1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <string> 18 #include <inttypes.h> 19 20 #include "codegen_x86.h" 21 #include "dex/compiler_internals.h" 22 #include "dex/quick/mir_to_lir-inl.h" 23 #include "dex/reg_storage_eq.h" 24 #include "mirror/array.h" 25 #include "mirror/string.h" 26 #include "x86_lir.h" 27 28 namespace art { 29 30 static constexpr RegStorage core_regs_arr_32[] = { 31 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, 32 }; 33 static constexpr RegStorage core_regs_arr_64[] = { 34 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, 35 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 36 }; 37 static constexpr RegStorage core_regs_arr_64q[] = { 38 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q, 39 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q 40 }; 41 static constexpr RegStorage sp_regs_arr_32[] = { 42 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, 43 }; 44 static constexpr RegStorage sp_regs_arr_64[] = { 45 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, 46 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 47 }; 48 static constexpr RegStorage dp_regs_arr_32[] = { 49 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, 50 }; 51 static constexpr RegStorage dp_regs_arr_64[] = { 52 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, 53 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 54 }; 55 static constexpr RegStorage xp_regs_arr_32[] = { 56 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, 57 }; 58 static constexpr RegStorage xp_regs_arr_64[] = { 59 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, 60 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15 61 }; 62 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32}; 63 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32}; 64 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64}; 65 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; 66 static constexpr RegStorage core_temps_arr_64[] = { 67 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI, 68 rs_r8, rs_r9, rs_r10, rs_r11 69 }; 70 71 // How to add register to be available for promotion: 72 // 1) Remove register from array defining temp 73 // 2) Update ClobberCallerSave 74 // 3) Update JNI compiler ABI: 75 // 3.1) add reg in JniCallingConvention method 76 // 3.2) update CoreSpillMask/FpSpillMask 77 // 4) Update entrypoints 78 // 4.1) Update constants in asm_support_x86_64.h for new frame size 79 // 4.2) Remove entry in SmashCallerSaves 80 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg 81 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg 82 // 5) Update runtime ABI 83 // 5.1) Update quick_method_frame_info with new required spills 84 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms 85 // Note that you cannot use register corresponding to incoming args 86 // according to ABI and QCG needs one additional XMM temp for 87 // bulk copy in preparation to call. 88 static constexpr RegStorage core_temps_arr_64q[] = { 89 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q, 90 rs_r8q, rs_r9q, rs_r10q, rs_r11q 91 }; 92 static constexpr RegStorage sp_temps_arr_32[] = { 93 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, 94 }; 95 static constexpr RegStorage sp_temps_arr_64[] = { 96 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, 97 rs_fr8, rs_fr9, rs_fr10, rs_fr11 98 }; 99 static constexpr RegStorage dp_temps_arr_32[] = { 100 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, 101 }; 102 static constexpr RegStorage dp_temps_arr_64[] = { 103 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, 104 rs_dr8, rs_dr9, rs_dr10, rs_dr11 105 }; 106 107 static constexpr RegStorage xp_temps_arr_32[] = { 108 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, 109 }; 110 static constexpr RegStorage xp_temps_arr_64[] = { 111 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, 112 rs_xr8, rs_xr9, rs_xr10, rs_xr11 113 }; 114 115 static constexpr ArrayRef<const RegStorage> empty_pool; 116 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32); 117 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64); 118 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q); 119 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32); 120 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64); 121 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32); 122 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64); 123 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32); 124 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64); 125 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32); 126 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64); 127 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q); 128 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32); 129 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64); 130 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q); 131 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32); 132 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64); 133 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32); 134 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64); 135 136 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32); 137 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64); 138 139 RegStorage rs_rX86_SP; 140 141 X86NativeRegisterPool rX86_ARG0; 142 X86NativeRegisterPool rX86_ARG1; 143 X86NativeRegisterPool rX86_ARG2; 144 X86NativeRegisterPool rX86_ARG3; 145 X86NativeRegisterPool rX86_ARG4; 146 X86NativeRegisterPool rX86_ARG5; 147 X86NativeRegisterPool rX86_FARG0; 148 X86NativeRegisterPool rX86_FARG1; 149 X86NativeRegisterPool rX86_FARG2; 150 X86NativeRegisterPool rX86_FARG3; 151 X86NativeRegisterPool rX86_FARG4; 152 X86NativeRegisterPool rX86_FARG5; 153 X86NativeRegisterPool rX86_FARG6; 154 X86NativeRegisterPool rX86_FARG7; 155 X86NativeRegisterPool rX86_RET0; 156 X86NativeRegisterPool rX86_RET1; 157 X86NativeRegisterPool rX86_INVOKE_TGT; 158 X86NativeRegisterPool rX86_COUNT; 159 160 RegStorage rs_rX86_ARG0; 161 RegStorage rs_rX86_ARG1; 162 RegStorage rs_rX86_ARG2; 163 RegStorage rs_rX86_ARG3; 164 RegStorage rs_rX86_ARG4; 165 RegStorage rs_rX86_ARG5; 166 RegStorage rs_rX86_FARG0; 167 RegStorage rs_rX86_FARG1; 168 RegStorage rs_rX86_FARG2; 169 RegStorage rs_rX86_FARG3; 170 RegStorage rs_rX86_FARG4; 171 RegStorage rs_rX86_FARG5; 172 RegStorage rs_rX86_FARG6; 173 RegStorage rs_rX86_FARG7; 174 RegStorage rs_rX86_RET0; 175 RegStorage rs_rX86_RET1; 176 RegStorage rs_rX86_INVOKE_TGT; 177 RegStorage rs_rX86_COUNT; 178 179 RegLocation X86Mir2Lir::LocCReturn() { 180 return x86_loc_c_return; 181 } 182 183 RegLocation X86Mir2Lir::LocCReturnRef() { 184 return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref; 185 } 186 187 RegLocation X86Mir2Lir::LocCReturnWide() { 188 return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide; 189 } 190 191 RegLocation X86Mir2Lir::LocCReturnFloat() { 192 return x86_loc_c_return_float; 193 } 194 195 RegLocation X86Mir2Lir::LocCReturnDouble() { 196 return x86_loc_c_return_double; 197 } 198 199 // Return a target-dependent special register for 32-bit. 200 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) { 201 RegStorage res_reg = RegStorage::InvalidReg(); 202 switch (reg) { 203 case kSelf: res_reg = RegStorage::InvalidReg(); break; 204 case kSuspend: res_reg = RegStorage::InvalidReg(); break; 205 case kLr: res_reg = RegStorage::InvalidReg(); break; 206 case kPc: res_reg = RegStorage::InvalidReg(); break; 207 case kSp: res_reg = rs_rX86_SP_32; break; // This must be the concrete one, as _SP is target- 208 // specific size. 209 case kArg0: res_reg = rs_rX86_ARG0; break; 210 case kArg1: res_reg = rs_rX86_ARG1; break; 211 case kArg2: res_reg = rs_rX86_ARG2; break; 212 case kArg3: res_reg = rs_rX86_ARG3; break; 213 case kArg4: res_reg = rs_rX86_ARG4; break; 214 case kArg5: res_reg = rs_rX86_ARG5; break; 215 case kFArg0: res_reg = rs_rX86_FARG0; break; 216 case kFArg1: res_reg = rs_rX86_FARG1; break; 217 case kFArg2: res_reg = rs_rX86_FARG2; break; 218 case kFArg3: res_reg = rs_rX86_FARG3; break; 219 case kFArg4: res_reg = rs_rX86_FARG4; break; 220 case kFArg5: res_reg = rs_rX86_FARG5; break; 221 case kFArg6: res_reg = rs_rX86_FARG6; break; 222 case kFArg7: res_reg = rs_rX86_FARG7; break; 223 case kRet0: res_reg = rs_rX86_RET0; break; 224 case kRet1: res_reg = rs_rX86_RET1; break; 225 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break; 226 case kHiddenArg: res_reg = rs_rAX; break; 227 case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break; 228 case kCount: res_reg = rs_rX86_COUNT; break; 229 default: res_reg = RegStorage::InvalidReg(); 230 } 231 return res_reg; 232 } 233 234 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { 235 LOG(FATAL) << "Do not use this function!!!"; 236 return RegStorage::InvalidReg(); 237 } 238 239 /* 240 * Decode the register id. 241 */ 242 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const { 243 /* Double registers in x86 are just a single FP register. This is always just a single bit. */ 244 return ResourceMask::Bit( 245 /* FP register starts at bit position 16 */ 246 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum()); 247 } 248 249 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const { 250 return kEncodeNone; 251 } 252 253 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, 254 ResourceMask* use_mask, ResourceMask* def_mask) { 255 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); 256 DCHECK(!lir->flags.use_def_invalid); 257 258 // X86-specific resource map setup here. 259 if (flags & REG_USE_SP) { 260 use_mask->SetBit(kX86RegSP); 261 } 262 263 if (flags & REG_DEF_SP) { 264 def_mask->SetBit(kX86RegSP); 265 } 266 267 if (flags & REG_DEFA) { 268 SetupRegMask(def_mask, rs_rAX.GetReg()); 269 } 270 271 if (flags & REG_DEFD) { 272 SetupRegMask(def_mask, rs_rDX.GetReg()); 273 } 274 if (flags & REG_USEA) { 275 SetupRegMask(use_mask, rs_rAX.GetReg()); 276 } 277 278 if (flags & REG_USEC) { 279 SetupRegMask(use_mask, rs_rCX.GetReg()); 280 } 281 282 if (flags & REG_USED) { 283 SetupRegMask(use_mask, rs_rDX.GetReg()); 284 } 285 286 if (flags & REG_USEB) { 287 SetupRegMask(use_mask, rs_rBX.GetReg()); 288 } 289 290 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. 291 if (lir->opcode == kX86RepneScasw) { 292 SetupRegMask(use_mask, rs_rAX.GetReg()); 293 SetupRegMask(use_mask, rs_rCX.GetReg()); 294 SetupRegMask(use_mask, rs_rDI.GetReg()); 295 SetupRegMask(def_mask, rs_rDI.GetReg()); 296 } 297 298 if (flags & USE_FP_STACK) { 299 use_mask->SetBit(kX86FPStack); 300 def_mask->SetBit(kX86FPStack); 301 } 302 } 303 304 /* For dumping instructions */ 305 static const char* x86RegName[] = { 306 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", 307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" 308 }; 309 310 static const char* x86CondName[] = { 311 "O", 312 "NO", 313 "B/NAE/C", 314 "NB/AE/NC", 315 "Z/EQ", 316 "NZ/NE", 317 "BE/NA", 318 "NBE/A", 319 "S", 320 "NS", 321 "P/PE", 322 "NP/PO", 323 "L/NGE", 324 "NL/GE", 325 "LE/NG", 326 "NLE/G" 327 }; 328 329 /* 330 * Interpret a format string and build a string no longer than size 331 * See format key in Assemble.cc. 332 */ 333 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { 334 std::string buf; 335 size_t i = 0; 336 size_t fmt_len = strlen(fmt); 337 while (i < fmt_len) { 338 if (fmt[i] != '!') { 339 buf += fmt[i]; 340 i++; 341 } else { 342 i++; 343 DCHECK_LT(i, fmt_len); 344 char operand_number_ch = fmt[i]; 345 i++; 346 if (operand_number_ch == '!') { 347 buf += "!"; 348 } else { 349 int operand_number = operand_number_ch - '0'; 350 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. 351 DCHECK_LT(i, fmt_len); 352 int operand = lir->operands[operand_number]; 353 switch (fmt[i]) { 354 case 'c': 355 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); 356 buf += x86CondName[operand]; 357 break; 358 case 'd': 359 buf += StringPrintf("%d", operand); 360 break; 361 case 'q': { 362 int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 | 363 static_cast<uint32_t>(lir->operands[operand_number+1])); 364 buf +=StringPrintf("%" PRId64, value); 365 } 366 case 'p': { 367 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand)); 368 buf += StringPrintf("0x%08x", tab_rec->offset); 369 break; 370 } 371 case 'r': 372 if (RegStorage::IsFloat(operand)) { 373 int fp_reg = RegStorage::RegNum(operand); 374 buf += StringPrintf("xmm%d", fp_reg); 375 } else { 376 int reg_num = RegStorage::RegNum(operand); 377 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName)); 378 buf += x86RegName[reg_num]; 379 } 380 break; 381 case 't': 382 buf += StringPrintf("0x%08" PRIxPTR " (L%p)", 383 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand, 384 lir->target); 385 break; 386 default: 387 buf += StringPrintf("DecodeError '%c'", fmt[i]); 388 break; 389 } 390 i++; 391 } 392 } 393 } 394 return buf; 395 } 396 397 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) { 398 char buf[256]; 399 buf[0] = 0; 400 401 if (mask.Equals(kEncodeAll)) { 402 strcpy(buf, "all"); 403 } else { 404 char num[8]; 405 int i; 406 407 for (i = 0; i < kX86RegEnd; i++) { 408 if (mask.HasBit(i)) { 409 snprintf(num, arraysize(num), "%d ", i); 410 strcat(buf, num); 411 } 412 } 413 414 if (mask.HasBit(ResourceMask::kCCode)) { 415 strcat(buf, "cc "); 416 } 417 /* Memory bits */ 418 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) { 419 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", 420 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), 421 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); 422 } 423 if (mask.HasBit(ResourceMask::kLiteral)) { 424 strcat(buf, "lit "); 425 } 426 427 if (mask.HasBit(ResourceMask::kHeapRef)) { 428 strcat(buf, "heap "); 429 } 430 if (mask.HasBit(ResourceMask::kMustNotAlias)) { 431 strcat(buf, "noalias "); 432 } 433 } 434 if (buf[0]) { 435 LOG(INFO) << prefix << ": " << buf; 436 } 437 } 438 439 void X86Mir2Lir::AdjustSpillMask() { 440 // Adjustment for LR spilling, x86 has no LR so nothing to do here 441 core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); 442 num_core_spills_++; 443 } 444 445 RegStorage X86Mir2Lir::AllocateByteRegister() { 446 RegStorage reg = AllocTypedTemp(false, kCoreReg); 447 if (!cu_->target64) { 448 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum()); 449 } 450 return reg; 451 } 452 453 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) { 454 return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg(); 455 } 456 457 bool X86Mir2Lir::IsByteRegister(RegStorage reg) { 458 return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum(); 459 } 460 461 /* Clobber all regs that might be used by an external C call */ 462 void X86Mir2Lir::ClobberCallerSave() { 463 if (cu_->target64) { 464 Clobber(rs_rAX); 465 Clobber(rs_rCX); 466 Clobber(rs_rDX); 467 Clobber(rs_rSI); 468 Clobber(rs_rDI); 469 470 Clobber(rs_r8); 471 Clobber(rs_r9); 472 Clobber(rs_r10); 473 Clobber(rs_r11); 474 475 Clobber(rs_fr8); 476 Clobber(rs_fr9); 477 Clobber(rs_fr10); 478 Clobber(rs_fr11); 479 } else { 480 Clobber(rs_rAX); 481 Clobber(rs_rCX); 482 Clobber(rs_rDX); 483 Clobber(rs_rBX); 484 } 485 486 Clobber(rs_fr0); 487 Clobber(rs_fr1); 488 Clobber(rs_fr2); 489 Clobber(rs_fr3); 490 Clobber(rs_fr4); 491 Clobber(rs_fr5); 492 Clobber(rs_fr6); 493 Clobber(rs_fr7); 494 } 495 496 RegLocation X86Mir2Lir::GetReturnWideAlt() { 497 RegLocation res = LocCReturnWide(); 498 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg()); 499 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg()); 500 Clobber(rs_rAX); 501 Clobber(rs_rDX); 502 MarkInUse(rs_rAX); 503 MarkInUse(rs_rDX); 504 MarkWide(res.reg); 505 return res; 506 } 507 508 RegLocation X86Mir2Lir::GetReturnAlt() { 509 RegLocation res = LocCReturn(); 510 res.reg.SetReg(rs_rDX.GetReg()); 511 Clobber(rs_rDX); 512 MarkInUse(rs_rDX); 513 return res; 514 } 515 516 /* To be used when explicitly managing register use */ 517 void X86Mir2Lir::LockCallTemps() { 518 LockTemp(rs_rX86_ARG0); 519 LockTemp(rs_rX86_ARG1); 520 LockTemp(rs_rX86_ARG2); 521 LockTemp(rs_rX86_ARG3); 522 if (cu_->target64) { 523 LockTemp(rs_rX86_ARG4); 524 LockTemp(rs_rX86_ARG5); 525 LockTemp(rs_rX86_FARG0); 526 LockTemp(rs_rX86_FARG1); 527 LockTemp(rs_rX86_FARG2); 528 LockTemp(rs_rX86_FARG3); 529 LockTemp(rs_rX86_FARG4); 530 LockTemp(rs_rX86_FARG5); 531 LockTemp(rs_rX86_FARG6); 532 LockTemp(rs_rX86_FARG7); 533 } 534 } 535 536 /* To be used when explicitly managing register use */ 537 void X86Mir2Lir::FreeCallTemps() { 538 FreeTemp(rs_rX86_ARG0); 539 FreeTemp(rs_rX86_ARG1); 540 FreeTemp(rs_rX86_ARG2); 541 FreeTemp(rs_rX86_ARG3); 542 FreeTemp(TargetReg32(kHiddenArg)); 543 if (cu_->target64) { 544 FreeTemp(rs_rX86_ARG4); 545 FreeTemp(rs_rX86_ARG5); 546 FreeTemp(rs_rX86_FARG0); 547 FreeTemp(rs_rX86_FARG1); 548 FreeTemp(rs_rX86_FARG2); 549 FreeTemp(rs_rX86_FARG3); 550 FreeTemp(rs_rX86_FARG4); 551 FreeTemp(rs_rX86_FARG5); 552 FreeTemp(rs_rX86_FARG6); 553 FreeTemp(rs_rX86_FARG7); 554 } 555 } 556 557 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { 558 switch (opcode) { 559 case kX86LockCmpxchgMR: 560 case kX86LockCmpxchgAR: 561 case kX86LockCmpxchg64M: 562 case kX86LockCmpxchg64A: 563 case kX86XchgMR: 564 case kX86Mfence: 565 // Atomic memory instructions provide full barrier. 566 return true; 567 default: 568 break; 569 } 570 571 // Conservative if cannot prove it provides full barrier. 572 return false; 573 } 574 575 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { 576 #if ANDROID_SMP != 0 577 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. 578 LIR* mem_barrier = last_lir_insn_; 579 580 bool ret = false; 581 /* 582 * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. 583 * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. 584 * For those cases, all we need to ensure is that there is a scheduling barrier in place. 585 */ 586 if (barrier_kind == kAnyAny) { 587 // If no LIR exists already that can be used a barrier, then generate an mfence. 588 if (mem_barrier == nullptr) { 589 mem_barrier = NewLIR0(kX86Mfence); 590 ret = true; 591 } 592 593 // If last instruction does not provide full barrier, then insert an mfence. 594 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) { 595 mem_barrier = NewLIR0(kX86Mfence); 596 ret = true; 597 } 598 } 599 600 // Now ensure that a scheduling barrier is in place. 601 if (mem_barrier == nullptr) { 602 GenBarrier(); 603 } else { 604 // Mark as a scheduling barrier. 605 DCHECK(!mem_barrier->flags.use_def_invalid); 606 mem_barrier->u.m.def_mask = &kEncodeAll; 607 } 608 return ret; 609 #else 610 return false; 611 #endif 612 } 613 614 void X86Mir2Lir::CompilerInitializeRegAlloc() { 615 if (cu_->target64) { 616 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64, 617 dp_regs_64, reserved_regs_64, reserved_regs_64q, 618 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64); 619 } else { 620 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32, 621 dp_regs_32, reserved_regs_32, empty_pool, 622 core_temps_32, empty_pool, sp_temps_32, dp_temps_32); 623 } 624 625 // Target-specific adjustments. 626 627 // Add in XMM registers. 628 const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32; 629 for (RegStorage reg : *xp_regs) { 630 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg)); 631 reginfo_map_.Put(reg.GetReg(), info); 632 } 633 const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32; 634 for (RegStorage reg : *xp_temps) { 635 RegisterInfo* xp_reg_info = GetRegInfo(reg); 636 xp_reg_info->SetIsTemp(true); 637 } 638 639 // Alias single precision xmm to double xmms. 640 // TODO: as needed, add larger vector sizes - alias all to the largest. 641 GrowableArray<RegisterInfo*>::Iterator it(®_pool_->sp_regs_); 642 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) { 643 int sp_reg_num = info->GetReg().GetRegNum(); 644 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num); 645 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg); 646 // 128-bit xmm vector register's master storage should refer to itself. 647 DCHECK_EQ(xp_reg_info, xp_reg_info->Master()); 648 649 // Redirect 32-bit vector's master storage to 128-bit vector. 650 info->SetMaster(xp_reg_info); 651 652 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num); 653 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); 654 // Redirect 64-bit vector's master storage to 128-bit vector. 655 dp_reg_info->SetMaster(xp_reg_info); 656 // Singles should show a single 32-bit mask bit, at first referring to the low half. 657 DCHECK_EQ(info->StorageMask(), 0x1U); 658 } 659 660 if (cu_->target64) { 661 // Alias 32bit W registers to corresponding 64bit X registers. 662 GrowableArray<RegisterInfo*>::Iterator w_it(®_pool_->core_regs_); 663 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) { 664 int x_reg_num = info->GetReg().GetRegNum(); 665 RegStorage x_reg = RegStorage::Solo64(x_reg_num); 666 RegisterInfo* x_reg_info = GetRegInfo(x_reg); 667 // 64bit X register's master storage should refer to itself. 668 DCHECK_EQ(x_reg_info, x_reg_info->Master()); 669 // Redirect 32bit W master storage to 64bit X. 670 info->SetMaster(x_reg_info); 671 // 32bit W should show a single 32-bit mask bit, at first referring to the low half. 672 DCHECK_EQ(info->StorageMask(), 0x1U); 673 } 674 } 675 676 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. 677 // TODO: adjust for x86/hard float calling convention. 678 reg_pool_->next_core_reg_ = 2; 679 reg_pool_->next_sp_reg_ = 2; 680 reg_pool_->next_dp_reg_ = 1; 681 } 682 683 int X86Mir2Lir::VectorRegisterSize() { 684 return 128; 685 } 686 687 int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) { 688 return fp_used ? 5 : 7; 689 } 690 691 void X86Mir2Lir::SpillCoreRegs() { 692 if (num_core_spills_ == 0) { 693 return; 694 } 695 // Spill mask not including fake return address register 696 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); 697 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); 698 OpSize size = cu_->target64 ? k64 : k32; 699 for (int reg = 0; mask; mask >>= 1, reg++) { 700 if (mask & 0x1) { 701 StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), 702 size, kNotVolatile); 703 offset += GetInstructionSetPointerSize(cu_->instruction_set); 704 } 705 } 706 } 707 708 void X86Mir2Lir::UnSpillCoreRegs() { 709 if (num_core_spills_ == 0) { 710 return; 711 } 712 // Spill mask not including fake return address register 713 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); 714 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); 715 OpSize size = cu_->target64 ? k64 : k32; 716 for (int reg = 0; mask; mask >>= 1, reg++) { 717 if (mask & 0x1) { 718 LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), 719 size, kNotVolatile); 720 offset += GetInstructionSetPointerSize(cu_->instruction_set); 721 } 722 } 723 } 724 725 void X86Mir2Lir::SpillFPRegs() { 726 if (num_fp_spills_ == 0) { 727 return; 728 } 729 uint32_t mask = fp_spill_mask_; 730 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); 731 for (int reg = 0; mask; mask >>= 1, reg++) { 732 if (mask & 0x1) { 733 StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg), 734 k64, kNotVolatile); 735 offset += sizeof(double); 736 } 737 } 738 } 739 void X86Mir2Lir::UnSpillFPRegs() { 740 if (num_fp_spills_ == 0) { 741 return; 742 } 743 uint32_t mask = fp_spill_mask_; 744 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); 745 for (int reg = 0; mask; mask >>= 1, reg++) { 746 if (mask & 0x1) { 747 LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg), 748 k64, kNotVolatile); 749 offset += sizeof(double); 750 } 751 } 752 } 753 754 755 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { 756 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); 757 } 758 759 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { 760 // X86_64 can handle any size. 761 if (cu_->target64) { 762 if (size == kReference) { 763 return kRefReg; 764 } 765 return kCoreReg; 766 } 767 768 if (UNLIKELY(is_volatile)) { 769 // On x86, atomic 64-bit load/store requires an fp register. 770 // Smaller aligned load/store is atomic for both core and fp registers. 771 if (size == k64 || size == kDouble) { 772 return kFPReg; 773 } 774 } 775 return RegClassBySize(size); 776 } 777 778 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) 779 : Mir2Lir(cu, mir_graph, arena), 780 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false), 781 method_address_insns_(arena, 100, kGrowableArrayMisc), 782 class_type_address_insns_(arena, 100, kGrowableArrayMisc), 783 call_method_insns_(arena, 100, kGrowableArrayMisc), 784 stack_decrement_(nullptr), stack_increment_(nullptr), 785 const_vectors_(nullptr) { 786 store_method_addr_used_ = false; 787 if (kIsDebugBuild) { 788 for (int i = 0; i < kX86Last; i++) { 789 if (X86Mir2Lir::EncodingMap[i].opcode != i) { 790 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name 791 << " is wrong: expecting " << i << ", seeing " 792 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); 793 } 794 } 795 } 796 if (cu_->target64) { 797 rs_rX86_SP = rs_rX86_SP_64; 798 799 rs_rX86_ARG0 = rs_rDI; 800 rs_rX86_ARG1 = rs_rSI; 801 rs_rX86_ARG2 = rs_rDX; 802 rs_rX86_ARG3 = rs_rCX; 803 rs_rX86_ARG4 = rs_r8; 804 rs_rX86_ARG5 = rs_r9; 805 rs_rX86_FARG0 = rs_fr0; 806 rs_rX86_FARG1 = rs_fr1; 807 rs_rX86_FARG2 = rs_fr2; 808 rs_rX86_FARG3 = rs_fr3; 809 rs_rX86_FARG4 = rs_fr4; 810 rs_rX86_FARG5 = rs_fr5; 811 rs_rX86_FARG6 = rs_fr6; 812 rs_rX86_FARG7 = rs_fr7; 813 rX86_ARG0 = rDI; 814 rX86_ARG1 = rSI; 815 rX86_ARG2 = rDX; 816 rX86_ARG3 = rCX; 817 rX86_ARG4 = r8; 818 rX86_ARG5 = r9; 819 rX86_FARG0 = fr0; 820 rX86_FARG1 = fr1; 821 rX86_FARG2 = fr2; 822 rX86_FARG3 = fr3; 823 rX86_FARG4 = fr4; 824 rX86_FARG5 = fr5; 825 rX86_FARG6 = fr6; 826 rX86_FARG7 = fr7; 827 rs_rX86_INVOKE_TGT = rs_rDI; 828 } else { 829 rs_rX86_SP = rs_rX86_SP_32; 830 831 rs_rX86_ARG0 = rs_rAX; 832 rs_rX86_ARG1 = rs_rCX; 833 rs_rX86_ARG2 = rs_rDX; 834 rs_rX86_ARG3 = rs_rBX; 835 rs_rX86_ARG4 = RegStorage::InvalidReg(); 836 rs_rX86_ARG5 = RegStorage::InvalidReg(); 837 rs_rX86_FARG0 = rs_rAX; 838 rs_rX86_FARG1 = rs_rCX; 839 rs_rX86_FARG2 = rs_rDX; 840 rs_rX86_FARG3 = rs_rBX; 841 rs_rX86_FARG4 = RegStorage::InvalidReg(); 842 rs_rX86_FARG5 = RegStorage::InvalidReg(); 843 rs_rX86_FARG6 = RegStorage::InvalidReg(); 844 rs_rX86_FARG7 = RegStorage::InvalidReg(); 845 rX86_ARG0 = rAX; 846 rX86_ARG1 = rCX; 847 rX86_ARG2 = rDX; 848 rX86_ARG3 = rBX; 849 rX86_FARG0 = rAX; 850 rX86_FARG1 = rCX; 851 rX86_FARG2 = rDX; 852 rX86_FARG3 = rBX; 853 rs_rX86_INVOKE_TGT = rs_rAX; 854 // TODO(64): Initialize with invalid reg 855 // rX86_ARG4 = RegStorage::InvalidReg(); 856 // rX86_ARG5 = RegStorage::InvalidReg(); 857 } 858 rs_rX86_RET0 = rs_rAX; 859 rs_rX86_RET1 = rs_rDX; 860 rs_rX86_COUNT = rs_rCX; 861 rX86_RET0 = rAX; 862 rX86_RET1 = rDX; 863 rX86_INVOKE_TGT = rAX; 864 rX86_COUNT = rCX; 865 866 // Initialize the number of reserved vector registers 867 num_reserved_vector_regs_ = -1; 868 } 869 870 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, 871 ArenaAllocator* const arena) { 872 return new X86Mir2Lir(cu, mir_graph, arena); 873 } 874 875 // Not used in x86(-64) 876 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) { 877 LOG(FATAL) << "Unexpected use of LoadHelper in x86"; 878 return RegStorage::InvalidReg(); 879 } 880 881 LIR* X86Mir2Lir::CheckSuspendUsingLoad() { 882 // First load the pointer in fs:[suspend-trigger] into eax 883 // Then use a test instruction to indirect via that address. 884 if (cu_->target64) { 885 NewLIR2(kX86Mov64RT, rs_rAX.GetReg(), 886 Thread::ThreadSuspendTriggerOffset<8>().Int32Value()); 887 } else { 888 NewLIR2(kX86Mov32RT, rs_rAX.GetReg(), 889 Thread::ThreadSuspendTriggerOffset<4>().Int32Value()); 890 } 891 return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0); 892 } 893 894 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { 895 DCHECK(!IsPseudoLirOp(opcode)); 896 return X86Mir2Lir::EncodingMap[opcode].flags; 897 } 898 899 const char* X86Mir2Lir::GetTargetInstName(int opcode) { 900 DCHECK(!IsPseudoLirOp(opcode)); 901 return X86Mir2Lir::EncodingMap[opcode].name; 902 } 903 904 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { 905 DCHECK(!IsPseudoLirOp(opcode)); 906 return X86Mir2Lir::EncodingMap[opcode].fmt; 907 } 908 909 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { 910 // Can we do this directly to memory? 911 rl_dest = UpdateLocWide(rl_dest); 912 if ((rl_dest.location == kLocDalvikFrame) || 913 (rl_dest.location == kLocCompilerTemp)) { 914 int32_t val_lo = Low32Bits(value); 915 int32_t val_hi = High32Bits(value); 916 int r_base = rs_rX86_SP.GetReg(); 917 int displacement = SRegOffset(rl_dest.s_reg_low); 918 919 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 920 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); 921 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, 922 false /* is_load */, true /* is64bit */); 923 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); 924 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, 925 false /* is_load */, true /* is64bit */); 926 return; 927 } 928 929 // Just use the standard code to do the generation. 930 Mir2Lir::GenConstWide(rl_dest, value); 931 } 932 933 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc 934 void X86Mir2Lir::DumpRegLocation(RegLocation loc) { 935 LOG(INFO) << "location: " << loc.location << ',' 936 << (loc.wide ? " w" : " ") 937 << (loc.defined ? " D" : " ") 938 << (loc.is_const ? " c" : " ") 939 << (loc.fp ? " F" : " ") 940 << (loc.core ? " C" : " ") 941 << (loc.ref ? " r" : " ") 942 << (loc.high_word ? " h" : " ") 943 << (loc.home ? " H" : " ") 944 << ", low: " << static_cast<int>(loc.reg.GetLowReg()) 945 << ", high: " << static_cast<int>(loc.reg.GetHighReg()) 946 << ", s_reg: " << loc.s_reg_low 947 << ", orig: " << loc.orig_sreg; 948 } 949 950 void X86Mir2Lir::Materialize() { 951 // A good place to put the analysis before starting. 952 AnalyzeMIR(); 953 954 // Now continue with regular code generation. 955 Mir2Lir::Materialize(); 956 } 957 958 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, 959 SpecialTargetRegister symbolic_reg) { 960 /* 961 * For x86, just generate a 32 bit move immediate instruction, that will be filled 962 * in at 'link time'. For now, put a unique value based on target to ensure that 963 * code deduplication works. 964 */ 965 int target_method_idx = target_method.dex_method_index; 966 const DexFile* target_dex_file = target_method.dex_file; 967 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); 968 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); 969 970 // Generate the move instruction with the unique pointer and save index, dex_file, and type. 971 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, 972 TargetReg(symbolic_reg, kNotWide).GetReg(), 973 static_cast<int>(target_method_id_ptr), target_method_idx, 974 WrapPointer(const_cast<DexFile*>(target_dex_file)), type); 975 AppendLIR(move); 976 method_address_insns_.Insert(move); 977 } 978 979 void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { 980 /* 981 * For x86, just generate a 32 bit move immediate instruction, that will be filled 982 * in at 'link time'. For now, put a unique value based on target to ensure that 983 * code deduplication works. 984 */ 985 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx); 986 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id); 987 988 // Generate the move instruction with the unique pointer and save index and type. 989 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, 990 TargetReg(symbolic_reg, kNotWide).GetReg(), 991 static_cast<int>(ptr), type_idx); 992 AppendLIR(move); 993 class_type_address_insns_.Insert(move); 994 } 995 996 LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { 997 /* 998 * For x86, just generate a 32 bit call relative instruction, that will be filled 999 * in at 'link time'. For now, put a unique value based on target to ensure that 1000 * code deduplication works. 1001 */ 1002 int target_method_idx = target_method.dex_method_index; 1003 const DexFile* target_dex_file = target_method.dex_file; 1004 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); 1005 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); 1006 1007 // Generate the call instruction with the unique pointer and save index, dex_file, and type. 1008 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr), 1009 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); 1010 AppendLIR(call); 1011 call_method_insns_.Insert(call); 1012 return call; 1013 } 1014 1015 /* 1016 * @brief Enter a 32 bit quantity into a buffer 1017 * @param buf buffer. 1018 * @param data Data value. 1019 */ 1020 1021 static void PushWord(std::vector<uint8_t>&buf, int32_t data) { 1022 buf.push_back(data & 0xff); 1023 buf.push_back((data >> 8) & 0xff); 1024 buf.push_back((data >> 16) & 0xff); 1025 buf.push_back((data >> 24) & 0xff); 1026 } 1027 1028 void X86Mir2Lir::InstallLiteralPools() { 1029 // These are handled differently for x86. 1030 DCHECK(code_literal_list_ == nullptr); 1031 DCHECK(method_literal_list_ == nullptr); 1032 DCHECK(class_literal_list_ == nullptr); 1033 1034 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is 1035 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads 1036 // will fail at runtime)? 1037 if (const_vectors_ != nullptr) { 1038 int align_size = (16-4) - (code_buffer_.size() & 0xF); 1039 if (align_size < 0) { 1040 align_size += 16; 1041 } 1042 1043 while (align_size > 0) { 1044 code_buffer_.push_back(0); 1045 align_size--; 1046 } 1047 for (LIR *p = const_vectors_; p != nullptr; p = p->next) { 1048 PushWord(code_buffer_, p->operands[0]); 1049 PushWord(code_buffer_, p->operands[1]); 1050 PushWord(code_buffer_, p->operands[2]); 1051 PushWord(code_buffer_, p->operands[3]); 1052 } 1053 } 1054 1055 // Handle the fixups for methods. 1056 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) { 1057 LIR* p = method_address_insns_.Get(i); 1058 DCHECK_EQ(p->opcode, kX86Mov32RI); 1059 uint32_t target_method_idx = p->operands[2]; 1060 const DexFile* target_dex_file = 1061 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3])); 1062 1063 // The offset to patch is the last 4 bytes of the instruction. 1064 int patch_offset = p->offset + p->flags.size - 4; 1065 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, 1066 cu_->method_idx, cu_->invoke_type, 1067 target_method_idx, target_dex_file, 1068 static_cast<InvokeType>(p->operands[4]), 1069 patch_offset); 1070 } 1071 1072 // Handle the fixups for class types. 1073 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) { 1074 LIR* p = class_type_address_insns_.Get(i); 1075 DCHECK_EQ(p->opcode, kX86Mov32RI); 1076 uint32_t target_method_idx = p->operands[2]; 1077 1078 // The offset to patch is the last 4 bytes of the instruction. 1079 int patch_offset = p->offset + p->flags.size - 4; 1080 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx, 1081 cu_->method_idx, target_method_idx, patch_offset); 1082 } 1083 1084 // And now the PC-relative calls to methods. 1085 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) { 1086 LIR* p = call_method_insns_.Get(i); 1087 DCHECK_EQ(p->opcode, kX86CallI); 1088 uint32_t target_method_idx = p->operands[1]; 1089 const DexFile* target_dex_file = 1090 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2])); 1091 1092 // The offset to patch is the last 4 bytes of the instruction. 1093 int patch_offset = p->offset + p->flags.size - 4; 1094 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx, 1095 cu_->method_idx, cu_->invoke_type, 1096 target_method_idx, target_dex_file, 1097 static_cast<InvokeType>(p->operands[3]), 1098 patch_offset, -4 /* offset */); 1099 } 1100 1101 // And do the normal processing. 1102 Mir2Lir::InstallLiteralPools(); 1103 } 1104 1105 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { 1106 RegLocation rl_src = info->args[0]; 1107 RegLocation rl_srcPos = info->args[1]; 1108 RegLocation rl_dst = info->args[2]; 1109 RegLocation rl_dstPos = info->args[3]; 1110 RegLocation rl_length = info->args[4]; 1111 if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) { 1112 return false; 1113 } 1114 if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) { 1115 return false; 1116 } 1117 ClobberCallerSave(); 1118 LockCallTemps(); // Using fixed registers. 1119 RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX; 1120 LoadValueDirectFixed(rl_src, rs_rAX); 1121 LoadValueDirectFixed(rl_dst, rs_rCX); 1122 LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr); 1123 LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr); 1124 LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); 1125 LoadValueDirectFixed(rl_length, rs_rDX); 1126 // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path. 1127 LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr); 1128 LoadValueDirectFixed(rl_src, rs_rAX); 1129 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); 1130 LIR* src_bad_len = nullptr; 1131 LIR* src_bad_off = nullptr; 1132 LIR* srcPos_negative = nullptr; 1133 if (!rl_srcPos.is_const) { 1134 LoadValueDirectFixed(rl_srcPos, tmp_reg); 1135 srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); 1136 // src_pos < src_len 1137 src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); 1138 // src_len - src_pos < copy_len 1139 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); 1140 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); 1141 } else { 1142 int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg); 1143 if (pos_val == 0) { 1144 src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); 1145 } else { 1146 // src_pos < src_len 1147 src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); 1148 // src_len - src_pos < copy_len 1149 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); 1150 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); 1151 } 1152 } 1153 LIR* dstPos_negative = nullptr; 1154 LIR* dst_bad_len = nullptr; 1155 LIR* dst_bad_off = nullptr; 1156 LoadValueDirectFixed(rl_dst, rs_rAX); 1157 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); 1158 if (!rl_dstPos.is_const) { 1159 LoadValueDirectFixed(rl_dstPos, tmp_reg); 1160 dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); 1161 // dst_pos < dst_len 1162 dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); 1163 // dst_len - dst_pos < copy_len 1164 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); 1165 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); 1166 } else { 1167 int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg); 1168 if (pos_val == 0) { 1169 dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); 1170 } else { 1171 // dst_pos < dst_len 1172 dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); 1173 // dst_len - dst_pos < copy_len 1174 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); 1175 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); 1176 } 1177 } 1178 // Everything is checked now. 1179 LoadValueDirectFixed(rl_src, rs_rAX); 1180 LoadValueDirectFixed(rl_dst, tmp_reg); 1181 LoadValueDirectFixed(rl_srcPos, rs_rCX); 1182 NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(), 1183 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value()); 1184 // RAX now holds the address of the first src element to be copied. 1185 1186 LoadValueDirectFixed(rl_dstPos, rs_rCX); 1187 NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(), 1188 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() ); 1189 // RBX now holds the address of the first dst element to be copied. 1190 1191 // Check if the number of elements to be copied is odd or even. If odd 1192 // then copy the first element (so that the remaining number of elements 1193 // is even). 1194 LoadValueDirectFixed(rl_length, rs_rCX); 1195 OpRegImm(kOpAnd, rs_rCX, 1); 1196 LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); 1197 OpRegImm(kOpSub, rs_rDX, 1); 1198 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); 1199 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf); 1200 1201 // Since the remaining number of elements is even, we will copy by 1202 // two elements at a time. 1203 LIR* beginLoop = NewLIR0(kPseudoTargetLabel); 1204 LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr); 1205 OpRegImm(kOpSub, rs_rDX, 2); 1206 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle); 1207 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle); 1208 OpUnconditionalBranch(beginLoop); 1209 LIR *check_failed = NewLIR0(kPseudoTargetLabel); 1210 LIR* launchpad_branch = OpUnconditionalBranch(nullptr); 1211 LIR *return_point = NewLIR0(kPseudoTargetLabel); 1212 jmp_to_ret->target = return_point; 1213 jmp_to_begin_loop->target = beginLoop; 1214 src_dst_same->target = check_failed; 1215 len_too_big->target = check_failed; 1216 src_null_branch->target = check_failed; 1217 if (srcPos_negative != nullptr) 1218 srcPos_negative ->target = check_failed; 1219 if (src_bad_off != nullptr) 1220 src_bad_off->target = check_failed; 1221 if (src_bad_len != nullptr) 1222 src_bad_len->target = check_failed; 1223 dst_null_branch->target = check_failed; 1224 if (dstPos_negative != nullptr) 1225 dstPos_negative->target = check_failed; 1226 if (dst_bad_off != nullptr) 1227 dst_bad_off->target = check_failed; 1228 if (dst_bad_len != nullptr) 1229 dst_bad_len->target = check_failed; 1230 AddIntrinsicSlowPath(info, launchpad_branch, return_point); 1231 ClobberCallerSave(); // We must clobber everything because slow path will return here 1232 return true; 1233 } 1234 1235 1236 /* 1237 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, 1238 * otherwise bails to standard library code. 1239 */ 1240 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { 1241 RegLocation rl_obj = info->args[0]; 1242 RegLocation rl_char = info->args[1]; 1243 RegLocation rl_start; // Note: only present in III flavor or IndexOf. 1244 // RBX is callee-save register in 64-bit mode. 1245 RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX; 1246 int start_value = -1; 1247 1248 uint32_t char_value = 1249 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; 1250 1251 if (char_value > 0xFFFF) { 1252 // We have to punt to the real String.indexOf. 1253 return false; 1254 } 1255 1256 // Okay, we are commited to inlining this. 1257 // EAX: 16 bit character being searched. 1258 // ECX: count: number of words to be searched. 1259 // EDI: String being searched. 1260 // EDX: temporary during execution. 1261 // EBX or R11: temporary during execution (depending on mode). 1262 // REP SCASW: search instruction. 1263 1264 FlushReg(rs_rAX); 1265 Clobber(rs_rAX); 1266 LockTemp(rs_rAX); 1267 FlushReg(rs_rCX); 1268 Clobber(rs_rCX); 1269 LockTemp(rs_rCX); 1270 FlushReg(rs_rDX); 1271 Clobber(rs_rDX); 1272 LockTemp(rs_rDX); 1273 FlushReg(rs_tmp); 1274 Clobber(rs_tmp); 1275 LockTemp(rs_tmp); 1276 if (cu_->target64) { 1277 FlushReg(rs_rDI); 1278 Clobber(rs_rDI); 1279 LockTemp(rs_rDI); 1280 } 1281 1282 RegLocation rl_return = GetReturn(kCoreReg); 1283 RegLocation rl_dest = InlineTarget(info); 1284 1285 // Is the string non-NULL? 1286 LoadValueDirectFixed(rl_obj, rs_rDX); 1287 GenNullCheck(rs_rDX, info->opt_flags); 1288 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. 1289 1290 LIR *slowpath_branch = nullptr, *length_compare = nullptr; 1291 1292 // We need the value in EAX. 1293 if (rl_char.is_const) { 1294 LoadConstantNoClobber(rs_rAX, char_value); 1295 } else { 1296 // Does the character fit in 16 bits? Compare it at runtime. 1297 LoadValueDirectFixed(rl_char, rs_rAX); 1298 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); 1299 } 1300 1301 // From here down, we know that we are looking for a char that fits in 16 bits. 1302 // Location of reference to data array within the String object. 1303 int value_offset = mirror::String::ValueOffset().Int32Value(); 1304 // Location of count within the String object. 1305 int count_offset = mirror::String::CountOffset().Int32Value(); 1306 // Starting offset within data array. 1307 int offset_offset = mirror::String::OffsetOffset().Int32Value(); 1308 // Start of char data with array_. 1309 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); 1310 1311 // Compute the number of words to search in to rCX. 1312 Load32Disp(rs_rDX, count_offset, rs_rCX); 1313 1314 // Possible signal here due to null pointer dereference. 1315 // Note that the signal handler will expect the top word of 1316 // the stack to be the ArtMethod*. If the PUSH edi instruction 1317 // below is ahead of the load above then this will not be true 1318 // and the signal handler will not work. 1319 MarkPossibleNullPointerException(0); 1320 1321 if (!cu_->target64) { 1322 // EDI is callee-save register in 32-bit mode. 1323 NewLIR1(kX86Push32R, rs_rDI.GetReg()); 1324 } 1325 1326 if (zero_based) { 1327 // Start index is not present. 1328 // We have to handle an empty string. Use special instruction JECXZ. 1329 length_compare = NewLIR0(kX86Jecxz8); 1330 1331 // Copy the number of words to search in a temporary register. 1332 // We will use the register at the end to calculate result. 1333 OpRegReg(kOpMov, rs_tmp, rs_rCX); 1334 } else { 1335 // Start index is present. 1336 rl_start = info->args[2]; 1337 1338 // We have to offset by the start index. 1339 if (rl_start.is_const) { 1340 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); 1341 start_value = std::max(start_value, 0); 1342 1343 // Is the start > count? 1344 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); 1345 OpRegImm(kOpMov, rs_rDI, start_value); 1346 1347 // Copy the number of words to search in a temporary register. 1348 // We will use the register at the end to calculate result. 1349 OpRegReg(kOpMov, rs_tmp, rs_rCX); 1350 1351 if (start_value != 0) { 1352 // Decrease the number of words to search by the start index. 1353 OpRegImm(kOpSub, rs_rCX, start_value); 1354 } 1355 } else { 1356 // Handle "start index < 0" case. 1357 if (!cu_->target64 && rl_start.location != kLocPhysReg) { 1358 // Load the start index from stack, remembering that we pushed EDI. 1359 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t); 1360 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 1361 Load32Disp(rs_rX86_SP, displacement, rs_rDI); 1362 // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it. 1363 DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info)); 1364 int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1; 1365 AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false); 1366 } else { 1367 LoadValueDirectFixed(rl_start, rs_rDI); 1368 } 1369 OpRegReg(kOpXor, rs_tmp, rs_tmp); 1370 OpRegReg(kOpCmp, rs_rDI, rs_tmp); 1371 OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp); 1372 1373 // The length of the string should be greater than the start index. 1374 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr); 1375 1376 // Copy the number of words to search in a temporary register. 1377 // We will use the register at the end to calculate result. 1378 OpRegReg(kOpMov, rs_tmp, rs_rCX); 1379 1380 // Decrease the number of words to search by the start index. 1381 OpRegReg(kOpSub, rs_rCX, rs_rDI); 1382 } 1383 } 1384 1385 // Load the address of the string into EDI. 1386 // In case of start index we have to add the address to existing value in EDI. 1387 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET. 1388 if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) { 1389 Load32Disp(rs_rDX, offset_offset, rs_rDI); 1390 } else { 1391 OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset); 1392 } 1393 OpRegImm(kOpLsl, rs_rDI, 1); 1394 OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset); 1395 OpRegImm(kOpAdd, rs_rDI, data_offset); 1396 1397 // EDI now contains the start of the string to be searched. 1398 // We are all prepared to do the search for the character. 1399 NewLIR0(kX86RepneScasw); 1400 1401 // Did we find a match? 1402 LIR* failed_branch = OpCondBranch(kCondNe, nullptr); 1403 1404 // yes, we matched. Compute the index of the result. 1405 OpRegReg(kOpSub, rs_tmp, rs_rCX); 1406 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1); 1407 1408 LIR *all_done = NewLIR1(kX86Jmp8, 0); 1409 1410 // Failed to match; return -1. 1411 LIR *not_found = NewLIR0(kPseudoTargetLabel); 1412 length_compare->target = not_found; 1413 failed_branch->target = not_found; 1414 LoadConstantNoClobber(rl_return.reg, -1); 1415 1416 // And join up at the end. 1417 all_done->target = NewLIR0(kPseudoTargetLabel); 1418 1419 if (!cu_->target64) 1420 NewLIR1(kX86Pop32R, rs_rDI.GetReg()); 1421 1422 // Out of line code returns here. 1423 if (slowpath_branch != nullptr) { 1424 LIR *return_point = NewLIR0(kPseudoTargetLabel); 1425 AddIntrinsicSlowPath(info, slowpath_branch, return_point); 1426 ClobberCallerSave(); // We must clobber everything because slow path will return here 1427 } 1428 1429 StoreValue(rl_dest, rl_return); 1430 1431 FreeTemp(rs_rAX); 1432 FreeTemp(rs_rCX); 1433 FreeTemp(rs_rDX); 1434 FreeTemp(rs_tmp); 1435 if (cu_->target64) { 1436 FreeTemp(rs_rDI); 1437 } 1438 1439 return true; 1440 } 1441 1442 /* 1443 * @brief Enter an 'advance LOC' into the FDE buffer 1444 * @param buf FDE buffer. 1445 * @param increment Amount by which to increase the current location. 1446 */ 1447 static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) { 1448 if (increment < 64) { 1449 // Encoding in opcode. 1450 buf.push_back(0x1 << 6 | increment); 1451 } else if (increment < 256) { 1452 // Single byte delta. 1453 buf.push_back(0x02); 1454 buf.push_back(increment); 1455 } else if (increment < 256 * 256) { 1456 // Two byte delta. 1457 buf.push_back(0x03); 1458 buf.push_back(increment & 0xff); 1459 buf.push_back((increment >> 8) & 0xff); 1460 } else { 1461 // Four byte delta. 1462 buf.push_back(0x04); 1463 PushWord(buf, increment); 1464 } 1465 } 1466 1467 1468 std::vector<uint8_t>* X86CFIInitialization(bool is_x86_64) { 1469 return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64); 1470 } 1471 1472 static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) { 1473 uint8_t buffer[12]; 1474 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value); 1475 for (uint8_t *p = buffer; p < ptr; p++) { 1476 buf.push_back(*p); 1477 } 1478 } 1479 1480 static void EncodeSignedLeb128(std::vector<uint8_t>& buf, int32_t value) { 1481 uint8_t buffer[12]; 1482 uint8_t *ptr = EncodeSignedLeb128(buffer, value); 1483 for (uint8_t *p = buffer; p < ptr; p++) { 1484 buf.push_back(*p); 1485 } 1486 } 1487 1488 std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) { 1489 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; 1490 1491 // Length (will be filled in later in this routine). 1492 PushWord(*cfi_info, 0); 1493 1494 // CIE id: always 0. 1495 PushWord(*cfi_info, 0); 1496 1497 // Version: always 1. 1498 cfi_info->push_back(0x01); 1499 1500 // Augmentation: 'zR\0' 1501 cfi_info->push_back(0x7a); 1502 cfi_info->push_back(0x52); 1503 cfi_info->push_back(0x0); 1504 1505 // Code alignment: 1. 1506 EncodeUnsignedLeb128(*cfi_info, 1); 1507 1508 // Data alignment. 1509 if (is_x86_64) { 1510 EncodeSignedLeb128(*cfi_info, -8); 1511 } else { 1512 EncodeSignedLeb128(*cfi_info, -4); 1513 } 1514 1515 // Return address register. 1516 if (is_x86_64) { 1517 // R16(RIP) 1518 cfi_info->push_back(0x10); 1519 } else { 1520 // R8(EIP) 1521 cfi_info->push_back(0x08); 1522 } 1523 1524 // Augmentation length: 1. 1525 cfi_info->push_back(1); 1526 1527 // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4). 1528 cfi_info->push_back(0x03); 1529 1530 // Initial instructions. 1531 if (is_x86_64) { 1532 // DW_CFA_def_cfa R7(RSP) 8. 1533 cfi_info->push_back(0x0c); 1534 cfi_info->push_back(0x07); 1535 cfi_info->push_back(0x08); 1536 1537 // DW_CFA_offset R16(RIP) 1 (* -8). 1538 cfi_info->push_back(0x90); 1539 cfi_info->push_back(0x01); 1540 } else { 1541 // DW_CFA_def_cfa R4(ESP) 4. 1542 cfi_info->push_back(0x0c); 1543 cfi_info->push_back(0x04); 1544 cfi_info->push_back(0x04); 1545 1546 // DW_CFA_offset R8(EIP) 1 (* -4). 1547 cfi_info->push_back(0x88); 1548 cfi_info->push_back(0x01); 1549 } 1550 1551 // Padding to a multiple of 4 1552 while ((cfi_info->size() & 3) != 0) { 1553 // DW_CFA_nop is encoded as 0. 1554 cfi_info->push_back(0); 1555 } 1556 1557 // Set the length of the CIE inside the generated bytes. 1558 uint32_t length = cfi_info->size() - 4; 1559 (*cfi_info)[0] = length; 1560 (*cfi_info)[1] = length >> 8; 1561 (*cfi_info)[2] = length >> 16; 1562 (*cfi_info)[3] = length >> 24; 1563 return cfi_info; 1564 } 1565 1566 static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) { 1567 if (is_x86_64) { 1568 switch (art_reg_id) { 1569 case 3 : *dwarf_reg_id = 3; return true; // %rbx 1570 // This is the only discrepancy between ART & DWARF register numbering. 1571 case 5 : *dwarf_reg_id = 6; return true; // %rbp 1572 case 12: *dwarf_reg_id = 12; return true; // %r12 1573 case 13: *dwarf_reg_id = 13; return true; // %r13 1574 case 14: *dwarf_reg_id = 14; return true; // %r14 1575 case 15: *dwarf_reg_id = 15; return true; // %r15 1576 default: return false; // Should not get here 1577 } 1578 } else { 1579 switch (art_reg_id) { 1580 case 5: *dwarf_reg_id = 5; return true; // %ebp 1581 case 6: *dwarf_reg_id = 6; return true; // %esi 1582 case 7: *dwarf_reg_id = 7; return true; // %edi 1583 default: return false; // Should not get here 1584 } 1585 } 1586 } 1587 1588 std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() { 1589 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; 1590 1591 // Generate the FDE for the method. 1592 DCHECK_NE(data_offset_, 0U); 1593 1594 // Length (will be filled in later in this routine). 1595 PushWord(*cfi_info, 0); 1596 1597 // 'CIE_pointer' (filled in by linker). 1598 PushWord(*cfi_info, 0); 1599 1600 // 'initial_location' (filled in by linker). 1601 PushWord(*cfi_info, 0); 1602 1603 // 'address_range' (number of bytes in the method). 1604 PushWord(*cfi_info, data_offset_); 1605 1606 // Augmentation length: 0 1607 cfi_info->push_back(0); 1608 1609 // The instructions in the FDE. 1610 if (stack_decrement_ != nullptr) { 1611 // Advance LOC to just past the stack decrement. 1612 uint32_t pc = NEXT_LIR(stack_decrement_)->offset; 1613 AdvanceLoc(*cfi_info, pc); 1614 1615 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size. 1616 cfi_info->push_back(0x0e); 1617 EncodeUnsignedLeb128(*cfi_info, frame_size_); 1618 1619 // Handle register spills 1620 const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4; 1621 const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4; 1622 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); 1623 int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); 1624 for (int reg = 0; mask; mask >>= 1, reg++) { 1625 if (mask & 0x1) { 1626 pc += kSpillInstLen; 1627 1628 // Advance LOC to pass this instruction 1629 AdvanceLoc(*cfi_info, kSpillInstLen); 1630 1631 int dwarf_reg_id; 1632 if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) { 1633 // DW_CFA_offset_extended_sf reg_no offset 1634 cfi_info->push_back(0x11); 1635 EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id); 1636 EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor); 1637 } 1638 1639 offset += GetInstructionSetPointerSize(cu_->instruction_set); 1640 } 1641 } 1642 1643 // We continue with that stack until the epilogue. 1644 if (stack_increment_ != nullptr) { 1645 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset; 1646 AdvanceLoc(*cfi_info, new_pc - pc); 1647 1648 // We probably have code snippets after the epilogue, so save the 1649 // current state: DW_CFA_remember_state. 1650 cfi_info->push_back(0x0a); 1651 1652 // We have now popped the stack: DW_CFA_def_cfa_offset 4/8. 1653 // There is only the return PC on the stack now. 1654 cfi_info->push_back(0x0e); 1655 EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set)); 1656 1657 // Everything after that is the same as before the epilogue. 1658 // Stack bump was followed by RET instruction. 1659 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_)); 1660 if (post_ret_insn != nullptr) { 1661 pc = new_pc; 1662 new_pc = post_ret_insn->offset; 1663 AdvanceLoc(*cfi_info, new_pc - pc); 1664 // Restore the state: DW_CFA_restore_state. 1665 cfi_info->push_back(0x0b); 1666 } 1667 } 1668 } 1669 1670 // Padding to a multiple of 4 1671 while ((cfi_info->size() & 3) != 0) { 1672 // DW_CFA_nop is encoded as 0. 1673 cfi_info->push_back(0); 1674 } 1675 1676 // Set the length of the FDE inside the generated bytes. 1677 uint32_t length = cfi_info->size() - 4; 1678 (*cfi_info)[0] = length; 1679 (*cfi_info)[1] = length >> 8; 1680 (*cfi_info)[2] = length >> 16; 1681 (*cfi_info)[3] = length >> 24; 1682 return cfi_info; 1683 } 1684 1685 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { 1686 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { 1687 case kMirOpReserveVectorRegisters: 1688 ReserveVectorRegisters(mir); 1689 break; 1690 case kMirOpReturnVectorRegisters: 1691 ReturnVectorRegisters(); 1692 break; 1693 case kMirOpConstVector: 1694 GenConst128(bb, mir); 1695 break; 1696 case kMirOpMoveVector: 1697 GenMoveVector(bb, mir); 1698 break; 1699 case kMirOpPackedMultiply: 1700 GenMultiplyVector(bb, mir); 1701 break; 1702 case kMirOpPackedAddition: 1703 GenAddVector(bb, mir); 1704 break; 1705 case kMirOpPackedSubtract: 1706 GenSubtractVector(bb, mir); 1707 break; 1708 case kMirOpPackedShiftLeft: 1709 GenShiftLeftVector(bb, mir); 1710 break; 1711 case kMirOpPackedSignedShiftRight: 1712 GenSignedShiftRightVector(bb, mir); 1713 break; 1714 case kMirOpPackedUnsignedShiftRight: 1715 GenUnsignedShiftRightVector(bb, mir); 1716 break; 1717 case kMirOpPackedAnd: 1718 GenAndVector(bb, mir); 1719 break; 1720 case kMirOpPackedOr: 1721 GenOrVector(bb, mir); 1722 break; 1723 case kMirOpPackedXor: 1724 GenXorVector(bb, mir); 1725 break; 1726 case kMirOpPackedAddReduce: 1727 GenAddReduceVector(bb, mir); 1728 break; 1729 case kMirOpPackedReduce: 1730 GenReduceVector(bb, mir); 1731 break; 1732 case kMirOpPackedSet: 1733 GenSetVector(bb, mir); 1734 break; 1735 default: 1736 break; 1737 } 1738 } 1739 1740 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) { 1741 // We should not try to reserve twice without returning the registers 1742 DCHECK_NE(num_reserved_vector_regs_, -1); 1743 1744 int num_vector_reg = mir->dalvikInsn.vA; 1745 for (int i = 0; i < num_vector_reg; i++) { 1746 RegStorage xp_reg = RegStorage::Solo128(i); 1747 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); 1748 Clobber(xp_reg); 1749 1750 for (RegisterInfo *info = xp_reg_info->GetAliasChain(); 1751 info != nullptr; 1752 info = info->GetAliasChain()) { 1753 if (info->GetReg().IsSingle()) { 1754 reg_pool_->sp_regs_.Delete(info); 1755 } else { 1756 reg_pool_->dp_regs_.Delete(info); 1757 } 1758 } 1759 } 1760 1761 num_reserved_vector_regs_ = num_vector_reg; 1762 } 1763 1764 void X86Mir2Lir::ReturnVectorRegisters() { 1765 // Return all the reserved registers 1766 for (int i = 0; i < num_reserved_vector_regs_; i++) { 1767 RegStorage xp_reg = RegStorage::Solo128(i); 1768 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); 1769 1770 for (RegisterInfo *info = xp_reg_info->GetAliasChain(); 1771 info != nullptr; 1772 info = info->GetAliasChain()) { 1773 if (info->GetReg().IsSingle()) { 1774 reg_pool_->sp_regs_.Insert(info); 1775 } else { 1776 reg_pool_->dp_regs_.Insert(info); 1777 } 1778 } 1779 } 1780 1781 // We don't have anymore reserved vector registers 1782 num_reserved_vector_regs_ = -1; 1783 } 1784 1785 void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) { 1786 store_method_addr_used_ = true; 1787 int type_size = mir->dalvikInsn.vB; 1788 // We support 128 bit vectors. 1789 DCHECK_EQ(type_size & 0xFFFF, 128); 1790 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); 1791 uint32_t *args = mir->dalvikInsn.arg; 1792 int reg = rs_dest.GetReg(); 1793 // Check for all 0 case. 1794 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) { 1795 NewLIR2(kX86XorpsRR, reg, reg); 1796 return; 1797 } 1798 1799 // Append the mov const vector to reg opcode. 1800 AppendOpcodeWithConst(kX86MovupsRM, reg, mir); 1801 } 1802 1803 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) { 1804 // Okay, load it from the constant vector area. 1805 LIR *data_target = ScanVectorLiteral(mir); 1806 if (data_target == nullptr) { 1807 data_target = AddVectorLiteral(mir); 1808 } 1809 1810 // Address the start of the method. 1811 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low); 1812 if (rl_method.wide) { 1813 rl_method = LoadValueWide(rl_method, kCoreReg); 1814 } else { 1815 rl_method = LoadValue(rl_method, kCoreReg); 1816 } 1817 1818 // Load the proper value from the literal area. 1819 // We don't know the proper offset for the value, so pick one that will force 1820 // 4 byte offset. We will fix this up in the assembler later to have the right 1821 // value. 1822 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); 1823 LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg()); 1824 load->flags.fixup = kFixupLoad; 1825 load->target = data_target; 1826 } 1827 1828 void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) { 1829 // We only support 128 bit registers. 1830 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 1831 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); 1832 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB); 1833 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg()); 1834 } 1835 1836 void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) { 1837 const int BYTE_SIZE = 8; 1838 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 1839 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 1840 RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide()); 1841 1842 /* 1843 * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM 1844 * and multiplying 8 at a time before recombining back into one XMM register. 1845 * 1846 * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes) 1847 * xmm3 is tmp (operate on high bits of 16bit lanes) 1848 * 1849 * xmm3 = xmm1 1850 * xmm1 = xmm1 .* xmm2 1851 * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits 1852 * xmm3 = xmm3 .>> 8 1853 * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00 1854 * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits 1855 * xmm1 = xmm1 | xmm2 // combine results 1856 */ 1857 1858 // Copy xmm1. 1859 NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg()); 1860 1861 // Multiply low bits. 1862 NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); 1863 1864 // xmm1 now has low bits. 1865 AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); 1866 1867 // Prepare high bits for multiplication. 1868 NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE); 1869 AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); 1870 1871 // Multiply high bits and xmm2 now has high bits. 1872 NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg()); 1873 1874 // Combine back into dest XMM register. 1875 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); 1876 } 1877 1878 void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) { 1879 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 1880 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 1881 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 1882 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 1883 int opcode = 0; 1884 switch (opsize) { 1885 case k32: 1886 opcode = kX86PmulldRR; 1887 break; 1888 case kSignedHalf: 1889 opcode = kX86PmullwRR; 1890 break; 1891 case kSingle: 1892 opcode = kX86MulpsRR; 1893 break; 1894 case kDouble: 1895 opcode = kX86MulpdRR; 1896 break; 1897 case kSignedByte: 1898 // HW doesn't support 16x16 byte multiplication so emulate it. 1899 GenMultiplyVectorSignedByte(bb, mir); 1900 return; 1901 default: 1902 LOG(FATAL) << "Unsupported vector multiply " << opsize; 1903 break; 1904 } 1905 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); 1906 } 1907 1908 void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) { 1909 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 1910 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 1911 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 1912 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 1913 int opcode = 0; 1914 switch (opsize) { 1915 case k32: 1916 opcode = kX86PadddRR; 1917 break; 1918 case kSignedHalf: 1919 case kUnsignedHalf: 1920 opcode = kX86PaddwRR; 1921 break; 1922 case kUnsignedByte: 1923 case kSignedByte: 1924 opcode = kX86PaddbRR; 1925 break; 1926 case kSingle: 1927 opcode = kX86AddpsRR; 1928 break; 1929 case kDouble: 1930 opcode = kX86AddpdRR; 1931 break; 1932 default: 1933 LOG(FATAL) << "Unsupported vector addition " << opsize; 1934 break; 1935 } 1936 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); 1937 } 1938 1939 void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) { 1940 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 1941 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 1942 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 1943 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 1944 int opcode = 0; 1945 switch (opsize) { 1946 case k32: 1947 opcode = kX86PsubdRR; 1948 break; 1949 case kSignedHalf: 1950 case kUnsignedHalf: 1951 opcode = kX86PsubwRR; 1952 break; 1953 case kUnsignedByte: 1954 case kSignedByte: 1955 opcode = kX86PsubbRR; 1956 break; 1957 case kSingle: 1958 opcode = kX86SubpsRR; 1959 break; 1960 case kDouble: 1961 opcode = kX86SubpdRR; 1962 break; 1963 default: 1964 LOG(FATAL) << "Unsupported vector subtraction " << opsize; 1965 break; 1966 } 1967 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); 1968 } 1969 1970 void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) { 1971 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 1972 RegStorage rs_tmp = Get128BitRegister(AllocTempWide()); 1973 1974 int opcode = 0; 1975 int imm = mir->dalvikInsn.vB; 1976 1977 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { 1978 case kMirOpPackedShiftLeft: 1979 opcode = kX86PsllwRI; 1980 break; 1981 case kMirOpPackedSignedShiftRight: 1982 opcode = kX86PsrawRI; 1983 break; 1984 case kMirOpPackedUnsignedShiftRight: 1985 opcode = kX86PsrlwRI; 1986 break; 1987 default: 1988 LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode; 1989 break; 1990 } 1991 1992 /* 1993 * xmm1 will have low bits 1994 * xmm2 will have high bits 1995 * 1996 * xmm2 = xmm1 1997 * xmm1 = xmm1 .<< N 1998 * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00 1999 * xmm2 = xmm2 .<< N 2000 * xmm1 = xmm1 | xmm2 2001 */ 2002 2003 // Copy xmm1. 2004 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg()); 2005 2006 // Shift lower values. 2007 NewLIR2(opcode, rs_dest_src1.GetReg(), imm); 2008 2009 // Mask bottom bits. 2010 AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); 2011 2012 // Shift higher values. 2013 NewLIR2(opcode, rs_tmp.GetReg(), imm); 2014 2015 // Combine back into dest XMM register. 2016 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg()); 2017 } 2018 2019 void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) { 2020 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2021 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2022 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2023 int imm = mir->dalvikInsn.vB; 2024 int opcode = 0; 2025 switch (opsize) { 2026 case k32: 2027 opcode = kX86PslldRI; 2028 break; 2029 case k64: 2030 opcode = kX86PsllqRI; 2031 break; 2032 case kSignedHalf: 2033 case kUnsignedHalf: 2034 opcode = kX86PsllwRI; 2035 break; 2036 case kSignedByte: 2037 case kUnsignedByte: 2038 GenShiftByteVector(bb, mir); 2039 return; 2040 default: 2041 LOG(FATAL) << "Unsupported vector shift left " << opsize; 2042 break; 2043 } 2044 NewLIR2(opcode, rs_dest_src1.GetReg(), imm); 2045 } 2046 2047 void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) { 2048 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2049 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2050 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2051 int imm = mir->dalvikInsn.vB; 2052 int opcode = 0; 2053 switch (opsize) { 2054 case k32: 2055 opcode = kX86PsradRI; 2056 break; 2057 case kSignedHalf: 2058 case kUnsignedHalf: 2059 opcode = kX86PsrawRI; 2060 break; 2061 case kSignedByte: 2062 case kUnsignedByte: 2063 GenShiftByteVector(bb, mir); 2064 return; 2065 default: 2066 LOG(FATAL) << "Unsupported vector signed shift right " << opsize; 2067 break; 2068 } 2069 NewLIR2(opcode, rs_dest_src1.GetReg(), imm); 2070 } 2071 2072 void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) { 2073 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2074 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2075 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2076 int imm = mir->dalvikInsn.vB; 2077 int opcode = 0; 2078 switch (opsize) { 2079 case k32: 2080 opcode = kX86PsrldRI; 2081 break; 2082 case k64: 2083 opcode = kX86PsrlqRI; 2084 break; 2085 case kSignedHalf: 2086 case kUnsignedHalf: 2087 opcode = kX86PsrlwRI; 2088 break; 2089 case kSignedByte: 2090 case kUnsignedByte: 2091 GenShiftByteVector(bb, mir); 2092 return; 2093 default: 2094 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize; 2095 break; 2096 } 2097 NewLIR2(opcode, rs_dest_src1.GetReg(), imm); 2098 } 2099 2100 void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) { 2101 // We only support 128 bit registers. 2102 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2103 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2104 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 2105 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); 2106 } 2107 2108 void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) { 2109 // We only support 128 bit registers. 2110 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2111 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2112 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 2113 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); 2114 } 2115 2116 void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) { 2117 // We only support 128 bit registers. 2118 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2119 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); 2120 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); 2121 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); 2122 } 2123 2124 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) { 2125 MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4); 2126 } 2127 2128 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) { 2129 // Create temporary MIR as container for 128-bit binary mask. 2130 MIR const_mir; 2131 MIR* const_mirp = &const_mir; 2132 const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector); 2133 const_mirp->dalvikInsn.arg[0] = m0; 2134 const_mirp->dalvikInsn.arg[1] = m1; 2135 const_mirp->dalvikInsn.arg[2] = m2; 2136 const_mirp->dalvikInsn.arg[3] = m3; 2137 2138 // Mask vector with const from literal pool. 2139 AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp); 2140 } 2141 2142 void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) { 2143 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2144 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); 2145 RegLocation rl_dest = mir_graph_->GetDest(mir); 2146 RegStorage rs_tmp; 2147 2148 int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8; 2149 int vec_unit_size = 0; 2150 int opcode = 0; 2151 int extr_opcode = 0; 2152 RegLocation rl_result; 2153 2154 switch (opsize) { 2155 case k32: 2156 extr_opcode = kX86PextrdRRI; 2157 opcode = kX86PhadddRR; 2158 vec_unit_size = 4; 2159 break; 2160 case kSignedByte: 2161 case kUnsignedByte: 2162 extr_opcode = kX86PextrbRRI; 2163 opcode = kX86PhaddwRR; 2164 vec_unit_size = 2; 2165 break; 2166 case kSignedHalf: 2167 case kUnsignedHalf: 2168 extr_opcode = kX86PextrwRRI; 2169 opcode = kX86PhaddwRR; 2170 vec_unit_size = 2; 2171 break; 2172 case kSingle: 2173 rl_result = EvalLoc(rl_dest, kFPReg, true); 2174 vec_unit_size = 4; 2175 for (int i = 0; i < 3; i++) { 2176 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg()); 2177 NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39); 2178 } 2179 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg()); 2180 StoreValue(rl_dest, rl_result); 2181 2182 // For single-precision floats, we are done here 2183 return; 2184 default: 2185 LOG(FATAL) << "Unsupported vector add reduce " << opsize; 2186 break; 2187 } 2188 2189 int elems = vec_bytes / vec_unit_size; 2190 2191 // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again 2192 // TODO is overflow handled correctly? 2193 if (opsize == kSignedByte || opsize == kUnsignedByte) { 2194 rs_tmp = Get128BitRegister(AllocTempWide()); 2195 2196 // tmp = xmm1 .>> 8. 2197 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg()); 2198 NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8); 2199 2200 // Zero extend low bits in xmm1. 2201 AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); 2202 } 2203 2204 while (elems > 1) { 2205 if (opsize == kSignedByte || opsize == kUnsignedByte) { 2206 NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg()); 2207 } 2208 NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg()); 2209 elems >>= 1; 2210 } 2211 2212 // Combine the results if we separated them. 2213 if (opsize == kSignedByte || opsize == kUnsignedByte) { 2214 NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg()); 2215 } 2216 2217 // We need to extract to a GPR. 2218 RegStorage temp = AllocTemp(); 2219 NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0); 2220 2221 // Can we do this directly into memory? 2222 rl_result = UpdateLocTyped(rl_dest, kCoreReg); 2223 if (rl_result.location == kLocPhysReg) { 2224 // Ensure res is in a core reg 2225 rl_result = EvalLoc(rl_dest, kCoreReg, true); 2226 OpRegReg(kOpAdd, rl_result.reg, temp); 2227 StoreFinalValue(rl_dest, rl_result); 2228 } else { 2229 OpMemReg(kOpAdd, rl_result, temp.GetReg()); 2230 } 2231 2232 FreeTemp(temp); 2233 } 2234 2235 void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) { 2236 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2237 RegLocation rl_dest = mir_graph_->GetDest(mir); 2238 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); 2239 int extract_index = mir->dalvikInsn.arg[0]; 2240 int extr_opcode = 0; 2241 RegLocation rl_result; 2242 bool is_wide = false; 2243 2244 switch (opsize) { 2245 case k32: 2246 rl_result = UpdateLocTyped(rl_dest, kCoreReg); 2247 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI; 2248 break; 2249 case kSignedHalf: 2250 case kUnsignedHalf: 2251 rl_result= UpdateLocTyped(rl_dest, kCoreReg); 2252 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI; 2253 break; 2254 default: 2255 LOG(FATAL) << "Unsupported vector add reduce " << opsize; 2256 return; 2257 break; 2258 } 2259 2260 if (rl_result.location == kLocPhysReg) { 2261 NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index); 2262 if (is_wide == true) { 2263 StoreFinalValue(rl_dest, rl_result); 2264 } else { 2265 StoreFinalValueWide(rl_dest, rl_result); 2266 } 2267 } else { 2268 int displacement = SRegOffset(rl_result.s_reg_low); 2269 LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg()); 2270 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */); 2271 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */); 2272 } 2273 } 2274 2275 void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) { 2276 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); 2277 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); 2278 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); 2279 int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR; 2280 RegisterClass reg_type = kCoreReg; 2281 2282 switch (opsize) { 2283 case k32: 2284 op_low = kX86PshufdRRI; 2285 break; 2286 case kSingle: 2287 op_low = kX86PshufdRRI; 2288 op_mov = kX86Mova128RR; 2289 reg_type = kFPReg; 2290 break; 2291 case k64: 2292 op_low = kX86PshufdRRI; 2293 imm = 0x44; 2294 break; 2295 case kDouble: 2296 op_low = kX86PshufdRRI; 2297 op_mov = kX86Mova128RR; 2298 reg_type = kFPReg; 2299 imm = 0x44; 2300 break; 2301 case kSignedByte: 2302 case kUnsignedByte: 2303 // Shuffle 8 bit value into 16 bit word. 2304 // We set val = val + (val << 8) below and use 16 bit shuffle. 2305 case kSignedHalf: 2306 case kUnsignedHalf: 2307 // Handles low quadword. 2308 op_low = kX86PshuflwRRI; 2309 // Handles upper quadword. 2310 op_high = kX86PshufdRRI; 2311 break; 2312 default: 2313 LOG(FATAL) << "Unsupported vector set " << opsize; 2314 break; 2315 } 2316 2317 RegLocation rl_src = mir_graph_->GetSrc(mir, 0); 2318 2319 // Load the value from the VR into the reg. 2320 if (rl_src.wide == 0) { 2321 rl_src = LoadValue(rl_src, reg_type); 2322 } else { 2323 rl_src = LoadValueWide(rl_src, reg_type); 2324 } 2325 2326 // If opsize is 8 bits wide then double value and use 16 bit shuffle instead. 2327 if (opsize == kSignedByte || opsize == kUnsignedByte) { 2328 RegStorage temp = AllocTemp(); 2329 // val = val + (val << 8). 2330 NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg()); 2331 NewLIR2(kX86Sal32RI, temp.GetReg(), 8); 2332 NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg()); 2333 FreeTemp(temp); 2334 } 2335 2336 // Load the value into the XMM register. 2337 NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg()); 2338 2339 // Now shuffle the value across the destination. 2340 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm); 2341 2342 // And then repeat as needed. 2343 if (op_high != 0) { 2344 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm); 2345 } 2346 } 2347 2348 LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) { 2349 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg); 2350 for (LIR *p = const_vectors_; p != nullptr; p = p->next) { 2351 if (args[0] == p->operands[0] && args[1] == p->operands[1] && 2352 args[2] == p->operands[2] && args[3] == p->operands[3]) { 2353 return p; 2354 } 2355 } 2356 return nullptr; 2357 } 2358 2359 LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) { 2360 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); 2361 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg); 2362 new_value->operands[0] = args[0]; 2363 new_value->operands[1] = args[1]; 2364 new_value->operands[2] = args[2]; 2365 new_value->operands[3] = args[3]; 2366 new_value->next = const_vectors_; 2367 if (const_vectors_ == nullptr) { 2368 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary. 2369 } 2370 estimated_native_code_size_ += 16; // Space for one vector. 2371 const_vectors_ = new_value; 2372 return new_value; 2373 } 2374 2375 // ------------ ABI support: mapping of args to physical registers ------------- 2376 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide, 2377 bool is_ref) { 2378 const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5}; 2379 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / 2380 sizeof(SpecialTargetRegister); 2381 const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3, 2382 kFArg4, kFArg5, kFArg6, kFArg7}; 2383 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / 2384 sizeof(SpecialTargetRegister); 2385 2386 if (is_double_or_float) { 2387 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { 2388 return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide); 2389 } 2390 } else { 2391 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { 2392 return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], 2393 is_ref ? kRef : (is_wide ? kWide : kNotWide)); 2394 } 2395 } 2396 return RegStorage::InvalidReg(); 2397 } 2398 2399 RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) { 2400 DCHECK(IsInitialized()); 2401 auto res = mapping_.find(in_position); 2402 return res != mapping_.end() ? res->second : RegStorage::InvalidReg(); 2403 } 2404 2405 void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, 2406 InToRegStorageMapper* mapper) { 2407 DCHECK(mapper != nullptr); 2408 max_mapped_in_ = -1; 2409 is_there_stack_mapped_ = false; 2410 for (int in_position = 0; in_position < count; in_position++) { 2411 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, 2412 arg_locs[in_position].wide, arg_locs[in_position].ref); 2413 if (reg.Valid()) { 2414 mapping_[in_position] = reg; 2415 max_mapped_in_ = std::max(max_mapped_in_, in_position); 2416 if (arg_locs[in_position].wide) { 2417 // We covered 2 args, so skip the next one 2418 in_position++; 2419 } 2420 } else { 2421 is_there_stack_mapped_ = true; 2422 } 2423 } 2424 initialized_ = true; 2425 } 2426 2427 RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) { 2428 if (!cu_->target64) { 2429 return GetCoreArgMappingToPhysicalReg(arg_num); 2430 } 2431 2432 if (!in_to_reg_storage_mapping_.IsInitialized()) { 2433 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; 2434 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg]; 2435 2436 InToRegStorageX86_64Mapper mapper(this); 2437 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper); 2438 } 2439 return in_to_reg_storage_mapping_.Get(arg_num); 2440 } 2441 2442 RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) { 2443 // For the 32-bit internal ABI, the first 3 arguments are passed in registers. 2444 // Not used for 64-bit, TODO: Move X86_32 to the same framework 2445 switch (core_arg_num) { 2446 case 0: 2447 return rs_rX86_ARG1; 2448 case 1: 2449 return rs_rX86_ARG2; 2450 case 2: 2451 return rs_rX86_ARG3; 2452 default: 2453 return RegStorage::InvalidReg(); 2454 } 2455 } 2456 2457 // ---------End of ABI support: mapping of args to physical registers ------------- 2458 2459 /* 2460 * If there are any ins passed in registers that have not been promoted 2461 * to a callee-save register, flush them to the frame. Perform initial 2462 * assignment of promoted arguments. 2463 * 2464 * ArgLocs is an array of location records describing the incoming arguments 2465 * with one location record per word of argument. 2466 */ 2467 void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { 2468 if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method); 2469 /* 2470 * Dummy up a RegLocation for the incoming Method* 2471 * It will attempt to keep kArg0 live (or copy it to home location 2472 * if promoted). 2473 */ 2474 2475 RegLocation rl_src = rl_method; 2476 rl_src.location = kLocPhysReg; 2477 rl_src.reg = TargetReg(kArg0, kRef); 2478 rl_src.home = false; 2479 MarkLive(rl_src); 2480 StoreValue(rl_method, rl_src); 2481 // If Method* has been promoted, explicitly flush 2482 if (rl_method.location == kLocPhysReg) { 2483 StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile); 2484 } 2485 2486 if (cu_->num_ins == 0) { 2487 return; 2488 } 2489 2490 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; 2491 /* 2492 * Copy incoming arguments to their proper home locations. 2493 * NOTE: an older version of dx had an issue in which 2494 * it would reuse static method argument registers. 2495 * This could result in the same Dalvik virtual register 2496 * being promoted to both core and fp regs. To account for this, 2497 * we only copy to the corresponding promoted physical register 2498 * if it matches the type of the SSA name for the incoming 2499 * argument. It is also possible that long and double arguments 2500 * end up half-promoted. In those cases, we must flush the promoted 2501 * half to memory as well. 2502 */ 2503 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2504 for (int i = 0; i < cu_->num_ins; i++) { 2505 // get reg corresponding to input 2506 RegStorage reg = GetArgMappingToPhysicalReg(i); 2507 2508 RegLocation* t_loc = &ArgLocs[i]; 2509 if (reg.Valid()) { 2510 // If arriving in register. 2511 2512 // We have already updated the arg location with promoted info 2513 // so we can be based on it. 2514 if (t_loc->location == kLocPhysReg) { 2515 // Just copy it. 2516 OpRegCopy(t_loc->reg, reg); 2517 } else { 2518 // Needs flush. 2519 if (t_loc->ref) { 2520 StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile); 2521 } else { 2522 StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32, 2523 kNotVolatile); 2524 } 2525 } 2526 } else { 2527 // If arriving in frame & promoted. 2528 if (t_loc->location == kLocPhysReg) { 2529 if (t_loc->ref) { 2530 LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile); 2531 } else { 2532 LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, 2533 t_loc->wide ? k64 : k32, kNotVolatile); 2534 } 2535 } 2536 } 2537 if (t_loc->wide) { 2538 // Increment i to skip the next one. 2539 i++; 2540 } 2541 } 2542 } 2543 2544 /* 2545 * Load up to 5 arguments, the first three of which will be in 2546 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, 2547 * and as part of the load sequence, it must be replaced with 2548 * the target method pointer. Note, this may also be called 2549 * for "range" variants if the number of arguments is 5 or fewer. 2550 */ 2551 int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, 2552 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, 2553 const MethodReference& target_method, 2554 uint32_t vtable_idx, uintptr_t direct_code, 2555 uintptr_t direct_method, InvokeType type, bool skip_this) { 2556 if (!cu_->target64) { 2557 return Mir2Lir::GenDalvikArgsNoRange(info, 2558 call_state, pcrLabel, next_call_insn, 2559 target_method, 2560 vtable_idx, direct_code, 2561 direct_method, type, skip_this); 2562 } 2563 return GenDalvikArgsRange(info, 2564 call_state, pcrLabel, next_call_insn, 2565 target_method, 2566 vtable_idx, direct_code, 2567 direct_method, type, skip_this); 2568 } 2569 2570 /* 2571 * May have 0+ arguments (also used for jumbo). Note that 2572 * source virtual registers may be in physical registers, so may 2573 * need to be flushed to home location before copying. This 2574 * applies to arg3 and above (see below). 2575 * 2576 * Two general strategies: 2577 * If < 20 arguments 2578 * Pass args 3-18 using vldm/vstm block copy 2579 * Pass arg0, arg1 & arg2 in kArg1-kArg3 2580 * If 20+ arguments 2581 * Pass args arg19+ using memcpy block copy 2582 * Pass arg0, arg1 & arg2 in kArg1-kArg3 2583 * 2584 */ 2585 int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, 2586 LIR** pcrLabel, NextCallInsn next_call_insn, 2587 const MethodReference& target_method, 2588 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, 2589 InvokeType type, bool skip_this) { 2590 if (!cu_->target64) { 2591 return Mir2Lir::GenDalvikArgsRange(info, call_state, 2592 pcrLabel, next_call_insn, 2593 target_method, 2594 vtable_idx, direct_code, direct_method, 2595 type, skip_this); 2596 } 2597 2598 /* If no arguments, just return */ 2599 if (info->num_arg_words == 0) 2600 return call_state; 2601 2602 const int start_index = skip_this ? 1 : 0; 2603 2604 InToRegStorageX86_64Mapper mapper(this); 2605 InToRegStorageMapping in_to_reg_storage_mapping; 2606 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper); 2607 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn(); 2608 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 : 2609 info->args[last_mapped_in].wide ? 2 : 1; 2610 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped); 2611 2612 // Fisrt of all, check whether it make sense to use bulk copying 2613 // Optimization is aplicable only for range case 2614 // TODO: make a constant instead of 2 2615 if (info->is_range && regs_left_to_pass_via_stack >= 2) { 2616 // Scan the rest of the args - if in phys_reg flush to memory 2617 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) { 2618 RegLocation loc = info->args[next_arg]; 2619 if (loc.wide) { 2620 loc = UpdateLocWide(loc); 2621 if (loc.location == kLocPhysReg) { 2622 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2623 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile); 2624 } 2625 next_arg += 2; 2626 } else { 2627 loc = UpdateLoc(loc); 2628 if (loc.location == kLocPhysReg) { 2629 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2630 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile); 2631 } 2632 next_arg++; 2633 } 2634 } 2635 2636 // Logic below assumes that Method pointer is at offset zero from SP. 2637 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0); 2638 2639 // The rest can be copied together 2640 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low); 2641 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, 2642 cu_->instruction_set); 2643 2644 int current_src_offset = start_offset; 2645 int current_dest_offset = outs_offset; 2646 2647 // Only davik regs are accessed in this loop; no next_call_insn() calls. 2648 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2649 while (regs_left_to_pass_via_stack > 0) { 2650 // This is based on the knowledge that the stack itself is 16-byte aligned. 2651 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; 2652 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; 2653 size_t bytes_to_move; 2654 2655 /* 2656 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a 2657 * a 128-bit move because we won't get the chance to try to aligned. If there are more than 2658 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. 2659 * We do this because we could potentially do a smaller move to align. 2660 */ 2661 if (regs_left_to_pass_via_stack == 4 || 2662 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { 2663 // Moving 128-bits via xmm register. 2664 bytes_to_move = sizeof(uint32_t) * 4; 2665 2666 // Allocate a free xmm temp. Since we are working through the calling sequence, 2667 // we expect to have an xmm temporary available. AllocTempDouble will abort if 2668 // there are no free registers. 2669 RegStorage temp = AllocTempDouble(); 2670 2671 LIR* ld1 = nullptr; 2672 LIR* ld2 = nullptr; 2673 LIR* st1 = nullptr; 2674 LIR* st2 = nullptr; 2675 2676 /* 2677 * The logic is similar for both loads and stores. If we have 16-byte alignment, 2678 * do an aligned move. If we have 8-byte alignment, then do the move in two 2679 * parts. This approach prevents possible cache line splits. Finally, fall back 2680 * to doing an unaligned move. In most cases we likely won't split the cache 2681 * line but we cannot prove it and thus take a conservative approach. 2682 */ 2683 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; 2684 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; 2685 2686 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2687 if (src_is_16b_aligned) { 2688 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP); 2689 } else if (src_is_8b_aligned) { 2690 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP); 2691 ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1), 2692 kMovHi128FP); 2693 } else { 2694 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP); 2695 } 2696 2697 if (dest_is_16b_aligned) { 2698 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP); 2699 } else if (dest_is_8b_aligned) { 2700 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP); 2701 st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1), 2702 temp, kMovHi128FP); 2703 } else { 2704 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP); 2705 } 2706 2707 // TODO If we could keep track of aliasing information for memory accesses that are wider 2708 // than 64-bit, we wouldn't need to set up a barrier. 2709 if (ld1 != nullptr) { 2710 if (ld2 != nullptr) { 2711 // For 64-bit load we can actually set up the aliasing information. 2712 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); 2713 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); 2714 } else { 2715 // Set barrier for 128-bit load. 2716 ld1->u.m.def_mask = &kEncodeAll; 2717 } 2718 } 2719 if (st1 != nullptr) { 2720 if (st2 != nullptr) { 2721 // For 64-bit store we can actually set up the aliasing information. 2722 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); 2723 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); 2724 } else { 2725 // Set barrier for 128-bit store. 2726 st1->u.m.def_mask = &kEncodeAll; 2727 } 2728 } 2729 2730 // Free the temporary used for the data movement. 2731 FreeTemp(temp); 2732 } else { 2733 // Moving 32-bits via general purpose register. 2734 bytes_to_move = sizeof(uint32_t); 2735 2736 // Instead of allocating a new temp, simply reuse one of the registers being used 2737 // for argument passing. 2738 RegStorage temp = TargetReg(kArg3, kNotWide); 2739 2740 // Now load the argument VR and store to the outs. 2741 Load32Disp(rs_rX86_SP, current_src_offset, temp); 2742 Store32Disp(rs_rX86_SP, current_dest_offset, temp); 2743 } 2744 2745 current_src_offset += bytes_to_move; 2746 current_dest_offset += bytes_to_move; 2747 regs_left_to_pass_via_stack -= (bytes_to_move >> 2); 2748 } 2749 DCHECK_EQ(regs_left_to_pass_via_stack, 0); 2750 } 2751 2752 // Now handle rest not registers if they are 2753 if (in_to_reg_storage_mapping.IsThereStackMapped()) { 2754 RegStorage regSingle = TargetReg(kArg2, kNotWide); 2755 RegStorage regWide = TargetReg(kArg3, kWide); 2756 for (int i = start_index; 2757 i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) { 2758 RegLocation rl_arg = info->args[i]; 2759 rl_arg = UpdateRawLoc(rl_arg); 2760 RegStorage reg = in_to_reg_storage_mapping.Get(i); 2761 if (!reg.Valid()) { 2762 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); 2763 2764 { 2765 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); 2766 if (rl_arg.wide) { 2767 if (rl_arg.location == kLocPhysReg) { 2768 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile); 2769 } else { 2770 LoadValueDirectWideFixed(rl_arg, regWide); 2771 StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile); 2772 } 2773 } else { 2774 if (rl_arg.location == kLocPhysReg) { 2775 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile); 2776 } else { 2777 LoadValueDirectFixed(rl_arg, regSingle); 2778 StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile); 2779 } 2780 } 2781 } 2782 call_state = next_call_insn(cu_, info, call_state, target_method, 2783 vtable_idx, direct_code, direct_method, type); 2784 } 2785 if (rl_arg.wide) { 2786 i++; 2787 } 2788 } 2789 } 2790 2791 // Finish with mapped registers 2792 for (int i = start_index; i <= last_mapped_in; i++) { 2793 RegLocation rl_arg = info->args[i]; 2794 rl_arg = UpdateRawLoc(rl_arg); 2795 RegStorage reg = in_to_reg_storage_mapping.Get(i); 2796 if (reg.Valid()) { 2797 if (rl_arg.wide) { 2798 LoadValueDirectWideFixed(rl_arg, reg); 2799 } else { 2800 LoadValueDirectFixed(rl_arg, reg); 2801 } 2802 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 2803 direct_code, direct_method, type); 2804 } 2805 if (rl_arg.wide) { 2806 i++; 2807 } 2808 } 2809 2810 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 2811 direct_code, direct_method, type); 2812 if (pcrLabel) { 2813 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { 2814 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags); 2815 } else { 2816 *pcrLabel = nullptr; 2817 // In lieu of generating a check for kArg1 being null, we need to 2818 // perform a load when doing implicit checks. 2819 RegStorage tmp = AllocTemp(); 2820 Load32Disp(TargetReg(kArg1, kRef), 0, tmp); 2821 MarkPossibleNullPointerException(info->opt_flags); 2822 FreeTemp(tmp); 2823 } 2824 } 2825 return call_state; 2826 } 2827 2828 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) { 2829 // Location of reference to data array 2830 int value_offset = mirror::String::ValueOffset().Int32Value(); 2831 // Location of count 2832 int count_offset = mirror::String::CountOffset().Int32Value(); 2833 // Starting offset within data array 2834 int offset_offset = mirror::String::OffsetOffset().Int32Value(); 2835 // Start of char data with array_ 2836 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); 2837 2838 RegLocation rl_obj = info->args[0]; 2839 RegLocation rl_idx = info->args[1]; 2840 rl_obj = LoadValue(rl_obj, kRefReg); 2841 // X86 wants to avoid putting a constant index into a register. 2842 if (!rl_idx.is_const) { 2843 rl_idx = LoadValue(rl_idx, kCoreReg); 2844 } 2845 RegStorage reg_max; 2846 GenNullCheck(rl_obj.reg, info->opt_flags); 2847 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); 2848 LIR* range_check_branch = nullptr; 2849 RegStorage reg_off; 2850 RegStorage reg_ptr; 2851 if (range_check) { 2852 // On x86, we can compare to memory directly 2853 // Set up a launch pad to allow retry in case of bounds violation */ 2854 if (rl_idx.is_const) { 2855 LIR* comparison; 2856 range_check_branch = OpCmpMemImmBranch( 2857 kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset, 2858 mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison); 2859 MarkPossibleNullPointerExceptionAfter(0, comparison); 2860 } else { 2861 OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset); 2862 MarkPossibleNullPointerException(0); 2863 range_check_branch = OpCondBranch(kCondUge, nullptr); 2864 } 2865 } 2866 reg_off = AllocTemp(); 2867 reg_ptr = AllocTempRef(); 2868 Load32Disp(rl_obj.reg, offset_offset, reg_off); 2869 LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile); 2870 if (rl_idx.is_const) { 2871 OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); 2872 } else { 2873 OpRegReg(kOpAdd, reg_off, rl_idx.reg); 2874 } 2875 FreeTemp(rl_obj.reg); 2876 if (rl_idx.location == kLocPhysReg) { 2877 FreeTemp(rl_idx.reg); 2878 } 2879 RegLocation rl_dest = InlineTarget(info); 2880 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 2881 LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf); 2882 FreeTemp(reg_off); 2883 FreeTemp(reg_ptr); 2884 StoreValue(rl_dest, rl_result); 2885 if (range_check) { 2886 DCHECK(range_check_branch != nullptr); 2887 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. 2888 AddIntrinsicSlowPath(info, range_check_branch); 2889 } 2890 return true; 2891 } 2892 2893 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { 2894 RegLocation rl_dest = InlineTarget(info); 2895 2896 // Early exit if the result is unused. 2897 if (rl_dest.orig_sreg < 0) { 2898 return true; 2899 } 2900 2901 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); 2902 2903 if (cu_->target64) { 2904 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>()); 2905 } else { 2906 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>()); 2907 } 2908 2909 StoreValue(rl_dest, rl_result); 2910 return true; 2911 } 2912 2913 } // namespace art 2914