1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 /// DeleteDeadBlock - Delete the specified block, which must have no 35 /// predecessors. 36 void llvm::DeleteDeadBlock(BasicBlock *BB) { 37 assert((pred_begin(BB) == pred_end(BB) || 38 // Can delete self loop. 39 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 40 TerminatorInst *BBTerm = BB->getTerminator(); 41 42 // Loop through all of our successors and make sure they know that one 43 // of their predecessors is going away. 44 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 45 BBTerm->getSuccessor(i)->removePredecessor(BB); 46 47 // Zap all the instructions in the block. 48 while (!BB->empty()) { 49 Instruction &I = BB->back(); 50 // If this instruction is used, replace uses with an arbitrary value. 51 // Because control flow can't get here, we don't care what we replace the 52 // value with. Note that since this block is unreachable, and all values 53 // contained within it must dominate their uses, that all uses will 54 // eventually be removed (they are themselves dead). 55 if (!I.use_empty()) 56 I.replaceAllUsesWith(UndefValue::get(I.getType())); 57 BB->getInstList().pop_back(); 58 } 59 60 // Zap the block! 61 BB->eraseFromParent(); 62 } 63 64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 65 /// any single-entry PHI nodes in it, fold them away. This handles the case 66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 67 /// when the block has exactly one predecessor. 68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { 69 if (!isa<PHINode>(BB->begin())) return; 70 71 AliasAnalysis *AA = nullptr; 72 MemoryDependenceAnalysis *MemDep = nullptr; 73 if (P) { 74 AA = P->getAnalysisIfAvailable<AliasAnalysis>(); 75 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); 76 } 77 78 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 79 if (PN->getIncomingValue(0) != PN) 80 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 81 else 82 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 83 84 if (MemDep) 85 MemDep->removeInstruction(PN); // Memdep updates AA itself. 86 else if (AA && isa<PointerType>(PN->getType())) 87 AA->deleteValue(PN); 88 89 PN->eraseFromParent(); 90 } 91 } 92 93 94 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 95 /// is dead. Also recursively delete any operands that become dead as 96 /// a result. This includes tracing the def-use list from the PHI to see if 97 /// it is ultimately unused or if it reaches an unused cycle. 98 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 99 // Recursively deleting a PHI may cause multiple PHIs to be deleted 100 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 101 SmallVector<WeakVH, 8> PHIs; 102 for (BasicBlock::iterator I = BB->begin(); 103 PHINode *PN = dyn_cast<PHINode>(I); ++I) 104 PHIs.push_back(PN); 105 106 bool Changed = false; 107 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 108 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 109 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 110 111 return Changed; 112 } 113 114 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 115 /// if possible. The return value indicates success or failure. 116 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 117 // Don't merge away blocks who have their address taken. 118 if (BB->hasAddressTaken()) return false; 119 120 // Can't merge if there are multiple predecessors, or no predecessors. 121 BasicBlock *PredBB = BB->getUniquePredecessor(); 122 if (!PredBB) return false; 123 124 // Don't break self-loops. 125 if (PredBB == BB) return false; 126 // Don't break invokes. 127 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 128 129 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 130 BasicBlock *OnlySucc = BB; 131 for (; SI != SE; ++SI) 132 if (*SI != OnlySucc) { 133 OnlySucc = nullptr; // There are multiple distinct successors! 134 break; 135 } 136 137 // Can't merge if there are multiple successors. 138 if (!OnlySucc) return false; 139 140 // Can't merge if there is PHI loop. 141 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 142 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 144 if (PN->getIncomingValue(i) == PN) 145 return false; 146 } else 147 break; 148 } 149 150 // Begin by getting rid of unneeded PHIs. 151 if (isa<PHINode>(BB->front())) 152 FoldSingleEntryPHINodes(BB, P); 153 154 // Delete the unconditional branch from the predecessor... 155 PredBB->getInstList().pop_back(); 156 157 // Make all PHI nodes that referred to BB now refer to Pred as their 158 // source... 159 BB->replaceAllUsesWith(PredBB); 160 161 // Move all definitions in the successor to the predecessor... 162 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 163 164 // Inherit predecessors name if it exists. 165 if (!PredBB->hasName()) 166 PredBB->takeName(BB); 167 168 // Finally, erase the old block and update dominator info. 169 if (P) { 170 if (DominatorTreeWrapperPass *DTWP = 171 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 172 DominatorTree &DT = DTWP->getDomTree(); 173 if (DomTreeNode *DTN = DT.getNode(BB)) { 174 DomTreeNode *PredDTN = DT.getNode(PredBB); 175 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 176 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 177 DE = Children.end(); DI != DE; ++DI) 178 DT.changeImmediateDominator(*DI, PredDTN); 179 180 DT.eraseNode(BB); 181 } 182 183 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 184 LI->removeBlock(BB); 185 186 if (MemoryDependenceAnalysis *MD = 187 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) 188 MD->invalidateCachedPredecessors(); 189 } 190 } 191 192 BB->eraseFromParent(); 193 return true; 194 } 195 196 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 197 /// with a value, then remove and delete the original instruction. 198 /// 199 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 200 BasicBlock::iterator &BI, Value *V) { 201 Instruction &I = *BI; 202 // Replaces all of the uses of the instruction with uses of the value 203 I.replaceAllUsesWith(V); 204 205 // Make sure to propagate a name if there is one already. 206 if (I.hasName() && !V->hasName()) 207 V->takeName(&I); 208 209 // Delete the unnecessary instruction now... 210 BI = BIL.erase(BI); 211 } 212 213 214 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 215 /// instruction specified by I. The original instruction is deleted and BI is 216 /// updated to point to the new instruction. 217 /// 218 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 219 BasicBlock::iterator &BI, Instruction *I) { 220 assert(I->getParent() == nullptr && 221 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 222 223 // Insert the new instruction into the basic block... 224 BasicBlock::iterator New = BIL.insert(BI, I); 225 226 // Replace all uses of the old instruction, and delete it. 227 ReplaceInstWithValue(BIL, BI, I); 228 229 // Move BI back to point to the newly inserted instruction 230 BI = New; 231 } 232 233 /// ReplaceInstWithInst - Replace the instruction specified by From with the 234 /// instruction specified by To. 235 /// 236 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 237 BasicBlock::iterator BI(From); 238 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 239 } 240 241 /// SplitEdge - Split the edge connecting specified block. Pass P must 242 /// not be NULL. 243 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 244 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 245 246 // If this is a critical edge, let SplitCriticalEdge do it. 247 TerminatorInst *LatchTerm = BB->getTerminator(); 248 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 249 return LatchTerm->getSuccessor(SuccNum); 250 251 // If the edge isn't critical, then BB has a single successor or Succ has a 252 // single pred. Split the block. 253 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 254 // If the successor only has a single pred, split the top of the successor 255 // block. 256 assert(SP == BB && "CFG broken"); 257 SP = nullptr; 258 return SplitBlock(Succ, Succ->begin(), P); 259 } 260 261 // Otherwise, if BB has a single successor, split it at the bottom of the 262 // block. 263 assert(BB->getTerminator()->getNumSuccessors() == 1 && 264 "Should have a single succ!"); 265 return SplitBlock(BB, BB->getTerminator(), P); 266 } 267 268 /// SplitBlock - Split the specified block at the specified instruction - every 269 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 270 /// to a new block. The two blocks are joined by an unconditional branch and 271 /// the loop info is updated. 272 /// 273 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 274 BasicBlock::iterator SplitIt = SplitPt; 275 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 276 ++SplitIt; 277 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 278 279 // The new block lives in whichever loop the old one did. This preserves 280 // LCSSA as well, because we force the split point to be after any PHI nodes. 281 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 282 if (Loop *L = LI->getLoopFor(Old)) 283 L->addBasicBlockToLoop(New, LI->getBase()); 284 285 if (DominatorTreeWrapperPass *DTWP = 286 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 287 DominatorTree &DT = DTWP->getDomTree(); 288 // Old dominates New. New node dominates all other nodes dominated by Old. 289 if (DomTreeNode *OldNode = DT.getNode(Old)) { 290 std::vector<DomTreeNode *> Children; 291 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 292 I != E; ++I) 293 Children.push_back(*I); 294 295 DomTreeNode *NewNode = DT.addNewBlock(New, Old); 296 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 297 E = Children.end(); I != E; ++I) 298 DT.changeImmediateDominator(*I, NewNode); 299 } 300 } 301 302 return New; 303 } 304 305 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 306 /// analysis information. 307 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 308 ArrayRef<BasicBlock *> Preds, 309 Pass *P, bool &HasLoopExit) { 310 if (!P) return; 311 312 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 313 Loop *L = LI ? LI->getLoopFor(OldBB) : nullptr; 314 315 // If we need to preserve loop analyses, collect some information about how 316 // this split will affect loops. 317 bool IsLoopEntry = !!L; 318 bool SplitMakesNewLoopHeader = false; 319 if (LI) { 320 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 321 for (ArrayRef<BasicBlock*>::iterator 322 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 323 BasicBlock *Pred = *i; 324 325 // If we need to preserve LCSSA, determine if any of the preds is a loop 326 // exit. 327 if (PreserveLCSSA) 328 if (Loop *PL = LI->getLoopFor(Pred)) 329 if (!PL->contains(OldBB)) 330 HasLoopExit = true; 331 332 // If we need to preserve LoopInfo, note whether any of the preds crosses 333 // an interesting loop boundary. 334 if (!L) continue; 335 if (L->contains(Pred)) 336 IsLoopEntry = false; 337 else 338 SplitMakesNewLoopHeader = true; 339 } 340 } 341 342 // Update dominator tree if available. 343 if (DominatorTreeWrapperPass *DTWP = 344 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 345 DTWP->getDomTree().splitBlock(NewBB); 346 347 if (!L) return; 348 349 if (IsLoopEntry) { 350 // Add the new block to the nearest enclosing loop (and not an adjacent 351 // loop). To find this, examine each of the predecessors and determine which 352 // loops enclose them, and select the most-nested loop which contains the 353 // loop containing the block being split. 354 Loop *InnermostPredLoop = nullptr; 355 for (ArrayRef<BasicBlock*>::iterator 356 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 357 BasicBlock *Pred = *i; 358 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 359 // Seek a loop which actually contains the block being split (to avoid 360 // adjacent loops). 361 while (PredLoop && !PredLoop->contains(OldBB)) 362 PredLoop = PredLoop->getParentLoop(); 363 364 // Select the most-nested of these loops which contains the block. 365 if (PredLoop && PredLoop->contains(OldBB) && 366 (!InnermostPredLoop || 367 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 368 InnermostPredLoop = PredLoop; 369 } 370 } 371 372 if (InnermostPredLoop) 373 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 374 } else { 375 L->addBasicBlockToLoop(NewBB, LI->getBase()); 376 if (SplitMakesNewLoopHeader) 377 L->moveToHeader(NewBB); 378 } 379 } 380 381 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 382 /// from NewBB. This also updates AliasAnalysis, if available. 383 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 384 ArrayRef<BasicBlock*> Preds, BranchInst *BI, 385 Pass *P, bool HasLoopExit) { 386 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 387 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : nullptr; 388 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 389 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 390 PHINode *PN = cast<PHINode>(I++); 391 392 // Check to see if all of the values coming in are the same. If so, we 393 // don't need to create a new PHI node, unless it's needed for LCSSA. 394 Value *InVal = nullptr; 395 if (!HasLoopExit) { 396 InVal = PN->getIncomingValueForBlock(Preds[0]); 397 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 398 if (!PredSet.count(PN->getIncomingBlock(i))) 399 continue; 400 if (!InVal) 401 InVal = PN->getIncomingValue(i); 402 else if (InVal != PN->getIncomingValue(i)) { 403 InVal = nullptr; 404 break; 405 } 406 } 407 } 408 409 if (InVal) { 410 // If all incoming values for the new PHI would be the same, just don't 411 // make a new PHI. Instead, just remove the incoming values from the old 412 // PHI. 413 414 // NOTE! This loop walks backwards for a reason! First off, this minimizes 415 // the cost of removal if we end up removing a large number of values, and 416 // second off, this ensures that the indices for the incoming values 417 // aren't invalidated when we remove one. 418 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 419 if (PredSet.count(PN->getIncomingBlock(i))) 420 PN->removeIncomingValue(i, false); 421 422 // Add an incoming value to the PHI node in the loop for the preheader 423 // edge. 424 PN->addIncoming(InVal, NewBB); 425 continue; 426 } 427 428 // If the values coming into the block are not the same, we need a new 429 // PHI. 430 // Create the new PHI node, insert it into NewBB at the end of the block 431 PHINode *NewPHI = 432 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 433 if (AA) 434 AA->copyValue(PN, NewPHI); 435 436 // NOTE! This loop walks backwards for a reason! First off, this minimizes 437 // the cost of removal if we end up removing a large number of values, and 438 // second off, this ensures that the indices for the incoming values aren't 439 // invalidated when we remove one. 440 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 441 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 442 if (PredSet.count(IncomingBB)) { 443 Value *V = PN->removeIncomingValue(i, false); 444 NewPHI->addIncoming(V, IncomingBB); 445 } 446 } 447 448 PN->addIncoming(NewPHI, NewBB); 449 } 450 } 451 452 /// SplitBlockPredecessors - This method transforms BB by introducing a new 453 /// basic block into the function, and moving some of the predecessors of BB to 454 /// be predecessors of the new block. The new predecessors are indicated by the 455 /// Preds array, which has NumPreds elements in it. The new block is given a 456 /// suffix of 'Suffix'. 457 /// 458 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 459 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 460 /// preserve LoopSimplify (because it's complicated to handle the case where one 461 /// of the edges being split is an exit of a loop with other exits). 462 /// 463 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 464 ArrayRef<BasicBlock*> Preds, 465 const char *Suffix, Pass *P) { 466 // Create new basic block, insert right before the original block. 467 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 468 BB->getParent(), BB); 469 470 // The new block unconditionally branches to the old block. 471 BranchInst *BI = BranchInst::Create(BB, NewBB); 472 473 // Move the edges from Preds to point to NewBB instead of BB. 474 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 475 // This is slightly more strict than necessary; the minimum requirement 476 // is that there be no more than one indirectbr branching to BB. And 477 // all BlockAddress uses would need to be updated. 478 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 479 "Cannot split an edge from an IndirectBrInst"); 480 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 481 } 482 483 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 484 // node becomes an incoming value for BB's phi node. However, if the Preds 485 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 486 // account for the newly created predecessor. 487 if (Preds.size() == 0) { 488 // Insert dummy values as the incoming value. 489 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 490 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 491 return NewBB; 492 } 493 494 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 495 bool HasLoopExit = false; 496 UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit); 497 498 // Update the PHI nodes in BB with the values coming from NewBB. 499 UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit); 500 return NewBB; 501 } 502 503 /// SplitLandingPadPredecessors - This method transforms the landing pad, 504 /// OrigBB, by introducing two new basic blocks into the function. One of those 505 /// new basic blocks gets the predecessors listed in Preds. The other basic 506 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 507 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 508 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 509 /// 510 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 511 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 512 /// it does not preserve LoopSimplify (because it's complicated to handle the 513 /// case where one of the edges being split is an exit of a loop with other 514 /// exits). 515 /// 516 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 517 ArrayRef<BasicBlock*> Preds, 518 const char *Suffix1, const char *Suffix2, 519 Pass *P, 520 SmallVectorImpl<BasicBlock*> &NewBBs) { 521 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 522 523 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 524 // it right before the original block. 525 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 526 OrigBB->getName() + Suffix1, 527 OrigBB->getParent(), OrigBB); 528 NewBBs.push_back(NewBB1); 529 530 // The new block unconditionally branches to the old block. 531 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 532 533 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 534 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 535 // This is slightly more strict than necessary; the minimum requirement 536 // is that there be no more than one indirectbr branching to BB. And 537 // all BlockAddress uses would need to be updated. 538 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 539 "Cannot split an edge from an IndirectBrInst"); 540 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 541 } 542 543 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 544 bool HasLoopExit = false; 545 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); 546 547 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 548 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); 549 550 // Move the remaining edges from OrigBB to point to NewBB2. 551 SmallVector<BasicBlock*, 8> NewBB2Preds; 552 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 553 i != e; ) { 554 BasicBlock *Pred = *i++; 555 if (Pred == NewBB1) continue; 556 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 557 "Cannot split an edge from an IndirectBrInst"); 558 NewBB2Preds.push_back(Pred); 559 e = pred_end(OrigBB); 560 } 561 562 BasicBlock *NewBB2 = nullptr; 563 if (!NewBB2Preds.empty()) { 564 // Create another basic block for the rest of OrigBB's predecessors. 565 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 566 OrigBB->getName() + Suffix2, 567 OrigBB->getParent(), OrigBB); 568 NewBBs.push_back(NewBB2); 569 570 // The new block unconditionally branches to the old block. 571 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 572 573 // Move the remaining edges from OrigBB to point to NewBB2. 574 for (SmallVectorImpl<BasicBlock*>::iterator 575 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 576 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 577 578 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 579 HasLoopExit = false; 580 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); 581 582 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 583 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); 584 } 585 586 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 587 Instruction *Clone1 = LPad->clone(); 588 Clone1->setName(Twine("lpad") + Suffix1); 589 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 590 591 if (NewBB2) { 592 Instruction *Clone2 = LPad->clone(); 593 Clone2->setName(Twine("lpad") + Suffix2); 594 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 595 596 // Create a PHI node for the two cloned landingpad instructions. 597 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 598 PN->addIncoming(Clone1, NewBB1); 599 PN->addIncoming(Clone2, NewBB2); 600 LPad->replaceAllUsesWith(PN); 601 LPad->eraseFromParent(); 602 } else { 603 // There is no second clone. Just replace the landing pad with the first 604 // clone. 605 LPad->replaceAllUsesWith(Clone1); 606 LPad->eraseFromParent(); 607 } 608 } 609 610 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 611 /// instruction into a predecessor which ends in an unconditional branch. If 612 /// the return instruction returns a value defined by a PHI, propagate the 613 /// right value into the return. It returns the new return instruction in the 614 /// predecessor. 615 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 616 BasicBlock *Pred) { 617 Instruction *UncondBranch = Pred->getTerminator(); 618 // Clone the return and add it to the end of the predecessor. 619 Instruction *NewRet = RI->clone(); 620 Pred->getInstList().push_back(NewRet); 621 622 // If the return instruction returns a value, and if the value was a 623 // PHI node in "BB", propagate the right value into the return. 624 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 625 i != e; ++i) { 626 Value *V = *i; 627 Instruction *NewBC = nullptr; 628 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 629 // Return value might be bitcasted. Clone and insert it before the 630 // return instruction. 631 V = BCI->getOperand(0); 632 NewBC = BCI->clone(); 633 Pred->getInstList().insert(NewRet, NewBC); 634 *i = NewBC; 635 } 636 if (PHINode *PN = dyn_cast<PHINode>(V)) { 637 if (PN->getParent() == BB) { 638 if (NewBC) 639 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 640 else 641 *i = PN->getIncomingValueForBlock(Pred); 642 } 643 } 644 } 645 646 // Update any PHI nodes in the returning block to realize that we no 647 // longer branch to them. 648 BB->removePredecessor(Pred); 649 UncondBranch->eraseFromParent(); 650 return cast<ReturnInst>(NewRet); 651 } 652 653 /// SplitBlockAndInsertIfThen - Split the containing block at the 654 /// specified instruction - everything before and including SplitBefore stays 655 /// in the old basic block, and everything after SplitBefore is moved to a 656 /// new block. The two blocks are connected by a conditional branch 657 /// (with value of Cmp being the condition). 658 /// Before: 659 /// Head 660 /// SplitBefore 661 /// Tail 662 /// After: 663 /// Head 664 /// if (Cond) 665 /// ThenBlock 666 /// SplitBefore 667 /// Tail 668 /// 669 /// If Unreachable is true, then ThenBlock ends with 670 /// UnreachableInst, otherwise it branches to Tail. 671 /// Returns the NewBasicBlock's terminator. 672 673 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond, 674 Instruction *SplitBefore, 675 bool Unreachable, 676 MDNode *BranchWeights) { 677 BasicBlock *Head = SplitBefore->getParent(); 678 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 679 TerminatorInst *HeadOldTerm = Head->getTerminator(); 680 LLVMContext &C = Head->getContext(); 681 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 682 TerminatorInst *CheckTerm; 683 if (Unreachable) 684 CheckTerm = new UnreachableInst(C, ThenBlock); 685 else 686 CheckTerm = BranchInst::Create(Tail, ThenBlock); 687 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 688 BranchInst *HeadNewTerm = 689 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 690 HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc()); 691 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 692 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 693 return CheckTerm; 694 } 695 696 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, 697 /// but also creates the ElseBlock. 698 /// Before: 699 /// Head 700 /// SplitBefore 701 /// Tail 702 /// After: 703 /// Head 704 /// if (Cond) 705 /// ThenBlock 706 /// else 707 /// ElseBlock 708 /// SplitBefore 709 /// Tail 710 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 711 TerminatorInst **ThenTerm, 712 TerminatorInst **ElseTerm, 713 MDNode *BranchWeights) { 714 BasicBlock *Head = SplitBefore->getParent(); 715 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 716 TerminatorInst *HeadOldTerm = Head->getTerminator(); 717 LLVMContext &C = Head->getContext(); 718 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 719 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 720 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 721 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 722 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 723 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 724 BranchInst *HeadNewTerm = 725 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 726 HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc()); 727 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 728 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 729 } 730 731 732 /// GetIfCondition - Given a basic block (BB) with two predecessors, 733 /// check to see if the merge at this block is due 734 /// to an "if condition". If so, return the boolean condition that determines 735 /// which entry into BB will be taken. Also, return by references the block 736 /// that will be entered from if the condition is true, and the block that will 737 /// be entered if the condition is false. 738 /// 739 /// This does no checking to see if the true/false blocks have large or unsavory 740 /// instructions in them. 741 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 742 BasicBlock *&IfFalse) { 743 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 744 BasicBlock *Pred1 = nullptr; 745 BasicBlock *Pred2 = nullptr; 746 747 if (SomePHI) { 748 if (SomePHI->getNumIncomingValues() != 2) 749 return nullptr; 750 Pred1 = SomePHI->getIncomingBlock(0); 751 Pred2 = SomePHI->getIncomingBlock(1); 752 } else { 753 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 754 if (PI == PE) // No predecessor 755 return nullptr; 756 Pred1 = *PI++; 757 if (PI == PE) // Only one predecessor 758 return nullptr; 759 Pred2 = *PI++; 760 if (PI != PE) // More than two predecessors 761 return nullptr; 762 } 763 764 // We can only handle branches. Other control flow will be lowered to 765 // branches if possible anyway. 766 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 767 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 768 if (!Pred1Br || !Pred2Br) 769 return nullptr; 770 771 // Eliminate code duplication by ensuring that Pred1Br is conditional if 772 // either are. 773 if (Pred2Br->isConditional()) { 774 // If both branches are conditional, we don't have an "if statement". In 775 // reality, we could transform this case, but since the condition will be 776 // required anyway, we stand no chance of eliminating it, so the xform is 777 // probably not profitable. 778 if (Pred1Br->isConditional()) 779 return nullptr; 780 781 std::swap(Pred1, Pred2); 782 std::swap(Pred1Br, Pred2Br); 783 } 784 785 if (Pred1Br->isConditional()) { 786 // The only thing we have to watch out for here is to make sure that Pred2 787 // doesn't have incoming edges from other blocks. If it does, the condition 788 // doesn't dominate BB. 789 if (!Pred2->getSinglePredecessor()) 790 return nullptr; 791 792 // If we found a conditional branch predecessor, make sure that it branches 793 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 794 if (Pred1Br->getSuccessor(0) == BB && 795 Pred1Br->getSuccessor(1) == Pred2) { 796 IfTrue = Pred1; 797 IfFalse = Pred2; 798 } else if (Pred1Br->getSuccessor(0) == Pred2 && 799 Pred1Br->getSuccessor(1) == BB) { 800 IfTrue = Pred2; 801 IfFalse = Pred1; 802 } else { 803 // We know that one arm of the conditional goes to BB, so the other must 804 // go somewhere unrelated, and this must not be an "if statement". 805 return nullptr; 806 } 807 808 return Pred1Br->getCondition(); 809 } 810 811 // Ok, if we got here, both predecessors end with an unconditional branch to 812 // BB. Don't panic! If both blocks only have a single (identical) 813 // predecessor, and THAT is a conditional branch, then we're all ok! 814 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 815 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 816 return nullptr; 817 818 // Otherwise, if this is a conditional branch, then we can use it! 819 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 820 if (!BI) return nullptr; 821 822 assert(BI->isConditional() && "Two successors but not conditional?"); 823 if (BI->getSuccessor(0) == Pred1) { 824 IfTrue = Pred1; 825 IfFalse = Pred2; 826 } else { 827 IfTrue = Pred2; 828 IfFalse = Pred1; 829 } 830 return BI->getCondition(); 831 } 832