1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <stdarg.h> 6 #include <stdlib.h> 7 #include <cmath> 8 9 #include "src/v8.h" 10 11 #if V8_TARGET_ARCH_ARM 12 13 #include "src/arm/constants-arm.h" 14 #include "src/arm/simulator-arm.h" 15 #include "src/assembler.h" 16 #include "src/codegen.h" 17 #include "src/disasm.h" 18 19 #if defined(USE_SIMULATOR) 20 21 // Only build the simulator if not compiling for real ARM hardware. 22 namespace v8 { 23 namespace internal { 24 25 // This macro provides a platform independent use of sscanf. The reason for 26 // SScanF not being implemented in a platform independent way through 27 // ::v8::internal::OS in the same way as SNPrintF is that the 28 // Windows C Run-Time Library does not provide vsscanf. 29 #define SScanF sscanf // NOLINT 30 31 // The ArmDebugger class is used by the simulator while debugging simulated ARM 32 // code. 33 class ArmDebugger { 34 public: 35 explicit ArmDebugger(Simulator* sim) : sim_(sim) { } 36 ~ArmDebugger(); 37 38 void Stop(Instruction* instr); 39 void Debug(); 40 41 private: 42 static const Instr kBreakpointInstr = 43 (al | (7*B25) | (1*B24) | kBreakpoint); 44 static const Instr kNopInstr = (al | (13*B21)); 45 46 Simulator* sim_; 47 48 int32_t GetRegisterValue(int regnum); 49 double GetRegisterPairDoubleValue(int regnum); 50 double GetVFPDoubleRegisterValue(int regnum); 51 bool GetValue(const char* desc, int32_t* value); 52 bool GetVFPSingleValue(const char* desc, float* value); 53 bool GetVFPDoubleValue(const char* desc, double* value); 54 55 // Set or delete a breakpoint. Returns true if successful. 56 bool SetBreakpoint(Instruction* breakpc); 57 bool DeleteBreakpoint(Instruction* breakpc); 58 59 // Undo and redo all breakpoints. This is needed to bracket disassembly and 60 // execution to skip past breakpoints when run from the debugger. 61 void UndoBreakpoints(); 62 void RedoBreakpoints(); 63 }; 64 65 66 ArmDebugger::~ArmDebugger() { 67 } 68 69 70 71 #ifdef GENERATED_CODE_COVERAGE 72 static FILE* coverage_log = NULL; 73 74 75 static void InitializeCoverage() { 76 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 77 if (file_name != NULL) { 78 coverage_log = fopen(file_name, "aw+"); 79 } 80 } 81 82 83 void ArmDebugger::Stop(Instruction* instr) { 84 // Get the stop code. 85 uint32_t code = instr->SvcValue() & kStopCodeMask; 86 // Retrieve the encoded address, which comes just after this stop. 87 char** msg_address = 88 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); 89 char* msg = *msg_address; 90 DCHECK(msg != NULL); 91 92 // Update this stop description. 93 if (isWatchedStop(code) && !watched_stops_[code].desc) { 94 watched_stops_[code].desc = msg; 95 } 96 97 if (strlen(msg) > 0) { 98 if (coverage_log != NULL) { 99 fprintf(coverage_log, "%s\n", msg); 100 fflush(coverage_log); 101 } 102 // Overwrite the instruction and address with nops. 103 instr->SetInstructionBits(kNopInstr); 104 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); 105 } 106 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 107 } 108 109 #else // ndef GENERATED_CODE_COVERAGE 110 111 static void InitializeCoverage() { 112 } 113 114 115 void ArmDebugger::Stop(Instruction* instr) { 116 // Get the stop code. 117 uint32_t code = instr->SvcValue() & kStopCodeMask; 118 // Retrieve the encoded address, which comes just after this stop. 119 char* msg = *reinterpret_cast<char**>(sim_->get_pc() 120 + Instruction::kInstrSize); 121 // Update this stop description. 122 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { 123 sim_->watched_stops_[code].desc = msg; 124 } 125 // Print the stop message and code if it is not the default code. 126 if (code != kMaxStopCode) { 127 PrintF("Simulator hit stop %u: %s\n", code, msg); 128 } else { 129 PrintF("Simulator hit %s\n", msg); 130 } 131 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 132 Debug(); 133 } 134 #endif 135 136 137 int32_t ArmDebugger::GetRegisterValue(int regnum) { 138 if (regnum == kPCRegister) { 139 return sim_->get_pc(); 140 } else { 141 return sim_->get_register(regnum); 142 } 143 } 144 145 146 double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { 147 return sim_->get_double_from_register_pair(regnum); 148 } 149 150 151 double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { 152 return sim_->get_double_from_d_register(regnum); 153 } 154 155 156 bool ArmDebugger::GetValue(const char* desc, int32_t* value) { 157 int regnum = Registers::Number(desc); 158 if (regnum != kNoRegister) { 159 *value = GetRegisterValue(regnum); 160 return true; 161 } else { 162 if (strncmp(desc, "0x", 2) == 0) { 163 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; 164 } else { 165 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; 166 } 167 } 168 return false; 169 } 170 171 172 bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { 173 bool is_double; 174 int regnum = VFPRegisters::Number(desc, &is_double); 175 if (regnum != kNoRegister && !is_double) { 176 *value = sim_->get_float_from_s_register(regnum); 177 return true; 178 } 179 return false; 180 } 181 182 183 bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { 184 bool is_double; 185 int regnum = VFPRegisters::Number(desc, &is_double); 186 if (regnum != kNoRegister && is_double) { 187 *value = sim_->get_double_from_d_register(regnum); 188 return true; 189 } 190 return false; 191 } 192 193 194 bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { 195 // Check if a breakpoint can be set. If not return without any side-effects. 196 if (sim_->break_pc_ != NULL) { 197 return false; 198 } 199 200 // Set the breakpoint. 201 sim_->break_pc_ = breakpc; 202 sim_->break_instr_ = breakpc->InstructionBits(); 203 // Not setting the breakpoint instruction in the code itself. It will be set 204 // when the debugger shell continues. 205 return true; 206 } 207 208 209 bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { 210 if (sim_->break_pc_ != NULL) { 211 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 212 } 213 214 sim_->break_pc_ = NULL; 215 sim_->break_instr_ = 0; 216 return true; 217 } 218 219 220 void ArmDebugger::UndoBreakpoints() { 221 if (sim_->break_pc_ != NULL) { 222 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 223 } 224 } 225 226 227 void ArmDebugger::RedoBreakpoints() { 228 if (sim_->break_pc_ != NULL) { 229 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 230 } 231 } 232 233 234 void ArmDebugger::Debug() { 235 intptr_t last_pc = -1; 236 bool done = false; 237 238 #define COMMAND_SIZE 63 239 #define ARG_SIZE 255 240 241 #define STR(a) #a 242 #define XSTR(a) STR(a) 243 244 char cmd[COMMAND_SIZE + 1]; 245 char arg1[ARG_SIZE + 1]; 246 char arg2[ARG_SIZE + 1]; 247 char* argv[3] = { cmd, arg1, arg2 }; 248 249 // make sure to have a proper terminating character if reaching the limit 250 cmd[COMMAND_SIZE] = 0; 251 arg1[ARG_SIZE] = 0; 252 arg2[ARG_SIZE] = 0; 253 254 // Undo all set breakpoints while running in the debugger shell. This will 255 // make them invisible to all commands. 256 UndoBreakpoints(); 257 258 while (!done && !sim_->has_bad_pc()) { 259 if (last_pc != sim_->get_pc()) { 260 disasm::NameConverter converter; 261 disasm::Disassembler dasm(converter); 262 // use a reasonably large buffer 263 v8::internal::EmbeddedVector<char, 256> buffer; 264 dasm.InstructionDecode(buffer, 265 reinterpret_cast<byte*>(sim_->get_pc())); 266 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); 267 last_pc = sim_->get_pc(); 268 } 269 char* line = ReadLine("sim> "); 270 if (line == NULL) { 271 break; 272 } else { 273 char* last_input = sim_->last_debugger_input(); 274 if (strcmp(line, "\n") == 0 && last_input != NULL) { 275 line = last_input; 276 } else { 277 // Ownership is transferred to sim_; 278 sim_->set_last_debugger_input(line); 279 } 280 // Use sscanf to parse the individual parts of the command line. At the 281 // moment no command expects more than two parameters. 282 int argc = SScanF(line, 283 "%" XSTR(COMMAND_SIZE) "s " 284 "%" XSTR(ARG_SIZE) "s " 285 "%" XSTR(ARG_SIZE) "s", 286 cmd, arg1, arg2); 287 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 288 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 289 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 290 // Execute the one instruction we broke at with breakpoints disabled. 291 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 292 // Leave the debugger shell. 293 done = true; 294 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 295 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { 296 int32_t value; 297 float svalue; 298 double dvalue; 299 if (strcmp(arg1, "all") == 0) { 300 for (int i = 0; i < kNumRegisters; i++) { 301 value = GetRegisterValue(i); 302 PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value); 303 if ((argc == 3 && strcmp(arg2, "fp") == 0) && 304 i < 8 && 305 (i % 2) == 0) { 306 dvalue = GetRegisterPairDoubleValue(i); 307 PrintF(" (%f)\n", dvalue); 308 } else { 309 PrintF("\n"); 310 } 311 } 312 for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { 313 dvalue = GetVFPDoubleRegisterValue(i); 314 uint64_t as_words = bit_cast<uint64_t>(dvalue); 315 PrintF("%3s: %f 0x%08x %08x\n", 316 VFPRegisters::Name(i, true), 317 dvalue, 318 static_cast<uint32_t>(as_words >> 32), 319 static_cast<uint32_t>(as_words & 0xffffffff)); 320 } 321 } else { 322 if (GetValue(arg1, &value)) { 323 PrintF("%s: 0x%08x %d \n", arg1, value, value); 324 } else if (GetVFPSingleValue(arg1, &svalue)) { 325 uint32_t as_word = bit_cast<uint32_t>(svalue); 326 PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); 327 } else if (GetVFPDoubleValue(arg1, &dvalue)) { 328 uint64_t as_words = bit_cast<uint64_t>(dvalue); 329 PrintF("%s: %f 0x%08x %08x\n", 330 arg1, 331 dvalue, 332 static_cast<uint32_t>(as_words >> 32), 333 static_cast<uint32_t>(as_words & 0xffffffff)); 334 } else { 335 PrintF("%s unrecognized\n", arg1); 336 } 337 } 338 } else { 339 PrintF("print <register>\n"); 340 } 341 } else if ((strcmp(cmd, "po") == 0) 342 || (strcmp(cmd, "printobject") == 0)) { 343 if (argc == 2) { 344 int32_t value; 345 OFStream os(stdout); 346 if (GetValue(arg1, &value)) { 347 Object* obj = reinterpret_cast<Object*>(value); 348 os << arg1 << ": \n"; 349 #ifdef DEBUG 350 obj->Print(os); 351 os << "\n"; 352 #else 353 os << Brief(obj) << "\n"; 354 #endif 355 } else { 356 os << arg1 << " unrecognized\n"; 357 } 358 } else { 359 PrintF("printobject <value>\n"); 360 } 361 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 362 int32_t* cur = NULL; 363 int32_t* end = NULL; 364 int next_arg = 1; 365 366 if (strcmp(cmd, "stack") == 0) { 367 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); 368 } else { // "mem" 369 int32_t value; 370 if (!GetValue(arg1, &value)) { 371 PrintF("%s unrecognized\n", arg1); 372 continue; 373 } 374 cur = reinterpret_cast<int32_t*>(value); 375 next_arg++; 376 } 377 378 int32_t words; 379 if (argc == next_arg) { 380 words = 10; 381 } else { 382 if (!GetValue(argv[next_arg], &words)) { 383 words = 10; 384 } 385 } 386 end = cur + words; 387 388 while (cur < end) { 389 PrintF(" 0x%08x: 0x%08x %10d", 390 reinterpret_cast<intptr_t>(cur), *cur, *cur); 391 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 392 int value = *cur; 393 Heap* current_heap = v8::internal::Isolate::Current()->heap(); 394 if (((value & 1) == 0) || current_heap->Contains(obj)) { 395 PrintF(" ("); 396 if ((value & 1) == 0) { 397 PrintF("smi %d", value / 2); 398 } else { 399 obj->ShortPrint(); 400 } 401 PrintF(")"); 402 } 403 PrintF("\n"); 404 cur++; 405 } 406 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { 407 disasm::NameConverter converter; 408 disasm::Disassembler dasm(converter); 409 // use a reasonably large buffer 410 v8::internal::EmbeddedVector<char, 256> buffer; 411 412 byte* prev = NULL; 413 byte* cur = NULL; 414 byte* end = NULL; 415 416 if (argc == 1) { 417 cur = reinterpret_cast<byte*>(sim_->get_pc()); 418 end = cur + (10 * Instruction::kInstrSize); 419 } else if (argc == 2) { 420 int regnum = Registers::Number(arg1); 421 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { 422 // The argument is an address or a register name. 423 int32_t value; 424 if (GetValue(arg1, &value)) { 425 cur = reinterpret_cast<byte*>(value); 426 // Disassemble 10 instructions at <arg1>. 427 end = cur + (10 * Instruction::kInstrSize); 428 } 429 } else { 430 // The argument is the number of instructions. 431 int32_t value; 432 if (GetValue(arg1, &value)) { 433 cur = reinterpret_cast<byte*>(sim_->get_pc()); 434 // Disassemble <arg1> instructions. 435 end = cur + (value * Instruction::kInstrSize); 436 } 437 } 438 } else { 439 int32_t value1; 440 int32_t value2; 441 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 442 cur = reinterpret_cast<byte*>(value1); 443 end = cur + (value2 * Instruction::kInstrSize); 444 } 445 } 446 447 while (cur < end) { 448 prev = cur; 449 cur += dasm.InstructionDecode(buffer, cur); 450 PrintF(" 0x%08x %s\n", 451 reinterpret_cast<intptr_t>(prev), buffer.start()); 452 } 453 } else if (strcmp(cmd, "gdb") == 0) { 454 PrintF("relinquishing control to gdb\n"); 455 v8::base::OS::DebugBreak(); 456 PrintF("regaining control from gdb\n"); 457 } else if (strcmp(cmd, "break") == 0) { 458 if (argc == 2) { 459 int32_t value; 460 if (GetValue(arg1, &value)) { 461 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 462 PrintF("setting breakpoint failed\n"); 463 } 464 } else { 465 PrintF("%s unrecognized\n", arg1); 466 } 467 } else { 468 PrintF("break <address>\n"); 469 } 470 } else if (strcmp(cmd, "del") == 0) { 471 if (!DeleteBreakpoint(NULL)) { 472 PrintF("deleting breakpoint failed\n"); 473 } 474 } else if (strcmp(cmd, "flags") == 0) { 475 PrintF("N flag: %d; ", sim_->n_flag_); 476 PrintF("Z flag: %d; ", sim_->z_flag_); 477 PrintF("C flag: %d; ", sim_->c_flag_); 478 PrintF("V flag: %d\n", sim_->v_flag_); 479 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); 480 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); 481 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); 482 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); 483 PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); 484 } else if (strcmp(cmd, "stop") == 0) { 485 int32_t value; 486 intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; 487 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 488 Instruction* msg_address = 489 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); 490 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 491 // Remove the current stop. 492 if (sim_->isStopInstruction(stop_instr)) { 493 stop_instr->SetInstructionBits(kNopInstr); 494 msg_address->SetInstructionBits(kNopInstr); 495 } else { 496 PrintF("Not at debugger stop.\n"); 497 } 498 } else if (argc == 3) { 499 // Print information about all/the specified breakpoint(s). 500 if (strcmp(arg1, "info") == 0) { 501 if (strcmp(arg2, "all") == 0) { 502 PrintF("Stop information:\n"); 503 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 504 sim_->PrintStopInfo(i); 505 } 506 } else if (GetValue(arg2, &value)) { 507 sim_->PrintStopInfo(value); 508 } else { 509 PrintF("Unrecognized argument.\n"); 510 } 511 } else if (strcmp(arg1, "enable") == 0) { 512 // Enable all/the specified breakpoint(s). 513 if (strcmp(arg2, "all") == 0) { 514 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 515 sim_->EnableStop(i); 516 } 517 } else if (GetValue(arg2, &value)) { 518 sim_->EnableStop(value); 519 } else { 520 PrintF("Unrecognized argument.\n"); 521 } 522 } else if (strcmp(arg1, "disable") == 0) { 523 // Disable all/the specified breakpoint(s). 524 if (strcmp(arg2, "all") == 0) { 525 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 526 sim_->DisableStop(i); 527 } 528 } else if (GetValue(arg2, &value)) { 529 sim_->DisableStop(value); 530 } else { 531 PrintF("Unrecognized argument.\n"); 532 } 533 } 534 } else { 535 PrintF("Wrong usage. Use help command for more information.\n"); 536 } 537 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { 538 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; 539 PrintF("Trace of executed instructions is %s\n", 540 ::v8::internal::FLAG_trace_sim ? "on" : "off"); 541 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 542 PrintF("cont\n"); 543 PrintF(" continue execution (alias 'c')\n"); 544 PrintF("stepi\n"); 545 PrintF(" step one instruction (alias 'si')\n"); 546 PrintF("print <register>\n"); 547 PrintF(" print register content (alias 'p')\n"); 548 PrintF(" use register name 'all' to print all registers\n"); 549 PrintF(" add argument 'fp' to print register pair double values\n"); 550 PrintF("printobject <register>\n"); 551 PrintF(" print an object from a register (alias 'po')\n"); 552 PrintF("flags\n"); 553 PrintF(" print flags\n"); 554 PrintF("stack [<words>]\n"); 555 PrintF(" dump stack content, default dump 10 words)\n"); 556 PrintF("mem <address> [<words>]\n"); 557 PrintF(" dump memory content, default dump 10 words)\n"); 558 PrintF("disasm [<instructions>]\n"); 559 PrintF("disasm [<address/register>]\n"); 560 PrintF("disasm [[<address/register>] <instructions>]\n"); 561 PrintF(" disassemble code, default is 10 instructions\n"); 562 PrintF(" from pc (alias 'di')\n"); 563 PrintF("gdb\n"); 564 PrintF(" enter gdb\n"); 565 PrintF("break <address>\n"); 566 PrintF(" set a break point on the address\n"); 567 PrintF("del\n"); 568 PrintF(" delete the breakpoint\n"); 569 PrintF("trace (alias 't')\n"); 570 PrintF(" toogle the tracing of all executed statements\n"); 571 PrintF("stop feature:\n"); 572 PrintF(" Description:\n"); 573 PrintF(" Stops are debug instructions inserted by\n"); 574 PrintF(" the Assembler::stop() function.\n"); 575 PrintF(" When hitting a stop, the Simulator will\n"); 576 PrintF(" stop and and give control to the ArmDebugger.\n"); 577 PrintF(" The first %d stop codes are watched:\n", 578 Simulator::kNumOfWatchedStops); 579 PrintF(" - They can be enabled / disabled: the Simulator\n"); 580 PrintF(" will / won't stop when hitting them.\n"); 581 PrintF(" - The Simulator keeps track of how many times they \n"); 582 PrintF(" are met. (See the info command.) Going over a\n"); 583 PrintF(" disabled stop still increases its counter. \n"); 584 PrintF(" Commands:\n"); 585 PrintF(" stop info all/<code> : print infos about number <code>\n"); 586 PrintF(" or all stop(s).\n"); 587 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 588 PrintF(" all or number <code> stop(s)\n"); 589 PrintF(" stop unstop\n"); 590 PrintF(" ignore the stop instruction at the current location\n"); 591 PrintF(" from now on\n"); 592 } else { 593 PrintF("Unknown command: %s\n", cmd); 594 } 595 } 596 } 597 598 // Add all the breakpoints back to stop execution and enter the debugger 599 // shell when hit. 600 RedoBreakpoints(); 601 602 #undef COMMAND_SIZE 603 #undef ARG_SIZE 604 605 #undef STR 606 #undef XSTR 607 } 608 609 610 static bool ICacheMatch(void* one, void* two) { 611 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 612 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 613 return one == two; 614 } 615 616 617 static uint32_t ICacheHash(void* key) { 618 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 619 } 620 621 622 static bool AllOnOnePage(uintptr_t start, int size) { 623 intptr_t start_page = (start & ~CachePage::kPageMask); 624 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 625 return start_page == end_page; 626 } 627 628 629 void Simulator::set_last_debugger_input(char* input) { 630 DeleteArray(last_debugger_input_); 631 last_debugger_input_ = input; 632 } 633 634 635 void Simulator::FlushICache(v8::internal::HashMap* i_cache, 636 void* start_addr, 637 size_t size) { 638 intptr_t start = reinterpret_cast<intptr_t>(start_addr); 639 int intra_line = (start & CachePage::kLineMask); 640 start -= intra_line; 641 size += intra_line; 642 size = ((size - 1) | CachePage::kLineMask) + 1; 643 int offset = (start & CachePage::kPageMask); 644 while (!AllOnOnePage(start, size - 1)) { 645 int bytes_to_flush = CachePage::kPageSize - offset; 646 FlushOnePage(i_cache, start, bytes_to_flush); 647 start += bytes_to_flush; 648 size -= bytes_to_flush; 649 DCHECK_EQ(0, start & CachePage::kPageMask); 650 offset = 0; 651 } 652 if (size != 0) { 653 FlushOnePage(i_cache, start, size); 654 } 655 } 656 657 658 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { 659 v8::internal::HashMap::Entry* entry = i_cache->Lookup(page, 660 ICacheHash(page), 661 true); 662 if (entry->value == NULL) { 663 CachePage* new_page = new CachePage(); 664 entry->value = new_page; 665 } 666 return reinterpret_cast<CachePage*>(entry->value); 667 } 668 669 670 // Flush from start up to and not including start + size. 671 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, 672 intptr_t start, 673 int size) { 674 DCHECK(size <= CachePage::kPageSize); 675 DCHECK(AllOnOnePage(start, size - 1)); 676 DCHECK((start & CachePage::kLineMask) == 0); 677 DCHECK((size & CachePage::kLineMask) == 0); 678 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 679 int offset = (start & CachePage::kPageMask); 680 CachePage* cache_page = GetCachePage(i_cache, page); 681 char* valid_bytemap = cache_page->ValidityByte(offset); 682 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 683 } 684 685 686 void Simulator::CheckICache(v8::internal::HashMap* i_cache, 687 Instruction* instr) { 688 intptr_t address = reinterpret_cast<intptr_t>(instr); 689 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 690 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 691 int offset = (address & CachePage::kPageMask); 692 CachePage* cache_page = GetCachePage(i_cache, page); 693 char* cache_valid_byte = cache_page->ValidityByte(offset); 694 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 695 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 696 if (cache_hit) { 697 // Check that the data in memory matches the contents of the I-cache. 698 CHECK_EQ(0, 699 memcmp(reinterpret_cast<void*>(instr), 700 cache_page->CachedData(offset), Instruction::kInstrSize)); 701 } else { 702 // Cache miss. Load memory into the cache. 703 memcpy(cached_line, line, CachePage::kLineLength); 704 *cache_valid_byte = CachePage::LINE_VALID; 705 } 706 } 707 708 709 void Simulator::Initialize(Isolate* isolate) { 710 if (isolate->simulator_initialized()) return; 711 isolate->set_simulator_initialized(true); 712 ::v8::internal::ExternalReference::set_redirector(isolate, 713 &RedirectExternalReference); 714 } 715 716 717 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 718 i_cache_ = isolate_->simulator_i_cache(); 719 if (i_cache_ == NULL) { 720 i_cache_ = new v8::internal::HashMap(&ICacheMatch); 721 isolate_->set_simulator_i_cache(i_cache_); 722 } 723 Initialize(isolate); 724 // Set up simulator support first. Some of this information is needed to 725 // setup the architecture state. 726 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack 727 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 728 pc_modified_ = false; 729 icount_ = 0; 730 break_pc_ = NULL; 731 break_instr_ = 0; 732 733 // Set up architecture state. 734 // All registers are initialized to zero to start with. 735 for (int i = 0; i < num_registers; i++) { 736 registers_[i] = 0; 737 } 738 n_flag_ = false; 739 z_flag_ = false; 740 c_flag_ = false; 741 v_flag_ = false; 742 743 // Initializing VFP registers. 744 // All registers are initialized to zero to start with 745 // even though s_registers_ & d_registers_ share the same 746 // physical registers in the target. 747 for (int i = 0; i < num_d_registers * 2; i++) { 748 vfp_registers_[i] = 0; 749 } 750 n_flag_FPSCR_ = false; 751 z_flag_FPSCR_ = false; 752 c_flag_FPSCR_ = false; 753 v_flag_FPSCR_ = false; 754 FPSCR_rounding_mode_ = RN; 755 FPSCR_default_NaN_mode_ = false; 756 757 inv_op_vfp_flag_ = false; 758 div_zero_vfp_flag_ = false; 759 overflow_vfp_flag_ = false; 760 underflow_vfp_flag_ = false; 761 inexact_vfp_flag_ = false; 762 763 // The sp is initialized to point to the bottom (high address) of the 764 // allocated stack area. To be safe in potential stack underflows we leave 765 // some buffer below. 766 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; 767 // The lr and pc are initialized to a known bad value that will cause an 768 // access violation if the simulator ever tries to execute it. 769 registers_[pc] = bad_lr; 770 registers_[lr] = bad_lr; 771 InitializeCoverage(); 772 773 last_debugger_input_ = NULL; 774 } 775 776 777 Simulator::~Simulator() { 778 } 779 780 781 // When the generated code calls an external reference we need to catch that in 782 // the simulator. The external reference will be a function compiled for the 783 // host architecture. We need to call that function instead of trying to 784 // execute it with the simulator. We do that by redirecting the external 785 // reference to a svc (Supervisor Call) instruction that is handled by 786 // the simulator. We write the original destination of the jump just at a known 787 // offset from the svc instruction so the simulator knows what to call. 788 class Redirection { 789 public: 790 Redirection(void* external_function, ExternalReference::Type type) 791 : external_function_(external_function), 792 swi_instruction_(al | (0xf*B24) | kCallRtRedirected), 793 type_(type), 794 next_(NULL) { 795 Isolate* isolate = Isolate::Current(); 796 next_ = isolate->simulator_redirection(); 797 Simulator::current(isolate)-> 798 FlushICache(isolate->simulator_i_cache(), 799 reinterpret_cast<void*>(&swi_instruction_), 800 Instruction::kInstrSize); 801 isolate->set_simulator_redirection(this); 802 } 803 804 void* address_of_swi_instruction() { 805 return reinterpret_cast<void*>(&swi_instruction_); 806 } 807 808 void* external_function() { return external_function_; } 809 ExternalReference::Type type() { return type_; } 810 811 static Redirection* Get(void* external_function, 812 ExternalReference::Type type) { 813 Isolate* isolate = Isolate::Current(); 814 Redirection* current = isolate->simulator_redirection(); 815 for (; current != NULL; current = current->next_) { 816 if (current->external_function_ == external_function) { 817 DCHECK_EQ(current->type(), type); 818 return current; 819 } 820 } 821 return new Redirection(external_function, type); 822 } 823 824 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 825 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 826 char* addr_of_redirection = 827 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); 828 return reinterpret_cast<Redirection*>(addr_of_redirection); 829 } 830 831 static void* ReverseRedirection(int32_t reg) { 832 Redirection* redirection = FromSwiInstruction( 833 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 834 return redirection->external_function(); 835 } 836 837 private: 838 void* external_function_; 839 uint32_t swi_instruction_; 840 ExternalReference::Type type_; 841 Redirection* next_; 842 }; 843 844 845 void* Simulator::RedirectExternalReference(void* external_function, 846 ExternalReference::Type type) { 847 Redirection* redirection = Redirection::Get(external_function, type); 848 return redirection->address_of_swi_instruction(); 849 } 850 851 852 // Get the active Simulator for the current thread. 853 Simulator* Simulator::current(Isolate* isolate) { 854 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 855 isolate->FindOrAllocatePerThreadDataForThisThread(); 856 DCHECK(isolate_data != NULL); 857 858 Simulator* sim = isolate_data->simulator(); 859 if (sim == NULL) { 860 // TODO(146): delete the simulator object when a thread/isolate goes away. 861 sim = new Simulator(isolate); 862 isolate_data->set_simulator(sim); 863 } 864 return sim; 865 } 866 867 868 // Sets the register in the architecture state. It will also deal with updating 869 // Simulator internal state for special registers such as PC. 870 void Simulator::set_register(int reg, int32_t value) { 871 DCHECK((reg >= 0) && (reg < num_registers)); 872 if (reg == pc) { 873 pc_modified_ = true; 874 } 875 registers_[reg] = value; 876 } 877 878 879 // Get the register from the architecture state. This function does handle 880 // the special case of accessing the PC register. 881 int32_t Simulator::get_register(int reg) const { 882 DCHECK((reg >= 0) && (reg < num_registers)); 883 // Stupid code added to avoid bug in GCC. 884 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 885 if (reg >= num_registers) return 0; 886 // End stupid code. 887 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 888 } 889 890 891 double Simulator::get_double_from_register_pair(int reg) { 892 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 893 894 double dm_val = 0.0; 895 // Read the bits from the unsigned integer register_[] array 896 // into the double precision floating point value and return it. 897 char buffer[2 * sizeof(vfp_registers_[0])]; 898 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); 899 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); 900 return(dm_val); 901 } 902 903 904 void Simulator::set_register_pair_from_double(int reg, double* value) { 905 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 906 memcpy(registers_ + reg, value, sizeof(*value)); 907 } 908 909 910 void Simulator::set_dw_register(int dreg, const int* dbl) { 911 DCHECK((dreg >= 0) && (dreg < num_d_registers)); 912 registers_[dreg] = dbl[0]; 913 registers_[dreg + 1] = dbl[1]; 914 } 915 916 917 void Simulator::get_d_register(int dreg, uint64_t* value) { 918 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 919 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); 920 } 921 922 923 void Simulator::set_d_register(int dreg, const uint64_t* value) { 924 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 925 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); 926 } 927 928 929 void Simulator::get_d_register(int dreg, uint32_t* value) { 930 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 931 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); 932 } 933 934 935 void Simulator::set_d_register(int dreg, const uint32_t* value) { 936 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 937 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); 938 } 939 940 941 void Simulator::get_q_register(int qreg, uint64_t* value) { 942 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 943 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); 944 } 945 946 947 void Simulator::set_q_register(int qreg, const uint64_t* value) { 948 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 949 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); 950 } 951 952 953 void Simulator::get_q_register(int qreg, uint32_t* value) { 954 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 955 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); 956 } 957 958 959 void Simulator::set_q_register(int qreg, const uint32_t* value) { 960 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 961 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); 962 } 963 964 965 // Raw access to the PC register. 966 void Simulator::set_pc(int32_t value) { 967 pc_modified_ = true; 968 registers_[pc] = value; 969 } 970 971 972 bool Simulator::has_bad_pc() const { 973 return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); 974 } 975 976 977 // Raw access to the PC register without the special adjustment when reading. 978 int32_t Simulator::get_pc() const { 979 return registers_[pc]; 980 } 981 982 983 // Getting from and setting into VFP registers. 984 void Simulator::set_s_register(int sreg, unsigned int value) { 985 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 986 vfp_registers_[sreg] = value; 987 } 988 989 990 unsigned int Simulator::get_s_register(int sreg) const { 991 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 992 return vfp_registers_[sreg]; 993 } 994 995 996 template<class InputType, int register_size> 997 void Simulator::SetVFPRegister(int reg_index, const InputType& value) { 998 DCHECK(reg_index >= 0); 999 if (register_size == 1) DCHECK(reg_index < num_s_registers); 1000 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 1001 1002 char buffer[register_size * sizeof(vfp_registers_[0])]; 1003 memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); 1004 memcpy(&vfp_registers_[reg_index * register_size], buffer, 1005 register_size * sizeof(vfp_registers_[0])); 1006 } 1007 1008 1009 template<class ReturnType, int register_size> 1010 ReturnType Simulator::GetFromVFPRegister(int reg_index) { 1011 DCHECK(reg_index >= 0); 1012 if (register_size == 1) DCHECK(reg_index < num_s_registers); 1013 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 1014 1015 ReturnType value = 0; 1016 char buffer[register_size * sizeof(vfp_registers_[0])]; 1017 memcpy(buffer, &vfp_registers_[register_size * reg_index], 1018 register_size * sizeof(vfp_registers_[0])); 1019 memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0])); 1020 return value; 1021 } 1022 1023 1024 // Runtime FP routines take: 1025 // - two double arguments 1026 // - one double argument and zero or one integer arguments. 1027 // All are consructed here from r0-r3 or d0, d1 and r0. 1028 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1029 if (use_eabi_hardfloat()) { 1030 *x = get_double_from_d_register(0); 1031 *y = get_double_from_d_register(1); 1032 *z = get_register(0); 1033 } else { 1034 // Registers 0 and 1 -> x. 1035 *x = get_double_from_register_pair(0); 1036 // Register 2 and 3 -> y. 1037 *y = get_double_from_register_pair(2); 1038 // Register 2 -> z 1039 *z = get_register(2); 1040 } 1041 } 1042 1043 1044 // The return value is either in r0/r1 or d0. 1045 void Simulator::SetFpResult(const double& result) { 1046 if (use_eabi_hardfloat()) { 1047 char buffer[2 * sizeof(vfp_registers_[0])]; 1048 memcpy(buffer, &result, sizeof(buffer)); 1049 // Copy result to d0. 1050 memcpy(vfp_registers_, buffer, sizeof(buffer)); 1051 } else { 1052 char buffer[2 * sizeof(registers_[0])]; 1053 memcpy(buffer, &result, sizeof(buffer)); 1054 // Copy result to r0 and r1. 1055 memcpy(registers_, buffer, sizeof(buffer)); 1056 } 1057 } 1058 1059 1060 void Simulator::TrashCallerSaveRegisters() { 1061 // We don't trash the registers with the return value. 1062 registers_[2] = 0x50Bad4U; 1063 registers_[3] = 0x50Bad4U; 1064 registers_[12] = 0x50Bad4U; 1065 } 1066 1067 1068 // Some Operating Systems allow unaligned access on ARMv7 targets. We 1069 // assume that unaligned accesses are not allowed unless the v8 build system 1070 // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. 1071 // The following statements below describes the behavior of the ARM CPUs 1072 // that don't support unaligned access. 1073 // Some ARM platforms raise an interrupt on detecting unaligned access. 1074 // On others it does a funky rotation thing. For now we 1075 // simply disallow unaligned reads. Note that simulator runs have the runtime 1076 // system running directly on the host system and only generated code is 1077 // executed in the simulator. Since the host is typically IA32 we will not 1078 // get the correct ARM-like behaviour on unaligned accesses for those ARM 1079 // targets that don't support unaligned loads and stores. 1080 1081 1082 int Simulator::ReadW(int32_t addr, Instruction* instr) { 1083 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1084 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1085 return *ptr; 1086 } else { 1087 PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1088 addr, 1089 reinterpret_cast<intptr_t>(instr)); 1090 UNIMPLEMENTED(); 1091 return 0; 1092 } 1093 } 1094 1095 1096 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { 1097 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1098 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1099 *ptr = value; 1100 } else { 1101 PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1102 addr, 1103 reinterpret_cast<intptr_t>(instr)); 1104 UNIMPLEMENTED(); 1105 } 1106 } 1107 1108 1109 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { 1110 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1111 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1112 return *ptr; 1113 } else { 1114 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" 1115 V8PRIxPTR "\n", 1116 addr, 1117 reinterpret_cast<intptr_t>(instr)); 1118 UNIMPLEMENTED(); 1119 return 0; 1120 } 1121 } 1122 1123 1124 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { 1125 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1126 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1127 return *ptr; 1128 } else { 1129 PrintF("Unaligned signed halfword read at 0x%08x\n", addr); 1130 UNIMPLEMENTED(); 1131 return 0; 1132 } 1133 } 1134 1135 1136 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { 1137 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1138 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1139 *ptr = value; 1140 } else { 1141 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" 1142 V8PRIxPTR "\n", 1143 addr, 1144 reinterpret_cast<intptr_t>(instr)); 1145 UNIMPLEMENTED(); 1146 } 1147 } 1148 1149 1150 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { 1151 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1152 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1153 *ptr = value; 1154 } else { 1155 PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1156 addr, 1157 reinterpret_cast<intptr_t>(instr)); 1158 UNIMPLEMENTED(); 1159 } 1160 } 1161 1162 1163 uint8_t Simulator::ReadBU(int32_t addr) { 1164 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1165 return *ptr; 1166 } 1167 1168 1169 int8_t Simulator::ReadB(int32_t addr) { 1170 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1171 return *ptr; 1172 } 1173 1174 1175 void Simulator::WriteB(int32_t addr, uint8_t value) { 1176 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1177 *ptr = value; 1178 } 1179 1180 1181 void Simulator::WriteB(int32_t addr, int8_t value) { 1182 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1183 *ptr = value; 1184 } 1185 1186 1187 int32_t* Simulator::ReadDW(int32_t addr) { 1188 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1189 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1190 return ptr; 1191 } else { 1192 PrintF("Unaligned read at 0x%08x\n", addr); 1193 UNIMPLEMENTED(); 1194 return 0; 1195 } 1196 } 1197 1198 1199 void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { 1200 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1201 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1202 *ptr++ = value1; 1203 *ptr = value2; 1204 } else { 1205 PrintF("Unaligned write at 0x%08x\n", addr); 1206 UNIMPLEMENTED(); 1207 } 1208 } 1209 1210 1211 // Returns the limit of the stack area to enable checking for stack overflows. 1212 uintptr_t Simulator::StackLimit() const { 1213 // Leave a safety margin of 1024 bytes to prevent overrunning the stack when 1214 // pushing values. 1215 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1216 } 1217 1218 1219 // Unsupported instructions use Format to print an error and stop execution. 1220 void Simulator::Format(Instruction* instr, const char* format) { 1221 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", 1222 reinterpret_cast<intptr_t>(instr), format); 1223 UNIMPLEMENTED(); 1224 } 1225 1226 1227 // Checks if the current instruction should be executed based on its 1228 // condition bits. 1229 bool Simulator::ConditionallyExecute(Instruction* instr) { 1230 switch (instr->ConditionField()) { 1231 case eq: return z_flag_; 1232 case ne: return !z_flag_; 1233 case cs: return c_flag_; 1234 case cc: return !c_flag_; 1235 case mi: return n_flag_; 1236 case pl: return !n_flag_; 1237 case vs: return v_flag_; 1238 case vc: return !v_flag_; 1239 case hi: return c_flag_ && !z_flag_; 1240 case ls: return !c_flag_ || z_flag_; 1241 case ge: return n_flag_ == v_flag_; 1242 case lt: return n_flag_ != v_flag_; 1243 case gt: return !z_flag_ && (n_flag_ == v_flag_); 1244 case le: return z_flag_ || (n_flag_ != v_flag_); 1245 case al: return true; 1246 default: UNREACHABLE(); 1247 } 1248 return false; 1249 } 1250 1251 1252 // Calculate and set the Negative and Zero flags. 1253 void Simulator::SetNZFlags(int32_t val) { 1254 n_flag_ = (val < 0); 1255 z_flag_ = (val == 0); 1256 } 1257 1258 1259 // Set the Carry flag. 1260 void Simulator::SetCFlag(bool val) { 1261 c_flag_ = val; 1262 } 1263 1264 1265 // Set the oVerflow flag. 1266 void Simulator::SetVFlag(bool val) { 1267 v_flag_ = val; 1268 } 1269 1270 1271 // Calculate C flag value for additions. 1272 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { 1273 uint32_t uleft = static_cast<uint32_t>(left); 1274 uint32_t uright = static_cast<uint32_t>(right); 1275 uint32_t urest = 0xffffffffU - uleft; 1276 1277 return (uright > urest) || 1278 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); 1279 } 1280 1281 1282 // Calculate C flag value for subtractions. 1283 bool Simulator::BorrowFrom(int32_t left, int32_t right) { 1284 uint32_t uleft = static_cast<uint32_t>(left); 1285 uint32_t uright = static_cast<uint32_t>(right); 1286 1287 return (uright > uleft); 1288 } 1289 1290 1291 // Calculate V flag value for additions and subtractions. 1292 bool Simulator::OverflowFrom(int32_t alu_out, 1293 int32_t left, int32_t right, bool addition) { 1294 bool overflow; 1295 if (addition) { 1296 // operands have the same sign 1297 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) 1298 // and operands and result have different sign 1299 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1300 } else { 1301 // operands have different signs 1302 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) 1303 // and first operand and result have different signs 1304 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1305 } 1306 return overflow; 1307 } 1308 1309 1310 // Support for VFP comparisons. 1311 void Simulator::Compute_FPSCR_Flags(double val1, double val2) { 1312 if (std::isnan(val1) || std::isnan(val2)) { 1313 n_flag_FPSCR_ = false; 1314 z_flag_FPSCR_ = false; 1315 c_flag_FPSCR_ = true; 1316 v_flag_FPSCR_ = true; 1317 // All non-NaN cases. 1318 } else if (val1 == val2) { 1319 n_flag_FPSCR_ = false; 1320 z_flag_FPSCR_ = true; 1321 c_flag_FPSCR_ = true; 1322 v_flag_FPSCR_ = false; 1323 } else if (val1 < val2) { 1324 n_flag_FPSCR_ = true; 1325 z_flag_FPSCR_ = false; 1326 c_flag_FPSCR_ = false; 1327 v_flag_FPSCR_ = false; 1328 } else { 1329 // Case when (val1 > val2). 1330 n_flag_FPSCR_ = false; 1331 z_flag_FPSCR_ = false; 1332 c_flag_FPSCR_ = true; 1333 v_flag_FPSCR_ = false; 1334 } 1335 } 1336 1337 1338 void Simulator::Copy_FPSCR_to_APSR() { 1339 n_flag_ = n_flag_FPSCR_; 1340 z_flag_ = z_flag_FPSCR_; 1341 c_flag_ = c_flag_FPSCR_; 1342 v_flag_ = v_flag_FPSCR_; 1343 } 1344 1345 1346 // Addressing Mode 1 - Data-processing operands: 1347 // Get the value based on the shifter_operand with register. 1348 int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { 1349 ShiftOp shift = instr->ShiftField(); 1350 int shift_amount = instr->ShiftAmountValue(); 1351 int32_t result = get_register(instr->RmValue()); 1352 if (instr->Bit(4) == 0) { 1353 // by immediate 1354 if ((shift == ROR) && (shift_amount == 0)) { 1355 UNIMPLEMENTED(); 1356 return result; 1357 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { 1358 shift_amount = 32; 1359 } 1360 switch (shift) { 1361 case ASR: { 1362 if (shift_amount == 0) { 1363 if (result < 0) { 1364 result = 0xffffffff; 1365 *carry_out = true; 1366 } else { 1367 result = 0; 1368 *carry_out = false; 1369 } 1370 } else { 1371 result >>= (shift_amount - 1); 1372 *carry_out = (result & 1) == 1; 1373 result >>= 1; 1374 } 1375 break; 1376 } 1377 1378 case LSL: { 1379 if (shift_amount == 0) { 1380 *carry_out = c_flag_; 1381 } else { 1382 result <<= (shift_amount - 1); 1383 *carry_out = (result < 0); 1384 result <<= 1; 1385 } 1386 break; 1387 } 1388 1389 case LSR: { 1390 if (shift_amount == 0) { 1391 result = 0; 1392 *carry_out = c_flag_; 1393 } else { 1394 uint32_t uresult = static_cast<uint32_t>(result); 1395 uresult >>= (shift_amount - 1); 1396 *carry_out = (uresult & 1) == 1; 1397 uresult >>= 1; 1398 result = static_cast<int32_t>(uresult); 1399 } 1400 break; 1401 } 1402 1403 case ROR: { 1404 if (shift_amount == 0) { 1405 *carry_out = c_flag_; 1406 } else { 1407 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1408 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1409 result = right | left; 1410 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1411 } 1412 break; 1413 } 1414 1415 default: { 1416 UNREACHABLE(); 1417 break; 1418 } 1419 } 1420 } else { 1421 // by register 1422 int rs = instr->RsValue(); 1423 shift_amount = get_register(rs) &0xff; 1424 switch (shift) { 1425 case ASR: { 1426 if (shift_amount == 0) { 1427 *carry_out = c_flag_; 1428 } else if (shift_amount < 32) { 1429 result >>= (shift_amount - 1); 1430 *carry_out = (result & 1) == 1; 1431 result >>= 1; 1432 } else { 1433 DCHECK(shift_amount >= 32); 1434 if (result < 0) { 1435 *carry_out = true; 1436 result = 0xffffffff; 1437 } else { 1438 *carry_out = false; 1439 result = 0; 1440 } 1441 } 1442 break; 1443 } 1444 1445 case LSL: { 1446 if (shift_amount == 0) { 1447 *carry_out = c_flag_; 1448 } else if (shift_amount < 32) { 1449 result <<= (shift_amount - 1); 1450 *carry_out = (result < 0); 1451 result <<= 1; 1452 } else if (shift_amount == 32) { 1453 *carry_out = (result & 1) == 1; 1454 result = 0; 1455 } else { 1456 DCHECK(shift_amount > 32); 1457 *carry_out = false; 1458 result = 0; 1459 } 1460 break; 1461 } 1462 1463 case LSR: { 1464 if (shift_amount == 0) { 1465 *carry_out = c_flag_; 1466 } else if (shift_amount < 32) { 1467 uint32_t uresult = static_cast<uint32_t>(result); 1468 uresult >>= (shift_amount - 1); 1469 *carry_out = (uresult & 1) == 1; 1470 uresult >>= 1; 1471 result = static_cast<int32_t>(uresult); 1472 } else if (shift_amount == 32) { 1473 *carry_out = (result < 0); 1474 result = 0; 1475 } else { 1476 *carry_out = false; 1477 result = 0; 1478 } 1479 break; 1480 } 1481 1482 case ROR: { 1483 if (shift_amount == 0) { 1484 *carry_out = c_flag_; 1485 } else { 1486 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1487 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1488 result = right | left; 1489 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1490 } 1491 break; 1492 } 1493 1494 default: { 1495 UNREACHABLE(); 1496 break; 1497 } 1498 } 1499 } 1500 return result; 1501 } 1502 1503 1504 // Addressing Mode 1 - Data-processing operands: 1505 // Get the value based on the shifter_operand with immediate. 1506 int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { 1507 int rotate = instr->RotateValue() * 2; 1508 int immed8 = instr->Immed8Value(); 1509 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); 1510 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); 1511 return imm; 1512 } 1513 1514 1515 static int count_bits(int bit_vector) { 1516 int count = 0; 1517 while (bit_vector != 0) { 1518 if ((bit_vector & 1) != 0) { 1519 count++; 1520 } 1521 bit_vector >>= 1; 1522 } 1523 return count; 1524 } 1525 1526 1527 int32_t Simulator::ProcessPU(Instruction* instr, 1528 int num_regs, 1529 int reg_size, 1530 intptr_t* start_address, 1531 intptr_t* end_address) { 1532 int rn = instr->RnValue(); 1533 int32_t rn_val = get_register(rn); 1534 switch (instr->PUField()) { 1535 case da_x: { 1536 UNIMPLEMENTED(); 1537 break; 1538 } 1539 case ia_x: { 1540 *start_address = rn_val; 1541 *end_address = rn_val + (num_regs * reg_size) - reg_size; 1542 rn_val = rn_val + (num_regs * reg_size); 1543 break; 1544 } 1545 case db_x: { 1546 *start_address = rn_val - (num_regs * reg_size); 1547 *end_address = rn_val - reg_size; 1548 rn_val = *start_address; 1549 break; 1550 } 1551 case ib_x: { 1552 *start_address = rn_val + reg_size; 1553 *end_address = rn_val + (num_regs * reg_size); 1554 rn_val = *end_address; 1555 break; 1556 } 1557 default: { 1558 UNREACHABLE(); 1559 break; 1560 } 1561 } 1562 return rn_val; 1563 } 1564 1565 1566 // Addressing Mode 4 - Load and Store Multiple 1567 void Simulator::HandleRList(Instruction* instr, bool load) { 1568 int rlist = instr->RlistValue(); 1569 int num_regs = count_bits(rlist); 1570 1571 intptr_t start_address = 0; 1572 intptr_t end_address = 0; 1573 int32_t rn_val = 1574 ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); 1575 1576 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1577 // Catch null pointers a little earlier. 1578 DCHECK(start_address > 8191 || start_address < 0); 1579 int reg = 0; 1580 while (rlist != 0) { 1581 if ((rlist & 1) != 0) { 1582 if (load) { 1583 set_register(reg, *address); 1584 } else { 1585 *address = get_register(reg); 1586 } 1587 address += 1; 1588 } 1589 reg++; 1590 rlist >>= 1; 1591 } 1592 DCHECK(end_address == ((intptr_t)address) - 4); 1593 if (instr->HasW()) { 1594 set_register(instr->RnValue(), rn_val); 1595 } 1596 } 1597 1598 1599 // Addressing Mode 6 - Load and Store Multiple Coprocessor registers. 1600 void Simulator::HandleVList(Instruction* instr) { 1601 VFPRegPrecision precision = 1602 (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; 1603 int operand_size = (precision == kSinglePrecision) ? 4 : 8; 1604 1605 bool load = (instr->VLValue() == 0x1); 1606 1607 int vd; 1608 int num_regs; 1609 vd = instr->VFPDRegValue(precision); 1610 if (precision == kSinglePrecision) { 1611 num_regs = instr->Immed8Value(); 1612 } else { 1613 num_regs = instr->Immed8Value() / 2; 1614 } 1615 1616 intptr_t start_address = 0; 1617 intptr_t end_address = 0; 1618 int32_t rn_val = 1619 ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); 1620 1621 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1622 for (int reg = vd; reg < vd + num_regs; reg++) { 1623 if (precision == kSinglePrecision) { 1624 if (load) { 1625 set_s_register_from_sinteger( 1626 reg, ReadW(reinterpret_cast<int32_t>(address), instr)); 1627 } else { 1628 WriteW(reinterpret_cast<int32_t>(address), 1629 get_sinteger_from_s_register(reg), instr); 1630 } 1631 address += 1; 1632 } else { 1633 if (load) { 1634 int32_t data[] = { 1635 ReadW(reinterpret_cast<int32_t>(address), instr), 1636 ReadW(reinterpret_cast<int32_t>(address + 1), instr) 1637 }; 1638 double d; 1639 memcpy(&d, data, 8); 1640 set_d_register_from_double(reg, d); 1641 } else { 1642 int32_t data[2]; 1643 double d = get_double_from_d_register(reg); 1644 memcpy(data, &d, 8); 1645 WriteW(reinterpret_cast<int32_t>(address), data[0], instr); 1646 WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr); 1647 } 1648 address += 2; 1649 } 1650 } 1651 DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address); 1652 if (instr->HasW()) { 1653 set_register(instr->RnValue(), rn_val); 1654 } 1655 } 1656 1657 1658 // Calls into the V8 runtime are based on this very simple interface. 1659 // Note: To be able to return two values from some calls the code in runtime.cc 1660 // uses the ObjectPair which is essentially two 32-bit values stuffed into a 1661 // 64-bit value. With the code below we assume that all runtime calls return 1662 // 64 bits of result. If they don't, the r1 result register contains a bogus 1663 // value, which is fine because it is caller-saved. 1664 typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, 1665 int32_t arg1, 1666 int32_t arg2, 1667 int32_t arg3, 1668 int32_t arg4, 1669 int32_t arg5); 1670 1671 // These prototypes handle the four types of FP calls. 1672 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1673 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1674 typedef double (*SimulatorRuntimeFPCall)(double darg0); 1675 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1676 1677 // This signature supports direct call in to API function native callback 1678 // (refer to InvocationCallback in v8.h). 1679 typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); 1680 typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1); 1681 1682 // This signature supports direct call to accessor getter callback. 1683 typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); 1684 typedef void (*SimulatorRuntimeProfilingGetterCall)( 1685 int32_t arg0, int32_t arg1, void* arg2); 1686 1687 // Software interrupt instructions are used by the simulator to call into the 1688 // C-based V8 runtime. 1689 void Simulator::SoftwareInterrupt(Instruction* instr) { 1690 int svc = instr->SvcValue(); 1691 switch (svc) { 1692 case kCallRtRedirected: { 1693 // Check if stack is aligned. Error if not aligned is reported below to 1694 // include information on the function called. 1695 bool stack_aligned = 1696 (get_register(sp) 1697 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; 1698 Redirection* redirection = Redirection::FromSwiInstruction(instr); 1699 int32_t arg0 = get_register(r0); 1700 int32_t arg1 = get_register(r1); 1701 int32_t arg2 = get_register(r2); 1702 int32_t arg3 = get_register(r3); 1703 int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); 1704 int32_t arg4 = stack_pointer[0]; 1705 int32_t arg5 = stack_pointer[1]; 1706 bool fp_call = 1707 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1708 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1709 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1710 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1711 // This is dodgy but it works because the C entry stubs are never moved. 1712 // See comment in codegen-arm.cc and bug 1242173. 1713 int32_t saved_lr = get_register(lr); 1714 intptr_t external = 1715 reinterpret_cast<intptr_t>(redirection->external_function()); 1716 if (fp_call) { 1717 double dval0, dval1; // one or two double parameters 1718 int32_t ival; // zero or one integer parameters 1719 int64_t iresult = 0; // integer return value 1720 double dresult = 0; // double return value 1721 GetFpArgs(&dval0, &dval1, &ival); 1722 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1723 SimulatorRuntimeCall generic_target = 1724 reinterpret_cast<SimulatorRuntimeCall>(external); 1725 switch (redirection->type()) { 1726 case ExternalReference::BUILTIN_FP_FP_CALL: 1727 case ExternalReference::BUILTIN_COMPARE_CALL: 1728 PrintF("Call to host function at %p with args %f, %f", 1729 FUNCTION_ADDR(generic_target), dval0, dval1); 1730 break; 1731 case ExternalReference::BUILTIN_FP_CALL: 1732 PrintF("Call to host function at %p with arg %f", 1733 FUNCTION_ADDR(generic_target), dval0); 1734 break; 1735 case ExternalReference::BUILTIN_FP_INT_CALL: 1736 PrintF("Call to host function at %p with args %f, %d", 1737 FUNCTION_ADDR(generic_target), dval0, ival); 1738 break; 1739 default: 1740 UNREACHABLE(); 1741 break; 1742 } 1743 if (!stack_aligned) { 1744 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1745 } 1746 PrintF("\n"); 1747 } 1748 CHECK(stack_aligned); 1749 switch (redirection->type()) { 1750 case ExternalReference::BUILTIN_COMPARE_CALL: { 1751 SimulatorRuntimeCompareCall target = 1752 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 1753 iresult = target(dval0, dval1); 1754 set_register(r0, static_cast<int32_t>(iresult)); 1755 set_register(r1, static_cast<int32_t>(iresult >> 32)); 1756 break; 1757 } 1758 case ExternalReference::BUILTIN_FP_FP_CALL: { 1759 SimulatorRuntimeFPFPCall target = 1760 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 1761 dresult = target(dval0, dval1); 1762 SetFpResult(dresult); 1763 break; 1764 } 1765 case ExternalReference::BUILTIN_FP_CALL: { 1766 SimulatorRuntimeFPCall target = 1767 reinterpret_cast<SimulatorRuntimeFPCall>(external); 1768 dresult = target(dval0); 1769 SetFpResult(dresult); 1770 break; 1771 } 1772 case ExternalReference::BUILTIN_FP_INT_CALL: { 1773 SimulatorRuntimeFPIntCall target = 1774 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 1775 dresult = target(dval0, ival); 1776 SetFpResult(dresult); 1777 break; 1778 } 1779 default: 1780 UNREACHABLE(); 1781 break; 1782 } 1783 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1784 switch (redirection->type()) { 1785 case ExternalReference::BUILTIN_COMPARE_CALL: 1786 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 1787 break; 1788 case ExternalReference::BUILTIN_FP_FP_CALL: 1789 case ExternalReference::BUILTIN_FP_CALL: 1790 case ExternalReference::BUILTIN_FP_INT_CALL: 1791 PrintF("Returned %f\n", dresult); 1792 break; 1793 default: 1794 UNREACHABLE(); 1795 break; 1796 } 1797 } 1798 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 1799 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1800 PrintF("Call to host function at %p args %08x", 1801 reinterpret_cast<void*>(external), arg0); 1802 if (!stack_aligned) { 1803 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1804 } 1805 PrintF("\n"); 1806 } 1807 CHECK(stack_aligned); 1808 SimulatorRuntimeDirectApiCall target = 1809 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 1810 target(arg0); 1811 } else if ( 1812 redirection->type() == ExternalReference::PROFILING_API_CALL) { 1813 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1814 PrintF("Call to host function at %p args %08x %08x", 1815 reinterpret_cast<void*>(external), arg0, arg1); 1816 if (!stack_aligned) { 1817 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1818 } 1819 PrintF("\n"); 1820 } 1821 CHECK(stack_aligned); 1822 SimulatorRuntimeProfilingApiCall target = 1823 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 1824 target(arg0, Redirection::ReverseRedirection(arg1)); 1825 } else if ( 1826 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 1827 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1828 PrintF("Call to host function at %p args %08x %08x", 1829 reinterpret_cast<void*>(external), arg0, arg1); 1830 if (!stack_aligned) { 1831 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1832 } 1833 PrintF("\n"); 1834 } 1835 CHECK(stack_aligned); 1836 SimulatorRuntimeDirectGetterCall target = 1837 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 1838 target(arg0, arg1); 1839 } else if ( 1840 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 1841 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1842 PrintF("Call to host function at %p args %08x %08x %08x", 1843 reinterpret_cast<void*>(external), arg0, arg1, arg2); 1844 if (!stack_aligned) { 1845 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1846 } 1847 PrintF("\n"); 1848 } 1849 CHECK(stack_aligned); 1850 SimulatorRuntimeProfilingGetterCall target = 1851 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( 1852 external); 1853 target(arg0, arg1, Redirection::ReverseRedirection(arg2)); 1854 } else { 1855 // builtin call. 1856 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); 1857 SimulatorRuntimeCall target = 1858 reinterpret_cast<SimulatorRuntimeCall>(external); 1859 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1860 PrintF( 1861 "Call to host function at %p " 1862 "args %08x, %08x, %08x, %08x, %08x, %08x", 1863 FUNCTION_ADDR(target), 1864 arg0, 1865 arg1, 1866 arg2, 1867 arg3, 1868 arg4, 1869 arg5); 1870 if (!stack_aligned) { 1871 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1872 } 1873 PrintF("\n"); 1874 } 1875 CHECK(stack_aligned); 1876 int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 1877 int32_t lo_res = static_cast<int32_t>(result); 1878 int32_t hi_res = static_cast<int32_t>(result >> 32); 1879 if (::v8::internal::FLAG_trace_sim) { 1880 PrintF("Returned %08x\n", lo_res); 1881 } 1882 set_register(r0, lo_res); 1883 set_register(r1, hi_res); 1884 } 1885 set_register(lr, saved_lr); 1886 set_pc(get_register(lr)); 1887 break; 1888 } 1889 case kBreakpoint: { 1890 ArmDebugger dbg(this); 1891 dbg.Debug(); 1892 break; 1893 } 1894 // stop uses all codes greater than 1 << 23. 1895 default: { 1896 if (svc >= (1 << 23)) { 1897 uint32_t code = svc & kStopCodeMask; 1898 if (isWatchedStop(code)) { 1899 IncreaseStopCounter(code); 1900 } 1901 // Stop if it is enabled, otherwise go on jumping over the stop 1902 // and the message address. 1903 if (isEnabledStop(code)) { 1904 ArmDebugger dbg(this); 1905 dbg.Stop(instr); 1906 } else { 1907 set_pc(get_pc() + 2 * Instruction::kInstrSize); 1908 } 1909 } else { 1910 // This is not a valid svc code. 1911 UNREACHABLE(); 1912 break; 1913 } 1914 } 1915 } 1916 } 1917 1918 1919 double Simulator::canonicalizeNaN(double value) { 1920 return (FPSCR_default_NaN_mode_ && std::isnan(value)) ? 1921 FixedDoubleArray::canonical_not_the_hole_nan_as_double() : value; 1922 } 1923 1924 1925 // Stop helper functions. 1926 bool Simulator::isStopInstruction(Instruction* instr) { 1927 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); 1928 } 1929 1930 1931 bool Simulator::isWatchedStop(uint32_t code) { 1932 DCHECK(code <= kMaxStopCode); 1933 return code < kNumOfWatchedStops; 1934 } 1935 1936 1937 bool Simulator::isEnabledStop(uint32_t code) { 1938 DCHECK(code <= kMaxStopCode); 1939 // Unwatched stops are always enabled. 1940 return !isWatchedStop(code) || 1941 !(watched_stops_[code].count & kStopDisabledBit); 1942 } 1943 1944 1945 void Simulator::EnableStop(uint32_t code) { 1946 DCHECK(isWatchedStop(code)); 1947 if (!isEnabledStop(code)) { 1948 watched_stops_[code].count &= ~kStopDisabledBit; 1949 } 1950 } 1951 1952 1953 void Simulator::DisableStop(uint32_t code) { 1954 DCHECK(isWatchedStop(code)); 1955 if (isEnabledStop(code)) { 1956 watched_stops_[code].count |= kStopDisabledBit; 1957 } 1958 } 1959 1960 1961 void Simulator::IncreaseStopCounter(uint32_t code) { 1962 DCHECK(code <= kMaxStopCode); 1963 DCHECK(isWatchedStop(code)); 1964 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 1965 PrintF("Stop counter for code %i has overflowed.\n" 1966 "Enabling this code and reseting the counter to 0.\n", code); 1967 watched_stops_[code].count = 0; 1968 EnableStop(code); 1969 } else { 1970 watched_stops_[code].count++; 1971 } 1972 } 1973 1974 1975 // Print a stop status. 1976 void Simulator::PrintStopInfo(uint32_t code) { 1977 DCHECK(code <= kMaxStopCode); 1978 if (!isWatchedStop(code)) { 1979 PrintF("Stop not watched."); 1980 } else { 1981 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; 1982 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 1983 // Don't print the state of unused breakpoints. 1984 if (count != 0) { 1985 if (watched_stops_[code].desc) { 1986 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", 1987 code, code, state, count, watched_stops_[code].desc); 1988 } else { 1989 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", 1990 code, code, state, count); 1991 } 1992 } 1993 } 1994 } 1995 1996 1997 // Handle execution based on instruction types. 1998 1999 // Instruction types 0 and 1 are both rolled into one function because they 2000 // only differ in the handling of the shifter_operand. 2001 void Simulator::DecodeType01(Instruction* instr) { 2002 int type = instr->TypeValue(); 2003 if ((type == 0) && instr->IsSpecialType0()) { 2004 // multiply instruction or extra loads and stores 2005 if (instr->Bits(7, 4) == 9) { 2006 if (instr->Bit(24) == 0) { 2007 // Raw field decoding here. Multiply instructions have their Rd in 2008 // funny places. 2009 int rn = instr->RnValue(); 2010 int rm = instr->RmValue(); 2011 int rs = instr->RsValue(); 2012 int32_t rs_val = get_register(rs); 2013 int32_t rm_val = get_register(rm); 2014 if (instr->Bit(23) == 0) { 2015 if (instr->Bit(21) == 0) { 2016 // The MUL instruction description (A 4.1.33) refers to Rd as being 2017 // the destination for the operation, but it confusingly uses the 2018 // Rn field to encode it. 2019 // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); 2020 int rd = rn; // Remap the rn field to the Rd register. 2021 int32_t alu_out = rm_val * rs_val; 2022 set_register(rd, alu_out); 2023 if (instr->HasS()) { 2024 SetNZFlags(alu_out); 2025 } 2026 } else { 2027 int rd = instr->RdValue(); 2028 int32_t acc_value = get_register(rd); 2029 if (instr->Bit(22) == 0) { 2030 // The MLA instruction description (A 4.1.28) refers to the order 2031 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the 2032 // Rn field to encode the Rd register and the Rd field to encode 2033 // the Rn register. 2034 // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); 2035 int32_t mul_out = rm_val * rs_val; 2036 int32_t result = acc_value + mul_out; 2037 set_register(rn, result); 2038 } else { 2039 // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); 2040 int32_t mul_out = rm_val * rs_val; 2041 int32_t result = acc_value - mul_out; 2042 set_register(rn, result); 2043 } 2044 } 2045 } else { 2046 // The signed/long multiply instructions use the terms RdHi and RdLo 2047 // when referring to the target registers. They are mapped to the Rn 2048 // and Rd fields as follows: 2049 // RdLo == Rd 2050 // RdHi == Rn (This is confusingly stored in variable rd here 2051 // because the mul instruction from above uses the 2052 // Rn field to encode the Rd register. Good luck figuring 2053 // this out without reading the ARM instruction manual 2054 // at a very detailed level.) 2055 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); 2056 int rd_hi = rn; // Remap the rn field to the RdHi register. 2057 int rd_lo = instr->RdValue(); 2058 int32_t hi_res = 0; 2059 int32_t lo_res = 0; 2060 if (instr->Bit(22) == 1) { 2061 int64_t left_op = static_cast<int32_t>(rm_val); 2062 int64_t right_op = static_cast<int32_t>(rs_val); 2063 uint64_t result = left_op * right_op; 2064 hi_res = static_cast<int32_t>(result >> 32); 2065 lo_res = static_cast<int32_t>(result & 0xffffffff); 2066 } else { 2067 // unsigned multiply 2068 uint64_t left_op = static_cast<uint32_t>(rm_val); 2069 uint64_t right_op = static_cast<uint32_t>(rs_val); 2070 uint64_t result = left_op * right_op; 2071 hi_res = static_cast<int32_t>(result >> 32); 2072 lo_res = static_cast<int32_t>(result & 0xffffffff); 2073 } 2074 set_register(rd_lo, lo_res); 2075 set_register(rd_hi, hi_res); 2076 if (instr->HasS()) { 2077 UNIMPLEMENTED(); 2078 } 2079 } 2080 } else { 2081 UNIMPLEMENTED(); // Not used by V8. 2082 } 2083 } else { 2084 // extra load/store instructions 2085 int rd = instr->RdValue(); 2086 int rn = instr->RnValue(); 2087 int32_t rn_val = get_register(rn); 2088 int32_t addr = 0; 2089 if (instr->Bit(22) == 0) { 2090 int rm = instr->RmValue(); 2091 int32_t rm_val = get_register(rm); 2092 switch (instr->PUField()) { 2093 case da_x: { 2094 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); 2095 DCHECK(!instr->HasW()); 2096 addr = rn_val; 2097 rn_val -= rm_val; 2098 set_register(rn, rn_val); 2099 break; 2100 } 2101 case ia_x: { 2102 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); 2103 DCHECK(!instr->HasW()); 2104 addr = rn_val; 2105 rn_val += rm_val; 2106 set_register(rn, rn_val); 2107 break; 2108 } 2109 case db_x: { 2110 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); 2111 rn_val -= rm_val; 2112 addr = rn_val; 2113 if (instr->HasW()) { 2114 set_register(rn, rn_val); 2115 } 2116 break; 2117 } 2118 case ib_x: { 2119 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); 2120 rn_val += rm_val; 2121 addr = rn_val; 2122 if (instr->HasW()) { 2123 set_register(rn, rn_val); 2124 } 2125 break; 2126 } 2127 default: { 2128 // The PU field is a 2-bit field. 2129 UNREACHABLE(); 2130 break; 2131 } 2132 } 2133 } else { 2134 int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); 2135 switch (instr->PUField()) { 2136 case da_x: { 2137 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); 2138 DCHECK(!instr->HasW()); 2139 addr = rn_val; 2140 rn_val -= imm_val; 2141 set_register(rn, rn_val); 2142 break; 2143 } 2144 case ia_x: { 2145 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); 2146 DCHECK(!instr->HasW()); 2147 addr = rn_val; 2148 rn_val += imm_val; 2149 set_register(rn, rn_val); 2150 break; 2151 } 2152 case db_x: { 2153 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); 2154 rn_val -= imm_val; 2155 addr = rn_val; 2156 if (instr->HasW()) { 2157 set_register(rn, rn_val); 2158 } 2159 break; 2160 } 2161 case ib_x: { 2162 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); 2163 rn_val += imm_val; 2164 addr = rn_val; 2165 if (instr->HasW()) { 2166 set_register(rn, rn_val); 2167 } 2168 break; 2169 } 2170 default: { 2171 // The PU field is a 2-bit field. 2172 UNREACHABLE(); 2173 break; 2174 } 2175 } 2176 } 2177 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { 2178 DCHECK((rd % 2) == 0); 2179 if (instr->HasH()) { 2180 // The strd instruction. 2181 int32_t value1 = get_register(rd); 2182 int32_t value2 = get_register(rd+1); 2183 WriteDW(addr, value1, value2); 2184 } else { 2185 // The ldrd instruction. 2186 int* rn_data = ReadDW(addr); 2187 set_dw_register(rd, rn_data); 2188 } 2189 } else if (instr->HasH()) { 2190 if (instr->HasSign()) { 2191 if (instr->HasL()) { 2192 int16_t val = ReadH(addr, instr); 2193 set_register(rd, val); 2194 } else { 2195 int16_t val = get_register(rd); 2196 WriteH(addr, val, instr); 2197 } 2198 } else { 2199 if (instr->HasL()) { 2200 uint16_t val = ReadHU(addr, instr); 2201 set_register(rd, val); 2202 } else { 2203 uint16_t val = get_register(rd); 2204 WriteH(addr, val, instr); 2205 } 2206 } 2207 } else { 2208 // signed byte loads 2209 DCHECK(instr->HasSign()); 2210 DCHECK(instr->HasL()); 2211 int8_t val = ReadB(addr); 2212 set_register(rd, val); 2213 } 2214 return; 2215 } 2216 } else if ((type == 0) && instr->IsMiscType0()) { 2217 if (instr->Bits(22, 21) == 1) { 2218 int rm = instr->RmValue(); 2219 switch (instr->BitField(7, 4)) { 2220 case BX: 2221 set_pc(get_register(rm)); 2222 break; 2223 case BLX: { 2224 uint32_t old_pc = get_pc(); 2225 set_pc(get_register(rm)); 2226 set_register(lr, old_pc + Instruction::kInstrSize); 2227 break; 2228 } 2229 case BKPT: { 2230 ArmDebugger dbg(this); 2231 PrintF("Simulator hit BKPT.\n"); 2232 dbg.Debug(); 2233 break; 2234 } 2235 default: 2236 UNIMPLEMENTED(); 2237 } 2238 } else if (instr->Bits(22, 21) == 3) { 2239 int rm = instr->RmValue(); 2240 int rd = instr->RdValue(); 2241 switch (instr->BitField(7, 4)) { 2242 case CLZ: { 2243 uint32_t bits = get_register(rm); 2244 int leading_zeros = 0; 2245 if (bits == 0) { 2246 leading_zeros = 32; 2247 } else { 2248 while ((bits & 0x80000000u) == 0) { 2249 bits <<= 1; 2250 leading_zeros++; 2251 } 2252 } 2253 set_register(rd, leading_zeros); 2254 break; 2255 } 2256 default: 2257 UNIMPLEMENTED(); 2258 } 2259 } else { 2260 PrintF("%08x\n", instr->InstructionBits()); 2261 UNIMPLEMENTED(); 2262 } 2263 } else if ((type == 1) && instr->IsNopType1()) { 2264 // NOP. 2265 } else { 2266 int rd = instr->RdValue(); 2267 int rn = instr->RnValue(); 2268 int32_t rn_val = get_register(rn); 2269 int32_t shifter_operand = 0; 2270 bool shifter_carry_out = 0; 2271 if (type == 0) { 2272 shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2273 } else { 2274 DCHECK(instr->TypeValue() == 1); 2275 shifter_operand = GetImm(instr, &shifter_carry_out); 2276 } 2277 int32_t alu_out; 2278 2279 switch (instr->OpcodeField()) { 2280 case AND: { 2281 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); 2282 // Format(instr, "and'cond's 'rd, 'rn, 'imm"); 2283 alu_out = rn_val & shifter_operand; 2284 set_register(rd, alu_out); 2285 if (instr->HasS()) { 2286 SetNZFlags(alu_out); 2287 SetCFlag(shifter_carry_out); 2288 } 2289 break; 2290 } 2291 2292 case EOR: { 2293 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); 2294 // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); 2295 alu_out = rn_val ^ shifter_operand; 2296 set_register(rd, alu_out); 2297 if (instr->HasS()) { 2298 SetNZFlags(alu_out); 2299 SetCFlag(shifter_carry_out); 2300 } 2301 break; 2302 } 2303 2304 case SUB: { 2305 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); 2306 // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); 2307 alu_out = rn_val - shifter_operand; 2308 set_register(rd, alu_out); 2309 if (instr->HasS()) { 2310 SetNZFlags(alu_out); 2311 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2312 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2313 } 2314 break; 2315 } 2316 2317 case RSB: { 2318 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); 2319 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); 2320 alu_out = shifter_operand - rn_val; 2321 set_register(rd, alu_out); 2322 if (instr->HasS()) { 2323 SetNZFlags(alu_out); 2324 SetCFlag(!BorrowFrom(shifter_operand, rn_val)); 2325 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); 2326 } 2327 break; 2328 } 2329 2330 case ADD: { 2331 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); 2332 // Format(instr, "add'cond's 'rd, 'rn, 'imm"); 2333 alu_out = rn_val + shifter_operand; 2334 set_register(rd, alu_out); 2335 if (instr->HasS()) { 2336 SetNZFlags(alu_out); 2337 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2338 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2339 } 2340 break; 2341 } 2342 2343 case ADC: { 2344 // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); 2345 // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); 2346 alu_out = rn_val + shifter_operand + GetCarry(); 2347 set_register(rd, alu_out); 2348 if (instr->HasS()) { 2349 SetNZFlags(alu_out); 2350 SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); 2351 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2352 } 2353 break; 2354 } 2355 2356 case SBC: { 2357 Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); 2358 Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); 2359 break; 2360 } 2361 2362 case RSC: { 2363 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); 2364 Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); 2365 break; 2366 } 2367 2368 case TST: { 2369 if (instr->HasS()) { 2370 // Format(instr, "tst'cond 'rn, 'shift_rm"); 2371 // Format(instr, "tst'cond 'rn, 'imm"); 2372 alu_out = rn_val & shifter_operand; 2373 SetNZFlags(alu_out); 2374 SetCFlag(shifter_carry_out); 2375 } else { 2376 // Format(instr, "movw'cond 'rd, 'imm"). 2377 alu_out = instr->ImmedMovwMovtValue(); 2378 set_register(rd, alu_out); 2379 } 2380 break; 2381 } 2382 2383 case TEQ: { 2384 if (instr->HasS()) { 2385 // Format(instr, "teq'cond 'rn, 'shift_rm"); 2386 // Format(instr, "teq'cond 'rn, 'imm"); 2387 alu_out = rn_val ^ shifter_operand; 2388 SetNZFlags(alu_out); 2389 SetCFlag(shifter_carry_out); 2390 } else { 2391 // Other instructions matching this pattern are handled in the 2392 // miscellaneous instructions part above. 2393 UNREACHABLE(); 2394 } 2395 break; 2396 } 2397 2398 case CMP: { 2399 if (instr->HasS()) { 2400 // Format(instr, "cmp'cond 'rn, 'shift_rm"); 2401 // Format(instr, "cmp'cond 'rn, 'imm"); 2402 alu_out = rn_val - shifter_operand; 2403 SetNZFlags(alu_out); 2404 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2405 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2406 } else { 2407 // Format(instr, "movt'cond 'rd, 'imm"). 2408 alu_out = (get_register(rd) & 0xffff) | 2409 (instr->ImmedMovwMovtValue() << 16); 2410 set_register(rd, alu_out); 2411 } 2412 break; 2413 } 2414 2415 case CMN: { 2416 if (instr->HasS()) { 2417 // Format(instr, "cmn'cond 'rn, 'shift_rm"); 2418 // Format(instr, "cmn'cond 'rn, 'imm"); 2419 alu_out = rn_val + shifter_operand; 2420 SetNZFlags(alu_out); 2421 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2422 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2423 } else { 2424 // Other instructions matching this pattern are handled in the 2425 // miscellaneous instructions part above. 2426 UNREACHABLE(); 2427 } 2428 break; 2429 } 2430 2431 case ORR: { 2432 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); 2433 // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); 2434 alu_out = rn_val | shifter_operand; 2435 set_register(rd, alu_out); 2436 if (instr->HasS()) { 2437 SetNZFlags(alu_out); 2438 SetCFlag(shifter_carry_out); 2439 } 2440 break; 2441 } 2442 2443 case MOV: { 2444 // Format(instr, "mov'cond's 'rd, 'shift_rm"); 2445 // Format(instr, "mov'cond's 'rd, 'imm"); 2446 alu_out = shifter_operand; 2447 set_register(rd, alu_out); 2448 if (instr->HasS()) { 2449 SetNZFlags(alu_out); 2450 SetCFlag(shifter_carry_out); 2451 } 2452 break; 2453 } 2454 2455 case BIC: { 2456 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); 2457 // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); 2458 alu_out = rn_val & ~shifter_operand; 2459 set_register(rd, alu_out); 2460 if (instr->HasS()) { 2461 SetNZFlags(alu_out); 2462 SetCFlag(shifter_carry_out); 2463 } 2464 break; 2465 } 2466 2467 case MVN: { 2468 // Format(instr, "mvn'cond's 'rd, 'shift_rm"); 2469 // Format(instr, "mvn'cond's 'rd, 'imm"); 2470 alu_out = ~shifter_operand; 2471 set_register(rd, alu_out); 2472 if (instr->HasS()) { 2473 SetNZFlags(alu_out); 2474 SetCFlag(shifter_carry_out); 2475 } 2476 break; 2477 } 2478 2479 default: { 2480 UNREACHABLE(); 2481 break; 2482 } 2483 } 2484 } 2485 } 2486 2487 2488 void Simulator::DecodeType2(Instruction* instr) { 2489 int rd = instr->RdValue(); 2490 int rn = instr->RnValue(); 2491 int32_t rn_val = get_register(rn); 2492 int32_t im_val = instr->Offset12Value(); 2493 int32_t addr = 0; 2494 switch (instr->PUField()) { 2495 case da_x: { 2496 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); 2497 DCHECK(!instr->HasW()); 2498 addr = rn_val; 2499 rn_val -= im_val; 2500 set_register(rn, rn_val); 2501 break; 2502 } 2503 case ia_x: { 2504 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); 2505 DCHECK(!instr->HasW()); 2506 addr = rn_val; 2507 rn_val += im_val; 2508 set_register(rn, rn_val); 2509 break; 2510 } 2511 case db_x: { 2512 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); 2513 rn_val -= im_val; 2514 addr = rn_val; 2515 if (instr->HasW()) { 2516 set_register(rn, rn_val); 2517 } 2518 break; 2519 } 2520 case ib_x: { 2521 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); 2522 rn_val += im_val; 2523 addr = rn_val; 2524 if (instr->HasW()) { 2525 set_register(rn, rn_val); 2526 } 2527 break; 2528 } 2529 default: { 2530 UNREACHABLE(); 2531 break; 2532 } 2533 } 2534 if (instr->HasB()) { 2535 if (instr->HasL()) { 2536 byte val = ReadBU(addr); 2537 set_register(rd, val); 2538 } else { 2539 byte val = get_register(rd); 2540 WriteB(addr, val); 2541 } 2542 } else { 2543 if (instr->HasL()) { 2544 set_register(rd, ReadW(addr, instr)); 2545 } else { 2546 WriteW(addr, get_register(rd), instr); 2547 } 2548 } 2549 } 2550 2551 2552 void Simulator::DecodeType3(Instruction* instr) { 2553 int rd = instr->RdValue(); 2554 int rn = instr->RnValue(); 2555 int32_t rn_val = get_register(rn); 2556 bool shifter_carry_out = 0; 2557 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2558 int32_t addr = 0; 2559 switch (instr->PUField()) { 2560 case da_x: { 2561 DCHECK(!instr->HasW()); 2562 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); 2563 UNIMPLEMENTED(); 2564 break; 2565 } 2566 case ia_x: { 2567 if (instr->Bit(4) == 0) { 2568 // Memop. 2569 } else { 2570 if (instr->Bit(5) == 0) { 2571 switch (instr->Bits(22, 21)) { 2572 case 0: 2573 if (instr->Bit(20) == 0) { 2574 if (instr->Bit(6) == 0) { 2575 // Pkhbt. 2576 uint32_t rn_val = get_register(rn); 2577 uint32_t rm_val = get_register(instr->RmValue()); 2578 int32_t shift = instr->Bits(11, 7); 2579 rm_val <<= shift; 2580 set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); 2581 } else { 2582 // Pkhtb. 2583 uint32_t rn_val = get_register(rn); 2584 int32_t rm_val = get_register(instr->RmValue()); 2585 int32_t shift = instr->Bits(11, 7); 2586 if (shift == 0) { 2587 shift = 32; 2588 } 2589 rm_val >>= shift; 2590 set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); 2591 } 2592 } else { 2593 UNIMPLEMENTED(); 2594 } 2595 break; 2596 case 1: 2597 UNIMPLEMENTED(); 2598 break; 2599 case 2: 2600 UNIMPLEMENTED(); 2601 break; 2602 case 3: { 2603 // Usat. 2604 int32_t sat_pos = instr->Bits(20, 16); 2605 int32_t sat_val = (1 << sat_pos) - 1; 2606 int32_t shift = instr->Bits(11, 7); 2607 int32_t shift_type = instr->Bit(6); 2608 int32_t rm_val = get_register(instr->RmValue()); 2609 if (shift_type == 0) { // LSL 2610 rm_val <<= shift; 2611 } else { // ASR 2612 rm_val >>= shift; 2613 } 2614 // If saturation occurs, the Q flag should be set in the CPSR. 2615 // There is no Q flag yet, and no instruction (MRS) to read the 2616 // CPSR directly. 2617 if (rm_val > sat_val) { 2618 rm_val = sat_val; 2619 } else if (rm_val < 0) { 2620 rm_val = 0; 2621 } 2622 set_register(rd, rm_val); 2623 break; 2624 } 2625 } 2626 } else { 2627 switch (instr->Bits(22, 21)) { 2628 case 0: 2629 UNIMPLEMENTED(); 2630 break; 2631 case 1: 2632 UNIMPLEMENTED(); 2633 break; 2634 case 2: 2635 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2636 if (instr->Bits(19, 16) == 0xF) { 2637 // Uxtb16. 2638 uint32_t rm_val = get_register(instr->RmValue()); 2639 int32_t rotate = instr->Bits(11, 10); 2640 switch (rotate) { 2641 case 0: 2642 break; 2643 case 1: 2644 rm_val = (rm_val >> 8) | (rm_val << 24); 2645 break; 2646 case 2: 2647 rm_val = (rm_val >> 16) | (rm_val << 16); 2648 break; 2649 case 3: 2650 rm_val = (rm_val >> 24) | (rm_val << 8); 2651 break; 2652 } 2653 set_register(rd, 2654 (rm_val & 0xFF) | (rm_val & 0xFF0000)); 2655 } else { 2656 UNIMPLEMENTED(); 2657 } 2658 } else { 2659 UNIMPLEMENTED(); 2660 } 2661 break; 2662 case 3: 2663 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2664 if (instr->Bits(19, 16) == 0xF) { 2665 // Uxtb. 2666 uint32_t rm_val = get_register(instr->RmValue()); 2667 int32_t rotate = instr->Bits(11, 10); 2668 switch (rotate) { 2669 case 0: 2670 break; 2671 case 1: 2672 rm_val = (rm_val >> 8) | (rm_val << 24); 2673 break; 2674 case 2: 2675 rm_val = (rm_val >> 16) | (rm_val << 16); 2676 break; 2677 case 3: 2678 rm_val = (rm_val >> 24) | (rm_val << 8); 2679 break; 2680 } 2681 set_register(rd, (rm_val & 0xFF)); 2682 } else { 2683 // Uxtab. 2684 uint32_t rn_val = get_register(rn); 2685 uint32_t rm_val = get_register(instr->RmValue()); 2686 int32_t rotate = instr->Bits(11, 10); 2687 switch (rotate) { 2688 case 0: 2689 break; 2690 case 1: 2691 rm_val = (rm_val >> 8) | (rm_val << 24); 2692 break; 2693 case 2: 2694 rm_val = (rm_val >> 16) | (rm_val << 16); 2695 break; 2696 case 3: 2697 rm_val = (rm_val >> 24) | (rm_val << 8); 2698 break; 2699 } 2700 set_register(rd, rn_val + (rm_val & 0xFF)); 2701 } 2702 } else { 2703 UNIMPLEMENTED(); 2704 } 2705 break; 2706 } 2707 } 2708 return; 2709 } 2710 break; 2711 } 2712 case db_x: { 2713 if (FLAG_enable_sudiv) { 2714 if (instr->Bits(5, 4) == 0x1) { 2715 if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { 2716 // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs 2717 // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs); 2718 int rm = instr->RmValue(); 2719 int32_t rm_val = get_register(rm); 2720 int rs = instr->RsValue(); 2721 int32_t rs_val = get_register(rs); 2722 int32_t ret_val = 0; 2723 DCHECK(rs_val != 0); 2724 // udiv 2725 if (instr->Bit(21) == 0x1) { 2726 ret_val = static_cast<int32_t>(static_cast<uint32_t>(rm_val) / 2727 static_cast<uint32_t>(rs_val)); 2728 } else if ((rm_val == kMinInt) && (rs_val == -1)) { 2729 ret_val = kMinInt; 2730 } else { 2731 ret_val = rm_val / rs_val; 2732 } 2733 set_register(rn, ret_val); 2734 return; 2735 } 2736 } 2737 } 2738 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); 2739 addr = rn_val - shifter_operand; 2740 if (instr->HasW()) { 2741 set_register(rn, addr); 2742 } 2743 break; 2744 } 2745 case ib_x: { 2746 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { 2747 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); 2748 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2749 uint32_t msbit = widthminus1 + lsbit; 2750 if (msbit <= 31) { 2751 if (instr->Bit(22)) { 2752 // ubfx - unsigned bitfield extract. 2753 uint32_t rm_val = 2754 static_cast<uint32_t>(get_register(instr->RmValue())); 2755 uint32_t extr_val = rm_val << (31 - msbit); 2756 extr_val = extr_val >> (31 - widthminus1); 2757 set_register(instr->RdValue(), extr_val); 2758 } else { 2759 // sbfx - signed bitfield extract. 2760 int32_t rm_val = get_register(instr->RmValue()); 2761 int32_t extr_val = rm_val << (31 - msbit); 2762 extr_val = extr_val >> (31 - widthminus1); 2763 set_register(instr->RdValue(), extr_val); 2764 } 2765 } else { 2766 UNREACHABLE(); 2767 } 2768 return; 2769 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { 2770 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2771 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); 2772 if (msbit >= lsbit) { 2773 // bfc or bfi - bitfield clear/insert. 2774 uint32_t rd_val = 2775 static_cast<uint32_t>(get_register(instr->RdValue())); 2776 uint32_t bitcount = msbit - lsbit + 1; 2777 uint32_t mask = 0xffffffffu >> (32 - bitcount); 2778 rd_val &= ~(mask << lsbit); 2779 if (instr->RmValue() != 15) { 2780 // bfi - bitfield insert. 2781 uint32_t rm_val = 2782 static_cast<uint32_t>(get_register(instr->RmValue())); 2783 rm_val &= mask; 2784 rd_val |= rm_val << lsbit; 2785 } 2786 set_register(instr->RdValue(), rd_val); 2787 } else { 2788 UNREACHABLE(); 2789 } 2790 return; 2791 } else { 2792 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); 2793 addr = rn_val + shifter_operand; 2794 if (instr->HasW()) { 2795 set_register(rn, addr); 2796 } 2797 } 2798 break; 2799 } 2800 default: { 2801 UNREACHABLE(); 2802 break; 2803 } 2804 } 2805 if (instr->HasB()) { 2806 if (instr->HasL()) { 2807 uint8_t byte = ReadB(addr); 2808 set_register(rd, byte); 2809 } else { 2810 uint8_t byte = get_register(rd); 2811 WriteB(addr, byte); 2812 } 2813 } else { 2814 if (instr->HasL()) { 2815 set_register(rd, ReadW(addr, instr)); 2816 } else { 2817 WriteW(addr, get_register(rd), instr); 2818 } 2819 } 2820 } 2821 2822 2823 void Simulator::DecodeType4(Instruction* instr) { 2824 DCHECK(instr->Bit(22) == 0); // only allowed to be set in privileged mode 2825 if (instr->HasL()) { 2826 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); 2827 HandleRList(instr, true); 2828 } else { 2829 // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); 2830 HandleRList(instr, false); 2831 } 2832 } 2833 2834 2835 void Simulator::DecodeType5(Instruction* instr) { 2836 // Format(instr, "b'l'cond 'target"); 2837 int off = (instr->SImmed24Value() << 2); 2838 intptr_t pc_address = get_pc(); 2839 if (instr->HasLink()) { 2840 set_register(lr, pc_address + Instruction::kInstrSize); 2841 } 2842 int pc_reg = get_register(pc); 2843 set_pc(pc_reg + off); 2844 } 2845 2846 2847 void Simulator::DecodeType6(Instruction* instr) { 2848 DecodeType6CoprocessorIns(instr); 2849 } 2850 2851 2852 void Simulator::DecodeType7(Instruction* instr) { 2853 if (instr->Bit(24) == 1) { 2854 SoftwareInterrupt(instr); 2855 } else { 2856 DecodeTypeVFP(instr); 2857 } 2858 } 2859 2860 2861 // void Simulator::DecodeTypeVFP(Instruction* instr) 2862 // The Following ARMv7 VFPv instructions are currently supported. 2863 // vmov :Sn = Rt 2864 // vmov :Rt = Sn 2865 // vcvt: Dd = Sm 2866 // vcvt: Sd = Dm 2867 // vcvt.f64.s32 Dd, Dd, #<fbits> 2868 // Dd = vabs(Dm) 2869 // Dd = vneg(Dm) 2870 // Dd = vadd(Dn, Dm) 2871 // Dd = vsub(Dn, Dm) 2872 // Dd = vmul(Dn, Dm) 2873 // Dd = vdiv(Dn, Dm) 2874 // vcmp(Dd, Dm) 2875 // vmrs 2876 // Dd = vsqrt(Dm) 2877 void Simulator::DecodeTypeVFP(Instruction* instr) { 2878 DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); 2879 DCHECK(instr->Bits(11, 9) == 0x5); 2880 2881 // Obtain double precision register codes. 2882 int vm = instr->VFPMRegValue(kDoublePrecision); 2883 int vd = instr->VFPDRegValue(kDoublePrecision); 2884 int vn = instr->VFPNRegValue(kDoublePrecision); 2885 2886 if (instr->Bit(4) == 0) { 2887 if (instr->Opc1Value() == 0x7) { 2888 // Other data processing instructions 2889 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { 2890 // vmov register to register. 2891 if (instr->SzValue() == 0x1) { 2892 int m = instr->VFPMRegValue(kDoublePrecision); 2893 int d = instr->VFPDRegValue(kDoublePrecision); 2894 set_d_register_from_double(d, get_double_from_d_register(m)); 2895 } else { 2896 int m = instr->VFPMRegValue(kSinglePrecision); 2897 int d = instr->VFPDRegValue(kSinglePrecision); 2898 set_s_register_from_float(d, get_float_from_s_register(m)); 2899 } 2900 } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { 2901 // vabs 2902 double dm_value = get_double_from_d_register(vm); 2903 double dd_value = std::fabs(dm_value); 2904 dd_value = canonicalizeNaN(dd_value); 2905 set_d_register_from_double(vd, dd_value); 2906 } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { 2907 // vneg 2908 double dm_value = get_double_from_d_register(vm); 2909 double dd_value = -dm_value; 2910 dd_value = canonicalizeNaN(dd_value); 2911 set_d_register_from_double(vd, dd_value); 2912 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { 2913 DecodeVCVTBetweenDoubleAndSingle(instr); 2914 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { 2915 DecodeVCVTBetweenFloatingPointAndInteger(instr); 2916 } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && 2917 (instr->Bit(8) == 1)) { 2918 // vcvt.f64.s32 Dd, Dd, #<fbits> 2919 int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); 2920 int fixed_value = get_sinteger_from_s_register(vd * 2); 2921 double divide = 1 << fraction_bits; 2922 set_d_register_from_double(vd, fixed_value / divide); 2923 } else if (((instr->Opc2Value() >> 1) == 0x6) && 2924 (instr->Opc3Value() & 0x1)) { 2925 DecodeVCVTBetweenFloatingPointAndInteger(instr); 2926 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 2927 (instr->Opc3Value() & 0x1)) { 2928 DecodeVCMP(instr); 2929 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { 2930 // vsqrt 2931 double dm_value = get_double_from_d_register(vm); 2932 double dd_value = std::sqrt(dm_value); 2933 dd_value = canonicalizeNaN(dd_value); 2934 set_d_register_from_double(vd, dd_value); 2935 } else if (instr->Opc3Value() == 0x0) { 2936 // vmov immediate. 2937 if (instr->SzValue() == 0x1) { 2938 set_d_register_from_double(vd, instr->DoubleImmedVmov()); 2939 } else { 2940 UNREACHABLE(); // Not used by v8. 2941 } 2942 } else { 2943 UNREACHABLE(); // Not used by V8. 2944 } 2945 } else if (instr->Opc1Value() == 0x3) { 2946 if (instr->SzValue() != 0x1) { 2947 UNREACHABLE(); // Not used by V8. 2948 } 2949 2950 if (instr->Opc3Value() & 0x1) { 2951 // vsub 2952 double dn_value = get_double_from_d_register(vn); 2953 double dm_value = get_double_from_d_register(vm); 2954 double dd_value = dn_value - dm_value; 2955 dd_value = canonicalizeNaN(dd_value); 2956 set_d_register_from_double(vd, dd_value); 2957 } else { 2958 // vadd 2959 double dn_value = get_double_from_d_register(vn); 2960 double dm_value = get_double_from_d_register(vm); 2961 double dd_value = dn_value + dm_value; 2962 dd_value = canonicalizeNaN(dd_value); 2963 set_d_register_from_double(vd, dd_value); 2964 } 2965 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { 2966 // vmul 2967 if (instr->SzValue() != 0x1) { 2968 UNREACHABLE(); // Not used by V8. 2969 } 2970 2971 double dn_value = get_double_from_d_register(vn); 2972 double dm_value = get_double_from_d_register(vm); 2973 double dd_value = dn_value * dm_value; 2974 dd_value = canonicalizeNaN(dd_value); 2975 set_d_register_from_double(vd, dd_value); 2976 } else if ((instr->Opc1Value() == 0x0)) { 2977 // vmla, vmls 2978 const bool is_vmls = (instr->Opc3Value() & 0x1); 2979 2980 if (instr->SzValue() != 0x1) { 2981 UNREACHABLE(); // Not used by V8. 2982 } 2983 2984 const double dd_val = get_double_from_d_register(vd); 2985 const double dn_val = get_double_from_d_register(vn); 2986 const double dm_val = get_double_from_d_register(vm); 2987 2988 // Note: we do the mul and add/sub in separate steps to avoid getting a 2989 // result with too high precision. 2990 set_d_register_from_double(vd, dn_val * dm_val); 2991 if (is_vmls) { 2992 set_d_register_from_double( 2993 vd, 2994 canonicalizeNaN(dd_val - get_double_from_d_register(vd))); 2995 } else { 2996 set_d_register_from_double( 2997 vd, 2998 canonicalizeNaN(dd_val + get_double_from_d_register(vd))); 2999 } 3000 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { 3001 // vdiv 3002 if (instr->SzValue() != 0x1) { 3003 UNREACHABLE(); // Not used by V8. 3004 } 3005 3006 double dn_value = get_double_from_d_register(vn); 3007 double dm_value = get_double_from_d_register(vm); 3008 double dd_value = dn_value / dm_value; 3009 div_zero_vfp_flag_ = (dm_value == 0); 3010 dd_value = canonicalizeNaN(dd_value); 3011 set_d_register_from_double(vd, dd_value); 3012 } else { 3013 UNIMPLEMENTED(); // Not used by V8. 3014 } 3015 } else { 3016 if ((instr->VCValue() == 0x0) && 3017 (instr->VAValue() == 0x0)) { 3018 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); 3019 } else if ((instr->VLValue() == 0x0) && 3020 (instr->VCValue() == 0x1) && 3021 (instr->Bit(23) == 0x0)) { 3022 // vmov (ARM core register to scalar) 3023 int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3024 double dd_value = get_double_from_d_register(vd); 3025 int32_t data[2]; 3026 memcpy(data, &dd_value, 8); 3027 data[instr->Bit(21)] = get_register(instr->RtValue()); 3028 memcpy(&dd_value, data, 8); 3029 set_d_register_from_double(vd, dd_value); 3030 } else if ((instr->VLValue() == 0x1) && 3031 (instr->VCValue() == 0x1) && 3032 (instr->Bit(23) == 0x0)) { 3033 // vmov (scalar to ARM core register) 3034 int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3035 double dn_value = get_double_from_d_register(vn); 3036 int32_t data[2]; 3037 memcpy(data, &dn_value, 8); 3038 set_register(instr->RtValue(), data[instr->Bit(21)]); 3039 } else if ((instr->VLValue() == 0x1) && 3040 (instr->VCValue() == 0x0) && 3041 (instr->VAValue() == 0x7) && 3042 (instr->Bits(19, 16) == 0x1)) { 3043 // vmrs 3044 uint32_t rt = instr->RtValue(); 3045 if (rt == 0xF) { 3046 Copy_FPSCR_to_APSR(); 3047 } else { 3048 // Emulate FPSCR from the Simulator flags. 3049 uint32_t fpscr = (n_flag_FPSCR_ << 31) | 3050 (z_flag_FPSCR_ << 30) | 3051 (c_flag_FPSCR_ << 29) | 3052 (v_flag_FPSCR_ << 28) | 3053 (FPSCR_default_NaN_mode_ << 25) | 3054 (inexact_vfp_flag_ << 4) | 3055 (underflow_vfp_flag_ << 3) | 3056 (overflow_vfp_flag_ << 2) | 3057 (div_zero_vfp_flag_ << 1) | 3058 (inv_op_vfp_flag_ << 0) | 3059 (FPSCR_rounding_mode_); 3060 set_register(rt, fpscr); 3061 } 3062 } else if ((instr->VLValue() == 0x0) && 3063 (instr->VCValue() == 0x0) && 3064 (instr->VAValue() == 0x7) && 3065 (instr->Bits(19, 16) == 0x1)) { 3066 // vmsr 3067 uint32_t rt = instr->RtValue(); 3068 if (rt == pc) { 3069 UNREACHABLE(); 3070 } else { 3071 uint32_t rt_value = get_register(rt); 3072 n_flag_FPSCR_ = (rt_value >> 31) & 1; 3073 z_flag_FPSCR_ = (rt_value >> 30) & 1; 3074 c_flag_FPSCR_ = (rt_value >> 29) & 1; 3075 v_flag_FPSCR_ = (rt_value >> 28) & 1; 3076 FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; 3077 inexact_vfp_flag_ = (rt_value >> 4) & 1; 3078 underflow_vfp_flag_ = (rt_value >> 3) & 1; 3079 overflow_vfp_flag_ = (rt_value >> 2) & 1; 3080 div_zero_vfp_flag_ = (rt_value >> 1) & 1; 3081 inv_op_vfp_flag_ = (rt_value >> 0) & 1; 3082 FPSCR_rounding_mode_ = 3083 static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask); 3084 } 3085 } else { 3086 UNIMPLEMENTED(); // Not used by V8. 3087 } 3088 } 3089 } 3090 3091 3092 void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( 3093 Instruction* instr) { 3094 DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && 3095 (instr->VAValue() == 0x0)); 3096 3097 int t = instr->RtValue(); 3098 int n = instr->VFPNRegValue(kSinglePrecision); 3099 bool to_arm_register = (instr->VLValue() == 0x1); 3100 3101 if (to_arm_register) { 3102 int32_t int_value = get_sinteger_from_s_register(n); 3103 set_register(t, int_value); 3104 } else { 3105 int32_t rs_val = get_register(t); 3106 set_s_register_from_sinteger(n, rs_val); 3107 } 3108 } 3109 3110 3111 void Simulator::DecodeVCMP(Instruction* instr) { 3112 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3113 DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3114 (instr->Opc3Value() & 0x1)); 3115 // Comparison. 3116 3117 VFPRegPrecision precision = kSinglePrecision; 3118 if (instr->SzValue() == 1) { 3119 precision = kDoublePrecision; 3120 } 3121 3122 int d = instr->VFPDRegValue(precision); 3123 int m = 0; 3124 if (instr->Opc2Value() == 0x4) { 3125 m = instr->VFPMRegValue(precision); 3126 } 3127 3128 if (precision == kDoublePrecision) { 3129 double dd_value = get_double_from_d_register(d); 3130 double dm_value = 0.0; 3131 if (instr->Opc2Value() == 0x4) { 3132 dm_value = get_double_from_d_register(m); 3133 } 3134 3135 // Raise exceptions for quiet NaNs if necessary. 3136 if (instr->Bit(7) == 1) { 3137 if (std::isnan(dd_value)) { 3138 inv_op_vfp_flag_ = true; 3139 } 3140 } 3141 3142 Compute_FPSCR_Flags(dd_value, dm_value); 3143 } else { 3144 UNIMPLEMENTED(); // Not used by V8. 3145 } 3146 } 3147 3148 3149 void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { 3150 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3151 DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); 3152 3153 VFPRegPrecision dst_precision = kDoublePrecision; 3154 VFPRegPrecision src_precision = kSinglePrecision; 3155 if (instr->SzValue() == 1) { 3156 dst_precision = kSinglePrecision; 3157 src_precision = kDoublePrecision; 3158 } 3159 3160 int dst = instr->VFPDRegValue(dst_precision); 3161 int src = instr->VFPMRegValue(src_precision); 3162 3163 if (dst_precision == kSinglePrecision) { 3164 double val = get_double_from_d_register(src); 3165 set_s_register_from_float(dst, static_cast<float>(val)); 3166 } else { 3167 float val = get_float_from_s_register(src); 3168 set_d_register_from_double(dst, static_cast<double>(val)); 3169 } 3170 } 3171 3172 bool get_inv_op_vfp_flag(VFPRoundingMode mode, 3173 double val, 3174 bool unsigned_) { 3175 DCHECK((mode == RN) || (mode == RM) || (mode == RZ)); 3176 double max_uint = static_cast<double>(0xffffffffu); 3177 double max_int = static_cast<double>(kMaxInt); 3178 double min_int = static_cast<double>(kMinInt); 3179 3180 // Check for NaN. 3181 if (val != val) { 3182 return true; 3183 } 3184 3185 // Check for overflow. This code works because 32bit integers can be 3186 // exactly represented by ieee-754 64bit floating-point values. 3187 switch (mode) { 3188 case RN: 3189 return unsigned_ ? (val >= (max_uint + 0.5)) || 3190 (val < -0.5) 3191 : (val >= (max_int + 0.5)) || 3192 (val < (min_int - 0.5)); 3193 3194 case RM: 3195 return unsigned_ ? (val >= (max_uint + 1.0)) || 3196 (val < 0) 3197 : (val >= (max_int + 1.0)) || 3198 (val < min_int); 3199 3200 case RZ: 3201 return unsigned_ ? (val >= (max_uint + 1.0)) || 3202 (val <= -1) 3203 : (val >= (max_int + 1.0)) || 3204 (val <= (min_int - 1.0)); 3205 default: 3206 UNREACHABLE(); 3207 return true; 3208 } 3209 } 3210 3211 3212 // We call this function only if we had a vfp invalid exception. 3213 // It returns the correct saturated value. 3214 int VFPConversionSaturate(double val, bool unsigned_res) { 3215 if (val != val) { 3216 return 0; 3217 } else { 3218 if (unsigned_res) { 3219 return (val < 0) ? 0 : 0xffffffffu; 3220 } else { 3221 return (val < 0) ? kMinInt : kMaxInt; 3222 } 3223 } 3224 } 3225 3226 3227 void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { 3228 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && 3229 (instr->Bits(27, 23) == 0x1D)); 3230 DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || 3231 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); 3232 3233 // Conversion between floating-point and integer. 3234 bool to_integer = (instr->Bit(18) == 1); 3235 3236 VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision 3237 : kSinglePrecision; 3238 3239 if (to_integer) { 3240 // We are playing with code close to the C++ standard's limits below, 3241 // hence the very simple code and heavy checks. 3242 // 3243 // Note: 3244 // C++ defines default type casting from floating point to integer as 3245 // (close to) rounding toward zero ("fractional part discarded"). 3246 3247 int dst = instr->VFPDRegValue(kSinglePrecision); 3248 int src = instr->VFPMRegValue(src_precision); 3249 3250 // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding 3251 // mode or the default Round to Zero mode. 3252 VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ 3253 : RZ; 3254 DCHECK((mode == RM) || (mode == RZ) || (mode == RN)); 3255 3256 bool unsigned_integer = (instr->Bit(16) == 0); 3257 bool double_precision = (src_precision == kDoublePrecision); 3258 3259 double val = double_precision ? get_double_from_d_register(src) 3260 : get_float_from_s_register(src); 3261 3262 int temp = unsigned_integer ? static_cast<uint32_t>(val) 3263 : static_cast<int32_t>(val); 3264 3265 inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); 3266 3267 double abs_diff = 3268 unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp)) 3269 : std::fabs(val - temp); 3270 3271 inexact_vfp_flag_ = (abs_diff != 0); 3272 3273 if (inv_op_vfp_flag_) { 3274 temp = VFPConversionSaturate(val, unsigned_integer); 3275 } else { 3276 switch (mode) { 3277 case RN: { 3278 int val_sign = (val > 0) ? 1 : -1; 3279 if (abs_diff > 0.5) { 3280 temp += val_sign; 3281 } else if (abs_diff == 0.5) { 3282 // Round to even if exactly halfway. 3283 temp = ((temp % 2) == 0) ? temp : temp + val_sign; 3284 } 3285 break; 3286 } 3287 3288 case RM: 3289 temp = temp > val ? temp - 1 : temp; 3290 break; 3291 3292 case RZ: 3293 // Nothing to do. 3294 break; 3295 3296 default: 3297 UNREACHABLE(); 3298 } 3299 } 3300 3301 // Update the destination register. 3302 set_s_register_from_sinteger(dst, temp); 3303 3304 } else { 3305 bool unsigned_integer = (instr->Bit(7) == 0); 3306 3307 int dst = instr->VFPDRegValue(src_precision); 3308 int src = instr->VFPMRegValue(kSinglePrecision); 3309 3310 int val = get_sinteger_from_s_register(src); 3311 3312 if (src_precision == kDoublePrecision) { 3313 if (unsigned_integer) { 3314 set_d_register_from_double( 3315 dst, static_cast<double>(static_cast<uint32_t>(val))); 3316 } else { 3317 set_d_register_from_double(dst, static_cast<double>(val)); 3318 } 3319 } else { 3320 if (unsigned_integer) { 3321 set_s_register_from_float( 3322 dst, static_cast<float>(static_cast<uint32_t>(val))); 3323 } else { 3324 set_s_register_from_float(dst, static_cast<float>(val)); 3325 } 3326 } 3327 } 3328 } 3329 3330 3331 // void Simulator::DecodeType6CoprocessorIns(Instruction* instr) 3332 // Decode Type 6 coprocessor instructions. 3333 // Dm = vmov(Rt, Rt2) 3334 // <Rt, Rt2> = vmov(Dm) 3335 // Ddst = MEM(Rbase + 4*offset). 3336 // MEM(Rbase + 4*offset) = Dsrc. 3337 void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { 3338 DCHECK((instr->TypeValue() == 6)); 3339 3340 if (instr->CoprocessorValue() == 0xA) { 3341 switch (instr->OpcodeValue()) { 3342 case 0x8: 3343 case 0xA: 3344 case 0xC: 3345 case 0xE: { // Load and store single precision float to memory. 3346 int rn = instr->RnValue(); 3347 int vd = instr->VFPDRegValue(kSinglePrecision); 3348 int offset = instr->Immed8Value(); 3349 if (!instr->HasU()) { 3350 offset = -offset; 3351 } 3352 3353 int32_t address = get_register(rn) + 4 * offset; 3354 if (instr->HasL()) { 3355 // Load double from memory: vldr. 3356 set_s_register_from_sinteger(vd, ReadW(address, instr)); 3357 } else { 3358 // Store double to memory: vstr. 3359 WriteW(address, get_sinteger_from_s_register(vd), instr); 3360 } 3361 break; 3362 } 3363 case 0x4: 3364 case 0x5: 3365 case 0x6: 3366 case 0x7: 3367 case 0x9: 3368 case 0xB: 3369 // Load/store multiple single from memory: vldm/vstm. 3370 HandleVList(instr); 3371 break; 3372 default: 3373 UNIMPLEMENTED(); // Not used by V8. 3374 } 3375 } else if (instr->CoprocessorValue() == 0xB) { 3376 switch (instr->OpcodeValue()) { 3377 case 0x2: 3378 // Load and store double to two GP registers 3379 if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { 3380 UNIMPLEMENTED(); // Not used by V8. 3381 } else { 3382 int rt = instr->RtValue(); 3383 int rn = instr->RnValue(); 3384 int vm = instr->VFPMRegValue(kDoublePrecision); 3385 if (instr->HasL()) { 3386 int32_t data[2]; 3387 double d = get_double_from_d_register(vm); 3388 memcpy(data, &d, 8); 3389 set_register(rt, data[0]); 3390 set_register(rn, data[1]); 3391 } else { 3392 int32_t data[] = { get_register(rt), get_register(rn) }; 3393 double d; 3394 memcpy(&d, data, 8); 3395 set_d_register_from_double(vm, d); 3396 } 3397 } 3398 break; 3399 case 0x8: 3400 case 0xA: 3401 case 0xC: 3402 case 0xE: { // Load and store double to memory. 3403 int rn = instr->RnValue(); 3404 int vd = instr->VFPDRegValue(kDoublePrecision); 3405 int offset = instr->Immed8Value(); 3406 if (!instr->HasU()) { 3407 offset = -offset; 3408 } 3409 int32_t address = get_register(rn) + 4 * offset; 3410 if (instr->HasL()) { 3411 // Load double from memory: vldr. 3412 int32_t data[] = { 3413 ReadW(address, instr), 3414 ReadW(address + 4, instr) 3415 }; 3416 double val; 3417 memcpy(&val, data, 8); 3418 set_d_register_from_double(vd, val); 3419 } else { 3420 // Store double to memory: vstr. 3421 int32_t data[2]; 3422 double val = get_double_from_d_register(vd); 3423 memcpy(data, &val, 8); 3424 WriteW(address, data[0], instr); 3425 WriteW(address + 4, data[1], instr); 3426 } 3427 break; 3428 } 3429 case 0x4: 3430 case 0x5: 3431 case 0x6: 3432 case 0x7: 3433 case 0x9: 3434 case 0xB: 3435 // Load/store multiple double from memory: vldm/vstm. 3436 HandleVList(instr); 3437 break; 3438 default: 3439 UNIMPLEMENTED(); // Not used by V8. 3440 } 3441 } else { 3442 UNIMPLEMENTED(); // Not used by V8. 3443 } 3444 } 3445 3446 3447 void Simulator::DecodeSpecialCondition(Instruction* instr) { 3448 switch (instr->SpecialValue()) { 3449 case 5: 3450 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3451 (instr->Bit(4) == 1)) { 3452 // vmovl signed 3453 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3454 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3455 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3456 int imm3 = instr->Bits(21, 19); 3457 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3458 int esize = 8 * imm3; 3459 int elements = 64 / esize; 3460 int8_t from[8]; 3461 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3462 int16_t to[8]; 3463 int e = 0; 3464 while (e < elements) { 3465 to[e] = from[e]; 3466 e++; 3467 } 3468 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3469 } else { 3470 UNIMPLEMENTED(); 3471 } 3472 break; 3473 case 7: 3474 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3475 (instr->Bit(4) == 1)) { 3476 // vmovl unsigned 3477 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3478 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3479 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3480 int imm3 = instr->Bits(21, 19); 3481 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3482 int esize = 8 * imm3; 3483 int elements = 64 / esize; 3484 uint8_t from[8]; 3485 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3486 uint16_t to[8]; 3487 int e = 0; 3488 while (e < elements) { 3489 to[e] = from[e]; 3490 e++; 3491 } 3492 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3493 } else { 3494 UNIMPLEMENTED(); 3495 } 3496 break; 3497 case 8: 3498 if (instr->Bits(21, 20) == 0) { 3499 // vst1 3500 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3501 int Rn = instr->VnValue(); 3502 int type = instr->Bits(11, 8); 3503 int Rm = instr->VmValue(); 3504 int32_t address = get_register(Rn); 3505 int regs = 0; 3506 switch (type) { 3507 case nlt_1: 3508 regs = 1; 3509 break; 3510 case nlt_2: 3511 regs = 2; 3512 break; 3513 case nlt_3: 3514 regs = 3; 3515 break; 3516 case nlt_4: 3517 regs = 4; 3518 break; 3519 default: 3520 UNIMPLEMENTED(); 3521 break; 3522 } 3523 int r = 0; 3524 while (r < regs) { 3525 uint32_t data[2]; 3526 get_d_register(Vd + r, data); 3527 WriteW(address, data[0], instr); 3528 WriteW(address + 4, data[1], instr); 3529 address += 8; 3530 r++; 3531 } 3532 if (Rm != 15) { 3533 if (Rm == 13) { 3534 set_register(Rn, address); 3535 } else { 3536 set_register(Rn, get_register(Rn) + get_register(Rm)); 3537 } 3538 } 3539 } else if (instr->Bits(21, 20) == 2) { 3540 // vld1 3541 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3542 int Rn = instr->VnValue(); 3543 int type = instr->Bits(11, 8); 3544 int Rm = instr->VmValue(); 3545 int32_t address = get_register(Rn); 3546 int regs = 0; 3547 switch (type) { 3548 case nlt_1: 3549 regs = 1; 3550 break; 3551 case nlt_2: 3552 regs = 2; 3553 break; 3554 case nlt_3: 3555 regs = 3; 3556 break; 3557 case nlt_4: 3558 regs = 4; 3559 break; 3560 default: 3561 UNIMPLEMENTED(); 3562 break; 3563 } 3564 int r = 0; 3565 while (r < regs) { 3566 uint32_t data[2]; 3567 data[0] = ReadW(address, instr); 3568 data[1] = ReadW(address + 4, instr); 3569 set_d_register(Vd + r, data); 3570 address += 8; 3571 r++; 3572 } 3573 if (Rm != 15) { 3574 if (Rm == 13) { 3575 set_register(Rn, address); 3576 } else { 3577 set_register(Rn, get_register(Rn) + get_register(Rm)); 3578 } 3579 } 3580 } else { 3581 UNIMPLEMENTED(); 3582 } 3583 break; 3584 case 0xA: 3585 case 0xB: 3586 if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { 3587 // pld: ignore instruction. 3588 } else { 3589 UNIMPLEMENTED(); 3590 } 3591 break; 3592 default: 3593 UNIMPLEMENTED(); 3594 break; 3595 } 3596 } 3597 3598 3599 // Executes the current instruction. 3600 void Simulator::InstructionDecode(Instruction* instr) { 3601 if (v8::internal::FLAG_check_icache) { 3602 CheckICache(isolate_->simulator_i_cache(), instr); 3603 } 3604 pc_modified_ = false; 3605 if (::v8::internal::FLAG_trace_sim) { 3606 disasm::NameConverter converter; 3607 disasm::Disassembler dasm(converter); 3608 // use a reasonably large buffer 3609 v8::internal::EmbeddedVector<char, 256> buffer; 3610 dasm.InstructionDecode(buffer, 3611 reinterpret_cast<byte*>(instr)); 3612 PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), buffer.start()); 3613 } 3614 if (instr->ConditionField() == kSpecialCondition) { 3615 DecodeSpecialCondition(instr); 3616 } else if (ConditionallyExecute(instr)) { 3617 switch (instr->TypeValue()) { 3618 case 0: 3619 case 1: { 3620 DecodeType01(instr); 3621 break; 3622 } 3623 case 2: { 3624 DecodeType2(instr); 3625 break; 3626 } 3627 case 3: { 3628 DecodeType3(instr); 3629 break; 3630 } 3631 case 4: { 3632 DecodeType4(instr); 3633 break; 3634 } 3635 case 5: { 3636 DecodeType5(instr); 3637 break; 3638 } 3639 case 6: { 3640 DecodeType6(instr); 3641 break; 3642 } 3643 case 7: { 3644 DecodeType7(instr); 3645 break; 3646 } 3647 default: { 3648 UNIMPLEMENTED(); 3649 break; 3650 } 3651 } 3652 // If the instruction is a non taken conditional stop, we need to skip the 3653 // inlined message address. 3654 } else if (instr->IsStop()) { 3655 set_pc(get_pc() + 2 * Instruction::kInstrSize); 3656 } 3657 if (!pc_modified_) { 3658 set_register(pc, reinterpret_cast<int32_t>(instr) 3659 + Instruction::kInstrSize); 3660 } 3661 } 3662 3663 3664 void Simulator::Execute() { 3665 // Get the PC to simulate. Cannot use the accessor here as we need the 3666 // raw PC value and not the one used as input to arithmetic instructions. 3667 int program_counter = get_pc(); 3668 3669 if (::v8::internal::FLAG_stop_sim_at == 0) { 3670 // Fast version of the dispatch loop without checking whether the simulator 3671 // should be stopping at a particular executed instruction. 3672 while (program_counter != end_sim_pc) { 3673 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3674 icount_++; 3675 InstructionDecode(instr); 3676 program_counter = get_pc(); 3677 } 3678 } else { 3679 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 3680 // we reach the particular instuction count. 3681 while (program_counter != end_sim_pc) { 3682 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3683 icount_++; 3684 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 3685 ArmDebugger dbg(this); 3686 dbg.Debug(); 3687 } else { 3688 InstructionDecode(instr); 3689 } 3690 program_counter = get_pc(); 3691 } 3692 } 3693 } 3694 3695 3696 void Simulator::CallInternal(byte* entry) { 3697 // Prepare to execute the code at entry 3698 set_register(pc, reinterpret_cast<int32_t>(entry)); 3699 // Put down marker for end of simulation. The simulator will stop simulation 3700 // when the PC reaches this value. By saving the "end simulation" value into 3701 // the LR the simulation stops when returning to this call point. 3702 set_register(lr, end_sim_pc); 3703 3704 // Remember the values of callee-saved registers. 3705 // The code below assumes that r9 is not used as sb (static base) in 3706 // simulator code and therefore is regarded as a callee-saved register. 3707 int32_t r4_val = get_register(r4); 3708 int32_t r5_val = get_register(r5); 3709 int32_t r6_val = get_register(r6); 3710 int32_t r7_val = get_register(r7); 3711 int32_t r8_val = get_register(r8); 3712 int32_t r9_val = get_register(r9); 3713 int32_t r10_val = get_register(r10); 3714 int32_t r11_val = get_register(r11); 3715 3716 // Set up the callee-saved registers with a known value. To be able to check 3717 // that they are preserved properly across JS execution. 3718 int32_t callee_saved_value = icount_; 3719 set_register(r4, callee_saved_value); 3720 set_register(r5, callee_saved_value); 3721 set_register(r6, callee_saved_value); 3722 set_register(r7, callee_saved_value); 3723 set_register(r8, callee_saved_value); 3724 set_register(r9, callee_saved_value); 3725 set_register(r10, callee_saved_value); 3726 set_register(r11, callee_saved_value); 3727 3728 // Start the simulation 3729 Execute(); 3730 3731 // Check that the callee-saved registers have been preserved. 3732 CHECK_EQ(callee_saved_value, get_register(r4)); 3733 CHECK_EQ(callee_saved_value, get_register(r5)); 3734 CHECK_EQ(callee_saved_value, get_register(r6)); 3735 CHECK_EQ(callee_saved_value, get_register(r7)); 3736 CHECK_EQ(callee_saved_value, get_register(r8)); 3737 CHECK_EQ(callee_saved_value, get_register(r9)); 3738 CHECK_EQ(callee_saved_value, get_register(r10)); 3739 CHECK_EQ(callee_saved_value, get_register(r11)); 3740 3741 // Restore callee-saved registers with the original value. 3742 set_register(r4, r4_val); 3743 set_register(r5, r5_val); 3744 set_register(r6, r6_val); 3745 set_register(r7, r7_val); 3746 set_register(r8, r8_val); 3747 set_register(r9, r9_val); 3748 set_register(r10, r10_val); 3749 set_register(r11, r11_val); 3750 } 3751 3752 3753 int32_t Simulator::Call(byte* entry, int argument_count, ...) { 3754 va_list parameters; 3755 va_start(parameters, argument_count); 3756 // Set up arguments 3757 3758 // First four arguments passed in registers. 3759 DCHECK(argument_count >= 4); 3760 set_register(r0, va_arg(parameters, int32_t)); 3761 set_register(r1, va_arg(parameters, int32_t)); 3762 set_register(r2, va_arg(parameters, int32_t)); 3763 set_register(r3, va_arg(parameters, int32_t)); 3764 3765 // Remaining arguments passed on stack. 3766 int original_stack = get_register(sp); 3767 // Compute position of stack on entry to generated code. 3768 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); 3769 if (base::OS::ActivationFrameAlignment() != 0) { 3770 entry_stack &= -base::OS::ActivationFrameAlignment(); 3771 } 3772 // Store remaining arguments on stack, from low to high memory. 3773 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 3774 for (int i = 4; i < argument_count; i++) { 3775 stack_argument[i - 4] = va_arg(parameters, int32_t); 3776 } 3777 va_end(parameters); 3778 set_register(sp, entry_stack); 3779 3780 CallInternal(entry); 3781 3782 // Pop stack passed arguments. 3783 CHECK_EQ(entry_stack, get_register(sp)); 3784 set_register(sp, original_stack); 3785 3786 int32_t result = get_register(r0); 3787 return result; 3788 } 3789 3790 3791 void Simulator::CallFP(byte* entry, double d0, double d1) { 3792 if (use_eabi_hardfloat()) { 3793 set_d_register_from_double(0, d0); 3794 set_d_register_from_double(1, d1); 3795 } else { 3796 set_register_pair_from_double(0, &d0); 3797 set_register_pair_from_double(2, &d1); 3798 } 3799 CallInternal(entry); 3800 } 3801 3802 3803 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { 3804 CallFP(entry, d0, d1); 3805 int32_t result = get_register(r0); 3806 return result; 3807 } 3808 3809 3810 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { 3811 CallFP(entry, d0, d1); 3812 if (use_eabi_hardfloat()) { 3813 return get_double_from_d_register(0); 3814 } else { 3815 return get_double_from_register_pair(0); 3816 } 3817 } 3818 3819 3820 uintptr_t Simulator::PushAddress(uintptr_t address) { 3821 int new_sp = get_register(sp) - sizeof(uintptr_t); 3822 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 3823 *stack_slot = address; 3824 set_register(sp, new_sp); 3825 return new_sp; 3826 } 3827 3828 3829 uintptr_t Simulator::PopAddress() { 3830 int current_sp = get_register(sp); 3831 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 3832 uintptr_t address = *stack_slot; 3833 set_register(sp, current_sp + sizeof(uintptr_t)); 3834 return address; 3835 } 3836 3837 } } // namespace v8::internal 3838 3839 #endif // USE_SIMULATOR 3840 3841 #endif // V8_TARGET_ARCH_ARM 3842