Home | History | Annotate | Download | only in CodeGen
      1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file provides the implementation of a basic TargetTransformInfo pass
     11 /// predicated on the target abstractions present in the target independent
     12 /// code generator. It uses these (primarily TargetLowering) to model as much
     13 /// of the TTI query interface as possible. It is included by most targets so
     14 /// that they can specialize only a small subset of the query space.
     15 ///
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/Analysis/LoopInfo.h"
     20 #include "llvm/Analysis/TargetTransformInfo.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Target/TargetLowering.h"
     23 #include "llvm/Target/TargetSubtargetInfo.h"
     24 #include <utility>
     25 using namespace llvm;
     26 
     27 static cl::opt<unsigned>
     28 PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
     29   cl::desc("Threshold for partial unrolling"), cl::Hidden);
     30 
     31 #define DEBUG_TYPE "basictti"
     32 
     33 namespace {
     34 
     35 class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
     36   const TargetMachine *TM;
     37 
     38   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
     39   /// are set if the result needs to be inserted and/or extracted from vectors.
     40   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
     41 
     42   /// Estimate the cost overhead of SK_Alternate shuffle.
     43   unsigned getAltShuffleOverhead(Type *Ty) const;
     44 
     45   const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
     46 
     47 public:
     48   BasicTTI() : ImmutablePass(ID), TM(nullptr) {
     49     llvm_unreachable("This pass cannot be directly constructed");
     50   }
     51 
     52   BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
     53     initializeBasicTTIPass(*PassRegistry::getPassRegistry());
     54   }
     55 
     56   void initializePass() override {
     57     pushTTIStack(this);
     58   }
     59 
     60   void getAnalysisUsage(AnalysisUsage &AU) const override {
     61     TargetTransformInfo::getAnalysisUsage(AU);
     62   }
     63 
     64   /// Pass identification.
     65   static char ID;
     66 
     67   /// Provide necessary pointer adjustments for the two base classes.
     68   void *getAdjustedAnalysisPointer(const void *ID) override {
     69     if (ID == &TargetTransformInfo::ID)
     70       return (TargetTransformInfo*)this;
     71     return this;
     72   }
     73 
     74   bool hasBranchDivergence() const override;
     75 
     76   /// \name Scalar TTI Implementations
     77   /// @{
     78 
     79   bool isLegalAddImmediate(int64_t imm) const override;
     80   bool isLegalICmpImmediate(int64_t imm) const override;
     81   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
     82                              int64_t BaseOffset, bool HasBaseReg,
     83                              int64_t Scale) const override;
     84   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
     85                            int64_t BaseOffset, bool HasBaseReg,
     86                            int64_t Scale) const override;
     87   bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
     88   bool isTypeLegal(Type *Ty) const override;
     89   unsigned getJumpBufAlignment() const override;
     90   unsigned getJumpBufSize() const override;
     91   bool shouldBuildLookupTables() const override;
     92   bool haveFastSqrt(Type *Ty) const override;
     93   void getUnrollingPreferences(Loop *L,
     94                                UnrollingPreferences &UP) const override;
     95 
     96   /// @}
     97 
     98   /// \name Vector TTI Implementations
     99   /// @{
    100 
    101   unsigned getNumberOfRegisters(bool Vector) const override;
    102   unsigned getMaximumUnrollFactor() const override;
    103   unsigned getRegisterBitWidth(bool Vector) const override;
    104   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
    105                                   OperandValueKind) const override;
    106   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
    107                           int Index, Type *SubTp) const override;
    108   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
    109                             Type *Src) const override;
    110   unsigned getCFInstrCost(unsigned Opcode) const override;
    111   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    112                               Type *CondTy) const override;
    113   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
    114                               unsigned Index) const override;
    115   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    116                            unsigned AddressSpace) const override;
    117   unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
    118                                  ArrayRef<Type*> Tys) const override;
    119   unsigned getNumberOfParts(Type *Tp) const override;
    120   unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
    121   unsigned getReductionCost(unsigned Opcode, Type *Ty,
    122                             bool IsPairwise) const override;
    123 
    124   /// @}
    125 };
    126 
    127 }
    128 
    129 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
    130                    "Target independent code generator's TTI", true, true, false)
    131 char BasicTTI::ID = 0;
    132 
    133 ImmutablePass *
    134 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
    135   return new BasicTTI(TM);
    136 }
    137 
    138 bool BasicTTI::hasBranchDivergence() const { return false; }
    139 
    140 bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
    141   return getTLI()->isLegalAddImmediate(imm);
    142 }
    143 
    144 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
    145   return getTLI()->isLegalICmpImmediate(imm);
    146 }
    147 
    148 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
    149                                      int64_t BaseOffset, bool HasBaseReg,
    150                                      int64_t Scale) const {
    151   TargetLoweringBase::AddrMode AM;
    152   AM.BaseGV = BaseGV;
    153   AM.BaseOffs = BaseOffset;
    154   AM.HasBaseReg = HasBaseReg;
    155   AM.Scale = Scale;
    156   return getTLI()->isLegalAddressingMode(AM, Ty);
    157 }
    158 
    159 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
    160                                    int64_t BaseOffset, bool HasBaseReg,
    161                                    int64_t Scale) const {
    162   TargetLoweringBase::AddrMode AM;
    163   AM.BaseGV = BaseGV;
    164   AM.BaseOffs = BaseOffset;
    165   AM.HasBaseReg = HasBaseReg;
    166   AM.Scale = Scale;
    167   return getTLI()->getScalingFactorCost(AM, Ty);
    168 }
    169 
    170 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
    171   return getTLI()->isTruncateFree(Ty1, Ty2);
    172 }
    173 
    174 bool BasicTTI::isTypeLegal(Type *Ty) const {
    175   EVT T = getTLI()->getValueType(Ty);
    176   return getTLI()->isTypeLegal(T);
    177 }
    178 
    179 unsigned BasicTTI::getJumpBufAlignment() const {
    180   return getTLI()->getJumpBufAlignment();
    181 }
    182 
    183 unsigned BasicTTI::getJumpBufSize() const {
    184   return getTLI()->getJumpBufSize();
    185 }
    186 
    187 bool BasicTTI::shouldBuildLookupTables() const {
    188   const TargetLoweringBase *TLI = getTLI();
    189   return TLI->supportJumpTables() &&
    190       (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
    191        TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
    192 }
    193 
    194 bool BasicTTI::haveFastSqrt(Type *Ty) const {
    195   const TargetLoweringBase *TLI = getTLI();
    196   EVT VT = TLI->getValueType(Ty);
    197   return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
    198 }
    199 
    200 void BasicTTI::getUnrollingPreferences(Loop *L,
    201                                        UnrollingPreferences &UP) const {
    202   // This unrolling functionality is target independent, but to provide some
    203   // motivation for its intended use, for x86:
    204 
    205   // According to the Intel 64 and IA-32 Architectures Optimization Reference
    206   // Manual, Intel Core models and later have a loop stream detector
    207   // (and associated uop queue) that can benefit from partial unrolling.
    208   // The relevant requirements are:
    209   //  - The loop must have no more than 4 (8 for Nehalem and later) branches
    210   //    taken, and none of them may be calls.
    211   //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
    212 
    213   // According to the Software Optimization Guide for AMD Family 15h Processors,
    214   // models 30h-4fh (Steamroller and later) have a loop predictor and loop
    215   // buffer which can benefit from partial unrolling.
    216   // The relevant requirements are:
    217   //  - The loop must have fewer than 16 branches
    218   //  - The loop must have less than 40 uops in all executed loop branches
    219 
    220   // The number of taken branches in a loop is hard to estimate here, and
    221   // benchmarking has revealed that it is better not to be conservative when
    222   // estimating the branch count. As a result, we'll ignore the branch limits
    223   // until someone finds a case where it matters in practice.
    224 
    225   unsigned MaxOps;
    226   const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
    227   if (PartialUnrollingThreshold.getNumOccurrences() > 0)
    228     MaxOps = PartialUnrollingThreshold;
    229   else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
    230     MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
    231   else
    232     return;
    233 
    234   // Scan the loop: don't unroll loops with calls.
    235   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    236        I != E; ++I) {
    237     BasicBlock *BB = *I;
    238 
    239     for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
    240       if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
    241         ImmutableCallSite CS(J);
    242         if (const Function *F = CS.getCalledFunction()) {
    243           if (!TopTTI->isLoweredToCall(F))
    244             continue;
    245         }
    246 
    247         return;
    248       }
    249   }
    250 
    251   // Enable runtime and partial unrolling up to the specified size.
    252   UP.Partial = UP.Runtime = true;
    253   UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
    254 }
    255 
    256 //===----------------------------------------------------------------------===//
    257 //
    258 // Calls used by the vectorizers.
    259 //
    260 //===----------------------------------------------------------------------===//
    261 
    262 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
    263                                             bool Extract) const {
    264   assert (Ty->isVectorTy() && "Can only scalarize vectors");
    265   unsigned Cost = 0;
    266 
    267   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    268     if (Insert)
    269       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    270     if (Extract)
    271       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    272   }
    273 
    274   return Cost;
    275 }
    276 
    277 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
    278   return 1;
    279 }
    280 
    281 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
    282   return 32;
    283 }
    284 
    285 unsigned BasicTTI::getMaximumUnrollFactor() const {
    286   return 1;
    287 }
    288 
    289 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    290                                           OperandValueKind,
    291                                           OperandValueKind) const {
    292   // Check if any of the operands are vector operands.
    293   const TargetLoweringBase *TLI = getTLI();
    294   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    295   assert(ISD && "Invalid opcode");
    296 
    297   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
    298 
    299   bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
    300   // Assume that floating point arithmetic operations cost twice as much as
    301   // integer operations.
    302   unsigned OpCost = (IsFloat ? 2 : 1);
    303 
    304   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
    305     // The operation is legal. Assume it costs 1.
    306     // If the type is split to multiple registers, assume that there is some
    307     // overhead to this.
    308     // TODO: Once we have extract/insert subvector cost we need to use them.
    309     if (LT.first > 1)
    310       return LT.first * 2 * OpCost;
    311     return LT.first * 1 * OpCost;
    312   }
    313 
    314   if (!TLI->isOperationExpand(ISD, LT.second)) {
    315     // If the operation is custom lowered then assume
    316     // thare the code is twice as expensive.
    317     return LT.first * 2 * OpCost;
    318   }
    319 
    320   // Else, assume that we need to scalarize this op.
    321   if (Ty->isVectorTy()) {
    322     unsigned Num = Ty->getVectorNumElements();
    323     unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
    324     // return the cost of multiple scalar invocation plus the cost of inserting
    325     // and extracting the values.
    326     return getScalarizationOverhead(Ty, true, true) + Num * Cost;
    327   }
    328 
    329   // We don't know anything about this scalar instruction.
    330   return OpCost;
    331 }
    332 
    333 unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
    334   assert(Ty->isVectorTy() && "Can only shuffle vectors");
    335   unsigned Cost = 0;
    336   // Shuffle cost is equal to the cost of extracting element from its argument
    337   // plus the cost of inserting them onto the result vector.
    338 
    339   // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
    340   // 0 of first vector, index 1 of second vector,index 2 of first vector and
    341   // finally index 3 of second vector and insert them at index <0,1,2,3> of
    342   // result vector.
    343   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    344     Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    345     Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    346   }
    347   return Cost;
    348 }
    349 
    350 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    351                                   Type *SubTp) const {
    352   if (Kind == SK_Alternate) {
    353     return getAltShuffleOverhead(Tp);
    354   }
    355   return 1;
    356 }
    357 
    358 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
    359                                     Type *Src) const {
    360   const TargetLoweringBase *TLI = getTLI();
    361   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    362   assert(ISD && "Invalid opcode");
    363 
    364   std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
    365   std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
    366 
    367   // Check for NOOP conversions.
    368   if (SrcLT.first == DstLT.first &&
    369       SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
    370 
    371       // Bitcast between types that are legalized to the same type are free.
    372       if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
    373         return 0;
    374   }
    375 
    376   if (Opcode == Instruction::Trunc &&
    377       TLI->isTruncateFree(SrcLT.second, DstLT.second))
    378     return 0;
    379 
    380   if (Opcode == Instruction::ZExt &&
    381       TLI->isZExtFree(SrcLT.second, DstLT.second))
    382     return 0;
    383 
    384   // If the cast is marked as legal (or promote) then assume low cost.
    385   if (SrcLT.first == DstLT.first &&
    386       TLI->isOperationLegalOrPromote(ISD, DstLT.second))
    387     return 1;
    388 
    389   // Handle scalar conversions.
    390   if (!Src->isVectorTy() && !Dst->isVectorTy()) {
    391 
    392     // Scalar bitcasts are usually free.
    393     if (Opcode == Instruction::BitCast)
    394       return 0;
    395 
    396     // Just check the op cost. If the operation is legal then assume it costs 1.
    397     if (!TLI->isOperationExpand(ISD, DstLT.second))
    398       return  1;
    399 
    400     // Assume that illegal scalar instruction are expensive.
    401     return 4;
    402   }
    403 
    404   // Check vector-to-vector casts.
    405   if (Dst->isVectorTy() && Src->isVectorTy()) {
    406 
    407     // If the cast is between same-sized registers, then the check is simple.
    408     if (SrcLT.first == DstLT.first &&
    409         SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
    410 
    411       // Assume that Zext is done using AND.
    412       if (Opcode == Instruction::ZExt)
    413         return 1;
    414 
    415       // Assume that sext is done using SHL and SRA.
    416       if (Opcode == Instruction::SExt)
    417         return 2;
    418 
    419       // Just check the op cost. If the operation is legal then assume it costs
    420       // 1 and multiply by the type-legalization overhead.
    421       if (!TLI->isOperationExpand(ISD, DstLT.second))
    422         return SrcLT.first * 1;
    423     }
    424 
    425     // If we are converting vectors and the operation is illegal, or
    426     // if the vectors are legalized to different types, estimate the
    427     // scalarization costs.
    428     unsigned Num = Dst->getVectorNumElements();
    429     unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
    430                                              Src->getScalarType());
    431 
    432     // Return the cost of multiple scalar invocation plus the cost of
    433     // inserting and extracting the values.
    434     return getScalarizationOverhead(Dst, true, true) + Num * Cost;
    435   }
    436 
    437   // We already handled vector-to-vector and scalar-to-scalar conversions. This
    438   // is where we handle bitcast between vectors and scalars. We need to assume
    439   //  that the conversion is scalarized in one way or another.
    440   if (Opcode == Instruction::BitCast)
    441     // Illegal bitcasts are done by storing and loading from a stack slot.
    442     return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
    443            (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
    444 
    445   llvm_unreachable("Unhandled cast");
    446  }
    447 
    448 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
    449   // Branches are assumed to be predicted.
    450   return 0;
    451 }
    452 
    453 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    454                                       Type *CondTy) const {
    455   const TargetLoweringBase *TLI = getTLI();
    456   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    457   assert(ISD && "Invalid opcode");
    458 
    459   // Selects on vectors are actually vector selects.
    460   if (ISD == ISD::SELECT) {
    461     assert(CondTy && "CondTy must exist");
    462     if (CondTy->isVectorTy())
    463       ISD = ISD::VSELECT;
    464   }
    465 
    466   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    467 
    468   if (!TLI->isOperationExpand(ISD, LT.second)) {
    469     // The operation is legal. Assume it costs 1. Multiply
    470     // by the type-legalization overhead.
    471     return LT.first * 1;
    472   }
    473 
    474   // Otherwise, assume that the cast is scalarized.
    475   if (ValTy->isVectorTy()) {
    476     unsigned Num = ValTy->getVectorNumElements();
    477     if (CondTy)
    478       CondTy = CondTy->getScalarType();
    479     unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
    480                                                CondTy);
    481 
    482     // Return the cost of multiple scalar invocation plus the cost of inserting
    483     // and extracting the values.
    484     return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
    485   }
    486 
    487   // Unknown scalar opcode.
    488   return 1;
    489 }
    490 
    491 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
    492                                       unsigned Index) const {
    493   std::pair<unsigned, MVT> LT =  getTLI()->getTypeLegalizationCost(Val->getScalarType());
    494 
    495   return LT.first;
    496 }
    497 
    498 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
    499                                    unsigned Alignment,
    500                                    unsigned AddressSpace) const {
    501   assert(!Src->isVoidTy() && "Invalid type");
    502   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
    503 
    504   // Assuming that all loads of legal types cost 1.
    505   unsigned Cost = LT.first;
    506 
    507   if (Src->isVectorTy() &&
    508       Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
    509     // This is a vector load that legalizes to a larger type than the vector
    510     // itself. Unless the corresponding extending load or truncating store is
    511     // legal, then this will scalarize.
    512     TargetLowering::LegalizeAction LA = TargetLowering::Expand;
    513     EVT MemVT = getTLI()->getValueType(Src, true);
    514     if (MemVT.isSimple() && MemVT != MVT::Other) {
    515       if (Opcode == Instruction::Store)
    516         LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
    517       else
    518         LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
    519     }
    520 
    521     if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
    522       // This is a vector load/store for some illegal type that is scalarized.
    523       // We must account for the cost of building or decomposing the vector.
    524       Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
    525                                             Opcode == Instruction::Store);
    526     }
    527   }
    528 
    529   return Cost;
    530 }
    531 
    532 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
    533                                          ArrayRef<Type *> Tys) const {
    534   unsigned ISD = 0;
    535   switch (IID) {
    536   default: {
    537     // Assume that we need to scalarize this intrinsic.
    538     unsigned ScalarizationCost = 0;
    539     unsigned ScalarCalls = 1;
    540     if (RetTy->isVectorTy()) {
    541       ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
    542       ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
    543     }
    544     for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
    545       if (Tys[i]->isVectorTy()) {
    546         ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
    547         ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
    548       }
    549     }
    550 
    551     return ScalarCalls + ScalarizationCost;
    552   }
    553   // Look for intrinsics that can be lowered directly or turned into a scalar
    554   // intrinsic call.
    555   case Intrinsic::sqrt:    ISD = ISD::FSQRT;  break;
    556   case Intrinsic::sin:     ISD = ISD::FSIN;   break;
    557   case Intrinsic::cos:     ISD = ISD::FCOS;   break;
    558   case Intrinsic::exp:     ISD = ISD::FEXP;   break;
    559   case Intrinsic::exp2:    ISD = ISD::FEXP2;  break;
    560   case Intrinsic::log:     ISD = ISD::FLOG;   break;
    561   case Intrinsic::log10:   ISD = ISD::FLOG10; break;
    562   case Intrinsic::log2:    ISD = ISD::FLOG2;  break;
    563   case Intrinsic::fabs:    ISD = ISD::FABS;   break;
    564   case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
    565   case Intrinsic::floor:   ISD = ISD::FFLOOR; break;
    566   case Intrinsic::ceil:    ISD = ISD::FCEIL;  break;
    567   case Intrinsic::trunc:   ISD = ISD::FTRUNC; break;
    568   case Intrinsic::nearbyint:
    569                            ISD = ISD::FNEARBYINT; break;
    570   case Intrinsic::rint:    ISD = ISD::FRINT;  break;
    571   case Intrinsic::round:   ISD = ISD::FROUND; break;
    572   case Intrinsic::pow:     ISD = ISD::FPOW;   break;
    573   case Intrinsic::fma:     ISD = ISD::FMA;    break;
    574   case Intrinsic::fmuladd: ISD = ISD::FMA;    break;
    575   case Intrinsic::lifetime_start:
    576   case Intrinsic::lifetime_end:
    577     return 0;
    578   }
    579 
    580   const TargetLoweringBase *TLI = getTLI();
    581   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
    582 
    583   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
    584     // The operation is legal. Assume it costs 1.
    585     // If the type is split to multiple registers, assume that thre is some
    586     // overhead to this.
    587     // TODO: Once we have extract/insert subvector cost we need to use them.
    588     if (LT.first > 1)
    589       return LT.first * 2;
    590     return LT.first * 1;
    591   }
    592 
    593   if (!TLI->isOperationExpand(ISD, LT.second)) {
    594     // If the operation is custom lowered then assume
    595     // thare the code is twice as expensive.
    596     return LT.first * 2;
    597   }
    598 
    599   // If we can't lower fmuladd into an FMA estimate the cost as a floating
    600   // point mul followed by an add.
    601   if (IID == Intrinsic::fmuladd)
    602     return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
    603            TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
    604 
    605   // Else, assume that we need to scalarize this intrinsic. For math builtins
    606   // this will emit a costly libcall, adding call overhead and spills. Make it
    607   // very expensive.
    608   if (RetTy->isVectorTy()) {
    609     unsigned Num = RetTy->getVectorNumElements();
    610     unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
    611                                                   Tys);
    612     return 10 * Cost * Num;
    613   }
    614 
    615   // This is going to be turned into a library call, make it expensive.
    616   return 10;
    617 }
    618 
    619 unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
    620   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
    621   return LT.first;
    622 }
    623 
    624 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
    625   return 0;
    626 }
    627 
    628 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
    629                                     bool IsPairwise) const {
    630   assert(Ty->isVectorTy() && "Expect a vector type");
    631   unsigned NumVecElts = Ty->getVectorNumElements();
    632   unsigned NumReduxLevels = Log2_32(NumVecElts);
    633   unsigned ArithCost = NumReduxLevels *
    634     TopTTI->getArithmeticInstrCost(Opcode, Ty);
    635   // Assume the pairwise shuffles add a cost.
    636   unsigned ShuffleCost =
    637       NumReduxLevels * (IsPairwise + 1) *
    638       TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
    639   return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
    640 }
    641