1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * All landingpad instructions must use the same personality function with 43 // the same function. 44 // * All other things that are tested by asserts spread about the code... 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/IR/Verifier.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/CallSite.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/ConstantRange.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugInfo.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/InlineAsm.h" 64 #include "llvm/IR/InstIterator.h" 65 #include "llvm/IR/InstVisitor.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Metadata.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/PassManager.h" 71 #include "llvm/Pass.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cstdarg> 78 using namespace llvm; 79 80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false)); 81 82 namespace { 83 struct VerifierSupport { 84 raw_ostream &OS; 85 const Module *M; 86 87 /// \brief Track the brokenness of the module while recursively visiting. 88 bool Broken; 89 90 explicit VerifierSupport(raw_ostream &OS) 91 : OS(OS), M(nullptr), Broken(false) {} 92 93 void WriteValue(const Value *V) { 94 if (!V) 95 return; 96 if (isa<Instruction>(V)) { 97 OS << *V << '\n'; 98 } else { 99 V->printAsOperand(OS, true, M); 100 OS << '\n'; 101 } 102 } 103 104 void WriteType(Type *T) { 105 if (!T) 106 return; 107 OS << ' ' << *T; 108 } 109 110 void WriteComdat(const Comdat *C) { 111 if (!C) 112 return; 113 OS << *C; 114 } 115 116 // CheckFailed - A check failed, so print out the condition and the message 117 // that failed. This provides a nice place to put a breakpoint if you want 118 // to see why something is not correct. 119 void CheckFailed(const Twine &Message, const Value *V1 = nullptr, 120 const Value *V2 = nullptr, const Value *V3 = nullptr, 121 const Value *V4 = nullptr) { 122 OS << Message.str() << "\n"; 123 WriteValue(V1); 124 WriteValue(V2); 125 WriteValue(V3); 126 WriteValue(V4); 127 Broken = true; 128 } 129 130 void CheckFailed(const Twine &Message, const Value *V1, Type *T2, 131 const Value *V3 = nullptr) { 132 OS << Message.str() << "\n"; 133 WriteValue(V1); 134 WriteType(T2); 135 WriteValue(V3); 136 Broken = true; 137 } 138 139 void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr, 140 Type *T3 = nullptr) { 141 OS << Message.str() << "\n"; 142 WriteType(T1); 143 WriteType(T2); 144 WriteType(T3); 145 Broken = true; 146 } 147 148 void CheckFailed(const Twine &Message, const Comdat *C) { 149 OS << Message.str() << "\n"; 150 WriteComdat(C); 151 Broken = true; 152 } 153 }; 154 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 155 friend class InstVisitor<Verifier>; 156 157 LLVMContext *Context; 158 const DataLayout *DL; 159 DominatorTree DT; 160 161 /// \brief When verifying a basic block, keep track of all of the 162 /// instructions we have seen so far. 163 /// 164 /// This allows us to do efficient dominance checks for the case when an 165 /// instruction has an operand that is an instruction in the same block. 166 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 167 168 /// \brief Keep track of the metadata nodes that have been checked already. 169 SmallPtrSet<MDNode *, 32> MDNodes; 170 171 /// \brief The personality function referenced by the LandingPadInsts. 172 /// All LandingPadInsts within the same function must use the same 173 /// personality function. 174 const Value *PersonalityFn; 175 176 public: 177 explicit Verifier(raw_ostream &OS = dbgs()) 178 : VerifierSupport(OS), Context(nullptr), DL(nullptr), 179 PersonalityFn(nullptr) {} 180 181 bool verify(const Function &F) { 182 M = F.getParent(); 183 Context = &M->getContext(); 184 185 // First ensure the function is well-enough formed to compute dominance 186 // information. 187 if (F.empty()) { 188 OS << "Function '" << F.getName() 189 << "' does not contain an entry block!\n"; 190 return false; 191 } 192 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) { 193 if (I->empty() || !I->back().isTerminator()) { 194 OS << "Basic Block in function '" << F.getName() 195 << "' does not have terminator!\n"; 196 I->printAsOperand(OS, true); 197 OS << "\n"; 198 return false; 199 } 200 } 201 202 // Now directly compute a dominance tree. We don't rely on the pass 203 // manager to provide this as it isolates us from a potentially 204 // out-of-date dominator tree and makes it significantly more complex to 205 // run this code outside of a pass manager. 206 // FIXME: It's really gross that we have to cast away constness here. 207 DT.recalculate(const_cast<Function &>(F)); 208 209 Broken = false; 210 // FIXME: We strip const here because the inst visitor strips const. 211 visit(const_cast<Function &>(F)); 212 InstsInThisBlock.clear(); 213 PersonalityFn = nullptr; 214 215 return !Broken; 216 } 217 218 bool verify(const Module &M) { 219 this->M = &M; 220 Context = &M.getContext(); 221 Broken = false; 222 223 // Scan through, checking all of the external function's linkage now... 224 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 225 visitGlobalValue(*I); 226 227 // Check to make sure function prototypes are okay. 228 if (I->isDeclaration()) 229 visitFunction(*I); 230 } 231 232 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 233 I != E; ++I) 234 visitGlobalVariable(*I); 235 236 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 237 I != E; ++I) 238 visitGlobalAlias(*I); 239 240 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), 241 E = M.named_metadata_end(); 242 I != E; ++I) 243 visitNamedMDNode(*I); 244 245 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 246 visitComdat(SMEC.getValue()); 247 248 visitModuleFlags(M); 249 visitModuleIdents(M); 250 251 return !Broken; 252 } 253 254 private: 255 // Verification methods... 256 void visitGlobalValue(const GlobalValue &GV); 257 void visitGlobalVariable(const GlobalVariable &GV); 258 void visitGlobalAlias(const GlobalAlias &GA); 259 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 260 void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited, 261 const GlobalAlias &A, const Constant &C); 262 void visitNamedMDNode(const NamedMDNode &NMD); 263 void visitMDNode(MDNode &MD, Function *F); 264 void visitComdat(const Comdat &C); 265 void visitModuleIdents(const Module &M); 266 void visitModuleFlags(const Module &M); 267 void visitModuleFlag(const MDNode *Op, 268 DenseMap<const MDString *, const MDNode *> &SeenIDs, 269 SmallVectorImpl<const MDNode *> &Requirements); 270 void visitFunction(const Function &F); 271 void visitBasicBlock(BasicBlock &BB); 272 273 // InstVisitor overrides... 274 using InstVisitor<Verifier>::visit; 275 void visit(Instruction &I); 276 277 void visitTruncInst(TruncInst &I); 278 void visitZExtInst(ZExtInst &I); 279 void visitSExtInst(SExtInst &I); 280 void visitFPTruncInst(FPTruncInst &I); 281 void visitFPExtInst(FPExtInst &I); 282 void visitFPToUIInst(FPToUIInst &I); 283 void visitFPToSIInst(FPToSIInst &I); 284 void visitUIToFPInst(UIToFPInst &I); 285 void visitSIToFPInst(SIToFPInst &I); 286 void visitIntToPtrInst(IntToPtrInst &I); 287 void visitPtrToIntInst(PtrToIntInst &I); 288 void visitBitCastInst(BitCastInst &I); 289 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 290 void visitPHINode(PHINode &PN); 291 void visitBinaryOperator(BinaryOperator &B); 292 void visitICmpInst(ICmpInst &IC); 293 void visitFCmpInst(FCmpInst &FC); 294 void visitExtractElementInst(ExtractElementInst &EI); 295 void visitInsertElementInst(InsertElementInst &EI); 296 void visitShuffleVectorInst(ShuffleVectorInst &EI); 297 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 298 void visitCallInst(CallInst &CI); 299 void visitInvokeInst(InvokeInst &II); 300 void visitGetElementPtrInst(GetElementPtrInst &GEP); 301 void visitLoadInst(LoadInst &LI); 302 void visitStoreInst(StoreInst &SI); 303 void verifyDominatesUse(Instruction &I, unsigned i); 304 void visitInstruction(Instruction &I); 305 void visitTerminatorInst(TerminatorInst &I); 306 void visitBranchInst(BranchInst &BI); 307 void visitReturnInst(ReturnInst &RI); 308 void visitSwitchInst(SwitchInst &SI); 309 void visitIndirectBrInst(IndirectBrInst &BI); 310 void visitSelectInst(SelectInst &SI); 311 void visitUserOp1(Instruction &I); 312 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 313 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); 314 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 315 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 316 void visitFenceInst(FenceInst &FI); 317 void visitAllocaInst(AllocaInst &AI); 318 void visitExtractValueInst(ExtractValueInst &EVI); 319 void visitInsertValueInst(InsertValueInst &IVI); 320 void visitLandingPadInst(LandingPadInst &LPI); 321 322 void VerifyCallSite(CallSite CS); 323 void verifyMustTailCall(CallInst &CI); 324 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 325 unsigned ArgNo, std::string &Suffix); 326 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 327 SmallVectorImpl<Type *> &ArgTys); 328 bool VerifyIntrinsicIsVarArg(bool isVarArg, 329 ArrayRef<Intrinsic::IITDescriptor> &Infos); 330 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); 331 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, 332 const Value *V); 333 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 334 bool isReturnValue, const Value *V); 335 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 336 const Value *V); 337 338 void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy); 339 void VerifyConstantExprBitcastType(const ConstantExpr *CE); 340 }; 341 class DebugInfoVerifier : public VerifierSupport { 342 public: 343 explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {} 344 345 bool verify(const Module &M) { 346 this->M = &M; 347 verifyDebugInfo(); 348 return !Broken; 349 } 350 351 private: 352 void verifyDebugInfo(); 353 void processInstructions(DebugInfoFinder &Finder); 354 void processCallInst(DebugInfoFinder &Finder, const CallInst &CI); 355 }; 356 } // End anonymous namespace 357 358 // Assert - We know that cond should be true, if not print an error message. 359 #define Assert(C, M) \ 360 do { if (!(C)) { CheckFailed(M); return; } } while (0) 361 #define Assert1(C, M, V1) \ 362 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) 363 #define Assert2(C, M, V1, V2) \ 364 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) 365 #define Assert3(C, M, V1, V2, V3) \ 366 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) 367 #define Assert4(C, M, V1, V2, V3, V4) \ 368 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) 369 370 void Verifier::visit(Instruction &I) { 371 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 372 Assert1(I.getOperand(i) != nullptr, "Operand is null", &I); 373 InstVisitor<Verifier>::visit(I); 374 } 375 376 377 void Verifier::visitGlobalValue(const GlobalValue &GV) { 378 Assert1(!GV.isDeclaration() || GV.isMaterializable() || 379 GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), 380 "Global is external, but doesn't have external or weak linkage!", 381 &GV); 382 383 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 384 "Only global variables can have appending linkage!", &GV); 385 386 if (GV.hasAppendingLinkage()) { 387 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 388 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), 389 "Only global arrays can have appending linkage!", GVar); 390 } 391 } 392 393 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 394 if (GV.hasInitializer()) { 395 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), 396 "Global variable initializer type does not match global " 397 "variable type!", &GV); 398 399 // If the global has common linkage, it must have a zero initializer and 400 // cannot be constant. 401 if (GV.hasCommonLinkage()) { 402 Assert1(GV.getInitializer()->isNullValue(), 403 "'common' global must have a zero initializer!", &GV); 404 Assert1(!GV.isConstant(), "'common' global may not be marked constant!", 405 &GV); 406 Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 407 } 408 } else { 409 Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), 410 "invalid linkage type for global declaration", &GV); 411 } 412 413 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 414 GV.getName() == "llvm.global_dtors")) { 415 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 416 "invalid linkage for intrinsic global variable", &GV); 417 // Don't worry about emitting an error for it not being an array, 418 // visitGlobalValue will complain on appending non-array. 419 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) { 420 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 421 PointerType *FuncPtrTy = 422 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); 423 // FIXME: Reject the 2-field form in LLVM 4.0. 424 Assert1(STy && (STy->getNumElements() == 2 || 425 STy->getNumElements() == 3) && 426 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 427 STy->getTypeAtIndex(1) == FuncPtrTy, 428 "wrong type for intrinsic global variable", &GV); 429 if (STy->getNumElements() == 3) { 430 Type *ETy = STy->getTypeAtIndex(2); 431 Assert1(ETy->isPointerTy() && 432 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 433 "wrong type for intrinsic global variable", &GV); 434 } 435 } 436 } 437 438 if (GV.hasName() && (GV.getName() == "llvm.used" || 439 GV.getName() == "llvm.compiler.used")) { 440 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 441 "invalid linkage for intrinsic global variable", &GV); 442 Type *GVType = GV.getType()->getElementType(); 443 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 444 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 445 Assert1(PTy, "wrong type for intrinsic global variable", &GV); 446 if (GV.hasInitializer()) { 447 const Constant *Init = GV.getInitializer(); 448 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 449 Assert1(InitArray, "wrong initalizer for intrinsic global variable", 450 Init); 451 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { 452 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); 453 Assert1( 454 isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V), 455 "invalid llvm.used member", V); 456 Assert1(V->hasName(), "members of llvm.used must be named", V); 457 } 458 } 459 } 460 } 461 462 Assert1(!GV.hasDLLImportStorageClass() || 463 (GV.isDeclaration() && GV.hasExternalLinkage()) || 464 GV.hasAvailableExternallyLinkage(), 465 "Global is marked as dllimport, but not external", &GV); 466 467 if (!GV.hasInitializer()) { 468 visitGlobalValue(GV); 469 return; 470 } 471 472 // Walk any aggregate initializers looking for bitcasts between address spaces 473 SmallPtrSet<const Value *, 4> Visited; 474 SmallVector<const Value *, 4> WorkStack; 475 WorkStack.push_back(cast<Value>(GV.getInitializer())); 476 477 while (!WorkStack.empty()) { 478 const Value *V = WorkStack.pop_back_val(); 479 if (!Visited.insert(V)) 480 continue; 481 482 if (const User *U = dyn_cast<User>(V)) { 483 for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I) 484 WorkStack.push_back(U->getOperand(I)); 485 } 486 487 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 488 VerifyConstantExprBitcastType(CE); 489 if (Broken) 490 return; 491 } 492 } 493 494 visitGlobalValue(GV); 495 } 496 497 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 498 SmallPtrSet<const GlobalAlias*, 4> Visited; 499 Visited.insert(&GA); 500 visitAliaseeSubExpr(Visited, GA, C); 501 } 502 503 void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited, 504 const GlobalAlias &GA, const Constant &C) { 505 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 506 Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA); 507 508 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 509 Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA); 510 511 Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", 512 &GA); 513 } else { 514 // Only continue verifying subexpressions of GlobalAliases. 515 // Do not recurse into global initializers. 516 return; 517 } 518 } 519 520 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 521 VerifyConstantExprBitcastType(CE); 522 523 for (const Use &U : C.operands()) { 524 Value *V = &*U; 525 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 526 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 527 else if (const auto *C2 = dyn_cast<Constant>(V)) 528 visitAliaseeSubExpr(Visited, GA, *C2); 529 } 530 } 531 532 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 533 Assert1(!GA.getName().empty(), 534 "Alias name cannot be empty!", &GA); 535 Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()), 536 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 537 "weak_odr, or external linkage!", 538 &GA); 539 const Constant *Aliasee = GA.getAliasee(); 540 Assert1(Aliasee, "Aliasee cannot be NULL!", &GA); 541 Assert1(GA.getType() == Aliasee->getType(), 542 "Alias and aliasee types should match!", &GA); 543 544 Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 545 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 546 547 visitAliaseeSubExpr(GA, *Aliasee); 548 549 visitGlobalValue(GA); 550 } 551 552 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 553 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { 554 MDNode *MD = NMD.getOperand(i); 555 if (!MD) 556 continue; 557 558 Assert1(!MD->isFunctionLocal(), 559 "Named metadata operand cannot be function local!", MD); 560 visitMDNode(*MD, nullptr); 561 } 562 } 563 564 void Verifier::visitMDNode(MDNode &MD, Function *F) { 565 // Only visit each node once. Metadata can be mutually recursive, so this 566 // avoids infinite recursion here, as well as being an optimization. 567 if (!MDNodes.insert(&MD)) 568 return; 569 570 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { 571 Value *Op = MD.getOperand(i); 572 if (!Op) 573 continue; 574 if (isa<Constant>(Op) || isa<MDString>(Op)) 575 continue; 576 if (MDNode *N = dyn_cast<MDNode>(Op)) { 577 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), 578 "Global metadata operand cannot be function local!", &MD, N); 579 visitMDNode(*N, F); 580 continue; 581 } 582 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); 583 584 // If this was an instruction, bb, or argument, verify that it is in the 585 // function that we expect. 586 Function *ActualF = nullptr; 587 if (Instruction *I = dyn_cast<Instruction>(Op)) 588 ActualF = I->getParent()->getParent(); 589 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op)) 590 ActualF = BB->getParent(); 591 else if (Argument *A = dyn_cast<Argument>(Op)) 592 ActualF = A->getParent(); 593 assert(ActualF && "Unimplemented function local metadata case!"); 594 595 Assert2(ActualF == F, "function-local metadata used in wrong function", 596 &MD, Op); 597 } 598 } 599 600 void Verifier::visitComdat(const Comdat &C) { 601 // All Comdat::SelectionKind values other than Comdat::Any require a 602 // GlobalValue with the same name as the Comdat. 603 const GlobalValue *GV = M->getNamedValue(C.getName()); 604 if (C.getSelectionKind() != Comdat::Any) 605 Assert1(GV, 606 "comdat selection kind requires a global value with the same name", 607 &C); 608 // The Module is invalid if the GlobalValue has local linkage. Allowing 609 // otherwise opens us up to seeing the underling global value get renamed if 610 // collisions occur. 611 if (GV) 612 Assert1(!GV->hasLocalLinkage(), "comdat global value has local linkage", 613 GV); 614 } 615 616 void Verifier::visitModuleIdents(const Module &M) { 617 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 618 if (!Idents) 619 return; 620 621 // llvm.ident takes a list of metadata entry. Each entry has only one string. 622 // Scan each llvm.ident entry and make sure that this requirement is met. 623 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { 624 const MDNode *N = Idents->getOperand(i); 625 Assert1(N->getNumOperands() == 1, 626 "incorrect number of operands in llvm.ident metadata", N); 627 Assert1(isa<MDString>(N->getOperand(0)), 628 ("invalid value for llvm.ident metadata entry operand" 629 "(the operand should be a string)"), 630 N->getOperand(0)); 631 } 632 } 633 634 void Verifier::visitModuleFlags(const Module &M) { 635 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 636 if (!Flags) return; 637 638 // Scan each flag, and track the flags and requirements. 639 DenseMap<const MDString*, const MDNode*> SeenIDs; 640 SmallVector<const MDNode*, 16> Requirements; 641 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { 642 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); 643 } 644 645 // Validate that the requirements in the module are valid. 646 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 647 const MDNode *Requirement = Requirements[I]; 648 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 649 const Value *ReqValue = Requirement->getOperand(1); 650 651 const MDNode *Op = SeenIDs.lookup(Flag); 652 if (!Op) { 653 CheckFailed("invalid requirement on flag, flag is not present in module", 654 Flag); 655 continue; 656 } 657 658 if (Op->getOperand(2) != ReqValue) { 659 CheckFailed(("invalid requirement on flag, " 660 "flag does not have the required value"), 661 Flag); 662 continue; 663 } 664 } 665 } 666 667 void 668 Verifier::visitModuleFlag(const MDNode *Op, 669 DenseMap<const MDString *, const MDNode *> &SeenIDs, 670 SmallVectorImpl<const MDNode *> &Requirements) { 671 // Each module flag should have three arguments, the merge behavior (a 672 // constant int), the flag ID (an MDString), and the value. 673 Assert1(Op->getNumOperands() == 3, 674 "incorrect number of operands in module flag", Op); 675 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0)); 676 MDString *ID = dyn_cast<MDString>(Op->getOperand(1)); 677 Assert1(Behavior, 678 "invalid behavior operand in module flag (expected constant integer)", 679 Op->getOperand(0)); 680 unsigned BehaviorValue = Behavior->getZExtValue(); 681 Assert1(ID, 682 "invalid ID operand in module flag (expected metadata string)", 683 Op->getOperand(1)); 684 685 // Sanity check the values for behaviors with additional requirements. 686 switch (BehaviorValue) { 687 default: 688 Assert1(false, 689 "invalid behavior operand in module flag (unexpected constant)", 690 Op->getOperand(0)); 691 break; 692 693 case Module::Error: 694 case Module::Warning: 695 case Module::Override: 696 // These behavior types accept any value. 697 break; 698 699 case Module::Require: { 700 // The value should itself be an MDNode with two operands, a flag ID (an 701 // MDString), and a value. 702 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 703 Assert1(Value && Value->getNumOperands() == 2, 704 "invalid value for 'require' module flag (expected metadata pair)", 705 Op->getOperand(2)); 706 Assert1(isa<MDString>(Value->getOperand(0)), 707 ("invalid value for 'require' module flag " 708 "(first value operand should be a string)"), 709 Value->getOperand(0)); 710 711 // Append it to the list of requirements, to check once all module flags are 712 // scanned. 713 Requirements.push_back(Value); 714 break; 715 } 716 717 case Module::Append: 718 case Module::AppendUnique: { 719 // These behavior types require the operand be an MDNode. 720 Assert1(isa<MDNode>(Op->getOperand(2)), 721 "invalid value for 'append'-type module flag " 722 "(expected a metadata node)", Op->getOperand(2)); 723 break; 724 } 725 } 726 727 // Unless this is a "requires" flag, check the ID is unique. 728 if (BehaviorValue != Module::Require) { 729 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 730 Assert1(Inserted, 731 "module flag identifiers must be unique (or of 'require' type)", 732 ID); 733 } 734 } 735 736 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 737 bool isFunction, const Value *V) { 738 unsigned Slot = ~0U; 739 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 740 if (Attrs.getSlotIndex(I) == Idx) { 741 Slot = I; 742 break; 743 } 744 745 assert(Slot != ~0U && "Attribute set inconsistency!"); 746 747 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 748 I != E; ++I) { 749 if (I->isStringAttribute()) 750 continue; 751 752 if (I->getKindAsEnum() == Attribute::NoReturn || 753 I->getKindAsEnum() == Attribute::NoUnwind || 754 I->getKindAsEnum() == Attribute::NoInline || 755 I->getKindAsEnum() == Attribute::AlwaysInline || 756 I->getKindAsEnum() == Attribute::OptimizeForSize || 757 I->getKindAsEnum() == Attribute::StackProtect || 758 I->getKindAsEnum() == Attribute::StackProtectReq || 759 I->getKindAsEnum() == Attribute::StackProtectStrong || 760 I->getKindAsEnum() == Attribute::NoRedZone || 761 I->getKindAsEnum() == Attribute::NoImplicitFloat || 762 I->getKindAsEnum() == Attribute::Naked || 763 I->getKindAsEnum() == Attribute::InlineHint || 764 I->getKindAsEnum() == Attribute::StackAlignment || 765 I->getKindAsEnum() == Attribute::UWTable || 766 I->getKindAsEnum() == Attribute::NonLazyBind || 767 I->getKindAsEnum() == Attribute::ReturnsTwice || 768 I->getKindAsEnum() == Attribute::SanitizeAddress || 769 I->getKindAsEnum() == Attribute::SanitizeThread || 770 I->getKindAsEnum() == Attribute::SanitizeMemory || 771 I->getKindAsEnum() == Attribute::MinSize || 772 I->getKindAsEnum() == Attribute::NoDuplicate || 773 I->getKindAsEnum() == Attribute::Builtin || 774 I->getKindAsEnum() == Attribute::NoBuiltin || 775 I->getKindAsEnum() == Attribute::Cold || 776 I->getKindAsEnum() == Attribute::OptimizeNone || 777 I->getKindAsEnum() == Attribute::JumpTable) { 778 if (!isFunction) { 779 CheckFailed("Attribute '" + I->getAsString() + 780 "' only applies to functions!", V); 781 return; 782 } 783 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 784 I->getKindAsEnum() == Attribute::ReadNone) { 785 if (Idx == 0) { 786 CheckFailed("Attribute '" + I->getAsString() + 787 "' does not apply to function returns"); 788 return; 789 } 790 } else if (isFunction) { 791 CheckFailed("Attribute '" + I->getAsString() + 792 "' does not apply to functions!", V); 793 return; 794 } 795 } 796 } 797 798 // VerifyParameterAttrs - Check the given attributes for an argument or return 799 // value of the specified type. The value V is printed in error messages. 800 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 801 bool isReturnValue, const Value *V) { 802 if (!Attrs.hasAttributes(Idx)) 803 return; 804 805 VerifyAttributeTypes(Attrs, Idx, false, V); 806 807 if (isReturnValue) 808 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 809 !Attrs.hasAttribute(Idx, Attribute::Nest) && 810 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 811 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 812 !Attrs.hasAttribute(Idx, Attribute::Returned) && 813 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 814 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " 815 "'returned' do not apply to return values!", V); 816 817 // Check for mutually incompatible attributes. Only inreg is compatible with 818 // sret. 819 unsigned AttrCount = 0; 820 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); 821 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); 822 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || 823 Attrs.hasAttribute(Idx, Attribute::InReg); 824 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); 825 Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 826 "and 'sret' are incompatible!", V); 827 828 Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && 829 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " 830 "'inalloca and readonly' are incompatible!", V); 831 832 Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 833 Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " 834 "'sret and returned' are incompatible!", V); 835 836 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 837 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " 838 "'zeroext and signext' are incompatible!", V); 839 840 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 841 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " 842 "'readnone and readonly' are incompatible!", V); 843 844 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 845 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " 846 "'noinline and alwaysinline' are incompatible!", V); 847 848 Assert1(!AttrBuilder(Attrs, Idx). 849 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), 850 "Wrong types for attribute: " + 851 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); 852 853 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 854 if (!PTy->getElementType()->isSized()) { 855 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 856 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 857 "Attributes 'byval' and 'inalloca' do not support unsized types!", 858 V); 859 } 860 } else { 861 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), 862 "Attribute 'byval' only applies to parameters with pointer type!", 863 V); 864 } 865 } 866 867 // VerifyFunctionAttrs - Check parameter attributes against a function type. 868 // The value V is printed in error messages. 869 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 870 const Value *V) { 871 if (Attrs.isEmpty()) 872 return; 873 874 bool SawNest = false; 875 bool SawReturned = false; 876 bool SawSRet = false; 877 878 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 879 unsigned Idx = Attrs.getSlotIndex(i); 880 881 Type *Ty; 882 if (Idx == 0) 883 Ty = FT->getReturnType(); 884 else if (Idx-1 < FT->getNumParams()) 885 Ty = FT->getParamType(Idx-1); 886 else 887 break; // VarArgs attributes, verified elsewhere. 888 889 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 890 891 if (Idx == 0) 892 continue; 893 894 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 895 Assert1(!SawNest, "More than one parameter has attribute nest!", V); 896 SawNest = true; 897 } 898 899 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 900 Assert1(!SawReturned, "More than one parameter has attribute returned!", 901 V); 902 Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " 903 "argument and return types for 'returned' attribute", V); 904 SawReturned = true; 905 } 906 907 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { 908 Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 909 Assert1(Idx == 1 || Idx == 2, 910 "Attribute 'sret' is not on first or second parameter!", V); 911 SawSRet = true; 912 } 913 914 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { 915 Assert1(Idx == FT->getNumParams(), 916 "inalloca isn't on the last parameter!", V); 917 } 918 } 919 920 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 921 return; 922 923 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 924 925 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 926 Attribute::ReadNone) && 927 Attrs.hasAttribute(AttributeSet::FunctionIndex, 928 Attribute::ReadOnly)), 929 "Attributes 'readnone and readonly' are incompatible!", V); 930 931 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 932 Attribute::NoInline) && 933 Attrs.hasAttribute(AttributeSet::FunctionIndex, 934 Attribute::AlwaysInline)), 935 "Attributes 'noinline and alwaysinline' are incompatible!", V); 936 937 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 938 Attribute::OptimizeNone)) { 939 Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex, 940 Attribute::NoInline), 941 "Attribute 'optnone' requires 'noinline'!", V); 942 943 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 944 Attribute::OptimizeForSize), 945 "Attributes 'optsize and optnone' are incompatible!", V); 946 947 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 948 Attribute::MinSize), 949 "Attributes 'minsize and optnone' are incompatible!", V); 950 } 951 952 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 953 Attribute::JumpTable)) { 954 const GlobalValue *GV = cast<GlobalValue>(V); 955 Assert1(GV->hasUnnamedAddr(), 956 "Attribute 'jumptable' requires 'unnamed_addr'", V); 957 958 } 959 } 960 961 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) { 962 // Get the size of the types in bits, we'll need this later 963 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); 964 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); 965 966 // BitCast implies a no-op cast of type only. No bits change. 967 // However, you can't cast pointers to anything but pointers. 968 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(), 969 "Bitcast requires both operands to be pointer or neither", V); 970 Assert1(SrcBitSize == DestBitSize, 971 "Bitcast requires types of same width", V); 972 973 // Disallow aggregates. 974 Assert1(!SrcTy->isAggregateType(), 975 "Bitcast operand must not be aggregate", V); 976 Assert1(!DestTy->isAggregateType(), 977 "Bitcast type must not be aggregate", V); 978 979 // Without datalayout, assume all address spaces are the same size. 980 // Don't check if both types are not pointers. 981 // Skip casts between scalars and vectors. 982 if (!DL || 983 !SrcTy->isPtrOrPtrVectorTy() || 984 !DestTy->isPtrOrPtrVectorTy() || 985 SrcTy->isVectorTy() != DestTy->isVectorTy()) { 986 return; 987 } 988 989 unsigned SrcAS = SrcTy->getPointerAddressSpace(); 990 unsigned DstAS = DestTy->getPointerAddressSpace(); 991 992 Assert1(SrcAS == DstAS, 993 "Bitcasts between pointers of different address spaces is not legal." 994 "Use AddrSpaceCast instead.", V); 995 } 996 997 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { 998 if (CE->getOpcode() == Instruction::BitCast) { 999 Type *SrcTy = CE->getOperand(0)->getType(); 1000 Type *DstTy = CE->getType(); 1001 VerifyBitcastType(CE, DstTy, SrcTy); 1002 } 1003 } 1004 1005 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { 1006 if (Attrs.getNumSlots() == 0) 1007 return true; 1008 1009 unsigned LastSlot = Attrs.getNumSlots() - 1; 1010 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 1011 if (LastIndex <= Params 1012 || (LastIndex == AttributeSet::FunctionIndex 1013 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 1014 return true; 1015 1016 return false; 1017 } 1018 1019 // visitFunction - Verify that a function is ok. 1020 // 1021 void Verifier::visitFunction(const Function &F) { 1022 // Check function arguments. 1023 FunctionType *FT = F.getFunctionType(); 1024 unsigned NumArgs = F.arg_size(); 1025 1026 Assert1(Context == &F.getContext(), 1027 "Function context does not match Module context!", &F); 1028 1029 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 1030 Assert2(FT->getNumParams() == NumArgs, 1031 "# formal arguments must match # of arguments for function type!", 1032 &F, FT); 1033 Assert1(F.getReturnType()->isFirstClassType() || 1034 F.getReturnType()->isVoidTy() || 1035 F.getReturnType()->isStructTy(), 1036 "Functions cannot return aggregate values!", &F); 1037 1038 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 1039 "Invalid struct return type!", &F); 1040 1041 AttributeSet Attrs = F.getAttributes(); 1042 1043 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), 1044 "Attribute after last parameter!", &F); 1045 1046 // Check function attributes. 1047 VerifyFunctionAttrs(FT, Attrs, &F); 1048 1049 // On function declarations/definitions, we do not support the builtin 1050 // attribute. We do not check this in VerifyFunctionAttrs since that is 1051 // checking for Attributes that can/can not ever be on functions. 1052 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 1053 Attribute::Builtin), 1054 "Attribute 'builtin' can only be applied to a callsite.", &F); 1055 1056 // Check that this function meets the restrictions on this calling convention. 1057 switch (F.getCallingConv()) { 1058 default: 1059 break; 1060 case CallingConv::C: 1061 break; 1062 case CallingConv::Fast: 1063 case CallingConv::Cold: 1064 case CallingConv::X86_FastCall: 1065 case CallingConv::X86_ThisCall: 1066 case CallingConv::Intel_OCL_BI: 1067 case CallingConv::PTX_Kernel: 1068 case CallingConv::PTX_Device: 1069 Assert1(!F.isVarArg(), 1070 "Varargs functions must have C calling conventions!", &F); 1071 break; 1072 } 1073 1074 bool isLLVMdotName = F.getName().size() >= 5 && 1075 F.getName().substr(0, 5) == "llvm."; 1076 1077 // Check that the argument values match the function type for this function... 1078 unsigned i = 0; 1079 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 1080 ++I, ++i) { 1081 Assert2(I->getType() == FT->getParamType(i), 1082 "Argument value does not match function argument type!", 1083 I, FT->getParamType(i)); 1084 Assert1(I->getType()->isFirstClassType(), 1085 "Function arguments must have first-class types!", I); 1086 if (!isLLVMdotName) 1087 Assert2(!I->getType()->isMetadataTy(), 1088 "Function takes metadata but isn't an intrinsic", I, &F); 1089 } 1090 1091 if (F.isMaterializable()) { 1092 // Function has a body somewhere we can't see. 1093 } else if (F.isDeclaration()) { 1094 Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), 1095 "invalid linkage type for function declaration", &F); 1096 } else { 1097 // Verify that this function (which has a body) is not named "llvm.*". It 1098 // is not legal to define intrinsics. 1099 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 1100 1101 // Check the entry node 1102 const BasicBlock *Entry = &F.getEntryBlock(); 1103 Assert1(pred_begin(Entry) == pred_end(Entry), 1104 "Entry block to function must not have predecessors!", Entry); 1105 1106 // The address of the entry block cannot be taken, unless it is dead. 1107 if (Entry->hasAddressTaken()) { 1108 Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(), 1109 "blockaddress may not be used with the entry block!", Entry); 1110 } 1111 } 1112 1113 // If this function is actually an intrinsic, verify that it is only used in 1114 // direct call/invokes, never having its "address taken". 1115 if (F.getIntrinsicID()) { 1116 const User *U; 1117 if (F.hasAddressTaken(&U)) 1118 Assert1(0, "Invalid user of intrinsic instruction!", U); 1119 } 1120 1121 Assert1(!F.hasDLLImportStorageClass() || 1122 (F.isDeclaration() && F.hasExternalLinkage()) || 1123 F.hasAvailableExternallyLinkage(), 1124 "Function is marked as dllimport, but not external.", &F); 1125 } 1126 1127 // verifyBasicBlock - Verify that a basic block is well formed... 1128 // 1129 void Verifier::visitBasicBlock(BasicBlock &BB) { 1130 InstsInThisBlock.clear(); 1131 1132 // Ensure that basic blocks have terminators! 1133 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 1134 1135 // Check constraints that this basic block imposes on all of the PHI nodes in 1136 // it. 1137 if (isa<PHINode>(BB.front())) { 1138 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 1139 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 1140 std::sort(Preds.begin(), Preds.end()); 1141 PHINode *PN; 1142 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 1143 // Ensure that PHI nodes have at least one entry! 1144 Assert1(PN->getNumIncomingValues() != 0, 1145 "PHI nodes must have at least one entry. If the block is dead, " 1146 "the PHI should be removed!", PN); 1147 Assert1(PN->getNumIncomingValues() == Preds.size(), 1148 "PHINode should have one entry for each predecessor of its " 1149 "parent basic block!", PN); 1150 1151 // Get and sort all incoming values in the PHI node... 1152 Values.clear(); 1153 Values.reserve(PN->getNumIncomingValues()); 1154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1155 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 1156 PN->getIncomingValue(i))); 1157 std::sort(Values.begin(), Values.end()); 1158 1159 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 1160 // Check to make sure that if there is more than one entry for a 1161 // particular basic block in this PHI node, that the incoming values are 1162 // all identical. 1163 // 1164 Assert4(i == 0 || Values[i].first != Values[i-1].first || 1165 Values[i].second == Values[i-1].second, 1166 "PHI node has multiple entries for the same basic block with " 1167 "different incoming values!", PN, Values[i].first, 1168 Values[i].second, Values[i-1].second); 1169 1170 // Check to make sure that the predecessors and PHI node entries are 1171 // matched up. 1172 Assert3(Values[i].first == Preds[i], 1173 "PHI node entries do not match predecessors!", PN, 1174 Values[i].first, Preds[i]); 1175 } 1176 } 1177 } 1178 } 1179 1180 void Verifier::visitTerminatorInst(TerminatorInst &I) { 1181 // Ensure that terminators only exist at the end of the basic block. 1182 Assert1(&I == I.getParent()->getTerminator(), 1183 "Terminator found in the middle of a basic block!", I.getParent()); 1184 visitInstruction(I); 1185 } 1186 1187 void Verifier::visitBranchInst(BranchInst &BI) { 1188 if (BI.isConditional()) { 1189 Assert2(BI.getCondition()->getType()->isIntegerTy(1), 1190 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 1191 } 1192 visitTerminatorInst(BI); 1193 } 1194 1195 void Verifier::visitReturnInst(ReturnInst &RI) { 1196 Function *F = RI.getParent()->getParent(); 1197 unsigned N = RI.getNumOperands(); 1198 if (F->getReturnType()->isVoidTy()) 1199 Assert2(N == 0, 1200 "Found return instr that returns non-void in Function of void " 1201 "return type!", &RI, F->getReturnType()); 1202 else 1203 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 1204 "Function return type does not match operand " 1205 "type of return inst!", &RI, F->getReturnType()); 1206 1207 // Check to make sure that the return value has necessary properties for 1208 // terminators... 1209 visitTerminatorInst(RI); 1210 } 1211 1212 void Verifier::visitSwitchInst(SwitchInst &SI) { 1213 // Check to make sure that all of the constants in the switch instruction 1214 // have the same type as the switched-on value. 1215 Type *SwitchTy = SI.getCondition()->getType(); 1216 SmallPtrSet<ConstantInt*, 32> Constants; 1217 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { 1218 Assert1(i.getCaseValue()->getType() == SwitchTy, 1219 "Switch constants must all be same type as switch value!", &SI); 1220 Assert2(Constants.insert(i.getCaseValue()), 1221 "Duplicate integer as switch case", &SI, i.getCaseValue()); 1222 } 1223 1224 visitTerminatorInst(SI); 1225 } 1226 1227 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 1228 Assert1(BI.getAddress()->getType()->isPointerTy(), 1229 "Indirectbr operand must have pointer type!", &BI); 1230 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 1231 Assert1(BI.getDestination(i)->getType()->isLabelTy(), 1232 "Indirectbr destinations must all have pointer type!", &BI); 1233 1234 visitTerminatorInst(BI); 1235 } 1236 1237 void Verifier::visitSelectInst(SelectInst &SI) { 1238 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 1239 SI.getOperand(2)), 1240 "Invalid operands for select instruction!", &SI); 1241 1242 Assert1(SI.getTrueValue()->getType() == SI.getType(), 1243 "Select values must have same type as select instruction!", &SI); 1244 visitInstruction(SI); 1245 } 1246 1247 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 1248 /// a pass, if any exist, it's an error. 1249 /// 1250 void Verifier::visitUserOp1(Instruction &I) { 1251 Assert1(0, "User-defined operators should not live outside of a pass!", &I); 1252 } 1253 1254 void Verifier::visitTruncInst(TruncInst &I) { 1255 // Get the source and destination types 1256 Type *SrcTy = I.getOperand(0)->getType(); 1257 Type *DestTy = I.getType(); 1258 1259 // Get the size of the types in bits, we'll need this later 1260 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1261 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1262 1263 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 1264 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 1265 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1266 "trunc source and destination must both be a vector or neither", &I); 1267 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); 1268 1269 visitInstruction(I); 1270 } 1271 1272 void Verifier::visitZExtInst(ZExtInst &I) { 1273 // Get the source and destination types 1274 Type *SrcTy = I.getOperand(0)->getType(); 1275 Type *DestTy = I.getType(); 1276 1277 // Get the size of the types in bits, we'll need this later 1278 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 1279 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 1280 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1281 "zext source and destination must both be a vector or neither", &I); 1282 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1283 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1284 1285 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); 1286 1287 visitInstruction(I); 1288 } 1289 1290 void Verifier::visitSExtInst(SExtInst &I) { 1291 // Get the source and destination types 1292 Type *SrcTy = I.getOperand(0)->getType(); 1293 Type *DestTy = I.getType(); 1294 1295 // Get the size of the types in bits, we'll need this later 1296 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1297 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1298 1299 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 1300 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 1301 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1302 "sext source and destination must both be a vector or neither", &I); 1303 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); 1304 1305 visitInstruction(I); 1306 } 1307 1308 void Verifier::visitFPTruncInst(FPTruncInst &I) { 1309 // Get the source and destination types 1310 Type *SrcTy = I.getOperand(0)->getType(); 1311 Type *DestTy = I.getType(); 1312 // Get the size of the types in bits, we'll need this later 1313 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1314 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1315 1316 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); 1317 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); 1318 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1319 "fptrunc source and destination must both be a vector or neither",&I); 1320 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); 1321 1322 visitInstruction(I); 1323 } 1324 1325 void Verifier::visitFPExtInst(FPExtInst &I) { 1326 // Get the source and destination types 1327 Type *SrcTy = I.getOperand(0)->getType(); 1328 Type *DestTy = I.getType(); 1329 1330 // Get the size of the types in bits, we'll need this later 1331 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1332 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1333 1334 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); 1335 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); 1336 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1337 "fpext source and destination must both be a vector or neither", &I); 1338 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); 1339 1340 visitInstruction(I); 1341 } 1342 1343 void Verifier::visitUIToFPInst(UIToFPInst &I) { 1344 // Get the source and destination types 1345 Type *SrcTy = I.getOperand(0)->getType(); 1346 Type *DestTy = I.getType(); 1347 1348 bool SrcVec = SrcTy->isVectorTy(); 1349 bool DstVec = DestTy->isVectorTy(); 1350 1351 Assert1(SrcVec == DstVec, 1352 "UIToFP source and dest must both be vector or scalar", &I); 1353 Assert1(SrcTy->isIntOrIntVectorTy(), 1354 "UIToFP source must be integer or integer vector", &I); 1355 Assert1(DestTy->isFPOrFPVectorTy(), 1356 "UIToFP result must be FP or FP vector", &I); 1357 1358 if (SrcVec && DstVec) 1359 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1360 cast<VectorType>(DestTy)->getNumElements(), 1361 "UIToFP source and dest vector length mismatch", &I); 1362 1363 visitInstruction(I); 1364 } 1365 1366 void Verifier::visitSIToFPInst(SIToFPInst &I) { 1367 // Get the source and destination types 1368 Type *SrcTy = I.getOperand(0)->getType(); 1369 Type *DestTy = I.getType(); 1370 1371 bool SrcVec = SrcTy->isVectorTy(); 1372 bool DstVec = DestTy->isVectorTy(); 1373 1374 Assert1(SrcVec == DstVec, 1375 "SIToFP source and dest must both be vector or scalar", &I); 1376 Assert1(SrcTy->isIntOrIntVectorTy(), 1377 "SIToFP source must be integer or integer vector", &I); 1378 Assert1(DestTy->isFPOrFPVectorTy(), 1379 "SIToFP result must be FP or FP vector", &I); 1380 1381 if (SrcVec && DstVec) 1382 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1383 cast<VectorType>(DestTy)->getNumElements(), 1384 "SIToFP source and dest vector length mismatch", &I); 1385 1386 visitInstruction(I); 1387 } 1388 1389 void Verifier::visitFPToUIInst(FPToUIInst &I) { 1390 // Get the source and destination types 1391 Type *SrcTy = I.getOperand(0)->getType(); 1392 Type *DestTy = I.getType(); 1393 1394 bool SrcVec = SrcTy->isVectorTy(); 1395 bool DstVec = DestTy->isVectorTy(); 1396 1397 Assert1(SrcVec == DstVec, 1398 "FPToUI source and dest must both be vector or scalar", &I); 1399 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 1400 &I); 1401 Assert1(DestTy->isIntOrIntVectorTy(), 1402 "FPToUI result must be integer or integer vector", &I); 1403 1404 if (SrcVec && DstVec) 1405 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1406 cast<VectorType>(DestTy)->getNumElements(), 1407 "FPToUI source and dest vector length mismatch", &I); 1408 1409 visitInstruction(I); 1410 } 1411 1412 void Verifier::visitFPToSIInst(FPToSIInst &I) { 1413 // Get the source and destination types 1414 Type *SrcTy = I.getOperand(0)->getType(); 1415 Type *DestTy = I.getType(); 1416 1417 bool SrcVec = SrcTy->isVectorTy(); 1418 bool DstVec = DestTy->isVectorTy(); 1419 1420 Assert1(SrcVec == DstVec, 1421 "FPToSI source and dest must both be vector or scalar", &I); 1422 Assert1(SrcTy->isFPOrFPVectorTy(), 1423 "FPToSI source must be FP or FP vector", &I); 1424 Assert1(DestTy->isIntOrIntVectorTy(), 1425 "FPToSI result must be integer or integer vector", &I); 1426 1427 if (SrcVec && DstVec) 1428 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1429 cast<VectorType>(DestTy)->getNumElements(), 1430 "FPToSI source and dest vector length mismatch", &I); 1431 1432 visitInstruction(I); 1433 } 1434 1435 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 1436 // Get the source and destination types 1437 Type *SrcTy = I.getOperand(0)->getType(); 1438 Type *DestTy = I.getType(); 1439 1440 Assert1(SrcTy->getScalarType()->isPointerTy(), 1441 "PtrToInt source must be pointer", &I); 1442 Assert1(DestTy->getScalarType()->isIntegerTy(), 1443 "PtrToInt result must be integral", &I); 1444 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1445 "PtrToInt type mismatch", &I); 1446 1447 if (SrcTy->isVectorTy()) { 1448 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1449 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1450 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1451 "PtrToInt Vector width mismatch", &I); 1452 } 1453 1454 visitInstruction(I); 1455 } 1456 1457 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 1458 // Get the source and destination types 1459 Type *SrcTy = I.getOperand(0)->getType(); 1460 Type *DestTy = I.getType(); 1461 1462 Assert1(SrcTy->getScalarType()->isIntegerTy(), 1463 "IntToPtr source must be an integral", &I); 1464 Assert1(DestTy->getScalarType()->isPointerTy(), 1465 "IntToPtr result must be a pointer",&I); 1466 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1467 "IntToPtr type mismatch", &I); 1468 if (SrcTy->isVectorTy()) { 1469 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1470 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1471 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1472 "IntToPtr Vector width mismatch", &I); 1473 } 1474 visitInstruction(I); 1475 } 1476 1477 void Verifier::visitBitCastInst(BitCastInst &I) { 1478 Type *SrcTy = I.getOperand(0)->getType(); 1479 Type *DestTy = I.getType(); 1480 VerifyBitcastType(&I, DestTy, SrcTy); 1481 visitInstruction(I); 1482 } 1483 1484 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 1485 Type *SrcTy = I.getOperand(0)->getType(); 1486 Type *DestTy = I.getType(); 1487 1488 Assert1(SrcTy->isPtrOrPtrVectorTy(), 1489 "AddrSpaceCast source must be a pointer", &I); 1490 Assert1(DestTy->isPtrOrPtrVectorTy(), 1491 "AddrSpaceCast result must be a pointer", &I); 1492 Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 1493 "AddrSpaceCast must be between different address spaces", &I); 1494 if (SrcTy->isVectorTy()) 1495 Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 1496 "AddrSpaceCast vector pointer number of elements mismatch", &I); 1497 visitInstruction(I); 1498 } 1499 1500 /// visitPHINode - Ensure that a PHI node is well formed. 1501 /// 1502 void Verifier::visitPHINode(PHINode &PN) { 1503 // Ensure that the PHI nodes are all grouped together at the top of the block. 1504 // This can be tested by checking whether the instruction before this is 1505 // either nonexistent (because this is begin()) or is a PHI node. If not, 1506 // then there is some other instruction before a PHI. 1507 Assert2(&PN == &PN.getParent()->front() || 1508 isa<PHINode>(--BasicBlock::iterator(&PN)), 1509 "PHI nodes not grouped at top of basic block!", 1510 &PN, PN.getParent()); 1511 1512 // Check that all of the values of the PHI node have the same type as the 1513 // result, and that the incoming blocks are really basic blocks. 1514 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1515 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), 1516 "PHI node operands are not the same type as the result!", &PN); 1517 } 1518 1519 // All other PHI node constraints are checked in the visitBasicBlock method. 1520 1521 visitInstruction(PN); 1522 } 1523 1524 void Verifier::VerifyCallSite(CallSite CS) { 1525 Instruction *I = CS.getInstruction(); 1526 1527 Assert1(CS.getCalledValue()->getType()->isPointerTy(), 1528 "Called function must be a pointer!", I); 1529 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 1530 1531 Assert1(FPTy->getElementType()->isFunctionTy(), 1532 "Called function is not pointer to function type!", I); 1533 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); 1534 1535 // Verify that the correct number of arguments are being passed 1536 if (FTy->isVarArg()) 1537 Assert1(CS.arg_size() >= FTy->getNumParams(), 1538 "Called function requires more parameters than were provided!",I); 1539 else 1540 Assert1(CS.arg_size() == FTy->getNumParams(), 1541 "Incorrect number of arguments passed to called function!", I); 1542 1543 // Verify that all arguments to the call match the function type. 1544 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1545 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), 1546 "Call parameter type does not match function signature!", 1547 CS.getArgument(i), FTy->getParamType(i), I); 1548 1549 AttributeSet Attrs = CS.getAttributes(); 1550 1551 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), 1552 "Attribute after last parameter!", I); 1553 1554 // Verify call attributes. 1555 VerifyFunctionAttrs(FTy, Attrs, I); 1556 1557 // Conservatively check the inalloca argument. 1558 // We have a bug if we can find that there is an underlying alloca without 1559 // inalloca. 1560 if (CS.hasInAllocaArgument()) { 1561 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 1562 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 1563 Assert2(AI->isUsedWithInAlloca(), 1564 "inalloca argument for call has mismatched alloca", AI, I); 1565 } 1566 1567 if (FTy->isVarArg()) { 1568 // FIXME? is 'nest' even legal here? 1569 bool SawNest = false; 1570 bool SawReturned = false; 1571 1572 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 1573 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 1574 SawNest = true; 1575 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 1576 SawReturned = true; 1577 } 1578 1579 // Check attributes on the varargs part. 1580 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 1581 Type *Ty = CS.getArgument(Idx-1)->getType(); 1582 VerifyParameterAttrs(Attrs, Idx, Ty, false, I); 1583 1584 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1585 Assert1(!SawNest, "More than one parameter has attribute nest!", I); 1586 SawNest = true; 1587 } 1588 1589 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1590 Assert1(!SawReturned, "More than one parameter has attribute returned!", 1591 I); 1592 Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 1593 "Incompatible argument and return types for 'returned' " 1594 "attribute", I); 1595 SawReturned = true; 1596 } 1597 1598 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), 1599 "Attribute 'sret' cannot be used for vararg call arguments!", I); 1600 1601 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) 1602 Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!", 1603 I); 1604 } 1605 } 1606 1607 // Verify that there's no metadata unless it's a direct call to an intrinsic. 1608 if (CS.getCalledFunction() == nullptr || 1609 !CS.getCalledFunction()->getName().startswith("llvm.")) { 1610 for (FunctionType::param_iterator PI = FTy->param_begin(), 1611 PE = FTy->param_end(); PI != PE; ++PI) 1612 Assert1(!(*PI)->isMetadataTy(), 1613 "Function has metadata parameter but isn't an intrinsic", I); 1614 } 1615 1616 visitInstruction(*I); 1617 } 1618 1619 /// Two types are "congruent" if they are identical, or if they are both pointer 1620 /// types with different pointee types and the same address space. 1621 static bool isTypeCongruent(Type *L, Type *R) { 1622 if (L == R) 1623 return true; 1624 PointerType *PL = dyn_cast<PointerType>(L); 1625 PointerType *PR = dyn_cast<PointerType>(R); 1626 if (!PL || !PR) 1627 return false; 1628 return PL->getAddressSpace() == PR->getAddressSpace(); 1629 } 1630 1631 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { 1632 static const Attribute::AttrKind ABIAttrs[] = { 1633 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 1634 Attribute::InReg, Attribute::Returned}; 1635 AttrBuilder Copy; 1636 for (auto AK : ABIAttrs) { 1637 if (Attrs.hasAttribute(I + 1, AK)) 1638 Copy.addAttribute(AK); 1639 } 1640 if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) 1641 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); 1642 return Copy; 1643 } 1644 1645 void Verifier::verifyMustTailCall(CallInst &CI) { 1646 Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 1647 1648 // - The caller and callee prototypes must match. Pointer types of 1649 // parameters or return types may differ in pointee type, but not 1650 // address space. 1651 Function *F = CI.getParent()->getParent(); 1652 auto GetFnTy = [](Value *V) { 1653 return cast<FunctionType>( 1654 cast<PointerType>(V->getType())->getElementType()); 1655 }; 1656 FunctionType *CallerTy = GetFnTy(F); 1657 FunctionType *CalleeTy = GetFnTy(CI.getCalledValue()); 1658 Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(), 1659 "cannot guarantee tail call due to mismatched parameter counts", &CI); 1660 Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(), 1661 "cannot guarantee tail call due to mismatched varargs", &CI); 1662 Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 1663 "cannot guarantee tail call due to mismatched return types", &CI); 1664 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 1665 Assert1( 1666 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 1667 "cannot guarantee tail call due to mismatched parameter types", &CI); 1668 } 1669 1670 // - The calling conventions of the caller and callee must match. 1671 Assert1(F->getCallingConv() == CI.getCallingConv(), 1672 "cannot guarantee tail call due to mismatched calling conv", &CI); 1673 1674 // - All ABI-impacting function attributes, such as sret, byval, inreg, 1675 // returned, and inalloca, must match. 1676 AttributeSet CallerAttrs = F->getAttributes(); 1677 AttributeSet CalleeAttrs = CI.getAttributes(); 1678 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 1679 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 1680 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 1681 Assert2(CallerABIAttrs == CalleeABIAttrs, 1682 "cannot guarantee tail call due to mismatched ABI impacting " 1683 "function attributes", &CI, CI.getOperand(I)); 1684 } 1685 1686 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 1687 // or a pointer bitcast followed by a ret instruction. 1688 // - The ret instruction must return the (possibly bitcasted) value 1689 // produced by the call or void. 1690 Value *RetVal = &CI; 1691 Instruction *Next = CI.getNextNode(); 1692 1693 // Handle the optional bitcast. 1694 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 1695 Assert1(BI->getOperand(0) == RetVal, 1696 "bitcast following musttail call must use the call", BI); 1697 RetVal = BI; 1698 Next = BI->getNextNode(); 1699 } 1700 1701 // Check the return. 1702 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 1703 Assert1(Ret, "musttail call must be precede a ret with an optional bitcast", 1704 &CI); 1705 Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 1706 "musttail call result must be returned", Ret); 1707 } 1708 1709 void Verifier::visitCallInst(CallInst &CI) { 1710 VerifyCallSite(&CI); 1711 1712 if (CI.isMustTailCall()) 1713 verifyMustTailCall(CI); 1714 1715 if (Function *F = CI.getCalledFunction()) 1716 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 1717 visitIntrinsicFunctionCall(ID, CI); 1718 } 1719 1720 void Verifier::visitInvokeInst(InvokeInst &II) { 1721 VerifyCallSite(&II); 1722 1723 // Verify that there is a landingpad instruction as the first non-PHI 1724 // instruction of the 'unwind' destination. 1725 Assert1(II.getUnwindDest()->isLandingPad(), 1726 "The unwind destination does not have a landingpad instruction!",&II); 1727 1728 visitTerminatorInst(II); 1729 } 1730 1731 /// visitBinaryOperator - Check that both arguments to the binary operator are 1732 /// of the same type! 1733 /// 1734 void Verifier::visitBinaryOperator(BinaryOperator &B) { 1735 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 1736 "Both operands to a binary operator are not of the same type!", &B); 1737 1738 switch (B.getOpcode()) { 1739 // Check that integer arithmetic operators are only used with 1740 // integral operands. 1741 case Instruction::Add: 1742 case Instruction::Sub: 1743 case Instruction::Mul: 1744 case Instruction::SDiv: 1745 case Instruction::UDiv: 1746 case Instruction::SRem: 1747 case Instruction::URem: 1748 Assert1(B.getType()->isIntOrIntVectorTy(), 1749 "Integer arithmetic operators only work with integral types!", &B); 1750 Assert1(B.getType() == B.getOperand(0)->getType(), 1751 "Integer arithmetic operators must have same type " 1752 "for operands and result!", &B); 1753 break; 1754 // Check that floating-point arithmetic operators are only used with 1755 // floating-point operands. 1756 case Instruction::FAdd: 1757 case Instruction::FSub: 1758 case Instruction::FMul: 1759 case Instruction::FDiv: 1760 case Instruction::FRem: 1761 Assert1(B.getType()->isFPOrFPVectorTy(), 1762 "Floating-point arithmetic operators only work with " 1763 "floating-point types!", &B); 1764 Assert1(B.getType() == B.getOperand(0)->getType(), 1765 "Floating-point arithmetic operators must have same type " 1766 "for operands and result!", &B); 1767 break; 1768 // Check that logical operators are only used with integral operands. 1769 case Instruction::And: 1770 case Instruction::Or: 1771 case Instruction::Xor: 1772 Assert1(B.getType()->isIntOrIntVectorTy(), 1773 "Logical operators only work with integral types!", &B); 1774 Assert1(B.getType() == B.getOperand(0)->getType(), 1775 "Logical operators must have same type for operands and result!", 1776 &B); 1777 break; 1778 case Instruction::Shl: 1779 case Instruction::LShr: 1780 case Instruction::AShr: 1781 Assert1(B.getType()->isIntOrIntVectorTy(), 1782 "Shifts only work with integral types!", &B); 1783 Assert1(B.getType() == B.getOperand(0)->getType(), 1784 "Shift return type must be same as operands!", &B); 1785 break; 1786 default: 1787 llvm_unreachable("Unknown BinaryOperator opcode!"); 1788 } 1789 1790 visitInstruction(B); 1791 } 1792 1793 void Verifier::visitICmpInst(ICmpInst &IC) { 1794 // Check that the operands are the same type 1795 Type *Op0Ty = IC.getOperand(0)->getType(); 1796 Type *Op1Ty = IC.getOperand(1)->getType(); 1797 Assert1(Op0Ty == Op1Ty, 1798 "Both operands to ICmp instruction are not of the same type!", &IC); 1799 // Check that the operands are the right type 1800 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 1801 "Invalid operand types for ICmp instruction", &IC); 1802 // Check that the predicate is valid. 1803 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 1804 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 1805 "Invalid predicate in ICmp instruction!", &IC); 1806 1807 visitInstruction(IC); 1808 } 1809 1810 void Verifier::visitFCmpInst(FCmpInst &FC) { 1811 // Check that the operands are the same type 1812 Type *Op0Ty = FC.getOperand(0)->getType(); 1813 Type *Op1Ty = FC.getOperand(1)->getType(); 1814 Assert1(Op0Ty == Op1Ty, 1815 "Both operands to FCmp instruction are not of the same type!", &FC); 1816 // Check that the operands are the right type 1817 Assert1(Op0Ty->isFPOrFPVectorTy(), 1818 "Invalid operand types for FCmp instruction", &FC); 1819 // Check that the predicate is valid. 1820 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 1821 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 1822 "Invalid predicate in FCmp instruction!", &FC); 1823 1824 visitInstruction(FC); 1825 } 1826 1827 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 1828 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), 1829 EI.getOperand(1)), 1830 "Invalid extractelement operands!", &EI); 1831 visitInstruction(EI); 1832 } 1833 1834 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 1835 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), 1836 IE.getOperand(1), 1837 IE.getOperand(2)), 1838 "Invalid insertelement operands!", &IE); 1839 visitInstruction(IE); 1840 } 1841 1842 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 1843 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 1844 SV.getOperand(2)), 1845 "Invalid shufflevector operands!", &SV); 1846 visitInstruction(SV); 1847 } 1848 1849 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1850 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 1851 1852 Assert1(isa<PointerType>(TargetTy), 1853 "GEP base pointer is not a vector or a vector of pointers", &GEP); 1854 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(), 1855 "GEP into unsized type!", &GEP); 1856 Assert1(GEP.getPointerOperandType()->isVectorTy() == 1857 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", 1858 &GEP); 1859 1860 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 1861 Type *ElTy = 1862 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); 1863 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); 1864 1865 Assert2(GEP.getType()->getScalarType()->isPointerTy() && 1866 cast<PointerType>(GEP.getType()->getScalarType())->getElementType() 1867 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); 1868 1869 if (GEP.getPointerOperandType()->isVectorTy()) { 1870 // Additional checks for vector GEPs. 1871 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); 1872 Assert1(GepWidth == GEP.getType()->getVectorNumElements(), 1873 "Vector GEP result width doesn't match operand's", &GEP); 1874 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 1875 Type *IndexTy = Idxs[i]->getType(); 1876 Assert1(IndexTy->isVectorTy(), 1877 "Vector GEP must have vector indices!", &GEP); 1878 unsigned IndexWidth = IndexTy->getVectorNumElements(); 1879 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); 1880 } 1881 } 1882 visitInstruction(GEP); 1883 } 1884 1885 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1886 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1887 } 1888 1889 void Verifier::visitLoadInst(LoadInst &LI) { 1890 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 1891 Assert1(PTy, "Load operand must be a pointer.", &LI); 1892 Type *ElTy = PTy->getElementType(); 1893 Assert2(ElTy == LI.getType(), 1894 "Load result type does not match pointer operand type!", &LI, ElTy); 1895 if (LI.isAtomic()) { 1896 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, 1897 "Load cannot have Release ordering", &LI); 1898 Assert1(LI.getAlignment() != 0, 1899 "Atomic load must specify explicit alignment", &LI); 1900 if (!ElTy->isPointerTy()) { 1901 Assert2(ElTy->isIntegerTy(), 1902 "atomic load operand must have integer type!", 1903 &LI, ElTy); 1904 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1905 Assert2(Size >= 8 && !(Size & (Size - 1)), 1906 "atomic load operand must be power-of-two byte-sized integer", 1907 &LI, ElTy); 1908 } 1909 } else { 1910 Assert1(LI.getSynchScope() == CrossThread, 1911 "Non-atomic load cannot have SynchronizationScope specified", &LI); 1912 } 1913 1914 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) { 1915 unsigned NumOperands = Range->getNumOperands(); 1916 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); 1917 unsigned NumRanges = NumOperands / 2; 1918 Assert1(NumRanges >= 1, "It should have at least one range!", Range); 1919 1920 ConstantRange LastRange(1); // Dummy initial value 1921 for (unsigned i = 0; i < NumRanges; ++i) { 1922 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i)); 1923 Assert1(Low, "The lower limit must be an integer!", Low); 1924 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1)); 1925 Assert1(High, "The upper limit must be an integer!", High); 1926 Assert1(High->getType() == Low->getType() && 1927 High->getType() == ElTy, "Range types must match load type!", 1928 &LI); 1929 1930 APInt HighV = High->getValue(); 1931 APInt LowV = Low->getValue(); 1932 ConstantRange CurRange(LowV, HighV); 1933 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), 1934 "Range must not be empty!", Range); 1935 if (i != 0) { 1936 Assert1(CurRange.intersectWith(LastRange).isEmptySet(), 1937 "Intervals are overlapping", Range); 1938 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 1939 Range); 1940 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 1941 Range); 1942 } 1943 LastRange = ConstantRange(LowV, HighV); 1944 } 1945 if (NumRanges > 2) { 1946 APInt FirstLow = 1947 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue(); 1948 APInt FirstHigh = 1949 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue(); 1950 ConstantRange FirstRange(FirstLow, FirstHigh); 1951 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), 1952 "Intervals are overlapping", Range); 1953 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 1954 Range); 1955 } 1956 1957 1958 } 1959 1960 visitInstruction(LI); 1961 } 1962 1963 void Verifier::visitStoreInst(StoreInst &SI) { 1964 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 1965 Assert1(PTy, "Store operand must be a pointer.", &SI); 1966 Type *ElTy = PTy->getElementType(); 1967 Assert2(ElTy == SI.getOperand(0)->getType(), 1968 "Stored value type does not match pointer operand type!", 1969 &SI, ElTy); 1970 if (SI.isAtomic()) { 1971 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, 1972 "Store cannot have Acquire ordering", &SI); 1973 Assert1(SI.getAlignment() != 0, 1974 "Atomic store must specify explicit alignment", &SI); 1975 if (!ElTy->isPointerTy()) { 1976 Assert2(ElTy->isIntegerTy(), 1977 "atomic store operand must have integer type!", 1978 &SI, ElTy); 1979 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1980 Assert2(Size >= 8 && !(Size & (Size - 1)), 1981 "atomic store operand must be power-of-two byte-sized integer", 1982 &SI, ElTy); 1983 } 1984 } else { 1985 Assert1(SI.getSynchScope() == CrossThread, 1986 "Non-atomic store cannot have SynchronizationScope specified", &SI); 1987 } 1988 visitInstruction(SI); 1989 } 1990 1991 void Verifier::visitAllocaInst(AllocaInst &AI) { 1992 SmallPtrSet<const Type*, 4> Visited; 1993 PointerType *PTy = AI.getType(); 1994 Assert1(PTy->getAddressSpace() == 0, 1995 "Allocation instruction pointer not in the generic address space!", 1996 &AI); 1997 Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type", 1998 &AI); 1999 Assert1(AI.getArraySize()->getType()->isIntegerTy(), 2000 "Alloca array size must have integer type", &AI); 2001 2002 visitInstruction(AI); 2003 } 2004 2005 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 2006 2007 // FIXME: more conditions??? 2008 Assert1(CXI.getSuccessOrdering() != NotAtomic, 2009 "cmpxchg instructions must be atomic.", &CXI); 2010 Assert1(CXI.getFailureOrdering() != NotAtomic, 2011 "cmpxchg instructions must be atomic.", &CXI); 2012 Assert1(CXI.getSuccessOrdering() != Unordered, 2013 "cmpxchg instructions cannot be unordered.", &CXI); 2014 Assert1(CXI.getFailureOrdering() != Unordered, 2015 "cmpxchg instructions cannot be unordered.", &CXI); 2016 Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), 2017 "cmpxchg instructions be at least as constrained on success as fail", 2018 &CXI); 2019 Assert1(CXI.getFailureOrdering() != Release && 2020 CXI.getFailureOrdering() != AcquireRelease, 2021 "cmpxchg failure ordering cannot include release semantics", &CXI); 2022 2023 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 2024 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); 2025 Type *ElTy = PTy->getElementType(); 2026 Assert2(ElTy->isIntegerTy(), 2027 "cmpxchg operand must have integer type!", 2028 &CXI, ElTy); 2029 unsigned Size = ElTy->getPrimitiveSizeInBits(); 2030 Assert2(Size >= 8 && !(Size & (Size - 1)), 2031 "cmpxchg operand must be power-of-two byte-sized integer", 2032 &CXI, ElTy); 2033 Assert2(ElTy == CXI.getOperand(1)->getType(), 2034 "Expected value type does not match pointer operand type!", 2035 &CXI, ElTy); 2036 Assert2(ElTy == CXI.getOperand(2)->getType(), 2037 "Stored value type does not match pointer operand type!", 2038 &CXI, ElTy); 2039 visitInstruction(CXI); 2040 } 2041 2042 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 2043 Assert1(RMWI.getOrdering() != NotAtomic, 2044 "atomicrmw instructions must be atomic.", &RMWI); 2045 Assert1(RMWI.getOrdering() != Unordered, 2046 "atomicrmw instructions cannot be unordered.", &RMWI); 2047 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 2048 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 2049 Type *ElTy = PTy->getElementType(); 2050 Assert2(ElTy->isIntegerTy(), 2051 "atomicrmw operand must have integer type!", 2052 &RMWI, ElTy); 2053 unsigned Size = ElTy->getPrimitiveSizeInBits(); 2054 Assert2(Size >= 8 && !(Size & (Size - 1)), 2055 "atomicrmw operand must be power-of-two byte-sized integer", 2056 &RMWI, ElTy); 2057 Assert2(ElTy == RMWI.getOperand(1)->getType(), 2058 "Argument value type does not match pointer operand type!", 2059 &RMWI, ElTy); 2060 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 2061 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 2062 "Invalid binary operation!", &RMWI); 2063 visitInstruction(RMWI); 2064 } 2065 2066 void Verifier::visitFenceInst(FenceInst &FI) { 2067 const AtomicOrdering Ordering = FI.getOrdering(); 2068 Assert1(Ordering == Acquire || Ordering == Release || 2069 Ordering == AcquireRelease || Ordering == SequentiallyConsistent, 2070 "fence instructions may only have " 2071 "acquire, release, acq_rel, or seq_cst ordering.", &FI); 2072 visitInstruction(FI); 2073 } 2074 2075 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 2076 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 2077 EVI.getIndices()) == 2078 EVI.getType(), 2079 "Invalid ExtractValueInst operands!", &EVI); 2080 2081 visitInstruction(EVI); 2082 } 2083 2084 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 2085 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 2086 IVI.getIndices()) == 2087 IVI.getOperand(1)->getType(), 2088 "Invalid InsertValueInst operands!", &IVI); 2089 2090 visitInstruction(IVI); 2091 } 2092 2093 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 2094 BasicBlock *BB = LPI.getParent(); 2095 2096 // The landingpad instruction is ill-formed if it doesn't have any clauses and 2097 // isn't a cleanup. 2098 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), 2099 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 2100 2101 // The landingpad instruction defines its parent as a landing pad block. The 2102 // landing pad block may be branched to only by the unwind edge of an invoke. 2103 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 2104 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()); 2105 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 2106 "Block containing LandingPadInst must be jumped to " 2107 "only by the unwind edge of an invoke.", &LPI); 2108 } 2109 2110 // The landingpad instruction must be the first non-PHI instruction in the 2111 // block. 2112 Assert1(LPI.getParent()->getLandingPadInst() == &LPI, 2113 "LandingPadInst not the first non-PHI instruction in the block.", 2114 &LPI); 2115 2116 // The personality functions for all landingpad instructions within the same 2117 // function should match. 2118 if (PersonalityFn) 2119 Assert1(LPI.getPersonalityFn() == PersonalityFn, 2120 "Personality function doesn't match others in function", &LPI); 2121 PersonalityFn = LPI.getPersonalityFn(); 2122 2123 // All operands must be constants. 2124 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!", 2125 &LPI); 2126 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 2127 Constant *Clause = LPI.getClause(i); 2128 if (LPI.isCatch(i)) { 2129 Assert1(isa<PointerType>(Clause->getType()), 2130 "Catch operand does not have pointer type!", &LPI); 2131 } else { 2132 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 2133 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 2134 "Filter operand is not an array of constants!", &LPI); 2135 } 2136 } 2137 2138 visitInstruction(LPI); 2139 } 2140 2141 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 2142 Instruction *Op = cast<Instruction>(I.getOperand(i)); 2143 // If the we have an invalid invoke, don't try to compute the dominance. 2144 // We already reject it in the invoke specific checks and the dominance 2145 // computation doesn't handle multiple edges. 2146 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 2147 if (II->getNormalDest() == II->getUnwindDest()) 2148 return; 2149 } 2150 2151 const Use &U = I.getOperandUse(i); 2152 Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U), 2153 "Instruction does not dominate all uses!", Op, &I); 2154 } 2155 2156 /// verifyInstruction - Verify that an instruction is well formed. 2157 /// 2158 void Verifier::visitInstruction(Instruction &I) { 2159 BasicBlock *BB = I.getParent(); 2160 Assert1(BB, "Instruction not embedded in basic block!", &I); 2161 2162 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 2163 for (User *U : I.users()) { 2164 Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB), 2165 "Only PHI nodes may reference their own value!", &I); 2166 } 2167 } 2168 2169 // Check that void typed values don't have names 2170 Assert1(!I.getType()->isVoidTy() || !I.hasName(), 2171 "Instruction has a name, but provides a void value!", &I); 2172 2173 // Check that the return value of the instruction is either void or a legal 2174 // value type. 2175 Assert1(I.getType()->isVoidTy() || 2176 I.getType()->isFirstClassType(), 2177 "Instruction returns a non-scalar type!", &I); 2178 2179 // Check that the instruction doesn't produce metadata. Calls are already 2180 // checked against the callee type. 2181 Assert1(!I.getType()->isMetadataTy() || 2182 isa<CallInst>(I) || isa<InvokeInst>(I), 2183 "Invalid use of metadata!", &I); 2184 2185 // Check that all uses of the instruction, if they are instructions 2186 // themselves, actually have parent basic blocks. If the use is not an 2187 // instruction, it is an error! 2188 for (Use &U : I.uses()) { 2189 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 2190 Assert2(Used->getParent() != nullptr, "Instruction referencing" 2191 " instruction not embedded in a basic block!", &I, Used); 2192 else { 2193 CheckFailed("Use of instruction is not an instruction!", U); 2194 return; 2195 } 2196 } 2197 2198 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 2199 Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 2200 2201 // Check to make sure that only first-class-values are operands to 2202 // instructions. 2203 if (!I.getOperand(i)->getType()->isFirstClassType()) { 2204 Assert1(0, "Instruction operands must be first-class values!", &I); 2205 } 2206 2207 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 2208 // Check to make sure that the "address of" an intrinsic function is never 2209 // taken. 2210 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0), 2211 "Cannot take the address of an intrinsic!", &I); 2212 Assert1(!F->isIntrinsic() || isa<CallInst>(I) || 2213 F->getIntrinsicID() == Intrinsic::donothing, 2214 "Cannot invoke an intrinsinc other than donothing", &I); 2215 Assert1(F->getParent() == M, "Referencing function in another module!", 2216 &I); 2217 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 2218 Assert1(OpBB->getParent() == BB->getParent(), 2219 "Referring to a basic block in another function!", &I); 2220 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 2221 Assert1(OpArg->getParent() == BB->getParent(), 2222 "Referring to an argument in another function!", &I); 2223 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 2224 Assert1(GV->getParent() == M, "Referencing global in another module!", 2225 &I); 2226 } else if (isa<Instruction>(I.getOperand(i))) { 2227 verifyDominatesUse(I, i); 2228 } else if (isa<InlineAsm>(I.getOperand(i))) { 2229 Assert1((i + 1 == e && isa<CallInst>(I)) || 2230 (i + 3 == e && isa<InvokeInst>(I)), 2231 "Cannot take the address of an inline asm!", &I); 2232 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 2233 if (CE->getType()->isPtrOrPtrVectorTy()) { 2234 // If we have a ConstantExpr pointer, we need to see if it came from an 2235 // illegal bitcast (inttoptr <constant int> ) 2236 SmallVector<const ConstantExpr *, 4> Stack; 2237 SmallPtrSet<const ConstantExpr *, 4> Visited; 2238 Stack.push_back(CE); 2239 2240 while (!Stack.empty()) { 2241 const ConstantExpr *V = Stack.pop_back_val(); 2242 if (!Visited.insert(V)) 2243 continue; 2244 2245 VerifyConstantExprBitcastType(V); 2246 2247 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { 2248 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I))) 2249 Stack.push_back(Op); 2250 } 2251 } 2252 } 2253 } 2254 } 2255 2256 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 2257 Assert1(I.getType()->isFPOrFPVectorTy(), 2258 "fpmath requires a floating point result!", &I); 2259 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 2260 Value *Op0 = MD->getOperand(0); 2261 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) { 2262 APFloat Accuracy = CFP0->getValueAPF(); 2263 Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 2264 "fpmath accuracy not a positive number!", &I); 2265 } else { 2266 Assert1(false, "invalid fpmath accuracy!", &I); 2267 } 2268 } 2269 2270 MDNode *MD = I.getMetadata(LLVMContext::MD_range); 2271 Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 2272 "Ranges are only for loads, calls and invokes!", &I); 2273 2274 InstsInThisBlock.insert(&I); 2275 } 2276 2277 /// VerifyIntrinsicType - Verify that the specified type (which comes from an 2278 /// intrinsic argument or return value) matches the type constraints specified 2279 /// by the .td file (e.g. an "any integer" argument really is an integer). 2280 /// 2281 /// This return true on error but does not print a message. 2282 bool Verifier::VerifyIntrinsicType(Type *Ty, 2283 ArrayRef<Intrinsic::IITDescriptor> &Infos, 2284 SmallVectorImpl<Type*> &ArgTys) { 2285 using namespace Intrinsic; 2286 2287 // If we ran out of descriptors, there are too many arguments. 2288 if (Infos.empty()) return true; 2289 IITDescriptor D = Infos.front(); 2290 Infos = Infos.slice(1); 2291 2292 switch (D.Kind) { 2293 case IITDescriptor::Void: return !Ty->isVoidTy(); 2294 case IITDescriptor::VarArg: return true; 2295 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 2296 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 2297 case IITDescriptor::Half: return !Ty->isHalfTy(); 2298 case IITDescriptor::Float: return !Ty->isFloatTy(); 2299 case IITDescriptor::Double: return !Ty->isDoubleTy(); 2300 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 2301 case IITDescriptor::Vector: { 2302 VectorType *VT = dyn_cast<VectorType>(Ty); 2303 return !VT || VT->getNumElements() != D.Vector_Width || 2304 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); 2305 } 2306 case IITDescriptor::Pointer: { 2307 PointerType *PT = dyn_cast<PointerType>(Ty); 2308 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 2309 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); 2310 } 2311 2312 case IITDescriptor::Struct: { 2313 StructType *ST = dyn_cast<StructType>(Ty); 2314 if (!ST || ST->getNumElements() != D.Struct_NumElements) 2315 return true; 2316 2317 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 2318 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 2319 return true; 2320 return false; 2321 } 2322 2323 case IITDescriptor::Argument: 2324 // Two cases here - If this is the second occurrence of an argument, verify 2325 // that the later instance matches the previous instance. 2326 if (D.getArgumentNumber() < ArgTys.size()) 2327 return Ty != ArgTys[D.getArgumentNumber()]; 2328 2329 // Otherwise, if this is the first instance of an argument, record it and 2330 // verify the "Any" kind. 2331 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 2332 ArgTys.push_back(Ty); 2333 2334 switch (D.getArgumentKind()) { 2335 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 2336 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 2337 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 2338 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 2339 } 2340 llvm_unreachable("all argument kinds not covered"); 2341 2342 case IITDescriptor::ExtendArgument: { 2343 // This may only be used when referring to a previous vector argument. 2344 if (D.getArgumentNumber() >= ArgTys.size()) 2345 return true; 2346 2347 Type *NewTy = ArgTys[D.getArgumentNumber()]; 2348 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 2349 NewTy = VectorType::getExtendedElementVectorType(VTy); 2350 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 2351 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 2352 else 2353 return true; 2354 2355 return Ty != NewTy; 2356 } 2357 case IITDescriptor::TruncArgument: { 2358 // This may only be used when referring to a previous vector argument. 2359 if (D.getArgumentNumber() >= ArgTys.size()) 2360 return true; 2361 2362 Type *NewTy = ArgTys[D.getArgumentNumber()]; 2363 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 2364 NewTy = VectorType::getTruncatedElementVectorType(VTy); 2365 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 2366 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 2367 else 2368 return true; 2369 2370 return Ty != NewTy; 2371 } 2372 case IITDescriptor::HalfVecArgument: 2373 // This may only be used when referring to a previous vector argument. 2374 return D.getArgumentNumber() >= ArgTys.size() || 2375 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 2376 VectorType::getHalfElementsVectorType( 2377 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 2378 } 2379 llvm_unreachable("unhandled"); 2380 } 2381 2382 /// \brief Verify if the intrinsic has variable arguments. 2383 /// This method is intended to be called after all the fixed arguments have been 2384 /// verified first. 2385 /// 2386 /// This method returns true on error and does not print an error message. 2387 bool 2388 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, 2389 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 2390 using namespace Intrinsic; 2391 2392 // If there are no descriptors left, then it can't be a vararg. 2393 if (Infos.empty()) 2394 return isVarArg ? true : false; 2395 2396 // There should be only one descriptor remaining at this point. 2397 if (Infos.size() != 1) 2398 return true; 2399 2400 // Check and verify the descriptor. 2401 IITDescriptor D = Infos.front(); 2402 Infos = Infos.slice(1); 2403 if (D.Kind == IITDescriptor::VarArg) 2404 return isVarArg ? false : true; 2405 2406 return true; 2407 } 2408 2409 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. 2410 /// 2411 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { 2412 Function *IF = CI.getCalledFunction(); 2413 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", 2414 IF); 2415 2416 // Verify that the intrinsic prototype lines up with what the .td files 2417 // describe. 2418 FunctionType *IFTy = IF->getFunctionType(); 2419 bool IsVarArg = IFTy->isVarArg(); 2420 2421 SmallVector<Intrinsic::IITDescriptor, 8> Table; 2422 getIntrinsicInfoTableEntries(ID, Table); 2423 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 2424 2425 SmallVector<Type *, 4> ArgTys; 2426 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), 2427 "Intrinsic has incorrect return type!", IF); 2428 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 2429 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), 2430 "Intrinsic has incorrect argument type!", IF); 2431 2432 // Verify if the intrinsic call matches the vararg property. 2433 if (IsVarArg) 2434 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), 2435 "Intrinsic was not defined with variable arguments!", IF); 2436 else 2437 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), 2438 "Callsite was not defined with variable arguments!", IF); 2439 2440 // All descriptors should be absorbed by now. 2441 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); 2442 2443 // Now that we have the intrinsic ID and the actual argument types (and we 2444 // know they are legal for the intrinsic!) get the intrinsic name through the 2445 // usual means. This allows us to verify the mangling of argument types into 2446 // the name. 2447 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 2448 Assert1(ExpectedName == IF->getName(), 2449 "Intrinsic name not mangled correctly for type arguments! " 2450 "Should be: " + ExpectedName, IF); 2451 2452 // If the intrinsic takes MDNode arguments, verify that they are either global 2453 // or are local to *this* function. 2454 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) 2455 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i))) 2456 visitMDNode(*MD, CI.getParent()->getParent()); 2457 2458 switch (ID) { 2459 default: 2460 break; 2461 case Intrinsic::ctlz: // llvm.ctlz 2462 case Intrinsic::cttz: // llvm.cttz 2463 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2464 "is_zero_undef argument of bit counting intrinsics must be a " 2465 "constant int", &CI); 2466 break; 2467 case Intrinsic::dbg_declare: { // llvm.dbg.declare 2468 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)), 2469 "invalid llvm.dbg.declare intrinsic call 1", &CI); 2470 MDNode *MD = cast<MDNode>(CI.getArgOperand(0)); 2471 Assert1(MD->getNumOperands() == 1, 2472 "invalid llvm.dbg.declare intrinsic call 2", &CI); 2473 } break; 2474 case Intrinsic::memcpy: 2475 case Intrinsic::memmove: 2476 case Intrinsic::memset: 2477 Assert1(isa<ConstantInt>(CI.getArgOperand(3)), 2478 "alignment argument of memory intrinsics must be a constant int", 2479 &CI); 2480 Assert1(isa<ConstantInt>(CI.getArgOperand(4)), 2481 "isvolatile argument of memory intrinsics must be a constant int", 2482 &CI); 2483 break; 2484 case Intrinsic::gcroot: 2485 case Intrinsic::gcwrite: 2486 case Intrinsic::gcread: 2487 if (ID == Intrinsic::gcroot) { 2488 AllocaInst *AI = 2489 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); 2490 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); 2491 Assert1(isa<Constant>(CI.getArgOperand(1)), 2492 "llvm.gcroot parameter #2 must be a constant.", &CI); 2493 if (!AI->getType()->getElementType()->isPointerTy()) { 2494 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)), 2495 "llvm.gcroot parameter #1 must either be a pointer alloca, " 2496 "or argument #2 must be a non-null constant.", &CI); 2497 } 2498 } 2499 2500 Assert1(CI.getParent()->getParent()->hasGC(), 2501 "Enclosing function does not use GC.", &CI); 2502 break; 2503 case Intrinsic::init_trampoline: 2504 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), 2505 "llvm.init_trampoline parameter #2 must resolve to a function.", 2506 &CI); 2507 break; 2508 case Intrinsic::prefetch: 2509 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) && 2510 isa<ConstantInt>(CI.getArgOperand(2)) && 2511 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && 2512 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, 2513 "invalid arguments to llvm.prefetch", 2514 &CI); 2515 break; 2516 case Intrinsic::stackprotector: 2517 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), 2518 "llvm.stackprotector parameter #2 must resolve to an alloca.", 2519 &CI); 2520 break; 2521 case Intrinsic::lifetime_start: 2522 case Intrinsic::lifetime_end: 2523 case Intrinsic::invariant_start: 2524 Assert1(isa<ConstantInt>(CI.getArgOperand(0)), 2525 "size argument of memory use markers must be a constant integer", 2526 &CI); 2527 break; 2528 case Intrinsic::invariant_end: 2529 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2530 "llvm.invariant.end parameter #2 must be a constant integer", &CI); 2531 break; 2532 } 2533 } 2534 2535 void DebugInfoVerifier::verifyDebugInfo() { 2536 if (!VerifyDebugInfo) 2537 return; 2538 2539 DebugInfoFinder Finder; 2540 Finder.processModule(*M); 2541 processInstructions(Finder); 2542 2543 // Verify Debug Info. 2544 // 2545 // NOTE: The loud braces are necessary for MSVC compatibility. 2546 for (DICompileUnit CU : Finder.compile_units()) { 2547 Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU); 2548 } 2549 for (DISubprogram S : Finder.subprograms()) { 2550 Assert1(S.Verify(), "DISubprogram does not Verify!", S); 2551 } 2552 for (DIGlobalVariable GV : Finder.global_variables()) { 2553 Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV); 2554 } 2555 for (DIType T : Finder.types()) { 2556 Assert1(T.Verify(), "DIType does not Verify!", T); 2557 } 2558 for (DIScope S : Finder.scopes()) { 2559 Assert1(S.Verify(), "DIScope does not Verify!", S); 2560 } 2561 } 2562 2563 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { 2564 for (const Function &F : *M) 2565 for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { 2566 if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg)) 2567 Finder.processLocation(*M, DILocation(MD)); 2568 if (const CallInst *CI = dyn_cast<CallInst>(&*I)) 2569 processCallInst(Finder, *CI); 2570 } 2571 } 2572 2573 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder, 2574 const CallInst &CI) { 2575 if (Function *F = CI.getCalledFunction()) 2576 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2577 switch (ID) { 2578 case Intrinsic::dbg_declare: 2579 Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI)); 2580 break; 2581 case Intrinsic::dbg_value: 2582 Finder.processValue(*M, cast<DbgValueInst>(&CI)); 2583 break; 2584 default: 2585 break; 2586 } 2587 } 2588 2589 //===----------------------------------------------------------------------===// 2590 // Implement the public interfaces to this file... 2591 //===----------------------------------------------------------------------===// 2592 2593 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 2594 Function &F = const_cast<Function &>(f); 2595 assert(!F.isDeclaration() && "Cannot verify external functions"); 2596 2597 raw_null_ostream NullStr; 2598 Verifier V(OS ? *OS : NullStr); 2599 2600 // Note that this function's return value is inverted from what you would 2601 // expect of a function called "verify". 2602 return !V.verify(F); 2603 } 2604 2605 bool llvm::verifyModule(const Module &M, raw_ostream *OS) { 2606 raw_null_ostream NullStr; 2607 Verifier V(OS ? *OS : NullStr); 2608 2609 bool Broken = false; 2610 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) 2611 if (!I->isDeclaration()) 2612 Broken |= !V.verify(*I); 2613 2614 // Note that this function's return value is inverted from what you would 2615 // expect of a function called "verify". 2616 DebugInfoVerifier DIV(OS ? *OS : NullStr); 2617 return !V.verify(M) || !DIV.verify(M) || Broken; 2618 } 2619 2620 namespace { 2621 struct VerifierLegacyPass : public FunctionPass { 2622 static char ID; 2623 2624 Verifier V; 2625 bool FatalErrors; 2626 2627 VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) { 2628 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2629 } 2630 explicit VerifierLegacyPass(bool FatalErrors) 2631 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { 2632 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2633 } 2634 2635 bool runOnFunction(Function &F) override { 2636 if (!V.verify(F) && FatalErrors) 2637 report_fatal_error("Broken function found, compilation aborted!"); 2638 2639 return false; 2640 } 2641 2642 bool doFinalization(Module &M) override { 2643 if (!V.verify(M) && FatalErrors) 2644 report_fatal_error("Broken module found, compilation aborted!"); 2645 2646 return false; 2647 } 2648 2649 void getAnalysisUsage(AnalysisUsage &AU) const override { 2650 AU.setPreservesAll(); 2651 } 2652 }; 2653 struct DebugInfoVerifierLegacyPass : public ModulePass { 2654 static char ID; 2655 2656 DebugInfoVerifier V; 2657 bool FatalErrors; 2658 2659 DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) { 2660 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2661 } 2662 explicit DebugInfoVerifierLegacyPass(bool FatalErrors) 2663 : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) { 2664 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 2665 } 2666 2667 bool runOnModule(Module &M) override { 2668 if (!V.verify(M) && FatalErrors) 2669 report_fatal_error("Broken debug info found, compilation aborted!"); 2670 2671 return false; 2672 } 2673 2674 void getAnalysisUsage(AnalysisUsage &AU) const override { 2675 AU.setPreservesAll(); 2676 } 2677 }; 2678 } 2679 2680 char VerifierLegacyPass::ID = 0; 2681 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 2682 2683 char DebugInfoVerifierLegacyPass::ID = 0; 2684 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier", 2685 false, false) 2686 2687 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 2688 return new VerifierLegacyPass(FatalErrors); 2689 } 2690 2691 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) { 2692 return new DebugInfoVerifierLegacyPass(FatalErrors); 2693 } 2694 2695 PreservedAnalyses VerifierPass::run(Module *M) { 2696 if (verifyModule(*M, &dbgs()) && FatalErrors) 2697 report_fatal_error("Broken module found, compilation aborted!"); 2698 2699 return PreservedAnalyses::all(); 2700 } 2701 2702 PreservedAnalyses VerifierPass::run(Function *F) { 2703 if (verifyFunction(*F, &dbgs()) && FatalErrors) 2704 report_fatal_error("Broken function found, compilation aborted!"); 2705 2706 return PreservedAnalyses::all(); 2707 } 2708