1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/PHITransAddr.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/PredIteratorCache.h" 32 #include "llvm/Support/Debug.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "memdep" 36 37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 40 41 STATISTIC(NumCacheNonLocalPtr, 42 "Number of fully cached non-local ptr responses"); 43 STATISTIC(NumCacheDirtyNonLocalPtr, 44 "Number of cached, but dirty, non-local ptr responses"); 45 STATISTIC(NumUncacheNonLocalPtr, 46 "Number of uncached non-local ptr responses"); 47 STATISTIC(NumCacheCompleteNonLocalPtr, 48 "Number of block queries that were completely cached"); 49 50 // Limit for the number of instructions to scan in a block. 51 static const int BlockScanLimit = 100; 52 53 char MemoryDependenceAnalysis::ID = 0; 54 55 // Register this pass... 56 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 57 "Memory Dependence Analysis", false, true) 58 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 59 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 62 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 63 : FunctionPass(ID), PredCache() { 64 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 65 } 66 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 67 } 68 69 /// Clean up memory in between runs 70 void MemoryDependenceAnalysis::releaseMemory() { 71 LocalDeps.clear(); 72 NonLocalDeps.clear(); 73 NonLocalPointerDeps.clear(); 74 ReverseLocalDeps.clear(); 75 ReverseNonLocalDeps.clear(); 76 ReverseNonLocalPtrDeps.clear(); 77 PredCache->clear(); 78 } 79 80 81 82 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 83 /// 84 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.setPreservesAll(); 86 AU.addRequiredTransitive<AliasAnalysis>(); 87 } 88 89 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 90 AA = &getAnalysis<AliasAnalysis>(); 91 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 92 DL = DLP ? &DLP->getDataLayout() : nullptr; 93 DominatorTreeWrapperPass *DTWP = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTWP ? &DTWP->getDomTree() : nullptr; 96 if (!PredCache) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } 129 if (LI->getOrdering() == Monotonic) { 130 Loc = AA->getLocation(LI); 131 return AliasAnalysis::ModRef; 132 } 133 Loc = AliasAnalysis::Location(); 134 return AliasAnalysis::ModRef; 135 } 136 137 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 138 if (SI->isUnordered()) { 139 Loc = AA->getLocation(SI); 140 return AliasAnalysis::Mod; 141 } 142 if (SI->getOrdering() == Monotonic) { 143 Loc = AA->getLocation(SI); 144 return AliasAnalysis::ModRef; 145 } 146 Loc = AliasAnalysis::Location(); 147 return AliasAnalysis::ModRef; 148 } 149 150 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 151 Loc = AA->getLocation(V); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 156 // calls to free() deallocate the entire structure 157 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 158 return AliasAnalysis::Mod; 159 } 160 161 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 162 switch (II->getIntrinsicID()) { 163 case Intrinsic::lifetime_start: 164 case Intrinsic::lifetime_end: 165 case Intrinsic::invariant_start: 166 Loc = AliasAnalysis::Location(II->getArgOperand(1), 167 cast<ConstantInt>(II->getArgOperand(0)) 168 ->getZExtValue(), 169 II->getMetadata(LLVMContext::MD_tbaa)); 170 // These intrinsics don't really modify the memory, but returning Mod 171 // will allow them to be handled conservatively. 172 return AliasAnalysis::Mod; 173 case Intrinsic::invariant_end: 174 Loc = AliasAnalysis::Location(II->getArgOperand(2), 175 cast<ConstantInt>(II->getArgOperand(1)) 176 ->getZExtValue(), 177 II->getMetadata(LLVMContext::MD_tbaa)); 178 // These intrinsics don't really modify the memory, but returning Mod 179 // will allow them to be handled conservatively. 180 return AliasAnalysis::Mod; 181 default: 182 break; 183 } 184 185 // Otherwise, just do the coarse-grained thing that always works. 186 if (Inst->mayWriteToMemory()) 187 return AliasAnalysis::ModRef; 188 if (Inst->mayReadFromMemory()) 189 return AliasAnalysis::Ref; 190 return AliasAnalysis::NoModRef; 191 } 192 193 /// getCallSiteDependencyFrom - Private helper for finding the local 194 /// dependencies of a call site. 195 MemDepResult MemoryDependenceAnalysis:: 196 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 197 BasicBlock::iterator ScanIt, BasicBlock *BB) { 198 unsigned Limit = BlockScanLimit; 199 200 // Walk backwards through the block, looking for dependencies 201 while (ScanIt != BB->begin()) { 202 // Limit the amount of scanning we do so we don't end up with quadratic 203 // running time on extreme testcases. 204 --Limit; 205 if (!Limit) 206 return MemDepResult::getUnknown(); 207 208 Instruction *Inst = --ScanIt; 209 210 // If this inst is a memory op, get the pointer it accessed 211 AliasAnalysis::Location Loc; 212 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 213 if (Loc.Ptr) { 214 // A simple instruction. 215 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 216 return MemDepResult::getClobber(Inst); 217 continue; 218 } 219 220 if (CallSite InstCS = cast<Value>(Inst)) { 221 // Debug intrinsics don't cause dependences. 222 if (isa<DbgInfoIntrinsic>(Inst)) continue; 223 // If these two calls do not interfere, look past it. 224 switch (AA->getModRefInfo(CS, InstCS)) { 225 case AliasAnalysis::NoModRef: 226 // If the two calls are the same, return InstCS as a Def, so that 227 // CS can be found redundant and eliminated. 228 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 229 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 230 return MemDepResult::getDef(Inst); 231 232 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 233 // keep scanning. 234 continue; 235 default: 236 return MemDepResult::getClobber(Inst); 237 } 238 } 239 240 // If we could not obtain a pointer for the instruction and the instruction 241 // touches memory then assume that this is a dependency. 242 if (MR != AliasAnalysis::NoModRef) 243 return MemDepResult::getClobber(Inst); 244 } 245 246 // No dependence found. If this is the entry block of the function, it is 247 // unknown, otherwise it is non-local. 248 if (BB != &BB->getParent()->getEntryBlock()) 249 return MemDepResult::getNonLocal(); 250 return MemDepResult::getNonFuncLocal(); 251 } 252 253 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 254 /// would fully overlap MemLoc if done as a wider legal integer load. 255 /// 256 /// MemLocBase, MemLocOffset are lazily computed here the first time the 257 /// base/offs of memloc is needed. 258 static bool 259 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 260 const Value *&MemLocBase, 261 int64_t &MemLocOffs, 262 const LoadInst *LI, 263 const DataLayout *DL) { 264 // If we have no target data, we can't do this. 265 if (!DL) return false; 266 267 // If we haven't already computed the base/offset of MemLoc, do so now. 268 if (!MemLocBase) 269 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 270 271 unsigned Size = MemoryDependenceAnalysis:: 272 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 273 LI, *DL); 274 return Size != 0; 275 } 276 277 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 278 /// looks at a memory location for a load (specified by MemLocBase, Offs, 279 /// and Size) and compares it against a load. If the specified load could 280 /// be safely widened to a larger integer load that is 1) still efficient, 281 /// 2) safe for the target, and 3) would provide the specified memory 282 /// location value, then this function returns the size in bytes of the 283 /// load width to use. If not, this returns zero. 284 unsigned MemoryDependenceAnalysis:: 285 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 286 unsigned MemLocSize, const LoadInst *LI, 287 const DataLayout &DL) { 288 // We can only extend simple integer loads. 289 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 290 291 // Load widening is hostile to ThreadSanitizer: it may cause false positives 292 // or make the reports more cryptic (access sizes are wrong). 293 if (LI->getParent()->getParent()->getAttributes(). 294 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 295 return 0; 296 297 // Get the base of this load. 298 int64_t LIOffs = 0; 299 const Value *LIBase = 300 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 301 302 // If the two pointers are not based on the same pointer, we can't tell that 303 // they are related. 304 if (LIBase != MemLocBase) return 0; 305 306 // Okay, the two values are based on the same pointer, but returned as 307 // no-alias. This happens when we have things like two byte loads at "P+1" 308 // and "P+3". Check to see if increasing the size of the "LI" load up to its 309 // alignment (or the largest native integer type) will allow us to load all 310 // the bits required by MemLoc. 311 312 // If MemLoc is before LI, then no widening of LI will help us out. 313 if (MemLocOffs < LIOffs) return 0; 314 315 // Get the alignment of the load in bytes. We assume that it is safe to load 316 // any legal integer up to this size without a problem. For example, if we're 317 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 318 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 319 // to i16. 320 unsigned LoadAlign = LI->getAlignment(); 321 322 int64_t MemLocEnd = MemLocOffs+MemLocSize; 323 324 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 325 if (LIOffs+LoadAlign < MemLocEnd) return 0; 326 327 // This is the size of the load to try. Start with the next larger power of 328 // two. 329 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 330 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 331 332 while (1) { 333 // If this load size is bigger than our known alignment or would not fit 334 // into a native integer register, then we fail. 335 if (NewLoadByteSize > LoadAlign || 336 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 337 return 0; 338 339 if (LIOffs+NewLoadByteSize > MemLocEnd && 340 LI->getParent()->getParent()->getAttributes(). 341 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 342 // We will be reading past the location accessed by the original program. 343 // While this is safe in a regular build, Address Safety analysis tools 344 // may start reporting false warnings. So, don't do widening. 345 return 0; 346 347 // If a load of this width would include all of MemLoc, then we succeed. 348 if (LIOffs+NewLoadByteSize >= MemLocEnd) 349 return NewLoadByteSize; 350 351 NewLoadByteSize <<= 1; 352 } 353 } 354 355 /// getPointerDependencyFrom - Return the instruction on which a memory 356 /// location depends. If isLoad is true, this routine ignores may-aliases with 357 /// read-only operations. If isLoad is false, this routine ignores may-aliases 358 /// with reads from read-only locations. If possible, pass the query 359 /// instruction as well; this function may take advantage of the metadata 360 /// annotated to the query instruction to refine the result. 361 MemDepResult MemoryDependenceAnalysis:: 362 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 363 BasicBlock::iterator ScanIt, BasicBlock *BB, 364 Instruction *QueryInst) { 365 366 const Value *MemLocBase = nullptr; 367 int64_t MemLocOffset = 0; 368 unsigned Limit = BlockScanLimit; 369 bool isInvariantLoad = false; 370 if (isLoad && QueryInst) { 371 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 372 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 373 isInvariantLoad = true; 374 } 375 376 // Walk backwards through the basic block, looking for dependencies. 377 while (ScanIt != BB->begin()) { 378 Instruction *Inst = --ScanIt; 379 380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 381 // Debug intrinsics don't (and can't) cause dependencies. 382 if (isa<DbgInfoIntrinsic>(II)) continue; 383 384 // Limit the amount of scanning we do so we don't end up with quadratic 385 // running time on extreme testcases. 386 --Limit; 387 if (!Limit) 388 return MemDepResult::getUnknown(); 389 390 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 391 // If we reach a lifetime begin or end marker, then the query ends here 392 // because the value is undefined. 393 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 394 // FIXME: This only considers queries directly on the invariant-tagged 395 // pointer, not on query pointers that are indexed off of them. It'd 396 // be nice to handle that at some point (the right approach is to use 397 // GetPointerBaseWithConstantOffset). 398 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 399 MemLoc)) 400 return MemDepResult::getDef(II); 401 continue; 402 } 403 } 404 405 // Values depend on loads if the pointers are must aliased. This means that 406 // a load depends on another must aliased load from the same value. 407 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 408 // Atomic loads have complications involved. 409 // FIXME: This is overly conservative. 410 if (!LI->isUnordered()) 411 return MemDepResult::getClobber(LI); 412 413 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 414 415 // If we found a pointer, check if it could be the same as our pointer. 416 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 417 418 if (isLoad) { 419 if (R == AliasAnalysis::NoAlias) { 420 // If this is an over-aligned integer load (for example, 421 // "load i8* %P, align 4") see if it would obviously overlap with the 422 // queried location if widened to a larger load (e.g. if the queried 423 // location is 1 byte at P+1). If so, return it as a load/load 424 // clobber result, allowing the client to decide to widen the load if 425 // it wants to. 426 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 427 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 428 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 429 MemLocOffset, LI, DL)) 430 return MemDepResult::getClobber(Inst); 431 432 continue; 433 } 434 435 // Must aliased loads are defs of each other. 436 if (R == AliasAnalysis::MustAlias) 437 return MemDepResult::getDef(Inst); 438 439 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 440 // in terms of clobbering loads, but since it does this by looking 441 // at the clobbering load directly, it doesn't know about any 442 // phi translation that may have happened along the way. 443 444 // If we have a partial alias, then return this as a clobber for the 445 // client to handle. 446 if (R == AliasAnalysis::PartialAlias) 447 return MemDepResult::getClobber(Inst); 448 #endif 449 450 // Random may-alias loads don't depend on each other without a 451 // dependence. 452 continue; 453 } 454 455 // Stores don't depend on other no-aliased accesses. 456 if (R == AliasAnalysis::NoAlias) 457 continue; 458 459 // Stores don't alias loads from read-only memory. 460 if (AA->pointsToConstantMemory(LoadLoc)) 461 continue; 462 463 // Stores depend on may/must aliased loads. 464 return MemDepResult::getDef(Inst); 465 } 466 467 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 468 // Atomic stores have complications involved. 469 // FIXME: This is overly conservative. 470 if (!SI->isUnordered()) 471 return MemDepResult::getClobber(SI); 472 473 // If alias analysis can tell that this store is guaranteed to not modify 474 // the query pointer, ignore it. Use getModRefInfo to handle cases where 475 // the query pointer points to constant memory etc. 476 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 477 continue; 478 479 // Ok, this store might clobber the query pointer. Check to see if it is 480 // a must alias: in this case, we want to return this as a def. 481 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 482 483 // If we found a pointer, check if it could be the same as our pointer. 484 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 485 486 if (R == AliasAnalysis::NoAlias) 487 continue; 488 if (R == AliasAnalysis::MustAlias) 489 return MemDepResult::getDef(Inst); 490 if (isInvariantLoad) 491 continue; 492 return MemDepResult::getClobber(Inst); 493 } 494 495 // If this is an allocation, and if we know that the accessed pointer is to 496 // the allocation, return Def. This means that there is no dependence and 497 // the access can be optimized based on that. For example, a load could 498 // turn into undef. 499 // Note: Only determine this to be a malloc if Inst is the malloc call, not 500 // a subsequent bitcast of the malloc call result. There can be stores to 501 // the malloced memory between the malloc call and its bitcast uses, and we 502 // need to continue scanning until the malloc call. 503 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 504 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 505 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 506 507 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 508 return MemDepResult::getDef(Inst); 509 // Be conservative if the accessed pointer may alias the allocation. 510 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 511 return MemDepResult::getClobber(Inst); 512 // If the allocation is not aliased and does not read memory (like 513 // strdup), it is safe to ignore. 514 if (isa<AllocaInst>(Inst) || 515 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 516 continue; 517 } 518 519 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 520 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 521 // If necessary, perform additional analysis. 522 if (MR == AliasAnalysis::ModRef) 523 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 524 switch (MR) { 525 case AliasAnalysis::NoModRef: 526 // If the call has no effect on the queried pointer, just ignore it. 527 continue; 528 case AliasAnalysis::Mod: 529 return MemDepResult::getClobber(Inst); 530 case AliasAnalysis::Ref: 531 // If the call is known to never store to the pointer, and if this is a 532 // load query, we can safely ignore it (scan past it). 533 if (isLoad) 534 continue; 535 default: 536 // Otherwise, there is a potential dependence. Return a clobber. 537 return MemDepResult::getClobber(Inst); 538 } 539 } 540 541 // No dependence found. If this is the entry block of the function, it is 542 // unknown, otherwise it is non-local. 543 if (BB != &BB->getParent()->getEntryBlock()) 544 return MemDepResult::getNonLocal(); 545 return MemDepResult::getNonFuncLocal(); 546 } 547 548 /// getDependency - Return the instruction on which a memory operation 549 /// depends. 550 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 551 Instruction *ScanPos = QueryInst; 552 553 // Check for a cached result 554 MemDepResult &LocalCache = LocalDeps[QueryInst]; 555 556 // If the cached entry is non-dirty, just return it. Note that this depends 557 // on MemDepResult's default constructing to 'dirty'. 558 if (!LocalCache.isDirty()) 559 return LocalCache; 560 561 // Otherwise, if we have a dirty entry, we know we can start the scan at that 562 // instruction, which may save us some work. 563 if (Instruction *Inst = LocalCache.getInst()) { 564 ScanPos = Inst; 565 566 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 567 } 568 569 BasicBlock *QueryParent = QueryInst->getParent(); 570 571 // Do the scan. 572 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 573 // No dependence found. If this is the entry block of the function, it is 574 // unknown, otherwise it is non-local. 575 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 576 LocalCache = MemDepResult::getNonLocal(); 577 else 578 LocalCache = MemDepResult::getNonFuncLocal(); 579 } else { 580 AliasAnalysis::Location MemLoc; 581 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 582 if (MemLoc.Ptr) { 583 // If we can do a pointer scan, make it happen. 584 bool isLoad = !(MR & AliasAnalysis::Mod); 585 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 586 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 587 588 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 589 QueryParent, QueryInst); 590 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 591 CallSite QueryCS(QueryInst); 592 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 593 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 594 QueryParent); 595 } else 596 // Non-memory instruction. 597 LocalCache = MemDepResult::getUnknown(); 598 } 599 600 // Remember the result! 601 if (Instruction *I = LocalCache.getInst()) 602 ReverseLocalDeps[I].insert(QueryInst); 603 604 return LocalCache; 605 } 606 607 #ifndef NDEBUG 608 /// AssertSorted - This method is used when -debug is specified to verify that 609 /// cache arrays are properly kept sorted. 610 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 611 int Count = -1) { 612 if (Count == -1) Count = Cache.size(); 613 if (Count == 0) return; 614 615 for (unsigned i = 1; i != unsigned(Count); ++i) 616 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 617 } 618 #endif 619 620 /// getNonLocalCallDependency - Perform a full dependency query for the 621 /// specified call, returning the set of blocks that the value is 622 /// potentially live across. The returned set of results will include a 623 /// "NonLocal" result for all blocks where the value is live across. 624 /// 625 /// This method assumes the instruction returns a "NonLocal" dependency 626 /// within its own block. 627 /// 628 /// This returns a reference to an internal data structure that may be 629 /// invalidated on the next non-local query or when an instruction is 630 /// removed. Clients must copy this data if they want it around longer than 631 /// that. 632 const MemoryDependenceAnalysis::NonLocalDepInfo & 633 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 634 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 635 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 636 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 637 NonLocalDepInfo &Cache = CacheP.first; 638 639 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 640 /// the cached case, this can happen due to instructions being deleted etc. In 641 /// the uncached case, this starts out as the set of predecessors we care 642 /// about. 643 SmallVector<BasicBlock*, 32> DirtyBlocks; 644 645 if (!Cache.empty()) { 646 // Okay, we have a cache entry. If we know it is not dirty, just return it 647 // with no computation. 648 if (!CacheP.second) { 649 ++NumCacheNonLocal; 650 return Cache; 651 } 652 653 // If we already have a partially computed set of results, scan them to 654 // determine what is dirty, seeding our initial DirtyBlocks worklist. 655 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 656 I != E; ++I) 657 if (I->getResult().isDirty()) 658 DirtyBlocks.push_back(I->getBB()); 659 660 // Sort the cache so that we can do fast binary search lookups below. 661 std::sort(Cache.begin(), Cache.end()); 662 663 ++NumCacheDirtyNonLocal; 664 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 665 // << Cache.size() << " cached: " << *QueryInst; 666 } else { 667 // Seed DirtyBlocks with each of the preds of QueryInst's block. 668 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 669 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 670 DirtyBlocks.push_back(*PI); 671 ++NumUncacheNonLocal; 672 } 673 674 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 675 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 676 677 SmallPtrSet<BasicBlock*, 64> Visited; 678 679 unsigned NumSortedEntries = Cache.size(); 680 DEBUG(AssertSorted(Cache)); 681 682 // Iterate while we still have blocks to update. 683 while (!DirtyBlocks.empty()) { 684 BasicBlock *DirtyBB = DirtyBlocks.back(); 685 DirtyBlocks.pop_back(); 686 687 // Already processed this block? 688 if (!Visited.insert(DirtyBB)) 689 continue; 690 691 // Do a binary search to see if we already have an entry for this block in 692 // the cache set. If so, find it. 693 DEBUG(AssertSorted(Cache, NumSortedEntries)); 694 NonLocalDepInfo::iterator Entry = 695 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 696 NonLocalDepEntry(DirtyBB)); 697 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 698 --Entry; 699 700 NonLocalDepEntry *ExistingResult = nullptr; 701 if (Entry != Cache.begin()+NumSortedEntries && 702 Entry->getBB() == DirtyBB) { 703 // If we already have an entry, and if it isn't already dirty, the block 704 // is done. 705 if (!Entry->getResult().isDirty()) 706 continue; 707 708 // Otherwise, remember this slot so we can update the value. 709 ExistingResult = &*Entry; 710 } 711 712 // If the dirty entry has a pointer, start scanning from it so we don't have 713 // to rescan the entire block. 714 BasicBlock::iterator ScanPos = DirtyBB->end(); 715 if (ExistingResult) { 716 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 717 ScanPos = Inst; 718 // We're removing QueryInst's use of Inst. 719 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 720 QueryCS.getInstruction()); 721 } 722 } 723 724 // Find out if this block has a local dependency for QueryInst. 725 MemDepResult Dep; 726 727 if (ScanPos != DirtyBB->begin()) { 728 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 729 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 730 // No dependence found. If this is the entry block of the function, it is 731 // a clobber, otherwise it is unknown. 732 Dep = MemDepResult::getNonLocal(); 733 } else { 734 Dep = MemDepResult::getNonFuncLocal(); 735 } 736 737 // If we had a dirty entry for the block, update it. Otherwise, just add 738 // a new entry. 739 if (ExistingResult) 740 ExistingResult->setResult(Dep); 741 else 742 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 743 744 // If the block has a dependency (i.e. it isn't completely transparent to 745 // the value), remember the association! 746 if (!Dep.isNonLocal()) { 747 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 748 // update this when we remove instructions. 749 if (Instruction *Inst = Dep.getInst()) 750 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 751 } else { 752 753 // If the block *is* completely transparent to the load, we need to check 754 // the predecessors of this block. Add them to our worklist. 755 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 756 DirtyBlocks.push_back(*PI); 757 } 758 } 759 760 return Cache; 761 } 762 763 /// getNonLocalPointerDependency - Perform a full dependency query for an 764 /// access to the specified (non-volatile) memory location, returning the 765 /// set of instructions that either define or clobber the value. 766 /// 767 /// This method assumes the pointer has a "NonLocal" dependency within its 768 /// own block. 769 /// 770 void MemoryDependenceAnalysis:: 771 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 772 BasicBlock *FromBB, 773 SmallVectorImpl<NonLocalDepResult> &Result) { 774 assert(Loc.Ptr->getType()->isPointerTy() && 775 "Can't get pointer deps of a non-pointer!"); 776 Result.clear(); 777 778 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL); 779 780 // This is the set of blocks we've inspected, and the pointer we consider in 781 // each block. Because of critical edges, we currently bail out if querying 782 // a block with multiple different pointers. This can happen during PHI 783 // translation. 784 DenseMap<BasicBlock*, Value*> Visited; 785 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 786 Result, Visited, true)) 787 return; 788 Result.clear(); 789 Result.push_back(NonLocalDepResult(FromBB, 790 MemDepResult::getUnknown(), 791 const_cast<Value *>(Loc.Ptr))); 792 } 793 794 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 795 /// Pointer/PointeeSize using either cached information in Cache or by doing a 796 /// lookup (which may use dirty cache info if available). If we do a lookup, 797 /// add the result to the cache. 798 MemDepResult MemoryDependenceAnalysis:: 799 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 800 bool isLoad, BasicBlock *BB, 801 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 802 803 // Do a binary search to see if we already have an entry for this block in 804 // the cache set. If so, find it. 805 NonLocalDepInfo::iterator Entry = 806 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 807 NonLocalDepEntry(BB)); 808 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 809 --Entry; 810 811 NonLocalDepEntry *ExistingResult = nullptr; 812 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 813 ExistingResult = &*Entry; 814 815 // If we have a cached entry, and it is non-dirty, use it as the value for 816 // this dependency. 817 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 818 ++NumCacheNonLocalPtr; 819 return ExistingResult->getResult(); 820 } 821 822 // Otherwise, we have to scan for the value. If we have a dirty cache 823 // entry, start scanning from its position, otherwise we scan from the end 824 // of the block. 825 BasicBlock::iterator ScanPos = BB->end(); 826 if (ExistingResult && ExistingResult->getResult().getInst()) { 827 assert(ExistingResult->getResult().getInst()->getParent() == BB && 828 "Instruction invalidated?"); 829 ++NumCacheDirtyNonLocalPtr; 830 ScanPos = ExistingResult->getResult().getInst(); 831 832 // Eliminating the dirty entry from 'Cache', so update the reverse info. 833 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 834 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 835 } else { 836 ++NumUncacheNonLocalPtr; 837 } 838 839 // Scan the block for the dependency. 840 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 841 842 // If we had a dirty entry for the block, update it. Otherwise, just add 843 // a new entry. 844 if (ExistingResult) 845 ExistingResult->setResult(Dep); 846 else 847 Cache->push_back(NonLocalDepEntry(BB, Dep)); 848 849 // If the block has a dependency (i.e. it isn't completely transparent to 850 // the value), remember the reverse association because we just added it 851 // to Cache! 852 if (!Dep.isDef() && !Dep.isClobber()) 853 return Dep; 854 855 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 856 // update MemDep when we remove instructions. 857 Instruction *Inst = Dep.getInst(); 858 assert(Inst && "Didn't depend on anything?"); 859 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 860 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 861 return Dep; 862 } 863 864 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 865 /// number of elements in the array that are already properly ordered. This is 866 /// optimized for the case when only a few entries are added. 867 static void 868 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 869 unsigned NumSortedEntries) { 870 switch (Cache.size() - NumSortedEntries) { 871 case 0: 872 // done, no new entries. 873 break; 874 case 2: { 875 // Two new entries, insert the last one into place. 876 NonLocalDepEntry Val = Cache.back(); 877 Cache.pop_back(); 878 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 879 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 880 Cache.insert(Entry, Val); 881 // FALL THROUGH. 882 } 883 case 1: 884 // One new entry, Just insert the new value at the appropriate position. 885 if (Cache.size() != 1) { 886 NonLocalDepEntry Val = Cache.back(); 887 Cache.pop_back(); 888 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 889 std::upper_bound(Cache.begin(), Cache.end(), Val); 890 Cache.insert(Entry, Val); 891 } 892 break; 893 default: 894 // Added many values, do a full scale sort. 895 std::sort(Cache.begin(), Cache.end()); 896 break; 897 } 898 } 899 900 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 901 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 902 /// results to the results vector and keep track of which blocks are visited in 903 /// 'Visited'. 904 /// 905 /// This has special behavior for the first block queries (when SkipFirstBlock 906 /// is true). In this special case, it ignores the contents of the specified 907 /// block and starts returning dependence info for its predecessors. 908 /// 909 /// This function returns false on success, or true to indicate that it could 910 /// not compute dependence information for some reason. This should be treated 911 /// as a clobber dependence on the first instruction in the predecessor block. 912 bool MemoryDependenceAnalysis:: 913 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 914 const AliasAnalysis::Location &Loc, 915 bool isLoad, BasicBlock *StartBB, 916 SmallVectorImpl<NonLocalDepResult> &Result, 917 DenseMap<BasicBlock*, Value*> &Visited, 918 bool SkipFirstBlock) { 919 // Look up the cached info for Pointer. 920 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 921 922 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 923 // CacheKey, this value will be inserted as the associated value. Otherwise, 924 // it'll be ignored, and we'll have to check to see if the cached size and 925 // tbaa tag are consistent with the current query. 926 NonLocalPointerInfo InitialNLPI; 927 InitialNLPI.Size = Loc.Size; 928 InitialNLPI.TBAATag = Loc.TBAATag; 929 930 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 931 // already have one. 932 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 933 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 934 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 935 936 // If we already have a cache entry for this CacheKey, we may need to do some 937 // work to reconcile the cache entry and the current query. 938 if (!Pair.second) { 939 if (CacheInfo->Size < Loc.Size) { 940 // The query's Size is greater than the cached one. Throw out the 941 // cached data and proceed with the query at the greater size. 942 CacheInfo->Pair = BBSkipFirstBlockPair(); 943 CacheInfo->Size = Loc.Size; 944 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 945 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 946 if (Instruction *Inst = DI->getResult().getInst()) 947 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 948 CacheInfo->NonLocalDeps.clear(); 949 } else if (CacheInfo->Size > Loc.Size) { 950 // This query's Size is less than the cached one. Conservatively restart 951 // the query using the greater size. 952 return getNonLocalPointerDepFromBB(Pointer, 953 Loc.getWithNewSize(CacheInfo->Size), 954 isLoad, StartBB, Result, Visited, 955 SkipFirstBlock); 956 } 957 958 // If the query's TBAATag is inconsistent with the cached one, 959 // conservatively throw out the cached data and restart the query with 960 // no tag if needed. 961 if (CacheInfo->TBAATag != Loc.TBAATag) { 962 if (CacheInfo->TBAATag) { 963 CacheInfo->Pair = BBSkipFirstBlockPair(); 964 CacheInfo->TBAATag = nullptr; 965 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 966 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 967 if (Instruction *Inst = DI->getResult().getInst()) 968 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 969 CacheInfo->NonLocalDeps.clear(); 970 } 971 if (Loc.TBAATag) 972 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 973 isLoad, StartBB, Result, Visited, 974 SkipFirstBlock); 975 } 976 } 977 978 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 979 980 // If we have valid cached information for exactly the block we are 981 // investigating, just return it with no recomputation. 982 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 983 // We have a fully cached result for this query then we can just return the 984 // cached results and populate the visited set. However, we have to verify 985 // that we don't already have conflicting results for these blocks. Check 986 // to ensure that if a block in the results set is in the visited set that 987 // it was for the same pointer query. 988 if (!Visited.empty()) { 989 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 990 I != E; ++I) { 991 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 992 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 993 continue; 994 995 // We have a pointer mismatch in a block. Just return clobber, saying 996 // that something was clobbered in this result. We could also do a 997 // non-fully cached query, but there is little point in doing this. 998 return true; 999 } 1000 } 1001 1002 Value *Addr = Pointer.getAddr(); 1003 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1004 I != E; ++I) { 1005 Visited.insert(std::make_pair(I->getBB(), Addr)); 1006 if (I->getResult().isNonLocal()) { 1007 continue; 1008 } 1009 1010 if (!DT) { 1011 Result.push_back(NonLocalDepResult(I->getBB(), 1012 MemDepResult::getUnknown(), 1013 Addr)); 1014 } else if (DT->isReachableFromEntry(I->getBB())) { 1015 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1016 } 1017 } 1018 ++NumCacheCompleteNonLocalPtr; 1019 return false; 1020 } 1021 1022 // Otherwise, either this is a new block, a block with an invalid cache 1023 // pointer or one that we're about to invalidate by putting more info into it 1024 // than its valid cache info. If empty, the result will be valid cache info, 1025 // otherwise it isn't. 1026 if (Cache->empty()) 1027 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1028 else 1029 CacheInfo->Pair = BBSkipFirstBlockPair(); 1030 1031 SmallVector<BasicBlock*, 32> Worklist; 1032 Worklist.push_back(StartBB); 1033 1034 // PredList used inside loop. 1035 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1036 1037 // Keep track of the entries that we know are sorted. Previously cached 1038 // entries will all be sorted. The entries we add we only sort on demand (we 1039 // don't insert every element into its sorted position). We know that we 1040 // won't get any reuse from currently inserted values, because we don't 1041 // revisit blocks after we insert info for them. 1042 unsigned NumSortedEntries = Cache->size(); 1043 DEBUG(AssertSorted(*Cache)); 1044 1045 while (!Worklist.empty()) { 1046 BasicBlock *BB = Worklist.pop_back_val(); 1047 1048 // Skip the first block if we have it. 1049 if (!SkipFirstBlock) { 1050 // Analyze the dependency of *Pointer in FromBB. See if we already have 1051 // been here. 1052 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1053 1054 // Get the dependency info for Pointer in BB. If we have cached 1055 // information, we will use it, otherwise we compute it. 1056 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1057 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1058 NumSortedEntries); 1059 1060 // If we got a Def or Clobber, add this to the list of results. 1061 if (!Dep.isNonLocal()) { 1062 if (!DT) { 1063 Result.push_back(NonLocalDepResult(BB, 1064 MemDepResult::getUnknown(), 1065 Pointer.getAddr())); 1066 continue; 1067 } else if (DT->isReachableFromEntry(BB)) { 1068 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1069 continue; 1070 } 1071 } 1072 } 1073 1074 // If 'Pointer' is an instruction defined in this block, then we need to do 1075 // phi translation to change it into a value live in the predecessor block. 1076 // If not, we just add the predecessors to the worklist and scan them with 1077 // the same Pointer. 1078 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1079 SkipFirstBlock = false; 1080 SmallVector<BasicBlock*, 16> NewBlocks; 1081 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1082 // Verify that we haven't looked at this block yet. 1083 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1084 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1085 if (InsertRes.second) { 1086 // First time we've looked at *PI. 1087 NewBlocks.push_back(*PI); 1088 continue; 1089 } 1090 1091 // If we have seen this block before, but it was with a different 1092 // pointer then we have a phi translation failure and we have to treat 1093 // this as a clobber. 1094 if (InsertRes.first->second != Pointer.getAddr()) { 1095 // Make sure to clean up the Visited map before continuing on to 1096 // PredTranslationFailure. 1097 for (unsigned i = 0; i < NewBlocks.size(); i++) 1098 Visited.erase(NewBlocks[i]); 1099 goto PredTranslationFailure; 1100 } 1101 } 1102 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1103 continue; 1104 } 1105 1106 // We do need to do phi translation, if we know ahead of time we can't phi 1107 // translate this value, don't even try. 1108 if (!Pointer.IsPotentiallyPHITranslatable()) 1109 goto PredTranslationFailure; 1110 1111 // We may have added values to the cache list before this PHI translation. 1112 // If so, we haven't done anything to ensure that the cache remains sorted. 1113 // Sort it now (if needed) so that recursive invocations of 1114 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1115 // value will only see properly sorted cache arrays. 1116 if (Cache && NumSortedEntries != Cache->size()) { 1117 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1118 NumSortedEntries = Cache->size(); 1119 } 1120 Cache = nullptr; 1121 1122 PredList.clear(); 1123 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1124 BasicBlock *Pred = *PI; 1125 PredList.push_back(std::make_pair(Pred, Pointer)); 1126 1127 // Get the PHI translated pointer in this predecessor. This can fail if 1128 // not translatable, in which case the getAddr() returns null. 1129 PHITransAddr &PredPointer = PredList.back().second; 1130 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1131 1132 Value *PredPtrVal = PredPointer.getAddr(); 1133 1134 // Check to see if we have already visited this pred block with another 1135 // pointer. If so, we can't do this lookup. This failure can occur 1136 // with PHI translation when a critical edge exists and the PHI node in 1137 // the successor translates to a pointer value different than the 1138 // pointer the block was first analyzed with. 1139 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1140 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1141 1142 if (!InsertRes.second) { 1143 // We found the pred; take it off the list of preds to visit. 1144 PredList.pop_back(); 1145 1146 // If the predecessor was visited with PredPtr, then we already did 1147 // the analysis and can ignore it. 1148 if (InsertRes.first->second == PredPtrVal) 1149 continue; 1150 1151 // Otherwise, the block was previously analyzed with a different 1152 // pointer. We can't represent the result of this case, so we just 1153 // treat this as a phi translation failure. 1154 1155 // Make sure to clean up the Visited map before continuing on to 1156 // PredTranslationFailure. 1157 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1158 Visited.erase(PredList[i].first); 1159 1160 goto PredTranslationFailure; 1161 } 1162 } 1163 1164 // Actually process results here; this need to be a separate loop to avoid 1165 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1166 // any results for. (getNonLocalPointerDepFromBB will modify our 1167 // datastructures in ways the code after the PredTranslationFailure label 1168 // doesn't expect.) 1169 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1170 BasicBlock *Pred = PredList[i].first; 1171 PHITransAddr &PredPointer = PredList[i].second; 1172 Value *PredPtrVal = PredPointer.getAddr(); 1173 1174 bool CanTranslate = true; 1175 // If PHI translation was unable to find an available pointer in this 1176 // predecessor, then we have to assume that the pointer is clobbered in 1177 // that predecessor. We can still do PRE of the load, which would insert 1178 // a computation of the pointer in this predecessor. 1179 if (!PredPtrVal) 1180 CanTranslate = false; 1181 1182 // FIXME: it is entirely possible that PHI translating will end up with 1183 // the same value. Consider PHI translating something like: 1184 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1185 // to recurse here, pedantically speaking. 1186 1187 // If getNonLocalPointerDepFromBB fails here, that means the cached 1188 // result conflicted with the Visited list; we have to conservatively 1189 // assume it is unknown, but this also does not block PRE of the load. 1190 if (!CanTranslate || 1191 getNonLocalPointerDepFromBB(PredPointer, 1192 Loc.getWithNewPtr(PredPtrVal), 1193 isLoad, Pred, 1194 Result, Visited)) { 1195 // Add the entry to the Result list. 1196 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1197 Result.push_back(Entry); 1198 1199 // Since we had a phi translation failure, the cache for CacheKey won't 1200 // include all of the entries that we need to immediately satisfy future 1201 // queries. Mark this in NonLocalPointerDeps by setting the 1202 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1203 // cached value to do more work but not miss the phi trans failure. 1204 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1205 NLPI.Pair = BBSkipFirstBlockPair(); 1206 continue; 1207 } 1208 } 1209 1210 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1211 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1212 Cache = &CacheInfo->NonLocalDeps; 1213 NumSortedEntries = Cache->size(); 1214 1215 // Since we did phi translation, the "Cache" set won't contain all of the 1216 // results for the query. This is ok (we can still use it to accelerate 1217 // specific block queries) but we can't do the fastpath "return all 1218 // results from the set" Clear out the indicator for this. 1219 CacheInfo->Pair = BBSkipFirstBlockPair(); 1220 SkipFirstBlock = false; 1221 continue; 1222 1223 PredTranslationFailure: 1224 // The following code is "failure"; we can't produce a sane translation 1225 // for the given block. It assumes that we haven't modified any of 1226 // our datastructures while processing the current block. 1227 1228 if (!Cache) { 1229 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1230 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1231 Cache = &CacheInfo->NonLocalDeps; 1232 NumSortedEntries = Cache->size(); 1233 } 1234 1235 // Since we failed phi translation, the "Cache" set won't contain all of the 1236 // results for the query. This is ok (we can still use it to accelerate 1237 // specific block queries) but we can't do the fastpath "return all 1238 // results from the set". Clear out the indicator for this. 1239 CacheInfo->Pair = BBSkipFirstBlockPair(); 1240 1241 // If *nothing* works, mark the pointer as unknown. 1242 // 1243 // If this is the magic first block, return this as a clobber of the whole 1244 // incoming value. Since we can't phi translate to one of the predecessors, 1245 // we have to bail out. 1246 if (SkipFirstBlock) 1247 return true; 1248 1249 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1250 assert(I != Cache->rend() && "Didn't find current block??"); 1251 if (I->getBB() != BB) 1252 continue; 1253 1254 assert(I->getResult().isNonLocal() && 1255 "Should only be here with transparent block"); 1256 I->setResult(MemDepResult::getUnknown()); 1257 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1258 Pointer.getAddr())); 1259 break; 1260 } 1261 } 1262 1263 // Okay, we're done now. If we added new values to the cache, re-sort it. 1264 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1265 DEBUG(AssertSorted(*Cache)); 1266 return false; 1267 } 1268 1269 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1270 /// CachedNonLocalPointerInfo, remove it. 1271 void MemoryDependenceAnalysis:: 1272 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1273 CachedNonLocalPointerInfo::iterator It = 1274 NonLocalPointerDeps.find(P); 1275 if (It == NonLocalPointerDeps.end()) return; 1276 1277 // Remove all of the entries in the BB->val map. This involves removing 1278 // instructions from the reverse map. 1279 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1280 1281 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1282 Instruction *Target = PInfo[i].getResult().getInst(); 1283 if (!Target) continue; // Ignore non-local dep results. 1284 assert(Target->getParent() == PInfo[i].getBB()); 1285 1286 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1287 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1288 } 1289 1290 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1291 NonLocalPointerDeps.erase(It); 1292 } 1293 1294 1295 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1296 /// information about the specified pointer, because it may be too 1297 /// conservative in memdep. This is an optional call that can be used when 1298 /// the client detects an equivalence between the pointer and some other 1299 /// value and replaces the other value with ptr. This can make Ptr available 1300 /// in more places that cached info does not necessarily keep. 1301 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1302 // If Ptr isn't really a pointer, just ignore it. 1303 if (!Ptr->getType()->isPointerTy()) return; 1304 // Flush store info for the pointer. 1305 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1306 // Flush load info for the pointer. 1307 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1308 } 1309 1310 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1311 /// This needs to be done when the CFG changes, e.g., due to splitting 1312 /// critical edges. 1313 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1314 PredCache->clear(); 1315 } 1316 1317 /// removeInstruction - Remove an instruction from the dependence analysis, 1318 /// updating the dependence of instructions that previously depended on it. 1319 /// This method attempts to keep the cache coherent using the reverse map. 1320 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1321 // Walk through the Non-local dependencies, removing this one as the value 1322 // for any cached queries. 1323 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1324 if (NLDI != NonLocalDeps.end()) { 1325 NonLocalDepInfo &BlockMap = NLDI->second.first; 1326 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1327 DI != DE; ++DI) 1328 if (Instruction *Inst = DI->getResult().getInst()) 1329 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1330 NonLocalDeps.erase(NLDI); 1331 } 1332 1333 // If we have a cached local dependence query for this instruction, remove it. 1334 // 1335 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1336 if (LocalDepEntry != LocalDeps.end()) { 1337 // Remove us from DepInst's reverse set now that the local dep info is gone. 1338 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1339 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1340 1341 // Remove this local dependency info. 1342 LocalDeps.erase(LocalDepEntry); 1343 } 1344 1345 // If we have any cached pointer dependencies on this instruction, remove 1346 // them. If the instruction has non-pointer type, then it can't be a pointer 1347 // base. 1348 1349 // Remove it from both the load info and the store info. The instruction 1350 // can't be in either of these maps if it is non-pointer. 1351 if (RemInst->getType()->isPointerTy()) { 1352 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1353 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1354 } 1355 1356 // Loop over all of the things that depend on the instruction we're removing. 1357 // 1358 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1359 1360 // If we find RemInst as a clobber or Def in any of the maps for other values, 1361 // we need to replace its entry with a dirty version of the instruction after 1362 // it. If RemInst is a terminator, we use a null dirty value. 1363 // 1364 // Using a dirty version of the instruction after RemInst saves having to scan 1365 // the entire block to get to this point. 1366 MemDepResult NewDirtyVal; 1367 if (!RemInst->isTerminator()) 1368 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1369 1370 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1371 if (ReverseDepIt != ReverseLocalDeps.end()) { 1372 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1373 // RemInst can't be the terminator if it has local stuff depending on it. 1374 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1375 "Nothing can locally depend on a terminator"); 1376 1377 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1378 E = ReverseDeps.end(); I != E; ++I) { 1379 Instruction *InstDependingOnRemInst = *I; 1380 assert(InstDependingOnRemInst != RemInst && 1381 "Already removed our local dep info"); 1382 1383 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1384 1385 // Make sure to remember that new things depend on NewDepInst. 1386 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1387 "a local dep on this if it is a terminator!"); 1388 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1389 InstDependingOnRemInst)); 1390 } 1391 1392 ReverseLocalDeps.erase(ReverseDepIt); 1393 1394 // Add new reverse deps after scanning the set, to avoid invalidating the 1395 // 'ReverseDeps' reference. 1396 while (!ReverseDepsToAdd.empty()) { 1397 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1398 .insert(ReverseDepsToAdd.back().second); 1399 ReverseDepsToAdd.pop_back(); 1400 } 1401 } 1402 1403 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1404 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1405 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1406 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1407 I != E; ++I) { 1408 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1409 1410 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1411 // The information is now dirty! 1412 INLD.second = true; 1413 1414 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1415 DE = INLD.first.end(); DI != DE; ++DI) { 1416 if (DI->getResult().getInst() != RemInst) continue; 1417 1418 // Convert to a dirty entry for the subsequent instruction. 1419 DI->setResult(NewDirtyVal); 1420 1421 if (Instruction *NextI = NewDirtyVal.getInst()) 1422 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1423 } 1424 } 1425 1426 ReverseNonLocalDeps.erase(ReverseDepIt); 1427 1428 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1429 while (!ReverseDepsToAdd.empty()) { 1430 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1431 .insert(ReverseDepsToAdd.back().second); 1432 ReverseDepsToAdd.pop_back(); 1433 } 1434 } 1435 1436 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1437 // value in the NonLocalPointerDeps info. 1438 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1439 ReverseNonLocalPtrDeps.find(RemInst); 1440 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1441 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1442 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1443 1444 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1445 E = Set.end(); I != E; ++I) { 1446 ValueIsLoadPair P = *I; 1447 assert(P.getPointer() != RemInst && 1448 "Already removed NonLocalPointerDeps info for RemInst"); 1449 1450 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1451 1452 // The cache is not valid for any specific block anymore. 1453 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1454 1455 // Update any entries for RemInst to use the instruction after it. 1456 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1457 DI != DE; ++DI) { 1458 if (DI->getResult().getInst() != RemInst) continue; 1459 1460 // Convert to a dirty entry for the subsequent instruction. 1461 DI->setResult(NewDirtyVal); 1462 1463 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1464 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1465 } 1466 1467 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1468 // subsequent value may invalidate the sortedness. 1469 std::sort(NLPDI.begin(), NLPDI.end()); 1470 } 1471 1472 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1473 1474 while (!ReversePtrDepsToAdd.empty()) { 1475 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1476 .insert(ReversePtrDepsToAdd.back().second); 1477 ReversePtrDepsToAdd.pop_back(); 1478 } 1479 } 1480 1481 1482 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1483 AA->deleteValue(RemInst); 1484 DEBUG(verifyRemoved(RemInst)); 1485 } 1486 /// verifyRemoved - Verify that the specified instruction does not occur 1487 /// in our internal data structures. 1488 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1489 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1490 E = LocalDeps.end(); I != E; ++I) { 1491 assert(I->first != D && "Inst occurs in data structures"); 1492 assert(I->second.getInst() != D && 1493 "Inst occurs in data structures"); 1494 } 1495 1496 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1497 E = NonLocalPointerDeps.end(); I != E; ++I) { 1498 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1499 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1500 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1501 II != E; ++II) 1502 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1503 } 1504 1505 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1506 E = NonLocalDeps.end(); I != E; ++I) { 1507 assert(I->first != D && "Inst occurs in data structures"); 1508 const PerInstNLInfo &INLD = I->second; 1509 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1510 EE = INLD.first.end(); II != EE; ++II) 1511 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1512 } 1513 1514 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1515 E = ReverseLocalDeps.end(); I != E; ++I) { 1516 assert(I->first != D && "Inst occurs in data structures"); 1517 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1518 EE = I->second.end(); II != EE; ++II) 1519 assert(*II != D && "Inst occurs in data structures"); 1520 } 1521 1522 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1523 E = ReverseNonLocalDeps.end(); 1524 I != E; ++I) { 1525 assert(I->first != D && "Inst occurs in data structures"); 1526 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1527 EE = I->second.end(); II != EE; ++II) 1528 assert(*II != D && "Inst occurs in data structures"); 1529 } 1530 1531 for (ReverseNonLocalPtrDepTy::const_iterator 1532 I = ReverseNonLocalPtrDeps.begin(), 1533 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1534 assert(I->first != D && "Inst occurs in rev NLPD map"); 1535 1536 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1537 E = I->second.end(); II != E; ++II) 1538 assert(*II != ValueIsLoadPair(D, false) && 1539 *II != ValueIsLoadPair(D, true) && 1540 "Inst occurs in ReverseNonLocalPtrDeps map"); 1541 } 1542 1543 } 1544