Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
     11 // srem, urem, frem.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombine.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 
     25 /// simplifyValueKnownNonZero - The specific integer value is used in a context
     26 /// where it is known to be non-zero.  If this allows us to simplify the
     27 /// computation, do so and return the new operand, otherwise return null.
     28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
     29   // If V has multiple uses, then we would have to do more analysis to determine
     30   // if this is safe.  For example, the use could be in dynamically unreached
     31   // code.
     32   if (!V->hasOneUse()) return nullptr;
     33 
     34   bool MadeChange = false;
     35 
     36   // ((1 << A) >>u B) --> (1 << (A-B))
     37   // Because V cannot be zero, we know that B is less than A.
     38   Value *A = nullptr, *B = nullptr, *PowerOf2 = nullptr;
     39   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
     40                       m_Value(B))) &&
     41       // The "1" can be any value known to be a power of 2.
     42       isKnownToBeAPowerOfTwo(PowerOf2)) {
     43     A = IC.Builder->CreateSub(A, B);
     44     return IC.Builder->CreateShl(PowerOf2, A);
     45   }
     46 
     47   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
     48   // inexact.  Similarly for <<.
     49   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
     50     if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
     51       // We know that this is an exact/nuw shift and that the input is a
     52       // non-zero context as well.
     53       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
     54         I->setOperand(0, V2);
     55         MadeChange = true;
     56       }
     57 
     58       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
     59         I->setIsExact();
     60         MadeChange = true;
     61       }
     62 
     63       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
     64         I->setHasNoUnsignedWrap();
     65         MadeChange = true;
     66       }
     67     }
     68 
     69   // TODO: Lots more we could do here:
     70   //    If V is a phi node, we can call this on each of its operands.
     71   //    "select cond, X, 0" can simplify to "X".
     72 
     73   return MadeChange ? V : nullptr;
     74 }
     75 
     76 
     77 /// MultiplyOverflows - True if the multiply can not be expressed in an int
     78 /// this size.
     79 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
     80   uint32_t W = C1->getBitWidth();
     81   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
     82   if (sign) {
     83     LHSExt = LHSExt.sext(W * 2);
     84     RHSExt = RHSExt.sext(W * 2);
     85   } else {
     86     LHSExt = LHSExt.zext(W * 2);
     87     RHSExt = RHSExt.zext(W * 2);
     88   }
     89 
     90   APInt MulExt = LHSExt * RHSExt;
     91 
     92   if (!sign)
     93     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
     94 
     95   APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
     96   APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
     97   return MulExt.slt(Min) || MulExt.sgt(Max);
     98 }
     99 
    100 /// \brief A helper routine of InstCombiner::visitMul().
    101 ///
    102 /// If C is a vector of known powers of 2, then this function returns
    103 /// a new vector obtained from C replacing each element with its logBase2.
    104 /// Return a null pointer otherwise.
    105 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
    106   const APInt *IVal;
    107   SmallVector<Constant *, 4> Elts;
    108 
    109   for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
    110     Constant *Elt = CV->getElementAsConstant(I);
    111     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
    112       return nullptr;
    113     Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
    114   }
    115 
    116   return ConstantVector::get(Elts);
    117 }
    118 
    119 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
    120   bool Changed = SimplifyAssociativeOrCommutative(I);
    121   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    122 
    123   if (Value *V = SimplifyVectorOp(I))
    124     return ReplaceInstUsesWith(I, V);
    125 
    126   if (Value *V = SimplifyMulInst(Op0, Op1, DL))
    127     return ReplaceInstUsesWith(I, V);
    128 
    129   if (Value *V = SimplifyUsingDistributiveLaws(I))
    130     return ReplaceInstUsesWith(I, V);
    131 
    132   if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
    133     return BinaryOperator::CreateNeg(Op0, I.getName());
    134 
    135   // Also allow combining multiply instructions on vectors.
    136   {
    137     Value *NewOp;
    138     Constant *C1, *C2;
    139     const APInt *IVal;
    140     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
    141                         m_Constant(C1))) &&
    142         match(C1, m_APInt(IVal)))
    143       // ((X << C1)*C2) == (X * (C2 << C1))
    144       return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
    145 
    146     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
    147       Constant *NewCst = nullptr;
    148       if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
    149         // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
    150         NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
    151       else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
    152         // Replace X*(2^C) with X << C, where C is a vector of known
    153         // constant powers of 2.
    154         NewCst = getLogBase2Vector(CV);
    155 
    156       if (NewCst) {
    157         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
    158         if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
    159         if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
    160         return Shl;
    161       }
    162     }
    163   }
    164 
    165   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    166     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
    167     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
    168     // The "* (2**n)" thus becomes a potential shifting opportunity.
    169     {
    170       const APInt &   Val = CI->getValue();
    171       const APInt &PosVal = Val.abs();
    172       if (Val.isNegative() && PosVal.isPowerOf2()) {
    173         Value *X = nullptr, *Y = nullptr;
    174         if (Op0->hasOneUse()) {
    175           ConstantInt *C1;
    176           Value *Sub = nullptr;
    177           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
    178             Sub = Builder->CreateSub(X, Y, "suba");
    179           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
    180             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
    181           if (Sub)
    182             return
    183               BinaryOperator::CreateMul(Sub,
    184                                         ConstantInt::get(Y->getType(), PosVal));
    185         }
    186       }
    187     }
    188   }
    189 
    190   // Simplify mul instructions with a constant RHS.
    191   if (isa<Constant>(Op1)) {
    192     // Try to fold constant mul into select arguments.
    193     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    194       if (Instruction *R = FoldOpIntoSelect(I, SI))
    195         return R;
    196 
    197     if (isa<PHINode>(Op0))
    198       if (Instruction *NV = FoldOpIntoPhi(I))
    199         return NV;
    200 
    201     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
    202     {
    203       Value *X;
    204       Constant *C1;
    205       if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
    206         Value *Mul = Builder->CreateMul(C1, Op1);
    207         // Only go forward with the transform if C1*CI simplifies to a tidier
    208         // constant.
    209         if (!match(Mul, m_Mul(m_Value(), m_Value())))
    210           return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
    211       }
    212     }
    213   }
    214 
    215   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    216     if (Value *Op1v = dyn_castNegVal(Op1))
    217       return BinaryOperator::CreateMul(Op0v, Op1v);
    218 
    219   // (X / Y) *  Y = X - (X % Y)
    220   // (X / Y) * -Y = (X % Y) - X
    221   {
    222     Value *Op1C = Op1;
    223     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
    224     if (!BO ||
    225         (BO->getOpcode() != Instruction::UDiv &&
    226          BO->getOpcode() != Instruction::SDiv)) {
    227       Op1C = Op0;
    228       BO = dyn_cast<BinaryOperator>(Op1);
    229     }
    230     Value *Neg = dyn_castNegVal(Op1C);
    231     if (BO && BO->hasOneUse() &&
    232         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
    233         (BO->getOpcode() == Instruction::UDiv ||
    234          BO->getOpcode() == Instruction::SDiv)) {
    235       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
    236 
    237       // If the division is exact, X % Y is zero, so we end up with X or -X.
    238       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
    239         if (SDiv->isExact()) {
    240           if (Op1BO == Op1C)
    241             return ReplaceInstUsesWith(I, Op0BO);
    242           return BinaryOperator::CreateNeg(Op0BO);
    243         }
    244 
    245       Value *Rem;
    246       if (BO->getOpcode() == Instruction::UDiv)
    247         Rem = Builder->CreateURem(Op0BO, Op1BO);
    248       else
    249         Rem = Builder->CreateSRem(Op0BO, Op1BO);
    250       Rem->takeName(BO);
    251 
    252       if (Op1BO == Op1C)
    253         return BinaryOperator::CreateSub(Op0BO, Rem);
    254       return BinaryOperator::CreateSub(Rem, Op0BO);
    255     }
    256   }
    257 
    258   /// i1 mul -> i1 and.
    259   if (I.getType()->getScalarType()->isIntegerTy(1))
    260     return BinaryOperator::CreateAnd(Op0, Op1);
    261 
    262   // X*(1 << Y) --> X << Y
    263   // (1 << Y)*X --> X << Y
    264   {
    265     Value *Y;
    266     if (match(Op0, m_Shl(m_One(), m_Value(Y))))
    267       return BinaryOperator::CreateShl(Op1, Y);
    268     if (match(Op1, m_Shl(m_One(), m_Value(Y))))
    269       return BinaryOperator::CreateShl(Op0, Y);
    270   }
    271 
    272   // If one of the operands of the multiply is a cast from a boolean value, then
    273   // we know the bool is either zero or one, so this is a 'masking' multiply.
    274   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
    275   if (!I.getType()->isVectorTy()) {
    276     // -2 is "-1 << 1" so it is all bits set except the low one.
    277     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
    278 
    279     Value *BoolCast = nullptr, *OtherOp = nullptr;
    280     if (MaskedValueIsZero(Op0, Negative2))
    281       BoolCast = Op0, OtherOp = Op1;
    282     else if (MaskedValueIsZero(Op1, Negative2))
    283       BoolCast = Op1, OtherOp = Op0;
    284 
    285     if (BoolCast) {
    286       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
    287                                     BoolCast);
    288       return BinaryOperator::CreateAnd(V, OtherOp);
    289     }
    290   }
    291 
    292   return Changed ? &I : nullptr;
    293 }
    294 
    295 //
    296 // Detect pattern:
    297 //
    298 // log2(Y*0.5)
    299 //
    300 // And check for corresponding fast math flags
    301 //
    302 
    303 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
    304 
    305    if (!Op->hasOneUse())
    306      return;
    307 
    308    IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
    309    if (!II)
    310      return;
    311    if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
    312      return;
    313    Log2 = II;
    314 
    315    Value *OpLog2Of = II->getArgOperand(0);
    316    if (!OpLog2Of->hasOneUse())
    317      return;
    318 
    319    Instruction *I = dyn_cast<Instruction>(OpLog2Of);
    320    if (!I)
    321      return;
    322    if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
    323      return;
    324 
    325    if (match(I->getOperand(0), m_SpecificFP(0.5)))
    326      Y = I->getOperand(1);
    327    else if (match(I->getOperand(1), m_SpecificFP(0.5)))
    328      Y = I->getOperand(0);
    329 }
    330 
    331 static bool isFiniteNonZeroFp(Constant *C) {
    332   if (C->getType()->isVectorTy()) {
    333     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    334          ++I) {
    335       ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
    336       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
    337         return false;
    338     }
    339     return true;
    340   }
    341 
    342   return isa<ConstantFP>(C) &&
    343          cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
    344 }
    345 
    346 static bool isNormalFp(Constant *C) {
    347   if (C->getType()->isVectorTy()) {
    348     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    349          ++I) {
    350       ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
    351       if (!CFP || !CFP->getValueAPF().isNormal())
    352         return false;
    353     }
    354     return true;
    355   }
    356 
    357   return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
    358 }
    359 
    360 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
    361 /// true iff the given value is FMul or FDiv with one and only one operand
    362 /// being a normal constant (i.e. not Zero/NaN/Infinity).
    363 static bool isFMulOrFDivWithConstant(Value *V) {
    364   Instruction *I = dyn_cast<Instruction>(V);
    365   if (!I || (I->getOpcode() != Instruction::FMul &&
    366              I->getOpcode() != Instruction::FDiv))
    367     return false;
    368 
    369   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
    370   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
    371 
    372   if (C0 && C1)
    373     return false;
    374 
    375   return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
    376 }
    377 
    378 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
    379 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
    380 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
    381 /// This function is to simplify "FMulOrDiv * C" and returns the
    382 /// resulting expression. Note that this function could return NULL in
    383 /// case the constants cannot be folded into a normal floating-point.
    384 ///
    385 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    386                                    Instruction *InsertBefore) {
    387   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
    388 
    389   Value *Opnd0 = FMulOrDiv->getOperand(0);
    390   Value *Opnd1 = FMulOrDiv->getOperand(1);
    391 
    392   Constant *C0 = dyn_cast<Constant>(Opnd0);
    393   Constant *C1 = dyn_cast<Constant>(Opnd1);
    394 
    395   BinaryOperator *R = nullptr;
    396 
    397   // (X * C0) * C => X * (C0*C)
    398   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
    399     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
    400     if (isNormalFp(F))
    401       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
    402   } else {
    403     if (C0) {
    404       // (C0 / X) * C => (C0 * C) / X
    405       if (FMulOrDiv->hasOneUse()) {
    406         // It would otherwise introduce another div.
    407         Constant *F = ConstantExpr::getFMul(C0, C);
    408         if (isNormalFp(F))
    409           R = BinaryOperator::CreateFDiv(F, Opnd1);
    410       }
    411     } else {
    412       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
    413       Constant *F = ConstantExpr::getFDiv(C, C1);
    414       if (isNormalFp(F)) {
    415         R = BinaryOperator::CreateFMul(Opnd0, F);
    416       } else {
    417         // (X / C1) * C => X / (C1/C)
    418         Constant *F = ConstantExpr::getFDiv(C1, C);
    419         if (isNormalFp(F))
    420           R = BinaryOperator::CreateFDiv(Opnd0, F);
    421       }
    422     }
    423   }
    424 
    425   if (R) {
    426     R->setHasUnsafeAlgebra(true);
    427     InsertNewInstWith(R, *InsertBefore);
    428   }
    429 
    430   return R;
    431 }
    432 
    433 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
    434   bool Changed = SimplifyAssociativeOrCommutative(I);
    435   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    436 
    437   if (Value *V = SimplifyVectorOp(I))
    438     return ReplaceInstUsesWith(I, V);
    439 
    440   if (isa<Constant>(Op0))
    441     std::swap(Op0, Op1);
    442 
    443   if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL))
    444     return ReplaceInstUsesWith(I, V);
    445 
    446   bool AllowReassociate = I.hasUnsafeAlgebra();
    447 
    448   // Simplify mul instructions with a constant RHS.
    449   if (isa<Constant>(Op1)) {
    450     // Try to fold constant mul into select arguments.
    451     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    452       if (Instruction *R = FoldOpIntoSelect(I, SI))
    453         return R;
    454 
    455     if (isa<PHINode>(Op0))
    456       if (Instruction *NV = FoldOpIntoPhi(I))
    457         return NV;
    458 
    459     // (fmul X, -1.0) --> (fsub -0.0, X)
    460     if (match(Op1, m_SpecificFP(-1.0))) {
    461       Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
    462       Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
    463       RI->copyFastMathFlags(&I);
    464       return RI;
    465     }
    466 
    467     Constant *C = cast<Constant>(Op1);
    468     if (AllowReassociate && isFiniteNonZeroFp(C)) {
    469       // Let MDC denote an expression in one of these forms:
    470       // X * C, C/X, X/C, where C is a constant.
    471       //
    472       // Try to simplify "MDC * Constant"
    473       if (isFMulOrFDivWithConstant(Op0))
    474         if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
    475           return ReplaceInstUsesWith(I, V);
    476 
    477       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
    478       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
    479       if (FAddSub &&
    480           (FAddSub->getOpcode() == Instruction::FAdd ||
    481            FAddSub->getOpcode() == Instruction::FSub)) {
    482         Value *Opnd0 = FAddSub->getOperand(0);
    483         Value *Opnd1 = FAddSub->getOperand(1);
    484         Constant *C0 = dyn_cast<Constant>(Opnd0);
    485         Constant *C1 = dyn_cast<Constant>(Opnd1);
    486         bool Swap = false;
    487         if (C0) {
    488           std::swap(C0, C1);
    489           std::swap(Opnd0, Opnd1);
    490           Swap = true;
    491         }
    492 
    493         if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
    494           Value *M1 = ConstantExpr::getFMul(C1, C);
    495           Value *M0 = isNormalFp(cast<Constant>(M1)) ?
    496                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
    497                       nullptr;
    498           if (M0 && M1) {
    499             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
    500               std::swap(M0, M1);
    501 
    502             Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
    503                                   ? BinaryOperator::CreateFAdd(M0, M1)
    504                                   : BinaryOperator::CreateFSub(M0, M1);
    505             RI->copyFastMathFlags(&I);
    506             return RI;
    507           }
    508         }
    509       }
    510     }
    511   }
    512 
    513 
    514   // Under unsafe algebra do:
    515   // X * log2(0.5*Y) = X*log2(Y) - X
    516   if (I.hasUnsafeAlgebra()) {
    517     Value *OpX = nullptr;
    518     Value *OpY = nullptr;
    519     IntrinsicInst *Log2;
    520     detectLog2OfHalf(Op0, OpY, Log2);
    521     if (OpY) {
    522       OpX = Op1;
    523     } else {
    524       detectLog2OfHalf(Op1, OpY, Log2);
    525       if (OpY) {
    526         OpX = Op0;
    527       }
    528     }
    529     // if pattern detected emit alternate sequence
    530     if (OpX && OpY) {
    531       BuilderTy::FastMathFlagGuard Guard(*Builder);
    532       Builder->SetFastMathFlags(Log2->getFastMathFlags());
    533       Log2->setArgOperand(0, OpY);
    534       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
    535       Value *FSub = Builder->CreateFSub(FMulVal, OpX);
    536       FSub->takeName(&I);
    537       return ReplaceInstUsesWith(I, FSub);
    538     }
    539   }
    540 
    541   // Handle symmetric situation in a 2-iteration loop
    542   Value *Opnd0 = Op0;
    543   Value *Opnd1 = Op1;
    544   for (int i = 0; i < 2; i++) {
    545     bool IgnoreZeroSign = I.hasNoSignedZeros();
    546     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
    547       BuilderTy::FastMathFlagGuard Guard(*Builder);
    548       Builder->SetFastMathFlags(I.getFastMathFlags());
    549 
    550       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
    551       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
    552 
    553       // -X * -Y => X*Y
    554       if (N1) {
    555         Value *FMul = Builder->CreateFMul(N0, N1);
    556         FMul->takeName(&I);
    557         return ReplaceInstUsesWith(I, FMul);
    558       }
    559 
    560       if (Opnd0->hasOneUse()) {
    561         // -X * Y => -(X*Y) (Promote negation as high as possible)
    562         Value *T = Builder->CreateFMul(N0, Opnd1);
    563         Value *Neg = Builder->CreateFNeg(T);
    564         Neg->takeName(&I);
    565         return ReplaceInstUsesWith(I, Neg);
    566       }
    567     }
    568 
    569     // (X*Y) * X => (X*X) * Y where Y != X
    570     //  The purpose is two-fold:
    571     //   1) to form a power expression (of X).
    572     //   2) potentially shorten the critical path: After transformation, the
    573     //  latency of the instruction Y is amortized by the expression of X*X,
    574     //  and therefore Y is in a "less critical" position compared to what it
    575     //  was before the transformation.
    576     //
    577     if (AllowReassociate) {
    578       Value *Opnd0_0, *Opnd0_1;
    579       if (Opnd0->hasOneUse() &&
    580           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
    581         Value *Y = nullptr;
    582         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
    583           Y = Opnd0_1;
    584         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
    585           Y = Opnd0_0;
    586 
    587         if (Y) {
    588           BuilderTy::FastMathFlagGuard Guard(*Builder);
    589           Builder->SetFastMathFlags(I.getFastMathFlags());
    590           Value *T = Builder->CreateFMul(Opnd1, Opnd1);
    591 
    592           Value *R = Builder->CreateFMul(T, Y);
    593           R->takeName(&I);
    594           return ReplaceInstUsesWith(I, R);
    595         }
    596       }
    597     }
    598 
    599     // B * (uitofp i1 C) -> select C, B, 0
    600     if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
    601       Value *LHS = Op0, *RHS = Op1;
    602       Value *B, *C;
    603       if (!match(RHS, m_UIToFP(m_Value(C))))
    604         std::swap(LHS, RHS);
    605 
    606       if (match(RHS, m_UIToFP(m_Value(C))) &&
    607           C->getType()->getScalarType()->isIntegerTy(1)) {
    608         B = LHS;
    609         Value *Zero = ConstantFP::getNegativeZero(B->getType());
    610         return SelectInst::Create(C, B, Zero);
    611       }
    612     }
    613 
    614     // A * (1 - uitofp i1 C) -> select C, 0, A
    615     if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
    616       Value *LHS = Op0, *RHS = Op1;
    617       Value *A, *C;
    618       if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
    619         std::swap(LHS, RHS);
    620 
    621       if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
    622           C->getType()->getScalarType()->isIntegerTy(1)) {
    623         A = LHS;
    624         Value *Zero = ConstantFP::getNegativeZero(A->getType());
    625         return SelectInst::Create(C, Zero, A);
    626       }
    627     }
    628 
    629     if (!isa<Constant>(Op1))
    630       std::swap(Opnd0, Opnd1);
    631     else
    632       break;
    633   }
    634 
    635   return Changed ? &I : nullptr;
    636 }
    637 
    638 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
    639 /// instruction.
    640 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
    641   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
    642 
    643   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
    644   int NonNullOperand = -1;
    645   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
    646     if (ST->isNullValue())
    647       NonNullOperand = 2;
    648   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
    649   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
    650     if (ST->isNullValue())
    651       NonNullOperand = 1;
    652 
    653   if (NonNullOperand == -1)
    654     return false;
    655 
    656   Value *SelectCond = SI->getOperand(0);
    657 
    658   // Change the div/rem to use 'Y' instead of the select.
    659   I.setOperand(1, SI->getOperand(NonNullOperand));
    660 
    661   // Okay, we know we replace the operand of the div/rem with 'Y' with no
    662   // problem.  However, the select, or the condition of the select may have
    663   // multiple uses.  Based on our knowledge that the operand must be non-zero,
    664   // propagate the known value for the select into other uses of it, and
    665   // propagate a known value of the condition into its other users.
    666 
    667   // If the select and condition only have a single use, don't bother with this,
    668   // early exit.
    669   if (SI->use_empty() && SelectCond->hasOneUse())
    670     return true;
    671 
    672   // Scan the current block backward, looking for other uses of SI.
    673   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
    674 
    675   while (BBI != BBFront) {
    676     --BBI;
    677     // If we found a call to a function, we can't assume it will return, so
    678     // information from below it cannot be propagated above it.
    679     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
    680       break;
    681 
    682     // Replace uses of the select or its condition with the known values.
    683     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
    684          I != E; ++I) {
    685       if (*I == SI) {
    686         *I = SI->getOperand(NonNullOperand);
    687         Worklist.Add(BBI);
    688       } else if (*I == SelectCond) {
    689         *I = Builder->getInt1(NonNullOperand == 1);
    690         Worklist.Add(BBI);
    691       }
    692     }
    693 
    694     // If we past the instruction, quit looking for it.
    695     if (&*BBI == SI)
    696       SI = nullptr;
    697     if (&*BBI == SelectCond)
    698       SelectCond = nullptr;
    699 
    700     // If we ran out of things to eliminate, break out of the loop.
    701     if (!SelectCond && !SI)
    702       break;
    703 
    704   }
    705   return true;
    706 }
    707 
    708 
    709 /// This function implements the transforms common to both integer division
    710 /// instructions (udiv and sdiv). It is called by the visitors to those integer
    711 /// division instructions.
    712 /// @brief Common integer divide transforms
    713 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
    714   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    715 
    716   // The RHS is known non-zero.
    717   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
    718     I.setOperand(1, V);
    719     return &I;
    720   }
    721 
    722   // Handle cases involving: [su]div X, (select Cond, Y, Z)
    723   // This does not apply for fdiv.
    724   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    725     return &I;
    726 
    727   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    728     // (X / C1) / C2  -> X / (C1*C2)
    729     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
    730       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
    731         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
    732           if (MultiplyOverflows(RHS, LHSRHS,
    733                                 I.getOpcode() == Instruction::SDiv))
    734             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    735           return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
    736                                         ConstantExpr::getMul(RHS, LHSRHS));
    737         }
    738 
    739     if (!RHS->isZero()) { // avoid X udiv 0
    740       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    741         if (Instruction *R = FoldOpIntoSelect(I, SI))
    742           return R;
    743       if (isa<PHINode>(Op0))
    744         if (Instruction *NV = FoldOpIntoPhi(I))
    745           return NV;
    746     }
    747   }
    748 
    749   if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
    750     if (One->isOne() && !I.getType()->isIntegerTy(1)) {
    751       bool isSigned = I.getOpcode() == Instruction::SDiv;
    752       if (isSigned) {
    753         // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
    754         // result is one, if Op1 is -1 then the result is minus one, otherwise
    755         // it's zero.
    756         Value *Inc = Builder->CreateAdd(Op1, One);
    757         Value *Cmp = Builder->CreateICmpULT(
    758                          Inc, ConstantInt::get(I.getType(), 3));
    759         return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
    760       } else {
    761         // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
    762         // result is one, otherwise it's zero.
    763         return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
    764       }
    765     }
    766   }
    767 
    768   // See if we can fold away this div instruction.
    769   if (SimplifyDemandedInstructionBits(I))
    770     return &I;
    771 
    772   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
    773   Value *X = nullptr, *Z = nullptr;
    774   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
    775     bool isSigned = I.getOpcode() == Instruction::SDiv;
    776     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
    777         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
    778       return BinaryOperator::Create(I.getOpcode(), X, Op1);
    779   }
    780 
    781   return nullptr;
    782 }
    783 
    784 /// dyn_castZExtVal - Checks if V is a zext or constant that can
    785 /// be truncated to Ty without losing bits.
    786 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
    787   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
    788     if (Z->getSrcTy() == Ty)
    789       return Z->getOperand(0);
    790   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
    791     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
    792       return ConstantExpr::getTrunc(C, Ty);
    793   }
    794   return nullptr;
    795 }
    796 
    797 namespace {
    798 const unsigned MaxDepth = 6;
    799 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
    800                                           const BinaryOperator &I,
    801                                           InstCombiner &IC);
    802 
    803 /// \brief Used to maintain state for visitUDivOperand().
    804 struct UDivFoldAction {
    805   FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
    806                                 ///< operand.  This can be zero if this action
    807                                 ///< joins two actions together.
    808 
    809   Value *OperandToFold;         ///< Which operand to fold.
    810   union {
    811     Instruction *FoldResult;    ///< The instruction returned when FoldAction is
    812                                 ///< invoked.
    813 
    814     size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
    815                                 ///< joins two actions together.
    816   };
    817 
    818   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
    819       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
    820   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
    821       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
    822 };
    823 }
    824 
    825 // X udiv 2^C -> X >> C
    826 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
    827                                     const BinaryOperator &I, InstCombiner &IC) {
    828   const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
    829   BinaryOperator *LShr = BinaryOperator::CreateLShr(
    830       Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
    831   if (I.isExact()) LShr->setIsExact();
    832   return LShr;
    833 }
    834 
    835 // X udiv C, where C >= signbit
    836 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
    837                                    const BinaryOperator &I, InstCombiner &IC) {
    838   Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
    839 
    840   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
    841                             ConstantInt::get(I.getType(), 1));
    842 }
    843 
    844 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    845 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
    846                                 InstCombiner &IC) {
    847   Instruction *ShiftLeft = cast<Instruction>(Op1);
    848   if (isa<ZExtInst>(ShiftLeft))
    849     ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
    850 
    851   const APInt &CI =
    852       cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
    853   Value *N = ShiftLeft->getOperand(1);
    854   if (CI != 1)
    855     N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
    856   if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
    857     N = IC.Builder->CreateZExt(N, Z->getDestTy());
    858   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
    859   if (I.isExact()) LShr->setIsExact();
    860   return LShr;
    861 }
    862 
    863 // \brief Recursively visits the possible right hand operands of a udiv
    864 // instruction, seeing through select instructions, to determine if we can
    865 // replace the udiv with something simpler.  If we find that an operand is not
    866 // able to simplify the udiv, we abort the entire transformation.
    867 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
    868                                SmallVectorImpl<UDivFoldAction> &Actions,
    869                                unsigned Depth = 0) {
    870   // Check to see if this is an unsigned division with an exact power of 2,
    871   // if so, convert to a right shift.
    872   if (match(Op1, m_Power2())) {
    873     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
    874     return Actions.size();
    875   }
    876 
    877   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
    878     // X udiv C, where C >= signbit
    879     if (C->getValue().isNegative()) {
    880       Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
    881       return Actions.size();
    882     }
    883 
    884   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    885   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
    886       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
    887     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
    888     return Actions.size();
    889   }
    890 
    891   // The remaining tests are all recursive, so bail out if we hit the limit.
    892   if (Depth++ == MaxDepth)
    893     return 0;
    894 
    895   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
    896     if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
    897       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
    898         Actions.push_back(UDivFoldAction((FoldUDivOperandCb)nullptr, Op1,
    899                                          LHSIdx-1));
    900         return Actions.size();
    901       }
    902 
    903   return 0;
    904 }
    905 
    906 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
    907   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    908 
    909   if (Value *V = SimplifyVectorOp(I))
    910     return ReplaceInstUsesWith(I, V);
    911 
    912   if (Value *V = SimplifyUDivInst(Op0, Op1, DL))
    913     return ReplaceInstUsesWith(I, V);
    914 
    915   // Handle the integer div common cases
    916   if (Instruction *Common = commonIDivTransforms(I))
    917     return Common;
    918 
    919   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
    920   if (Constant *C2 = dyn_cast<Constant>(Op1)) {
    921     Value *X;
    922     Constant *C1;
    923     if (match(Op0, m_LShr(m_Value(X), m_Constant(C1))))
    924       return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1));
    925   }
    926 
    927   // (zext A) udiv (zext B) --> zext (A udiv B)
    928   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
    929     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
    930       return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
    931                                               I.isExact()),
    932                           I.getType());
    933 
    934   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
    935   SmallVector<UDivFoldAction, 6> UDivActions;
    936   if (visitUDivOperand(Op0, Op1, I, UDivActions))
    937     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
    938       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
    939       Value *ActionOp1 = UDivActions[i].OperandToFold;
    940       Instruction *Inst;
    941       if (Action)
    942         Inst = Action(Op0, ActionOp1, I, *this);
    943       else {
    944         // This action joins two actions together.  The RHS of this action is
    945         // simply the last action we processed, we saved the LHS action index in
    946         // the joining action.
    947         size_t SelectRHSIdx = i - 1;
    948         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
    949         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
    950         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
    951         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
    952                                   SelectLHS, SelectRHS);
    953       }
    954 
    955       // If this is the last action to process, return it to the InstCombiner.
    956       // Otherwise, we insert it before the UDiv and record it so that we may
    957       // use it as part of a joining action (i.e., a SelectInst).
    958       if (e - i != 1) {
    959         Inst->insertBefore(&I);
    960         UDivActions[i].FoldResult = Inst;
    961       } else
    962         return Inst;
    963     }
    964 
    965   return nullptr;
    966 }
    967 
    968 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
    969   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    970 
    971   if (Value *V = SimplifyVectorOp(I))
    972     return ReplaceInstUsesWith(I, V);
    973 
    974   if (Value *V = SimplifySDivInst(Op0, Op1, DL))
    975     return ReplaceInstUsesWith(I, V);
    976 
    977   // Handle the integer div common cases
    978   if (Instruction *Common = commonIDivTransforms(I))
    979     return Common;
    980 
    981   // sdiv X, -1 == -X
    982   if (match(Op1, m_AllOnes()))
    983     return BinaryOperator::CreateNeg(Op0);
    984 
    985   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    986     // sdiv X, C  -->  ashr exact X, log2(C)
    987     if (I.isExact() && RHS->getValue().isNonNegative() &&
    988         RHS->getValue().isPowerOf2()) {
    989       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
    990                                             RHS->getValue().exactLogBase2());
    991       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
    992     }
    993   }
    994 
    995   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
    996     // X/INT_MIN -> X == INT_MIN
    997     if (RHS->isMinSignedValue())
    998       return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
    999 
   1000     // -X/C  -->  X/-C  provided the negation doesn't overflow.
   1001     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
   1002       if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
   1003         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
   1004                                           ConstantExpr::getNeg(RHS));
   1005   }
   1006 
   1007   // If the sign bits of both operands are zero (i.e. we can prove they are
   1008   // unsigned inputs), turn this into a udiv.
   1009   if (I.getType()->isIntegerTy()) {
   1010     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1011     if (MaskedValueIsZero(Op0, Mask)) {
   1012       if (MaskedValueIsZero(Op1, Mask)) {
   1013         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
   1014         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1015       }
   1016 
   1017       if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
   1018         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
   1019         // Safe because the only negative value (1 << Y) can take on is
   1020         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
   1021         // the sign bit set.
   1022         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1023       }
   1024     }
   1025   }
   1026 
   1027   return nullptr;
   1028 }
   1029 
   1030 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
   1031 /// FP value and:
   1032 ///    1) 1/C is exact, or
   1033 ///    2) reciprocal is allowed.
   1034 /// If the conversion was successful, the simplified expression "X * 1/C" is
   1035 /// returned; otherwise, NULL is returned.
   1036 ///
   1037 static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
   1038                                              Constant *Divisor,
   1039                                              bool AllowReciprocal) {
   1040   if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
   1041     return nullptr;
   1042 
   1043   const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
   1044   APFloat Reciprocal(FpVal.getSemantics());
   1045   bool Cvt = FpVal.getExactInverse(&Reciprocal);
   1046 
   1047   if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
   1048     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
   1049     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
   1050     Cvt = !Reciprocal.isDenormal();
   1051   }
   1052 
   1053   if (!Cvt)
   1054     return nullptr;
   1055 
   1056   ConstantFP *R;
   1057   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
   1058   return BinaryOperator::CreateFMul(Dividend, R);
   1059 }
   1060 
   1061 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
   1062   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1063 
   1064   if (Value *V = SimplifyVectorOp(I))
   1065     return ReplaceInstUsesWith(I, V);
   1066 
   1067   if (Value *V = SimplifyFDivInst(Op0, Op1, DL))
   1068     return ReplaceInstUsesWith(I, V);
   1069 
   1070   if (isa<Constant>(Op0))
   1071     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1072       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1073         return R;
   1074 
   1075   bool AllowReassociate = I.hasUnsafeAlgebra();
   1076   bool AllowReciprocal = I.hasAllowReciprocal();
   1077 
   1078   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   1079     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1080       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1081         return R;
   1082 
   1083     if (AllowReassociate) {
   1084       Constant *C1 = nullptr;
   1085       Constant *C2 = Op1C;
   1086       Value *X;
   1087       Instruction *Res = nullptr;
   1088 
   1089       if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
   1090         // (X*C1)/C2 => X * (C1/C2)
   1091         //
   1092         Constant *C = ConstantExpr::getFDiv(C1, C2);
   1093         if (isNormalFp(C))
   1094           Res = BinaryOperator::CreateFMul(X, C);
   1095       } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
   1096         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
   1097         //
   1098         Constant *C = ConstantExpr::getFMul(C1, C2);
   1099         if (isNormalFp(C)) {
   1100           Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
   1101           if (!Res)
   1102             Res = BinaryOperator::CreateFDiv(X, C);
   1103         }
   1104       }
   1105 
   1106       if (Res) {
   1107         Res->setFastMathFlags(I.getFastMathFlags());
   1108         return Res;
   1109       }
   1110     }
   1111 
   1112     // X / C => X * 1/C
   1113     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
   1114       T->copyFastMathFlags(&I);
   1115       return T;
   1116     }
   1117 
   1118     return nullptr;
   1119   }
   1120 
   1121   if (AllowReassociate && isa<Constant>(Op0)) {
   1122     Constant *C1 = cast<Constant>(Op0), *C2;
   1123     Constant *Fold = nullptr;
   1124     Value *X;
   1125     bool CreateDiv = true;
   1126 
   1127     // C1 / (X*C2) => (C1/C2) / X
   1128     if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
   1129       Fold = ConstantExpr::getFDiv(C1, C2);
   1130     else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
   1131       // C1 / (X/C2) => (C1*C2) / X
   1132       Fold = ConstantExpr::getFMul(C1, C2);
   1133     } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
   1134       // C1 / (C2/X) => (C1/C2) * X
   1135       Fold = ConstantExpr::getFDiv(C1, C2);
   1136       CreateDiv = false;
   1137     }
   1138 
   1139     if (Fold && isNormalFp(Fold)) {
   1140       Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
   1141                                  : BinaryOperator::CreateFMul(X, Fold);
   1142       R->setFastMathFlags(I.getFastMathFlags());
   1143       return R;
   1144     }
   1145     return nullptr;
   1146   }
   1147 
   1148   if (AllowReassociate) {
   1149     Value *X, *Y;
   1150     Value *NewInst = nullptr;
   1151     Instruction *SimpR = nullptr;
   1152 
   1153     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
   1154       // (X/Y) / Z => X / (Y*Z)
   1155       //
   1156       if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
   1157         NewInst = Builder->CreateFMul(Y, Op1);
   1158         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1159           FastMathFlags Flags = I.getFastMathFlags();
   1160           Flags &= cast<Instruction>(Op0)->getFastMathFlags();
   1161           RI->setFastMathFlags(Flags);
   1162         }
   1163         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
   1164       }
   1165     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
   1166       // Z / (X/Y) => Z*Y / X
   1167       //
   1168       if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
   1169         NewInst = Builder->CreateFMul(Op0, Y);
   1170         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1171           FastMathFlags Flags = I.getFastMathFlags();
   1172           Flags &= cast<Instruction>(Op1)->getFastMathFlags();
   1173           RI->setFastMathFlags(Flags);
   1174         }
   1175         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
   1176       }
   1177     }
   1178 
   1179     if (NewInst) {
   1180       if (Instruction *T = dyn_cast<Instruction>(NewInst))
   1181         T->setDebugLoc(I.getDebugLoc());
   1182       SimpR->setFastMathFlags(I.getFastMathFlags());
   1183       return SimpR;
   1184     }
   1185   }
   1186 
   1187   return nullptr;
   1188 }
   1189 
   1190 /// This function implements the transforms common to both integer remainder
   1191 /// instructions (urem and srem). It is called by the visitors to those integer
   1192 /// remainder instructions.
   1193 /// @brief Common integer remainder transforms
   1194 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
   1195   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1196 
   1197   // The RHS is known non-zero.
   1198   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
   1199     I.setOperand(1, V);
   1200     return &I;
   1201   }
   1202 
   1203   // Handle cases involving: rem X, (select Cond, Y, Z)
   1204   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1205     return &I;
   1206 
   1207   if (isa<Constant>(Op1)) {
   1208     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
   1209       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
   1210         if (Instruction *R = FoldOpIntoSelect(I, SI))
   1211           return R;
   1212       } else if (isa<PHINode>(Op0I)) {
   1213         if (Instruction *NV = FoldOpIntoPhi(I))
   1214           return NV;
   1215       }
   1216 
   1217       // See if we can fold away this rem instruction.
   1218       if (SimplifyDemandedInstructionBits(I))
   1219         return &I;
   1220     }
   1221   }
   1222 
   1223   return nullptr;
   1224 }
   1225 
   1226 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
   1227   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1228 
   1229   if (Value *V = SimplifyVectorOp(I))
   1230     return ReplaceInstUsesWith(I, V);
   1231 
   1232   if (Value *V = SimplifyURemInst(Op0, Op1, DL))
   1233     return ReplaceInstUsesWith(I, V);
   1234 
   1235   if (Instruction *common = commonIRemTransforms(I))
   1236     return common;
   1237 
   1238   // (zext A) urem (zext B) --> zext (A urem B)
   1239   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1240     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1241       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
   1242                           I.getType());
   1243 
   1244   // X urem Y -> X and Y-1, where Y is a power of 2,
   1245   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
   1246     Constant *N1 = Constant::getAllOnesValue(I.getType());
   1247     Value *Add = Builder->CreateAdd(Op1, N1);
   1248     return BinaryOperator::CreateAnd(Op0, Add);
   1249   }
   1250 
   1251   // 1 urem X -> zext(X != 1)
   1252   if (match(Op0, m_One())) {
   1253     Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
   1254     Value *Ext = Builder->CreateZExt(Cmp, I.getType());
   1255     return ReplaceInstUsesWith(I, Ext);
   1256   }
   1257 
   1258   return nullptr;
   1259 }
   1260 
   1261 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
   1262   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1263 
   1264   if (Value *V = SimplifyVectorOp(I))
   1265     return ReplaceInstUsesWith(I, V);
   1266 
   1267   if (Value *V = SimplifySRemInst(Op0, Op1, DL))
   1268     return ReplaceInstUsesWith(I, V);
   1269 
   1270   // Handle the integer rem common cases
   1271   if (Instruction *Common = commonIRemTransforms(I))
   1272     return Common;
   1273 
   1274   if (Value *RHSNeg = dyn_castNegVal(Op1))
   1275     if (!isa<Constant>(RHSNeg) ||
   1276         (isa<ConstantInt>(RHSNeg) &&
   1277          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
   1278       // X % -Y -> X % Y
   1279       Worklist.AddValue(I.getOperand(1));
   1280       I.setOperand(1, RHSNeg);
   1281       return &I;
   1282     }
   1283 
   1284   // If the sign bits of both operands are zero (i.e. we can prove they are
   1285   // unsigned inputs), turn this into a urem.
   1286   if (I.getType()->isIntegerTy()) {
   1287     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1288     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
   1289       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
   1290       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
   1291     }
   1292   }
   1293 
   1294   // If it's a constant vector, flip any negative values positive.
   1295   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
   1296     Constant *C = cast<Constant>(Op1);
   1297     unsigned VWidth = C->getType()->getVectorNumElements();
   1298 
   1299     bool hasNegative = false;
   1300     bool hasMissing = false;
   1301     for (unsigned i = 0; i != VWidth; ++i) {
   1302       Constant *Elt = C->getAggregateElement(i);
   1303       if (!Elt) {
   1304         hasMissing = true;
   1305         break;
   1306       }
   1307 
   1308       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
   1309         if (RHS->isNegative())
   1310           hasNegative = true;
   1311     }
   1312 
   1313     if (hasNegative && !hasMissing) {
   1314       SmallVector<Constant *, 16> Elts(VWidth);
   1315       for (unsigned i = 0; i != VWidth; ++i) {
   1316         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
   1317         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
   1318           if (RHS->isNegative())
   1319             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
   1320         }
   1321       }
   1322 
   1323       Constant *NewRHSV = ConstantVector::get(Elts);
   1324       if (NewRHSV != C) {  // Don't loop on -MININT
   1325         Worklist.AddValue(I.getOperand(1));
   1326         I.setOperand(1, NewRHSV);
   1327         return &I;
   1328       }
   1329     }
   1330   }
   1331 
   1332   return nullptr;
   1333 }
   1334 
   1335 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
   1336   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1337 
   1338   if (Value *V = SimplifyVectorOp(I))
   1339     return ReplaceInstUsesWith(I, V);
   1340 
   1341   if (Value *V = SimplifyFRemInst(Op0, Op1, DL))
   1342     return ReplaceInstUsesWith(I, V);
   1343 
   1344   // Handle cases involving: rem X, (select Cond, Y, Z)
   1345   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1346     return &I;
   1347 
   1348   return nullptr;
   1349 }
   1350