Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCMachineFunctionInfo.h"
     17 #include "PPCPerfectShuffle.h"
     18 #include "PPCTargetMachine.h"
     19 #include "PPCTargetObjectFile.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringSwitch.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/CodeGen/CallingConvLower.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/SelectionDAG.h"
     29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     30 #include "llvm/IR/CallingConv.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 using namespace llvm;
     41 
     42 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     43 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     44 
     45 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     46 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     47 
     48 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     49 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     50 
     51 // FIXME: Remove this once the bug has been fixed!
     52 extern cl::opt<bool> ANDIGlueBug;
     53 
     54 static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
     55   // If it isn't a Mach-O file then it's going to be a linux ELF
     56   // object file.
     57   if (TT.isOSDarwin())
     58     return new TargetLoweringObjectFileMachO();
     59 
     60   return new PPC64LinuxTargetObjectFile();
     61 }
     62 
     63 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     64     : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
     65       Subtarget(*TM.getSubtargetImpl()) {
     66   setPow2DivIsCheap();
     67 
     68   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     69   setUseUnderscoreSetJmp(true);
     70   setUseUnderscoreLongJmp(true);
     71 
     72   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     73   // arguments are at least 4/8 bytes aligned.
     74   bool isPPC64 = Subtarget.isPPC64();
     75   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     76 
     77   // Set up the register classes.
     78   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     79   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     80   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     81 
     82   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     83   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
     84   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
     85 
     86   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     87 
     88   // PowerPC has pre-inc load and store's.
     89   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     91   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     92   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     93   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     94   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     96   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
     99 
    100   if (Subtarget.useCRBits()) {
    101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    102 
    103     if (isPPC64 || Subtarget.hasFPCVT()) {
    104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    106                          isPPC64 ? MVT::i64 : MVT::i32);
    107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    108       AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
    109                          isPPC64 ? MVT::i64 : MVT::i32);
    110     } else {
    111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    113     }
    114 
    115     // PowerPC does not support direct load / store of condition registers
    116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    117     setOperationAction(ISD::STORE, MVT::i1, Custom);
    118 
    119     // FIXME: Remove this once the ANDI glue bug is fixed:
    120     if (ANDIGlueBug)
    121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    122 
    123     setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    124     setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
    125     setTruncStoreAction(MVT::i64, MVT::i1, Expand);
    126     setTruncStoreAction(MVT::i32, MVT::i1, Expand);
    127     setTruncStoreAction(MVT::i16, MVT::i1, Expand);
    128     setTruncStoreAction(MVT::i8, MVT::i1, Expand);
    129 
    130     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    131   }
    132 
    133   // This is used in the ppcf128->int sequence.  Note it has different semantics
    134   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    135   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    136 
    137   // We do not currently implement these libm ops for PowerPC.
    138   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    139   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    140   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    141   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    142   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    143   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    144 
    145   // PowerPC has no SREM/UREM instructions
    146   setOperationAction(ISD::SREM, MVT::i32, Expand);
    147   setOperationAction(ISD::UREM, MVT::i32, Expand);
    148   setOperationAction(ISD::SREM, MVT::i64, Expand);
    149   setOperationAction(ISD::UREM, MVT::i64, Expand);
    150 
    151   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    152   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    153   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    154   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    155   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    156   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    157   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    158   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    159   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    160 
    161   // We don't support sin/cos/sqrt/fmod/pow
    162   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    163   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    164   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    165   setOperationAction(ISD::FREM , MVT::f64, Expand);
    166   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    167   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    168   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    169   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    170   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    171   setOperationAction(ISD::FREM , MVT::f32, Expand);
    172   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    173   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    174 
    175   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    176 
    177   // If we're enabling GP optimizations, use hardware square root
    178   if (!Subtarget.hasFSQRT() &&
    179       !(TM.Options.UnsafeFPMath &&
    180         Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
    181     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    182 
    183   if (!Subtarget.hasFSQRT() &&
    184       !(TM.Options.UnsafeFPMath &&
    185         Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
    186     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    187 
    188   if (Subtarget.hasFCPSGN()) {
    189     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    190     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    191   } else {
    192     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    193     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    194   }
    195 
    196   if (Subtarget.hasFPRND()) {
    197     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    198     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    199     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    200     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    201 
    202     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    203     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    204     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    205     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    206   }
    207 
    208   // PowerPC does not have BSWAP, CTPOP or CTTZ
    209   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    210   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    211   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    212   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    213   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    214   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    215   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    216   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    217 
    218   if (Subtarget.hasPOPCNTD()) {
    219     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    220     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    221   } else {
    222     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    223     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    224   }
    225 
    226   // PowerPC does not have ROTR
    227   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    228   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    229 
    230   if (!Subtarget.useCRBits()) {
    231     // PowerPC does not have Select
    232     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    233     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    234     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    235     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    236   }
    237 
    238   // PowerPC wants to turn select_cc of FP into fsel when possible.
    239   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    240   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    241 
    242   // PowerPC wants to optimize integer setcc a bit
    243   if (!Subtarget.useCRBits())
    244     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    245 
    246   // PowerPC does not have BRCOND which requires SetCC
    247   if (!Subtarget.useCRBits())
    248     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    249 
    250   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    251 
    252   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    253   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    254 
    255   // PowerPC does not have [U|S]INT_TO_FP
    256   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    257   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    258 
    259   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    260   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    261   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    262   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    263 
    264   // We cannot sextinreg(i1).  Expand to shifts.
    265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    266 
    267   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    268   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    269   // support continuation, user-level threading, and etc.. As a result, no
    270   // other SjLj exception interfaces are implemented and please don't build
    271   // your own exception handling based on them.
    272   // LLVM/Clang supports zero-cost DWARF exception handling.
    273   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    274   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    275 
    276   // We want to legalize GlobalAddress and ConstantPool nodes into the
    277   // appropriate instructions to materialize the address.
    278   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    279   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    280   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    281   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    282   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    283   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    284   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    285   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    286   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    287   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    288 
    289   // TRAP is legal.
    290   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    291 
    292   // TRAMPOLINE is custom lowered.
    293   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    294   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    295 
    296   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    297   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    298 
    299   if (Subtarget.isSVR4ABI()) {
    300     if (isPPC64) {
    301       // VAARG always uses double-word chunks, so promote anything smaller.
    302       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    303       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    304       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    305       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    306       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    307       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    308       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    309       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    310       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    311     } else {
    312       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    313       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    314       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    315     }
    316   } else
    317     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    318 
    319   if (Subtarget.isSVR4ABI() && !isPPC64)
    320     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    321     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    322   else
    323     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    324 
    325   // Use the default implementation.
    326   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    327   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    328   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    329   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    331 
    332   // We want to custom lower some of our intrinsics.
    333   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    334 
    335   // To handle counter-based loop conditions.
    336   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    337 
    338   // Comparisons that require checking two conditions.
    339   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    340   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    341   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    342   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    343   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    344   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    345   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    346   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    347   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    348   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    349   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    350   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    351 
    352   if (Subtarget.has64BitSupport()) {
    353     // They also have instructions for converting between i64 and fp.
    354     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    355     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    356     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    357     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    358     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    359     // We cannot do this with Promote because i64 is not a legal type.
    360     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    361 
    362     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    363       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    364   } else {
    365     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    366     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    367   }
    368 
    369   // With the instructions enabled under FPCVT, we can do everything.
    370   if (Subtarget.hasFPCVT()) {
    371     if (Subtarget.has64BitSupport()) {
    372       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    373       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    374       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    375       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    376     }
    377 
    378     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    379     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    382   }
    383 
    384   if (Subtarget.use64BitRegs()) {
    385     // 64-bit PowerPC implementations can support i64 types directly
    386     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    387     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    388     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    389     // 64-bit PowerPC wants to expand i128 shifts itself.
    390     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    391     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    392     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    393   } else {
    394     // 32-bit PowerPC wants to expand i64 shifts itself.
    395     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    396     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    397     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    398   }
    399 
    400   if (Subtarget.hasAltivec()) {
    401     // First set operation action for all vector types to expand. Then we
    402     // will selectively turn on ones that can be effectively codegen'd.
    403     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    404          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    405       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
    406 
    407       // add/sub are legal for all supported vector VT's.
    408       setOperationAction(ISD::ADD , VT, Legal);
    409       setOperationAction(ISD::SUB , VT, Legal);
    410 
    411       // We promote all shuffles to v16i8.
    412       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    413       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    414 
    415       // We promote all non-typed operations to v4i32.
    416       setOperationAction(ISD::AND   , VT, Promote);
    417       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    418       setOperationAction(ISD::OR    , VT, Promote);
    419       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    420       setOperationAction(ISD::XOR   , VT, Promote);
    421       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    422       setOperationAction(ISD::LOAD  , VT, Promote);
    423       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    424       setOperationAction(ISD::SELECT, VT, Promote);
    425       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    426       setOperationAction(ISD::STORE, VT, Promote);
    427       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    428 
    429       // No other operations are legal.
    430       setOperationAction(ISD::MUL , VT, Expand);
    431       setOperationAction(ISD::SDIV, VT, Expand);
    432       setOperationAction(ISD::SREM, VT, Expand);
    433       setOperationAction(ISD::UDIV, VT, Expand);
    434       setOperationAction(ISD::UREM, VT, Expand);
    435       setOperationAction(ISD::FDIV, VT, Expand);
    436       setOperationAction(ISD::FREM, VT, Expand);
    437       setOperationAction(ISD::FNEG, VT, Expand);
    438       setOperationAction(ISD::FSQRT, VT, Expand);
    439       setOperationAction(ISD::FLOG, VT, Expand);
    440       setOperationAction(ISD::FLOG10, VT, Expand);
    441       setOperationAction(ISD::FLOG2, VT, Expand);
    442       setOperationAction(ISD::FEXP, VT, Expand);
    443       setOperationAction(ISD::FEXP2, VT, Expand);
    444       setOperationAction(ISD::FSIN, VT, Expand);
    445       setOperationAction(ISD::FCOS, VT, Expand);
    446       setOperationAction(ISD::FABS, VT, Expand);
    447       setOperationAction(ISD::FPOWI, VT, Expand);
    448       setOperationAction(ISD::FFLOOR, VT, Expand);
    449       setOperationAction(ISD::FCEIL,  VT, Expand);
    450       setOperationAction(ISD::FTRUNC, VT, Expand);
    451       setOperationAction(ISD::FRINT,  VT, Expand);
    452       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    453       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    454       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    455       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    456       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    457       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    458       setOperationAction(ISD::UDIVREM, VT, Expand);
    459       setOperationAction(ISD::SDIVREM, VT, Expand);
    460       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    461       setOperationAction(ISD::FPOW, VT, Expand);
    462       setOperationAction(ISD::BSWAP, VT, Expand);
    463       setOperationAction(ISD::CTPOP, VT, Expand);
    464       setOperationAction(ISD::CTLZ, VT, Expand);
    465       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    466       setOperationAction(ISD::CTTZ, VT, Expand);
    467       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    468       setOperationAction(ISD::VSELECT, VT, Expand);
    469       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    470 
    471       for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    472            j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
    473         MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
    474         setTruncStoreAction(VT, InnerVT, Expand);
    475       }
    476       setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
    477       setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
    478       setLoadExtAction(ISD::EXTLOAD, VT, Expand);
    479     }
    480 
    481     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    482     // with merges, splats, etc.
    483     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    484 
    485     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    486     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    487     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    488     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    489     setOperationAction(ISD::SELECT, MVT::v4i32,
    490                        Subtarget.useCRBits() ? Legal : Expand);
    491     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    492     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    493     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    494     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    495     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    496     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    497     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    498     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    499     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    500 
    501     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    502     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    503     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    504     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    505 
    506     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    507     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    508 
    509     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    510       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    511       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    512     }
    513 
    514     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    515     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    516     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    517 
    518     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    519     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    520 
    521     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    522     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    523     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    524     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    525 
    526     // Altivec does not contain unordered floating-point compare instructions
    527     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    528     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    529     setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
    530     setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
    531     setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
    532     setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
    533 
    534     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    535     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    536 
    537     if (Subtarget.hasVSX()) {
    538       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    539       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    540 
    541       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    542       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    543       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    544       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    545       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    546 
    547       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    548 
    549       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    550       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    551 
    552       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    553       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    554 
    555       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    556       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    557       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    558       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    559       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    560 
    561       // Share the Altivec comparison restrictions.
    562       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    563       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    564       setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand);
    565       setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand);
    566       setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand);
    567       setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand);
    568 
    569       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    570       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    571 
    572       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    573       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    574 
    575       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    576 
    577       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    578 
    579       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    580       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    581 
    582       // VSX v2i64 only supports non-arithmetic operations.
    583       setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    584       setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    585 
    586       setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    587       setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    588       setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    589 
    590       setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    591 
    592       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    593       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    594       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    595       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    596 
    597       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    598 
    599       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    600       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    601       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    602       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    603 
    604       // Vector operation legalization checks the result type of
    605       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    606       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    607       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    608       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    609       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    610 
    611       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    612     }
    613   }
    614 
    615   if (Subtarget.has64BitSupport()) {
    616     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    617     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
    618   }
    619 
    620   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
    621   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
    622   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    623   setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    624 
    625   setBooleanContents(ZeroOrOneBooleanContent);
    626   // Altivec instructions set fields to all zeros or all ones.
    627   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    628 
    629   if (isPPC64) {
    630     setStackPointerRegisterToSaveRestore(PPC::X1);
    631     setExceptionPointerRegister(PPC::X3);
    632     setExceptionSelectorRegister(PPC::X4);
    633   } else {
    634     setStackPointerRegisterToSaveRestore(PPC::R1);
    635     setExceptionPointerRegister(PPC::R3);
    636     setExceptionSelectorRegister(PPC::R4);
    637   }
    638 
    639   // We have target-specific dag combine patterns for the following nodes:
    640   setTargetDAGCombine(ISD::SINT_TO_FP);
    641   setTargetDAGCombine(ISD::LOAD);
    642   setTargetDAGCombine(ISD::STORE);
    643   setTargetDAGCombine(ISD::BR_CC);
    644   if (Subtarget.useCRBits())
    645     setTargetDAGCombine(ISD::BRCOND);
    646   setTargetDAGCombine(ISD::BSWAP);
    647   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    648 
    649   setTargetDAGCombine(ISD::SIGN_EXTEND);
    650   setTargetDAGCombine(ISD::ZERO_EXTEND);
    651   setTargetDAGCombine(ISD::ANY_EXTEND);
    652 
    653   if (Subtarget.useCRBits()) {
    654     setTargetDAGCombine(ISD::TRUNCATE);
    655     setTargetDAGCombine(ISD::SETCC);
    656     setTargetDAGCombine(ISD::SELECT_CC);
    657   }
    658 
    659   // Use reciprocal estimates.
    660   if (TM.Options.UnsafeFPMath) {
    661     setTargetDAGCombine(ISD::FDIV);
    662     setTargetDAGCombine(ISD::FSQRT);
    663   }
    664 
    665   // Darwin long double math library functions have $LDBL128 appended.
    666   if (Subtarget.isDarwin()) {
    667     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    668     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    669     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    670     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    671     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    672     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    673     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    674     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    675     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    676     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    677   }
    678 
    679   // With 32 condition bits, we don't need to sink (and duplicate) compares
    680   // aggressively in CodeGenPrep.
    681   if (Subtarget.useCRBits())
    682     setHasMultipleConditionRegisters();
    683 
    684   setMinFunctionAlignment(2);
    685   if (Subtarget.isDarwin())
    686     setPrefFunctionAlignment(4);
    687 
    688   if (isPPC64 && Subtarget.isJITCodeModel())
    689     // Temporary workaround for the inability of PPC64 JIT to handle jump
    690     // tables.
    691     setSupportJumpTables(false);
    692 
    693   setInsertFencesForAtomic(true);
    694 
    695   if (Subtarget.enableMachineScheduler())
    696     setSchedulingPreference(Sched::Source);
    697   else
    698     setSchedulingPreference(Sched::Hybrid);
    699 
    700   computeRegisterProperties();
    701 
    702   // The Freescale cores does better with aggressive inlining of memcpy and
    703   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
    704   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
    705       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
    706     MaxStoresPerMemset = 32;
    707     MaxStoresPerMemsetOptSize = 16;
    708     MaxStoresPerMemcpy = 32;
    709     MaxStoresPerMemcpyOptSize = 8;
    710     MaxStoresPerMemmove = 32;
    711     MaxStoresPerMemmoveOptSize = 8;
    712 
    713     setPrefFunctionAlignment(4);
    714   }
    715 }
    716 
    717 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
    718 /// the desired ByVal argument alignment.
    719 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
    720                              unsigned MaxMaxAlign) {
    721   if (MaxAlign == MaxMaxAlign)
    722     return;
    723   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    724     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
    725       MaxAlign = 32;
    726     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
    727       MaxAlign = 16;
    728   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    729     unsigned EltAlign = 0;
    730     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    731     if (EltAlign > MaxAlign)
    732       MaxAlign = EltAlign;
    733   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    734     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    735       unsigned EltAlign = 0;
    736       getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
    737       if (EltAlign > MaxAlign)
    738         MaxAlign = EltAlign;
    739       if (MaxAlign == MaxMaxAlign)
    740         break;
    741     }
    742   }
    743 }
    744 
    745 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    746 /// function arguments in the caller parameter area.
    747 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    748   // Darwin passes everything on 4 byte boundary.
    749   if (Subtarget.isDarwin())
    750     return 4;
    751 
    752   // 16byte and wider vectors are passed on 16byte boundary.
    753   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    754   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
    755   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    756     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
    757   return Align;
    758 }
    759 
    760 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    761   switch (Opcode) {
    762   default: return nullptr;
    763   case PPCISD::FSEL:            return "PPCISD::FSEL";
    764   case PPCISD::FCFID:           return "PPCISD::FCFID";
    765   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    766   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    767   case PPCISD::FRE:             return "PPCISD::FRE";
    768   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
    769   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    770   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    771   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    772   case PPCISD::VPERM:           return "PPCISD::VPERM";
    773   case PPCISD::Hi:              return "PPCISD::Hi";
    774   case PPCISD::Lo:              return "PPCISD::Lo";
    775   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    776   case PPCISD::LOAD:            return "PPCISD::LOAD";
    777   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
    778   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    779   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    780   case PPCISD::SRL:             return "PPCISD::SRL";
    781   case PPCISD::SRA:             return "PPCISD::SRA";
    782   case PPCISD::SHL:             return "PPCISD::SHL";
    783   case PPCISD::CALL:            return "PPCISD::CALL";
    784   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
    785   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    786   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
    787   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    788   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
    789   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
    790   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
    791   case PPCISD::VCMP:            return "PPCISD::VCMP";
    792   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
    793   case PPCISD::LBRX:            return "PPCISD::LBRX";
    794   case PPCISD::STBRX:           return "PPCISD::STBRX";
    795   case PPCISD::LARX:            return "PPCISD::LARX";
    796   case PPCISD::STCX:            return "PPCISD::STCX";
    797   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
    798   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
    799   case PPCISD::BDZ:             return "PPCISD::BDZ";
    800   case PPCISD::MFFS:            return "PPCISD::MFFS";
    801   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
    802   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
    803   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
    804   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
    805   case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
    806   case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
    807   case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
    808   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
    809   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
    810   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
    811   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
    812   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
    813   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
    814   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
    815   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
    816   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
    817   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
    818   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
    819   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
    820   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
    821   case PPCISD::SC:              return "PPCISD::SC";
    822   }
    823 }
    824 
    825 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
    826   if (!VT.isVector())
    827     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
    828   return VT.changeVectorElementTypeToInteger();
    829 }
    830 
    831 //===----------------------------------------------------------------------===//
    832 // Node matching predicates, for use by the tblgen matching code.
    833 //===----------------------------------------------------------------------===//
    834 
    835 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
    836 static bool isFloatingPointZero(SDValue Op) {
    837   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    838     return CFP->getValueAPF().isZero();
    839   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    840     // Maybe this has already been legalized into the constant pool?
    841     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
    842       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
    843         return CFP->getValueAPF().isZero();
    844   }
    845   return false;
    846 }
    847 
    848 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
    849 /// true if Op is undef or if it matches the specified value.
    850 static bool isConstantOrUndef(int Op, int Val) {
    851   return Op < 0 || Op == Val;
    852 }
    853 
    854 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    855 /// VPKUHUM instruction.
    856 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
    857                                SelectionDAG &DAG) {
    858   unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
    859   if (!isUnary) {
    860     for (unsigned i = 0; i != 16; ++i)
    861       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+j))
    862         return false;
    863   } else {
    864     for (unsigned i = 0; i != 8; ++i)
    865       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
    866           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
    867         return false;
    868   }
    869   return true;
    870 }
    871 
    872 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    873 /// VPKUWUM instruction.
    874 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
    875                                SelectionDAG &DAG) {
    876   unsigned j, k;
    877   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
    878     j = 0;
    879     k = 1;
    880   } else {
    881     j = 2;
    882     k = 3;
    883   }
    884   if (!isUnary) {
    885     for (unsigned i = 0; i != 16; i += 2)
    886       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j) ||
    887           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+k))
    888         return false;
    889   } else {
    890     for (unsigned i = 0; i != 8; i += 2)
    891       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j) ||
    892           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+k) ||
    893           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j) ||
    894           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+k))
    895         return false;
    896   }
    897   return true;
    898 }
    899 
    900 /// isVMerge - Common function, used to match vmrg* shuffles.
    901 ///
    902 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
    903                      unsigned LHSStart, unsigned RHSStart) {
    904   if (N->getValueType(0) != MVT::v16i8)
    905     return false;
    906   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
    907          "Unsupported merge size!");
    908 
    909   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    910     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
    911       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
    912                              LHSStart+j+i*UnitSize) ||
    913           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
    914                              RHSStart+j+i*UnitSize))
    915         return false;
    916     }
    917   return true;
    918 }
    919 
    920 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    921 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
    922 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    923                              bool isUnary, SelectionDAG &DAG) {
    924   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
    925     if (!isUnary)
    926       return isVMerge(N, UnitSize, 0, 16);
    927     return isVMerge(N, UnitSize, 0, 0);
    928   } else {
    929     if (!isUnary)
    930       return isVMerge(N, UnitSize, 8, 24);
    931     return isVMerge(N, UnitSize, 8, 8);
    932   }
    933 }
    934 
    935 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    936 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
    937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    938                              bool isUnary, SelectionDAG &DAG) {
    939   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
    940     if (!isUnary)
    941       return isVMerge(N, UnitSize, 8, 24);
    942     return isVMerge(N, UnitSize, 8, 8);
    943   } else {
    944     if (!isUnary)
    945       return isVMerge(N, UnitSize, 0, 16);
    946     return isVMerge(N, UnitSize, 0, 0);
    947   }
    948 }
    949 
    950 
    951 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    952 /// amount, otherwise return -1.
    953 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG) {
    954   if (N->getValueType(0) != MVT::v16i8)
    955     return -1;
    956 
    957   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    958 
    959   // Find the first non-undef value in the shuffle mask.
    960   unsigned i;
    961   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    962     /*search*/;
    963 
    964   if (i == 16) return -1;  // all undef.
    965 
    966   // Otherwise, check to see if the rest of the elements are consecutively
    967   // numbered from this value.
    968   unsigned ShiftAmt = SVOp->getMaskElt(i);
    969   if (ShiftAmt < i) return -1;
    970 
    971   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
    972 
    973     ShiftAmt += i;
    974 
    975     if (!isUnary) {
    976       // Check the rest of the elements to see if they are consecutive.
    977       for (++i; i != 16; ++i)
    978         if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt - i))
    979           return -1;
    980     } else {
    981       // Check the rest of the elements to see if they are consecutive.
    982       for (++i; i != 16; ++i)
    983         if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt - i) & 15))
    984           return -1;
    985     }
    986 
    987   } else {  // Big Endian
    988 
    989     ShiftAmt -= i;
    990 
    991     if (!isUnary) {
    992       // Check the rest of the elements to see if they are consecutive.
    993       for (++i; i != 16; ++i)
    994         if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
    995           return -1;
    996     } else {
    997       // Check the rest of the elements to see if they are consecutive.
    998       for (++i; i != 16; ++i)
    999         if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1000           return -1;
   1001     }
   1002   }
   1003   return ShiftAmt;
   1004 }
   1005 
   1006 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1007 /// specifies a splat of a single element that is suitable for input to
   1008 /// VSPLTB/VSPLTH/VSPLTW.
   1009 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1010   assert(N->getValueType(0) == MVT::v16i8 &&
   1011          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1012 
   1013   // This is a splat operation if each element of the permute is the same, and
   1014   // if the value doesn't reference the second vector.
   1015   unsigned ElementBase = N->getMaskElt(0);
   1016 
   1017   // FIXME: Handle UNDEF elements too!
   1018   if (ElementBase >= 16)
   1019     return false;
   1020 
   1021   // Check that the indices are consecutive, in the case of a multi-byte element
   1022   // splatted with a v16i8 mask.
   1023   for (unsigned i = 1; i != EltSize; ++i)
   1024     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1025       return false;
   1026 
   1027   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1028     if (N->getMaskElt(i) < 0) continue;
   1029     for (unsigned j = 0; j != EltSize; ++j)
   1030       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1031         return false;
   1032   }
   1033   return true;
   1034 }
   1035 
   1036 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
   1037 /// are -0.0.
   1038 bool PPC::isAllNegativeZeroVector(SDNode *N) {
   1039   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
   1040 
   1041   APInt APVal, APUndef;
   1042   unsigned BitSize;
   1043   bool HasAnyUndefs;
   1044 
   1045   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
   1046     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   1047       return CFP->getValueAPF().isNegZero();
   1048 
   1049   return false;
   1050 }
   1051 
   1052 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   1053 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   1054 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   1055                                 SelectionDAG &DAG) {
   1056   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1057   assert(isSplatShuffleMask(SVOp, EltSize));
   1058   if (DAG.getTarget().getDataLayout()->isLittleEndian())
   1059     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   1060   else
   1061     return SVOp->getMaskElt(0) / EltSize;
   1062 }
   1063 
   1064 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   1065 /// by using a vspltis[bhw] instruction of the specified element size, return
   1066 /// the constant being splatted.  The ByteSize field indicates the number of
   1067 /// bytes of each element [124] -> [bhw].
   1068 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   1069   SDValue OpVal(nullptr, 0);
   1070 
   1071   // If ByteSize of the splat is bigger than the element size of the
   1072   // build_vector, then we have a case where we are checking for a splat where
   1073   // multiple elements of the buildvector are folded together into a single
   1074   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   1075   unsigned EltSize = 16/N->getNumOperands();
   1076   if (EltSize < ByteSize) {
   1077     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   1078     SDValue UniquedVals[4];
   1079     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   1080 
   1081     // See if all of the elements in the buildvector agree across.
   1082     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1083       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1084       // If the element isn't a constant, bail fully out.
   1085       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   1086 
   1087 
   1088       if (!UniquedVals[i&(Multiple-1)].getNode())
   1089         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   1090       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   1091         return SDValue();  // no match.
   1092     }
   1093 
   1094     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   1095     // either constant or undef values that are identical for each chunk.  See
   1096     // if these chunks can form into a larger vspltis*.
   1097 
   1098     // Check to see if all of the leading entries are either 0 or -1.  If
   1099     // neither, then this won't fit into the immediate field.
   1100     bool LeadingZero = true;
   1101     bool LeadingOnes = true;
   1102     for (unsigned i = 0; i != Multiple-1; ++i) {
   1103       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   1104 
   1105       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
   1106       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
   1107     }
   1108     // Finally, check the least significant entry.
   1109     if (LeadingZero) {
   1110       if (!UniquedVals[Multiple-1].getNode())
   1111         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
   1112       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   1113       if (Val < 16)
   1114         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
   1115     }
   1116     if (LeadingOnes) {
   1117       if (!UniquedVals[Multiple-1].getNode())
   1118         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
   1119       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   1120       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   1121         return DAG.getTargetConstant(Val, MVT::i32);
   1122     }
   1123 
   1124     return SDValue();
   1125   }
   1126 
   1127   // Check to see if this buildvec has a single non-undef value in its elements.
   1128   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1129     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1130     if (!OpVal.getNode())
   1131       OpVal = N->getOperand(i);
   1132     else if (OpVal != N->getOperand(i))
   1133       return SDValue();
   1134   }
   1135 
   1136   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   1137 
   1138   unsigned ValSizeInBytes = EltSize;
   1139   uint64_t Value = 0;
   1140   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   1141     Value = CN->getZExtValue();
   1142   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   1143     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   1144     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   1145   }
   1146 
   1147   // If the splat value is larger than the element value, then we can never do
   1148   // this splat.  The only case that we could fit the replicated bits into our
   1149   // immediate field for would be zero, and we prefer to use vxor for it.
   1150   if (ValSizeInBytes < ByteSize) return SDValue();
   1151 
   1152   // If the element value is larger than the splat value, cut it in half and
   1153   // check to see if the two halves are equal.  Continue doing this until we
   1154   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
   1155   while (ValSizeInBytes > ByteSize) {
   1156     ValSizeInBytes >>= 1;
   1157 
   1158     // If the top half equals the bottom half, we're still ok.
   1159     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
   1160          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
   1161       return SDValue();
   1162   }
   1163 
   1164   // Properly sign extend the value.
   1165   int MaskVal = SignExtend32(Value, ByteSize * 8);
   1166 
   1167   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   1168   if (MaskVal == 0) return SDValue();
   1169 
   1170   // Finally, if this value fits in a 5 bit sext field, return it
   1171   if (SignExtend32<5>(MaskVal) == MaskVal)
   1172     return DAG.getTargetConstant(MaskVal, MVT::i32);
   1173   return SDValue();
   1174 }
   1175 
   1176 //===----------------------------------------------------------------------===//
   1177 //  Addressing Mode Selection
   1178 //===----------------------------------------------------------------------===//
   1179 
   1180 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   1181 /// or 64-bit immediate, and if the value can be accurately represented as a
   1182 /// sign extension from a 16-bit value.  If so, this returns true and the
   1183 /// immediate.
   1184 static bool isIntS16Immediate(SDNode *N, short &Imm) {
   1185   if (!isa<ConstantSDNode>(N))
   1186     return false;
   1187 
   1188   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
   1189   if (N->getValueType(0) == MVT::i32)
   1190     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   1191   else
   1192     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   1193 }
   1194 static bool isIntS16Immediate(SDValue Op, short &Imm) {
   1195   return isIntS16Immediate(Op.getNode(), Imm);
   1196 }
   1197 
   1198 
   1199 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   1200 /// can be represented as an indexed [r+r] operation.  Returns false if it
   1201 /// can be more efficiently represented with [r+imm].
   1202 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   1203                                             SDValue &Index,
   1204                                             SelectionDAG &DAG) const {
   1205   short imm = 0;
   1206   if (N.getOpcode() == ISD::ADD) {
   1207     if (isIntS16Immediate(N.getOperand(1), imm))
   1208       return false;    // r+i
   1209     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1210       return false;    // r+i
   1211 
   1212     Base = N.getOperand(0);
   1213     Index = N.getOperand(1);
   1214     return true;
   1215   } else if (N.getOpcode() == ISD::OR) {
   1216     if (isIntS16Immediate(N.getOperand(1), imm))
   1217       return false;    // r+i can fold it if we can.
   1218 
   1219     // If this is an or of disjoint bitfields, we can codegen this as an add
   1220     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1221     // disjoint.
   1222     APInt LHSKnownZero, LHSKnownOne;
   1223     APInt RHSKnownZero, RHSKnownOne;
   1224     DAG.computeKnownBits(N.getOperand(0),
   1225                          LHSKnownZero, LHSKnownOne);
   1226 
   1227     if (LHSKnownZero.getBoolValue()) {
   1228       DAG.computeKnownBits(N.getOperand(1),
   1229                            RHSKnownZero, RHSKnownOne);
   1230       // If all of the bits are known zero on the LHS or RHS, the add won't
   1231       // carry.
   1232       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1233         Base = N.getOperand(0);
   1234         Index = N.getOperand(1);
   1235         return true;
   1236       }
   1237     }
   1238   }
   1239 
   1240   return false;
   1241 }
   1242 
   1243 // If we happen to be doing an i64 load or store into a stack slot that has
   1244 // less than a 4-byte alignment, then the frame-index elimination may need to
   1245 // use an indexed load or store instruction (because the offset may not be a
   1246 // multiple of 4). The extra register needed to hold the offset comes from the
   1247 // register scavenger, and it is possible that the scavenger will need to use
   1248 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1249 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1250 // stack slot.
   1251 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1252   // FIXME: This does not handle the LWA case.
   1253   if (VT != MVT::i64)
   1254     return;
   1255 
   1256   // NOTE: We'll exclude negative FIs here, which come from argument
   1257   // lowering, because there are no known test cases triggering this problem
   1258   // using packed structures (or similar). We can remove this exclusion if
   1259   // we find such a test case. The reason why this is so test-case driven is
   1260   // because this entire 'fixup' is only to prevent crashes (from the
   1261   // register scavenger) on not-really-valid inputs. For example, if we have:
   1262   //   %a = alloca i1
   1263   //   %b = bitcast i1* %a to i64*
   1264   //   store i64* a, i64 b
   1265   // then the store should really be marked as 'align 1', but is not. If it
   1266   // were marked as 'align 1' then the indexed form would have been
   1267   // instruction-selected initially, and the problem this 'fixup' is preventing
   1268   // won't happen regardless.
   1269   if (FrameIdx < 0)
   1270     return;
   1271 
   1272   MachineFunction &MF = DAG.getMachineFunction();
   1273   MachineFrameInfo *MFI = MF.getFrameInfo();
   1274 
   1275   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1276   if (Align >= 4)
   1277     return;
   1278 
   1279   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1280   FuncInfo->setHasNonRISpills();
   1281 }
   1282 
   1283 /// Returns true if the address N can be represented by a base register plus
   1284 /// a signed 16-bit displacement [r+imm], and if it is not better
   1285 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1286 /// suitable for STD and friends, i.e. multiples of 4.
   1287 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1288                                             SDValue &Base,
   1289                                             SelectionDAG &DAG,
   1290                                             bool Aligned) const {
   1291   // FIXME dl should come from parent load or store, not from address
   1292   SDLoc dl(N);
   1293   // If this can be more profitably realized as r+r, fail.
   1294   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1295     return false;
   1296 
   1297   if (N.getOpcode() == ISD::ADD) {
   1298     short imm = 0;
   1299     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1300         (!Aligned || (imm & 3) == 0)) {
   1301       Disp = DAG.getTargetConstant(imm, N.getValueType());
   1302       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1303         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1304         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1305       } else {
   1306         Base = N.getOperand(0);
   1307       }
   1308       return true; // [r+i]
   1309     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1310       // Match LOAD (ADD (X, Lo(G))).
   1311       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1312              && "Cannot handle constant offsets yet!");
   1313       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1314       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1315              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1316              Disp.getOpcode() == ISD::TargetConstantPool ||
   1317              Disp.getOpcode() == ISD::TargetJumpTable);
   1318       Base = N.getOperand(0);
   1319       return true;  // [&g+r]
   1320     }
   1321   } else if (N.getOpcode() == ISD::OR) {
   1322     short imm = 0;
   1323     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1324         (!Aligned || (imm & 3) == 0)) {
   1325       // If this is an or of disjoint bitfields, we can codegen this as an add
   1326       // (for better address arithmetic) if the LHS and RHS of the OR are
   1327       // provably disjoint.
   1328       APInt LHSKnownZero, LHSKnownOne;
   1329       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1330 
   1331       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1332         // If all of the bits are known zero on the LHS or RHS, the add won't
   1333         // carry.
   1334         Base = N.getOperand(0);
   1335         Disp = DAG.getTargetConstant(imm, N.getValueType());
   1336         return true;
   1337       }
   1338     }
   1339   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1340     // Loading from a constant address.
   1341 
   1342     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1343     // this as "d, 0"
   1344     short Imm;
   1345     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1346       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
   1347       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1348                              CN->getValueType(0));
   1349       return true;
   1350     }
   1351 
   1352     // Handle 32-bit sext immediates with LIS + addr mode.
   1353     if ((CN->getValueType(0) == MVT::i32 ||
   1354          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1355         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1356       int Addr = (int)CN->getZExtValue();
   1357 
   1358       // Otherwise, break this down into an LIS + disp.
   1359       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
   1360 
   1361       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
   1362       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1363       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1364       return true;
   1365     }
   1366   }
   1367 
   1368   Disp = DAG.getTargetConstant(0, getPointerTy());
   1369   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1370     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1371     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1372   } else
   1373     Base = N;
   1374   return true;      // [r+0]
   1375 }
   1376 
   1377 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1378 /// represented as an indexed [r+r] operation.
   1379 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1380                                                 SDValue &Index,
   1381                                                 SelectionDAG &DAG) const {
   1382   // Check to see if we can easily represent this as an [r+r] address.  This
   1383   // will fail if it thinks that the address is more profitably represented as
   1384   // reg+imm, e.g. where imm = 0.
   1385   if (SelectAddressRegReg(N, Base, Index, DAG))
   1386     return true;
   1387 
   1388   // If the operand is an addition, always emit this as [r+r], since this is
   1389   // better (for code size, and execution, as the memop does the add for free)
   1390   // than emitting an explicit add.
   1391   if (N.getOpcode() == ISD::ADD) {
   1392     Base = N.getOperand(0);
   1393     Index = N.getOperand(1);
   1394     return true;
   1395   }
   1396 
   1397   // Otherwise, do it the hard way, using R0 as the base register.
   1398   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1399                          N.getValueType());
   1400   Index = N;
   1401   return true;
   1402 }
   1403 
   1404 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1405 /// offset pointer and addressing mode by reference if the node's address
   1406 /// can be legally represented as pre-indexed load / store address.
   1407 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1408                                                   SDValue &Offset,
   1409                                                   ISD::MemIndexedMode &AM,
   1410                                                   SelectionDAG &DAG) const {
   1411   if (DisablePPCPreinc) return false;
   1412 
   1413   bool isLoad = true;
   1414   SDValue Ptr;
   1415   EVT VT;
   1416   unsigned Alignment;
   1417   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1418     Ptr = LD->getBasePtr();
   1419     VT = LD->getMemoryVT();
   1420     Alignment = LD->getAlignment();
   1421   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1422     Ptr = ST->getBasePtr();
   1423     VT  = ST->getMemoryVT();
   1424     Alignment = ST->getAlignment();
   1425     isLoad = false;
   1426   } else
   1427     return false;
   1428 
   1429   // PowerPC doesn't have preinc load/store instructions for vectors.
   1430   if (VT.isVector())
   1431     return false;
   1432 
   1433   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   1434 
   1435     // Common code will reject creating a pre-inc form if the base pointer
   1436     // is a frame index, or if N is a store and the base pointer is either
   1437     // the same as or a predecessor of the value being stored.  Check for
   1438     // those situations here, and try with swapped Base/Offset instead.
   1439     bool Swap = false;
   1440 
   1441     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   1442       Swap = true;
   1443     else if (!isLoad) {
   1444       SDValue Val = cast<StoreSDNode>(N)->getValue();
   1445       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   1446         Swap = true;
   1447     }
   1448 
   1449     if (Swap)
   1450       std::swap(Base, Offset);
   1451 
   1452     AM = ISD::PRE_INC;
   1453     return true;
   1454   }
   1455 
   1456   // LDU/STU can only handle immediates that are a multiple of 4.
   1457   if (VT != MVT::i64) {
   1458     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   1459       return false;
   1460   } else {
   1461     // LDU/STU need an address with at least 4-byte alignment.
   1462     if (Alignment < 4)
   1463       return false;
   1464 
   1465     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   1466       return false;
   1467   }
   1468 
   1469   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1470     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1471     // sext i32 to i64 when addr mode is r+i.
   1472     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1473         LD->getExtensionType() == ISD::SEXTLOAD &&
   1474         isa<ConstantSDNode>(Offset))
   1475       return false;
   1476   }
   1477 
   1478   AM = ISD::PRE_INC;
   1479   return true;
   1480 }
   1481 
   1482 //===----------------------------------------------------------------------===//
   1483 //  LowerOperation implementation
   1484 //===----------------------------------------------------------------------===//
   1485 
   1486 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1487 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1488 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
   1489                                unsigned &LoOpFlags,
   1490                                const GlobalValue *GV = nullptr) {
   1491   HiOpFlags = PPCII::MO_HA;
   1492   LoOpFlags = PPCII::MO_LO;
   1493 
   1494   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
   1495   // non-darwin platform.  We don't support PIC on other platforms yet.
   1496   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
   1497                TM.getSubtarget<PPCSubtarget>().isDarwin();
   1498   if (isPIC) {
   1499     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1500     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1501   }
   1502 
   1503   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1504   // sure that instruction lowering adds it.
   1505   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
   1506     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1507     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1508 
   1509     if (GV->hasHiddenVisibility()) {
   1510       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1511       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1512     }
   1513   }
   1514 
   1515   return isPIC;
   1516 }
   1517 
   1518 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1519                              SelectionDAG &DAG) {
   1520   EVT PtrVT = HiPart.getValueType();
   1521   SDValue Zero = DAG.getConstant(0, PtrVT);
   1522   SDLoc DL(HiPart);
   1523 
   1524   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1525   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1526 
   1527   // With PIC, the first instruction is actually "GR+hi(&G)".
   1528   if (isPIC)
   1529     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1530                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1531 
   1532   // Generate non-pic code that has direct accesses to the constant pool.
   1533   // The address of the global is just (hi(&g)+lo(&g)).
   1534   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1535 }
   1536 
   1537 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1538                                              SelectionDAG &DAG) const {
   1539   EVT PtrVT = Op.getValueType();
   1540   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1541   const Constant *C = CP->getConstVal();
   1542 
   1543   // 64-bit SVR4 ABI code is always position-independent.
   1544   // The actual address of the GlobalValue is stored in the TOC.
   1545   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1546     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   1547     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
   1548                        DAG.getRegister(PPC::X2, MVT::i64));
   1549   }
   1550 
   1551   unsigned MOHiFlag, MOLoFlag;
   1552   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1553   SDValue CPIHi =
   1554     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1555   SDValue CPILo =
   1556     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1557   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1558 }
   1559 
   1560 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1561   EVT PtrVT = Op.getValueType();
   1562   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1563 
   1564   // 64-bit SVR4 ABI code is always position-independent.
   1565   // The actual address of the GlobalValue is stored in the TOC.
   1566   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1567     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1568     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
   1569                        DAG.getRegister(PPC::X2, MVT::i64));
   1570   }
   1571 
   1572   unsigned MOHiFlag, MOLoFlag;
   1573   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1574   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1575   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1576   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1577 }
   1578 
   1579 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1580                                              SelectionDAG &DAG) const {
   1581   EVT PtrVT = Op.getValueType();
   1582 
   1583   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1584 
   1585   unsigned MOHiFlag, MOLoFlag;
   1586   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1587   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   1588   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   1589   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1590 }
   1591 
   1592 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   1593                                               SelectionDAG &DAG) const {
   1594 
   1595   // FIXME: TLS addresses currently use medium model code sequences,
   1596   // which is the most useful form.  Eventually support for small and
   1597   // large models could be added if users need it, at the cost of
   1598   // additional complexity.
   1599   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1600   SDLoc dl(GA);
   1601   const GlobalValue *GV = GA->getGlobal();
   1602   EVT PtrVT = getPointerTy();
   1603   bool is64bit = Subtarget.isPPC64();
   1604 
   1605   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   1606 
   1607   if (Model == TLSModel::LocalExec) {
   1608     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1609                                                PPCII::MO_TPREL_HA);
   1610     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1611                                                PPCII::MO_TPREL_LO);
   1612     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   1613                                      is64bit ? MVT::i64 : MVT::i32);
   1614     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   1615     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   1616   }
   1617 
   1618   if (Model == TLSModel::InitialExec) {
   1619     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1620     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1621                                                 PPCII::MO_TLS);
   1622     SDValue GOTPtr;
   1623     if (is64bit) {
   1624       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1625       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   1626                            PtrVT, GOTReg, TGA);
   1627     } else
   1628       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   1629     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   1630                                    PtrVT, TGA, GOTPtr);
   1631     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   1632   }
   1633 
   1634   if (Model == TLSModel::GeneralDynamic) {
   1635     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1636     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1637     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   1638                                      GOTReg, TGA);
   1639     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
   1640                                    GOTEntryHi, TGA);
   1641 
   1642     // We need a chain node, and don't have one handy.  The underlying
   1643     // call has no side effects, so using the function entry node
   1644     // suffices.
   1645     SDValue Chain = DAG.getEntryNode();
   1646     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1647     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1648     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
   1649                                   PtrVT, ParmReg, TGA);
   1650     // The return value from GET_TLS_ADDR really is in X3 already, but
   1651     // some hacks are needed here to tie everything together.  The extra
   1652     // copies dissolve during subsequent transforms.
   1653     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1654     return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
   1655   }
   1656 
   1657   if (Model == TLSModel::LocalDynamic) {
   1658     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1659     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1660     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   1661                                      GOTReg, TGA);
   1662     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
   1663                                    GOTEntryHi, TGA);
   1664 
   1665     // We need a chain node, and don't have one handy.  The underlying
   1666     // call has no side effects, so using the function entry node
   1667     // suffices.
   1668     SDValue Chain = DAG.getEntryNode();
   1669     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1670     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1671     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
   1672                                   PtrVT, ParmReg, TGA);
   1673     // The return value from GET_TLSLD_ADDR really is in X3 already, but
   1674     // some hacks are needed here to tie everything together.  The extra
   1675     // copies dissolve during subsequent transforms.
   1676     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1677     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
   1678                                       Chain, ParmReg, TGA);
   1679     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   1680   }
   1681 
   1682   llvm_unreachable("Unknown TLS model!");
   1683 }
   1684 
   1685 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   1686                                               SelectionDAG &DAG) const {
   1687   EVT PtrVT = Op.getValueType();
   1688   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   1689   SDLoc DL(GSDN);
   1690   const GlobalValue *GV = GSDN->getGlobal();
   1691 
   1692   // 64-bit SVR4 ABI code is always position-independent.
   1693   // The actual address of the GlobalValue is stored in the TOC.
   1694   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1695     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   1696     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
   1697                        DAG.getRegister(PPC::X2, MVT::i64));
   1698   }
   1699 
   1700   unsigned MOHiFlag, MOLoFlag;
   1701   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
   1702 
   1703   SDValue GAHi =
   1704     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   1705   SDValue GALo =
   1706     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   1707 
   1708   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   1709 
   1710   // If the global reference is actually to a non-lazy-pointer, we have to do an
   1711   // extra load to get the address of the global.
   1712   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   1713     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1714                       false, false, false, 0);
   1715   return Ptr;
   1716 }
   1717 
   1718 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1719   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1720   SDLoc dl(Op);
   1721 
   1722   if (Op.getValueType() == MVT::v2i64) {
   1723     // When the operands themselves are v2i64 values, we need to do something
   1724     // special because VSX has no underlying comparison operations for these.
   1725     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   1726       // Equality can be handled by casting to the legal type for Altivec
   1727       // comparisons, everything else needs to be expanded.
   1728       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   1729         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   1730                  DAG.getSetCC(dl, MVT::v4i32,
   1731                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   1732                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   1733                    CC));
   1734       }
   1735 
   1736       return SDValue();
   1737     }
   1738 
   1739     // We handle most of these in the usual way.
   1740     return Op;
   1741   }
   1742 
   1743   // If we're comparing for equality to zero, expose the fact that this is
   1744   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   1745   // fold the new nodes.
   1746   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1747     if (C->isNullValue() && CC == ISD::SETEQ) {
   1748       EVT VT = Op.getOperand(0).getValueType();
   1749       SDValue Zext = Op.getOperand(0);
   1750       if (VT.bitsLT(MVT::i32)) {
   1751         VT = MVT::i32;
   1752         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   1753       }
   1754       unsigned Log2b = Log2_32(VT.getSizeInBits());
   1755       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   1756       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   1757                                 DAG.getConstant(Log2b, MVT::i32));
   1758       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   1759     }
   1760     // Leave comparisons against 0 and -1 alone for now, since they're usually
   1761     // optimized.  FIXME: revisit this when we can custom lower all setcc
   1762     // optimizations.
   1763     if (C->isAllOnesValue() || C->isNullValue())
   1764       return SDValue();
   1765   }
   1766 
   1767   // If we have an integer seteq/setne, turn it into a compare against zero
   1768   // by xor'ing the rhs with the lhs, which is faster than setting a
   1769   // condition register, reading it back out, and masking the correct bit.  The
   1770   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   1771   // the result to other bit-twiddling opportunities.
   1772   EVT LHSVT = Op.getOperand(0).getValueType();
   1773   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1774     EVT VT = Op.getValueType();
   1775     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   1776                                 Op.getOperand(1));
   1777     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   1778   }
   1779   return SDValue();
   1780 }
   1781 
   1782 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   1783                                       const PPCSubtarget &Subtarget) const {
   1784   SDNode *Node = Op.getNode();
   1785   EVT VT = Node->getValueType(0);
   1786   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1787   SDValue InChain = Node->getOperand(0);
   1788   SDValue VAListPtr = Node->getOperand(1);
   1789   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1790   SDLoc dl(Node);
   1791 
   1792   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   1793 
   1794   // gpr_index
   1795   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1796                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   1797                                     false, false, 0);
   1798   InChain = GprIndex.getValue(1);
   1799 
   1800   if (VT == MVT::i64) {
   1801     // Check if GprIndex is even
   1802     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   1803                                  DAG.getConstant(1, MVT::i32));
   1804     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   1805                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   1806     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   1807                                           DAG.getConstant(1, MVT::i32));
   1808     // Align GprIndex to be even if it isn't
   1809     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   1810                            GprIndex);
   1811   }
   1812 
   1813   // fpr index is 1 byte after gpr
   1814   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1815                                DAG.getConstant(1, MVT::i32));
   1816 
   1817   // fpr
   1818   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1819                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   1820                                     false, false, 0);
   1821   InChain = FprIndex.getValue(1);
   1822 
   1823   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1824                                        DAG.getConstant(8, MVT::i32));
   1825 
   1826   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1827                                         DAG.getConstant(4, MVT::i32));
   1828 
   1829   // areas
   1830   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   1831                                      MachinePointerInfo(), false, false,
   1832                                      false, 0);
   1833   InChain = OverflowArea.getValue(1);
   1834 
   1835   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   1836                                     MachinePointerInfo(), false, false,
   1837                                     false, 0);
   1838   InChain = RegSaveArea.getValue(1);
   1839 
   1840   // select overflow_area if index > 8
   1841   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   1842                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   1843 
   1844   // adjustment constant gpr_index * 4/8
   1845   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   1846                                     VT.isInteger() ? GprIndex : FprIndex,
   1847                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   1848                                                     MVT::i32));
   1849 
   1850   // OurReg = RegSaveArea + RegConstant
   1851   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   1852                                RegConstant);
   1853 
   1854   // Floating types are 32 bytes into RegSaveArea
   1855   if (VT.isFloatingPoint())
   1856     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   1857                          DAG.getConstant(32, MVT::i32));
   1858 
   1859   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   1860   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   1861                                    VT.isInteger() ? GprIndex : FprIndex,
   1862                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   1863                                                    MVT::i32));
   1864 
   1865   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   1866                               VT.isInteger() ? VAListPtr : FprPtr,
   1867                               MachinePointerInfo(SV),
   1868                               MVT::i8, false, false, 0);
   1869 
   1870   // determine if we should load from reg_save_area or overflow_area
   1871   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   1872 
   1873   // increase overflow_area by 4/8 if gpr/fpr > 8
   1874   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   1875                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   1876                                           MVT::i32));
   1877 
   1878   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   1879                              OverflowAreaPlusN);
   1880 
   1881   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   1882                               OverflowAreaPtr,
   1883                               MachinePointerInfo(),
   1884                               MVT::i32, false, false, 0);
   1885 
   1886   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   1887                      false, false, false, 0);
   1888 }
   1889 
   1890 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
   1891                                        const PPCSubtarget &Subtarget) const {
   1892   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   1893 
   1894   // We have to copy the entire va_list struct:
   1895   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   1896   return DAG.getMemcpy(Op.getOperand(0), Op,
   1897                        Op.getOperand(1), Op.getOperand(2),
   1898                        DAG.getConstant(12, MVT::i32), 8, false, true,
   1899                        MachinePointerInfo(), MachinePointerInfo());
   1900 }
   1901 
   1902 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   1903                                                   SelectionDAG &DAG) const {
   1904   return Op.getOperand(0);
   1905 }
   1906 
   1907 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   1908                                                 SelectionDAG &DAG) const {
   1909   SDValue Chain = Op.getOperand(0);
   1910   SDValue Trmp = Op.getOperand(1); // trampoline
   1911   SDValue FPtr = Op.getOperand(2); // nested function
   1912   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   1913   SDLoc dl(Op);
   1914 
   1915   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1916   bool isPPC64 = (PtrVT == MVT::i64);
   1917   Type *IntPtrTy =
   1918     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
   1919                                                              *DAG.getContext());
   1920 
   1921   TargetLowering::ArgListTy Args;
   1922   TargetLowering::ArgListEntry Entry;
   1923 
   1924   Entry.Ty = IntPtrTy;
   1925   Entry.Node = Trmp; Args.push_back(Entry);
   1926 
   1927   // TrampSize == (isPPC64 ? 48 : 40);
   1928   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   1929                                isPPC64 ? MVT::i64 : MVT::i32);
   1930   Args.push_back(Entry);
   1931 
   1932   Entry.Node = FPtr; Args.push_back(Entry);
   1933   Entry.Node = Nest; Args.push_back(Entry);
   1934 
   1935   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   1936   TargetLowering::CallLoweringInfo CLI(DAG);
   1937   CLI.setDebugLoc(dl).setChain(Chain)
   1938     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   1939                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   1940                std::move(Args), 0);
   1941 
   1942   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1943   return CallResult.second;
   1944 }
   1945 
   1946 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   1947                                         const PPCSubtarget &Subtarget) const {
   1948   MachineFunction &MF = DAG.getMachineFunction();
   1949   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1950 
   1951   SDLoc dl(Op);
   1952 
   1953   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   1954     // vastart just stores the address of the VarArgsFrameIndex slot into the
   1955     // memory location argument.
   1956     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1957     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1958     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1959     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   1960                         MachinePointerInfo(SV),
   1961                         false, false, 0);
   1962   }
   1963 
   1964   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   1965   // We suppose the given va_list is already allocated.
   1966   //
   1967   // typedef struct {
   1968   //  char gpr;     /* index into the array of 8 GPRs
   1969   //                 * stored in the register save area
   1970   //                 * gpr=0 corresponds to r3,
   1971   //                 * gpr=1 to r4, etc.
   1972   //                 */
   1973   //  char fpr;     /* index into the array of 8 FPRs
   1974   //                 * stored in the register save area
   1975   //                 * fpr=0 corresponds to f1,
   1976   //                 * fpr=1 to f2, etc.
   1977   //                 */
   1978   //  char *overflow_arg_area;
   1979   //                /* location on stack that holds
   1980   //                 * the next overflow argument
   1981   //                 */
   1982   //  char *reg_save_area;
   1983   //               /* where r3:r10 and f1:f8 (if saved)
   1984   //                * are stored
   1985   //                */
   1986   // } va_list[1];
   1987 
   1988 
   1989   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   1990   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   1991 
   1992 
   1993   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1994 
   1995   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   1996                                             PtrVT);
   1997   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1998                                  PtrVT);
   1999 
   2000   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   2001   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   2002 
   2003   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   2004   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   2005 
   2006   uint64_t FPROffset = 1;
   2007   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   2008 
   2009   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2010 
   2011   // Store first byte : number of int regs
   2012   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   2013                                          Op.getOperand(1),
   2014                                          MachinePointerInfo(SV),
   2015                                          MVT::i8, false, false, 0);
   2016   uint64_t nextOffset = FPROffset;
   2017   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   2018                                   ConstFPROffset);
   2019 
   2020   // Store second byte : number of float regs
   2021   SDValue secondStore =
   2022     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   2023                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   2024                       false, false, 0);
   2025   nextOffset += StackOffset;
   2026   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   2027 
   2028   // Store second word : arguments given on stack
   2029   SDValue thirdStore =
   2030     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   2031                  MachinePointerInfo(SV, nextOffset),
   2032                  false, false, 0);
   2033   nextOffset += FrameOffset;
   2034   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   2035 
   2036   // Store third word : arguments given in registers
   2037   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   2038                       MachinePointerInfo(SV, nextOffset),
   2039                       false, false, 0);
   2040 
   2041 }
   2042 
   2043 #include "PPCGenCallingConv.inc"
   2044 
   2045 // Function whose sole purpose is to kill compiler warnings
   2046 // stemming from unused functions included from PPCGenCallingConv.inc.
   2047 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   2048   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   2049 }
   2050 
   2051 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   2052                                       CCValAssign::LocInfo &LocInfo,
   2053                                       ISD::ArgFlagsTy &ArgFlags,
   2054                                       CCState &State) {
   2055   return true;
   2056 }
   2057 
   2058 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   2059                                              MVT &LocVT,
   2060                                              CCValAssign::LocInfo &LocInfo,
   2061                                              ISD::ArgFlagsTy &ArgFlags,
   2062                                              CCState &State) {
   2063   static const MCPhysReg ArgRegs[] = {
   2064     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2065     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2066   };
   2067   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2068 
   2069   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   2070 
   2071   // Skip one register if the first unallocated register has an even register
   2072   // number and there are still argument registers available which have not been
   2073   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   2074   // need to skip a register if RegNum is odd.
   2075   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   2076     State.AllocateReg(ArgRegs[RegNum]);
   2077   }
   2078 
   2079   // Always return false here, as this function only makes sure that the first
   2080   // unallocated register has an odd register number and does not actually
   2081   // allocate a register for the current argument.
   2082   return false;
   2083 }
   2084 
   2085 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   2086                                                MVT &LocVT,
   2087                                                CCValAssign::LocInfo &LocInfo,
   2088                                                ISD::ArgFlagsTy &ArgFlags,
   2089                                                CCState &State) {
   2090   static const MCPhysReg ArgRegs[] = {
   2091     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2092     PPC::F8
   2093   };
   2094 
   2095   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2096 
   2097   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   2098 
   2099   // If there is only one Floating-point register left we need to put both f64
   2100   // values of a split ppc_fp128 value on the stack.
   2101   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   2102     State.AllocateReg(ArgRegs[RegNum]);
   2103   }
   2104 
   2105   // Always return false here, as this function only makes sure that the two f64
   2106   // values a ppc_fp128 value is split into are both passed in registers or both
   2107   // passed on the stack and does not actually allocate a register for the
   2108   // current argument.
   2109   return false;
   2110 }
   2111 
   2112 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
   2113 /// on Darwin.
   2114 static const MCPhysReg *GetFPR() {
   2115   static const MCPhysReg FPR[] = {
   2116     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2117     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
   2118   };
   2119 
   2120   return FPR;
   2121 }
   2122 
   2123 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   2124 /// the stack.
   2125 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2126                                        unsigned PtrByteSize) {
   2127   unsigned ArgSize = ArgVT.getStoreSize();
   2128   if (Flags.isByVal())
   2129     ArgSize = Flags.getByValSize();
   2130   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2131 
   2132   return ArgSize;
   2133 }
   2134 
   2135 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   2136 /// on the stack.
   2137 static unsigned CalculateStackSlotAlignment(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2138                                             unsigned PtrByteSize) {
   2139   unsigned Align = PtrByteSize;
   2140 
   2141   // Altivec parameters are padded to a 16 byte boundary.
   2142   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2143       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2144       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
   2145     Align = 16;
   2146 
   2147   // ByVal parameters are aligned as requested.
   2148   if (Flags.isByVal()) {
   2149     unsigned BVAlign = Flags.getByValAlign();
   2150     if (BVAlign > PtrByteSize) {
   2151       if (BVAlign % PtrByteSize != 0)
   2152           llvm_unreachable(
   2153             "ByVal alignment is not a multiple of the pointer size");
   2154 
   2155       Align = BVAlign;
   2156     }
   2157   }
   2158 
   2159   return Align;
   2160 }
   2161 
   2162 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   2163 /// ensure minimum alignment required for target.
   2164 static unsigned EnsureStackAlignment(const TargetMachine &Target,
   2165                                      unsigned NumBytes) {
   2166   unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
   2167   unsigned AlignMask = TargetAlign - 1;
   2168   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2169   return NumBytes;
   2170 }
   2171 
   2172 SDValue
   2173 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   2174                                         CallingConv::ID CallConv, bool isVarArg,
   2175                                         const SmallVectorImpl<ISD::InputArg>
   2176                                           &Ins,
   2177                                         SDLoc dl, SelectionDAG &DAG,
   2178                                         SmallVectorImpl<SDValue> &InVals)
   2179                                           const {
   2180   if (Subtarget.isSVR4ABI()) {
   2181     if (Subtarget.isPPC64())
   2182       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   2183                                          dl, DAG, InVals);
   2184     else
   2185       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   2186                                          dl, DAG, InVals);
   2187   } else {
   2188     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   2189                                        dl, DAG, InVals);
   2190   }
   2191 }
   2192 
   2193 SDValue
   2194 PPCTargetLowering::LowerFormalArguments_32SVR4(
   2195                                       SDValue Chain,
   2196                                       CallingConv::ID CallConv, bool isVarArg,
   2197                                       const SmallVectorImpl<ISD::InputArg>
   2198                                         &Ins,
   2199                                       SDLoc dl, SelectionDAG &DAG,
   2200                                       SmallVectorImpl<SDValue> &InVals) const {
   2201 
   2202   // 32-bit SVR4 ABI Stack Frame Layout:
   2203   //              +-----------------------------------+
   2204   //        +-->  |            Back chain             |
   2205   //        |     +-----------------------------------+
   2206   //        |     | Floating-point register save area |
   2207   //        |     +-----------------------------------+
   2208   //        |     |    General register save area     |
   2209   //        |     +-----------------------------------+
   2210   //        |     |          CR save word             |
   2211   //        |     +-----------------------------------+
   2212   //        |     |         VRSAVE save word          |
   2213   //        |     +-----------------------------------+
   2214   //        |     |         Alignment padding         |
   2215   //        |     +-----------------------------------+
   2216   //        |     |     Vector register save area     |
   2217   //        |     +-----------------------------------+
   2218   //        |     |       Local variable space        |
   2219   //        |     +-----------------------------------+
   2220   //        |     |        Parameter list area        |
   2221   //        |     +-----------------------------------+
   2222   //        |     |           LR save word            |
   2223   //        |     +-----------------------------------+
   2224   // SP-->  +---  |            Back chain             |
   2225   //              +-----------------------------------+
   2226   //
   2227   // Specifications:
   2228   //   System V Application Binary Interface PowerPC Processor Supplement
   2229   //   AltiVec Technology Programming Interface Manual
   2230 
   2231   MachineFunction &MF = DAG.getMachineFunction();
   2232   MachineFrameInfo *MFI = MF.getFrameInfo();
   2233   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2234 
   2235   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2236   // Potential tail calls could cause overwriting of argument stack slots.
   2237   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2238                        (CallConv == CallingConv::Fast));
   2239   unsigned PtrByteSize = 4;
   2240 
   2241   // Assign locations to all of the incoming arguments.
   2242   SmallVector<CCValAssign, 16> ArgLocs;
   2243   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2244                  getTargetMachine(), ArgLocs, *DAG.getContext());
   2245 
   2246   // Reserve space for the linkage area on the stack.
   2247   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false);
   2248   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   2249 
   2250   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   2251 
   2252   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2253     CCValAssign &VA = ArgLocs[i];
   2254 
   2255     // Arguments stored in registers.
   2256     if (VA.isRegLoc()) {
   2257       const TargetRegisterClass *RC;
   2258       EVT ValVT = VA.getValVT();
   2259 
   2260       switch (ValVT.getSimpleVT().SimpleTy) {
   2261         default:
   2262           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   2263         case MVT::i1:
   2264         case MVT::i32:
   2265           RC = &PPC::GPRCRegClass;
   2266           break;
   2267         case MVT::f32:
   2268           RC = &PPC::F4RCRegClass;
   2269           break;
   2270         case MVT::f64:
   2271           if (Subtarget.hasVSX())
   2272             RC = &PPC::VSFRCRegClass;
   2273           else
   2274             RC = &PPC::F8RCRegClass;
   2275           break;
   2276         case MVT::v16i8:
   2277         case MVT::v8i16:
   2278         case MVT::v4i32:
   2279         case MVT::v4f32:
   2280           RC = &PPC::VRRCRegClass;
   2281           break;
   2282         case MVT::v2f64:
   2283         case MVT::v2i64:
   2284           RC = &PPC::VSHRCRegClass;
   2285           break;
   2286       }
   2287 
   2288       // Transform the arguments stored in physical registers into virtual ones.
   2289       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2290       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   2291                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   2292 
   2293       if (ValVT == MVT::i1)
   2294         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   2295 
   2296       InVals.push_back(ArgValue);
   2297     } else {
   2298       // Argument stored in memory.
   2299       assert(VA.isMemLoc());
   2300 
   2301       unsigned ArgSize = VA.getLocVT().getStoreSize();
   2302       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2303                                       isImmutable);
   2304 
   2305       // Create load nodes to retrieve arguments from the stack.
   2306       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2307       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2308                                    MachinePointerInfo(),
   2309                                    false, false, false, 0));
   2310     }
   2311   }
   2312 
   2313   // Assign locations to all of the incoming aggregate by value arguments.
   2314   // Aggregates passed by value are stored in the local variable space of the
   2315   // caller's stack frame, right above the parameter list area.
   2316   SmallVector<CCValAssign, 16> ByValArgLocs;
   2317   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2318                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   2319 
   2320   // Reserve stack space for the allocations in CCInfo.
   2321   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2322 
   2323   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   2324 
   2325   // Area that is at least reserved in the caller of this function.
   2326   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   2327   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   2328 
   2329   // Set the size that is at least reserved in caller of this function.  Tail
   2330   // call optimized function's reserved stack space needs to be aligned so that
   2331   // taking the difference between two stack areas will result in an aligned
   2332   // stack.
   2333   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
   2334   FuncInfo->setMinReservedArea(MinReservedArea);
   2335 
   2336   SmallVector<SDValue, 8> MemOps;
   2337 
   2338   // If the function takes variable number of arguments, make a frame index for
   2339   // the start of the first vararg value... for expansion of llvm.va_start.
   2340   if (isVarArg) {
   2341     static const MCPhysReg GPArgRegs[] = {
   2342       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2343       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2344     };
   2345     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2346 
   2347     static const MCPhysReg FPArgRegs[] = {
   2348       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2349       PPC::F8
   2350     };
   2351     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2352 
   2353     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
   2354                                                           NumGPArgRegs));
   2355     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
   2356                                                           NumFPArgRegs));
   2357 
   2358     // Make room for NumGPArgRegs and NumFPArgRegs.
   2359     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2360                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
   2361 
   2362     FuncInfo->setVarArgsStackOffset(
   2363       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2364                              CCInfo.getNextStackOffset(), true));
   2365 
   2366     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2367     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2368 
   2369     // The fixed integer arguments of a variadic function are stored to the
   2370     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2371     // the result of va_next.
   2372     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2373       // Get an existing live-in vreg, or add a new one.
   2374       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2375       if (!VReg)
   2376         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2377 
   2378       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2379       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2380                                    MachinePointerInfo(), false, false, 0);
   2381       MemOps.push_back(Store);
   2382       // Increment the address by four for the next argument to store
   2383       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2384       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2385     }
   2386 
   2387     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2388     // is set.
   2389     // The double arguments are stored to the VarArgsFrameIndex
   2390     // on the stack.
   2391     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2392       // Get an existing live-in vreg, or add a new one.
   2393       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   2394       if (!VReg)
   2395         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   2396 
   2397       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   2398       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2399                                    MachinePointerInfo(), false, false, 0);
   2400       MemOps.push_back(Store);
   2401       // Increment the address by eight for the next argument to store
   2402       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
   2403                                          PtrVT);
   2404       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2405     }
   2406   }
   2407 
   2408   if (!MemOps.empty())
   2409     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   2410 
   2411   return Chain;
   2412 }
   2413 
   2414 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2415 // value to MVT::i64 and then truncate to the correct register size.
   2416 SDValue
   2417 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   2418                                      SelectionDAG &DAG, SDValue ArgVal,
   2419                                      SDLoc dl) const {
   2420   if (Flags.isSExt())
   2421     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2422                          DAG.getValueType(ObjectVT));
   2423   else if (Flags.isZExt())
   2424     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2425                          DAG.getValueType(ObjectVT));
   2426 
   2427   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   2428 }
   2429 
   2430 SDValue
   2431 PPCTargetLowering::LowerFormalArguments_64SVR4(
   2432                                       SDValue Chain,
   2433                                       CallingConv::ID CallConv, bool isVarArg,
   2434                                       const SmallVectorImpl<ISD::InputArg>
   2435                                         &Ins,
   2436                                       SDLoc dl, SelectionDAG &DAG,
   2437                                       SmallVectorImpl<SDValue> &InVals) const {
   2438   // TODO: add description of PPC stack frame format, or at least some docs.
   2439   //
   2440   bool isLittleEndian = Subtarget.isLittleEndian();
   2441   MachineFunction &MF = DAG.getMachineFunction();
   2442   MachineFrameInfo *MFI = MF.getFrameInfo();
   2443   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2444 
   2445   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2446   // Potential tail calls could cause overwriting of argument stack slots.
   2447   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2448                        (CallConv == CallingConv::Fast));
   2449   unsigned PtrByteSize = 8;
   2450 
   2451   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
   2452   unsigned ArgOffset = LinkageSize;
   2453 
   2454   static const MCPhysReg GPR[] = {
   2455     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2456     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2457   };
   2458 
   2459   static const MCPhysReg *FPR = GetFPR();
   2460 
   2461   static const MCPhysReg VR[] = {
   2462     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2463     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2464   };
   2465   static const MCPhysReg VSRH[] = {
   2466     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   2467     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   2468   };
   2469 
   2470   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   2471   const unsigned Num_FPR_Regs = 13;
   2472   const unsigned Num_VR_Regs  = array_lengthof(VR);
   2473 
   2474   unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
   2475 
   2476   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2477   // entry to a function on PPC, the arguments start after the linkage area,
   2478   // although the first ones are often in registers.
   2479 
   2480   SmallVector<SDValue, 8> MemOps;
   2481   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2482   unsigned CurArgIdx = 0;
   2483   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2484     SDValue ArgVal;
   2485     bool needsLoad = false;
   2486     EVT ObjectVT = Ins[ArgNo].VT;
   2487     unsigned ObjSize = ObjectVT.getStoreSize();
   2488     unsigned ArgSize = ObjSize;
   2489     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2490     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
   2491     CurArgIdx = Ins[ArgNo].OrigArgIndex;
   2492 
   2493     /* Respect alignment of argument on the stack.  */
   2494     unsigned Align =
   2495       CalculateStackSlotAlignment(ObjectVT, Flags, PtrByteSize);
   2496     ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2497     unsigned CurArgOffset = ArgOffset;
   2498 
   2499     /* Compute GPR index associated with argument offset.  */
   2500     GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   2501     GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   2502 
   2503     // FIXME the codegen can be much improved in some cases.
   2504     // We do not have to keep everything in memory.
   2505     if (Flags.isByVal()) {
   2506       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2507       ObjSize = Flags.getByValSize();
   2508       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2509       // Empty aggregate parameters do not take up registers.  Examples:
   2510       //   struct { } a;
   2511       //   union  { } b;
   2512       //   int c[0];
   2513       // etc.  However, we have to provide a place-holder in InVals, so
   2514       // pretend we have an 8-byte item at the current address for that
   2515       // purpose.
   2516       if (!ObjSize) {
   2517         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2518         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2519         InVals.push_back(FIN);
   2520         continue;
   2521       }
   2522 
   2523       // All aggregates smaller than 8 bytes must be passed right-justified.
   2524       if (ObjSize < PtrByteSize && !isLittleEndian)
   2525         CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
   2526       // The value of the object is its address.
   2527       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2528       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2529       InVals.push_back(FIN);
   2530 
   2531       if (ObjSize < 8) {
   2532         if (GPR_idx != Num_GPR_Regs) {
   2533           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2534           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2535           SDValue Store;
   2536 
   2537           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   2538             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   2539                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   2540             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2541                                       MachinePointerInfo(FuncArg),
   2542                                       ObjType, false, false, 0);
   2543           } else {
   2544             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   2545             // store the whole register as-is to the parameter save area
   2546             // slot.  The address of the parameter was already calculated
   2547             // above (InVals.push_back(FIN)) to be the right-justified
   2548             // offset within the slot.  For this store, we need a new
   2549             // frame index that points at the beginning of the slot.
   2550             int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2551             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2552             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2553                                  MachinePointerInfo(FuncArg),
   2554                                  false, false, 0);
   2555           }
   2556 
   2557           MemOps.push_back(Store);
   2558         }
   2559         // Whether we copied from a register or not, advance the offset
   2560         // into the parameter save area by a full doubleword.
   2561         ArgOffset += PtrByteSize;
   2562         continue;
   2563       }
   2564 
   2565       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2566         // Store whatever pieces of the object are in registers
   2567         // to memory.  ArgOffset will be the address of the beginning
   2568         // of the object.
   2569         if (GPR_idx != Num_GPR_Regs) {
   2570           unsigned VReg;
   2571           VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2572           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2573           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2574           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2575           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2576                                        MachinePointerInfo(FuncArg, j),
   2577                                        false, false, 0);
   2578           MemOps.push_back(Store);
   2579           ++GPR_idx;
   2580           ArgOffset += PtrByteSize;
   2581         } else {
   2582           ArgOffset += ArgSize - j;
   2583           break;
   2584         }
   2585       }
   2586       continue;
   2587     }
   2588 
   2589     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2590     default: llvm_unreachable("Unhandled argument type!");
   2591     case MVT::i1:
   2592     case MVT::i32:
   2593     case MVT::i64:
   2594       if (GPR_idx != Num_GPR_Regs) {
   2595         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2596         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2597 
   2598         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   2599           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2600           // value to MVT::i64 and then truncate to the correct register size.
   2601           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2602       } else {
   2603         needsLoad = true;
   2604         ArgSize = PtrByteSize;
   2605       }
   2606       ArgOffset += 8;
   2607       break;
   2608 
   2609     case MVT::f32:
   2610     case MVT::f64:
   2611       if (FPR_idx != Num_FPR_Regs) {
   2612         unsigned VReg;
   2613 
   2614         if (ObjectVT == MVT::f32)
   2615           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2616         else
   2617           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
   2618                                             &PPC::VSFRCRegClass :
   2619                                             &PPC::F8RCRegClass);
   2620 
   2621         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2622         ++FPR_idx;
   2623       } else {
   2624         needsLoad = true;
   2625         ArgSize = PtrByteSize;
   2626       }
   2627 
   2628       ArgOffset += 8;
   2629       break;
   2630     case MVT::v4f32:
   2631     case MVT::v4i32:
   2632     case MVT::v8i16:
   2633     case MVT::v16i8:
   2634     case MVT::v2f64:
   2635     case MVT::v2i64:
   2636       if (VR_idx != Num_VR_Regs) {
   2637         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
   2638                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
   2639                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2640         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2641         ++VR_idx;
   2642       } else {
   2643         needsLoad = true;
   2644       }
   2645       ArgOffset += 16;
   2646       break;
   2647     }
   2648 
   2649     // We need to load the argument to a virtual register if we determined
   2650     // above that we ran out of physical registers of the appropriate type.
   2651     if (needsLoad) {
   2652       if (ObjSize < ArgSize && !isLittleEndian)
   2653         CurArgOffset += ArgSize - ObjSize;
   2654       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   2655       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2656       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2657                            false, false, false, 0);
   2658     }
   2659 
   2660     InVals.push_back(ArgVal);
   2661   }
   2662 
   2663   // Area that is at least reserved in the caller of this function.
   2664   unsigned MinReservedArea;
   2665   MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   2666 
   2667   // Set the size that is at least reserved in caller of this function.  Tail
   2668   // call optimized functions' reserved stack space needs to be aligned so that
   2669   // taking the difference between two stack areas will result in an aligned
   2670   // stack.
   2671   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
   2672   FuncInfo->setMinReservedArea(MinReservedArea);
   2673 
   2674   // If the function takes variable number of arguments, make a frame index for
   2675   // the start of the first vararg value... for expansion of llvm.va_start.
   2676   if (isVarArg) {
   2677     int Depth = ArgOffset;
   2678 
   2679     FuncInfo->setVarArgsFrameIndex(
   2680       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   2681     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2682 
   2683     // If this function is vararg, store any remaining integer argument regs
   2684     // to their spots on the stack so that they may be loaded by deferencing the
   2685     // result of va_next.
   2686     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   2687          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   2688       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2689       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2690       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2691                                    MachinePointerInfo(), false, false, 0);
   2692       MemOps.push_back(Store);
   2693       // Increment the address by four for the next argument to store
   2694       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
   2695       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2696     }
   2697   }
   2698 
   2699   if (!MemOps.empty())
   2700     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   2701 
   2702   return Chain;
   2703 }
   2704 
   2705 SDValue
   2706 PPCTargetLowering::LowerFormalArguments_Darwin(
   2707                                       SDValue Chain,
   2708                                       CallingConv::ID CallConv, bool isVarArg,
   2709                                       const SmallVectorImpl<ISD::InputArg>
   2710                                         &Ins,
   2711                                       SDLoc dl, SelectionDAG &DAG,
   2712                                       SmallVectorImpl<SDValue> &InVals) const {
   2713   // TODO: add description of PPC stack frame format, or at least some docs.
   2714   //
   2715   MachineFunction &MF = DAG.getMachineFunction();
   2716   MachineFrameInfo *MFI = MF.getFrameInfo();
   2717   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2718 
   2719   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2720   bool isPPC64 = PtrVT == MVT::i64;
   2721   // Potential tail calls could cause overwriting of argument stack slots.
   2722   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2723                        (CallConv == CallingConv::Fast));
   2724   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2725 
   2726   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2727   unsigned ArgOffset = LinkageSize;
   2728   // Area that is at least reserved in caller of this function.
   2729   unsigned MinReservedArea = ArgOffset;
   2730 
   2731   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   2732     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2733     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2734   };
   2735   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   2736     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2737     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2738   };
   2739 
   2740   static const MCPhysReg *FPR = GetFPR();
   2741 
   2742   static const MCPhysReg VR[] = {
   2743     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2744     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2745   };
   2746 
   2747   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   2748   const unsigned Num_FPR_Regs = 13;
   2749   const unsigned Num_VR_Regs  = array_lengthof( VR);
   2750 
   2751   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2752 
   2753   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   2754 
   2755   // In 32-bit non-varargs functions, the stack space for vectors is after the
   2756   // stack space for non-vectors.  We do not use this space unless we have
   2757   // too many vectors to fit in registers, something that only occurs in
   2758   // constructed examples:), but we have to walk the arglist to figure
   2759   // that out...for the pathological case, compute VecArgOffset as the
   2760   // start of the vector parameter area.  Computing VecArgOffset is the
   2761   // entire point of the following loop.
   2762   unsigned VecArgOffset = ArgOffset;
   2763   if (!isVarArg && !isPPC64) {
   2764     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   2765          ++ArgNo) {
   2766       EVT ObjectVT = Ins[ArgNo].VT;
   2767       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2768 
   2769       if (Flags.isByVal()) {
   2770         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   2771         unsigned ObjSize = Flags.getByValSize();
   2772         unsigned ArgSize =
   2773                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2774         VecArgOffset += ArgSize;
   2775         continue;
   2776       }
   2777 
   2778       switch(ObjectVT.getSimpleVT().SimpleTy) {
   2779       default: llvm_unreachable("Unhandled argument type!");
   2780       case MVT::i1:
   2781       case MVT::i32:
   2782       case MVT::f32:
   2783         VecArgOffset += 4;
   2784         break;
   2785       case MVT::i64:  // PPC64
   2786       case MVT::f64:
   2787         // FIXME: We are guaranteed to be !isPPC64 at this point.
   2788         // Does MVT::i64 apply?
   2789         VecArgOffset += 8;
   2790         break;
   2791       case MVT::v4f32:
   2792       case MVT::v4i32:
   2793       case MVT::v8i16:
   2794       case MVT::v16i8:
   2795         // Nothing to do, we're only looking at Nonvector args here.
   2796         break;
   2797       }
   2798     }
   2799   }
   2800   // We've found where the vector parameter area in memory is.  Skip the
   2801   // first 12 parameters; these don't use that memory.
   2802   VecArgOffset = ((VecArgOffset+15)/16)*16;
   2803   VecArgOffset += 12*16;
   2804 
   2805   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2806   // entry to a function on PPC, the arguments start after the linkage area,
   2807   // although the first ones are often in registers.
   2808 
   2809   SmallVector<SDValue, 8> MemOps;
   2810   unsigned nAltivecParamsAtEnd = 0;
   2811   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2812   unsigned CurArgIdx = 0;
   2813   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2814     SDValue ArgVal;
   2815     bool needsLoad = false;
   2816     EVT ObjectVT = Ins[ArgNo].VT;
   2817     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   2818     unsigned ArgSize = ObjSize;
   2819     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2820     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
   2821     CurArgIdx = Ins[ArgNo].OrigArgIndex;
   2822 
   2823     unsigned CurArgOffset = ArgOffset;
   2824 
   2825     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   2826     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   2827         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   2828       if (isVarArg || isPPC64) {
   2829         MinReservedArea = ((MinReservedArea+15)/16)*16;
   2830         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   2831                                                   Flags,
   2832                                                   PtrByteSize);
   2833       } else  nAltivecParamsAtEnd++;
   2834     } else
   2835       // Calculate min reserved area.
   2836       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   2837                                                 Flags,
   2838                                                 PtrByteSize);
   2839 
   2840     // FIXME the codegen can be much improved in some cases.
   2841     // We do not have to keep everything in memory.
   2842     if (Flags.isByVal()) {
   2843       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2844       ObjSize = Flags.getByValSize();
   2845       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2846       // Objects of size 1 and 2 are right justified, everything else is
   2847       // left justified.  This means the memory address is adjusted forwards.
   2848       if (ObjSize==1 || ObjSize==2) {
   2849         CurArgOffset = CurArgOffset + (4 - ObjSize);
   2850       }
   2851       // The value of the object is its address.
   2852       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2853       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2854       InVals.push_back(FIN);
   2855       if (ObjSize==1 || ObjSize==2) {
   2856         if (GPR_idx != Num_GPR_Regs) {
   2857           unsigned VReg;
   2858           if (isPPC64)
   2859             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2860           else
   2861             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2862           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2863           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   2864           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2865                                             MachinePointerInfo(FuncArg),
   2866                                             ObjType, false, false, 0);
   2867           MemOps.push_back(Store);
   2868           ++GPR_idx;
   2869         }
   2870 
   2871         ArgOffset += PtrByteSize;
   2872 
   2873         continue;
   2874       }
   2875       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2876         // Store whatever pieces of the object are in registers
   2877         // to memory.  ArgOffset will be the address of the beginning
   2878         // of the object.
   2879         if (GPR_idx != Num_GPR_Regs) {
   2880           unsigned VReg;
   2881           if (isPPC64)
   2882             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2883           else
   2884             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2885           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2886           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2887           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2888           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2889                                        MachinePointerInfo(FuncArg, j),
   2890                                        false, false, 0);
   2891           MemOps.push_back(Store);
   2892           ++GPR_idx;
   2893           ArgOffset += PtrByteSize;
   2894         } else {
   2895           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   2896           break;
   2897         }
   2898       }
   2899       continue;
   2900     }
   2901 
   2902     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2903     default: llvm_unreachable("Unhandled argument type!");
   2904     case MVT::i1:
   2905     case MVT::i32:
   2906       if (!isPPC64) {
   2907         if (GPR_idx != Num_GPR_Regs) {
   2908           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2909           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2910 
   2911           if (ObjectVT == MVT::i1)
   2912             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   2913 
   2914           ++GPR_idx;
   2915         } else {
   2916           needsLoad = true;
   2917           ArgSize = PtrByteSize;
   2918         }
   2919         // All int arguments reserve stack space in the Darwin ABI.
   2920         ArgOffset += PtrByteSize;
   2921         break;
   2922       }
   2923       // FALLTHROUGH
   2924     case MVT::i64:  // PPC64
   2925       if (GPR_idx != Num_GPR_Regs) {
   2926         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2927         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2928 
   2929         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   2930           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2931           // value to MVT::i64 and then truncate to the correct register size.
   2932           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2933 
   2934         ++GPR_idx;
   2935       } else {
   2936         needsLoad = true;
   2937         ArgSize = PtrByteSize;
   2938       }
   2939       // All int arguments reserve stack space in the Darwin ABI.
   2940       ArgOffset += 8;
   2941       break;
   2942 
   2943     case MVT::f32:
   2944     case MVT::f64:
   2945       // Every 4 bytes of argument space consumes one of the GPRs available for
   2946       // argument passing.
   2947       if (GPR_idx != Num_GPR_Regs) {
   2948         ++GPR_idx;
   2949         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   2950           ++GPR_idx;
   2951       }
   2952       if (FPR_idx != Num_FPR_Regs) {
   2953         unsigned VReg;
   2954 
   2955         if (ObjectVT == MVT::f32)
   2956           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2957         else
   2958           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2959 
   2960         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2961         ++FPR_idx;
   2962       } else {
   2963         needsLoad = true;
   2964       }
   2965 
   2966       // All FP arguments reserve stack space in the Darwin ABI.
   2967       ArgOffset += isPPC64 ? 8 : ObjSize;
   2968       break;
   2969     case MVT::v4f32:
   2970     case MVT::v4i32:
   2971     case MVT::v8i16:
   2972     case MVT::v16i8:
   2973       // Note that vector arguments in registers don't reserve stack space,
   2974       // except in varargs functions.
   2975       if (VR_idx != Num_VR_Regs) {
   2976         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2977         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2978         if (isVarArg) {
   2979           while ((ArgOffset % 16) != 0) {
   2980             ArgOffset += PtrByteSize;
   2981             if (GPR_idx != Num_GPR_Regs)
   2982               GPR_idx++;
   2983           }
   2984           ArgOffset += 16;
   2985           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2986         }
   2987         ++VR_idx;
   2988       } else {
   2989         if (!isVarArg && !isPPC64) {
   2990           // Vectors go after all the nonvectors.
   2991           CurArgOffset = VecArgOffset;
   2992           VecArgOffset += 16;
   2993         } else {
   2994           // Vectors are aligned.
   2995           ArgOffset = ((ArgOffset+15)/16)*16;
   2996           CurArgOffset = ArgOffset;
   2997           ArgOffset += 16;
   2998         }
   2999         needsLoad = true;
   3000       }
   3001       break;
   3002     }
   3003 
   3004     // We need to load the argument to a virtual register if we determined above
   3005     // that we ran out of physical registers of the appropriate type.
   3006     if (needsLoad) {
   3007       int FI = MFI->CreateFixedObject(ObjSize,
   3008                                       CurArgOffset + (ArgSize - ObjSize),
   3009                                       isImmutable);
   3010       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3011       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3012                            false, false, false, 0);
   3013     }
   3014 
   3015     InVals.push_back(ArgVal);
   3016   }
   3017 
   3018   // Allow for Altivec parameters at the end, if needed.
   3019   if (nAltivecParamsAtEnd) {
   3020     MinReservedArea = ((MinReservedArea+15)/16)*16;
   3021     MinReservedArea += 16*nAltivecParamsAtEnd;
   3022   }
   3023 
   3024   // Area that is at least reserved in the caller of this function.
   3025   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   3026 
   3027   // Set the size that is at least reserved in caller of this function.  Tail
   3028   // call optimized functions' reserved stack space needs to be aligned so that
   3029   // taking the difference between two stack areas will result in an aligned
   3030   // stack.
   3031   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
   3032   FuncInfo->setMinReservedArea(MinReservedArea);
   3033 
   3034   // If the function takes variable number of arguments, make a frame index for
   3035   // the start of the first vararg value... for expansion of llvm.va_start.
   3036   if (isVarArg) {
   3037     int Depth = ArgOffset;
   3038 
   3039     FuncInfo->setVarArgsFrameIndex(
   3040       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3041                              Depth, true));
   3042     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3043 
   3044     // If this function is vararg, store any remaining integer argument regs
   3045     // to their spots on the stack so that they may be loaded by deferencing the
   3046     // result of va_next.
   3047     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   3048       unsigned VReg;
   3049 
   3050       if (isPPC64)
   3051         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3052       else
   3053         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3054 
   3055       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3056       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3057                                    MachinePointerInfo(), false, false, 0);
   3058       MemOps.push_back(Store);
   3059       // Increment the address by four for the next argument to store
   3060       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   3061       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3062     }
   3063   }
   3064 
   3065   if (!MemOps.empty())
   3066     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3067 
   3068   return Chain;
   3069 }
   3070 
   3071 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   3072 /// adjusted to accommodate the arguments for the tailcall.
   3073 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   3074                                    unsigned ParamSize) {
   3075 
   3076   if (!isTailCall) return 0;
   3077 
   3078   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   3079   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   3080   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   3081   // Remember only if the new adjustement is bigger.
   3082   if (SPDiff < FI->getTailCallSPDelta())
   3083     FI->setTailCallSPDelta(SPDiff);
   3084 
   3085   return SPDiff;
   3086 }
   3087 
   3088 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   3089 /// for tail call optimization. Targets which want to do tail call
   3090 /// optimization should implement this function.
   3091 bool
   3092 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   3093                                                      CallingConv::ID CalleeCC,
   3094                                                      bool isVarArg,
   3095                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   3096                                                      SelectionDAG& DAG) const {
   3097   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   3098     return false;
   3099 
   3100   // Variable argument functions are not supported.
   3101   if (isVarArg)
   3102     return false;
   3103 
   3104   MachineFunction &MF = DAG.getMachineFunction();
   3105   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   3106   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   3107     // Functions containing by val parameters are not supported.
   3108     for (unsigned i = 0; i != Ins.size(); i++) {
   3109        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   3110        if (Flags.isByVal()) return false;
   3111     }
   3112 
   3113     // Non-PIC/GOT tail calls are supported.
   3114     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   3115       return true;
   3116 
   3117     // At the moment we can only do local tail calls (in same module, hidden
   3118     // or protected) if we are generating PIC.
   3119     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3120       return G->getGlobal()->hasHiddenVisibility()
   3121           || G->getGlobal()->hasProtectedVisibility();
   3122   }
   3123 
   3124   return false;
   3125 }
   3126 
   3127 /// isCallCompatibleAddress - Return the immediate to use if the specified
   3128 /// 32-bit value is representable in the immediate field of a BxA instruction.
   3129 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   3130   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   3131   if (!C) return nullptr;
   3132 
   3133   int Addr = C->getZExtValue();
   3134   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   3135       SignExtend32<26>(Addr) != Addr)
   3136     return nullptr;  // Top 6 bits have to be sext of immediate.
   3137 
   3138   return DAG.getConstant((int)C->getZExtValue() >> 2,
   3139                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   3140 }
   3141 
   3142 namespace {
   3143 
   3144 struct TailCallArgumentInfo {
   3145   SDValue Arg;
   3146   SDValue FrameIdxOp;
   3147   int       FrameIdx;
   3148 
   3149   TailCallArgumentInfo() : FrameIdx(0) {}
   3150 };
   3151 
   3152 }
   3153 
   3154 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   3155 static void
   3156 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   3157                                            SDValue Chain,
   3158                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   3159                    SmallVectorImpl<SDValue> &MemOpChains,
   3160                    SDLoc dl) {
   3161   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   3162     SDValue Arg = TailCallArgs[i].Arg;
   3163     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   3164     int FI = TailCallArgs[i].FrameIdx;
   3165     // Store relative to framepointer.
   3166     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   3167                                        MachinePointerInfo::getFixedStack(FI),
   3168                                        false, false, 0));
   3169   }
   3170 }
   3171 
   3172 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   3173 /// the appropriate stack slot for the tail call optimized function call.
   3174 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   3175                                                MachineFunction &MF,
   3176                                                SDValue Chain,
   3177                                                SDValue OldRetAddr,
   3178                                                SDValue OldFP,
   3179                                                int SPDiff,
   3180                                                bool isPPC64,
   3181                                                bool isDarwinABI,
   3182                                                SDLoc dl) {
   3183   if (SPDiff) {
   3184     // Calculate the new stack slot for the return address.
   3185     int SlotSize = isPPC64 ? 8 : 4;
   3186     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
   3187                                                                    isDarwinABI);
   3188     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3189                                                           NewRetAddrLoc, true);
   3190     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3191     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   3192     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   3193                          MachinePointerInfo::getFixedStack(NewRetAddr),
   3194                          false, false, 0);
   3195 
   3196     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   3197     // slot as the FP is never overwritten.
   3198     if (isDarwinABI) {
   3199       int NewFPLoc =
   3200         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
   3201       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   3202                                                           true);
   3203       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   3204       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   3205                            MachinePointerInfo::getFixedStack(NewFPIdx),
   3206                            false, false, 0);
   3207     }
   3208   }
   3209   return Chain;
   3210 }
   3211 
   3212 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   3213 /// the position of the argument.
   3214 static void
   3215 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   3216                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   3217                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   3218   int Offset = ArgOffset + SPDiff;
   3219   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   3220   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   3221   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3222   SDValue FIN = DAG.getFrameIndex(FI, VT);
   3223   TailCallArgumentInfo Info;
   3224   Info.Arg = Arg;
   3225   Info.FrameIdxOp = FIN;
   3226   Info.FrameIdx = FI;
   3227   TailCallArguments.push_back(Info);
   3228 }
   3229 
   3230 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   3231 /// stack slot. Returns the chain as result and the loaded frame pointers in
   3232 /// LROpOut/FPOpout. Used when tail calling.
   3233 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   3234                                                         int SPDiff,
   3235                                                         SDValue Chain,
   3236                                                         SDValue &LROpOut,
   3237                                                         SDValue &FPOpOut,
   3238                                                         bool isDarwinABI,
   3239                                                         SDLoc dl) const {
   3240   if (SPDiff) {
   3241     // Load the LR and FP stack slot for later adjusting.
   3242     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   3243     LROpOut = getReturnAddrFrameIndex(DAG);
   3244     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   3245                           false, false, false, 0);
   3246     Chain = SDValue(LROpOut.getNode(), 1);
   3247 
   3248     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   3249     // slot as the FP is never overwritten.
   3250     if (isDarwinABI) {
   3251       FPOpOut = getFramePointerFrameIndex(DAG);
   3252       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   3253                             false, false, false, 0);
   3254       Chain = SDValue(FPOpOut.getNode(), 1);
   3255     }
   3256   }
   3257   return Chain;
   3258 }
   3259 
   3260 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   3261 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   3262 /// specified by the specific parameter attribute. The copy will be passed as
   3263 /// a byval function parameter.
   3264 /// Sometimes what we are copying is the end of a larger object, the part that
   3265 /// does not fit in registers.
   3266 static SDValue
   3267 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   3268                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   3269                           SDLoc dl) {
   3270   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   3271   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   3272                        false, false, MachinePointerInfo(),
   3273                        MachinePointerInfo());
   3274 }
   3275 
   3276 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   3277 /// tail calls.
   3278 static void
   3279 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   3280                  SDValue Arg, SDValue PtrOff, int SPDiff,
   3281                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   3282                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   3283                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
   3284                  SDLoc dl) {
   3285   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3286   if (!isTailCall) {
   3287     if (isVector) {
   3288       SDValue StackPtr;
   3289       if (isPPC64)
   3290         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3291       else
   3292         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3293       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3294                            DAG.getConstant(ArgOffset, PtrVT));
   3295     }
   3296     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3297                                        MachinePointerInfo(), false, false, 0));
   3298   // Calculate and remember argument location.
   3299   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   3300                                   TailCallArguments);
   3301 }
   3302 
   3303 static
   3304 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   3305                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   3306                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   3307                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   3308   MachineFunction &MF = DAG.getMachineFunction();
   3309 
   3310   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   3311   // might overwrite each other in case of tail call optimization.
   3312   SmallVector<SDValue, 8> MemOpChains2;
   3313   // Do not flag preceding copytoreg stuff together with the following stuff.
   3314   InFlag = SDValue();
   3315   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   3316                                     MemOpChains2, dl);
   3317   if (!MemOpChains2.empty())
   3318     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   3319 
   3320   // Store the return address to the appropriate stack slot.
   3321   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   3322                                         isPPC64, isDarwinABI, dl);
   3323 
   3324   // Emit callseq_end just before tailcall node.
   3325   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3326                              DAG.getIntPtrConstant(0, true), InFlag, dl);
   3327   InFlag = Chain.getValue(1);
   3328 }
   3329 
   3330 static
   3331 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   3332                      SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
   3333                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
   3334                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   3335                      const PPCSubtarget &Subtarget) {
   3336 
   3337   bool isPPC64 = Subtarget.isPPC64();
   3338   bool isSVR4ABI = Subtarget.isSVR4ABI();
   3339 
   3340   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3341   NodeTys.push_back(MVT::Other);   // Returns a chain
   3342   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   3343 
   3344   unsigned CallOpc = PPCISD::CALL;
   3345 
   3346   bool needIndirectCall = true;
   3347   if (!isSVR4ABI || !isPPC64)
   3348     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   3349       // If this is an absolute destination address, use the munged value.
   3350       Callee = SDValue(Dest, 0);
   3351       needIndirectCall = false;
   3352     }
   3353 
   3354   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3355     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
   3356     // Use indirect calls for ALL functions calls in JIT mode, since the
   3357     // far-call stubs may be outside relocation limits for a BL instruction.
   3358     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
   3359       unsigned OpFlags = 0;
   3360       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3361           (Subtarget.getTargetTriple().isMacOSX() &&
   3362            Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   3363           (G->getGlobal()->isDeclaration() ||
   3364            G->getGlobal()->isWeakForLinker())) {
   3365         // PC-relative references to external symbols should go through $stub,
   3366         // unless we're building with the leopard linker or later, which
   3367         // automatically synthesizes these stubs.
   3368         OpFlags = PPCII::MO_DARWIN_STUB;
   3369       }
   3370 
   3371       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   3372       // every direct call is) turn it into a TargetGlobalAddress /
   3373       // TargetExternalSymbol node so that legalize doesn't hack it.
   3374       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   3375                                           Callee.getValueType(),
   3376                                           0, OpFlags);
   3377       needIndirectCall = false;
   3378     }
   3379   }
   3380 
   3381   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   3382     unsigned char OpFlags = 0;
   3383 
   3384     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3385         (Subtarget.getTargetTriple().isMacOSX() &&
   3386          Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
   3387       // PC-relative references to external symbols should go through $stub,
   3388       // unless we're building with the leopard linker or later, which
   3389       // automatically synthesizes these stubs.
   3390       OpFlags = PPCII::MO_DARWIN_STUB;
   3391     }
   3392 
   3393     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   3394                                          OpFlags);
   3395     needIndirectCall = false;
   3396   }
   3397 
   3398   if (needIndirectCall) {
   3399     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   3400     // to do the call, we can't use PPCISD::CALL.
   3401     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   3402 
   3403     if (isSVR4ABI && isPPC64) {
   3404       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   3405       // entry point, but to the function descriptor (the function entry point
   3406       // address is part of the function descriptor though).
   3407       // The function descriptor is a three doubleword structure with the
   3408       // following fields: function entry point, TOC base address and
   3409       // environment pointer.
   3410       // Thus for a call through a function pointer, the following actions need
   3411       // to be performed:
   3412       //   1. Save the TOC of the caller in the TOC save area of its stack
   3413       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   3414       //   2. Load the address of the function entry point from the function
   3415       //      descriptor.
   3416       //   3. Load the TOC of the callee from the function descriptor into r2.
   3417       //   4. Load the environment pointer from the function descriptor into
   3418       //      r11.
   3419       //   5. Branch to the function entry point address.
   3420       //   6. On return of the callee, the TOC of the caller needs to be
   3421       //      restored (this is done in FinishCall()).
   3422       //
   3423       // All those operations are flagged together to ensure that no other
   3424       // operations can be scheduled in between. E.g. without flagging the
   3425       // operations together, a TOC access in the caller could be scheduled
   3426       // between the load of the callee TOC and the branch to the callee, which
   3427       // results in the TOC access going through the TOC of the callee instead
   3428       // of going through the TOC of the caller, which leads to incorrect code.
   3429 
   3430       // Load the address of the function entry point from the function
   3431       // descriptor.
   3432       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
   3433       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
   3434                               makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   3435       Chain = LoadFuncPtr.getValue(1);
   3436       InFlag = LoadFuncPtr.getValue(2);
   3437 
   3438       // Load environment pointer into r11.
   3439       // Offset of the environment pointer within the function descriptor.
   3440       SDValue PtrOff = DAG.getIntPtrConstant(16);
   3441 
   3442       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   3443       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
   3444                                        InFlag);
   3445       Chain = LoadEnvPtr.getValue(1);
   3446       InFlag = LoadEnvPtr.getValue(2);
   3447 
   3448       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   3449                                         InFlag);
   3450       Chain = EnvVal.getValue(0);
   3451       InFlag = EnvVal.getValue(1);
   3452 
   3453       // Load TOC of the callee into r2. We are using a target-specific load
   3454       // with r2 hard coded, because the result of a target-independent load
   3455       // would never go directly into r2, since r2 is a reserved register (which
   3456       // prevents the register allocator from allocating it), resulting in an
   3457       // additional register being allocated and an unnecessary move instruction
   3458       // being generated.
   3459       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3460       SDValue TOCOff = DAG.getIntPtrConstant(8);
   3461       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   3462       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
   3463                                        AddTOC, InFlag);
   3464       Chain = LoadTOCPtr.getValue(0);
   3465       InFlag = LoadTOCPtr.getValue(1);
   3466 
   3467       MTCTROps[0] = Chain;
   3468       MTCTROps[1] = LoadFuncPtr;
   3469       MTCTROps[2] = InFlag;
   3470     }
   3471 
   3472     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   3473                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   3474     InFlag = Chain.getValue(1);
   3475 
   3476     NodeTys.clear();
   3477     NodeTys.push_back(MVT::Other);
   3478     NodeTys.push_back(MVT::Glue);
   3479     Ops.push_back(Chain);
   3480     CallOpc = PPCISD::BCTRL;
   3481     Callee.setNode(nullptr);
   3482     // Add use of X11 (holding environment pointer)
   3483     if (isSVR4ABI && isPPC64)
   3484       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   3485     // Add CTR register as callee so a bctr can be emitted later.
   3486     if (isTailCall)
   3487       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   3488   }
   3489 
   3490   // If this is a direct call, pass the chain and the callee.
   3491   if (Callee.getNode()) {
   3492     Ops.push_back(Chain);
   3493     Ops.push_back(Callee);
   3494   }
   3495   // If this is a tail call add stack pointer delta.
   3496   if (isTailCall)
   3497     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   3498 
   3499   // Add argument registers to the end of the list so that they are known live
   3500   // into the call.
   3501   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   3502     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   3503                                   RegsToPass[i].second.getValueType()));
   3504 
   3505   return CallOpc;
   3506 }
   3507 
   3508 static
   3509 bool isLocalCall(const SDValue &Callee)
   3510 {
   3511   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3512     return !G->getGlobal()->isDeclaration() &&
   3513            !G->getGlobal()->isWeakForLinker();
   3514   return false;
   3515 }
   3516 
   3517 SDValue
   3518 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   3519                                    CallingConv::ID CallConv, bool isVarArg,
   3520                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   3521                                    SDLoc dl, SelectionDAG &DAG,
   3522                                    SmallVectorImpl<SDValue> &InVals) const {
   3523 
   3524   SmallVector<CCValAssign, 16> RVLocs;
   3525   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3526                     getTargetMachine(), RVLocs, *DAG.getContext());
   3527   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   3528 
   3529   // Copy all of the result registers out of their specified physreg.
   3530   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   3531     CCValAssign &VA = RVLocs[i];
   3532     assert(VA.isRegLoc() && "Can only return in registers!");
   3533 
   3534     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   3535                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   3536     Chain = Val.getValue(1);
   3537     InFlag = Val.getValue(2);
   3538 
   3539     switch (VA.getLocInfo()) {
   3540     default: llvm_unreachable("Unknown loc info!");
   3541     case CCValAssign::Full: break;
   3542     case CCValAssign::AExt:
   3543       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3544       break;
   3545     case CCValAssign::ZExt:
   3546       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   3547                         DAG.getValueType(VA.getValVT()));
   3548       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3549       break;
   3550     case CCValAssign::SExt:
   3551       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   3552                         DAG.getValueType(VA.getValVT()));
   3553       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3554       break;
   3555     }
   3556 
   3557     InVals.push_back(Val);
   3558   }
   3559 
   3560   return Chain;
   3561 }
   3562 
   3563 SDValue
   3564 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
   3565                               bool isTailCall, bool isVarArg,
   3566                               SelectionDAG &DAG,
   3567                               SmallVector<std::pair<unsigned, SDValue>, 8>
   3568                                 &RegsToPass,
   3569                               SDValue InFlag, SDValue Chain,
   3570                               SDValue &Callee,
   3571                               int SPDiff, unsigned NumBytes,
   3572                               const SmallVectorImpl<ISD::InputArg> &Ins,
   3573                               SmallVectorImpl<SDValue> &InVals) const {
   3574   std::vector<EVT> NodeTys;
   3575   SmallVector<SDValue, 8> Ops;
   3576   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
   3577                                  isTailCall, RegsToPass, Ops, NodeTys,
   3578                                  Subtarget);
   3579 
   3580   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   3581   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   3582     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   3583 
   3584   // When performing tail call optimization the callee pops its arguments off
   3585   // the stack. Account for this here so these bytes can be pushed back on in
   3586   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   3587   int BytesCalleePops =
   3588     (CallConv == CallingConv::Fast &&
   3589      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   3590 
   3591   // Add a register mask operand representing the call-preserved registers.
   3592   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   3593   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   3594   assert(Mask && "Missing call preserved mask for calling convention");
   3595   Ops.push_back(DAG.getRegisterMask(Mask));
   3596 
   3597   if (InFlag.getNode())
   3598     Ops.push_back(InFlag);
   3599 
   3600   // Emit tail call.
   3601   if (isTailCall) {
   3602     assert(((Callee.getOpcode() == ISD::Register &&
   3603              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   3604             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   3605             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   3606             isa<ConstantSDNode>(Callee)) &&
   3607     "Expecting an global address, external symbol, absolute value or register");
   3608 
   3609     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   3610   }
   3611 
   3612   // Add a NOP immediately after the branch instruction when using the 64-bit
   3613   // SVR4 ABI. At link time, if caller and callee are in a different module and
   3614   // thus have a different TOC, the call will be replaced with a call to a stub
   3615   // function which saves the current TOC, loads the TOC of the callee and
   3616   // branches to the callee. The NOP will be replaced with a load instruction
   3617   // which restores the TOC of the caller from the TOC save slot of the current
   3618   // stack frame. If caller and callee belong to the same module (and have the
   3619   // same TOC), the NOP will remain unchanged.
   3620 
   3621   bool needsTOCRestore = false;
   3622   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
   3623     if (CallOpc == PPCISD::BCTRL) {
   3624       // This is a call through a function pointer.
   3625       // Restore the caller TOC from the save area into R2.
   3626       // See PrepareCall() for more information about calls through function
   3627       // pointers in the 64-bit SVR4 ABI.
   3628       // We are using a target-specific load with r2 hard coded, because the
   3629       // result of a target-independent load would never go directly into r2,
   3630       // since r2 is a reserved register (which prevents the register allocator
   3631       // from allocating it), resulting in an additional register being
   3632       // allocated and an unnecessary move instruction being generated.
   3633       needsTOCRestore = true;
   3634     } else if ((CallOpc == PPCISD::CALL) &&
   3635                (!isLocalCall(Callee) ||
   3636                 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   3637       // Otherwise insert NOP for non-local calls.
   3638       CallOpc = PPCISD::CALL_NOP;
   3639     }
   3640   }
   3641 
   3642   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   3643   InFlag = Chain.getValue(1);
   3644 
   3645   if (needsTOCRestore) {
   3646     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3647     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3648     SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   3649     unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
   3650     SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
   3651     SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   3652     Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
   3653     InFlag = Chain.getValue(1);
   3654   }
   3655 
   3656   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3657                              DAG.getIntPtrConstant(BytesCalleePops, true),
   3658                              InFlag, dl);
   3659   if (!Ins.empty())
   3660     InFlag = Chain.getValue(1);
   3661 
   3662   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   3663                          Ins, dl, DAG, InVals);
   3664 }
   3665 
   3666 SDValue
   3667 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   3668                              SmallVectorImpl<SDValue> &InVals) const {
   3669   SelectionDAG &DAG                     = CLI.DAG;
   3670   SDLoc &dl                             = CLI.DL;
   3671   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   3672   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   3673   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   3674   SDValue Chain                         = CLI.Chain;
   3675   SDValue Callee                        = CLI.Callee;
   3676   bool &isTailCall                      = CLI.IsTailCall;
   3677   CallingConv::ID CallConv              = CLI.CallConv;
   3678   bool isVarArg                         = CLI.IsVarArg;
   3679 
   3680   if (isTailCall)
   3681     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   3682                                                    Ins, DAG);
   3683 
   3684   if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
   3685     report_fatal_error("failed to perform tail call elimination on a call "
   3686                        "site marked musttail");
   3687 
   3688   if (Subtarget.isSVR4ABI()) {
   3689     if (Subtarget.isPPC64())
   3690       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   3691                               isTailCall, Outs, OutVals, Ins,
   3692                               dl, DAG, InVals);
   3693     else
   3694       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   3695                               isTailCall, Outs, OutVals, Ins,
   3696                               dl, DAG, InVals);
   3697   }
   3698 
   3699   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   3700                           isTailCall, Outs, OutVals, Ins,
   3701                           dl, DAG, InVals);
   3702 }
   3703 
   3704 SDValue
   3705 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   3706                                     CallingConv::ID CallConv, bool isVarArg,
   3707                                     bool isTailCall,
   3708                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3709                                     const SmallVectorImpl<SDValue> &OutVals,
   3710                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3711                                     SDLoc dl, SelectionDAG &DAG,
   3712                                     SmallVectorImpl<SDValue> &InVals) const {
   3713   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   3714   // of the 32-bit SVR4 ABI stack frame layout.
   3715 
   3716   assert((CallConv == CallingConv::C ||
   3717           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   3718 
   3719   unsigned PtrByteSize = 4;
   3720 
   3721   MachineFunction &MF = DAG.getMachineFunction();
   3722 
   3723   // Mark this function as potentially containing a function that contains a
   3724   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3725   // and restoring the callers stack pointer in this functions epilog. This is
   3726   // done because by tail calling the called function might overwrite the value
   3727   // in this function's (MF) stack pointer stack slot 0(SP).
   3728   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3729       CallConv == CallingConv::Fast)
   3730     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3731 
   3732   // Count how many bytes are to be pushed on the stack, including the linkage
   3733   // area, parameter list area and the part of the local variable space which
   3734   // contains copies of aggregates which are passed by value.
   3735 
   3736   // Assign locations to all of the outgoing arguments.
   3737   SmallVector<CCValAssign, 16> ArgLocs;
   3738   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3739                  getTargetMachine(), ArgLocs, *DAG.getContext());
   3740 
   3741   // Reserve space for the linkage area on the stack.
   3742   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   3743 
   3744   if (isVarArg) {
   3745     // Handle fixed and variable vector arguments differently.
   3746     // Fixed vector arguments go into registers as long as registers are
   3747     // available. Variable vector arguments always go into memory.
   3748     unsigned NumArgs = Outs.size();
   3749 
   3750     for (unsigned i = 0; i != NumArgs; ++i) {
   3751       MVT ArgVT = Outs[i].VT;
   3752       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   3753       bool Result;
   3754 
   3755       if (Outs[i].IsFixed) {
   3756         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   3757                                CCInfo);
   3758       } else {
   3759         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   3760                                       ArgFlags, CCInfo);
   3761       }
   3762 
   3763       if (Result) {
   3764 #ifndef NDEBUG
   3765         errs() << "Call operand #" << i << " has unhandled type "
   3766              << EVT(ArgVT).getEVTString() << "\n";
   3767 #endif
   3768         llvm_unreachable(nullptr);
   3769       }
   3770     }
   3771   } else {
   3772     // All arguments are treated the same.
   3773     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   3774   }
   3775 
   3776   // Assign locations to all of the outgoing aggregate by value arguments.
   3777   SmallVector<CCValAssign, 16> ByValArgLocs;
   3778   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3779                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   3780 
   3781   // Reserve stack space for the allocations in CCInfo.
   3782   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   3783 
   3784   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   3785 
   3786   // Size of the linkage area, parameter list area and the part of the local
   3787   // space variable where copies of aggregates which are passed by value are
   3788   // stored.
   3789   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   3790 
   3791   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3792   // call optimization.
   3793   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3794 
   3795   // Adjust the stack pointer for the new arguments...
   3796   // These operations are automatically eliminated by the prolog/epilog pass
   3797   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3798                                dl);
   3799   SDValue CallSeqStart = Chain;
   3800 
   3801   // Load the return address and frame pointer so it can be moved somewhere else
   3802   // later.
   3803   SDValue LROp, FPOp;
   3804   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   3805                                        dl);
   3806 
   3807   // Set up a copy of the stack pointer for use loading and storing any
   3808   // arguments that may not fit in the registers available for argument
   3809   // passing.
   3810   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3811 
   3812   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3813   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3814   SmallVector<SDValue, 8> MemOpChains;
   3815 
   3816   bool seenFloatArg = false;
   3817   // Walk the register/memloc assignments, inserting copies/loads.
   3818   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   3819        i != e;
   3820        ++i) {
   3821     CCValAssign &VA = ArgLocs[i];
   3822     SDValue Arg = OutVals[i];
   3823     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3824 
   3825     if (Flags.isByVal()) {
   3826       // Argument is an aggregate which is passed by value, thus we need to
   3827       // create a copy of it in the local variable space of the current stack
   3828       // frame (which is the stack frame of the caller) and pass the address of
   3829       // this copy to the callee.
   3830       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   3831       CCValAssign &ByValVA = ByValArgLocs[j++];
   3832       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   3833 
   3834       // Memory reserved in the local variable space of the callers stack frame.
   3835       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   3836 
   3837       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3838       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3839 
   3840       // Create a copy of the argument in the local area of the current
   3841       // stack frame.
   3842       SDValue MemcpyCall =
   3843         CreateCopyOfByValArgument(Arg, PtrOff,
   3844                                   CallSeqStart.getNode()->getOperand(0),
   3845                                   Flags, DAG, dl);
   3846 
   3847       // This must go outside the CALLSEQ_START..END.
   3848       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3849                            CallSeqStart.getNode()->getOperand(1),
   3850                            SDLoc(MemcpyCall));
   3851       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3852                              NewCallSeqStart.getNode());
   3853       Chain = CallSeqStart = NewCallSeqStart;
   3854 
   3855       // Pass the address of the aggregate copy on the stack either in a
   3856       // physical register or in the parameter list area of the current stack
   3857       // frame to the callee.
   3858       Arg = PtrOff;
   3859     }
   3860 
   3861     if (VA.isRegLoc()) {
   3862       if (Arg.getValueType() == MVT::i1)
   3863         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   3864 
   3865       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   3866       // Put argument in a physical register.
   3867       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3868     } else {
   3869       // Put argument in the parameter list area of the current stack frame.
   3870       assert(VA.isMemLoc());
   3871       unsigned LocMemOffset = VA.getLocMemOffset();
   3872 
   3873       if (!isTailCall) {
   3874         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3875         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3876 
   3877         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3878                                            MachinePointerInfo(),
   3879                                            false, false, 0));
   3880       } else {
   3881         // Calculate and remember argument location.
   3882         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   3883                                  TailCallArguments);
   3884       }
   3885     }
   3886   }
   3887 
   3888   if (!MemOpChains.empty())
   3889     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   3890 
   3891   // Build a sequence of copy-to-reg nodes chained together with token chain
   3892   // and flag operands which copy the outgoing args into the appropriate regs.
   3893   SDValue InFlag;
   3894   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3895     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3896                              RegsToPass[i].second, InFlag);
   3897     InFlag = Chain.getValue(1);
   3898   }
   3899 
   3900   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   3901   // registers.
   3902   if (isVarArg) {
   3903     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3904     SDValue Ops[] = { Chain, InFlag };
   3905 
   3906     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   3907                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   3908 
   3909     InFlag = Chain.getValue(1);
   3910   }
   3911 
   3912   if (isTailCall)
   3913     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   3914                     false, TailCallArguments);
   3915 
   3916   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3917                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3918                     Ins, InVals);
   3919 }
   3920 
   3921 // Copy an argument into memory, being careful to do this outside the
   3922 // call sequence for the call to which the argument belongs.
   3923 SDValue
   3924 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   3925                                               SDValue CallSeqStart,
   3926                                               ISD::ArgFlagsTy Flags,
   3927                                               SelectionDAG &DAG,
   3928                                               SDLoc dl) const {
   3929   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   3930                         CallSeqStart.getNode()->getOperand(0),
   3931                         Flags, DAG, dl);
   3932   // The MEMCPY must go outside the CALLSEQ_START..END.
   3933   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3934                              CallSeqStart.getNode()->getOperand(1),
   3935                              SDLoc(MemcpyCall));
   3936   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3937                          NewCallSeqStart.getNode());
   3938   return NewCallSeqStart;
   3939 }
   3940 
   3941 SDValue
   3942 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   3943                                     CallingConv::ID CallConv, bool isVarArg,
   3944                                     bool isTailCall,
   3945                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3946                                     const SmallVectorImpl<SDValue> &OutVals,
   3947                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3948                                     SDLoc dl, SelectionDAG &DAG,
   3949                                     SmallVectorImpl<SDValue> &InVals) const {
   3950 
   3951   bool isLittleEndian = Subtarget.isLittleEndian();
   3952   unsigned NumOps = Outs.size();
   3953 
   3954   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3955   unsigned PtrByteSize = 8;
   3956 
   3957   MachineFunction &MF = DAG.getMachineFunction();
   3958 
   3959   // Mark this function as potentially containing a function that contains a
   3960   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3961   // and restoring the callers stack pointer in this functions epilog. This is
   3962   // done because by tail calling the called function might overwrite the value
   3963   // in this function's (MF) stack pointer stack slot 0(SP).
   3964   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3965       CallConv == CallingConv::Fast)
   3966     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3967 
   3968   // Count how many bytes are to be pushed on the stack, including the linkage
   3969   // area, and parameter passing area.  We start with at least 48 bytes, which
   3970   // is reserved space for [SP][CR][LR][3 x unused].
   3971   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
   3972   unsigned NumBytes = LinkageSize;
   3973 
   3974   // Add up all the space actually used.
   3975   for (unsigned i = 0; i != NumOps; ++i) {
   3976     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3977     EVT ArgVT = Outs[i].VT;
   3978 
   3979     /* Respect alignment of argument on the stack.  */
   3980     unsigned Align = CalculateStackSlotAlignment(ArgVT, Flags, PtrByteSize);
   3981     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   3982 
   3983     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   3984   }
   3985 
   3986   unsigned NumBytesActuallyUsed = NumBytes;
   3987 
   3988   // The prolog code of the callee may store up to 8 GPR argument registers to
   3989   // the stack, allowing va_start to index over them in memory if its varargs.
   3990   // Because we cannot tell if this is needed on the caller side, we have to
   3991   // conservatively assume that it is needed.  As such, make sure we have at
   3992   // least enough stack space for the caller to store the 8 GPRs.
   3993   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   3994 
   3995   // Tail call needs the stack to be aligned.
   3996   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3997       CallConv == CallingConv::Fast)
   3998     NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
   3999 
   4000   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4001   // call optimization.
   4002   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4003 
   4004   // To protect arguments on the stack from being clobbered in a tail call,
   4005   // force all the loads to happen before doing any other lowering.
   4006   if (isTailCall)
   4007     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4008 
   4009   // Adjust the stack pointer for the new arguments...
   4010   // These operations are automatically eliminated by the prolog/epilog pass
   4011   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4012                                dl);
   4013   SDValue CallSeqStart = Chain;
   4014 
   4015   // Load the return address and frame pointer so it can be move somewhere else
   4016   // later.
   4017   SDValue LROp, FPOp;
   4018   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4019                                        dl);
   4020 
   4021   // Set up a copy of the stack pointer for use loading and storing any
   4022   // arguments that may not fit in the registers available for argument
   4023   // passing.
   4024   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4025 
   4026   // Figure out which arguments are going to go in registers, and which in
   4027   // memory.  Also, if this is a vararg function, floating point operations
   4028   // must be stored to our stack, and loaded into integer regs as well, if
   4029   // any integer regs are available for argument passing.
   4030   unsigned ArgOffset = LinkageSize;
   4031   unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
   4032 
   4033   static const MCPhysReg GPR[] = {
   4034     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4035     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4036   };
   4037   static const MCPhysReg *FPR = GetFPR();
   4038 
   4039   static const MCPhysReg VR[] = {
   4040     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4041     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4042   };
   4043   static const MCPhysReg VSRH[] = {
   4044     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   4045     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   4046   };
   4047 
   4048   const unsigned NumGPRs = array_lengthof(GPR);
   4049   const unsigned NumFPRs = 13;
   4050   const unsigned NumVRs  = array_lengthof(VR);
   4051 
   4052   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4053   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4054 
   4055   SmallVector<SDValue, 8> MemOpChains;
   4056   for (unsigned i = 0; i != NumOps; ++i) {
   4057     SDValue Arg = OutVals[i];
   4058     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4059 
   4060     /* Respect alignment of argument on the stack.  */
   4061     unsigned Align =
   4062       CalculateStackSlotAlignment(Outs[i].VT, Flags, PtrByteSize);
   4063     ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   4064 
   4065     /* Compute GPR index associated with argument offset.  */
   4066     GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   4067     GPR_idx = std::min(GPR_idx, NumGPRs);
   4068 
   4069     // PtrOff will be used to store the current argument to the stack if a
   4070     // register cannot be found for it.
   4071     SDValue PtrOff;
   4072 
   4073     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   4074 
   4075     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4076 
   4077     // Promote integers to 64-bit values.
   4078     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   4079       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4080       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4081       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4082     }
   4083 
   4084     // FIXME memcpy is used way more than necessary.  Correctness first.
   4085     // Note: "by value" is code for passing a structure by value, not
   4086     // basic types.
   4087     if (Flags.isByVal()) {
   4088       // Note: Size includes alignment padding, so
   4089       //   struct x { short a; char b; }
   4090       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   4091       // These are the proper values we need for right-justifying the
   4092       // aggregate in a parameter register.
   4093       unsigned Size = Flags.getByValSize();
   4094 
   4095       // An empty aggregate parameter takes up no storage and no
   4096       // registers.
   4097       if (Size == 0)
   4098         continue;
   4099 
   4100       // All aggregates smaller than 8 bytes must be passed right-justified.
   4101       if (Size==1 || Size==2 || Size==4) {
   4102         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   4103         if (GPR_idx != NumGPRs) {
   4104           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4105                                         MachinePointerInfo(), VT,
   4106                                         false, false, 0);
   4107           MemOpChains.push_back(Load.getValue(1));
   4108           RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
   4109 
   4110           ArgOffset += PtrByteSize;
   4111           continue;
   4112         }
   4113       }
   4114 
   4115       if (GPR_idx == NumGPRs && Size < 8) {
   4116         SDValue AddPtr = PtrOff;
   4117         if (!isLittleEndian) {
   4118           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   4119                                           PtrOff.getValueType());
   4120           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4121         }
   4122         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4123                                                           CallSeqStart,
   4124                                                           Flags, DAG, dl);
   4125         ArgOffset += PtrByteSize;
   4126         continue;
   4127       }
   4128       // Copy entire object into memory.  There are cases where gcc-generated
   4129       // code assumes it is there, even if it could be put entirely into
   4130       // registers.  (This is not what the doc says.)
   4131 
   4132       // FIXME: The above statement is likely due to a misunderstanding of the
   4133       // documents.  All arguments must be copied into the parameter area BY
   4134       // THE CALLEE in the event that the callee takes the address of any
   4135       // formal argument.  That has not yet been implemented.  However, it is
   4136       // reasonable to use the stack area as a staging area for the register
   4137       // load.
   4138 
   4139       // Skip this for small aggregates, as we will use the same slot for a
   4140       // right-justified copy, below.
   4141       if (Size >= 8)
   4142         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   4143                                                           CallSeqStart,
   4144                                                           Flags, DAG, dl);
   4145 
   4146       // When a register is available, pass a small aggregate right-justified.
   4147       if (Size < 8 && GPR_idx != NumGPRs) {
   4148         // The easiest way to get this right-justified in a register
   4149         // is to copy the structure into the rightmost portion of a
   4150         // local variable slot, then load the whole slot into the
   4151         // register.
   4152         // FIXME: The memcpy seems to produce pretty awful code for
   4153         // small aggregates, particularly for packed ones.
   4154         // FIXME: It would be preferable to use the slot in the
   4155         // parameter save area instead of a new local variable.
   4156         SDValue AddPtr = PtrOff;
   4157         if (!isLittleEndian) {
   4158           SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
   4159           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4160         }
   4161         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4162                                                           CallSeqStart,
   4163                                                           Flags, DAG, dl);
   4164 
   4165         // Load the slot into the register.
   4166         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   4167                                    MachinePointerInfo(),
   4168                                    false, false, false, 0);
   4169         MemOpChains.push_back(Load.getValue(1));
   4170         RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
   4171 
   4172         // Done with this argument.
   4173         ArgOffset += PtrByteSize;
   4174         continue;
   4175       }
   4176 
   4177       // For aggregates larger than PtrByteSize, copy the pieces of the
   4178       // object that fit into registers from the parameter save area.
   4179       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   4180         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   4181         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   4182         if (GPR_idx != NumGPRs) {
   4183           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   4184                                      MachinePointerInfo(),
   4185                                      false, false, false, 0);
   4186           MemOpChains.push_back(Load.getValue(1));
   4187           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4188           ArgOffset += PtrByteSize;
   4189         } else {
   4190           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   4191           break;
   4192         }
   4193       }
   4194       continue;
   4195     }
   4196 
   4197     switch (Arg.getSimpleValueType().SimpleTy) {
   4198     default: llvm_unreachable("Unexpected ValueType for argument!");
   4199     case MVT::i1:
   4200     case MVT::i32:
   4201     case MVT::i64:
   4202       if (GPR_idx != NumGPRs) {
   4203         RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
   4204       } else {
   4205         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4206                          true, isTailCall, false, MemOpChains,
   4207                          TailCallArguments, dl);
   4208       }
   4209       ArgOffset += PtrByteSize;
   4210       break;
   4211     case MVT::f32:
   4212     case MVT::f64:
   4213       if (FPR_idx != NumFPRs) {
   4214         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   4215 
   4216         if (isVarArg) {
   4217           // A single float or an aggregate containing only a single float
   4218           // must be passed right-justified in the stack doubleword, and
   4219           // in the GPR, if one is available.
   4220           SDValue StoreOff;
   4221           if (Arg.getSimpleValueType().SimpleTy == MVT::f32 &&
   4222               !isLittleEndian) {
   4223             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4224             StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4225           } else
   4226             StoreOff = PtrOff;
   4227 
   4228           SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
   4229                                        MachinePointerInfo(), false, false, 0);
   4230           MemOpChains.push_back(Store);
   4231 
   4232           // Float varargs are always shadowed in available integer registers
   4233           if (GPR_idx != NumGPRs) {
   4234             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4235                                        MachinePointerInfo(), false, false,
   4236                                        false, 0);
   4237             MemOpChains.push_back(Load.getValue(1));
   4238             RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
   4239           }
   4240         }
   4241       } else {
   4242         // Single-precision floating-point values are mapped to the
   4243         // second (rightmost) word of the stack doubleword.
   4244         if (Arg.getValueType() == MVT::f32 && !isLittleEndian) {
   4245           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4246           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4247         }
   4248 
   4249         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4250                          true, isTailCall, false, MemOpChains,
   4251                          TailCallArguments, dl);
   4252       }
   4253       ArgOffset += 8;
   4254       break;
   4255     case MVT::v4f32:
   4256     case MVT::v4i32:
   4257     case MVT::v8i16:
   4258     case MVT::v16i8:
   4259     case MVT::v2f64:
   4260     case MVT::v2i64:
   4261       // For a varargs call, named arguments go into VRs or on the stack as
   4262       // usual; unnamed arguments always go to the stack or the corresponding
   4263       // GPRs when within range.  For now, we always put the value in both
   4264       // locations (or even all three).
   4265       if (isVarArg) {
   4266         // We could elide this store in the case where the object fits
   4267         // entirely in R registers.  Maybe later.
   4268         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4269                                      MachinePointerInfo(), false, false, 0);
   4270         MemOpChains.push_back(Store);
   4271         if (VR_idx != NumVRs) {
   4272           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4273                                      MachinePointerInfo(),
   4274                                      false, false, false, 0);
   4275           MemOpChains.push_back(Load.getValue(1));
   4276 
   4277           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   4278                            Arg.getSimpleValueType() == MVT::v2i64) ?
   4279                           VSRH[VR_idx] : VR[VR_idx];
   4280           ++VR_idx;
   4281 
   4282           RegsToPass.push_back(std::make_pair(VReg, Load));
   4283         }
   4284         ArgOffset += 16;
   4285         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4286           if (GPR_idx == NumGPRs)
   4287             break;
   4288           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   4289                                   DAG.getConstant(i, PtrVT));
   4290           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   4291                                      false, false, false, 0);
   4292           MemOpChains.push_back(Load.getValue(1));
   4293           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4294         }
   4295         break;
   4296       }
   4297 
   4298       // Non-varargs Altivec params go into VRs or on the stack.
   4299       if (VR_idx != NumVRs) {
   4300         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   4301                          Arg.getSimpleValueType() == MVT::v2i64) ?
   4302                         VSRH[VR_idx] : VR[VR_idx];
   4303         ++VR_idx;
   4304 
   4305         RegsToPass.push_back(std::make_pair(VReg, Arg));
   4306       } else {
   4307         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4308                          true, isTailCall, true, MemOpChains,
   4309                          TailCallArguments, dl);
   4310       }
   4311       ArgOffset += 16;
   4312       break;
   4313     }
   4314   }
   4315 
   4316   assert(NumBytesActuallyUsed == ArgOffset);
   4317   (void)NumBytesActuallyUsed;
   4318 
   4319   if (!MemOpChains.empty())
   4320     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4321 
   4322   // Check if this is an indirect call (MTCTR/BCTRL).
   4323   // See PrepareCall() for more information about calls through function
   4324   // pointers in the 64-bit SVR4 ABI.
   4325   if (!isTailCall &&
   4326       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4327       !dyn_cast<ExternalSymbolSDNode>(Callee)) {
   4328     // Load r2 into a virtual register and store it to the TOC save area.
   4329     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   4330     // TOC save area offset.
   4331     unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
   4332     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
   4333     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4334     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
   4335                          false, false, 0);
   4336   }
   4337 
   4338   // Build a sequence of copy-to-reg nodes chained together with token chain
   4339   // and flag operands which copy the outgoing args into the appropriate regs.
   4340   SDValue InFlag;
   4341   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4342     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4343                              RegsToPass[i].second, InFlag);
   4344     InFlag = Chain.getValue(1);
   4345   }
   4346 
   4347   if (isTailCall)
   4348     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   4349                     FPOp, true, TailCallArguments);
   4350 
   4351   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4352                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4353                     Ins, InVals);
   4354 }
   4355 
   4356 SDValue
   4357 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   4358                                     CallingConv::ID CallConv, bool isVarArg,
   4359                                     bool isTailCall,
   4360                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4361                                     const SmallVectorImpl<SDValue> &OutVals,
   4362                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4363                                     SDLoc dl, SelectionDAG &DAG,
   4364                                     SmallVectorImpl<SDValue> &InVals) const {
   4365 
   4366   unsigned NumOps = Outs.size();
   4367 
   4368   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4369   bool isPPC64 = PtrVT == MVT::i64;
   4370   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   4371 
   4372   MachineFunction &MF = DAG.getMachineFunction();
   4373 
   4374   // Mark this function as potentially containing a function that contains a
   4375   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4376   // and restoring the callers stack pointer in this functions epilog. This is
   4377   // done because by tail calling the called function might overwrite the value
   4378   // in this function's (MF) stack pointer stack slot 0(SP).
   4379   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4380       CallConv == CallingConv::Fast)
   4381     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4382 
   4383   // Count how many bytes are to be pushed on the stack, including the linkage
   4384   // area, and parameter passing area.  We start with 24/48 bytes, which is
   4385   // prereserved space for [SP][CR][LR][3 x unused].
   4386   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
   4387   unsigned NumBytes = LinkageSize;
   4388 
   4389   // Add up all the space actually used.
   4390   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   4391   // they all go in registers, but we must reserve stack space for them for
   4392   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   4393   // assigned stack space in order, with padding so Altivec parameters are
   4394   // 16-byte aligned.
   4395   unsigned nAltivecParamsAtEnd = 0;
   4396   for (unsigned i = 0; i != NumOps; ++i) {
   4397     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4398     EVT ArgVT = Outs[i].VT;
   4399     // Varargs Altivec parameters are padded to a 16 byte boundary.
   4400     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   4401         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   4402         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   4403       if (!isVarArg && !isPPC64) {
   4404         // Non-varargs Altivec parameters go after all the non-Altivec
   4405         // parameters; handle those later so we know how much padding we need.
   4406         nAltivecParamsAtEnd++;
   4407         continue;
   4408       }
   4409       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   4410       NumBytes = ((NumBytes+15)/16)*16;
   4411     }
   4412     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   4413   }
   4414 
   4415   // Allow for Altivec parameters at the end, if needed.
   4416   if (nAltivecParamsAtEnd) {
   4417     NumBytes = ((NumBytes+15)/16)*16;
   4418     NumBytes += 16*nAltivecParamsAtEnd;
   4419   }
   4420 
   4421   // The prolog code of the callee may store up to 8 GPR argument registers to
   4422   // the stack, allowing va_start to index over them in memory if its varargs.
   4423   // Because we cannot tell if this is needed on the caller side, we have to
   4424   // conservatively assume that it is needed.  As such, make sure we have at
   4425   // least enough stack space for the caller to store the 8 GPRs.
   4426   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   4427 
   4428   // Tail call needs the stack to be aligned.
   4429   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4430       CallConv == CallingConv::Fast)
   4431     NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
   4432 
   4433   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4434   // call optimization.
   4435   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4436 
   4437   // To protect arguments on the stack from being clobbered in a tail call,
   4438   // force all the loads to happen before doing any other lowering.
   4439   if (isTailCall)
   4440     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4441 
   4442   // Adjust the stack pointer for the new arguments...
   4443   // These operations are automatically eliminated by the prolog/epilog pass
   4444   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4445                                dl);
   4446   SDValue CallSeqStart = Chain;
   4447 
   4448   // Load the return address and frame pointer so it can be move somewhere else
   4449   // later.
   4450   SDValue LROp, FPOp;
   4451   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4452                                        dl);
   4453 
   4454   // Set up a copy of the stack pointer for use loading and storing any
   4455   // arguments that may not fit in the registers available for argument
   4456   // passing.
   4457   SDValue StackPtr;
   4458   if (isPPC64)
   4459     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4460   else
   4461     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4462 
   4463   // Figure out which arguments are going to go in registers, and which in
   4464   // memory.  Also, if this is a vararg function, floating point operations
   4465   // must be stored to our stack, and loaded into integer regs as well, if
   4466   // any integer regs are available for argument passing.
   4467   unsigned ArgOffset = LinkageSize;
   4468   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4469 
   4470   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   4471     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   4472     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   4473   };
   4474   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   4475     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4476     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4477   };
   4478   static const MCPhysReg *FPR = GetFPR();
   4479 
   4480   static const MCPhysReg VR[] = {
   4481     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4482     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4483   };
   4484   const unsigned NumGPRs = array_lengthof(GPR_32);
   4485   const unsigned NumFPRs = 13;
   4486   const unsigned NumVRs  = array_lengthof(VR);
   4487 
   4488   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   4489 
   4490   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4491   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4492 
   4493   SmallVector<SDValue, 8> MemOpChains;
   4494   for (unsigned i = 0; i != NumOps; ++i) {
   4495     SDValue Arg = OutVals[i];
   4496     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4497 
   4498     // PtrOff will be used to store the current argument to the stack if a
   4499     // register cannot be found for it.
   4500     SDValue PtrOff;
   4501 
   4502     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   4503 
   4504     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4505 
   4506     // On PPC64, promote integers to 64-bit values.
   4507     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   4508       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4509       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4510       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4511     }
   4512 
   4513     // FIXME memcpy is used way more than necessary.  Correctness first.
   4514     // Note: "by value" is code for passing a structure by value, not
   4515     // basic types.
   4516     if (Flags.isByVal()) {
   4517       unsigned Size = Flags.getByValSize();
   4518       // Very small objects are passed right-justified.  Everything else is
   4519       // passed left-justified.
   4520       if (Size==1 || Size==2) {
   4521         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   4522         if (GPR_idx != NumGPRs) {
   4523           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4524                                         MachinePointerInfo(), VT,
   4525                                         false, false, 0);
   4526           MemOpChains.push_back(Load.getValue(1));
   4527           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4528 
   4529           ArgOffset += PtrByteSize;
   4530         } else {
   4531           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   4532                                           PtrOff.getValueType());
   4533           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4534           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4535                                                             CallSeqStart,
   4536                                                             Flags, DAG, dl);
   4537           ArgOffset += PtrByteSize;
   4538         }
   4539         continue;
   4540       }
   4541       // Copy entire object into memory.  There are cases where gcc-generated
   4542       // code assumes it is there, even if it could be put entirely into
   4543       // registers.  (This is not what the doc says.)
   4544       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   4545                                                         CallSeqStart,
   4546                                                         Flags, DAG, dl);
   4547 
   4548       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   4549       // copy the pieces of the object that fit into registers from the
   4550       // parameter save area.
   4551       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   4552         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   4553         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   4554         if (GPR_idx != NumGPRs) {
   4555           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   4556                                      MachinePointerInfo(),
   4557                                      false, false, false, 0);
   4558           MemOpChains.push_back(Load.getValue(1));
   4559           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4560           ArgOffset += PtrByteSize;
   4561         } else {
   4562           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   4563           break;
   4564         }
   4565       }
   4566       continue;
   4567     }
   4568 
   4569     switch (Arg.getSimpleValueType().SimpleTy) {
   4570     default: llvm_unreachable("Unexpected ValueType for argument!");
   4571     case MVT::i1:
   4572     case MVT::i32:
   4573     case MVT::i64:
   4574       if (GPR_idx != NumGPRs) {
   4575         if (Arg.getValueType() == MVT::i1)
   4576           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   4577 
   4578         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   4579       } else {
   4580         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4581                          isPPC64, isTailCall, false, MemOpChains,
   4582                          TailCallArguments, dl);
   4583       }
   4584       ArgOffset += PtrByteSize;
   4585       break;
   4586     case MVT::f32:
   4587     case MVT::f64:
   4588       if (FPR_idx != NumFPRs) {
   4589         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   4590 
   4591         if (isVarArg) {
   4592           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4593                                        MachinePointerInfo(), false, false, 0);
   4594           MemOpChains.push_back(Store);
   4595 
   4596           // Float varargs are always shadowed in available integer registers
   4597           if (GPR_idx != NumGPRs) {
   4598             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4599                                        MachinePointerInfo(), false, false,
   4600                                        false, 0);
   4601             MemOpChains.push_back(Load.getValue(1));
   4602             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4603           }
   4604           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   4605             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4606             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4607             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4608                                        MachinePointerInfo(),
   4609                                        false, false, false, 0);
   4610             MemOpChains.push_back(Load.getValue(1));
   4611             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4612           }
   4613         } else {
   4614           // If we have any FPRs remaining, we may also have GPRs remaining.
   4615           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   4616           // GPRs.
   4617           if (GPR_idx != NumGPRs)
   4618             ++GPR_idx;
   4619           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   4620               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   4621             ++GPR_idx;
   4622         }
   4623       } else
   4624         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4625                          isPPC64, isTailCall, false, MemOpChains,
   4626                          TailCallArguments, dl);
   4627       if (isPPC64)
   4628         ArgOffset += 8;
   4629       else
   4630         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   4631       break;
   4632     case MVT::v4f32:
   4633     case MVT::v4i32:
   4634     case MVT::v8i16:
   4635     case MVT::v16i8:
   4636       if (isVarArg) {
   4637         // These go aligned on the stack, or in the corresponding R registers
   4638         // when within range.  The Darwin PPC ABI doc claims they also go in
   4639         // V registers; in fact gcc does this only for arguments that are
   4640         // prototyped, not for those that match the ...  We do it for all
   4641         // arguments, seems to work.
   4642         while (ArgOffset % 16 !=0) {
   4643           ArgOffset += PtrByteSize;
   4644           if (GPR_idx != NumGPRs)
   4645             GPR_idx++;
   4646         }
   4647         // We could elide this store in the case where the object fits
   4648         // entirely in R registers.  Maybe later.
   4649         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4650                             DAG.getConstant(ArgOffset, PtrVT));
   4651         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4652                                      MachinePointerInfo(), false, false, 0);
   4653         MemOpChains.push_back(Store);
   4654         if (VR_idx != NumVRs) {
   4655           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4656                                      MachinePointerInfo(),
   4657                                      false, false, false, 0);
   4658           MemOpChains.push_back(Load.getValue(1));
   4659           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   4660         }
   4661         ArgOffset += 16;
   4662         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4663           if (GPR_idx == NumGPRs)
   4664             break;
   4665           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   4666                                   DAG.getConstant(i, PtrVT));
   4667           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   4668                                      false, false, false, 0);
   4669           MemOpChains.push_back(Load.getValue(1));
   4670           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4671         }
   4672         break;
   4673       }
   4674 
   4675       // Non-varargs Altivec params generally go in registers, but have
   4676       // stack space allocated at the end.
   4677       if (VR_idx != NumVRs) {
   4678         // Doesn't have GPR space allocated.
   4679         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   4680       } else if (nAltivecParamsAtEnd==0) {
   4681         // We are emitting Altivec params in order.
   4682         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4683                          isPPC64, isTailCall, true, MemOpChains,
   4684                          TailCallArguments, dl);
   4685         ArgOffset += 16;
   4686       }
   4687       break;
   4688     }
   4689   }
   4690   // If all Altivec parameters fit in registers, as they usually do,
   4691   // they get stack space following the non-Altivec parameters.  We
   4692   // don't track this here because nobody below needs it.
   4693   // If there are more Altivec parameters than fit in registers emit
   4694   // the stores here.
   4695   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   4696     unsigned j = 0;
   4697     // Offset is aligned; skip 1st 12 params which go in V registers.
   4698     ArgOffset = ((ArgOffset+15)/16)*16;
   4699     ArgOffset += 12*16;
   4700     for (unsigned i = 0; i != NumOps; ++i) {
   4701       SDValue Arg = OutVals[i];
   4702       EVT ArgType = Outs[i].VT;
   4703       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   4704           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   4705         if (++j > NumVRs) {
   4706           SDValue PtrOff;
   4707           // We are emitting Altivec params in order.
   4708           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4709                            isPPC64, isTailCall, true, MemOpChains,
   4710                            TailCallArguments, dl);
   4711           ArgOffset += 16;
   4712         }
   4713       }
   4714     }
   4715   }
   4716 
   4717   if (!MemOpChains.empty())
   4718     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4719 
   4720   // On Darwin, R12 must contain the address of an indirect callee.  This does
   4721   // not mean the MTCTR instruction must use R12; it's easier to model this as
   4722   // an extra parameter, so do that.
   4723   if (!isTailCall &&
   4724       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4725       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   4726       !isBLACompatibleAddress(Callee, DAG))
   4727     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   4728                                                    PPC::R12), Callee));
   4729 
   4730   // Build a sequence of copy-to-reg nodes chained together with token chain
   4731   // and flag operands which copy the outgoing args into the appropriate regs.
   4732   SDValue InFlag;
   4733   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4734     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4735                              RegsToPass[i].second, InFlag);
   4736     InFlag = Chain.getValue(1);
   4737   }
   4738 
   4739   if (isTailCall)
   4740     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   4741                     FPOp, true, TailCallArguments);
   4742 
   4743   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4744                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4745                     Ins, InVals);
   4746 }
   4747 
   4748 bool
   4749 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   4750                                   MachineFunction &MF, bool isVarArg,
   4751                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   4752                                   LLVMContext &Context) const {
   4753   SmallVector<CCValAssign, 16> RVLocs;
   4754   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   4755                  RVLocs, Context);
   4756   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   4757 }
   4758 
   4759 SDValue
   4760 PPCTargetLowering::LowerReturn(SDValue Chain,
   4761                                CallingConv::ID CallConv, bool isVarArg,
   4762                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   4763                                const SmallVectorImpl<SDValue> &OutVals,
   4764                                SDLoc dl, SelectionDAG &DAG) const {
   4765 
   4766   SmallVector<CCValAssign, 16> RVLocs;
   4767   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4768                  getTargetMachine(), RVLocs, *DAG.getContext());
   4769   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   4770 
   4771   SDValue Flag;
   4772   SmallVector<SDValue, 4> RetOps(1, Chain);
   4773 
   4774   // Copy the result values into the output registers.
   4775   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   4776     CCValAssign &VA = RVLocs[i];
   4777     assert(VA.isRegLoc() && "Can only return in registers!");
   4778 
   4779     SDValue Arg = OutVals[i];
   4780 
   4781     switch (VA.getLocInfo()) {
   4782     default: llvm_unreachable("Unknown loc info!");
   4783     case CCValAssign::Full: break;
   4784     case CCValAssign::AExt:
   4785       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   4786       break;
   4787     case CCValAssign::ZExt:
   4788       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   4789       break;
   4790     case CCValAssign::SExt:
   4791       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   4792       break;
   4793     }
   4794 
   4795     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   4796     Flag = Chain.getValue(1);
   4797     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   4798   }
   4799 
   4800   RetOps[0] = Chain;  // Update chain.
   4801 
   4802   // Add the flag if we have it.
   4803   if (Flag.getNode())
   4804     RetOps.push_back(Flag);
   4805 
   4806   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   4807 }
   4808 
   4809 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   4810                                    const PPCSubtarget &Subtarget) const {
   4811   // When we pop the dynamic allocation we need to restore the SP link.
   4812   SDLoc dl(Op);
   4813 
   4814   // Get the corect type for pointers.
   4815   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4816 
   4817   // Construct the stack pointer operand.
   4818   bool isPPC64 = Subtarget.isPPC64();
   4819   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   4820   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   4821 
   4822   // Get the operands for the STACKRESTORE.
   4823   SDValue Chain = Op.getOperand(0);
   4824   SDValue SaveSP = Op.getOperand(1);
   4825 
   4826   // Load the old link SP.
   4827   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   4828                                    MachinePointerInfo(),
   4829                                    false, false, false, 0);
   4830 
   4831   // Restore the stack pointer.
   4832   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   4833 
   4834   // Store the old link SP.
   4835   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   4836                       false, false, 0);
   4837 }
   4838 
   4839 
   4840 
   4841 SDValue
   4842 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   4843   MachineFunction &MF = DAG.getMachineFunction();
   4844   bool isPPC64 = Subtarget.isPPC64();
   4845   bool isDarwinABI = Subtarget.isDarwinABI();
   4846   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4847 
   4848   // Get current frame pointer save index.  The users of this index will be
   4849   // primarily DYNALLOC instructions.
   4850   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4851   int RASI = FI->getReturnAddrSaveIndex();
   4852 
   4853   // If the frame pointer save index hasn't been defined yet.
   4854   if (!RASI) {
   4855     // Find out what the fix offset of the frame pointer save area.
   4856     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
   4857     // Allocate the frame index for frame pointer save area.
   4858     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
   4859     // Save the result.
   4860     FI->setReturnAddrSaveIndex(RASI);
   4861   }
   4862   return DAG.getFrameIndex(RASI, PtrVT);
   4863 }
   4864 
   4865 SDValue
   4866 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   4867   MachineFunction &MF = DAG.getMachineFunction();
   4868   bool isPPC64 = Subtarget.isPPC64();
   4869   bool isDarwinABI = Subtarget.isDarwinABI();
   4870   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4871 
   4872   // Get current frame pointer save index.  The users of this index will be
   4873   // primarily DYNALLOC instructions.
   4874   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4875   int FPSI = FI->getFramePointerSaveIndex();
   4876 
   4877   // If the frame pointer save index hasn't been defined yet.
   4878   if (!FPSI) {
   4879     // Find out what the fix offset of the frame pointer save area.
   4880     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
   4881                                                            isDarwinABI);
   4882 
   4883     // Allocate the frame index for frame pointer save area.
   4884     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   4885     // Save the result.
   4886     FI->setFramePointerSaveIndex(FPSI);
   4887   }
   4888   return DAG.getFrameIndex(FPSI, PtrVT);
   4889 }
   4890 
   4891 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   4892                                          SelectionDAG &DAG,
   4893                                          const PPCSubtarget &Subtarget) const {
   4894   // Get the inputs.
   4895   SDValue Chain = Op.getOperand(0);
   4896   SDValue Size  = Op.getOperand(1);
   4897   SDLoc dl(Op);
   4898 
   4899   // Get the corect type for pointers.
   4900   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4901   // Negate the size.
   4902   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   4903                                   DAG.getConstant(0, PtrVT), Size);
   4904   // Construct a node for the frame pointer save index.
   4905   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   4906   // Build a DYNALLOC node.
   4907   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   4908   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   4909   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   4910 }
   4911 
   4912 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   4913                                                SelectionDAG &DAG) const {
   4914   SDLoc DL(Op);
   4915   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   4916                      DAG.getVTList(MVT::i32, MVT::Other),
   4917                      Op.getOperand(0), Op.getOperand(1));
   4918 }
   4919 
   4920 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   4921                                                 SelectionDAG &DAG) const {
   4922   SDLoc DL(Op);
   4923   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   4924                      Op.getOperand(0), Op.getOperand(1));
   4925 }
   4926 
   4927 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   4928   assert(Op.getValueType() == MVT::i1 &&
   4929          "Custom lowering only for i1 loads");
   4930 
   4931   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   4932 
   4933   SDLoc dl(Op);
   4934   LoadSDNode *LD = cast<LoadSDNode>(Op);
   4935 
   4936   SDValue Chain = LD->getChain();
   4937   SDValue BasePtr = LD->getBasePtr();
   4938   MachineMemOperand *MMO = LD->getMemOperand();
   4939 
   4940   SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
   4941                                  BasePtr, MVT::i8, MMO);
   4942   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   4943 
   4944   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   4945   return DAG.getMergeValues(Ops, dl);
   4946 }
   4947 
   4948 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   4949   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   4950          "Custom lowering only for i1 stores");
   4951 
   4952   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   4953 
   4954   SDLoc dl(Op);
   4955   StoreSDNode *ST = cast<StoreSDNode>(Op);
   4956 
   4957   SDValue Chain = ST->getChain();
   4958   SDValue BasePtr = ST->getBasePtr();
   4959   SDValue Value = ST->getValue();
   4960   MachineMemOperand *MMO = ST->getMemOperand();
   4961 
   4962   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
   4963   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   4964 }
   4965 
   4966 // FIXME: Remove this once the ANDI glue bug is fixed:
   4967 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   4968   assert(Op.getValueType() == MVT::i1 &&
   4969          "Custom lowering only for i1 results");
   4970 
   4971   SDLoc DL(Op);
   4972   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   4973                      Op.getOperand(0));
   4974 }
   4975 
   4976 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   4977 /// possible.
   4978 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   4979   // Not FP? Not a fsel.
   4980   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   4981       !Op.getOperand(2).getValueType().isFloatingPoint())
   4982     return Op;
   4983 
   4984   // We might be able to do better than this under some circumstances, but in
   4985   // general, fsel-based lowering of select is a finite-math-only optimization.
   4986   // For more information, see section F.3 of the 2.06 ISA specification.
   4987   if (!DAG.getTarget().Options.NoInfsFPMath ||
   4988       !DAG.getTarget().Options.NoNaNsFPMath)
   4989     return Op;
   4990 
   4991   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4992 
   4993   EVT ResVT = Op.getValueType();
   4994   EVT CmpVT = Op.getOperand(0).getValueType();
   4995   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4996   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   4997   SDLoc dl(Op);
   4998 
   4999   // If the RHS of the comparison is a 0.0, we don't need to do the
   5000   // subtraction at all.
   5001   SDValue Sel1;
   5002   if (isFloatingPointZero(RHS))
   5003     switch (CC) {
   5004     default: break;       // SETUO etc aren't handled by fsel.
   5005     case ISD::SETNE:
   5006       std::swap(TV, FV);
   5007     case ISD::SETEQ:
   5008       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5009         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5010       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   5011       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5012         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   5013       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5014                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   5015     case ISD::SETULT:
   5016     case ISD::SETLT:
   5017       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   5018     case ISD::SETOGE:
   5019     case ISD::SETGE:
   5020       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5021         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5022       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   5023     case ISD::SETUGT:
   5024     case ISD::SETGT:
   5025       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   5026     case ISD::SETOLE:
   5027     case ISD::SETLE:
   5028       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5029         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5030       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5031                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   5032     }
   5033 
   5034   SDValue Cmp;
   5035   switch (CC) {
   5036   default: break;       // SETUO etc aren't handled by fsel.
   5037   case ISD::SETNE:
   5038     std::swap(TV, FV);
   5039   case ISD::SETEQ:
   5040     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5041     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5042       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5043     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5044     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5045       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   5046     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5047                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   5048   case ISD::SETULT:
   5049   case ISD::SETLT:
   5050     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5051     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5052       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5053     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   5054   case ISD::SETOGE:
   5055   case ISD::SETGE:
   5056     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5057     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5058       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5059     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5060   case ISD::SETUGT:
   5061   case ISD::SETGT:
   5062     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   5063     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5064       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5065     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   5066   case ISD::SETOLE:
   5067   case ISD::SETLE:
   5068     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   5069     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5070       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5071     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5072   }
   5073   return Op;
   5074 }
   5075 
   5076 // FIXME: Split this code up when LegalizeDAGTypes lands.
   5077 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   5078                                            SDLoc dl) const {
   5079   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   5080   SDValue Src = Op.getOperand(0);
   5081   if (Src.getValueType() == MVT::f32)
   5082     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   5083 
   5084   SDValue Tmp;
   5085   switch (Op.getSimpleValueType().SimpleTy) {
   5086   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   5087   case MVT::i32:
   5088     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
   5089                         (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
   5090                                                    PPCISD::FCTIDZ),
   5091                       dl, MVT::f64, Src);
   5092     break;
   5093   case MVT::i64:
   5094     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   5095            "i64 FP_TO_UINT is supported only with FPCVT");
   5096     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   5097                                                         PPCISD::FCTIDUZ,
   5098                       dl, MVT::f64, Src);
   5099     break;
   5100   }
   5101 
   5102   // Convert the FP value to an int value through memory.
   5103   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
   5104     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
   5105   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   5106   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   5107   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
   5108 
   5109   // Emit a store to the stack slot.
   5110   SDValue Chain;
   5111   if (i32Stack) {
   5112     MachineFunction &MF = DAG.getMachineFunction();
   5113     MachineMemOperand *MMO =
   5114       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   5115     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   5116     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   5117               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
   5118   } else
   5119     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   5120                          MPI, false, false, 0);
   5121 
   5122   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   5123   // add in a bias.
   5124   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   5125     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   5126                         DAG.getConstant(4, FIPtr.getValueType()));
   5127     MPI = MachinePointerInfo();
   5128   }
   5129 
   5130   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
   5131                      false, false, false, 0);
   5132 }
   5133 
   5134 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   5135                                            SelectionDAG &DAG) const {
   5136   SDLoc dl(Op);
   5137   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   5138   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   5139     return SDValue();
   5140 
   5141   if (Op.getOperand(0).getValueType() == MVT::i1)
   5142     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
   5143                        DAG.getConstantFP(1.0, Op.getValueType()),
   5144                        DAG.getConstantFP(0.0, Op.getValueType()));
   5145 
   5146   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   5147          "UINT_TO_FP is supported only with FPCVT");
   5148 
   5149   // If we have FCFIDS, then use it when converting to single-precision.
   5150   // Otherwise, convert to double-precision and then round.
   5151   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
   5152                    (Op.getOpcode() == ISD::UINT_TO_FP ?
   5153                     PPCISD::FCFIDUS : PPCISD::FCFIDS) :
   5154                    (Op.getOpcode() == ISD::UINT_TO_FP ?
   5155                     PPCISD::FCFIDU : PPCISD::FCFID);
   5156   MVT      FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
   5157                    MVT::f32 : MVT::f64;
   5158 
   5159   if (Op.getOperand(0).getValueType() == MVT::i64) {
   5160     SDValue SINT = Op.getOperand(0);
   5161     // When converting to single-precision, we actually need to convert
   5162     // to double-precision first and then round to single-precision.
   5163     // To avoid double-rounding effects during that operation, we have
   5164     // to prepare the input operand.  Bits that might be truncated when
   5165     // converting to double-precision are replaced by a bit that won't
   5166     // be lost at this stage, but is below the single-precision rounding
   5167     // position.
   5168     //
   5169     // However, if -enable-unsafe-fp-math is in effect, accept double
   5170     // rounding to avoid the extra overhead.
   5171     if (Op.getValueType() == MVT::f32 &&
   5172         !Subtarget.hasFPCVT() &&
   5173         !DAG.getTarget().Options.UnsafeFPMath) {
   5174 
   5175       // Twiddle input to make sure the low 11 bits are zero.  (If this
   5176       // is the case, we are guaranteed the value will fit into the 53 bit
   5177       // mantissa of an IEEE double-precision value without rounding.)
   5178       // If any of those low 11 bits were not zero originally, make sure
   5179       // bit 12 (value 2048) is set instead, so that the final rounding
   5180       // to single-precision gets the correct result.
   5181       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   5182                                   SINT, DAG.getConstant(2047, MVT::i64));
   5183       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   5184                           Round, DAG.getConstant(2047, MVT::i64));
   5185       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   5186       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   5187                           Round, DAG.getConstant(-2048, MVT::i64));
   5188 
   5189       // However, we cannot use that value unconditionally: if the magnitude
   5190       // of the input value is small, the bit-twiddling we did above might
   5191       // end up visibly changing the output.  Fortunately, in that case, we
   5192       // don't need to twiddle bits since the original input will convert
   5193       // exactly to double-precision floating-point already.  Therefore,
   5194       // construct a conditional to use the original value if the top 11
   5195       // bits are all sign-bit copies, and use the rounded value computed
   5196       // above otherwise.
   5197       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   5198                                  SINT, DAG.getConstant(53, MVT::i32));
   5199       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   5200                          Cond, DAG.getConstant(1, MVT::i64));
   5201       Cond = DAG.getSetCC(dl, MVT::i32,
   5202                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
   5203 
   5204       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   5205     }
   5206 
   5207     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   5208     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   5209 
   5210     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   5211       FP = DAG.getNode(ISD::FP_ROUND, dl,
   5212                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   5213     return FP;
   5214   }
   5215 
   5216   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   5217          "Unhandled INT_TO_FP type in custom expander!");
   5218   // Since we only generate this in 64-bit mode, we can take advantage of
   5219   // 64-bit registers.  In particular, sign extend the input value into the
   5220   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   5221   // then lfd it and fcfid it.
   5222   MachineFunction &MF = DAG.getMachineFunction();
   5223   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   5224   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5225 
   5226   SDValue Ld;
   5227   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
   5228     int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   5229     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   5230 
   5231     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   5232                                  MachinePointerInfo::getFixedStack(FrameIdx),
   5233                                  false, false, 0);
   5234 
   5235     assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   5236            "Expected an i32 store");
   5237     MachineMemOperand *MMO =
   5238       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
   5239                               MachineMemOperand::MOLoad, 4, 4);
   5240     SDValue Ops[] = { Store, FIdx };
   5241     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   5242                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   5243                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   5244                                  Ops, MVT::i32, MMO);
   5245   } else {
   5246     assert(Subtarget.isPPC64() &&
   5247            "i32->FP without LFIWAX supported only on PPC64");
   5248 
   5249     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   5250     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   5251 
   5252     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   5253                                 Op.getOperand(0));
   5254 
   5255     // STD the extended value into the stack slot.
   5256     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
   5257                                  MachinePointerInfo::getFixedStack(FrameIdx),
   5258                                  false, false, 0);
   5259 
   5260     // Load the value as a double.
   5261     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
   5262                      MachinePointerInfo::getFixedStack(FrameIdx),
   5263                      false, false, false, 0);
   5264   }
   5265 
   5266   // FCFID it and return it.
   5267   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   5268   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   5269     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   5270   return FP;
   5271 }
   5272 
   5273 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   5274                                             SelectionDAG &DAG) const {
   5275   SDLoc dl(Op);
   5276   /*
   5277    The rounding mode is in bits 30:31 of FPSR, and has the following
   5278    settings:
   5279      00 Round to nearest
   5280      01 Round to 0
   5281      10 Round to +inf
   5282      11 Round to -inf
   5283 
   5284   FLT_ROUNDS, on the other hand, expects the following:
   5285     -1 Undefined
   5286      0 Round to 0
   5287      1 Round to nearest
   5288      2 Round to +inf
   5289      3 Round to -inf
   5290 
   5291   To perform the conversion, we do:
   5292     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   5293   */
   5294 
   5295   MachineFunction &MF = DAG.getMachineFunction();
   5296   EVT VT = Op.getValueType();
   5297   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5298 
   5299   // Save FP Control Word to register
   5300   EVT NodeTys[] = {
   5301     MVT::f64,    // return register
   5302     MVT::Glue    // unused in this context
   5303   };
   5304   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
   5305 
   5306   // Save FP register to stack slot
   5307   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   5308   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   5309   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   5310                                StackSlot, MachinePointerInfo(), false, false,0);
   5311 
   5312   // Load FP Control Word from low 32 bits of stack slot.
   5313   SDValue Four = DAG.getConstant(4, PtrVT);
   5314   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   5315   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   5316                             false, false, false, 0);
   5317 
   5318   // Transform as necessary
   5319   SDValue CWD1 =
   5320     DAG.getNode(ISD::AND, dl, MVT::i32,
   5321                 CWD, DAG.getConstant(3, MVT::i32));
   5322   SDValue CWD2 =
   5323     DAG.getNode(ISD::SRL, dl, MVT::i32,
   5324                 DAG.getNode(ISD::AND, dl, MVT::i32,
   5325                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   5326                                         CWD, DAG.getConstant(3, MVT::i32)),
   5327                             DAG.getConstant(3, MVT::i32)),
   5328                 DAG.getConstant(1, MVT::i32));
   5329 
   5330   SDValue RetVal =
   5331     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   5332 
   5333   return DAG.getNode((VT.getSizeInBits() < 16 ?
   5334                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   5335 }
   5336 
   5337 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5338   EVT VT = Op.getValueType();
   5339   unsigned BitWidth = VT.getSizeInBits();
   5340   SDLoc dl(Op);
   5341   assert(Op.getNumOperands() == 3 &&
   5342          VT == Op.getOperand(1).getValueType() &&
   5343          "Unexpected SHL!");
   5344 
   5345   // Expand into a bunch of logical ops.  Note that these ops
   5346   // depend on the PPC behavior for oversized shift amounts.
   5347   SDValue Lo = Op.getOperand(0);
   5348   SDValue Hi = Op.getOperand(1);
   5349   SDValue Amt = Op.getOperand(2);
   5350   EVT AmtVT = Amt.getValueType();
   5351 
   5352   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5353                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5354   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   5355   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   5356   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   5357   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5358                              DAG.getConstant(-BitWidth, AmtVT));
   5359   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   5360   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   5361   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   5362   SDValue OutOps[] = { OutLo, OutHi };
   5363   return DAG.getMergeValues(OutOps, dl);
   5364 }
   5365 
   5366 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5367   EVT VT = Op.getValueType();
   5368   SDLoc dl(Op);
   5369   unsigned BitWidth = VT.getSizeInBits();
   5370   assert(Op.getNumOperands() == 3 &&
   5371          VT == Op.getOperand(1).getValueType() &&
   5372          "Unexpected SRL!");
   5373 
   5374   // Expand into a bunch of logical ops.  Note that these ops
   5375   // depend on the PPC behavior for oversized shift amounts.
   5376   SDValue Lo = Op.getOperand(0);
   5377   SDValue Hi = Op.getOperand(1);
   5378   SDValue Amt = Op.getOperand(2);
   5379   EVT AmtVT = Amt.getValueType();
   5380 
   5381   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5382                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5383   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   5384   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   5385   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   5386   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5387                              DAG.getConstant(-BitWidth, AmtVT));
   5388   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   5389   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   5390   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   5391   SDValue OutOps[] = { OutLo, OutHi };
   5392   return DAG.getMergeValues(OutOps, dl);
   5393 }
   5394 
   5395 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5396   SDLoc dl(Op);
   5397   EVT VT = Op.getValueType();
   5398   unsigned BitWidth = VT.getSizeInBits();
   5399   assert(Op.getNumOperands() == 3 &&
   5400          VT == Op.getOperand(1).getValueType() &&
   5401          "Unexpected SRA!");
   5402 
   5403   // Expand into a bunch of logical ops, followed by a select_cc.
   5404   SDValue Lo = Op.getOperand(0);
   5405   SDValue Hi = Op.getOperand(1);
   5406   SDValue Amt = Op.getOperand(2);
   5407   EVT AmtVT = Amt.getValueType();
   5408 
   5409   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5410                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5411   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   5412   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   5413   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   5414   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5415                              DAG.getConstant(-BitWidth, AmtVT));
   5416   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   5417   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   5418   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   5419                                   Tmp4, Tmp6, ISD::SETLE);
   5420   SDValue OutOps[] = { OutLo, OutHi };
   5421   return DAG.getMergeValues(OutOps, dl);
   5422 }
   5423 
   5424 //===----------------------------------------------------------------------===//
   5425 // Vector related lowering.
   5426 //
   5427 
   5428 /// BuildSplatI - Build a canonical splati of Val with an element size of
   5429 /// SplatSize.  Cast the result to VT.
   5430 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   5431                              SelectionDAG &DAG, SDLoc dl) {
   5432   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   5433 
   5434   static const EVT VTys[] = { // canonical VT to use for each size.
   5435     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   5436   };
   5437 
   5438   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   5439 
   5440   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   5441   if (Val == -1)
   5442     SplatSize = 1;
   5443 
   5444   EVT CanonicalVT = VTys[SplatSize-1];
   5445 
   5446   // Build a canonical splat for this value.
   5447   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   5448   SmallVector<SDValue, 8> Ops;
   5449   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   5450   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
   5451   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   5452 }
   5453 
   5454 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   5455 /// specified intrinsic ID.
   5456 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
   5457                                 SelectionDAG &DAG, SDLoc dl,
   5458                                 EVT DestVT = MVT::Other) {
   5459   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   5460   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5461                      DAG.getConstant(IID, MVT::i32), Op);
   5462 }
   5463 
   5464 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   5465 /// specified intrinsic ID.
   5466 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   5467                                 SelectionDAG &DAG, SDLoc dl,
   5468                                 EVT DestVT = MVT::Other) {
   5469   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   5470   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5471                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   5472 }
   5473 
   5474 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   5475 /// specified intrinsic ID.
   5476 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   5477                                 SDValue Op2, SelectionDAG &DAG,
   5478                                 SDLoc dl, EVT DestVT = MVT::Other) {
   5479   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   5480   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5481                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   5482 }
   5483 
   5484 
   5485 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   5486 /// amount.  The result has the specified value type.
   5487 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   5488                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
   5489   // Force LHS/RHS to be the right type.
   5490   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   5491   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   5492 
   5493   int Ops[16];
   5494   for (unsigned i = 0; i != 16; ++i)
   5495     Ops[i] = i + Amt;
   5496   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   5497   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   5498 }
   5499 
   5500 // If this is a case we can't handle, return null and let the default
   5501 // expansion code take care of it.  If we CAN select this case, and if it
   5502 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   5503 // this case more efficiently than a constant pool load, lower it to the
   5504 // sequence of ops that should be used.
   5505 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   5506                                              SelectionDAG &DAG) const {
   5507   SDLoc dl(Op);
   5508   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   5509   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   5510 
   5511   // Check if this is a splat of a constant value.
   5512   APInt APSplatBits, APSplatUndef;
   5513   unsigned SplatBitSize;
   5514   bool HasAnyUndefs;
   5515   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   5516                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
   5517     return SDValue();
   5518 
   5519   unsigned SplatBits = APSplatBits.getZExtValue();
   5520   unsigned SplatUndef = APSplatUndef.getZExtValue();
   5521   unsigned SplatSize = SplatBitSize / 8;
   5522 
   5523   // First, handle single instruction cases.
   5524 
   5525   // All zeros?
   5526   if (SplatBits == 0) {
   5527     // Canonicalize all zero vectors to be v4i32.
   5528     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   5529       SDValue Z = DAG.getConstant(0, MVT::i32);
   5530       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   5531       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   5532     }
   5533     return Op;
   5534   }
   5535 
   5536   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   5537   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   5538                     (32-SplatBitSize));
   5539   if (SextVal >= -16 && SextVal <= 15)
   5540     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   5541 
   5542 
   5543   // Two instruction sequences.
   5544 
   5545   // If this value is in the range [-32,30] and is even, use:
   5546   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   5547   // If this value is in the range [17,31] and is odd, use:
   5548   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   5549   // If this value is in the range [-31,-17] and is odd, use:
   5550   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   5551   // Note the last two are three-instruction sequences.
   5552   if (SextVal >= -32 && SextVal <= 31) {
   5553     // To avoid having these optimizations undone by constant folding,
   5554     // we convert to a pseudo that will be expanded later into one of
   5555     // the above forms.
   5556     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
   5557     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
   5558               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
   5559     SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
   5560     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   5561     if (VT == Op.getValueType())
   5562       return RetVal;
   5563     else
   5564       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
   5565   }
   5566 
   5567   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   5568   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   5569   // for fneg/fabs.
   5570   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   5571     // Make -1 and vspltisw -1:
   5572     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   5573 
   5574     // Make the VSLW intrinsic, computing 0x8000_0000.
   5575     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   5576                                    OnesV, DAG, dl);
   5577 
   5578     // xor by OnesV to invert it.
   5579     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   5580     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5581   }
   5582 
   5583   // The remaining cases assume either big endian element order or
   5584   // a splat-size that equates to the element size of the vector
   5585   // to be built.  An example that doesn't work for little endian is
   5586   // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
   5587   // and a vector element size of 16 bits.  The code below will
   5588   // produce the vector in big endian element order, which for little
   5589   // endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
   5590 
   5591   // For now, just avoid these optimizations in that case.
   5592   // FIXME: Develop correct optimizations for LE with mismatched
   5593   // splat and element sizes.
   5594 
   5595   if (Subtarget.isLittleEndian() &&
   5596       SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
   5597     return SDValue();
   5598 
   5599   // Check to see if this is a wide variety of vsplti*, binop self cases.
   5600   static const signed char SplatCsts[] = {
   5601     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   5602     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   5603   };
   5604 
   5605   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   5606     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   5607     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   5608     int i = SplatCsts[idx];
   5609 
   5610     // Figure out what shift amount will be used by altivec if shifted by i in
   5611     // this splat size.
   5612     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   5613 
   5614     // vsplti + shl self.
   5615     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   5616       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5617       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5618         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   5619         Intrinsic::ppc_altivec_vslw
   5620       };
   5621       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5622       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5623     }
   5624 
   5625     // vsplti + srl self.
   5626     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5627       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5628       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5629         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   5630         Intrinsic::ppc_altivec_vsrw
   5631       };
   5632       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5633       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5634     }
   5635 
   5636     // vsplti + sra self.
   5637     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5638       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5639       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5640         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   5641         Intrinsic::ppc_altivec_vsraw
   5642       };
   5643       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5644       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5645     }
   5646 
   5647     // vsplti + rol self.
   5648     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   5649                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   5650       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5651       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5652         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   5653         Intrinsic::ppc_altivec_vrlw
   5654       };
   5655       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5656       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5657     }
   5658 
   5659     // t = vsplti c, result = vsldoi t, t, 1
   5660     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   5661       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5662       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   5663     }
   5664     // t = vsplti c, result = vsldoi t, t, 2
   5665     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   5666       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5667       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   5668     }
   5669     // t = vsplti c, result = vsldoi t, t, 3
   5670     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   5671       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5672       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   5673     }
   5674   }
   5675 
   5676   return SDValue();
   5677 }
   5678 
   5679 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5680 /// the specified operations to build the shuffle.
   5681 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5682                                       SDValue RHS, SelectionDAG &DAG,
   5683                                       SDLoc dl) {
   5684   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5685   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5686   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5687 
   5688   enum {
   5689     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5690     OP_VMRGHW,
   5691     OP_VMRGLW,
   5692     OP_VSPLTISW0,
   5693     OP_VSPLTISW1,
   5694     OP_VSPLTISW2,
   5695     OP_VSPLTISW3,
   5696     OP_VSLDOI4,
   5697     OP_VSLDOI8,
   5698     OP_VSLDOI12
   5699   };
   5700 
   5701   if (OpNum == OP_COPY) {
   5702     if (LHSID == (1*9+2)*9+3) return LHS;
   5703     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5704     return RHS;
   5705   }
   5706 
   5707   SDValue OpLHS, OpRHS;
   5708   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5709   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5710 
   5711   int ShufIdxs[16];
   5712   switch (OpNum) {
   5713   default: llvm_unreachable("Unknown i32 permute!");
   5714   case OP_VMRGHW:
   5715     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   5716     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   5717     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   5718     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   5719     break;
   5720   case OP_VMRGLW:
   5721     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   5722     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   5723     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   5724     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   5725     break;
   5726   case OP_VSPLTISW0:
   5727     for (unsigned i = 0; i != 16; ++i)
   5728       ShufIdxs[i] = (i&3)+0;
   5729     break;
   5730   case OP_VSPLTISW1:
   5731     for (unsigned i = 0; i != 16; ++i)
   5732       ShufIdxs[i] = (i&3)+4;
   5733     break;
   5734   case OP_VSPLTISW2:
   5735     for (unsigned i = 0; i != 16; ++i)
   5736       ShufIdxs[i] = (i&3)+8;
   5737     break;
   5738   case OP_VSPLTISW3:
   5739     for (unsigned i = 0; i != 16; ++i)
   5740       ShufIdxs[i] = (i&3)+12;
   5741     break;
   5742   case OP_VSLDOI4:
   5743     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   5744   case OP_VSLDOI8:
   5745     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   5746   case OP_VSLDOI12:
   5747     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   5748   }
   5749   EVT VT = OpLHS.getValueType();
   5750   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   5751   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   5752   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   5753   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   5754 }
   5755 
   5756 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   5757 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   5758 /// return the code it can be lowered into.  Worst case, it can always be
   5759 /// lowered into a vperm.
   5760 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   5761                                                SelectionDAG &DAG) const {
   5762   SDLoc dl(Op);
   5763   SDValue V1 = Op.getOperand(0);
   5764   SDValue V2 = Op.getOperand(1);
   5765   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5766   EVT VT = Op.getValueType();
   5767   bool isLittleEndian = Subtarget.isLittleEndian();
   5768 
   5769   // Cases that are handled by instructions that take permute immediates
   5770   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   5771   // selected by the instruction selector.
   5772   if (V2.getOpcode() == ISD::UNDEF) {
   5773     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   5774         PPC::isSplatShuffleMask(SVOp, 2) ||
   5775         PPC::isSplatShuffleMask(SVOp, 4) ||
   5776         PPC::isVPKUWUMShuffleMask(SVOp, true, DAG) ||
   5777         PPC::isVPKUHUMShuffleMask(SVOp, true, DAG) ||
   5778         PPC::isVSLDOIShuffleMask(SVOp, true, DAG) != -1 ||
   5779         PPC::isVMRGLShuffleMask(SVOp, 1, true, DAG) ||
   5780         PPC::isVMRGLShuffleMask(SVOp, 2, true, DAG) ||
   5781         PPC::isVMRGLShuffleMask(SVOp, 4, true, DAG) ||
   5782         PPC::isVMRGHShuffleMask(SVOp, 1, true, DAG) ||
   5783         PPC::isVMRGHShuffleMask(SVOp, 2, true, DAG) ||
   5784         PPC::isVMRGHShuffleMask(SVOp, 4, true, DAG)) {
   5785       return Op;
   5786     }
   5787   }
   5788 
   5789   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   5790   // and produce a fixed permutation.  If any of these match, do not lower to
   5791   // VPERM.
   5792   if (PPC::isVPKUWUMShuffleMask(SVOp, false, DAG) ||
   5793       PPC::isVPKUHUMShuffleMask(SVOp, false, DAG) ||
   5794       PPC::isVSLDOIShuffleMask(SVOp, false, DAG) != -1 ||
   5795       PPC::isVMRGLShuffleMask(SVOp, 1, false, DAG) ||
   5796       PPC::isVMRGLShuffleMask(SVOp, 2, false, DAG) ||
   5797       PPC::isVMRGLShuffleMask(SVOp, 4, false, DAG) ||
   5798       PPC::isVMRGHShuffleMask(SVOp, 1, false, DAG) ||
   5799       PPC::isVMRGHShuffleMask(SVOp, 2, false, DAG) ||
   5800       PPC::isVMRGHShuffleMask(SVOp, 4, false, DAG))
   5801     return Op;
   5802 
   5803   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   5804   // perfect shuffle table to emit an optimal matching sequence.
   5805   ArrayRef<int> PermMask = SVOp->getMask();
   5806 
   5807   unsigned PFIndexes[4];
   5808   bool isFourElementShuffle = true;
   5809   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   5810     unsigned EltNo = 8;   // Start out undef.
   5811     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   5812       if (PermMask[i*4+j] < 0)
   5813         continue;   // Undef, ignore it.
   5814 
   5815       unsigned ByteSource = PermMask[i*4+j];
   5816       if ((ByteSource & 3) != j) {
   5817         isFourElementShuffle = false;
   5818         break;
   5819       }
   5820 
   5821       if (EltNo == 8) {
   5822         EltNo = ByteSource/4;
   5823       } else if (EltNo != ByteSource/4) {
   5824         isFourElementShuffle = false;
   5825         break;
   5826       }
   5827     }
   5828     PFIndexes[i] = EltNo;
   5829   }
   5830 
   5831   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   5832   // perfect shuffle vector to determine if it is cost effective to do this as
   5833   // discrete instructions, or whether we should use a vperm.
   5834   // For now, we skip this for little endian until such time as we have a
   5835   // little-endian perfect shuffle table.
   5836   if (isFourElementShuffle && !isLittleEndian) {
   5837     // Compute the index in the perfect shuffle table.
   5838     unsigned PFTableIndex =
   5839       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5840 
   5841     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5842     unsigned Cost  = (PFEntry >> 30);
   5843 
   5844     // Determining when to avoid vperm is tricky.  Many things affect the cost
   5845     // of vperm, particularly how many times the perm mask needs to be computed.
   5846     // For example, if the perm mask can be hoisted out of a loop or is already
   5847     // used (perhaps because there are multiple permutes with the same shuffle
   5848     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   5849     // the loop requires an extra register.
   5850     //
   5851     // As a compromise, we only emit discrete instructions if the shuffle can be
   5852     // generated in 3 or fewer operations.  When we have loop information
   5853     // available, if this block is within a loop, we should avoid using vperm
   5854     // for 3-operation perms and use a constant pool load instead.
   5855     if (Cost < 3)
   5856       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   5857   }
   5858 
   5859   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   5860   // vector that will get spilled to the constant pool.
   5861   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   5862 
   5863   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   5864   // that it is in input element units, not in bytes.  Convert now.
   5865 
   5866   // For little endian, the order of the input vectors is reversed, and
   5867   // the permutation mask is complemented with respect to 31.  This is
   5868   // necessary to produce proper semantics with the big-endian-biased vperm
   5869   // instruction.
   5870   EVT EltVT = V1.getValueType().getVectorElementType();
   5871   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   5872 
   5873   SmallVector<SDValue, 16> ResultMask;
   5874   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   5875     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   5876 
   5877     for (unsigned j = 0; j != BytesPerElement; ++j)
   5878       if (isLittleEndian)
   5879         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
   5880                                              MVT::i32));
   5881       else
   5882         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   5883                                              MVT::i32));
   5884   }
   5885 
   5886   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   5887                                   ResultMask);
   5888   if (isLittleEndian)
   5889     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   5890                        V2, V1, VPermMask);
   5891   else
   5892     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   5893                        V1, V2, VPermMask);
   5894 }
   5895 
   5896 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   5897 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   5898 /// information about the intrinsic.
   5899 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   5900                                   bool &isDot) {
   5901   unsigned IntrinsicID =
   5902     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   5903   CompareOpc = -1;
   5904   isDot = false;
   5905   switch (IntrinsicID) {
   5906   default: return false;
   5907     // Comparison predicates.
   5908   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   5909   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   5910   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   5911   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   5912   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   5913   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   5914   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   5915   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   5916   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   5917   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   5918   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   5919   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   5920   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   5921 
   5922     // Normal Comparisons.
   5923   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   5924   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   5925   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   5926   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   5927   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   5928   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   5929   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   5930   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   5931   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   5932   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   5933   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   5934   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   5935   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   5936   }
   5937   return true;
   5938 }
   5939 
   5940 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   5941 /// lower, do it, otherwise return null.
   5942 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   5943                                                    SelectionDAG &DAG) const {
   5944   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   5945   // opcode number of the comparison.
   5946   SDLoc dl(Op);
   5947   int CompareOpc;
   5948   bool isDot;
   5949   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
   5950     return SDValue();    // Don't custom lower most intrinsics.
   5951 
   5952   // If this is a non-dot comparison, make the VCMP node and we are done.
   5953   if (!isDot) {
   5954     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   5955                               Op.getOperand(1), Op.getOperand(2),
   5956                               DAG.getConstant(CompareOpc, MVT::i32));
   5957     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   5958   }
   5959 
   5960   // Create the PPCISD altivec 'dot' comparison node.
   5961   SDValue Ops[] = {
   5962     Op.getOperand(2),  // LHS
   5963     Op.getOperand(3),  // RHS
   5964     DAG.getConstant(CompareOpc, MVT::i32)
   5965   };
   5966   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   5967   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   5968 
   5969   // Now that we have the comparison, emit a copy from the CR to a GPR.
   5970   // This is flagged to the above dot comparison.
   5971   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   5972                                 DAG.getRegister(PPC::CR6, MVT::i32),
   5973                                 CompNode.getValue(1));
   5974 
   5975   // Unpack the result based on how the target uses it.
   5976   unsigned BitNo;   // Bit # of CR6.
   5977   bool InvertBit;   // Invert result?
   5978   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   5979   default:  // Can't happen, don't crash on invalid number though.
   5980   case 0:   // Return the value of the EQ bit of CR6.
   5981     BitNo = 0; InvertBit = false;
   5982     break;
   5983   case 1:   // Return the inverted value of the EQ bit of CR6.
   5984     BitNo = 0; InvertBit = true;
   5985     break;
   5986   case 2:   // Return the value of the LT bit of CR6.
   5987     BitNo = 2; InvertBit = false;
   5988     break;
   5989   case 3:   // Return the inverted value of the LT bit of CR6.
   5990     BitNo = 2; InvertBit = true;
   5991     break;
   5992   }
   5993 
   5994   // Shift the bit into the low position.
   5995   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   5996                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   5997   // Isolate the bit.
   5998   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   5999                       DAG.getConstant(1, MVT::i32));
   6000 
   6001   // If we are supposed to, toggle the bit.
   6002   if (InvertBit)
   6003     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   6004                         DAG.getConstant(1, MVT::i32));
   6005   return Flags;
   6006 }
   6007 
   6008 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   6009                                                   SelectionDAG &DAG) const {
   6010   SDLoc dl(Op);
   6011   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
   6012   // instructions), but for smaller types, we need to first extend up to v2i32
   6013   // before doing going farther.
   6014   if (Op.getValueType() == MVT::v2i64) {
   6015     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   6016     if (ExtVT != MVT::v2i32) {
   6017       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
   6018       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
   6019                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
   6020                                         ExtVT.getVectorElementType(), 4)));
   6021       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
   6022       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
   6023                        DAG.getValueType(MVT::v2i32));
   6024     }
   6025 
   6026     return Op;
   6027   }
   6028 
   6029   return SDValue();
   6030 }
   6031 
   6032 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   6033                                                    SelectionDAG &DAG) const {
   6034   SDLoc dl(Op);
   6035   // Create a stack slot that is 16-byte aligned.
   6036   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6037   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   6038   EVT PtrVT = getPointerTy();
   6039   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6040 
   6041   // Store the input value into Value#0 of the stack slot.
   6042   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   6043                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   6044                                false, false, 0);
   6045   // Load it out.
   6046   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   6047                      false, false, false, 0);
   6048 }
   6049 
   6050 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   6051   SDLoc dl(Op);
   6052   if (Op.getValueType() == MVT::v4i32) {
   6053     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6054 
   6055     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   6056     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   6057 
   6058     SDValue RHSSwap =   // = vrlw RHS, 16
   6059       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   6060 
   6061     // Shrinkify inputs to v8i16.
   6062     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   6063     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   6064     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   6065 
   6066     // Low parts multiplied together, generating 32-bit results (we ignore the
   6067     // top parts).
   6068     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   6069                                         LHS, RHS, DAG, dl, MVT::v4i32);
   6070 
   6071     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   6072                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   6073     // Shift the high parts up 16 bits.
   6074     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   6075                               Neg16, DAG, dl);
   6076     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   6077   } else if (Op.getValueType() == MVT::v8i16) {
   6078     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6079 
   6080     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   6081 
   6082     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   6083                             LHS, RHS, Zero, DAG, dl);
   6084   } else if (Op.getValueType() == MVT::v16i8) {
   6085     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6086     bool isLittleEndian = Subtarget.isLittleEndian();
   6087 
   6088     // Multiply the even 8-bit parts, producing 16-bit sums.
   6089     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   6090                                            LHS, RHS, DAG, dl, MVT::v8i16);
   6091     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   6092 
   6093     // Multiply the odd 8-bit parts, producing 16-bit sums.
   6094     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   6095                                           LHS, RHS, DAG, dl, MVT::v8i16);
   6096     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   6097 
   6098     // Merge the results together.  Because vmuleub and vmuloub are
   6099     // instructions with a big-endian bias, we must reverse the
   6100     // element numbering and reverse the meaning of "odd" and "even"
   6101     // when generating little endian code.
   6102     int Ops[16];
   6103     for (unsigned i = 0; i != 8; ++i) {
   6104       if (isLittleEndian) {
   6105         Ops[i*2  ] = 2*i;
   6106         Ops[i*2+1] = 2*i+16;
   6107       } else {
   6108         Ops[i*2  ] = 2*i+1;
   6109         Ops[i*2+1] = 2*i+1+16;
   6110       }
   6111     }
   6112     if (isLittleEndian)
   6113       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
   6114     else
   6115       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   6116   } else {
   6117     llvm_unreachable("Unknown mul to lower!");
   6118   }
   6119 }
   6120 
   6121 /// LowerOperation - Provide custom lowering hooks for some operations.
   6122 ///
   6123 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6124   switch (Op.getOpcode()) {
   6125   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   6126   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   6127   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   6128   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   6129   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   6130   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   6131   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   6132   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   6133   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   6134   case ISD::VASTART:
   6135     return LowerVASTART(Op, DAG, Subtarget);
   6136 
   6137   case ISD::VAARG:
   6138     return LowerVAARG(Op, DAG, Subtarget);
   6139 
   6140   case ISD::VACOPY:
   6141     return LowerVACOPY(Op, DAG, Subtarget);
   6142 
   6143   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
   6144   case ISD::DYNAMIC_STACKALLOC:
   6145     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
   6146 
   6147   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   6148   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   6149 
   6150   case ISD::LOAD:               return LowerLOAD(Op, DAG);
   6151   case ISD::STORE:              return LowerSTORE(Op, DAG);
   6152   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   6153   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   6154   case ISD::FP_TO_UINT:
   6155   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   6156                                                        SDLoc(Op));
   6157   case ISD::UINT_TO_FP:
   6158   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   6159   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   6160 
   6161   // Lower 64-bit shifts.
   6162   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   6163   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   6164   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   6165 
   6166   // Vector-related lowering.
   6167   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   6168   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   6169   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   6170   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   6171   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
   6172   case ISD::MUL:                return LowerMUL(Op, DAG);
   6173 
   6174   // For counter-based loop handling.
   6175   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   6176 
   6177   // Frame & Return address.
   6178   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   6179   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   6180   }
   6181 }
   6182 
   6183 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   6184                                            SmallVectorImpl<SDValue>&Results,
   6185                                            SelectionDAG &DAG) const {
   6186   const TargetMachine &TM = getTargetMachine();
   6187   SDLoc dl(N);
   6188   switch (N->getOpcode()) {
   6189   default:
   6190     llvm_unreachable("Do not know how to custom type legalize this operation!");
   6191   case ISD::INTRINSIC_W_CHAIN: {
   6192     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   6193         Intrinsic::ppc_is_decremented_ctr_nonzero)
   6194       break;
   6195 
   6196     assert(N->getValueType(0) == MVT::i1 &&
   6197            "Unexpected result type for CTR decrement intrinsic");
   6198     EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
   6199     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   6200     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   6201                                  N->getOperand(1));
   6202 
   6203     Results.push_back(NewInt);
   6204     Results.push_back(NewInt.getValue(1));
   6205     break;
   6206   }
   6207   case ISD::VAARG: {
   6208     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
   6209         || TM.getSubtarget<PPCSubtarget>().isPPC64())
   6210       return;
   6211 
   6212     EVT VT = N->getValueType(0);
   6213 
   6214     if (VT == MVT::i64) {
   6215       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
   6216 
   6217       Results.push_back(NewNode);
   6218       Results.push_back(NewNode.getValue(1));
   6219     }
   6220     return;
   6221   }
   6222   case ISD::FP_ROUND_INREG: {
   6223     assert(N->getValueType(0) == MVT::ppcf128);
   6224     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   6225     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   6226                              MVT::f64, N->getOperand(0),
   6227                              DAG.getIntPtrConstant(0));
   6228     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   6229                              MVT::f64, N->getOperand(0),
   6230                              DAG.getIntPtrConstant(1));
   6231 
   6232     // Add the two halves of the long double in round-to-zero mode.
   6233     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   6234 
   6235     // We know the low half is about to be thrown away, so just use something
   6236     // convenient.
   6237     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   6238                                 FPreg, FPreg));
   6239     return;
   6240   }
   6241   case ISD::FP_TO_SINT:
   6242     // LowerFP_TO_INT() can only handle f32 and f64.
   6243     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   6244       return;
   6245     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   6246     return;
   6247   }
   6248 }
   6249 
   6250 
   6251 //===----------------------------------------------------------------------===//
   6252 //  Other Lowering Code
   6253 //===----------------------------------------------------------------------===//
   6254 
   6255 MachineBasicBlock *
   6256 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   6257                                     bool is64bit, unsigned BinOpcode) const {
   6258   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   6259   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6260 
   6261   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6262   MachineFunction *F = BB->getParent();
   6263   MachineFunction::iterator It = BB;
   6264   ++It;
   6265 
   6266   unsigned dest = MI->getOperand(0).getReg();
   6267   unsigned ptrA = MI->getOperand(1).getReg();
   6268   unsigned ptrB = MI->getOperand(2).getReg();
   6269   unsigned incr = MI->getOperand(3).getReg();
   6270   DebugLoc dl = MI->getDebugLoc();
   6271 
   6272   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6273   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6274   F->insert(It, loopMBB);
   6275   F->insert(It, exitMBB);
   6276   exitMBB->splice(exitMBB->begin(), BB,
   6277                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   6278   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6279 
   6280   MachineRegisterInfo &RegInfo = F->getRegInfo();
   6281   unsigned TmpReg = (!BinOpcode) ? incr :
   6282     RegInfo.createVirtualRegister(
   6283        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   6284                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
   6285 
   6286   //  thisMBB:
   6287   //   ...
   6288   //   fallthrough --> loopMBB
   6289   BB->addSuccessor(loopMBB);
   6290 
   6291   //  loopMBB:
   6292   //   l[wd]arx dest, ptr
   6293   //   add r0, dest, incr
   6294   //   st[wd]cx. r0, ptr
   6295   //   bne- loopMBB
   6296   //   fallthrough --> exitMBB
   6297   BB = loopMBB;
   6298   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   6299     .addReg(ptrA).addReg(ptrB);
   6300   if (BinOpcode)
   6301     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   6302   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6303     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   6304   BuildMI(BB, dl, TII->get(PPC::BCC))
   6305     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   6306   BB->addSuccessor(loopMBB);
   6307   BB->addSuccessor(exitMBB);
   6308 
   6309   //  exitMBB:
   6310   //   ...
   6311   BB = exitMBB;
   6312   return BB;
   6313 }
   6314 
   6315 MachineBasicBlock *
   6316 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   6317                                             MachineBasicBlock *BB,
   6318                                             bool is8bit,    // operation
   6319                                             unsigned BinOpcode) const {
   6320   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   6321   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6322   // In 64 bit mode we have to use 64 bits for addresses, even though the
   6323   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   6324   // registers without caring whether they're 32 or 64, but here we're
   6325   // doing actual arithmetic on the addresses.
   6326   bool is64bit = Subtarget.isPPC64();
   6327   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   6328 
   6329   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6330   MachineFunction *F = BB->getParent();
   6331   MachineFunction::iterator It = BB;
   6332   ++It;
   6333 
   6334   unsigned dest = MI->getOperand(0).getReg();
   6335   unsigned ptrA = MI->getOperand(1).getReg();
   6336   unsigned ptrB = MI->getOperand(2).getReg();
   6337   unsigned incr = MI->getOperand(3).getReg();
   6338   DebugLoc dl = MI->getDebugLoc();
   6339 
   6340   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6341   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6342   F->insert(It, loopMBB);
   6343   F->insert(It, exitMBB);
   6344   exitMBB->splice(exitMBB->begin(), BB,
   6345                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   6346   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6347 
   6348   MachineRegisterInfo &RegInfo = F->getRegInfo();
   6349   const TargetRegisterClass *RC =
   6350     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   6351               (const TargetRegisterClass *) &PPC::GPRCRegClass;
   6352   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   6353   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   6354   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   6355   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   6356   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   6357   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   6358   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   6359   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   6360   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   6361   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   6362   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   6363   unsigned Ptr1Reg;
   6364   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   6365 
   6366   //  thisMBB:
   6367   //   ...
   6368   //   fallthrough --> loopMBB
   6369   BB->addSuccessor(loopMBB);
   6370 
   6371   // The 4-byte load must be aligned, while a char or short may be
   6372   // anywhere in the word.  Hence all this nasty bookkeeping code.
   6373   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   6374   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   6375   //   xori shift, shift1, 24 [16]
   6376   //   rlwinm ptr, ptr1, 0, 0, 29
   6377   //   slw incr2, incr, shift
   6378   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   6379   //   slw mask, mask2, shift
   6380   //  loopMBB:
   6381   //   lwarx tmpDest, ptr
   6382   //   add tmp, tmpDest, incr2
   6383   //   andc tmp2, tmpDest, mask
   6384   //   and tmp3, tmp, mask
   6385   //   or tmp4, tmp3, tmp2
   6386   //   stwcx. tmp4, ptr
   6387   //   bne- loopMBB
   6388   //   fallthrough --> exitMBB
   6389   //   srw dest, tmpDest, shift
   6390   if (ptrA != ZeroReg) {
   6391     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   6392     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   6393       .addReg(ptrA).addReg(ptrB);
   6394   } else {
   6395     Ptr1Reg = ptrB;
   6396   }
   6397   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   6398       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   6399   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   6400       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   6401   if (is64bit)
   6402     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   6403       .addReg(Ptr1Reg).addImm(0).addImm(61);
   6404   else
   6405     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   6406       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   6407   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   6408       .addReg(incr).addReg(ShiftReg);
   6409   if (is8bit)
   6410     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   6411   else {
   6412     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   6413     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   6414   }
   6415   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   6416       .addReg(Mask2Reg).addReg(ShiftReg);
   6417 
   6418   BB = loopMBB;
   6419   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   6420     .addReg(ZeroReg).addReg(PtrReg);
   6421   if (BinOpcode)
   6422     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   6423       .addReg(Incr2Reg).addReg(TmpDestReg);
   6424   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   6425     .addReg(TmpDestReg).addReg(MaskReg);
   6426   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   6427     .addReg(TmpReg).addReg(MaskReg);
   6428   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   6429     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   6430   BuildMI(BB, dl, TII->get(PPC::STWCX))
   6431     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   6432   BuildMI(BB, dl, TII->get(PPC::BCC))
   6433     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   6434   BB->addSuccessor(loopMBB);
   6435   BB->addSuccessor(exitMBB);
   6436 
   6437   //  exitMBB:
   6438   //   ...
   6439   BB = exitMBB;
   6440   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   6441     .addReg(ShiftReg);
   6442   return BB;
   6443 }
   6444 
   6445 llvm::MachineBasicBlock*
   6446 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
   6447                                     MachineBasicBlock *MBB) const {
   6448   DebugLoc DL = MI->getDebugLoc();
   6449   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6450 
   6451   MachineFunction *MF = MBB->getParent();
   6452   MachineRegisterInfo &MRI = MF->getRegInfo();
   6453 
   6454   const BasicBlock *BB = MBB->getBasicBlock();
   6455   MachineFunction::iterator I = MBB;
   6456   ++I;
   6457 
   6458   // Memory Reference
   6459   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   6460   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   6461 
   6462   unsigned DstReg = MI->getOperand(0).getReg();
   6463   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   6464   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   6465   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   6466   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   6467 
   6468   MVT PVT = getPointerTy();
   6469   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   6470          "Invalid Pointer Size!");
   6471   // For v = setjmp(buf), we generate
   6472   //
   6473   // thisMBB:
   6474   //  SjLjSetup mainMBB
   6475   //  bl mainMBB
   6476   //  v_restore = 1
   6477   //  b sinkMBB
   6478   //
   6479   // mainMBB:
   6480   //  buf[LabelOffset] = LR
   6481   //  v_main = 0
   6482   //
   6483   // sinkMBB:
   6484   //  v = phi(main, restore)
   6485   //
   6486 
   6487   MachineBasicBlock *thisMBB = MBB;
   6488   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   6489   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   6490   MF->insert(I, mainMBB);
   6491   MF->insert(I, sinkMBB);
   6492 
   6493   MachineInstrBuilder MIB;
   6494 
   6495   // Transfer the remainder of BB and its successor edges to sinkMBB.
   6496   sinkMBB->splice(sinkMBB->begin(), MBB,
   6497                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   6498   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   6499 
   6500   // Note that the structure of the jmp_buf used here is not compatible
   6501   // with that used by libc, and is not designed to be. Specifically, it
   6502   // stores only those 'reserved' registers that LLVM does not otherwise
   6503   // understand how to spill. Also, by convention, by the time this
   6504   // intrinsic is called, Clang has already stored the frame address in the
   6505   // first slot of the buffer and stack address in the third. Following the
   6506   // X86 target code, we'll store the jump address in the second slot. We also
   6507   // need to save the TOC pointer (R2) to handle jumps between shared
   6508   // libraries, and that will be stored in the fourth slot. The thread
   6509   // identifier (R13) is not affected.
   6510 
   6511   // thisMBB:
   6512   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   6513   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   6514   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   6515 
   6516   // Prepare IP either in reg.
   6517   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   6518   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   6519   unsigned BufReg = MI->getOperand(1).getReg();
   6520 
   6521   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
   6522     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   6523             .addReg(PPC::X2)
   6524             .addImm(TOCOffset)
   6525             .addReg(BufReg);
   6526     MIB.setMemRefs(MMOBegin, MMOEnd);
   6527   }
   6528 
   6529   // Naked functions never have a base pointer, and so we use r1. For all
   6530   // other functions, this decision must be delayed until during PEI.
   6531   unsigned BaseReg;
   6532   if (MF->getFunction()->getAttributes().hasAttribute(
   6533           AttributeSet::FunctionIndex, Attribute::Naked))
   6534     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
   6535   else
   6536     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
   6537 
   6538   MIB = BuildMI(*thisMBB, MI, DL,
   6539                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
   6540           .addReg(BaseReg)
   6541           .addImm(BPOffset)
   6542           .addReg(BufReg);
   6543   MIB.setMemRefs(MMOBegin, MMOEnd);
   6544 
   6545   // Setup
   6546   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   6547   const PPCRegisterInfo *TRI =
   6548     static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
   6549   MIB.addRegMask(TRI->getNoPreservedMask());
   6550 
   6551   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   6552 
   6553   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   6554           .addMBB(mainMBB);
   6555   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   6556 
   6557   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
   6558   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
   6559 
   6560   // mainMBB:
   6561   //  mainDstReg = 0
   6562   MIB = BuildMI(mainMBB, DL,
   6563     TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   6564 
   6565   // Store IP
   6566   if (Subtarget.isPPC64()) {
   6567     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   6568             .addReg(LabelReg)
   6569             .addImm(LabelOffset)
   6570             .addReg(BufReg);
   6571   } else {
   6572     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   6573             .addReg(LabelReg)
   6574             .addImm(LabelOffset)
   6575             .addReg(BufReg);
   6576   }
   6577 
   6578   MIB.setMemRefs(MMOBegin, MMOEnd);
   6579 
   6580   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   6581   mainMBB->addSuccessor(sinkMBB);
   6582 
   6583   // sinkMBB:
   6584   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   6585           TII->get(PPC::PHI), DstReg)
   6586     .addReg(mainDstReg).addMBB(mainMBB)
   6587     .addReg(restoreDstReg).addMBB(thisMBB);
   6588 
   6589   MI->eraseFromParent();
   6590   return sinkMBB;
   6591 }
   6592 
   6593 MachineBasicBlock *
   6594 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
   6595                                      MachineBasicBlock *MBB) const {
   6596   DebugLoc DL = MI->getDebugLoc();
   6597   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6598 
   6599   MachineFunction *MF = MBB->getParent();
   6600   MachineRegisterInfo &MRI = MF->getRegInfo();
   6601 
   6602   // Memory Reference
   6603   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   6604   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   6605 
   6606   MVT PVT = getPointerTy();
   6607   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   6608          "Invalid Pointer Size!");
   6609 
   6610   const TargetRegisterClass *RC =
   6611     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   6612   unsigned Tmp = MRI.createVirtualRegister(RC);
   6613   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   6614   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   6615   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   6616   unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
   6617 
   6618   MachineInstrBuilder MIB;
   6619 
   6620   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   6621   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   6622   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   6623   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   6624 
   6625   unsigned BufReg = MI->getOperand(0).getReg();
   6626 
   6627   // Reload FP (the jumped-to function may not have had a
   6628   // frame pointer, and if so, then its r31 will be restored
   6629   // as necessary).
   6630   if (PVT == MVT::i64) {
   6631     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   6632             .addImm(0)
   6633             .addReg(BufReg);
   6634   } else {
   6635     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   6636             .addImm(0)
   6637             .addReg(BufReg);
   6638   }
   6639   MIB.setMemRefs(MMOBegin, MMOEnd);
   6640 
   6641   // Reload IP
   6642   if (PVT == MVT::i64) {
   6643     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   6644             .addImm(LabelOffset)
   6645             .addReg(BufReg);
   6646   } else {
   6647     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   6648             .addImm(LabelOffset)
   6649             .addReg(BufReg);
   6650   }
   6651   MIB.setMemRefs(MMOBegin, MMOEnd);
   6652 
   6653   // Reload SP
   6654   if (PVT == MVT::i64) {
   6655     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   6656             .addImm(SPOffset)
   6657             .addReg(BufReg);
   6658   } else {
   6659     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   6660             .addImm(SPOffset)
   6661             .addReg(BufReg);
   6662   }
   6663   MIB.setMemRefs(MMOBegin, MMOEnd);
   6664 
   6665   // Reload BP
   6666   if (PVT == MVT::i64) {
   6667     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   6668             .addImm(BPOffset)
   6669             .addReg(BufReg);
   6670   } else {
   6671     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   6672             .addImm(BPOffset)
   6673             .addReg(BufReg);
   6674   }
   6675   MIB.setMemRefs(MMOBegin, MMOEnd);
   6676 
   6677   // Reload TOC
   6678   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
   6679     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   6680             .addImm(TOCOffset)
   6681             .addReg(BufReg);
   6682 
   6683     MIB.setMemRefs(MMOBegin, MMOEnd);
   6684   }
   6685 
   6686   // Jump
   6687   BuildMI(*MBB, MI, DL,
   6688           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   6689   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   6690 
   6691   MI->eraseFromParent();
   6692   return MBB;
   6693 }
   6694 
   6695 MachineBasicBlock *
   6696 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   6697                                                MachineBasicBlock *BB) const {
   6698   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   6699       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
   6700     return emitEHSjLjSetJmp(MI, BB);
   6701   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   6702              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
   6703     return emitEHSjLjLongJmp(MI, BB);
   6704   }
   6705 
   6706   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6707 
   6708   // To "insert" these instructions we actually have to insert their
   6709   // control-flow patterns.
   6710   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6711   MachineFunction::iterator It = BB;
   6712   ++It;
   6713 
   6714   MachineFunction *F = BB->getParent();
   6715 
   6716   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   6717                                  MI->getOpcode() == PPC::SELECT_CC_I8 ||
   6718                                  MI->getOpcode() == PPC::SELECT_I4 ||
   6719                                  MI->getOpcode() == PPC::SELECT_I8)) {
   6720     SmallVector<MachineOperand, 2> Cond;
   6721     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   6722         MI->getOpcode() == PPC::SELECT_CC_I8)
   6723       Cond.push_back(MI->getOperand(4));
   6724     else
   6725       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
   6726     Cond.push_back(MI->getOperand(1));
   6727 
   6728     DebugLoc dl = MI->getDebugLoc();
   6729     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6730     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
   6731                       Cond, MI->getOperand(2).getReg(),
   6732                       MI->getOperand(3).getReg());
   6733   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   6734              MI->getOpcode() == PPC::SELECT_CC_I8 ||
   6735              MI->getOpcode() == PPC::SELECT_CC_F4 ||
   6736              MI->getOpcode() == PPC::SELECT_CC_F8 ||
   6737              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
   6738              MI->getOpcode() == PPC::SELECT_I4 ||
   6739              MI->getOpcode() == PPC::SELECT_I8 ||
   6740              MI->getOpcode() == PPC::SELECT_F4 ||
   6741              MI->getOpcode() == PPC::SELECT_F8 ||
   6742              MI->getOpcode() == PPC::SELECT_VRRC) {
   6743     // The incoming instruction knows the destination vreg to set, the
   6744     // condition code register to branch on, the true/false values to
   6745     // select between, and a branch opcode to use.
   6746 
   6747     //  thisMBB:
   6748     //  ...
   6749     //   TrueVal = ...
   6750     //   cmpTY ccX, r1, r2
   6751     //   bCC copy1MBB
   6752     //   fallthrough --> copy0MBB
   6753     MachineBasicBlock *thisMBB = BB;
   6754     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6755     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6756     DebugLoc dl = MI->getDebugLoc();
   6757     F->insert(It, copy0MBB);
   6758     F->insert(It, sinkMBB);
   6759 
   6760     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6761     sinkMBB->splice(sinkMBB->begin(), BB,
   6762                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   6763     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   6764 
   6765     // Next, add the true and fallthrough blocks as its successors.
   6766     BB->addSuccessor(copy0MBB);
   6767     BB->addSuccessor(sinkMBB);
   6768 
   6769     if (MI->getOpcode() == PPC::SELECT_I4 ||
   6770         MI->getOpcode() == PPC::SELECT_I8 ||
   6771         MI->getOpcode() == PPC::SELECT_F4 ||
   6772         MI->getOpcode() == PPC::SELECT_F8 ||
   6773         MI->getOpcode() == PPC::SELECT_VRRC) {
   6774       BuildMI(BB, dl, TII->get(PPC::BC))
   6775         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   6776     } else {
   6777       unsigned SelectPred = MI->getOperand(4).getImm();
   6778       BuildMI(BB, dl, TII->get(PPC::BCC))
   6779         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   6780     }
   6781 
   6782     //  copy0MBB:
   6783     //   %FalseValue = ...
   6784     //   # fallthrough to sinkMBB
   6785     BB = copy0MBB;
   6786 
   6787     // Update machine-CFG edges
   6788     BB->addSuccessor(sinkMBB);
   6789 
   6790     //  sinkMBB:
   6791     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   6792     //  ...
   6793     BB = sinkMBB;
   6794     BuildMI(*BB, BB->begin(), dl,
   6795             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   6796       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   6797       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   6798   }
   6799   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   6800     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   6801   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   6802     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   6803   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   6804     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
   6805   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   6806     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
   6807 
   6808   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   6809     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   6810   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   6811     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   6812   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   6813     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
   6814   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   6815     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
   6816 
   6817   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   6818     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   6819   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   6820     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   6821   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   6822     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
   6823   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   6824     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
   6825 
   6826   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   6827     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   6828   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   6829     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   6830   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   6831     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
   6832   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   6833     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
   6834 
   6835   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   6836     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
   6837   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   6838     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
   6839   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   6840     BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
   6841   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   6842     BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
   6843 
   6844   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   6845     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   6846   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   6847     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   6848   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   6849     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
   6850   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   6851     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
   6852 
   6853   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   6854     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   6855   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   6856     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   6857   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   6858     BB = EmitAtomicBinary(MI, BB, false, 0);
   6859   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   6860     BB = EmitAtomicBinary(MI, BB, true, 0);
   6861 
   6862   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   6863            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
   6864     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   6865 
   6866     unsigned dest   = MI->getOperand(0).getReg();
   6867     unsigned ptrA   = MI->getOperand(1).getReg();
   6868     unsigned ptrB   = MI->getOperand(2).getReg();
   6869     unsigned oldval = MI->getOperand(3).getReg();
   6870     unsigned newval = MI->getOperand(4).getReg();
   6871     DebugLoc dl     = MI->getDebugLoc();
   6872 
   6873     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6874     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6875     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6876     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6877     F->insert(It, loop1MBB);
   6878     F->insert(It, loop2MBB);
   6879     F->insert(It, midMBB);
   6880     F->insert(It, exitMBB);
   6881     exitMBB->splice(exitMBB->begin(), BB,
   6882                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   6883     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6884 
   6885     //  thisMBB:
   6886     //   ...
   6887     //   fallthrough --> loopMBB
   6888     BB->addSuccessor(loop1MBB);
   6889 
   6890     // loop1MBB:
   6891     //   l[wd]arx dest, ptr
   6892     //   cmp[wd] dest, oldval
   6893     //   bne- midMBB
   6894     // loop2MBB:
   6895     //   st[wd]cx. newval, ptr
   6896     //   bne- loopMBB
   6897     //   b exitBB
   6898     // midMBB:
   6899     //   st[wd]cx. dest, ptr
   6900     // exitBB:
   6901     BB = loop1MBB;
   6902     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   6903       .addReg(ptrA).addReg(ptrB);
   6904     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   6905       .addReg(oldval).addReg(dest);
   6906     BuildMI(BB, dl, TII->get(PPC::BCC))
   6907       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   6908     BB->addSuccessor(loop2MBB);
   6909     BB->addSuccessor(midMBB);
   6910 
   6911     BB = loop2MBB;
   6912     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6913       .addReg(newval).addReg(ptrA).addReg(ptrB);
   6914     BuildMI(BB, dl, TII->get(PPC::BCC))
   6915       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   6916     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6917     BB->addSuccessor(loop1MBB);
   6918     BB->addSuccessor(exitMBB);
   6919 
   6920     BB = midMBB;
   6921     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6922       .addReg(dest).addReg(ptrA).addReg(ptrB);
   6923     BB->addSuccessor(exitMBB);
   6924 
   6925     //  exitMBB:
   6926     //   ...
   6927     BB = exitMBB;
   6928   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   6929              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   6930     // We must use 64-bit registers for addresses when targeting 64-bit,
   6931     // since we're actually doing arithmetic on them.  Other registers
   6932     // can be 32-bit.
   6933     bool is64bit = Subtarget.isPPC64();
   6934     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   6935 
   6936     unsigned dest   = MI->getOperand(0).getReg();
   6937     unsigned ptrA   = MI->getOperand(1).getReg();
   6938     unsigned ptrB   = MI->getOperand(2).getReg();
   6939     unsigned oldval = MI->getOperand(3).getReg();
   6940     unsigned newval = MI->getOperand(4).getReg();
   6941     DebugLoc dl     = MI->getDebugLoc();
   6942 
   6943     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6944     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6945     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6946     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6947     F->insert(It, loop1MBB);
   6948     F->insert(It, loop2MBB);
   6949     F->insert(It, midMBB);
   6950     F->insert(It, exitMBB);
   6951     exitMBB->splice(exitMBB->begin(), BB,
   6952                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   6953     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6954 
   6955     MachineRegisterInfo &RegInfo = F->getRegInfo();
   6956     const TargetRegisterClass *RC =
   6957       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   6958                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
   6959     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   6960     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   6961     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   6962     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   6963     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   6964     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   6965     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   6966     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   6967     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   6968     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   6969     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   6970     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   6971     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   6972     unsigned Ptr1Reg;
   6973     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   6974     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   6975     //  thisMBB:
   6976     //   ...
   6977     //   fallthrough --> loopMBB
   6978     BB->addSuccessor(loop1MBB);
   6979 
   6980     // The 4-byte load must be aligned, while a char or short may be
   6981     // anywhere in the word.  Hence all this nasty bookkeeping code.
   6982     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   6983     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   6984     //   xori shift, shift1, 24 [16]
   6985     //   rlwinm ptr, ptr1, 0, 0, 29
   6986     //   slw newval2, newval, shift
   6987     //   slw oldval2, oldval,shift
   6988     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   6989     //   slw mask, mask2, shift
   6990     //   and newval3, newval2, mask
   6991     //   and oldval3, oldval2, mask
   6992     // loop1MBB:
   6993     //   lwarx tmpDest, ptr
   6994     //   and tmp, tmpDest, mask
   6995     //   cmpw tmp, oldval3
   6996     //   bne- midMBB
   6997     // loop2MBB:
   6998     //   andc tmp2, tmpDest, mask
   6999     //   or tmp4, tmp2, newval3
   7000     //   stwcx. tmp4, ptr
   7001     //   bne- loop1MBB
   7002     //   b exitBB
   7003     // midMBB:
   7004     //   stwcx. tmpDest, ptr
   7005     // exitBB:
   7006     //   srw dest, tmpDest, shift
   7007     if (ptrA != ZeroReg) {
   7008       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   7009       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   7010         .addReg(ptrA).addReg(ptrB);
   7011     } else {
   7012       Ptr1Reg = ptrB;
   7013     }
   7014     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   7015         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   7016     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   7017         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   7018     if (is64bit)
   7019       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   7020         .addReg(Ptr1Reg).addImm(0).addImm(61);
   7021     else
   7022       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   7023         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   7024     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   7025         .addReg(newval).addReg(ShiftReg);
   7026     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   7027         .addReg(oldval).addReg(ShiftReg);
   7028     if (is8bit)
   7029       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   7030     else {
   7031       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   7032       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   7033         .addReg(Mask3Reg).addImm(65535);
   7034     }
   7035     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   7036         .addReg(Mask2Reg).addReg(ShiftReg);
   7037     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   7038         .addReg(NewVal2Reg).addReg(MaskReg);
   7039     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   7040         .addReg(OldVal2Reg).addReg(MaskReg);
   7041 
   7042     BB = loop1MBB;
   7043     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   7044         .addReg(ZeroReg).addReg(PtrReg);
   7045     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   7046         .addReg(TmpDestReg).addReg(MaskReg);
   7047     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   7048         .addReg(TmpReg).addReg(OldVal3Reg);
   7049     BuildMI(BB, dl, TII->get(PPC::BCC))
   7050         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   7051     BB->addSuccessor(loop2MBB);
   7052     BB->addSuccessor(midMBB);
   7053 
   7054     BB = loop2MBB;
   7055     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   7056         .addReg(TmpDestReg).addReg(MaskReg);
   7057     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   7058         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   7059     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   7060         .addReg(ZeroReg).addReg(PtrReg);
   7061     BuildMI(BB, dl, TII->get(PPC::BCC))
   7062       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   7063     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   7064     BB->addSuccessor(loop1MBB);
   7065     BB->addSuccessor(exitMBB);
   7066 
   7067     BB = midMBB;
   7068     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   7069       .addReg(ZeroReg).addReg(PtrReg);
   7070     BB->addSuccessor(exitMBB);
   7071 
   7072     //  exitMBB:
   7073     //   ...
   7074     BB = exitMBB;
   7075     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   7076       .addReg(ShiftReg);
   7077   } else if (MI->getOpcode() == PPC::FADDrtz) {
   7078     // This pseudo performs an FADD with rounding mode temporarily forced
   7079     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   7080     // is not modeled at the SelectionDAG level.
   7081     unsigned Dest = MI->getOperand(0).getReg();
   7082     unsigned Src1 = MI->getOperand(1).getReg();
   7083     unsigned Src2 = MI->getOperand(2).getReg();
   7084     DebugLoc dl   = MI->getDebugLoc();
   7085 
   7086     MachineRegisterInfo &RegInfo = F->getRegInfo();
   7087     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   7088 
   7089     // Save FPSCR value.
   7090     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   7091 
   7092     // Set rounding mode to round-to-zero.
   7093     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   7094     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   7095 
   7096     // Perform addition.
   7097     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   7098 
   7099     // Restore FPSCR value.
   7100     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
   7101   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   7102              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
   7103              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   7104              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
   7105     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   7106                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
   7107                       PPC::ANDIo8 : PPC::ANDIo;
   7108     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   7109                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
   7110 
   7111     MachineRegisterInfo &RegInfo = F->getRegInfo();
   7112     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
   7113                                                   &PPC::GPRCRegClass :
   7114                                                   &PPC::G8RCRegClass);
   7115 
   7116     DebugLoc dl   = MI->getDebugLoc();
   7117     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
   7118       .addReg(MI->getOperand(1).getReg()).addImm(1);
   7119     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
   7120             MI->getOperand(0).getReg())
   7121       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
   7122   } else {
   7123     llvm_unreachable("Unexpected instr type to insert");
   7124   }
   7125 
   7126   MI->eraseFromParent();   // The pseudo instruction is gone now.
   7127   return BB;
   7128 }
   7129 
   7130 //===----------------------------------------------------------------------===//
   7131 // Target Optimization Hooks
   7132 //===----------------------------------------------------------------------===//
   7133 
   7134 SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
   7135                                                DAGCombinerInfo &DCI) const {
   7136   if (DCI.isAfterLegalizeVectorOps())
   7137     return SDValue();
   7138 
   7139   EVT VT = Op.getValueType();
   7140 
   7141   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
   7142       (VT == MVT::f64 && Subtarget.hasFRE())  ||
   7143       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   7144       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
   7145 
   7146     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
   7147     // For the reciprocal, we need to find the zero of the function:
   7148     //   F(X) = A X - 1 [which has a zero at X = 1/A]
   7149     //     =>
   7150     //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
   7151     //     does not require additional intermediate precision]
   7152 
   7153     // Convergence is quadratic, so we essentially double the number of digits
   7154     // correct after every iteration. The minimum architected relative
   7155     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
   7156     // 23 digits and double has 52 digits.
   7157     int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
   7158     if (VT.getScalarType() == MVT::f64)
   7159       ++Iterations;
   7160 
   7161     SelectionDAG &DAG = DCI.DAG;
   7162     SDLoc dl(Op);
   7163 
   7164     SDValue FPOne =
   7165       DAG.getConstantFP(1.0, VT.getScalarType());
   7166     if (VT.isVector()) {
   7167       assert(VT.getVectorNumElements() == 4 &&
   7168              "Unknown vector type");
   7169       FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   7170                           FPOne, FPOne, FPOne, FPOne);
   7171     }
   7172 
   7173     SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
   7174     DCI.AddToWorklist(Est.getNode());
   7175 
   7176     // Newton iterations: Est = Est + Est (1 - Arg * Est)
   7177     for (int i = 0; i < Iterations; ++i) {
   7178       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
   7179       DCI.AddToWorklist(NewEst.getNode());
   7180 
   7181       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
   7182       DCI.AddToWorklist(NewEst.getNode());
   7183 
   7184       NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
   7185       DCI.AddToWorklist(NewEst.getNode());
   7186 
   7187       Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
   7188       DCI.AddToWorklist(Est.getNode());
   7189     }
   7190 
   7191     return Est;
   7192   }
   7193 
   7194   return SDValue();
   7195 }
   7196 
   7197 SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
   7198                                              DAGCombinerInfo &DCI) const {
   7199   if (DCI.isAfterLegalizeVectorOps())
   7200     return SDValue();
   7201 
   7202   EVT VT = Op.getValueType();
   7203 
   7204   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
   7205       (VT == MVT::f64 && Subtarget.hasFRSQRTE())  ||
   7206       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   7207       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
   7208 
   7209     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
   7210     // For the reciprocal sqrt, we need to find the zero of the function:
   7211     //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
   7212     //     =>
   7213     //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
   7214     // As a result, we precompute A/2 prior to the iteration loop.
   7215 
   7216     // Convergence is quadratic, so we essentially double the number of digits
   7217     // correct after every iteration. The minimum architected relative
   7218     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
   7219     // 23 digits and double has 52 digits.
   7220     int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
   7221     if (VT.getScalarType() == MVT::f64)
   7222       ++Iterations;
   7223 
   7224     SelectionDAG &DAG = DCI.DAG;
   7225     SDLoc dl(Op);
   7226 
   7227     SDValue FPThreeHalves =
   7228       DAG.getConstantFP(1.5, VT.getScalarType());
   7229     if (VT.isVector()) {
   7230       assert(VT.getVectorNumElements() == 4 &&
   7231              "Unknown vector type");
   7232       FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   7233                                   FPThreeHalves, FPThreeHalves,
   7234                                   FPThreeHalves, FPThreeHalves);
   7235     }
   7236 
   7237     SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
   7238     DCI.AddToWorklist(Est.getNode());
   7239 
   7240     // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
   7241     // this entire sequence requires only one FP constant.
   7242     SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
   7243     DCI.AddToWorklist(HalfArg.getNode());
   7244 
   7245     HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
   7246     DCI.AddToWorklist(HalfArg.getNode());
   7247 
   7248     // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
   7249     for (int i = 0; i < Iterations; ++i) {
   7250       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
   7251       DCI.AddToWorklist(NewEst.getNode());
   7252 
   7253       NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
   7254       DCI.AddToWorklist(NewEst.getNode());
   7255 
   7256       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
   7257       DCI.AddToWorklist(NewEst.getNode());
   7258 
   7259       Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
   7260       DCI.AddToWorklist(Est.getNode());
   7261     }
   7262 
   7263     return Est;
   7264   }
   7265 
   7266   return SDValue();
   7267 }
   7268 
   7269 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   7270 // not enforce equality of the chain operands.
   7271 static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
   7272                             unsigned Bytes, int Dist,
   7273                             SelectionDAG &DAG) {
   7274   EVT VT = LS->getMemoryVT();
   7275   if (VT.getSizeInBits() / 8 != Bytes)
   7276     return false;
   7277 
   7278   SDValue Loc = LS->getBasePtr();
   7279   SDValue BaseLoc = Base->getBasePtr();
   7280   if (Loc.getOpcode() == ISD::FrameIndex) {
   7281     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   7282       return false;
   7283     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7284     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   7285     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   7286     int FS  = MFI->getObjectSize(FI);
   7287     int BFS = MFI->getObjectSize(BFI);
   7288     if (FS != BFS || FS != (int)Bytes) return false;
   7289     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   7290   }
   7291 
   7292   // Handle X+C
   7293   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
   7294       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
   7295     return true;
   7296 
   7297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7298   const GlobalValue *GV1 = nullptr;
   7299   const GlobalValue *GV2 = nullptr;
   7300   int64_t Offset1 = 0;
   7301   int64_t Offset2 = 0;
   7302   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   7303   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   7304   if (isGA1 && isGA2 && GV1 == GV2)
   7305     return Offset1 == (Offset2 + Dist*Bytes);
   7306   return false;
   7307 }
   7308 
   7309 // Return true is there is a nearyby consecutive load to the one provided
   7310 // (regardless of alignment). We search up and down the chain, looking though
   7311 // token factors and other loads (but nothing else). As a result, a true
   7312 // results indicates that it is safe to create a new consecutive load adjacent
   7313 // to the load provided.
   7314 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   7315   SDValue Chain = LD->getChain();
   7316   EVT VT = LD->getMemoryVT();
   7317 
   7318   SmallSet<SDNode *, 16> LoadRoots;
   7319   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   7320   SmallSet<SDNode *, 16> Visited;
   7321 
   7322   // First, search up the chain, branching to follow all token-factor operands.
   7323   // If we find a consecutive load, then we're done, otherwise, record all
   7324   // nodes just above the top-level loads and token factors.
   7325   while (!Queue.empty()) {
   7326     SDNode *ChainNext = Queue.pop_back_val();
   7327     if (!Visited.insert(ChainNext))
   7328       continue;
   7329 
   7330     if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
   7331       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   7332         return true;
   7333 
   7334       if (!Visited.count(ChainLD->getChain().getNode()))
   7335         Queue.push_back(ChainLD->getChain().getNode());
   7336     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   7337       for (const SDUse &O : ChainNext->ops())
   7338         if (!Visited.count(O.getNode()))
   7339           Queue.push_back(O.getNode());
   7340     } else
   7341       LoadRoots.insert(ChainNext);
   7342   }
   7343 
   7344   // Second, search down the chain, starting from the top-level nodes recorded
   7345   // in the first phase. These top-level nodes are the nodes just above all
   7346   // loads and token factors. Starting with their uses, recursively look though
   7347   // all loads (just the chain uses) and token factors to find a consecutive
   7348   // load.
   7349   Visited.clear();
   7350   Queue.clear();
   7351 
   7352   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   7353        IE = LoadRoots.end(); I != IE; ++I) {
   7354     Queue.push_back(*I);
   7355 
   7356     while (!Queue.empty()) {
   7357       SDNode *LoadRoot = Queue.pop_back_val();
   7358       if (!Visited.insert(LoadRoot))
   7359         continue;
   7360 
   7361       if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
   7362         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   7363           return true;
   7364 
   7365       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   7366            UE = LoadRoot->use_end(); UI != UE; ++UI)
   7367         if (((isa<LoadSDNode>(*UI) &&
   7368             cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   7369             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   7370           Queue.push_back(*UI);
   7371     }
   7372   }
   7373 
   7374   return false;
   7375 }
   7376 
   7377 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
   7378                                                   DAGCombinerInfo &DCI) const {
   7379   SelectionDAG &DAG = DCI.DAG;
   7380   SDLoc dl(N);
   7381 
   7382   assert(Subtarget.useCRBits() &&
   7383          "Expecting to be tracking CR bits");
   7384   // If we're tracking CR bits, we need to be careful that we don't have:
   7385   //   trunc(binary-ops(zext(x), zext(y)))
   7386   // or
   7387   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
   7388   // such that we're unnecessarily moving things into GPRs when it would be
   7389   // better to keep them in CR bits.
   7390 
   7391   // Note that trunc here can be an actual i1 trunc, or can be the effective
   7392   // truncation that comes from a setcc or select_cc.
   7393   if (N->getOpcode() == ISD::TRUNCATE &&
   7394       N->getValueType(0) != MVT::i1)
   7395     return SDValue();
   7396 
   7397   if (N->getOperand(0).getValueType() != MVT::i32 &&
   7398       N->getOperand(0).getValueType() != MVT::i64)
   7399     return SDValue();
   7400 
   7401   if (N->getOpcode() == ISD::SETCC ||
   7402       N->getOpcode() == ISD::SELECT_CC) {
   7403     // If we're looking at a comparison, then we need to make sure that the
   7404     // high bits (all except for the first) don't matter the result.
   7405     ISD::CondCode CC =
   7406       cast<CondCodeSDNode>(N->getOperand(
   7407         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
   7408     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
   7409 
   7410     if (ISD::isSignedIntSetCC(CC)) {
   7411       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
   7412           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
   7413         return SDValue();
   7414     } else if (ISD::isUnsignedIntSetCC(CC)) {
   7415       if (!DAG.MaskedValueIsZero(N->getOperand(0),
   7416                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
   7417           !DAG.MaskedValueIsZero(N->getOperand(1),
   7418                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
   7419         return SDValue();
   7420     } else {
   7421       // This is neither a signed nor an unsigned comparison, just make sure
   7422       // that the high bits are equal.
   7423       APInt Op1Zero, Op1One;
   7424       APInt Op2Zero, Op2One;
   7425       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
   7426       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
   7427 
   7428       // We don't really care about what is known about the first bit (if
   7429       // anything), so clear it in all masks prior to comparing them.
   7430       Op1Zero.clearBit(0); Op1One.clearBit(0);
   7431       Op2Zero.clearBit(0); Op2One.clearBit(0);
   7432 
   7433       if (Op1Zero != Op2Zero || Op1One != Op2One)
   7434         return SDValue();
   7435     }
   7436   }
   7437 
   7438   // We now know that the higher-order bits are irrelevant, we just need to
   7439   // make sure that all of the intermediate operations are bit operations, and
   7440   // all inputs are extensions.
   7441   if (N->getOperand(0).getOpcode() != ISD::AND &&
   7442       N->getOperand(0).getOpcode() != ISD::OR  &&
   7443       N->getOperand(0).getOpcode() != ISD::XOR &&
   7444       N->getOperand(0).getOpcode() != ISD::SELECT &&
   7445       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
   7446       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
   7447       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
   7448       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
   7449       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
   7450     return SDValue();
   7451 
   7452   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
   7453       N->getOperand(1).getOpcode() != ISD::AND &&
   7454       N->getOperand(1).getOpcode() != ISD::OR  &&
   7455       N->getOperand(1).getOpcode() != ISD::XOR &&
   7456       N->getOperand(1).getOpcode() != ISD::SELECT &&
   7457       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
   7458       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
   7459       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
   7460       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
   7461       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
   7462     return SDValue();
   7463 
   7464   SmallVector<SDValue, 4> Inputs;
   7465   SmallVector<SDValue, 8> BinOps, PromOps;
   7466   SmallPtrSet<SDNode *, 16> Visited;
   7467 
   7468   for (unsigned i = 0; i < 2; ++i) {
   7469     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   7470           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   7471           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   7472           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   7473         isa<ConstantSDNode>(N->getOperand(i)))
   7474       Inputs.push_back(N->getOperand(i));
   7475     else
   7476       BinOps.push_back(N->getOperand(i));
   7477 
   7478     if (N->getOpcode() == ISD::TRUNCATE)
   7479       break;
   7480   }
   7481 
   7482   // Visit all inputs, collect all binary operations (and, or, xor and
   7483   // select) that are all fed by extensions.
   7484   while (!BinOps.empty()) {
   7485     SDValue BinOp = BinOps.back();
   7486     BinOps.pop_back();
   7487 
   7488     if (!Visited.insert(BinOp.getNode()))
   7489       continue;
   7490 
   7491     PromOps.push_back(BinOp);
   7492 
   7493     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   7494       // The condition of the select is not promoted.
   7495       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   7496         continue;
   7497       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   7498         continue;
   7499 
   7500       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   7501             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   7502             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   7503            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   7504           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   7505         Inputs.push_back(BinOp.getOperand(i));
   7506       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   7507                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   7508                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   7509                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   7510                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
   7511                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   7512                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   7513                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   7514                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
   7515         BinOps.push_back(BinOp.getOperand(i));
   7516       } else {
   7517         // We have an input that is not an extension or another binary
   7518         // operation; we'll abort this transformation.
   7519         return SDValue();
   7520       }
   7521     }
   7522   }
   7523 
   7524   // Make sure that this is a self-contained cluster of operations (which
   7525   // is not quite the same thing as saying that everything has only one
   7526   // use).
   7527   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   7528     if (isa<ConstantSDNode>(Inputs[i]))
   7529       continue;
   7530 
   7531     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   7532                               UE = Inputs[i].getNode()->use_end();
   7533          UI != UE; ++UI) {
   7534       SDNode *User = *UI;
   7535       if (User != N && !Visited.count(User))
   7536         return SDValue();
   7537 
   7538       // Make sure that we're not going to promote the non-output-value
   7539       // operand(s) or SELECT or SELECT_CC.
   7540       // FIXME: Although we could sometimes handle this, and it does occur in
   7541       // practice that one of the condition inputs to the select is also one of
   7542       // the outputs, we currently can't deal with this.
   7543       if (User->getOpcode() == ISD::SELECT) {
   7544         if (User->getOperand(0) == Inputs[i])
   7545           return SDValue();
   7546       } else if (User->getOpcode() == ISD::SELECT_CC) {
   7547         if (User->getOperand(0) == Inputs[i] ||
   7548             User->getOperand(1) == Inputs[i])
   7549           return SDValue();
   7550       }
   7551     }
   7552   }
   7553 
   7554   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   7555     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   7556                               UE = PromOps[i].getNode()->use_end();
   7557          UI != UE; ++UI) {
   7558       SDNode *User = *UI;
   7559       if (User != N && !Visited.count(User))
   7560         return SDValue();
   7561 
   7562       // Make sure that we're not going to promote the non-output-value
   7563       // operand(s) or SELECT or SELECT_CC.
   7564       // FIXME: Although we could sometimes handle this, and it does occur in
   7565       // practice that one of the condition inputs to the select is also one of
   7566       // the outputs, we currently can't deal with this.
   7567       if (User->getOpcode() == ISD::SELECT) {
   7568         if (User->getOperand(0) == PromOps[i])
   7569           return SDValue();
   7570       } else if (User->getOpcode() == ISD::SELECT_CC) {
   7571         if (User->getOperand(0) == PromOps[i] ||
   7572             User->getOperand(1) == PromOps[i])
   7573           return SDValue();
   7574       }
   7575     }
   7576   }
   7577 
   7578   // Replace all inputs with the extension operand.
   7579   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   7580     // Constants may have users outside the cluster of to-be-promoted nodes,
   7581     // and so we need to replace those as we do the promotions.
   7582     if (isa<ConstantSDNode>(Inputs[i]))
   7583       continue;
   7584     else
   7585       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
   7586   }
   7587 
   7588   // Replace all operations (these are all the same, but have a different
   7589   // (i1) return type). DAG.getNode will validate that the types of
   7590   // a binary operator match, so go through the list in reverse so that
   7591   // we've likely promoted both operands first. Any intermediate truncations or
   7592   // extensions disappear.
   7593   while (!PromOps.empty()) {
   7594     SDValue PromOp = PromOps.back();
   7595     PromOps.pop_back();
   7596 
   7597     if (PromOp.getOpcode() == ISD::TRUNCATE ||
   7598         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
   7599         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
   7600         PromOp.getOpcode() == ISD::ANY_EXTEND) {
   7601       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
   7602           PromOp.getOperand(0).getValueType() != MVT::i1) {
   7603         // The operand is not yet ready (see comment below).
   7604         PromOps.insert(PromOps.begin(), PromOp);
   7605         continue;
   7606       }
   7607 
   7608       SDValue RepValue = PromOp.getOperand(0);
   7609       if (isa<ConstantSDNode>(RepValue))
   7610         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
   7611 
   7612       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
   7613       continue;
   7614     }
   7615 
   7616     unsigned C;
   7617     switch (PromOp.getOpcode()) {
   7618     default:             C = 0; break;
   7619     case ISD::SELECT:    C = 1; break;
   7620     case ISD::SELECT_CC: C = 2; break;
   7621     }
   7622 
   7623     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   7624          PromOp.getOperand(C).getValueType() != MVT::i1) ||
   7625         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   7626          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
   7627       // The to-be-promoted operands of this node have not yet been
   7628       // promoted (this should be rare because we're going through the
   7629       // list backward, but if one of the operands has several users in
   7630       // this cluster of to-be-promoted nodes, it is possible).
   7631       PromOps.insert(PromOps.begin(), PromOp);
   7632       continue;
   7633     }
   7634 
   7635     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   7636                                 PromOp.getNode()->op_end());
   7637 
   7638     // If there are any constant inputs, make sure they're replaced now.
   7639     for (unsigned i = 0; i < 2; ++i)
   7640       if (isa<ConstantSDNode>(Ops[C+i]))
   7641         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
   7642 
   7643     DAG.ReplaceAllUsesOfValueWith(PromOp,
   7644       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
   7645   }
   7646 
   7647   // Now we're left with the initial truncation itself.
   7648   if (N->getOpcode() == ISD::TRUNCATE)
   7649     return N->getOperand(0);
   7650 
   7651   // Otherwise, this is a comparison. The operands to be compared have just
   7652   // changed type (to i1), but everything else is the same.
   7653   return SDValue(N, 0);
   7654 }
   7655 
   7656 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
   7657                                                   DAGCombinerInfo &DCI) const {
   7658   SelectionDAG &DAG = DCI.DAG;
   7659   SDLoc dl(N);
   7660 
   7661   // If we're tracking CR bits, we need to be careful that we don't have:
   7662   //   zext(binary-ops(trunc(x), trunc(y)))
   7663   // or
   7664   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
   7665   // such that we're unnecessarily moving things into CR bits that can more
   7666   // efficiently stay in GPRs. Note that if we're not certain that the high
   7667   // bits are set as required by the final extension, we still may need to do
   7668   // some masking to get the proper behavior.
   7669 
   7670   // This same functionality is important on PPC64 when dealing with
   7671   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
   7672   // the return values of functions. Because it is so similar, it is handled
   7673   // here as well.
   7674 
   7675   if (N->getValueType(0) != MVT::i32 &&
   7676       N->getValueType(0) != MVT::i64)
   7677     return SDValue();
   7678 
   7679   if (!((N->getOperand(0).getValueType() == MVT::i1 &&
   7680         Subtarget.useCRBits()) ||
   7681        (N->getOperand(0).getValueType() == MVT::i32 &&
   7682         Subtarget.isPPC64())))
   7683     return SDValue();
   7684 
   7685   if (N->getOperand(0).getOpcode() != ISD::AND &&
   7686       N->getOperand(0).getOpcode() != ISD::OR  &&
   7687       N->getOperand(0).getOpcode() != ISD::XOR &&
   7688       N->getOperand(0).getOpcode() != ISD::SELECT &&
   7689       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
   7690     return SDValue();
   7691 
   7692   SmallVector<SDValue, 4> Inputs;
   7693   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
   7694   SmallPtrSet<SDNode *, 16> Visited;
   7695 
   7696   // Visit all inputs, collect all binary operations (and, or, xor and
   7697   // select) that are all fed by truncations.
   7698   while (!BinOps.empty()) {
   7699     SDValue BinOp = BinOps.back();
   7700     BinOps.pop_back();
   7701 
   7702     if (!Visited.insert(BinOp.getNode()))
   7703       continue;
   7704 
   7705     PromOps.push_back(BinOp);
   7706 
   7707     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   7708       // The condition of the select is not promoted.
   7709       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   7710         continue;
   7711       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   7712         continue;
   7713 
   7714       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   7715           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   7716         Inputs.push_back(BinOp.getOperand(i));
   7717       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   7718                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   7719                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   7720                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   7721                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
   7722         BinOps.push_back(BinOp.getOperand(i));
   7723       } else {
   7724         // We have an input that is not a truncation or another binary
   7725         // operation; we'll abort this transformation.
   7726         return SDValue();
   7727       }
   7728     }
   7729   }
   7730 
   7731   // Make sure that this is a self-contained cluster of operations (which
   7732   // is not quite the same thing as saying that everything has only one
   7733   // use).
   7734   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   7735     if (isa<ConstantSDNode>(Inputs[i]))
   7736       continue;
   7737 
   7738     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   7739                               UE = Inputs[i].getNode()->use_end();
   7740          UI != UE; ++UI) {
   7741       SDNode *User = *UI;
   7742       if (User != N && !Visited.count(User))
   7743         return SDValue();
   7744 
   7745       // Make sure that we're not going to promote the non-output-value
   7746       // operand(s) or SELECT or SELECT_CC.
   7747       // FIXME: Although we could sometimes handle this, and it does occur in
   7748       // practice that one of the condition inputs to the select is also one of
   7749       // the outputs, we currently can't deal with this.
   7750       if (User->getOpcode() == ISD::SELECT) {
   7751         if (User->getOperand(0) == Inputs[i])
   7752           return SDValue();
   7753       } else if (User->getOpcode() == ISD::SELECT_CC) {
   7754         if (User->getOperand(0) == Inputs[i] ||
   7755             User->getOperand(1) == Inputs[i])
   7756           return SDValue();
   7757       }
   7758     }
   7759   }
   7760 
   7761   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   7762     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   7763                               UE = PromOps[i].getNode()->use_end();
   7764          UI != UE; ++UI) {
   7765       SDNode *User = *UI;
   7766       if (User != N && !Visited.count(User))
   7767         return SDValue();
   7768 
   7769       // Make sure that we're not going to promote the non-output-value
   7770       // operand(s) or SELECT or SELECT_CC.
   7771       // FIXME: Although we could sometimes handle this, and it does occur in
   7772       // practice that one of the condition inputs to the select is also one of
   7773       // the outputs, we currently can't deal with this.
   7774       if (User->getOpcode() == ISD::SELECT) {
   7775         if (User->getOperand(0) == PromOps[i])
   7776           return SDValue();
   7777       } else if (User->getOpcode() == ISD::SELECT_CC) {
   7778         if (User->getOperand(0) == PromOps[i] ||
   7779             User->getOperand(1) == PromOps[i])
   7780           return SDValue();
   7781       }
   7782     }
   7783   }
   7784 
   7785   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
   7786   bool ReallyNeedsExt = false;
   7787   if (N->getOpcode() != ISD::ANY_EXTEND) {
   7788     // If all of the inputs are not already sign/zero extended, then
   7789     // we'll still need to do that at the end.
   7790     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   7791       if (isa<ConstantSDNode>(Inputs[i]))
   7792         continue;
   7793 
   7794       unsigned OpBits =
   7795         Inputs[i].getOperand(0).getValueSizeInBits();
   7796       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
   7797 
   7798       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
   7799            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
   7800                                   APInt::getHighBitsSet(OpBits,
   7801                                                         OpBits-PromBits))) ||
   7802           (N->getOpcode() == ISD::SIGN_EXTEND &&
   7803            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
   7804              (OpBits-(PromBits-1)))) {
   7805         ReallyNeedsExt = true;
   7806         break;
   7807       }
   7808     }
   7809   }
   7810 
   7811   // Replace all inputs, either with the truncation operand, or a
   7812   // truncation or extension to the final output type.
   7813   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   7814     // Constant inputs need to be replaced with the to-be-promoted nodes that
   7815     // use them because they might have users outside of the cluster of
   7816     // promoted nodes.
   7817     if (isa<ConstantSDNode>(Inputs[i]))
   7818       continue;
   7819 
   7820     SDValue InSrc = Inputs[i].getOperand(0);
   7821     if (Inputs[i].getValueType() == N->getValueType(0))
   7822       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
   7823     else if (N->getOpcode() == ISD::SIGN_EXTEND)
   7824       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   7825         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
   7826     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   7827       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   7828         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
   7829     else
   7830       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   7831         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
   7832   }
   7833 
   7834   // Replace all operations (these are all the same, but have a different
   7835   // (promoted) return type). DAG.getNode will validate that the types of
   7836   // a binary operator match, so go through the list in reverse so that
   7837   // we've likely promoted both operands first.
   7838   while (!PromOps.empty()) {
   7839     SDValue PromOp = PromOps.back();
   7840     PromOps.pop_back();
   7841 
   7842     unsigned C;
   7843     switch (PromOp.getOpcode()) {
   7844     default:             C = 0; break;
   7845     case ISD::SELECT:    C = 1; break;
   7846     case ISD::SELECT_CC: C = 2; break;
   7847     }
   7848 
   7849     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   7850          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
   7851         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   7852          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
   7853       // The to-be-promoted operands of this node have not yet been
   7854       // promoted (this should be rare because we're going through the
   7855       // list backward, but if one of the operands has several users in
   7856       // this cluster of to-be-promoted nodes, it is possible).
   7857       PromOps.insert(PromOps.begin(), PromOp);
   7858       continue;
   7859     }
   7860 
   7861     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   7862                                 PromOp.getNode()->op_end());
   7863 
   7864     // If this node has constant inputs, then they'll need to be promoted here.
   7865     for (unsigned i = 0; i < 2; ++i) {
   7866       if (!isa<ConstantSDNode>(Ops[C+i]))
   7867         continue;
   7868       if (Ops[C+i].getValueType() == N->getValueType(0))
   7869         continue;
   7870 
   7871       if (N->getOpcode() == ISD::SIGN_EXTEND)
   7872         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   7873       else if (N->getOpcode() == ISD::ZERO_EXTEND)
   7874         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   7875       else
   7876         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   7877     }
   7878 
   7879     DAG.ReplaceAllUsesOfValueWith(PromOp,
   7880       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
   7881   }
   7882 
   7883   // Now we're left with the initial extension itself.
   7884   if (!ReallyNeedsExt)
   7885     return N->getOperand(0);
   7886 
   7887   // To zero extend, just mask off everything except for the first bit (in the
   7888   // i1 case).
   7889   if (N->getOpcode() == ISD::ZERO_EXTEND)
   7890     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
   7891                        DAG.getConstant(APInt::getLowBitsSet(
   7892                                          N->getValueSizeInBits(0), PromBits),
   7893                                        N->getValueType(0)));
   7894 
   7895   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
   7896          "Invalid extension type");
   7897   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
   7898   SDValue ShiftCst =
   7899     DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
   7900   return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
   7901                      DAG.getNode(ISD::SHL, dl, N->getValueType(0),
   7902                                  N->getOperand(0), ShiftCst), ShiftCst);
   7903 }
   7904 
   7905 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   7906                                              DAGCombinerInfo &DCI) const {
   7907   const TargetMachine &TM = getTargetMachine();
   7908   SelectionDAG &DAG = DCI.DAG;
   7909   SDLoc dl(N);
   7910   switch (N->getOpcode()) {
   7911   default: break;
   7912   case PPCISD::SHL:
   7913     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   7914       if (C->isNullValue())   // 0 << V -> 0.
   7915         return N->getOperand(0);
   7916     }
   7917     break;
   7918   case PPCISD::SRL:
   7919     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   7920       if (C->isNullValue())   // 0 >>u V -> 0.
   7921         return N->getOperand(0);
   7922     }
   7923     break;
   7924   case PPCISD::SRA:
   7925     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   7926       if (C->isNullValue() ||   //  0 >>s V -> 0.
   7927           C->isAllOnesValue())    // -1 >>s V -> -1.
   7928         return N->getOperand(0);
   7929     }
   7930     break;
   7931   case ISD::SIGN_EXTEND:
   7932   case ISD::ZERO_EXTEND:
   7933   case ISD::ANY_EXTEND:
   7934     return DAGCombineExtBoolTrunc(N, DCI);
   7935   case ISD::TRUNCATE:
   7936   case ISD::SETCC:
   7937   case ISD::SELECT_CC:
   7938     return DAGCombineTruncBoolExt(N, DCI);
   7939   case ISD::FDIV: {
   7940     assert(TM.Options.UnsafeFPMath &&
   7941            "Reciprocal estimates require UnsafeFPMath");
   7942 
   7943     if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
   7944       SDValue RV =
   7945         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
   7946       if (RV.getNode()) {
   7947         DCI.AddToWorklist(RV.getNode());
   7948         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7949                            N->getOperand(0), RV);
   7950       }
   7951     } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
   7952                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
   7953       SDValue RV =
   7954         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
   7955                                  DCI);
   7956       if (RV.getNode()) {
   7957         DCI.AddToWorklist(RV.getNode());
   7958         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
   7959                          N->getValueType(0), RV);
   7960         DCI.AddToWorklist(RV.getNode());
   7961         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7962                            N->getOperand(0), RV);
   7963       }
   7964     } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
   7965                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
   7966       SDValue RV =
   7967         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
   7968                                  DCI);
   7969       if (RV.getNode()) {
   7970         DCI.AddToWorklist(RV.getNode());
   7971         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
   7972                          N->getValueType(0), RV,
   7973                          N->getOperand(1).getOperand(1));
   7974         DCI.AddToWorklist(RV.getNode());
   7975         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7976                            N->getOperand(0), RV);
   7977       }
   7978     }
   7979 
   7980     SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
   7981     if (RV.getNode()) {
   7982       DCI.AddToWorklist(RV.getNode());
   7983       return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7984                          N->getOperand(0), RV);
   7985     }
   7986 
   7987     }
   7988     break;
   7989   case ISD::FSQRT: {
   7990     assert(TM.Options.UnsafeFPMath &&
   7991            "Reciprocal estimates require UnsafeFPMath");
   7992 
   7993     // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
   7994     // reciprocal sqrt.
   7995     SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
   7996     if (RV.getNode()) {
   7997       DCI.AddToWorklist(RV.getNode());
   7998       RV = DAGCombineFastRecip(RV, DCI);
   7999       if (RV.getNode()) {
   8000         // Unfortunately, RV is now NaN if the input was exactly 0. Select out
   8001         // this case and force the answer to 0.
   8002 
   8003         EVT VT = RV.getValueType();
   8004 
   8005         SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
   8006         if (VT.isVector()) {
   8007           assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
   8008           Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
   8009         }
   8010 
   8011         SDValue ZeroCmp =
   8012           DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
   8013                        N->getOperand(0), Zero, ISD::SETEQ);
   8014         DCI.AddToWorklist(ZeroCmp.getNode());
   8015         DCI.AddToWorklist(RV.getNode());
   8016 
   8017         RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
   8018                          ZeroCmp, Zero, RV);
   8019         return RV;
   8020       }
   8021     }
   8022 
   8023     }
   8024     break;
   8025   case ISD::SINT_TO_FP:
   8026     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
   8027       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
   8028         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
   8029         // We allow the src/dst to be either f32/f64, but the intermediate
   8030         // type must be i64.
   8031         if (N->getOperand(0).getValueType() == MVT::i64 &&
   8032             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
   8033           SDValue Val = N->getOperand(0).getOperand(0);
   8034           if (Val.getValueType() == MVT::f32) {
   8035             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   8036             DCI.AddToWorklist(Val.getNode());
   8037           }
   8038 
   8039           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
   8040           DCI.AddToWorklist(Val.getNode());
   8041           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
   8042           DCI.AddToWorklist(Val.getNode());
   8043           if (N->getValueType(0) == MVT::f32) {
   8044             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
   8045                               DAG.getIntPtrConstant(0));
   8046             DCI.AddToWorklist(Val.getNode());
   8047           }
   8048           return Val;
   8049         } else if (N->getOperand(0).getValueType() == MVT::i32) {
   8050           // If the intermediate type is i32, we can avoid the load/store here
   8051           // too.
   8052         }
   8053       }
   8054     }
   8055     break;
   8056   case ISD::STORE:
   8057     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   8058     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
   8059         !cast<StoreSDNode>(N)->isTruncatingStore() &&
   8060         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   8061         N->getOperand(1).getValueType() == MVT::i32 &&
   8062         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   8063       SDValue Val = N->getOperand(1).getOperand(0);
   8064       if (Val.getValueType() == MVT::f32) {
   8065         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   8066         DCI.AddToWorklist(Val.getNode());
   8067       }
   8068       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   8069       DCI.AddToWorklist(Val.getNode());
   8070 
   8071       SDValue Ops[] = {
   8072         N->getOperand(0), Val, N->getOperand(2),
   8073         DAG.getValueType(N->getOperand(1).getValueType())
   8074       };
   8075 
   8076       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   8077               DAG.getVTList(MVT::Other), Ops,
   8078               cast<StoreSDNode>(N)->getMemoryVT(),
   8079               cast<StoreSDNode>(N)->getMemOperand());
   8080       DCI.AddToWorklist(Val.getNode());
   8081       return Val;
   8082     }
   8083 
   8084     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   8085     if (cast<StoreSDNode>(N)->isUnindexed() &&
   8086         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   8087         N->getOperand(1).getNode()->hasOneUse() &&
   8088         (N->getOperand(1).getValueType() == MVT::i32 ||
   8089          N->getOperand(1).getValueType() == MVT::i16 ||
   8090          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
   8091           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
   8092           N->getOperand(1).getValueType() == MVT::i64))) {
   8093       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   8094       // Do an any-extend to 32-bits if this is a half-word input.
   8095       if (BSwapOp.getValueType() == MVT::i16)
   8096         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   8097 
   8098       SDValue Ops[] = {
   8099         N->getOperand(0), BSwapOp, N->getOperand(2),
   8100         DAG.getValueType(N->getOperand(1).getValueType())
   8101       };
   8102       return
   8103         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   8104                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
   8105                                 cast<StoreSDNode>(N)->getMemOperand());
   8106     }
   8107     break;
   8108   case ISD::LOAD: {
   8109     LoadSDNode *LD = cast<LoadSDNode>(N);
   8110     EVT VT = LD->getValueType(0);
   8111     Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
   8112     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
   8113     if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
   8114         TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
   8115         (VT == MVT::v16i8 || VT == MVT::v8i16 ||
   8116          VT == MVT::v4i32 || VT == MVT::v4f32) &&
   8117         LD->getAlignment() < ABIAlignment) {
   8118       // This is a type-legal unaligned Altivec load.
   8119       SDValue Chain = LD->getChain();
   8120       SDValue Ptr = LD->getBasePtr();
   8121       bool isLittleEndian = Subtarget.isLittleEndian();
   8122 
   8123       // This implements the loading of unaligned vectors as described in
   8124       // the venerable Apple Velocity Engine overview. Specifically:
   8125       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   8126       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   8127       //
   8128       // The general idea is to expand a sequence of one or more unaligned
   8129       // loads into an alignment-based permutation-control instruction (lvsl
   8130       // or lvsr), a series of regular vector loads (which always truncate
   8131       // their input address to an aligned address), and a series of
   8132       // permutations.  The results of these permutations are the requested
   8133       // loaded values.  The trick is that the last "extra" load is not taken
   8134       // from the address you might suspect (sizeof(vector) bytes after the
   8135       // last requested load), but rather sizeof(vector) - 1 bytes after the
   8136       // last requested vector. The point of this is to avoid a page fault if
   8137       // the base address happened to be aligned. This works because if the
   8138       // base address is aligned, then adding less than a full vector length
   8139       // will cause the last vector in the sequence to be (re)loaded.
   8140       // Otherwise, the next vector will be fetched as you might suspect was
   8141       // necessary.
   8142 
   8143       // We might be able to reuse the permutation generation from
   8144       // a different base address offset from this one by an aligned amount.
   8145       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   8146       // optimization later.
   8147       Intrinsic::ID Intr = (isLittleEndian ?
   8148                             Intrinsic::ppc_altivec_lvsr :
   8149                             Intrinsic::ppc_altivec_lvsl);
   8150       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
   8151 
   8152       // Refine the alignment of the original load (a "new" load created here
   8153       // which was identical to the first except for the alignment would be
   8154       // merged with the existing node regardless).
   8155       MachineFunction &MF = DAG.getMachineFunction();
   8156       MachineMemOperand *MMO =
   8157         MF.getMachineMemOperand(LD->getPointerInfo(),
   8158                                 LD->getMemOperand()->getFlags(),
   8159                                 LD->getMemoryVT().getStoreSize(),
   8160                                 ABIAlignment);
   8161       LD->refineAlignment(MMO);
   8162       SDValue BaseLoad = SDValue(LD, 0);
   8163 
   8164       // Note that the value of IncOffset (which is provided to the next
   8165       // load's pointer info offset value, and thus used to calculate the
   8166       // alignment), and the value of IncValue (which is actually used to
   8167       // increment the pointer value) are different! This is because we
   8168       // require the next load to appear to be aligned, even though it
   8169       // is actually offset from the base pointer by a lesser amount.
   8170       int IncOffset = VT.getSizeInBits() / 8;
   8171       int IncValue = IncOffset;
   8172 
   8173       // Walk (both up and down) the chain looking for another load at the real
   8174       // (aligned) offset (the alignment of the other load does not matter in
   8175       // this case). If found, then do not use the offset reduction trick, as
   8176       // that will prevent the loads from being later combined (as they would
   8177       // otherwise be duplicates).
   8178       if (!findConsecutiveLoad(LD, DAG))
   8179         --IncValue;
   8180 
   8181       SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
   8182       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   8183 
   8184       SDValue ExtraLoad =
   8185         DAG.getLoad(VT, dl, Chain, Ptr,
   8186                     LD->getPointerInfo().getWithOffset(IncOffset),
   8187                     LD->isVolatile(), LD->isNonTemporal(),
   8188                     LD->isInvariant(), ABIAlignment);
   8189 
   8190       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   8191         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   8192 
   8193       if (BaseLoad.getValueType() != MVT::v4i32)
   8194         BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
   8195 
   8196       if (ExtraLoad.getValueType() != MVT::v4i32)
   8197         ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
   8198 
   8199       // Because vperm has a big-endian bias, we must reverse the order
   8200       // of the input vectors and complement the permute control vector
   8201       // when generating little endian code.  We have already handled the
   8202       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
   8203       // and ExtraLoad here.
   8204       SDValue Perm;
   8205       if (isLittleEndian)
   8206         Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
   8207                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
   8208       else
   8209         Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
   8210                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   8211 
   8212       if (VT != MVT::v4i32)
   8213         Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
   8214 
   8215       // Now we need to be really careful about how we update the users of the
   8216       // original load. We cannot just call DCI.CombineTo (or
   8217       // DAG.ReplaceAllUsesWith for that matter), because the load still has
   8218       // uses created here (the permutation for example) that need to stay.
   8219       SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   8220       while (UI != UE) {
   8221         SDUse &Use = UI.getUse();
   8222         SDNode *User = *UI;
   8223         // Note: BaseLoad is checked here because it might not be N, but a
   8224         // bitcast of N.
   8225         if (User == Perm.getNode() || User == BaseLoad.getNode() ||
   8226             User == TF.getNode() || Use.getResNo() > 1) {
   8227           ++UI;
   8228           continue;
   8229         }
   8230 
   8231         SDValue To = Use.getResNo() ? TF : Perm;
   8232         ++UI;
   8233 
   8234         SmallVector<SDValue, 8> Ops;
   8235         for (const SDUse &O : User->ops()) {
   8236           if (O == Use)
   8237             Ops.push_back(To);
   8238           else
   8239             Ops.push_back(O);
   8240         }
   8241 
   8242         DAG.UpdateNodeOperands(User, Ops);
   8243       }
   8244 
   8245       return SDValue(N, 0);
   8246     }
   8247     }
   8248     break;
   8249   case ISD::INTRINSIC_WO_CHAIN: {
   8250     bool isLittleEndian = Subtarget.isLittleEndian();
   8251     Intrinsic::ID Intr = (isLittleEndian ?
   8252                           Intrinsic::ppc_altivec_lvsr :
   8253                           Intrinsic::ppc_altivec_lvsl);
   8254     if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
   8255         N->getOperand(1)->getOpcode() == ISD::ADD) {
   8256       SDValue Add = N->getOperand(1);
   8257 
   8258       if (DAG.MaskedValueIsZero(Add->getOperand(1),
   8259             APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
   8260               Add.getValueType().getScalarType().getSizeInBits()))) {
   8261         SDNode *BasePtr = Add->getOperand(0).getNode();
   8262         for (SDNode::use_iterator UI = BasePtr->use_begin(),
   8263              UE = BasePtr->use_end(); UI != UE; ++UI) {
   8264           if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   8265               cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
   8266                 Intr) {
   8267             // We've found another LVSL/LVSR, and this address is an aligned
   8268             // multiple of that one. The results will be the same, so use the
   8269             // one we've just found instead.
   8270 
   8271             return SDValue(*UI, 0);
   8272           }
   8273         }
   8274       }
   8275     }
   8276     }
   8277 
   8278     break;
   8279   case ISD::BSWAP:
   8280     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   8281     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   8282         N->getOperand(0).hasOneUse() &&
   8283         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   8284          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
   8285           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
   8286           N->getValueType(0) == MVT::i64))) {
   8287       SDValue Load = N->getOperand(0);
   8288       LoadSDNode *LD = cast<LoadSDNode>(Load);
   8289       // Create the byte-swapping load.
   8290       SDValue Ops[] = {
   8291         LD->getChain(),    // Chain
   8292         LD->getBasePtr(),  // Ptr
   8293         DAG.getValueType(N->getValueType(0)) // VT
   8294       };
   8295       SDValue BSLoad =
   8296         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   8297                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   8298                                               MVT::i64 : MVT::i32, MVT::Other),
   8299                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   8300 
   8301       // If this is an i16 load, insert the truncate.
   8302       SDValue ResVal = BSLoad;
   8303       if (N->getValueType(0) == MVT::i16)
   8304         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   8305 
   8306       // First, combine the bswap away.  This makes the value produced by the
   8307       // load dead.
   8308       DCI.CombineTo(N, ResVal);
   8309 
   8310       // Next, combine the load away, we give it a bogus result value but a real
   8311       // chain result.  The result value is dead because the bswap is dead.
   8312       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   8313 
   8314       // Return N so it doesn't get rechecked!
   8315       return SDValue(N, 0);
   8316     }
   8317 
   8318     break;
   8319   case PPCISD::VCMP: {
   8320     // If a VCMPo node already exists with exactly the same operands as this
   8321     // node, use its result instead of this node (VCMPo computes both a CR6 and
   8322     // a normal output).
   8323     //
   8324     if (!N->getOperand(0).hasOneUse() &&
   8325         !N->getOperand(1).hasOneUse() &&
   8326         !N->getOperand(2).hasOneUse()) {
   8327 
   8328       // Scan all of the users of the LHS, looking for VCMPo's that match.
   8329       SDNode *VCMPoNode = nullptr;
   8330 
   8331       SDNode *LHSN = N->getOperand(0).getNode();
   8332       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   8333            UI != E; ++UI)
   8334         if (UI->getOpcode() == PPCISD::VCMPo &&
   8335             UI->getOperand(1) == N->getOperand(1) &&
   8336             UI->getOperand(2) == N->getOperand(2) &&
   8337             UI->getOperand(0) == N->getOperand(0)) {
   8338           VCMPoNode = *UI;
   8339           break;
   8340         }
   8341 
   8342       // If there is no VCMPo node, or if the flag value has a single use, don't
   8343       // transform this.
   8344       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   8345         break;
   8346 
   8347       // Look at the (necessarily single) use of the flag value.  If it has a
   8348       // chain, this transformation is more complex.  Note that multiple things
   8349       // could use the value result, which we should ignore.
   8350       SDNode *FlagUser = nullptr;
   8351       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   8352            FlagUser == nullptr; ++UI) {
   8353         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   8354         SDNode *User = *UI;
   8355         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   8356           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   8357             FlagUser = User;
   8358             break;
   8359           }
   8360         }
   8361       }
   8362 
   8363       // If the user is a MFOCRF instruction, we know this is safe.
   8364       // Otherwise we give up for right now.
   8365       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   8366         return SDValue(VCMPoNode, 0);
   8367     }
   8368     break;
   8369   }
   8370   case ISD::BRCOND: {
   8371     SDValue Cond = N->getOperand(1);
   8372     SDValue Target = N->getOperand(2);
   8373 
   8374     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   8375         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
   8376           Intrinsic::ppc_is_decremented_ctr_nonzero) {
   8377 
   8378       // We now need to make the intrinsic dead (it cannot be instruction
   8379       // selected).
   8380       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
   8381       assert(Cond.getNode()->hasOneUse() &&
   8382              "Counter decrement has more than one use");
   8383 
   8384       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
   8385                          N->getOperand(0), Target);
   8386     }
   8387   }
   8388   break;
   8389   case ISD::BR_CC: {
   8390     // If this is a branch on an altivec predicate comparison, lower this so
   8391     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   8392     // lowering is done pre-legalize, because the legalizer lowers the predicate
   8393     // compare down to code that is difficult to reassemble.
   8394     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   8395     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   8396 
   8397     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   8398     // value. If so, pass-through the AND to get to the intrinsic.
   8399     if (LHS.getOpcode() == ISD::AND &&
   8400         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   8401         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   8402           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   8403         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   8404         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
   8405           isZero())
   8406       LHS = LHS.getOperand(0);
   8407 
   8408     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   8409         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   8410           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   8411         isa<ConstantSDNode>(RHS)) {
   8412       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   8413              "Counter decrement comparison is not EQ or NE");
   8414 
   8415       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   8416       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   8417                     (CC == ISD::SETNE && !Val);
   8418 
   8419       // We now need to make the intrinsic dead (it cannot be instruction
   8420       // selected).
   8421       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   8422       assert(LHS.getNode()->hasOneUse() &&
   8423              "Counter decrement has more than one use");
   8424 
   8425       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   8426                          N->getOperand(0), N->getOperand(4));
   8427     }
   8428 
   8429     int CompareOpc;
   8430     bool isDot;
   8431 
   8432     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   8433         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   8434         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
   8435       assert(isDot && "Can't compare against a vector result!");
   8436 
   8437       // If this is a comparison against something other than 0/1, then we know
   8438       // that the condition is never/always true.
   8439       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   8440       if (Val != 0 && Val != 1) {
   8441         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   8442           return N->getOperand(0);
   8443         // Always !=, turn it into an unconditional branch.
   8444         return DAG.getNode(ISD::BR, dl, MVT::Other,
   8445                            N->getOperand(0), N->getOperand(4));
   8446       }
   8447 
   8448       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   8449 
   8450       // Create the PPCISD altivec 'dot' comparison node.
   8451       SDValue Ops[] = {
   8452         LHS.getOperand(2),  // LHS of compare
   8453         LHS.getOperand(3),  // RHS of compare
   8454         DAG.getConstant(CompareOpc, MVT::i32)
   8455       };
   8456       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   8457       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   8458 
   8459       // Unpack the result based on how the target uses it.
   8460       PPC::Predicate CompOpc;
   8461       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   8462       default:  // Can't happen, don't crash on invalid number though.
   8463       case 0:   // Branch on the value of the EQ bit of CR6.
   8464         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   8465         break;
   8466       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   8467         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   8468         break;
   8469       case 2:   // Branch on the value of the LT bit of CR6.
   8470         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   8471         break;
   8472       case 3:   // Branch on the inverted value of the LT bit of CR6.
   8473         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   8474         break;
   8475       }
   8476 
   8477       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   8478                          DAG.getConstant(CompOpc, MVT::i32),
   8479                          DAG.getRegister(PPC::CR6, MVT::i32),
   8480                          N->getOperand(4), CompNode.getValue(1));
   8481     }
   8482     break;
   8483   }
   8484   }
   8485 
   8486   return SDValue();
   8487 }
   8488 
   8489 //===----------------------------------------------------------------------===//
   8490 // Inline Assembly Support
   8491 //===----------------------------------------------------------------------===//
   8492 
   8493 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   8494                                                       APInt &KnownZero,
   8495                                                       APInt &KnownOne,
   8496                                                       const SelectionDAG &DAG,
   8497                                                       unsigned Depth) const {
   8498   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   8499   switch (Op.getOpcode()) {
   8500   default: break;
   8501   case PPCISD::LBRX: {
   8502     // lhbrx is known to have the top bits cleared out.
   8503     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   8504       KnownZero = 0xFFFF0000;
   8505     break;
   8506   }
   8507   case ISD::INTRINSIC_WO_CHAIN: {
   8508     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   8509     default: break;
   8510     case Intrinsic::ppc_altivec_vcmpbfp_p:
   8511     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   8512     case Intrinsic::ppc_altivec_vcmpequb_p:
   8513     case Intrinsic::ppc_altivec_vcmpequh_p:
   8514     case Intrinsic::ppc_altivec_vcmpequw_p:
   8515     case Intrinsic::ppc_altivec_vcmpgefp_p:
   8516     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   8517     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   8518     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   8519     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   8520     case Intrinsic::ppc_altivec_vcmpgtub_p:
   8521     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   8522     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   8523       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   8524       break;
   8525     }
   8526   }
   8527   }
   8528 }
   8529 
   8530 
   8531 /// getConstraintType - Given a constraint, return the type of
   8532 /// constraint it is for this target.
   8533 PPCTargetLowering::ConstraintType
   8534 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   8535   if (Constraint.size() == 1) {
   8536     switch (Constraint[0]) {
   8537     default: break;
   8538     case 'b':
   8539     case 'r':
   8540     case 'f':
   8541     case 'v':
   8542     case 'y':
   8543       return C_RegisterClass;
   8544     case 'Z':
   8545       // FIXME: While Z does indicate a memory constraint, it specifically
   8546       // indicates an r+r address (used in conjunction with the 'y' modifier
   8547       // in the replacement string). Currently, we're forcing the base
   8548       // register to be r0 in the asm printer (which is interpreted as zero)
   8549       // and forming the complete address in the second register. This is
   8550       // suboptimal.
   8551       return C_Memory;
   8552     }
   8553   } else if (Constraint == "wc") { // individual CR bits.
   8554     return C_RegisterClass;
   8555   } else if (Constraint == "wa" || Constraint == "wd" ||
   8556              Constraint == "wf" || Constraint == "ws") {
   8557     return C_RegisterClass; // VSX registers.
   8558   }
   8559   return TargetLowering::getConstraintType(Constraint);
   8560 }
   8561 
   8562 /// Examine constraint type and operand type and determine a weight value.
   8563 /// This object must already have been set up with the operand type
   8564 /// and the current alternative constraint selected.
   8565 TargetLowering::ConstraintWeight
   8566 PPCTargetLowering::getSingleConstraintMatchWeight(
   8567     AsmOperandInfo &info, const char *constraint) const {
   8568   ConstraintWeight weight = CW_Invalid;
   8569   Value *CallOperandVal = info.CallOperandVal;
   8570     // If we don't have a value, we can't do a match,
   8571     // but allow it at the lowest weight.
   8572   if (!CallOperandVal)
   8573     return CW_Default;
   8574   Type *type = CallOperandVal->getType();
   8575 
   8576   // Look at the constraint type.
   8577   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
   8578     return CW_Register; // an individual CR bit.
   8579   else if ((StringRef(constraint) == "wa" ||
   8580             StringRef(constraint) == "wd" ||
   8581             StringRef(constraint) == "wf") &&
   8582            type->isVectorTy())
   8583     return CW_Register;
   8584   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
   8585     return CW_Register;
   8586 
   8587   switch (*constraint) {
   8588   default:
   8589     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   8590     break;
   8591   case 'b':
   8592     if (type->isIntegerTy())
   8593       weight = CW_Register;
   8594     break;
   8595   case 'f':
   8596     if (type->isFloatTy())
   8597       weight = CW_Register;
   8598     break;
   8599   case 'd':
   8600     if (type->isDoubleTy())
   8601       weight = CW_Register;
   8602     break;
   8603   case 'v':
   8604     if (type->isVectorTy())
   8605       weight = CW_Register;
   8606     break;
   8607   case 'y':
   8608     weight = CW_Register;
   8609     break;
   8610   case 'Z':
   8611     weight = CW_Memory;
   8612     break;
   8613   }
   8614   return weight;
   8615 }
   8616 
   8617 std::pair<unsigned, const TargetRegisterClass*>
   8618 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   8619                                                 MVT VT) const {
   8620   if (Constraint.size() == 1) {
   8621     // GCC RS6000 Constraint Letters
   8622     switch (Constraint[0]) {
   8623     case 'b':   // R1-R31
   8624       if (VT == MVT::i64 && Subtarget.isPPC64())
   8625         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   8626       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   8627     case 'r':   // R0-R31
   8628       if (VT == MVT::i64 && Subtarget.isPPC64())
   8629         return std::make_pair(0U, &PPC::G8RCRegClass);
   8630       return std::make_pair(0U, &PPC::GPRCRegClass);
   8631     case 'f':
   8632       if (VT == MVT::f32 || VT == MVT::i32)
   8633         return std::make_pair(0U, &PPC::F4RCRegClass);
   8634       if (VT == MVT::f64 || VT == MVT::i64)
   8635         return std::make_pair(0U, &PPC::F8RCRegClass);
   8636       break;
   8637     case 'v':
   8638       return std::make_pair(0U, &PPC::VRRCRegClass);
   8639     case 'y':   // crrc
   8640       return std::make_pair(0U, &PPC::CRRCRegClass);
   8641     }
   8642   } else if (Constraint == "wc") { // an individual CR bit.
   8643     return std::make_pair(0U, &PPC::CRBITRCRegClass);
   8644   } else if (Constraint == "wa" || Constraint == "wd" ||
   8645              Constraint == "wf") {
   8646     return std::make_pair(0U, &PPC::VSRCRegClass);
   8647   } else if (Constraint == "ws") {
   8648     return std::make_pair(0U, &PPC::VSFRCRegClass);
   8649   }
   8650 
   8651   std::pair<unsigned, const TargetRegisterClass*> R =
   8652     TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   8653 
   8654   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   8655   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   8656   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   8657   // register.
   8658   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   8659   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   8660   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
   8661       PPC::GPRCRegClass.contains(R.first)) {
   8662     const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   8663     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   8664                             PPC::sub_32, &PPC::G8RCRegClass),
   8665                           &PPC::G8RCRegClass);
   8666   }
   8667 
   8668   return R;
   8669 }
   8670 
   8671 
   8672 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   8673 /// vector.  If it is invalid, don't add anything to Ops.
   8674 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   8675                                                      std::string &Constraint,
   8676                                                      std::vector<SDValue>&Ops,
   8677                                                      SelectionDAG &DAG) const {
   8678   SDValue Result;
   8679 
   8680   // Only support length 1 constraints.
   8681   if (Constraint.length() > 1) return;
   8682 
   8683   char Letter = Constraint[0];
   8684   switch (Letter) {
   8685   default: break;
   8686   case 'I':
   8687   case 'J':
   8688   case 'K':
   8689   case 'L':
   8690   case 'M':
   8691   case 'N':
   8692   case 'O':
   8693   case 'P': {
   8694     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   8695     if (!CST) return; // Must be an immediate to match.
   8696     unsigned Value = CST->getZExtValue();
   8697     switch (Letter) {
   8698     default: llvm_unreachable("Unknown constraint letter!");
   8699     case 'I':  // "I" is a signed 16-bit constant.
   8700       if ((short)Value == (int)Value)
   8701         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8702       break;
   8703     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   8704     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   8705       if ((short)Value == 0)
   8706         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8707       break;
   8708     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   8709       if ((Value >> 16) == 0)
   8710         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8711       break;
   8712     case 'M':  // "M" is a constant that is greater than 31.
   8713       if (Value > 31)
   8714         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8715       break;
   8716     case 'N':  // "N" is a positive constant that is an exact power of two.
   8717       if ((int)Value > 0 && isPowerOf2_32(Value))
   8718         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8719       break;
   8720     case 'O':  // "O" is the constant zero.
   8721       if (Value == 0)
   8722         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8723       break;
   8724     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   8725       if ((short)-Value == (int)-Value)
   8726         Result = DAG.getTargetConstant(Value, Op.getValueType());
   8727       break;
   8728     }
   8729     break;
   8730   }
   8731   }
   8732 
   8733   if (Result.getNode()) {
   8734     Ops.push_back(Result);
   8735     return;
   8736   }
   8737 
   8738   // Handle standard constraint letters.
   8739   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   8740 }
   8741 
   8742 // isLegalAddressingMode - Return true if the addressing mode represented
   8743 // by AM is legal for this target, for a load/store of the specified type.
   8744 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   8745                                               Type *Ty) const {
   8746   // FIXME: PPC does not allow r+i addressing modes for vectors!
   8747 
   8748   // PPC allows a sign-extended 16-bit immediate field.
   8749   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   8750     return false;
   8751 
   8752   // No global is ever allowed as a base.
   8753   if (AM.BaseGV)
   8754     return false;
   8755 
   8756   // PPC only support r+r,
   8757   switch (AM.Scale) {
   8758   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   8759     break;
   8760   case 1:
   8761     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   8762       return false;
   8763     // Otherwise we have r+r or r+i.
   8764     break;
   8765   case 2:
   8766     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   8767       return false;
   8768     // Allow 2*r as r+r.
   8769     break;
   8770   default:
   8771     // No other scales are supported.
   8772     return false;
   8773   }
   8774 
   8775   return true;
   8776 }
   8777 
   8778 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   8779                                            SelectionDAG &DAG) const {
   8780   MachineFunction &MF = DAG.getMachineFunction();
   8781   MachineFrameInfo *MFI = MF.getFrameInfo();
   8782   MFI->setReturnAddressIsTaken(true);
   8783 
   8784   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   8785     return SDValue();
   8786 
   8787   SDLoc dl(Op);
   8788   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8789 
   8790   // Make sure the function does not optimize away the store of the RA to
   8791   // the stack.
   8792   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   8793   FuncInfo->setLRStoreRequired();
   8794   bool isPPC64 = Subtarget.isPPC64();
   8795   bool isDarwinABI = Subtarget.isDarwinABI();
   8796 
   8797   if (Depth > 0) {
   8798     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   8799     SDValue Offset =
   8800 
   8801       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
   8802                       isPPC64? MVT::i64 : MVT::i32);
   8803     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   8804                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   8805                                    FrameAddr, Offset),
   8806                        MachinePointerInfo(), false, false, false, 0);
   8807   }
   8808 
   8809   // Just load the return address off the stack.
   8810   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   8811   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   8812                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   8813 }
   8814 
   8815 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   8816                                           SelectionDAG &DAG) const {
   8817   SDLoc dl(Op);
   8818   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8819 
   8820   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   8821   bool isPPC64 = PtrVT == MVT::i64;
   8822 
   8823   MachineFunction &MF = DAG.getMachineFunction();
   8824   MachineFrameInfo *MFI = MF.getFrameInfo();
   8825   MFI->setFrameAddressIsTaken(true);
   8826 
   8827   // Naked functions never have a frame pointer, and so we use r1. For all
   8828   // other functions, this decision must be delayed until during PEI.
   8829   unsigned FrameReg;
   8830   if (MF.getFunction()->getAttributes().hasAttribute(
   8831         AttributeSet::FunctionIndex, Attribute::Naked))
   8832     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   8833   else
   8834     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   8835 
   8836   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   8837                                          PtrVT);
   8838   while (Depth--)
   8839     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   8840                             FrameAddr, MachinePointerInfo(), false, false,
   8841                             false, 0);
   8842   return FrameAddr;
   8843 }
   8844 
   8845 // FIXME? Maybe this could be a TableGen attribute on some registers and
   8846 // this table could be generated automatically from RegInfo.
   8847 unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
   8848                                               EVT VT) const {
   8849   bool isPPC64 = Subtarget.isPPC64();
   8850   bool isDarwinABI = Subtarget.isDarwinABI();
   8851 
   8852   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
   8853       (!isPPC64 && VT != MVT::i32))
   8854     report_fatal_error("Invalid register global variable type");
   8855 
   8856   bool is64Bit = isPPC64 && VT == MVT::i64;
   8857   unsigned Reg = StringSwitch<unsigned>(RegName)
   8858                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
   8859                    .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
   8860                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
   8861                                   (is64Bit ? PPC::X13 : PPC::R13))
   8862                    .Default(0);
   8863 
   8864   if (Reg)
   8865     return Reg;
   8866   report_fatal_error("Invalid register name global variable");
   8867 }
   8868 
   8869 bool
   8870 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   8871   // The PowerPC target isn't yet aware of offsets.
   8872   return false;
   8873 }
   8874 
   8875 /// getOptimalMemOpType - Returns the target specific optimal type for load
   8876 /// and store operations as a result of memset, memcpy, and memmove
   8877 /// lowering. If DstAlign is zero that means it's safe to destination
   8878 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   8879 /// means there isn't a need to check it against alignment requirement,
   8880 /// probably because the source does not need to be loaded. If 'IsMemset' is
   8881 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   8882 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   8883 /// source is constant so it does not need to be loaded.
   8884 /// It returns EVT::Other if the type should be determined using generic
   8885 /// target-independent logic.
   8886 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   8887                                            unsigned DstAlign, unsigned SrcAlign,
   8888                                            bool IsMemset, bool ZeroMemset,
   8889                                            bool MemcpyStrSrc,
   8890                                            MachineFunction &MF) const {
   8891   if (Subtarget.isPPC64()) {
   8892     return MVT::i64;
   8893   } else {
   8894     return MVT::i32;
   8895   }
   8896 }
   8897 
   8898 /// \brief Returns true if it is beneficial to convert a load of a constant
   8899 /// to just the constant itself.
   8900 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   8901                                                           Type *Ty) const {
   8902   assert(Ty->isIntegerTy());
   8903 
   8904   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   8905   if (BitSize == 0 || BitSize > 64)
   8906     return false;
   8907   return true;
   8908 }
   8909 
   8910 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   8911   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   8912     return false;
   8913   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   8914   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   8915   return NumBits1 == 64 && NumBits2 == 32;
   8916 }
   8917 
   8918 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   8919   if (!VT1.isInteger() || !VT2.isInteger())
   8920     return false;
   8921   unsigned NumBits1 = VT1.getSizeInBits();
   8922   unsigned NumBits2 = VT2.getSizeInBits();
   8923   return NumBits1 == 64 && NumBits2 == 32;
   8924 }
   8925 
   8926 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   8927   return isInt<16>(Imm) || isUInt<16>(Imm);
   8928 }
   8929 
   8930 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   8931   return isInt<16>(Imm) || isUInt<16>(Imm);
   8932 }
   8933 
   8934 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
   8935                                                       unsigned,
   8936                                                       bool *Fast) const {
   8937   if (DisablePPCUnaligned)
   8938     return false;
   8939 
   8940   // PowerPC supports unaligned memory access for simple non-vector types.
   8941   // Although accessing unaligned addresses is not as efficient as accessing
   8942   // aligned addresses, it is generally more efficient than manual expansion,
   8943   // and generally only traps for software emulation when crossing page
   8944   // boundaries.
   8945 
   8946   if (!VT.isSimple())
   8947     return false;
   8948 
   8949   if (VT.getSimpleVT().isVector()) {
   8950     if (Subtarget.hasVSX()) {
   8951       if (VT != MVT::v2f64 && VT != MVT::v2i64)
   8952         return false;
   8953     } else {
   8954       return false;
   8955     }
   8956   }
   8957 
   8958   if (VT == MVT::ppcf128)
   8959     return false;
   8960 
   8961   if (Fast)
   8962     *Fast = true;
   8963 
   8964   return true;
   8965 }
   8966 
   8967 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   8968   VT = VT.getScalarType();
   8969 
   8970   if (!VT.isSimple())
   8971     return false;
   8972 
   8973   switch (VT.getSimpleVT().SimpleTy) {
   8974   case MVT::f32:
   8975   case MVT::f64:
   8976     return true;
   8977   default:
   8978     break;
   8979   }
   8980 
   8981   return false;
   8982 }
   8983 
   8984 bool
   8985 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
   8986                      EVT VT , unsigned DefinedValues) const {
   8987   if (VT == MVT::v2i64)
   8988     return false;
   8989 
   8990   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
   8991 }
   8992 
   8993 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   8994   if (DisableILPPref || Subtarget.enableMachineScheduler())
   8995     return TargetLowering::getSchedulingPreference(N);
   8996 
   8997   return Sched::ILP;
   8998 }
   8999 
   9000 // Create a fast isel object.
   9001 FastISel *
   9002 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   9003                                   const TargetLibraryInfo *LibInfo) const {
   9004   return PPC::createFastISel(FuncInfo, LibInfo);
   9005 }
   9006