.
   1659 ///
   1660 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1661                                  SmallVectorImpl<unsigned> &NewVRegs) {
   1662   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1663   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1664 
   1665   // Note that it is possible to have an interval that is live-in or live-out
   1666   // while only covering a single block - A phi-def can use undef values from
   1667   // predecessors, and the block could be a single-block loop.
   1668   // We don't bother doing anything clever about such a case, we simply assume
   1669   // that the interval is continuous from FirstInstr to LastInstr. We should
   1670   // make sure that we don't do anything illegal to such an interval, though.
   1671 
   1672   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1673   if (Uses.size() <= 2)
   1674     return 0;
   1675   const unsigned NumGaps = Uses.size()-1;
   1676 
   1677   DEBUG({
   1678     dbgs() << "tryLocalSplit: ";
   1679     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
   1680       dbgs() << ' ' << Uses[i];
   1681     dbgs() << '\n';
   1682   });
   1683 
   1684   // If VirtReg is live across any register mask operands, compute a list of
   1685   // gaps with register masks.
   1686   SmallVector<unsigned, 8> RegMaskGaps;
   1687   if (Matrix->checkRegMaskInterference(VirtReg)) {
   1688     // Get regmask slots for the whole block.
   1689     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
   1690     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
   1691     // Constrain to VirtReg's live range.
   1692     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
   1693                                    Uses.front().getRegSlot()) - RMS.begin();
   1694     unsigned re = RMS.size();
   1695     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
   1696       // Look for Uses[i] <= RMS <= Uses[i+1].
   1697       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
   1698       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
   1699         continue;
   1700       // Skip a regmask on the same instruction as the last use. It doesn't
   1701       // overlap the live range.
   1702       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
   1703         break;
   1704       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
   1705       RegMaskGaps.push_back(i);
   1706       // Advance ri to the next gap. A regmask on one of the uses counts in
   1707       // both gaps.
   1708       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
   1709         ++ri;
   1710     }
   1711     DEBUG(dbgs() << '\n');
   1712   }
   1713 
   1714   // Since we allow local split results to be split again, there is a risk of
   1715   // creating infinite loops. It is tempting to require that the new live
   1716   // ranges have less instructions than the original. That would guarantee
   1717   // convergence, but it is too strict. A live range with 3 instructions can be
   1718   // split 2+3 (including the COPY), and we want to allow that.
   1719   //
   1720   // Instead we use these rules:
   1721   //
   1722   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
   1723   //    noop split, of course).
   1724   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
   1725   //    the new ranges must have fewer instructions than before the split.
   1726   // 3. New ranges with the same number of instructions are marked RS_Split2,
   1727   //    smaller ranges are marked RS_New.
   1728   //
   1729   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
   1730   // excessive splitting and infinite loops.
   1731   //
   1732   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
   1733 
   1734   // Best split candidate.
   1735   unsigned BestBefore = NumGaps;
   1736   unsigned BestAfter = 0;
   1737   float BestDiff = 0;
   1738 
   1739   const float blockFreq =
   1740     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
   1741     (1.0f / MBFI->getEntryFreq());
   1742   SmallVector<float, 8> GapWeight;
   1743 
   1744   Order.rewind();
   1745   while (unsigned PhysReg = Order.next()) {
   1746     // Keep track of the largest spill weight that would need to be evicted in
   1747     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
   1748     calcGapWeights(PhysReg, GapWeight);
   1749 
   1750     // Remove any gaps with regmask clobbers.
   1751     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
   1752       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
   1753         GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
   1754 
   1755     // Try to find the best sequence of gaps to close.
   1756     // The new spill weight must be larger than any gap interference.
   1757 
   1758     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
   1759     unsigned SplitBefore = 0, SplitAfter = 1;
   1760 
   1761     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
   1762     // It is the spill weight that needs to be evicted.
   1763     float MaxGap = GapWeight[0];
   1764 
   1765     for (;;) {
   1766       // Live before/after split?
   1767       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
   1768       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
   1769 
   1770       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
   1771                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
   1772                    << " i=" << MaxGap);
   1773 
   1774       // Stop before the interval gets so big we wouldn't be making progress.
   1775       if (!LiveBefore && !LiveAfter) {
   1776         DEBUG(dbgs() << " all\n");
   1777         break;
   1778       }
   1779       // Should the interval be extended or shrunk?
   1780       bool Shrink = true;
   1781 
   1782       // How many gaps would the new range have?
   1783       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
   1784 
   1785       // Legally, without causing looping?
   1786       bool Legal = !ProgressRequired || NewGaps < NumGaps;
   1787 
   1788       if (Legal && MaxGap < llvm::huge_valf) {
   1789         // Estimate the new spill weight. Each instruction reads or writes the
   1790         // register. Conservatively assume there are no read-modify-write
   1791         // instructions.
   1792         //
   1793         // Try to guess the size of the new interval.
   1794         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
   1795                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
   1796                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
   1797         // Would this split be possible to allocate?
   1798         // Never allocate all gaps, we wouldn't be making progress.
   1799         DEBUG(dbgs() << " w=" << EstWeight);
   1800         if (EstWeight * Hysteresis >= MaxGap) {
   1801           Shrink = false;
   1802           float Diff = EstWeight - MaxGap;
   1803           if (Diff > BestDiff) {
   1804             DEBUG(dbgs() << " (best)");
   1805             BestDiff = Hysteresis * Diff;
   1806             BestBefore = SplitBefore;
   1807             BestAfter = SplitAfter;
   1808           }
   1809         }
   1810       }
   1811 
   1812       // Try to shrink.
   1813       if (Shrink) {
   1814         if (++SplitBefore < SplitAfter) {
   1815           DEBUG(dbgs() << " shrink\n");
   1816           // Recompute the max when necessary.
   1817           if (GapWeight[SplitBefore - 1] >= MaxGap) {
   1818             MaxGap = GapWeight[SplitBefore];
   1819             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
   1820               MaxGap = std::max(MaxGap, GapWeight[i]);
   1821           }
   1822           continue;
   1823         }
   1824         MaxGap = 0;
   1825       }
   1826 
   1827       // Try to extend the interval.
   1828       if (SplitAfter >= NumGaps) {
   1829         DEBUG(dbgs() << " end\n");
   1830         break;
   1831       }
   1832 
   1833       DEBUG(dbgs() << " extend\n");
   1834       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
   1835     }
   1836   }
   1837 
   1838   // Didn't find any candidates?
   1839   if (BestBefore == NumGaps)
   1840     return 0;
   1841 
   1842   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
   1843                << '-' << Uses[BestAfter] << ", " << BestDiff
   1844                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
   1845 
   1846   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1847   SE->reset(LREdit);
   1848 
   1849   SE->openIntv();
   1850   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
   1851   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
   1852   SE->useIntv(SegStart, SegStop);
   1853   SmallVector<unsigned, 8> IntvMap;
   1854   SE->finish(&IntvMap);
   1855   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
   1856 
   1857   // If the new range has the same number of instructions as before, mark it as
   1858   // RS_Split2 so the next split will be forced to make progress. Otherwise,
   1859   // leave the new intervals as RS_New so they can compete.
   1860   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
   1861   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
   1862   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
   1863   if (NewGaps >= NumGaps) {
   1864     DEBUG(dbgs() << "Tagging non-progress ranges: ");
   1865     assert(!ProgressRequired && "Didn't make progress when it was required.");
   1866     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
   1867       if (IntvMap[i] == 1) {
   1868         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
   1869         DEBUG(dbgs() << PrintReg(LREdit.get(i)));
   1870       }
   1871     DEBUG(dbgs() << '\n');
   1872   }
   1873   ++NumLocalSplits;
   1874 
   1875   return 0;
   1876 }
   1877 
   1878 //===----------------------------------------------------------------------===//
   1879 //                          Live Range Splitting
   1880 //===----------------------------------------------------------------------===//
   1881 
   1882 /// trySplit - Try to split VirtReg or one of its interferences, making it
   1883 /// assignable.
   1884 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
   1885 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1886                             SmallVectorImpl<unsigned>&NewVRegs) {
   1887   // Ranges must be Split2 or less.
   1888   if (getStage(VirtReg) >= RS_Spill)
   1889     return 0;
   1890 
   1891   // Local intervals are handled separately.
   1892   if (LIS->intervalIsInOneMBB(VirtReg)) {
   1893     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
   1894     SA->analyze(&VirtReg);
   1895     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
   1896     if (PhysReg || !NewVRegs.empty())
   1897       return PhysReg;
   1898     return tryInstructionSplit(VirtReg, Order, NewVRegs);
   1899   }
   1900 
   1901   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
   1902 
   1903   SA->analyze(&VirtReg);
   1904 
   1905   // FIXME: SplitAnalysis may repair broken live ranges coming from the
   1906   // coalescer. That may cause the range to become allocatable which means that
   1907   // tryRegionSplit won't be making progress. This check should be replaced with
   1908   // an assertion when the coalescer is fixed.
   1909   if (SA->didRepairRange()) {
   1910     // VirtReg has changed, so all cached queries are invalid.
   1911     Matrix->invalidateVirtRegs();
   1912     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1913       return PhysReg;
   1914   }
   1915 
   1916   // First try to split around a region spanning multiple blocks. RS_Split2
   1917   // ranges already made dubious progress with region splitting, so they go
   1918   // straight to single block splitting.
   1919   if (getStage(VirtReg) < RS_Split2) {
   1920     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
   1921     if (PhysReg || !NewVRegs.empty())
   1922       return PhysReg;
   1923   }
   1924 
   1925   // Then isolate blocks.
   1926   return tryBlockSplit(VirtReg, Order, NewVRegs);
   1927 }
   1928 
   1929 //===----------------------------------------------------------------------===//
   1930 //                          Last Chance Recoloring
   1931 //===----------------------------------------------------------------------===//
   1932 
   1933 /// mayRecolorAllInterferences - Check if the virtual registers that
   1934 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
   1935 /// recolored to free \p PhysReg.
   1936 /// When true is returned, \p RecoloringCandidates has been augmented with all
   1937 /// the live intervals that need to be recolored in order to free \p PhysReg
   1938 /// for \p VirtReg.
   1939 /// \p FixedRegisters contains all the virtual registers that cannot be
   1940 /// recolored.
   1941 bool
   1942 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
   1943                                      SmallLISet &RecoloringCandidates,
   1944                                      const SmallVirtRegSet &FixedRegisters) {
   1945   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
   1946 
   1947   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
   1948     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
   1949     // If there is LastChanceRecoloringMaxInterference or more interferences,
   1950     // chances are one would not be recolorable.
   1951     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
   1952         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
   1953       DEBUG(dbgs() << "Early abort: too many interferences.\n");
   1954       CutOffInfo |= CO_Interf;
   1955       return false;
   1956     }
   1957     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
   1958       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
   1959       // If Intf is done and sit on the same register class as VirtReg,
   1960       // it would not be recolorable as it is in the same state as VirtReg.
   1961       if ((getStage(*Intf) == RS_Done &&
   1962            MRI->getRegClass(Intf->reg) == CurRC) ||
   1963           FixedRegisters.count(Intf->reg)) {
   1964         DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
   1965         return false;
   1966       }
   1967       RecoloringCandidates.insert(Intf);
   1968     }
   1969   }
   1970   return true;
   1971 }
   1972 
   1973 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
   1974 /// its interferences.
   1975 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
   1976 /// virtual register that was using it. The recoloring process may recursively
   1977 /// use the last chance recoloring. Therefore, when a virtual register has been
   1978 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
   1979 /// be last-chance-recolored again during this recoloring "session".
   1980 /// E.g.,
   1981 /// Let
   1982 /// vA can use {R1, R2    }
   1983 /// vB can use {    R2, R3}
   1984 /// vC can use {R1        }
   1985 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
   1986 /// instance) and they all interfere.
   1987 ///
   1988 /// vA is assigned R1
   1989 /// vB is assigned R2
   1990 /// vC tries to evict vA but vA is already done.
   1991 /// Regular register allocation fails.
   1992 ///
   1993 /// Last chance recoloring kicks in:
   1994 /// vC does as if vA was evicted => vC uses R1.
   1995 /// vC is marked as fixed.
   1996 /// vA needs to find a color.
   1997 /// None are available.
   1998 /// vA cannot evict vC: vC is a fixed virtual register now.
   1999 /// vA does as if vB was evicted => vA uses R2.
   2000 /// vB needs to find a color.
   2001 /// R3 is available.
   2002 /// Recoloring => vC = R1, vA = R2, vB = R3
   2003 ///
   2004 /// \p Order defines the preferred allocation order for \p VirtReg.
   2005 /// \p NewRegs will contain any new virtual register that have been created
   2006 /// (split, spill) during the process and that must be assigned.
   2007 /// \p FixedRegisters contains all the virtual registers that cannot be
   2008 /// recolored.
   2009 /// \p Depth gives the current depth of the last chance recoloring.
   2010 /// \return a physical register that can be used for VirtReg or ~0u if none
   2011 /// exists.
   2012 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
   2013                                            AllocationOrder &Order,
   2014                                            SmallVectorImpl<unsigned> &NewVRegs,
   2015                                            SmallVirtRegSet &FixedRegisters,
   2016                                            unsigned Depth) {
   2017   DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
   2018   // Ranges must be Done.
   2019   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
   2020          "Last chance recoloring should really be last chance");
   2021   // Set the max depth to LastChanceRecoloringMaxDepth.
   2022   // We may want to reconsider that if we end up with a too large search space
   2023   // for target with hundreds of registers.
   2024   // Indeed, in that case we may want to cut the search space earlier.
   2025   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
   2026     DEBUG(dbgs() << "Abort because max depth has been reached.\n");
   2027     CutOffInfo |= CO_Depth;
   2028     return ~0u;
   2029   }
   2030 
   2031   // Set of Live intervals that will need to be recolored.
   2032   SmallLISet RecoloringCandidates;
   2033   // Record the original mapping virtual register to physical register in case
   2034   // the recoloring fails.
   2035   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
   2036   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
   2037   // this recoloring "session".
   2038   FixedRegisters.insert(VirtReg.reg);
   2039 
   2040   Order.rewind();
   2041   while (unsigned PhysReg = Order.next()) {
   2042     DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
   2043                  << PrintReg(PhysReg, TRI) << '\n');
   2044     RecoloringCandidates.clear();
   2045     VirtRegToPhysReg.clear();
   2046 
   2047     // It is only possible to recolor virtual register interference.
   2048     if (Matrix->checkInterference(VirtReg, PhysReg) >
   2049         LiveRegMatrix::IK_VirtReg) {
   2050       DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
   2051 
   2052       continue;
   2053     }
   2054 
   2055     // Early give up on this PhysReg if it is obvious we cannot recolor all
   2056     // the interferences.
   2057     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
   2058                                     FixedRegisters)) {
   2059       DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
   2060       continue;
   2061     }
   2062 
   2063     // RecoloringCandidates contains all the virtual registers that interfer
   2064     // with VirtReg on PhysReg (or one of its aliases).
   2065     // Enqueue them for recoloring and perform the actual recoloring.
   2066     PQueue RecoloringQueue;
   2067     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
   2068                               EndIt = RecoloringCandidates.end();
   2069          It != EndIt; ++It) {
   2070       unsigned ItVirtReg = (*It)->reg;
   2071       enqueue(RecoloringQueue, *It);
   2072       assert(VRM->hasPhys(ItVirtReg) &&
   2073              "Interferences are supposed to be with allocated vairables");
   2074 
   2075       // Record the current allocation.
   2076       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
   2077       // unset the related struct.
   2078       Matrix->unassign(**It);
   2079     }
   2080 
   2081     // Do as if VirtReg was assigned to PhysReg so that the underlying
   2082     // recoloring has the right information about the interferes and
   2083     // available colors.
   2084     Matrix->assign(VirtReg, PhysReg);
   2085 
   2086     // Save the current recoloring state.
   2087     // If we cannot recolor all the interferences, we will have to start again
   2088     // at this point for the next physical register.
   2089     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
   2090     if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
   2091                                 Depth)) {
   2092       // Do not mess up with the global assignment process.
   2093       // I.e., VirtReg must be unassigned.
   2094       Matrix->unassign(VirtReg);
   2095       return PhysReg;
   2096     }
   2097 
   2098     DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
   2099                  << PrintReg(PhysReg, TRI) << '\n');
   2100 
   2101     // The recoloring attempt failed, undo the changes.
   2102     FixedRegisters = SaveFixedRegisters;
   2103     Matrix->unassign(VirtReg);
   2104 
   2105     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
   2106                               EndIt = RecoloringCandidates.end();
   2107          It != EndIt; ++It) {
   2108       unsigned ItVirtReg = (*It)->reg;
   2109       if (VRM->hasPhys(ItVirtReg))
   2110         Matrix->unassign(**It);
   2111       Matrix->assign(**It, VirtRegToPhysReg[ItVirtReg]);
   2112     }
   2113   }
   2114 
   2115   // Last chance recoloring did not worked either, give up.
   2116   return ~0u;
   2117 }
   2118 
   2119 /// tryRecoloringCandidates - Try to assign a new color to every register
   2120 /// in \RecoloringQueue.
   2121 /// \p NewRegs will contain any new virtual register created during the
   2122 /// recoloring process.
   2123 /// \p FixedRegisters[in/out] contains all the registers that have been
   2124 /// recolored.
   2125 /// \return true if all virtual registers in RecoloringQueue were successfully
   2126 /// recolored, false otherwise.
   2127 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
   2128                                        SmallVectorImpl<unsigned> &NewVRegs,
   2129                                        SmallVirtRegSet &FixedRegisters,
   2130                                        unsigned Depth) {
   2131   while (!RecoloringQueue.empty()) {
   2132     LiveInterval *LI = dequeue(RecoloringQueue);
   2133     DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
   2134     unsigned PhysReg;
   2135     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
   2136     if (PhysReg == ~0u || !PhysReg)
   2137       return false;
   2138     DEBUG(dbgs() << "Recoloring of " << *LI
   2139                  << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
   2140     Matrix->assign(*LI, PhysReg);
   2141     FixedRegisters.insert(LI->reg);
   2142   }
   2143   return true;
   2144 }
   2145 
   2146 //===----------------------------------------------------------------------===//
   2147 //                            Main Entry Point
   2148 //===----------------------------------------------------------------------===//
   2149 
   2150 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
   2151                                  SmallVectorImpl<unsigned> &NewVRegs) {
   2152   CutOffInfo = CO_None;
   2153   LLVMContext &Ctx = MF->getFunction()->getContext();
   2154   SmallVirtRegSet FixedRegisters;
   2155   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
   2156   if (Reg == ~0U && (CutOffInfo != CO_None)) {
   2157     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
   2158     if (CutOffEncountered == CO_Depth)
   2159       Ctx.emitError("register allocation failed: maximum depth for recoloring "
   2160                     "reached. Use -fexhaustive-register-search to skip "
   2161                     "cutoffs");
   2162     else if (CutOffEncountered == CO_Interf)
   2163       Ctx.emitError("register allocation failed: maximum interference for "
   2164                     "recoloring reached. Use -fexhaustive-register-search "
   2165                     "to skip cutoffs");
   2166     else if (CutOffEncountered == (CO_Depth | CO_Interf))
   2167       Ctx.emitError("register allocation failed: maximum interference and "
   2168                     "depth for recoloring reached. Use "
   2169                     "-fexhaustive-register-search to skip cutoffs");
   2170   }
   2171   return Reg;
   2172 }
   2173 
   2174 /// Using a CSR for the first time has a cost because it causes push|pop
   2175 /// to be added to prologue|epilogue. Splitting a cold section of the live
   2176 /// range can have lower cost than using the CSR for the first time;
   2177 /// Spilling a live range in the cold path can have lower cost than using
   2178 /// the CSR for the first time. Returns the physical register if we decide
   2179 /// to use the CSR; otherwise return 0.
   2180 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
   2181                                          AllocationOrder &Order,
   2182                                          unsigned PhysReg,
   2183                                          unsigned &CostPerUseLimit,
   2184                                          SmallVectorImpl<unsigned> &NewVRegs) {
   2185   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
   2186     // We choose spill over using the CSR for the first time if the spill cost
   2187     // is lower than CSRCost.
   2188     SA->analyze(&VirtReg);
   2189     if (calcSpillCost() >= CSRCost)
   2190       return PhysReg;
   2191 
   2192     // We are going to spill, set CostPerUseLimit to 1 to make sure that
   2193     // we will not use a callee-saved register in tryEvict.
   2194     CostPerUseLimit = 1;
   2195     return 0;
   2196   }
   2197   if (getStage(VirtReg) < RS_Split) {
   2198     // We choose pre-splitting over using the CSR for the first time if
   2199     // the cost of splitting is lower than CSRCost.
   2200     SA->analyze(&VirtReg);
   2201     unsigned NumCands = 0;
   2202     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
   2203     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
   2204                                                  NumCands, true /*IgnoreCSR*/);
   2205     if (BestCand == NoCand)
   2206       // Use the CSR if we can't find a region split below CSRCost.
   2207       return PhysReg;
   2208 
   2209     // Perform the actual pre-splitting.
   2210     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
   2211     return 0;
   2212   }
   2213   return PhysReg;
   2214 }
   2215 
   2216 void RAGreedy::initializeCSRCost() {
   2217   // We use the larger one out of the command-line option and the value report
   2218   // by TRI.
   2219   CSRCost = BlockFrequency(
   2220       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
   2221   if (!CSRCost.getFrequency())
   2222     return;
   2223 
   2224   // Raw cost is relative to Entry == 2^14; scale it appropriately.
   2225   uint64_t ActualEntry = MBFI->getEntryFreq();
   2226   if (!ActualEntry) {
   2227     CSRCost = 0;
   2228     return;
   2229   }
   2230   uint64_t FixedEntry = 1 << 14;
   2231   if (ActualEntry < FixedEntry)
   2232     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
   2233   else if (ActualEntry <= UINT32_MAX)
   2234     // Invert the fraction and divide.
   2235     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
   2236   else
   2237     // Can't use BranchProbability in general, since it takes 32-bit numbers.
   2238     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
   2239 }
   2240 
   2241 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
   2242                                      SmallVectorImpl<unsigned> &NewVRegs,
   2243                                      SmallVirtRegSet &FixedRegisters,
   2244                                      unsigned Depth) {
   2245   unsigned CostPerUseLimit = ~0u;
   2246   // First try assigning a free register.
   2247   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
   2248   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
   2249     // We check other options if we are using a CSR for the first time.
   2250     bool CSRFirstUse = false;
   2251     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
   2252       if (!MRI->isPhysRegUsed(CSR))
   2253         CSRFirstUse = true;
   2254 
   2255     // When NewVRegs is not empty, we may have made decisions such as evicting
   2256     // a virtual register, go with the earlier decisions and use the physical
   2257     // register.
   2258     if (CSRCost.getFrequency() && CSRFirstUse && NewVRegs.empty()) {
   2259       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
   2260                                               CostPerUseLimit, NewVRegs);
   2261       if (CSRReg || !NewVRegs.empty())
   2262         // Return now if we decide to use a CSR or create new vregs due to
   2263         // pre-splitting.
   2264         return CSRReg;
   2265     } else
   2266       return PhysReg;
   2267   }
   2268 
   2269   LiveRangeStage Stage = getStage(VirtReg);
   2270   DEBUG(dbgs() << StageName[Stage]
   2271                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
   2272 
   2273   // Try to evict a less worthy live range, but only for ranges from the primary
   2274   // queue. The RS_Split ranges already failed to do this, and they should not
   2275   // get a second chance until they have been split.
   2276   if (Stage != RS_Split)
   2277     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit))
   2278       return PhysReg;
   2279 
   2280   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
   2281 
   2282   // The first time we see a live range, don't try to split or spill.
   2283   // Wait until the second time, when all smaller ranges have been allocated.
   2284   // This gives a better picture of the interference to split around.
   2285   if (Stage < RS_Split) {
   2286     setStage(VirtReg, RS_Split);
   2287     DEBUG(dbgs() << "wait for second round\n");
   2288     NewVRegs.push_back(VirtReg.reg);
   2289     return 0;
   2290   }
   2291 
   2292   // If we couldn't allocate a register from spilling, there is probably some
   2293   // invalid inline assembly. The base class wil report it.
   2294   if (Stage >= RS_Done || !VirtReg.isSpillable())
   2295     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
   2296                                    Depth);
   2297 
   2298   // Try splitting VirtReg or interferences.
   2299   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
   2300   if (PhysReg || !NewVRegs.empty())
   2301     return PhysReg;
   2302 
   2303   // Finally spill VirtReg itself.
   2304   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
   2305   LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   2306   spiller().spill(LRE);
   2307   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
   2308 
   2309   if (VerifyEnabled)
   2310     MF->verify(this, "After spilling");
   2311 
   2312   // The live virtual register requesting allocation was spilled, so tell
   2313   // the caller not to allocate anything during this round.
   2314   return 0;
   2315 }
   2316 
   2317 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
   2318   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
   2319                << "********** Function: " << mf.getName() << '\n');
   2320 
   2321   MF = &mf;
   2322   const TargetMachine &TM = MF->getTarget();
   2323   TRI = TM.getRegisterInfo();
   2324   TII = TM.getInstrInfo();
   2325   RCI.runOnMachineFunction(mf);
   2326 
   2327   EnableLocalReassign = EnableLocalReassignment ||
   2328     TM.getSubtargetImpl()->enableRALocalReassignment(TM.getOptLevel());
   2329 
   2330   if (VerifyEnabled)
   2331     MF->verify(this, "Before greedy register allocator");
   2332 
   2333   RegAllocBase::init(getAnalysis<VirtRegMap>(),
   2334                      getAnalysis<LiveIntervals>(),
   2335                      getAnalysis<LiveRegMatrix>());
   2336   Indexes = &getAnalysis<SlotIndexes>();
   2337   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   2338   DomTree = &getAnalysis<MachineDominatorTree>();
   2339   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
   2340   Loops = &getAnalysis<MachineLoopInfo>();
   2341   Bundles = &getAnalysis<EdgeBundles>();
   2342   SpillPlacer = &getAnalysis<SpillPlacement>();
   2343   DebugVars = &getAnalysis<LiveDebugVariables>();
   2344 
   2345   initializeCSRCost();
   2346 
   2347   calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
   2348 
   2349   DEBUG(LIS->dump());
   2350 
   2351   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
   2352   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
   2353   ExtraRegInfo.clear();
   2354   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   2355   NextCascade = 1;
   2356   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
   2357   GlobalCand.resize(32);  // This will grow as needed.
   2358 
   2359   allocatePhysRegs();
   2360   releaseMemory();
   2361   return true;
   2362 }
   2363