1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 11 // srem, urem, frem. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombine.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 25 /// simplifyValueKnownNonZero - The specific integer value is used in a context 26 /// where it is known to be non-zero. If this allows us to simplify the 27 /// computation, do so and return the new operand, otherwise return null. 28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { 29 // If V has multiple uses, then we would have to do more analysis to determine 30 // if this is safe. For example, the use could be in dynamically unreached 31 // code. 32 if (!V->hasOneUse()) return nullptr; 33 34 bool MadeChange = false; 35 36 // ((1 << A) >>u B) --> (1 << (A-B)) 37 // Because V cannot be zero, we know that B is less than A. 38 Value *A = nullptr, *B = nullptr, *PowerOf2 = nullptr; 39 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), 40 m_Value(B))) && 41 // The "1" can be any value known to be a power of 2. 42 isKnownToBeAPowerOfTwo(PowerOf2)) { 43 A = IC.Builder->CreateSub(A, B); 44 return IC.Builder->CreateShl(PowerOf2, A); 45 } 46 47 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 48 // inexact. Similarly for <<. 49 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) 50 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) { 51 // We know that this is an exact/nuw shift and that the input is a 52 // non-zero context as well. 53 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { 54 I->setOperand(0, V2); 55 MadeChange = true; 56 } 57 58 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 59 I->setIsExact(); 60 MadeChange = true; 61 } 62 63 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 64 I->setHasNoUnsignedWrap(); 65 MadeChange = true; 66 } 67 } 68 69 // TODO: Lots more we could do here: 70 // If V is a phi node, we can call this on each of its operands. 71 // "select cond, X, 0" can simplify to "X". 72 73 return MadeChange ? V : nullptr; 74 } 75 76 77 /// MultiplyOverflows - True if the multiply can not be expressed in an int 78 /// this size. 79 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { 80 uint32_t W = C1->getBitWidth(); 81 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); 82 if (sign) { 83 LHSExt = LHSExt.sext(W * 2); 84 RHSExt = RHSExt.sext(W * 2); 85 } else { 86 LHSExt = LHSExt.zext(W * 2); 87 RHSExt = RHSExt.zext(W * 2); 88 } 89 90 APInt MulExt = LHSExt * RHSExt; 91 92 if (!sign) 93 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); 94 95 APInt Min = APInt::getSignedMinValue(W).sext(W * 2); 96 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); 97 return MulExt.slt(Min) || MulExt.sgt(Max); 98 } 99 100 /// \brief A helper routine of InstCombiner::visitMul(). 101 /// 102 /// If C is a vector of known powers of 2, then this function returns 103 /// a new vector obtained from C replacing each element with its logBase2. 104 /// Return a null pointer otherwise. 105 static Constant *getLogBase2Vector(ConstantDataVector *CV) { 106 const APInt *IVal; 107 SmallVector<Constant *, 4> Elts; 108 109 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 110 Constant *Elt = CV->getElementAsConstant(I); 111 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 112 return nullptr; 113 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2())); 114 } 115 116 return ConstantVector::get(Elts); 117 } 118 119 Instruction *InstCombiner::visitMul(BinaryOperator &I) { 120 bool Changed = SimplifyAssociativeOrCommutative(I); 121 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 122 123 if (Value *V = SimplifyVectorOp(I)) 124 return ReplaceInstUsesWith(I, V); 125 126 if (Value *V = SimplifyMulInst(Op0, Op1, DL)) 127 return ReplaceInstUsesWith(I, V); 128 129 if (Value *V = SimplifyUsingDistributiveLaws(I)) 130 return ReplaceInstUsesWith(I, V); 131 132 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X 133 return BinaryOperator::CreateNeg(Op0, I.getName()); 134 135 // Also allow combining multiply instructions on vectors. 136 { 137 Value *NewOp; 138 Constant *C1, *C2; 139 const APInt *IVal; 140 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 141 m_Constant(C1))) && 142 match(C1, m_APInt(IVal))) 143 // ((X << C1)*C2) == (X * (C2 << C1)) 144 return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2)); 145 146 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 147 Constant *NewCst = nullptr; 148 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2()) 149 // Replace X*(2^C) with X << C, where C is either a scalar or a splat. 150 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2()); 151 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1)) 152 // Replace X*(2^C) with X << C, where C is a vector of known 153 // constant powers of 2. 154 NewCst = getLogBase2Vector(CV); 155 156 if (NewCst) { 157 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 158 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); 159 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); 160 return Shl; 161 } 162 } 163 } 164 165 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 166 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n 167 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n 168 // The "* (2**n)" thus becomes a potential shifting opportunity. 169 { 170 const APInt & Val = CI->getValue(); 171 const APInt &PosVal = Val.abs(); 172 if (Val.isNegative() && PosVal.isPowerOf2()) { 173 Value *X = nullptr, *Y = nullptr; 174 if (Op0->hasOneUse()) { 175 ConstantInt *C1; 176 Value *Sub = nullptr; 177 if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) 178 Sub = Builder->CreateSub(X, Y, "suba"); 179 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) 180 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); 181 if (Sub) 182 return 183 BinaryOperator::CreateMul(Sub, 184 ConstantInt::get(Y->getType(), PosVal)); 185 } 186 } 187 } 188 } 189 190 // Simplify mul instructions with a constant RHS. 191 if (isa<Constant>(Op1)) { 192 // Try to fold constant mul into select arguments. 193 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 194 if (Instruction *R = FoldOpIntoSelect(I, SI)) 195 return R; 196 197 if (isa<PHINode>(Op0)) 198 if (Instruction *NV = FoldOpIntoPhi(I)) 199 return NV; 200 201 // Canonicalize (X+C1)*CI -> X*CI+C1*CI. 202 { 203 Value *X; 204 Constant *C1; 205 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { 206 Value *Mul = Builder->CreateMul(C1, Op1); 207 // Only go forward with the transform if C1*CI simplifies to a tidier 208 // constant. 209 if (!match(Mul, m_Mul(m_Value(), m_Value()))) 210 return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul); 211 } 212 } 213 } 214 215 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y 216 if (Value *Op1v = dyn_castNegVal(Op1)) 217 return BinaryOperator::CreateMul(Op0v, Op1v); 218 219 // (X / Y) * Y = X - (X % Y) 220 // (X / Y) * -Y = (X % Y) - X 221 { 222 Value *Op1C = Op1; 223 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); 224 if (!BO || 225 (BO->getOpcode() != Instruction::UDiv && 226 BO->getOpcode() != Instruction::SDiv)) { 227 Op1C = Op0; 228 BO = dyn_cast<BinaryOperator>(Op1); 229 } 230 Value *Neg = dyn_castNegVal(Op1C); 231 if (BO && BO->hasOneUse() && 232 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && 233 (BO->getOpcode() == Instruction::UDiv || 234 BO->getOpcode() == Instruction::SDiv)) { 235 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); 236 237 // If the division is exact, X % Y is zero, so we end up with X or -X. 238 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) 239 if (SDiv->isExact()) { 240 if (Op1BO == Op1C) 241 return ReplaceInstUsesWith(I, Op0BO); 242 return BinaryOperator::CreateNeg(Op0BO); 243 } 244 245 Value *Rem; 246 if (BO->getOpcode() == Instruction::UDiv) 247 Rem = Builder->CreateURem(Op0BO, Op1BO); 248 else 249 Rem = Builder->CreateSRem(Op0BO, Op1BO); 250 Rem->takeName(BO); 251 252 if (Op1BO == Op1C) 253 return BinaryOperator::CreateSub(Op0BO, Rem); 254 return BinaryOperator::CreateSub(Rem, Op0BO); 255 } 256 } 257 258 /// i1 mul -> i1 and. 259 if (I.getType()->getScalarType()->isIntegerTy(1)) 260 return BinaryOperator::CreateAnd(Op0, Op1); 261 262 // X*(1 << Y) --> X << Y 263 // (1 << Y)*X --> X << Y 264 { 265 Value *Y; 266 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) 267 return BinaryOperator::CreateShl(Op1, Y); 268 if (match(Op1, m_Shl(m_One(), m_Value(Y)))) 269 return BinaryOperator::CreateShl(Op0, Y); 270 } 271 272 // If one of the operands of the multiply is a cast from a boolean value, then 273 // we know the bool is either zero or one, so this is a 'masking' multiply. 274 // X * Y (where Y is 0 or 1) -> X & (0-Y) 275 if (!I.getType()->isVectorTy()) { 276 // -2 is "-1 << 1" so it is all bits set except the low one. 277 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); 278 279 Value *BoolCast = nullptr, *OtherOp = nullptr; 280 if (MaskedValueIsZero(Op0, Negative2)) 281 BoolCast = Op0, OtherOp = Op1; 282 else if (MaskedValueIsZero(Op1, Negative2)) 283 BoolCast = Op1, OtherOp = Op0; 284 285 if (BoolCast) { 286 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), 287 BoolCast); 288 return BinaryOperator::CreateAnd(V, OtherOp); 289 } 290 } 291 292 return Changed ? &I : nullptr; 293 } 294 295 // 296 // Detect pattern: 297 // 298 // log2(Y*0.5) 299 // 300 // And check for corresponding fast math flags 301 // 302 303 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { 304 305 if (!Op->hasOneUse()) 306 return; 307 308 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op); 309 if (!II) 310 return; 311 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra()) 312 return; 313 Log2 = II; 314 315 Value *OpLog2Of = II->getArgOperand(0); 316 if (!OpLog2Of->hasOneUse()) 317 return; 318 319 Instruction *I = dyn_cast<Instruction>(OpLog2Of); 320 if (!I) 321 return; 322 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 323 return; 324 325 if (match(I->getOperand(0), m_SpecificFP(0.5))) 326 Y = I->getOperand(1); 327 else if (match(I->getOperand(1), m_SpecificFP(0.5))) 328 Y = I->getOperand(0); 329 } 330 331 static bool isFiniteNonZeroFp(Constant *C) { 332 if (C->getType()->isVectorTy()) { 333 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; 334 ++I) { 335 ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); 336 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 337 return false; 338 } 339 return true; 340 } 341 342 return isa<ConstantFP>(C) && 343 cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero(); 344 } 345 346 static bool isNormalFp(Constant *C) { 347 if (C->getType()->isVectorTy()) { 348 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; 349 ++I) { 350 ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); 351 if (!CFP || !CFP->getValueAPF().isNormal()) 352 return false; 353 } 354 return true; 355 } 356 357 return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal(); 358 } 359 360 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns 361 /// true iff the given value is FMul or FDiv with one and only one operand 362 /// being a normal constant (i.e. not Zero/NaN/Infinity). 363 static bool isFMulOrFDivWithConstant(Value *V) { 364 Instruction *I = dyn_cast<Instruction>(V); 365 if (!I || (I->getOpcode() != Instruction::FMul && 366 I->getOpcode() != Instruction::FDiv)) 367 return false; 368 369 Constant *C0 = dyn_cast<Constant>(I->getOperand(0)); 370 Constant *C1 = dyn_cast<Constant>(I->getOperand(1)); 371 372 if (C0 && C1) 373 return false; 374 375 return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1)); 376 } 377 378 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). 379 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand 380 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). 381 /// This function is to simplify "FMulOrDiv * C" and returns the 382 /// resulting expression. Note that this function could return NULL in 383 /// case the constants cannot be folded into a normal floating-point. 384 /// 385 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C, 386 Instruction *InsertBefore) { 387 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); 388 389 Value *Opnd0 = FMulOrDiv->getOperand(0); 390 Value *Opnd1 = FMulOrDiv->getOperand(1); 391 392 Constant *C0 = dyn_cast<Constant>(Opnd0); 393 Constant *C1 = dyn_cast<Constant>(Opnd1); 394 395 BinaryOperator *R = nullptr; 396 397 // (X * C0) * C => X * (C0*C) 398 if (FMulOrDiv->getOpcode() == Instruction::FMul) { 399 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); 400 if (isNormalFp(F)) 401 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); 402 } else { 403 if (C0) { 404 // (C0 / X) * C => (C0 * C) / X 405 if (FMulOrDiv->hasOneUse()) { 406 // It would otherwise introduce another div. 407 Constant *F = ConstantExpr::getFMul(C0, C); 408 if (isNormalFp(F)) 409 R = BinaryOperator::CreateFDiv(F, Opnd1); 410 } 411 } else { 412 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal 413 Constant *F = ConstantExpr::getFDiv(C, C1); 414 if (isNormalFp(F)) { 415 R = BinaryOperator::CreateFMul(Opnd0, F); 416 } else { 417 // (X / C1) * C => X / (C1/C) 418 Constant *F = ConstantExpr::getFDiv(C1, C); 419 if (isNormalFp(F)) 420 R = BinaryOperator::CreateFDiv(Opnd0, F); 421 } 422 } 423 } 424 425 if (R) { 426 R->setHasUnsafeAlgebra(true); 427 InsertNewInstWith(R, *InsertBefore); 428 } 429 430 return R; 431 } 432 433 Instruction *InstCombiner::visitFMul(BinaryOperator &I) { 434 bool Changed = SimplifyAssociativeOrCommutative(I); 435 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 436 437 if (Value *V = SimplifyVectorOp(I)) 438 return ReplaceInstUsesWith(I, V); 439 440 if (isa<Constant>(Op0)) 441 std::swap(Op0, Op1); 442 443 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL)) 444 return ReplaceInstUsesWith(I, V); 445 446 bool AllowReassociate = I.hasUnsafeAlgebra(); 447 448 // Simplify mul instructions with a constant RHS. 449 if (isa<Constant>(Op1)) { 450 // Try to fold constant mul into select arguments. 451 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 452 if (Instruction *R = FoldOpIntoSelect(I, SI)) 453 return R; 454 455 if (isa<PHINode>(Op0)) 456 if (Instruction *NV = FoldOpIntoPhi(I)) 457 return NV; 458 459 // (fmul X, -1.0) --> (fsub -0.0, X) 460 if (match(Op1, m_SpecificFP(-1.0))) { 461 Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType()); 462 Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0); 463 RI->copyFastMathFlags(&I); 464 return RI; 465 } 466 467 Constant *C = cast<Constant>(Op1); 468 if (AllowReassociate && isFiniteNonZeroFp(C)) { 469 // Let MDC denote an expression in one of these forms: 470 // X * C, C/X, X/C, where C is a constant. 471 // 472 // Try to simplify "MDC * Constant" 473 if (isFMulOrFDivWithConstant(Op0)) 474 if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I)) 475 return ReplaceInstUsesWith(I, V); 476 477 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) 478 Instruction *FAddSub = dyn_cast<Instruction>(Op0); 479 if (FAddSub && 480 (FAddSub->getOpcode() == Instruction::FAdd || 481 FAddSub->getOpcode() == Instruction::FSub)) { 482 Value *Opnd0 = FAddSub->getOperand(0); 483 Value *Opnd1 = FAddSub->getOperand(1); 484 Constant *C0 = dyn_cast<Constant>(Opnd0); 485 Constant *C1 = dyn_cast<Constant>(Opnd1); 486 bool Swap = false; 487 if (C0) { 488 std::swap(C0, C1); 489 std::swap(Opnd0, Opnd1); 490 Swap = true; 491 } 492 493 if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) { 494 Value *M1 = ConstantExpr::getFMul(C1, C); 495 Value *M0 = isNormalFp(cast<Constant>(M1)) ? 496 foldFMulConst(cast<Instruction>(Opnd0), C, &I) : 497 nullptr; 498 if (M0 && M1) { 499 if (Swap && FAddSub->getOpcode() == Instruction::FSub) 500 std::swap(M0, M1); 501 502 Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd) 503 ? BinaryOperator::CreateFAdd(M0, M1) 504 : BinaryOperator::CreateFSub(M0, M1); 505 RI->copyFastMathFlags(&I); 506 return RI; 507 } 508 } 509 } 510 } 511 } 512 513 514 // Under unsafe algebra do: 515 // X * log2(0.5*Y) = X*log2(Y) - X 516 if (I.hasUnsafeAlgebra()) { 517 Value *OpX = nullptr; 518 Value *OpY = nullptr; 519 IntrinsicInst *Log2; 520 detectLog2OfHalf(Op0, OpY, Log2); 521 if (OpY) { 522 OpX = Op1; 523 } else { 524 detectLog2OfHalf(Op1, OpY, Log2); 525 if (OpY) { 526 OpX = Op0; 527 } 528 } 529 // if pattern detected emit alternate sequence 530 if (OpX && OpY) { 531 BuilderTy::FastMathFlagGuard Guard(*Builder); 532 Builder->SetFastMathFlags(Log2->getFastMathFlags()); 533 Log2->setArgOperand(0, OpY); 534 Value *FMulVal = Builder->CreateFMul(OpX, Log2); 535 Value *FSub = Builder->CreateFSub(FMulVal, OpX); 536 FSub->takeName(&I); 537 return ReplaceInstUsesWith(I, FSub); 538 } 539 } 540 541 // Handle symmetric situation in a 2-iteration loop 542 Value *Opnd0 = Op0; 543 Value *Opnd1 = Op1; 544 for (int i = 0; i < 2; i++) { 545 bool IgnoreZeroSign = I.hasNoSignedZeros(); 546 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { 547 BuilderTy::FastMathFlagGuard Guard(*Builder); 548 Builder->SetFastMathFlags(I.getFastMathFlags()); 549 550 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); 551 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); 552 553 // -X * -Y => X*Y 554 if (N1) { 555 Value *FMul = Builder->CreateFMul(N0, N1); 556 FMul->takeName(&I); 557 return ReplaceInstUsesWith(I, FMul); 558 } 559 560 if (Opnd0->hasOneUse()) { 561 // -X * Y => -(X*Y) (Promote negation as high as possible) 562 Value *T = Builder->CreateFMul(N0, Opnd1); 563 Value *Neg = Builder->CreateFNeg(T); 564 Neg->takeName(&I); 565 return ReplaceInstUsesWith(I, Neg); 566 } 567 } 568 569 // (X*Y) * X => (X*X) * Y where Y != X 570 // The purpose is two-fold: 571 // 1) to form a power expression (of X). 572 // 2) potentially shorten the critical path: After transformation, the 573 // latency of the instruction Y is amortized by the expression of X*X, 574 // and therefore Y is in a "less critical" position compared to what it 575 // was before the transformation. 576 // 577 if (AllowReassociate) { 578 Value *Opnd0_0, *Opnd0_1; 579 if (Opnd0->hasOneUse() && 580 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { 581 Value *Y = nullptr; 582 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) 583 Y = Opnd0_1; 584 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) 585 Y = Opnd0_0; 586 587 if (Y) { 588 BuilderTy::FastMathFlagGuard Guard(*Builder); 589 Builder->SetFastMathFlags(I.getFastMathFlags()); 590 Value *T = Builder->CreateFMul(Opnd1, Opnd1); 591 592 Value *R = Builder->CreateFMul(T, Y); 593 R->takeName(&I); 594 return ReplaceInstUsesWith(I, R); 595 } 596 } 597 } 598 599 // B * (uitofp i1 C) -> select C, B, 0 600 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) { 601 Value *LHS = Op0, *RHS = Op1; 602 Value *B, *C; 603 if (!match(RHS, m_UIToFP(m_Value(C)))) 604 std::swap(LHS, RHS); 605 606 if (match(RHS, m_UIToFP(m_Value(C))) && 607 C->getType()->getScalarType()->isIntegerTy(1)) { 608 B = LHS; 609 Value *Zero = ConstantFP::getNegativeZero(B->getType()); 610 return SelectInst::Create(C, B, Zero); 611 } 612 } 613 614 // A * (1 - uitofp i1 C) -> select C, 0, A 615 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) { 616 Value *LHS = Op0, *RHS = Op1; 617 Value *A, *C; 618 if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C))))) 619 std::swap(LHS, RHS); 620 621 if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) && 622 C->getType()->getScalarType()->isIntegerTy(1)) { 623 A = LHS; 624 Value *Zero = ConstantFP::getNegativeZero(A->getType()); 625 return SelectInst::Create(C, Zero, A); 626 } 627 } 628 629 if (!isa<Constant>(Op1)) 630 std::swap(Opnd0, Opnd1); 631 else 632 break; 633 } 634 635 return Changed ? &I : nullptr; 636 } 637 638 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select 639 /// instruction. 640 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { 641 SelectInst *SI = cast<SelectInst>(I.getOperand(1)); 642 643 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 644 int NonNullOperand = -1; 645 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) 646 if (ST->isNullValue()) 647 NonNullOperand = 2; 648 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 649 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) 650 if (ST->isNullValue()) 651 NonNullOperand = 1; 652 653 if (NonNullOperand == -1) 654 return false; 655 656 Value *SelectCond = SI->getOperand(0); 657 658 // Change the div/rem to use 'Y' instead of the select. 659 I.setOperand(1, SI->getOperand(NonNullOperand)); 660 661 // Okay, we know we replace the operand of the div/rem with 'Y' with no 662 // problem. However, the select, or the condition of the select may have 663 // multiple uses. Based on our knowledge that the operand must be non-zero, 664 // propagate the known value for the select into other uses of it, and 665 // propagate a known value of the condition into its other users. 666 667 // If the select and condition only have a single use, don't bother with this, 668 // early exit. 669 if (SI->use_empty() && SelectCond->hasOneUse()) 670 return true; 671 672 // Scan the current block backward, looking for other uses of SI. 673 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); 674 675 while (BBI != BBFront) { 676 --BBI; 677 // If we found a call to a function, we can't assume it will return, so 678 // information from below it cannot be propagated above it. 679 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) 680 break; 681 682 // Replace uses of the select or its condition with the known values. 683 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); 684 I != E; ++I) { 685 if (*I == SI) { 686 *I = SI->getOperand(NonNullOperand); 687 Worklist.Add(BBI); 688 } else if (*I == SelectCond) { 689 *I = Builder->getInt1(NonNullOperand == 1); 690 Worklist.Add(BBI); 691 } 692 } 693 694 // If we past the instruction, quit looking for it. 695 if (&*BBI == SI) 696 SI = nullptr; 697 if (&*BBI == SelectCond) 698 SelectCond = nullptr; 699 700 // If we ran out of things to eliminate, break out of the loop. 701 if (!SelectCond && !SI) 702 break; 703 704 } 705 return true; 706 } 707 708 709 /// This function implements the transforms common to both integer division 710 /// instructions (udiv and sdiv). It is called by the visitors to those integer 711 /// division instructions. 712 /// @brief Common integer divide transforms 713 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { 714 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 715 716 // The RHS is known non-zero. 717 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { 718 I.setOperand(1, V); 719 return &I; 720 } 721 722 // Handle cases involving: [su]div X, (select Cond, Y, Z) 723 // This does not apply for fdiv. 724 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) 725 return &I; 726 727 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 728 // (X / C1) / C2 -> X / (C1*C2) 729 if (Instruction *LHS = dyn_cast<Instruction>(Op0)) 730 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) 731 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { 732 if (MultiplyOverflows(RHS, LHSRHS, 733 I.getOpcode() == Instruction::SDiv)) 734 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); 735 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), 736 ConstantExpr::getMul(RHS, LHSRHS)); 737 } 738 739 if (!RHS->isZero()) { // avoid X udiv 0 740 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 741 if (Instruction *R = FoldOpIntoSelect(I, SI)) 742 return R; 743 if (isa<PHINode>(Op0)) 744 if (Instruction *NV = FoldOpIntoPhi(I)) 745 return NV; 746 } 747 } 748 749 if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) { 750 if (One->isOne() && !I.getType()->isIntegerTy(1)) { 751 bool isSigned = I.getOpcode() == Instruction::SDiv; 752 if (isSigned) { 753 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the 754 // result is one, if Op1 is -1 then the result is minus one, otherwise 755 // it's zero. 756 Value *Inc = Builder->CreateAdd(Op1, One); 757 Value *Cmp = Builder->CreateICmpULT( 758 Inc, ConstantInt::get(I.getType(), 3)); 759 return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0)); 760 } else { 761 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 762 // result is one, otherwise it's zero. 763 return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType()); 764 } 765 } 766 } 767 768 // See if we can fold away this div instruction. 769 if (SimplifyDemandedInstructionBits(I)) 770 return &I; 771 772 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 773 Value *X = nullptr, *Z = nullptr; 774 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 775 bool isSigned = I.getOpcode() == Instruction::SDiv; 776 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 777 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 778 return BinaryOperator::Create(I.getOpcode(), X, Op1); 779 } 780 781 return nullptr; 782 } 783 784 /// dyn_castZExtVal - Checks if V is a zext or constant that can 785 /// be truncated to Ty without losing bits. 786 static Value *dyn_castZExtVal(Value *V, Type *Ty) { 787 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { 788 if (Z->getSrcTy() == Ty) 789 return Z->getOperand(0); 790 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { 791 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) 792 return ConstantExpr::getTrunc(C, Ty); 793 } 794 return nullptr; 795 } 796 797 namespace { 798 const unsigned MaxDepth = 6; 799 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1, 800 const BinaryOperator &I, 801 InstCombiner &IC); 802 803 /// \brief Used to maintain state for visitUDivOperand(). 804 struct UDivFoldAction { 805 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this 806 ///< operand. This can be zero if this action 807 ///< joins two actions together. 808 809 Value *OperandToFold; ///< Which operand to fold. 810 union { 811 Instruction *FoldResult; ///< The instruction returned when FoldAction is 812 ///< invoked. 813 814 size_t SelectLHSIdx; ///< Stores the LHS action index if this action 815 ///< joins two actions together. 816 }; 817 818 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) 819 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} 820 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) 821 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} 822 }; 823 } 824 825 // X udiv 2^C -> X >> C 826 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, 827 const BinaryOperator &I, InstCombiner &IC) { 828 const APInt &C = cast<Constant>(Op1)->getUniqueInteger(); 829 BinaryOperator *LShr = BinaryOperator::CreateLShr( 830 Op0, ConstantInt::get(Op0->getType(), C.logBase2())); 831 if (I.isExact()) LShr->setIsExact(); 832 return LShr; 833 } 834 835 // X udiv C, where C >= signbit 836 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1, 837 const BinaryOperator &I, InstCombiner &IC) { 838 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1)); 839 840 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()), 841 ConstantInt::get(I.getType(), 1)); 842 } 843 844 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 845 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, 846 InstCombiner &IC) { 847 Instruction *ShiftLeft = cast<Instruction>(Op1); 848 if (isa<ZExtInst>(ShiftLeft)) 849 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0)); 850 851 const APInt &CI = 852 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger(); 853 Value *N = ShiftLeft->getOperand(1); 854 if (CI != 1) 855 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2())); 856 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) 857 N = IC.Builder->CreateZExt(N, Z->getDestTy()); 858 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); 859 if (I.isExact()) LShr->setIsExact(); 860 return LShr; 861 } 862 863 // \brief Recursively visits the possible right hand operands of a udiv 864 // instruction, seeing through select instructions, to determine if we can 865 // replace the udiv with something simpler. If we find that an operand is not 866 // able to simplify the udiv, we abort the entire transformation. 867 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, 868 SmallVectorImpl<UDivFoldAction> &Actions, 869 unsigned Depth = 0) { 870 // Check to see if this is an unsigned division with an exact power of 2, 871 // if so, convert to a right shift. 872 if (match(Op1, m_Power2())) { 873 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); 874 return Actions.size(); 875 } 876 877 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) 878 // X udiv C, where C >= signbit 879 if (C->getValue().isNegative()) { 880 Actions.push_back(UDivFoldAction(foldUDivNegCst, C)); 881 return Actions.size(); 882 } 883 884 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 885 if (match(Op1, m_Shl(m_Power2(), m_Value())) || 886 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { 887 Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); 888 return Actions.size(); 889 } 890 891 // The remaining tests are all recursive, so bail out if we hit the limit. 892 if (Depth++ == MaxDepth) 893 return 0; 894 895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 896 if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions)) 897 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) { 898 Actions.push_back(UDivFoldAction((FoldUDivOperandCb)nullptr, Op1, 899 LHSIdx-1)); 900 return Actions.size(); 901 } 902 903 return 0; 904 } 905 906 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { 907 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 908 909 if (Value *V = SimplifyVectorOp(I)) 910 return ReplaceInstUsesWith(I, V); 911 912 if (Value *V = SimplifyUDivInst(Op0, Op1, DL)) 913 return ReplaceInstUsesWith(I, V); 914 915 // Handle the integer div common cases 916 if (Instruction *Common = commonIDivTransforms(I)) 917 return Common; 918 919 // (x lshr C1) udiv C2 --> x udiv (C2 << C1) 920 if (Constant *C2 = dyn_cast<Constant>(Op1)) { 921 Value *X; 922 Constant *C1; 923 if (match(Op0, m_LShr(m_Value(X), m_Constant(C1)))) 924 return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1)); 925 } 926 927 // (zext A) udiv (zext B) --> zext (A udiv B) 928 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) 929 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) 930 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", 931 I.isExact()), 932 I.getType()); 933 934 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) 935 SmallVector<UDivFoldAction, 6> UDivActions; 936 if (visitUDivOperand(Op0, Op1, I, UDivActions)) 937 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { 938 FoldUDivOperandCb Action = UDivActions[i].FoldAction; 939 Value *ActionOp1 = UDivActions[i].OperandToFold; 940 Instruction *Inst; 941 if (Action) 942 Inst = Action(Op0, ActionOp1, I, *this); 943 else { 944 // This action joins two actions together. The RHS of this action is 945 // simply the last action we processed, we saved the LHS action index in 946 // the joining action. 947 size_t SelectRHSIdx = i - 1; 948 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; 949 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; 950 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; 951 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), 952 SelectLHS, SelectRHS); 953 } 954 955 // If this is the last action to process, return it to the InstCombiner. 956 // Otherwise, we insert it before the UDiv and record it so that we may 957 // use it as part of a joining action (i.e., a SelectInst). 958 if (e - i != 1) { 959 Inst->insertBefore(&I); 960 UDivActions[i].FoldResult = Inst; 961 } else 962 return Inst; 963 } 964 965 return nullptr; 966 } 967 968 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { 969 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 970 971 if (Value *V = SimplifyVectorOp(I)) 972 return ReplaceInstUsesWith(I, V); 973 974 if (Value *V = SimplifySDivInst(Op0, Op1, DL)) 975 return ReplaceInstUsesWith(I, V); 976 977 // Handle the integer div common cases 978 if (Instruction *Common = commonIDivTransforms(I)) 979 return Common; 980 981 // sdiv X, -1 == -X 982 if (match(Op1, m_AllOnes())) 983 return BinaryOperator::CreateNeg(Op0); 984 985 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 986 // sdiv X, C --> ashr exact X, log2(C) 987 if (I.isExact() && RHS->getValue().isNonNegative() && 988 RHS->getValue().isPowerOf2()) { 989 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), 990 RHS->getValue().exactLogBase2()); 991 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); 992 } 993 } 994 995 if (Constant *RHS = dyn_cast<Constant>(Op1)) { 996 // X/INT_MIN -> X == INT_MIN 997 if (RHS->isMinSignedValue()) 998 return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType()); 999 1000 // -X/C --> X/-C provided the negation doesn't overflow. 1001 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) 1002 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) 1003 return BinaryOperator::CreateSDiv(Sub->getOperand(1), 1004 ConstantExpr::getNeg(RHS)); 1005 } 1006 1007 // If the sign bits of both operands are zero (i.e. we can prove they are 1008 // unsigned inputs), turn this into a udiv. 1009 if (I.getType()->isIntegerTy()) { 1010 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); 1011 if (MaskedValueIsZero(Op0, Mask)) { 1012 if (MaskedValueIsZero(Op1, Mask)) { 1013 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set 1014 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1015 } 1016 1017 if (match(Op1, m_Shl(m_Power2(), m_Value()))) { 1018 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1019 // Safe because the only negative value (1 << Y) can take on is 1020 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1021 // the sign bit set. 1022 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1023 } 1024 } 1025 } 1026 1027 return nullptr; 1028 } 1029 1030 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special 1031 /// FP value and: 1032 /// 1) 1/C is exact, or 1033 /// 2) reciprocal is allowed. 1034 /// If the conversion was successful, the simplified expression "X * 1/C" is 1035 /// returned; otherwise, NULL is returned. 1036 /// 1037 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, 1038 Constant *Divisor, 1039 bool AllowReciprocal) { 1040 if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors. 1041 return nullptr; 1042 1043 const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF(); 1044 APFloat Reciprocal(FpVal.getSemantics()); 1045 bool Cvt = FpVal.getExactInverse(&Reciprocal); 1046 1047 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) { 1048 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); 1049 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); 1050 Cvt = !Reciprocal.isDenormal(); 1051 } 1052 1053 if (!Cvt) 1054 return nullptr; 1055 1056 ConstantFP *R; 1057 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); 1058 return BinaryOperator::CreateFMul(Dividend, R); 1059 } 1060 1061 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { 1062 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1063 1064 if (Value *V = SimplifyVectorOp(I)) 1065 return ReplaceInstUsesWith(I, V); 1066 1067 if (Value *V = SimplifyFDivInst(Op0, Op1, DL)) 1068 return ReplaceInstUsesWith(I, V); 1069 1070 if (isa<Constant>(Op0)) 1071 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1072 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1073 return R; 1074 1075 bool AllowReassociate = I.hasUnsafeAlgebra(); 1076 bool AllowReciprocal = I.hasAllowReciprocal(); 1077 1078 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1079 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1080 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1081 return R; 1082 1083 if (AllowReassociate) { 1084 Constant *C1 = nullptr; 1085 Constant *C2 = Op1C; 1086 Value *X; 1087 Instruction *Res = nullptr; 1088 1089 if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) { 1090 // (X*C1)/C2 => X * (C1/C2) 1091 // 1092 Constant *C = ConstantExpr::getFDiv(C1, C2); 1093 if (isNormalFp(C)) 1094 Res = BinaryOperator::CreateFMul(X, C); 1095 } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 1096 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] 1097 // 1098 Constant *C = ConstantExpr::getFMul(C1, C2); 1099 if (isNormalFp(C)) { 1100 Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal); 1101 if (!Res) 1102 Res = BinaryOperator::CreateFDiv(X, C); 1103 } 1104 } 1105 1106 if (Res) { 1107 Res->setFastMathFlags(I.getFastMathFlags()); 1108 return Res; 1109 } 1110 } 1111 1112 // X / C => X * 1/C 1113 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) { 1114 T->copyFastMathFlags(&I); 1115 return T; 1116 } 1117 1118 return nullptr; 1119 } 1120 1121 if (AllowReassociate && isa<Constant>(Op0)) { 1122 Constant *C1 = cast<Constant>(Op0), *C2; 1123 Constant *Fold = nullptr; 1124 Value *X; 1125 bool CreateDiv = true; 1126 1127 // C1 / (X*C2) => (C1/C2) / X 1128 if (match(Op1, m_FMul(m_Value(X), m_Constant(C2)))) 1129 Fold = ConstantExpr::getFDiv(C1, C2); 1130 else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) { 1131 // C1 / (X/C2) => (C1*C2) / X 1132 Fold = ConstantExpr::getFMul(C1, C2); 1133 } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) { 1134 // C1 / (C2/X) => (C1/C2) * X 1135 Fold = ConstantExpr::getFDiv(C1, C2); 1136 CreateDiv = false; 1137 } 1138 1139 if (Fold && isNormalFp(Fold)) { 1140 Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X) 1141 : BinaryOperator::CreateFMul(X, Fold); 1142 R->setFastMathFlags(I.getFastMathFlags()); 1143 return R; 1144 } 1145 return nullptr; 1146 } 1147 1148 if (AllowReassociate) { 1149 Value *X, *Y; 1150 Value *NewInst = nullptr; 1151 Instruction *SimpR = nullptr; 1152 1153 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { 1154 // (X/Y) / Z => X / (Y*Z) 1155 // 1156 if (!isa<Constant>(Y) || !isa<Constant>(Op1)) { 1157 NewInst = Builder->CreateFMul(Y, Op1); 1158 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { 1159 FastMathFlags Flags = I.getFastMathFlags(); 1160 Flags &= cast<Instruction>(Op0)->getFastMathFlags(); 1161 RI->setFastMathFlags(Flags); 1162 } 1163 SimpR = BinaryOperator::CreateFDiv(X, NewInst); 1164 } 1165 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { 1166 // Z / (X/Y) => Z*Y / X 1167 // 1168 if (!isa<Constant>(Y) || !isa<Constant>(Op0)) { 1169 NewInst = Builder->CreateFMul(Op0, Y); 1170 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { 1171 FastMathFlags Flags = I.getFastMathFlags(); 1172 Flags &= cast<Instruction>(Op1)->getFastMathFlags(); 1173 RI->setFastMathFlags(Flags); 1174 } 1175 SimpR = BinaryOperator::CreateFDiv(NewInst, X); 1176 } 1177 } 1178 1179 if (NewInst) { 1180 if (Instruction *T = dyn_cast<Instruction>(NewInst)) 1181 T->setDebugLoc(I.getDebugLoc()); 1182 SimpR->setFastMathFlags(I.getFastMathFlags()); 1183 return SimpR; 1184 } 1185 } 1186 1187 return nullptr; 1188 } 1189 1190 /// This function implements the transforms common to both integer remainder 1191 /// instructions (urem and srem). It is called by the visitors to those integer 1192 /// remainder instructions. 1193 /// @brief Common integer remainder transforms 1194 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { 1195 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1196 1197 // The RHS is known non-zero. 1198 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { 1199 I.setOperand(1, V); 1200 return &I; 1201 } 1202 1203 // Handle cases involving: rem X, (select Cond, Y, Z) 1204 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) 1205 return &I; 1206 1207 if (isa<Constant>(Op1)) { 1208 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1209 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1210 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1211 return R; 1212 } else if (isa<PHINode>(Op0I)) { 1213 if (Instruction *NV = FoldOpIntoPhi(I)) 1214 return NV; 1215 } 1216 1217 // See if we can fold away this rem instruction. 1218 if (SimplifyDemandedInstructionBits(I)) 1219 return &I; 1220 } 1221 } 1222 1223 return nullptr; 1224 } 1225 1226 Instruction *InstCombiner::visitURem(BinaryOperator &I) { 1227 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1228 1229 if (Value *V = SimplifyVectorOp(I)) 1230 return ReplaceInstUsesWith(I, V); 1231 1232 if (Value *V = SimplifyURemInst(Op0, Op1, DL)) 1233 return ReplaceInstUsesWith(I, V); 1234 1235 if (Instruction *common = commonIRemTransforms(I)) 1236 return common; 1237 1238 // (zext A) urem (zext B) --> zext (A urem B) 1239 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) 1240 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) 1241 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), 1242 I.getType()); 1243 1244 // X urem Y -> X and Y-1, where Y is a power of 2, 1245 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) { 1246 Constant *N1 = Constant::getAllOnesValue(I.getType()); 1247 Value *Add = Builder->CreateAdd(Op1, N1); 1248 return BinaryOperator::CreateAnd(Op0, Add); 1249 } 1250 1251 // 1 urem X -> zext(X != 1) 1252 if (match(Op0, m_One())) { 1253 Value *Cmp = Builder->CreateICmpNE(Op1, Op0); 1254 Value *Ext = Builder->CreateZExt(Cmp, I.getType()); 1255 return ReplaceInstUsesWith(I, Ext); 1256 } 1257 1258 return nullptr; 1259 } 1260 1261 Instruction *InstCombiner::visitSRem(BinaryOperator &I) { 1262 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1263 1264 if (Value *V = SimplifyVectorOp(I)) 1265 return ReplaceInstUsesWith(I, V); 1266 1267 if (Value *V = SimplifySRemInst(Op0, Op1, DL)) 1268 return ReplaceInstUsesWith(I, V); 1269 1270 // Handle the integer rem common cases 1271 if (Instruction *Common = commonIRemTransforms(I)) 1272 return Common; 1273 1274 if (Value *RHSNeg = dyn_castNegVal(Op1)) 1275 if (!isa<Constant>(RHSNeg) || 1276 (isa<ConstantInt>(RHSNeg) && 1277 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { 1278 // X % -Y -> X % Y 1279 Worklist.AddValue(I.getOperand(1)); 1280 I.setOperand(1, RHSNeg); 1281 return &I; 1282 } 1283 1284 // If the sign bits of both operands are zero (i.e. we can prove they are 1285 // unsigned inputs), turn this into a urem. 1286 if (I.getType()->isIntegerTy()) { 1287 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); 1288 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { 1289 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 1290 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 1291 } 1292 } 1293 1294 // If it's a constant vector, flip any negative values positive. 1295 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 1296 Constant *C = cast<Constant>(Op1); 1297 unsigned VWidth = C->getType()->getVectorNumElements(); 1298 1299 bool hasNegative = false; 1300 bool hasMissing = false; 1301 for (unsigned i = 0; i != VWidth; ++i) { 1302 Constant *Elt = C->getAggregateElement(i); 1303 if (!Elt) { 1304 hasMissing = true; 1305 break; 1306 } 1307 1308 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 1309 if (RHS->isNegative()) 1310 hasNegative = true; 1311 } 1312 1313 if (hasNegative && !hasMissing) { 1314 SmallVector<Constant *, 16> Elts(VWidth); 1315 for (unsigned i = 0; i != VWidth; ++i) { 1316 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 1317 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 1318 if (RHS->isNegative()) 1319 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 1320 } 1321 } 1322 1323 Constant *NewRHSV = ConstantVector::get(Elts); 1324 if (NewRHSV != C) { // Don't loop on -MININT 1325 Worklist.AddValue(I.getOperand(1)); 1326 I.setOperand(1, NewRHSV); 1327 return &I; 1328 } 1329 } 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 Instruction *InstCombiner::visitFRem(BinaryOperator &I) { 1336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1337 1338 if (Value *V = SimplifyVectorOp(I)) 1339 return ReplaceInstUsesWith(I, V); 1340 1341 if (Value *V = SimplifyFRemInst(Op0, Op1, DL)) 1342 return ReplaceInstUsesWith(I, V); 1343 1344 // Handle cases involving: rem X, (select Cond, Y, Z) 1345 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) 1346 return &I; 1347 1348 return nullptr; 1349 } 1350