Home | History | Annotate | Download | only in IR
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * All landingpad instructions must use the same personality function with
     43 //    the same function.
     44 //  * All other things that are tested by asserts spread about the code...
     45 //
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "llvm/IR/Verifier.h"
     49 #include "llvm/ADT/STLExtras.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallVector.h"
     53 #include "llvm/ADT/StringExtras.h"
     54 #include "llvm/IR/CFG.h"
     55 #include "llvm/IR/CallSite.h"
     56 #include "llvm/IR/CallingConv.h"
     57 #include "llvm/IR/ConstantRange.h"
     58 #include "llvm/IR/Constants.h"
     59 #include "llvm/IR/DataLayout.h"
     60 #include "llvm/IR/DebugInfo.h"
     61 #include "llvm/IR/DerivedTypes.h"
     62 #include "llvm/IR/Dominators.h"
     63 #include "llvm/IR/InlineAsm.h"
     64 #include "llvm/IR/InstIterator.h"
     65 #include "llvm/IR/InstVisitor.h"
     66 #include "llvm/IR/IntrinsicInst.h"
     67 #include "llvm/IR/LLVMContext.h"
     68 #include "llvm/IR/Metadata.h"
     69 #include "llvm/IR/Module.h"
     70 #include "llvm/IR/PassManager.h"
     71 #include "llvm/Pass.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/ErrorHandling.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include <algorithm>
     77 #include <cstdarg>
     78 using namespace llvm;
     79 
     80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
     81 
     82 namespace {
     83 struct VerifierSupport {
     84   raw_ostream &OS;
     85   const Module *M;
     86 
     87   /// \brief Track the brokenness of the module while recursively visiting.
     88   bool Broken;
     89 
     90   explicit VerifierSupport(raw_ostream &OS)
     91       : OS(OS), M(nullptr), Broken(false) {}
     92 
     93   void WriteValue(const Value *V) {
     94     if (!V)
     95       return;
     96     if (isa<Instruction>(V)) {
     97       OS << *V << '\n';
     98     } else {
     99       V->printAsOperand(OS, true, M);
    100       OS << '\n';
    101     }
    102   }
    103 
    104   void WriteType(Type *T) {
    105     if (!T)
    106       return;
    107     OS << ' ' << *T;
    108   }
    109 
    110   void WriteComdat(const Comdat *C) {
    111     if (!C)
    112       return;
    113     OS << *C;
    114   }
    115 
    116   // CheckFailed - A check failed, so print out the condition and the message
    117   // that failed.  This provides a nice place to put a breakpoint if you want
    118   // to see why something is not correct.
    119   void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
    120                    const Value *V2 = nullptr, const Value *V3 = nullptr,
    121                    const Value *V4 = nullptr) {
    122     OS << Message.str() << "\n";
    123     WriteValue(V1);
    124     WriteValue(V2);
    125     WriteValue(V3);
    126     WriteValue(V4);
    127     Broken = true;
    128   }
    129 
    130   void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
    131                    const Value *V3 = nullptr) {
    132     OS << Message.str() << "\n";
    133     WriteValue(V1);
    134     WriteType(T2);
    135     WriteValue(V3);
    136     Broken = true;
    137   }
    138 
    139   void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
    140                    Type *T3 = nullptr) {
    141     OS << Message.str() << "\n";
    142     WriteType(T1);
    143     WriteType(T2);
    144     WriteType(T3);
    145     Broken = true;
    146   }
    147 
    148   void CheckFailed(const Twine &Message, const Comdat *C) {
    149     OS << Message.str() << "\n";
    150     WriteComdat(C);
    151     Broken = true;
    152   }
    153 };
    154 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
    155   friend class InstVisitor<Verifier>;
    156 
    157   LLVMContext *Context;
    158   const DataLayout *DL;
    159   DominatorTree DT;
    160 
    161   /// \brief When verifying a basic block, keep track of all of the
    162   /// instructions we have seen so far.
    163   ///
    164   /// This allows us to do efficient dominance checks for the case when an
    165   /// instruction has an operand that is an instruction in the same block.
    166   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
    167 
    168   /// \brief Keep track of the metadata nodes that have been checked already.
    169   SmallPtrSet<MDNode *, 32> MDNodes;
    170 
    171   /// \brief The personality function referenced by the LandingPadInsts.
    172   /// All LandingPadInsts within the same function must use the same
    173   /// personality function.
    174   const Value *PersonalityFn;
    175 
    176 public:
    177   explicit Verifier(raw_ostream &OS = dbgs())
    178       : VerifierSupport(OS), Context(nullptr), DL(nullptr),
    179         PersonalityFn(nullptr) {}
    180 
    181   bool verify(const Function &F) {
    182     M = F.getParent();
    183     Context = &M->getContext();
    184 
    185     // First ensure the function is well-enough formed to compute dominance
    186     // information.
    187     if (F.empty()) {
    188       OS << "Function '" << F.getName()
    189          << "' does not contain an entry block!\n";
    190       return false;
    191     }
    192     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
    193       if (I->empty() || !I->back().isTerminator()) {
    194         OS << "Basic Block in function '" << F.getName()
    195            << "' does not have terminator!\n";
    196         I->printAsOperand(OS, true);
    197         OS << "\n";
    198         return false;
    199       }
    200     }
    201 
    202     // Now directly compute a dominance tree. We don't rely on the pass
    203     // manager to provide this as it isolates us from a potentially
    204     // out-of-date dominator tree and makes it significantly more complex to
    205     // run this code outside of a pass manager.
    206     // FIXME: It's really gross that we have to cast away constness here.
    207     DT.recalculate(const_cast<Function &>(F));
    208 
    209     Broken = false;
    210     // FIXME: We strip const here because the inst visitor strips const.
    211     visit(const_cast<Function &>(F));
    212     InstsInThisBlock.clear();
    213     PersonalityFn = nullptr;
    214 
    215     return !Broken;
    216   }
    217 
    218   bool verify(const Module &M) {
    219     this->M = &M;
    220     Context = &M.getContext();
    221     Broken = false;
    222 
    223     // Scan through, checking all of the external function's linkage now...
    224     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    225       visitGlobalValue(*I);
    226 
    227       // Check to make sure function prototypes are okay.
    228       if (I->isDeclaration())
    229         visitFunction(*I);
    230     }
    231 
    232     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    233          I != E; ++I)
    234       visitGlobalVariable(*I);
    235 
    236     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    237          I != E; ++I)
    238       visitGlobalAlias(*I);
    239 
    240     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
    241                                                E = M.named_metadata_end();
    242          I != E; ++I)
    243       visitNamedMDNode(*I);
    244 
    245     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
    246       visitComdat(SMEC.getValue());
    247 
    248     visitModuleFlags(M);
    249     visitModuleIdents(M);
    250 
    251     return !Broken;
    252   }
    253 
    254 private:
    255   // Verification methods...
    256   void visitGlobalValue(const GlobalValue &GV);
    257   void visitGlobalVariable(const GlobalVariable &GV);
    258   void visitGlobalAlias(const GlobalAlias &GA);
    259   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
    260   void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
    261                            const GlobalAlias &A, const Constant &C);
    262   void visitNamedMDNode(const NamedMDNode &NMD);
    263   void visitMDNode(MDNode &MD, Function *F);
    264   void visitComdat(const Comdat &C);
    265   void visitModuleIdents(const Module &M);
    266   void visitModuleFlags(const Module &M);
    267   void visitModuleFlag(const MDNode *Op,
    268                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
    269                        SmallVectorImpl<const MDNode *> &Requirements);
    270   void visitFunction(const Function &F);
    271   void visitBasicBlock(BasicBlock &BB);
    272 
    273   // InstVisitor overrides...
    274   using InstVisitor<Verifier>::visit;
    275   void visit(Instruction &I);
    276 
    277   void visitTruncInst(TruncInst &I);
    278   void visitZExtInst(ZExtInst &I);
    279   void visitSExtInst(SExtInst &I);
    280   void visitFPTruncInst(FPTruncInst &I);
    281   void visitFPExtInst(FPExtInst &I);
    282   void visitFPToUIInst(FPToUIInst &I);
    283   void visitFPToSIInst(FPToSIInst &I);
    284   void visitUIToFPInst(UIToFPInst &I);
    285   void visitSIToFPInst(SIToFPInst &I);
    286   void visitIntToPtrInst(IntToPtrInst &I);
    287   void visitPtrToIntInst(PtrToIntInst &I);
    288   void visitBitCastInst(BitCastInst &I);
    289   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
    290   void visitPHINode(PHINode &PN);
    291   void visitBinaryOperator(BinaryOperator &B);
    292   void visitICmpInst(ICmpInst &IC);
    293   void visitFCmpInst(FCmpInst &FC);
    294   void visitExtractElementInst(ExtractElementInst &EI);
    295   void visitInsertElementInst(InsertElementInst &EI);
    296   void visitShuffleVectorInst(ShuffleVectorInst &EI);
    297   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    298   void visitCallInst(CallInst &CI);
    299   void visitInvokeInst(InvokeInst &II);
    300   void visitGetElementPtrInst(GetElementPtrInst &GEP);
    301   void visitLoadInst(LoadInst &LI);
    302   void visitStoreInst(StoreInst &SI);
    303   void verifyDominatesUse(Instruction &I, unsigned i);
    304   void visitInstruction(Instruction &I);
    305   void visitTerminatorInst(TerminatorInst &I);
    306   void visitBranchInst(BranchInst &BI);
    307   void visitReturnInst(ReturnInst &RI);
    308   void visitSwitchInst(SwitchInst &SI);
    309   void visitIndirectBrInst(IndirectBrInst &BI);
    310   void visitSelectInst(SelectInst &SI);
    311   void visitUserOp1(Instruction &I);
    312   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    313   void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    314   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    315   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    316   void visitFenceInst(FenceInst &FI);
    317   void visitAllocaInst(AllocaInst &AI);
    318   void visitExtractValueInst(ExtractValueInst &EVI);
    319   void visitInsertValueInst(InsertValueInst &IVI);
    320   void visitLandingPadInst(LandingPadInst &LPI);
    321 
    322   void VerifyCallSite(CallSite CS);
    323   void verifyMustTailCall(CallInst &CI);
    324   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
    325                         unsigned ArgNo, std::string &Suffix);
    326   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
    327                            SmallVectorImpl<Type *> &ArgTys);
    328   bool VerifyIntrinsicIsVarArg(bool isVarArg,
    329                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
    330   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
    331   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
    332                             const Value *V);
    333   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    334                             bool isReturnValue, const Value *V);
    335   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    336                            const Value *V);
    337 
    338   void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
    339   void VerifyConstantExprBitcastType(const ConstantExpr *CE);
    340 };
    341 class DebugInfoVerifier : public VerifierSupport {
    342 public:
    343   explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
    344 
    345   bool verify(const Module &M) {
    346     this->M = &M;
    347     verifyDebugInfo();
    348     return !Broken;
    349   }
    350 
    351 private:
    352   void verifyDebugInfo();
    353   void processInstructions(DebugInfoFinder &Finder);
    354   void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
    355 };
    356 } // End anonymous namespace
    357 
    358 // Assert - We know that cond should be true, if not print an error message.
    359 #define Assert(C, M) \
    360   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    361 #define Assert1(C, M, V1) \
    362   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    363 #define Assert2(C, M, V1, V2) \
    364   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    365 #define Assert3(C, M, V1, V2, V3) \
    366   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    367 #define Assert4(C, M, V1, V2, V3, V4) \
    368   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    369 
    370 void Verifier::visit(Instruction &I) {
    371   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    372     Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
    373   InstVisitor<Verifier>::visit(I);
    374 }
    375 
    376 
    377 void Verifier::visitGlobalValue(const GlobalValue &GV) {
    378   Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
    379               GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
    380           "Global is external, but doesn't have external or weak linkage!",
    381           &GV);
    382 
    383   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    384           "Only global variables can have appending linkage!", &GV);
    385 
    386   if (GV.hasAppendingLinkage()) {
    387     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    388     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    389             "Only global arrays can have appending linkage!", GVar);
    390   }
    391 }
    392 
    393 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
    394   if (GV.hasInitializer()) {
    395     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    396             "Global variable initializer type does not match global "
    397             "variable type!", &GV);
    398 
    399     // If the global has common linkage, it must have a zero initializer and
    400     // cannot be constant.
    401     if (GV.hasCommonLinkage()) {
    402       Assert1(GV.getInitializer()->isNullValue(),
    403               "'common' global must have a zero initializer!", &GV);
    404       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    405               &GV);
    406       Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    407     }
    408   } else {
    409     Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
    410             "invalid linkage type for global declaration", &GV);
    411   }
    412 
    413   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    414                        GV.getName() == "llvm.global_dtors")) {
    415     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    416             "invalid linkage for intrinsic global variable", &GV);
    417     // Don't worry about emitting an error for it not being an array,
    418     // visitGlobalValue will complain on appending non-array.
    419     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
    420       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    421       PointerType *FuncPtrTy =
    422           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    423       // FIXME: Reject the 2-field form in LLVM 4.0.
    424       Assert1(STy && (STy->getNumElements() == 2 ||
    425                       STy->getNumElements() == 3) &&
    426               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    427               STy->getTypeAtIndex(1) == FuncPtrTy,
    428               "wrong type for intrinsic global variable", &GV);
    429       if (STy->getNumElements() == 3) {
    430         Type *ETy = STy->getTypeAtIndex(2);
    431         Assert1(ETy->isPointerTy() &&
    432                     cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
    433                 "wrong type for intrinsic global variable", &GV);
    434       }
    435     }
    436   }
    437 
    438   if (GV.hasName() && (GV.getName() == "llvm.used" ||
    439                        GV.getName() == "llvm.compiler.used")) {
    440     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    441             "invalid linkage for intrinsic global variable", &GV);
    442     Type *GVType = GV.getType()->getElementType();
    443     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
    444       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
    445       Assert1(PTy, "wrong type for intrinsic global variable", &GV);
    446       if (GV.hasInitializer()) {
    447         const Constant *Init = GV.getInitializer();
    448         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
    449         Assert1(InitArray, "wrong initalizer for intrinsic global variable",
    450                 Init);
    451         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
    452           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
    453           Assert1(
    454               isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
    455               "invalid llvm.used member", V);
    456           Assert1(V->hasName(), "members of llvm.used must be named", V);
    457         }
    458       }
    459     }
    460   }
    461 
    462   Assert1(!GV.hasDLLImportStorageClass() ||
    463           (GV.isDeclaration() && GV.hasExternalLinkage()) ||
    464           GV.hasAvailableExternallyLinkage(),
    465           "Global is marked as dllimport, but not external", &GV);
    466 
    467   if (!GV.hasInitializer()) {
    468     visitGlobalValue(GV);
    469     return;
    470   }
    471 
    472   // Walk any aggregate initializers looking for bitcasts between address spaces
    473   SmallPtrSet<const Value *, 4> Visited;
    474   SmallVector<const Value *, 4> WorkStack;
    475   WorkStack.push_back(cast<Value>(GV.getInitializer()));
    476 
    477   while (!WorkStack.empty()) {
    478     const Value *V = WorkStack.pop_back_val();
    479     if (!Visited.insert(V))
    480       continue;
    481 
    482     if (const User *U = dyn_cast<User>(V)) {
    483       for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
    484         WorkStack.push_back(U->getOperand(I));
    485     }
    486 
    487     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    488       VerifyConstantExprBitcastType(CE);
    489       if (Broken)
    490         return;
    491     }
    492   }
    493 
    494   visitGlobalValue(GV);
    495 }
    496 
    497 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
    498   SmallPtrSet<const GlobalAlias*, 4> Visited;
    499   Visited.insert(&GA);
    500   visitAliaseeSubExpr(Visited, GA, C);
    501 }
    502 
    503 void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
    504                                    const GlobalAlias &GA, const Constant &C) {
    505   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    506     Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
    507 
    508     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
    509       Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
    510 
    511       Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
    512               &GA);
    513     } else {
    514       // Only continue verifying subexpressions of GlobalAliases.
    515       // Do not recurse into global initializers.
    516       return;
    517     }
    518   }
    519 
    520   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    521     VerifyConstantExprBitcastType(CE);
    522 
    523   for (const Use &U : C.operands()) {
    524     Value *V = &*U;
    525     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
    526       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    527     else if (const auto *C2 = dyn_cast<Constant>(V))
    528       visitAliaseeSubExpr(Visited, GA, *C2);
    529   }
    530 }
    531 
    532 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
    533   Assert1(!GA.getName().empty(),
    534           "Alias name cannot be empty!", &GA);
    535   Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
    536           "Alias should have private, internal, linkonce, weak, linkonce_odr, "
    537           "weak_odr, or external linkage!",
    538           &GA);
    539   const Constant *Aliasee = GA.getAliasee();
    540   Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
    541   Assert1(GA.getType() == Aliasee->getType(),
    542           "Alias and aliasee types should match!", &GA);
    543 
    544   Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
    545           "Aliasee should be either GlobalValue or ConstantExpr", &GA);
    546 
    547   visitAliaseeSubExpr(GA, *Aliasee);
    548 
    549   visitGlobalValue(GA);
    550 }
    551 
    552 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
    553   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    554     MDNode *MD = NMD.getOperand(i);
    555     if (!MD)
    556       continue;
    557 
    558     Assert1(!MD->isFunctionLocal(),
    559             "Named metadata operand cannot be function local!", MD);
    560     visitMDNode(*MD, nullptr);
    561   }
    562 }
    563 
    564 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    565   // Only visit each node once.  Metadata can be mutually recursive, so this
    566   // avoids infinite recursion here, as well as being an optimization.
    567   if (!MDNodes.insert(&MD))
    568     return;
    569 
    570   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    571     Value *Op = MD.getOperand(i);
    572     if (!Op)
    573       continue;
    574     if (isa<Constant>(Op) || isa<MDString>(Op))
    575       continue;
    576     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    577       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    578               "Global metadata operand cannot be function local!", &MD, N);
    579       visitMDNode(*N, F);
    580       continue;
    581     }
    582     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    583 
    584     // If this was an instruction, bb, or argument, verify that it is in the
    585     // function that we expect.
    586     Function *ActualF = nullptr;
    587     if (Instruction *I = dyn_cast<Instruction>(Op))
    588       ActualF = I->getParent()->getParent();
    589     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    590       ActualF = BB->getParent();
    591     else if (Argument *A = dyn_cast<Argument>(Op))
    592       ActualF = A->getParent();
    593     assert(ActualF && "Unimplemented function local metadata case!");
    594 
    595     Assert2(ActualF == F, "function-local metadata used in wrong function",
    596             &MD, Op);
    597   }
    598 }
    599 
    600 void Verifier::visitComdat(const Comdat &C) {
    601   // All Comdat::SelectionKind values other than Comdat::Any require a
    602   // GlobalValue with the same name as the Comdat.
    603   const GlobalValue *GV = M->getNamedValue(C.getName());
    604   if (C.getSelectionKind() != Comdat::Any)
    605     Assert1(GV,
    606             "comdat selection kind requires a global value with the same name",
    607             &C);
    608   // The Module is invalid if the GlobalValue has local linkage.  Allowing
    609   // otherwise opens us up to seeing the underling global value get renamed if
    610   // collisions occur.
    611   if (GV)
    612     Assert1(!GV->hasLocalLinkage(), "comdat global value has local linkage",
    613             GV);
    614 }
    615 
    616 void Verifier::visitModuleIdents(const Module &M) {
    617   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
    618   if (!Idents)
    619     return;
    620 
    621   // llvm.ident takes a list of metadata entry. Each entry has only one string.
    622   // Scan each llvm.ident entry and make sure that this requirement is met.
    623   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
    624     const MDNode *N = Idents->getOperand(i);
    625     Assert1(N->getNumOperands() == 1,
    626             "incorrect number of operands in llvm.ident metadata", N);
    627     Assert1(isa<MDString>(N->getOperand(0)),
    628             ("invalid value for llvm.ident metadata entry operand"
    629              "(the operand should be a string)"),
    630             N->getOperand(0));
    631   }
    632 }
    633 
    634 void Verifier::visitModuleFlags(const Module &M) {
    635   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
    636   if (!Flags) return;
    637 
    638   // Scan each flag, and track the flags and requirements.
    639   DenseMap<const MDString*, const MDNode*> SeenIDs;
    640   SmallVector<const MDNode*, 16> Requirements;
    641   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
    642     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
    643   }
    644 
    645   // Validate that the requirements in the module are valid.
    646   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    647     const MDNode *Requirement = Requirements[I];
    648     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    649     const Value *ReqValue = Requirement->getOperand(1);
    650 
    651     const MDNode *Op = SeenIDs.lookup(Flag);
    652     if (!Op) {
    653       CheckFailed("invalid requirement on flag, flag is not present in module",
    654                   Flag);
    655       continue;
    656     }
    657 
    658     if (Op->getOperand(2) != ReqValue) {
    659       CheckFailed(("invalid requirement on flag, "
    660                    "flag does not have the required value"),
    661                   Flag);
    662       continue;
    663     }
    664   }
    665 }
    666 
    667 void
    668 Verifier::visitModuleFlag(const MDNode *Op,
    669                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
    670                           SmallVectorImpl<const MDNode *> &Requirements) {
    671   // Each module flag should have three arguments, the merge behavior (a
    672   // constant int), the flag ID (an MDString), and the value.
    673   Assert1(Op->getNumOperands() == 3,
    674           "incorrect number of operands in module flag", Op);
    675   ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
    676   MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
    677   Assert1(Behavior,
    678           "invalid behavior operand in module flag (expected constant integer)",
    679           Op->getOperand(0));
    680   unsigned BehaviorValue = Behavior->getZExtValue();
    681   Assert1(ID,
    682           "invalid ID operand in module flag (expected metadata string)",
    683           Op->getOperand(1));
    684 
    685   // Sanity check the values for behaviors with additional requirements.
    686   switch (BehaviorValue) {
    687   default:
    688     Assert1(false,
    689             "invalid behavior operand in module flag (unexpected constant)",
    690             Op->getOperand(0));
    691     break;
    692 
    693   case Module::Error:
    694   case Module::Warning:
    695   case Module::Override:
    696     // These behavior types accept any value.
    697     break;
    698 
    699   case Module::Require: {
    700     // The value should itself be an MDNode with two operands, a flag ID (an
    701     // MDString), and a value.
    702     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    703     Assert1(Value && Value->getNumOperands() == 2,
    704             "invalid value for 'require' module flag (expected metadata pair)",
    705             Op->getOperand(2));
    706     Assert1(isa<MDString>(Value->getOperand(0)),
    707             ("invalid value for 'require' module flag "
    708              "(first value operand should be a string)"),
    709             Value->getOperand(0));
    710 
    711     // Append it to the list of requirements, to check once all module flags are
    712     // scanned.
    713     Requirements.push_back(Value);
    714     break;
    715   }
    716 
    717   case Module::Append:
    718   case Module::AppendUnique: {
    719     // These behavior types require the operand be an MDNode.
    720     Assert1(isa<MDNode>(Op->getOperand(2)),
    721             "invalid value for 'append'-type module flag "
    722             "(expected a metadata node)", Op->getOperand(2));
    723     break;
    724   }
    725   }
    726 
    727   // Unless this is a "requires" flag, check the ID is unique.
    728   if (BehaviorValue != Module::Require) {
    729     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    730     Assert1(Inserted,
    731             "module flag identifiers must be unique (or of 'require' type)",
    732             ID);
    733   }
    734 }
    735 
    736 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
    737                                     bool isFunction, const Value *V) {
    738   unsigned Slot = ~0U;
    739   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
    740     if (Attrs.getSlotIndex(I) == Idx) {
    741       Slot = I;
    742       break;
    743     }
    744 
    745   assert(Slot != ~0U && "Attribute set inconsistency!");
    746 
    747   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
    748          I != E; ++I) {
    749     if (I->isStringAttribute())
    750       continue;
    751 
    752     if (I->getKindAsEnum() == Attribute::NoReturn ||
    753         I->getKindAsEnum() == Attribute::NoUnwind ||
    754         I->getKindAsEnum() == Attribute::NoInline ||
    755         I->getKindAsEnum() == Attribute::AlwaysInline ||
    756         I->getKindAsEnum() == Attribute::OptimizeForSize ||
    757         I->getKindAsEnum() == Attribute::StackProtect ||
    758         I->getKindAsEnum() == Attribute::StackProtectReq ||
    759         I->getKindAsEnum() == Attribute::StackProtectStrong ||
    760         I->getKindAsEnum() == Attribute::NoRedZone ||
    761         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
    762         I->getKindAsEnum() == Attribute::Naked ||
    763         I->getKindAsEnum() == Attribute::InlineHint ||
    764         I->getKindAsEnum() == Attribute::StackAlignment ||
    765         I->getKindAsEnum() == Attribute::UWTable ||
    766         I->getKindAsEnum() == Attribute::NonLazyBind ||
    767         I->getKindAsEnum() == Attribute::ReturnsTwice ||
    768         I->getKindAsEnum() == Attribute::SanitizeAddress ||
    769         I->getKindAsEnum() == Attribute::SanitizeThread ||
    770         I->getKindAsEnum() == Attribute::SanitizeMemory ||
    771         I->getKindAsEnum() == Attribute::MinSize ||
    772         I->getKindAsEnum() == Attribute::NoDuplicate ||
    773         I->getKindAsEnum() == Attribute::Builtin ||
    774         I->getKindAsEnum() == Attribute::NoBuiltin ||
    775         I->getKindAsEnum() == Attribute::Cold ||
    776         I->getKindAsEnum() == Attribute::OptimizeNone ||
    777         I->getKindAsEnum() == Attribute::JumpTable) {
    778       if (!isFunction) {
    779         CheckFailed("Attribute '" + I->getAsString() +
    780                     "' only applies to functions!", V);
    781         return;
    782       }
    783     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
    784                I->getKindAsEnum() == Attribute::ReadNone) {
    785       if (Idx == 0) {
    786         CheckFailed("Attribute '" + I->getAsString() +
    787                     "' does not apply to function returns");
    788         return;
    789       }
    790     } else if (isFunction) {
    791       CheckFailed("Attribute '" + I->getAsString() +
    792                   "' does not apply to functions!", V);
    793       return;
    794     }
    795   }
    796 }
    797 
    798 // VerifyParameterAttrs - Check the given attributes for an argument or return
    799 // value of the specified type.  The value V is printed in error messages.
    800 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    801                                     bool isReturnValue, const Value *V) {
    802   if (!Attrs.hasAttributes(Idx))
    803     return;
    804 
    805   VerifyAttributeTypes(Attrs, Idx, false, V);
    806 
    807   if (isReturnValue)
    808     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    809             !Attrs.hasAttribute(Idx, Attribute::Nest) &&
    810             !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
    811             !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
    812             !Attrs.hasAttribute(Idx, Attribute::Returned) &&
    813             !Attrs.hasAttribute(Idx, Attribute::InAlloca),
    814             "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
    815             "'returned' do not apply to return values!", V);
    816 
    817   // Check for mutually incompatible attributes.  Only inreg is compatible with
    818   // sret.
    819   unsigned AttrCount = 0;
    820   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
    821   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
    822   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
    823                Attrs.hasAttribute(Idx, Attribute::InReg);
    824   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
    825   Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
    826                           "and 'sret' are incompatible!", V);
    827 
    828   Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
    829             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
    830           "'inalloca and readonly' are incompatible!", V);
    831 
    832   Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
    833             Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
    834           "'sret and returned' are incompatible!", V);
    835 
    836   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
    837             Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
    838           "'zeroext and signext' are incompatible!", V);
    839 
    840   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
    841             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
    842           "'readnone and readonly' are incompatible!", V);
    843 
    844   Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
    845             Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
    846           "'noinline and alwaysinline' are incompatible!", V);
    847 
    848   Assert1(!AttrBuilder(Attrs, Idx).
    849             hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
    850           "Wrong types for attribute: " +
    851           AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
    852 
    853   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    854     if (!PTy->getElementType()->isSized()) {
    855       Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    856               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
    857               "Attributes 'byval' and 'inalloca' do not support unsized types!",
    858               V);
    859     }
    860   } else {
    861     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
    862             "Attribute 'byval' only applies to parameters with pointer type!",
    863             V);
    864   }
    865 }
    866 
    867 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    868 // The value V is printed in error messages.
    869 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    870                                    const Value *V) {
    871   if (Attrs.isEmpty())
    872     return;
    873 
    874   bool SawNest = false;
    875   bool SawReturned = false;
    876   bool SawSRet = false;
    877 
    878   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    879     unsigned Idx = Attrs.getSlotIndex(i);
    880 
    881     Type *Ty;
    882     if (Idx == 0)
    883       Ty = FT->getReturnType();
    884     else if (Idx-1 < FT->getNumParams())
    885       Ty = FT->getParamType(Idx-1);
    886     else
    887       break;  // VarArgs attributes, verified elsewhere.
    888 
    889     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
    890 
    891     if (Idx == 0)
    892       continue;
    893 
    894     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
    895       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    896       SawNest = true;
    897     }
    898 
    899     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
    900       Assert1(!SawReturned, "More than one parameter has attribute returned!",
    901               V);
    902       Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
    903               "argument and return types for 'returned' attribute", V);
    904       SawReturned = true;
    905     }
    906 
    907     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
    908       Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
    909       Assert1(Idx == 1 || Idx == 2,
    910               "Attribute 'sret' is not on first or second parameter!", V);
    911       SawSRet = true;
    912     }
    913 
    914     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
    915       Assert1(Idx == FT->getNumParams(),
    916               "inalloca isn't on the last parameter!", V);
    917     }
    918   }
    919 
    920   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
    921     return;
    922 
    923   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
    924 
    925   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
    926                                Attribute::ReadNone) &&
    927             Attrs.hasAttribute(AttributeSet::FunctionIndex,
    928                                Attribute::ReadOnly)),
    929           "Attributes 'readnone and readonly' are incompatible!", V);
    930 
    931   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
    932                                Attribute::NoInline) &&
    933             Attrs.hasAttribute(AttributeSet::FunctionIndex,
    934                                Attribute::AlwaysInline)),
    935           "Attributes 'noinline and alwaysinline' are incompatible!", V);
    936 
    937   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
    938                          Attribute::OptimizeNone)) {
    939     Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
    940                                Attribute::NoInline),
    941             "Attribute 'optnone' requires 'noinline'!", V);
    942 
    943     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
    944                                 Attribute::OptimizeForSize),
    945             "Attributes 'optsize and optnone' are incompatible!", V);
    946 
    947     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
    948                                 Attribute::MinSize),
    949             "Attributes 'minsize and optnone' are incompatible!", V);
    950   }
    951 
    952   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
    953                          Attribute::JumpTable)) {
    954     const GlobalValue *GV = cast<GlobalValue>(V);
    955     Assert1(GV->hasUnnamedAddr(),
    956             "Attribute 'jumptable' requires 'unnamed_addr'", V);
    957 
    958   }
    959 }
    960 
    961 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
    962   // Get the size of the types in bits, we'll need this later
    963   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
    964   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
    965 
    966   // BitCast implies a no-op cast of type only. No bits change.
    967   // However, you can't cast pointers to anything but pointers.
    968   Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
    969           "Bitcast requires both operands to be pointer or neither", V);
    970   Assert1(SrcBitSize == DestBitSize,
    971           "Bitcast requires types of same width", V);
    972 
    973   // Disallow aggregates.
    974   Assert1(!SrcTy->isAggregateType(),
    975           "Bitcast operand must not be aggregate", V);
    976   Assert1(!DestTy->isAggregateType(),
    977           "Bitcast type must not be aggregate", V);
    978 
    979   // Without datalayout, assume all address spaces are the same size.
    980   // Don't check if both types are not pointers.
    981   // Skip casts between scalars and vectors.
    982   if (!DL ||
    983       !SrcTy->isPtrOrPtrVectorTy() ||
    984       !DestTy->isPtrOrPtrVectorTy() ||
    985       SrcTy->isVectorTy() != DestTy->isVectorTy()) {
    986     return;
    987   }
    988 
    989   unsigned SrcAS = SrcTy->getPointerAddressSpace();
    990   unsigned DstAS = DestTy->getPointerAddressSpace();
    991 
    992   Assert1(SrcAS == DstAS,
    993           "Bitcasts between pointers of different address spaces is not legal."
    994           "Use AddrSpaceCast instead.", V);
    995 }
    996 
    997 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
    998   if (CE->getOpcode() == Instruction::BitCast) {
    999     Type *SrcTy = CE->getOperand(0)->getType();
   1000     Type *DstTy = CE->getType();
   1001     VerifyBitcastType(CE, DstTy, SrcTy);
   1002   }
   1003 }
   1004 
   1005 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
   1006   if (Attrs.getNumSlots() == 0)
   1007     return true;
   1008 
   1009   unsigned LastSlot = Attrs.getNumSlots() - 1;
   1010   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
   1011   if (LastIndex <= Params
   1012       || (LastIndex == AttributeSet::FunctionIndex
   1013           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
   1014     return true;
   1015 
   1016   return false;
   1017 }
   1018 
   1019 // visitFunction - Verify that a function is ok.
   1020 //
   1021 void Verifier::visitFunction(const Function &F) {
   1022   // Check function arguments.
   1023   FunctionType *FT = F.getFunctionType();
   1024   unsigned NumArgs = F.arg_size();
   1025 
   1026   Assert1(Context == &F.getContext(),
   1027           "Function context does not match Module context!", &F);
   1028 
   1029   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
   1030   Assert2(FT->getNumParams() == NumArgs,
   1031           "# formal arguments must match # of arguments for function type!",
   1032           &F, FT);
   1033   Assert1(F.getReturnType()->isFirstClassType() ||
   1034           F.getReturnType()->isVoidTy() ||
   1035           F.getReturnType()->isStructTy(),
   1036           "Functions cannot return aggregate values!", &F);
   1037 
   1038   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
   1039           "Invalid struct return type!", &F);
   1040 
   1041   AttributeSet Attrs = F.getAttributes();
   1042 
   1043   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
   1044           "Attribute after last parameter!", &F);
   1045 
   1046   // Check function attributes.
   1047   VerifyFunctionAttrs(FT, Attrs, &F);
   1048 
   1049   // On function declarations/definitions, we do not support the builtin
   1050   // attribute. We do not check this in VerifyFunctionAttrs since that is
   1051   // checking for Attributes that can/can not ever be on functions.
   1052   Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1053                               Attribute::Builtin),
   1054           "Attribute 'builtin' can only be applied to a callsite.", &F);
   1055 
   1056   // Check that this function meets the restrictions on this calling convention.
   1057   switch (F.getCallingConv()) {
   1058   default:
   1059     break;
   1060   case CallingConv::C:
   1061     break;
   1062   case CallingConv::Fast:
   1063   case CallingConv::Cold:
   1064   case CallingConv::X86_FastCall:
   1065   case CallingConv::X86_ThisCall:
   1066   case CallingConv::Intel_OCL_BI:
   1067   case CallingConv::PTX_Kernel:
   1068   case CallingConv::PTX_Device:
   1069     Assert1(!F.isVarArg(),
   1070             "Varargs functions must have C calling conventions!", &F);
   1071     break;
   1072   }
   1073 
   1074   bool isLLVMdotName = F.getName().size() >= 5 &&
   1075                        F.getName().substr(0, 5) == "llvm.";
   1076 
   1077   // Check that the argument values match the function type for this function...
   1078   unsigned i = 0;
   1079   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   1080        ++I, ++i) {
   1081     Assert2(I->getType() == FT->getParamType(i),
   1082             "Argument value does not match function argument type!",
   1083             I, FT->getParamType(i));
   1084     Assert1(I->getType()->isFirstClassType(),
   1085             "Function arguments must have first-class types!", I);
   1086     if (!isLLVMdotName)
   1087       Assert2(!I->getType()->isMetadataTy(),
   1088               "Function takes metadata but isn't an intrinsic", I, &F);
   1089   }
   1090 
   1091   if (F.isMaterializable()) {
   1092     // Function has a body somewhere we can't see.
   1093   } else if (F.isDeclaration()) {
   1094     Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
   1095             "invalid linkage type for function declaration", &F);
   1096   } else {
   1097     // Verify that this function (which has a body) is not named "llvm.*".  It
   1098     // is not legal to define intrinsics.
   1099     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
   1100 
   1101     // Check the entry node
   1102     const BasicBlock *Entry = &F.getEntryBlock();
   1103     Assert1(pred_begin(Entry) == pred_end(Entry),
   1104             "Entry block to function must not have predecessors!", Entry);
   1105 
   1106     // The address of the entry block cannot be taken, unless it is dead.
   1107     if (Entry->hasAddressTaken()) {
   1108       Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
   1109               "blockaddress may not be used with the entry block!", Entry);
   1110     }
   1111   }
   1112 
   1113   // If this function is actually an intrinsic, verify that it is only used in
   1114   // direct call/invokes, never having its "address taken".
   1115   if (F.getIntrinsicID()) {
   1116     const User *U;
   1117     if (F.hasAddressTaken(&U))
   1118       Assert1(0, "Invalid user of intrinsic instruction!", U);
   1119   }
   1120 
   1121   Assert1(!F.hasDLLImportStorageClass() ||
   1122           (F.isDeclaration() && F.hasExternalLinkage()) ||
   1123           F.hasAvailableExternallyLinkage(),
   1124           "Function is marked as dllimport, but not external.", &F);
   1125 }
   1126 
   1127 // verifyBasicBlock - Verify that a basic block is well formed...
   1128 //
   1129 void Verifier::visitBasicBlock(BasicBlock &BB) {
   1130   InstsInThisBlock.clear();
   1131 
   1132   // Ensure that basic blocks have terminators!
   1133   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
   1134 
   1135   // Check constraints that this basic block imposes on all of the PHI nodes in
   1136   // it.
   1137   if (isa<PHINode>(BB.front())) {
   1138     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
   1139     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
   1140     std::sort(Preds.begin(), Preds.end());
   1141     PHINode *PN;
   1142     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
   1143       // Ensure that PHI nodes have at least one entry!
   1144       Assert1(PN->getNumIncomingValues() != 0,
   1145               "PHI nodes must have at least one entry.  If the block is dead, "
   1146               "the PHI should be removed!", PN);
   1147       Assert1(PN->getNumIncomingValues() == Preds.size(),
   1148               "PHINode should have one entry for each predecessor of its "
   1149               "parent basic block!", PN);
   1150 
   1151       // Get and sort all incoming values in the PHI node...
   1152       Values.clear();
   1153       Values.reserve(PN->getNumIncomingValues());
   1154       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1155         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
   1156                                         PN->getIncomingValue(i)));
   1157       std::sort(Values.begin(), Values.end());
   1158 
   1159       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
   1160         // Check to make sure that if there is more than one entry for a
   1161         // particular basic block in this PHI node, that the incoming values are
   1162         // all identical.
   1163         //
   1164         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
   1165                 Values[i].second == Values[i-1].second,
   1166                 "PHI node has multiple entries for the same basic block with "
   1167                 "different incoming values!", PN, Values[i].first,
   1168                 Values[i].second, Values[i-1].second);
   1169 
   1170         // Check to make sure that the predecessors and PHI node entries are
   1171         // matched up.
   1172         Assert3(Values[i].first == Preds[i],
   1173                 "PHI node entries do not match predecessors!", PN,
   1174                 Values[i].first, Preds[i]);
   1175       }
   1176     }
   1177   }
   1178 }
   1179 
   1180 void Verifier::visitTerminatorInst(TerminatorInst &I) {
   1181   // Ensure that terminators only exist at the end of the basic block.
   1182   Assert1(&I == I.getParent()->getTerminator(),
   1183           "Terminator found in the middle of a basic block!", I.getParent());
   1184   visitInstruction(I);
   1185 }
   1186 
   1187 void Verifier::visitBranchInst(BranchInst &BI) {
   1188   if (BI.isConditional()) {
   1189     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
   1190             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
   1191   }
   1192   visitTerminatorInst(BI);
   1193 }
   1194 
   1195 void Verifier::visitReturnInst(ReturnInst &RI) {
   1196   Function *F = RI.getParent()->getParent();
   1197   unsigned N = RI.getNumOperands();
   1198   if (F->getReturnType()->isVoidTy())
   1199     Assert2(N == 0,
   1200             "Found return instr that returns non-void in Function of void "
   1201             "return type!", &RI, F->getReturnType());
   1202   else
   1203     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
   1204             "Function return type does not match operand "
   1205             "type of return inst!", &RI, F->getReturnType());
   1206 
   1207   // Check to make sure that the return value has necessary properties for
   1208   // terminators...
   1209   visitTerminatorInst(RI);
   1210 }
   1211 
   1212 void Verifier::visitSwitchInst(SwitchInst &SI) {
   1213   // Check to make sure that all of the constants in the switch instruction
   1214   // have the same type as the switched-on value.
   1215   Type *SwitchTy = SI.getCondition()->getType();
   1216   SmallPtrSet<ConstantInt*, 32> Constants;
   1217   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
   1218     Assert1(i.getCaseValue()->getType() == SwitchTy,
   1219             "Switch constants must all be same type as switch value!", &SI);
   1220     Assert2(Constants.insert(i.getCaseValue()),
   1221             "Duplicate integer as switch case", &SI, i.getCaseValue());
   1222   }
   1223 
   1224   visitTerminatorInst(SI);
   1225 }
   1226 
   1227 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
   1228   Assert1(BI.getAddress()->getType()->isPointerTy(),
   1229           "Indirectbr operand must have pointer type!", &BI);
   1230   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
   1231     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
   1232             "Indirectbr destinations must all have pointer type!", &BI);
   1233 
   1234   visitTerminatorInst(BI);
   1235 }
   1236 
   1237 void Verifier::visitSelectInst(SelectInst &SI) {
   1238   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
   1239                                           SI.getOperand(2)),
   1240           "Invalid operands for select instruction!", &SI);
   1241 
   1242   Assert1(SI.getTrueValue()->getType() == SI.getType(),
   1243           "Select values must have same type as select instruction!", &SI);
   1244   visitInstruction(SI);
   1245 }
   1246 
   1247 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
   1248 /// a pass, if any exist, it's an error.
   1249 ///
   1250 void Verifier::visitUserOp1(Instruction &I) {
   1251   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
   1252 }
   1253 
   1254 void Verifier::visitTruncInst(TruncInst &I) {
   1255   // Get the source and destination types
   1256   Type *SrcTy = I.getOperand(0)->getType();
   1257   Type *DestTy = I.getType();
   1258 
   1259   // Get the size of the types in bits, we'll need this later
   1260   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1261   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1262 
   1263   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
   1264   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
   1265   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1266           "trunc source and destination must both be a vector or neither", &I);
   1267   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
   1268 
   1269   visitInstruction(I);
   1270 }
   1271 
   1272 void Verifier::visitZExtInst(ZExtInst &I) {
   1273   // Get the source and destination types
   1274   Type *SrcTy = I.getOperand(0)->getType();
   1275   Type *DestTy = I.getType();
   1276 
   1277   // Get the size of the types in bits, we'll need this later
   1278   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
   1279   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
   1280   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1281           "zext source and destination must both be a vector or neither", &I);
   1282   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1283   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1284 
   1285   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
   1286 
   1287   visitInstruction(I);
   1288 }
   1289 
   1290 void Verifier::visitSExtInst(SExtInst &I) {
   1291   // Get the source and destination types
   1292   Type *SrcTy = I.getOperand(0)->getType();
   1293   Type *DestTy = I.getType();
   1294 
   1295   // Get the size of the types in bits, we'll need this later
   1296   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1297   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1298 
   1299   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
   1300   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
   1301   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1302           "sext source and destination must both be a vector or neither", &I);
   1303   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
   1304 
   1305   visitInstruction(I);
   1306 }
   1307 
   1308 void Verifier::visitFPTruncInst(FPTruncInst &I) {
   1309   // Get the source and destination types
   1310   Type *SrcTy = I.getOperand(0)->getType();
   1311   Type *DestTy = I.getType();
   1312   // Get the size of the types in bits, we'll need this later
   1313   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1314   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1315 
   1316   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
   1317   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
   1318   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1319           "fptrunc source and destination must both be a vector or neither",&I);
   1320   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
   1321 
   1322   visitInstruction(I);
   1323 }
   1324 
   1325 void Verifier::visitFPExtInst(FPExtInst &I) {
   1326   // Get the source and destination types
   1327   Type *SrcTy = I.getOperand(0)->getType();
   1328   Type *DestTy = I.getType();
   1329 
   1330   // Get the size of the types in bits, we'll need this later
   1331   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1332   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1333 
   1334   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
   1335   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
   1336   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1337           "fpext source and destination must both be a vector or neither", &I);
   1338   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
   1339 
   1340   visitInstruction(I);
   1341 }
   1342 
   1343 void Verifier::visitUIToFPInst(UIToFPInst &I) {
   1344   // Get the source and destination types
   1345   Type *SrcTy = I.getOperand(0)->getType();
   1346   Type *DestTy = I.getType();
   1347 
   1348   bool SrcVec = SrcTy->isVectorTy();
   1349   bool DstVec = DestTy->isVectorTy();
   1350 
   1351   Assert1(SrcVec == DstVec,
   1352           "UIToFP source and dest must both be vector or scalar", &I);
   1353   Assert1(SrcTy->isIntOrIntVectorTy(),
   1354           "UIToFP source must be integer or integer vector", &I);
   1355   Assert1(DestTy->isFPOrFPVectorTy(),
   1356           "UIToFP result must be FP or FP vector", &I);
   1357 
   1358   if (SrcVec && DstVec)
   1359     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1360             cast<VectorType>(DestTy)->getNumElements(),
   1361             "UIToFP source and dest vector length mismatch", &I);
   1362 
   1363   visitInstruction(I);
   1364 }
   1365 
   1366 void Verifier::visitSIToFPInst(SIToFPInst &I) {
   1367   // Get the source and destination types
   1368   Type *SrcTy = I.getOperand(0)->getType();
   1369   Type *DestTy = I.getType();
   1370 
   1371   bool SrcVec = SrcTy->isVectorTy();
   1372   bool DstVec = DestTy->isVectorTy();
   1373 
   1374   Assert1(SrcVec == DstVec,
   1375           "SIToFP source and dest must both be vector or scalar", &I);
   1376   Assert1(SrcTy->isIntOrIntVectorTy(),
   1377           "SIToFP source must be integer or integer vector", &I);
   1378   Assert1(DestTy->isFPOrFPVectorTy(),
   1379           "SIToFP result must be FP or FP vector", &I);
   1380 
   1381   if (SrcVec && DstVec)
   1382     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1383             cast<VectorType>(DestTy)->getNumElements(),
   1384             "SIToFP source and dest vector length mismatch", &I);
   1385 
   1386   visitInstruction(I);
   1387 }
   1388 
   1389 void Verifier::visitFPToUIInst(FPToUIInst &I) {
   1390   // Get the source and destination types
   1391   Type *SrcTy = I.getOperand(0)->getType();
   1392   Type *DestTy = I.getType();
   1393 
   1394   bool SrcVec = SrcTy->isVectorTy();
   1395   bool DstVec = DestTy->isVectorTy();
   1396 
   1397   Assert1(SrcVec == DstVec,
   1398           "FPToUI source and dest must both be vector or scalar", &I);
   1399   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
   1400           &I);
   1401   Assert1(DestTy->isIntOrIntVectorTy(),
   1402           "FPToUI result must be integer or integer vector", &I);
   1403 
   1404   if (SrcVec && DstVec)
   1405     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1406             cast<VectorType>(DestTy)->getNumElements(),
   1407             "FPToUI source and dest vector length mismatch", &I);
   1408 
   1409   visitInstruction(I);
   1410 }
   1411 
   1412 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   1413   // Get the source and destination types
   1414   Type *SrcTy = I.getOperand(0)->getType();
   1415   Type *DestTy = I.getType();
   1416 
   1417   bool SrcVec = SrcTy->isVectorTy();
   1418   bool DstVec = DestTy->isVectorTy();
   1419 
   1420   Assert1(SrcVec == DstVec,
   1421           "FPToSI source and dest must both be vector or scalar", &I);
   1422   Assert1(SrcTy->isFPOrFPVectorTy(),
   1423           "FPToSI source must be FP or FP vector", &I);
   1424   Assert1(DestTy->isIntOrIntVectorTy(),
   1425           "FPToSI result must be integer or integer vector", &I);
   1426 
   1427   if (SrcVec && DstVec)
   1428     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1429             cast<VectorType>(DestTy)->getNumElements(),
   1430             "FPToSI source and dest vector length mismatch", &I);
   1431 
   1432   visitInstruction(I);
   1433 }
   1434 
   1435 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1436   // Get the source and destination types
   1437   Type *SrcTy = I.getOperand(0)->getType();
   1438   Type *DestTy = I.getType();
   1439 
   1440   Assert1(SrcTy->getScalarType()->isPointerTy(),
   1441           "PtrToInt source must be pointer", &I);
   1442   Assert1(DestTy->getScalarType()->isIntegerTy(),
   1443           "PtrToInt result must be integral", &I);
   1444   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1445           "PtrToInt type mismatch", &I);
   1446 
   1447   if (SrcTy->isVectorTy()) {
   1448     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1449     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1450     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1451           "PtrToInt Vector width mismatch", &I);
   1452   }
   1453 
   1454   visitInstruction(I);
   1455 }
   1456 
   1457 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1458   // Get the source and destination types
   1459   Type *SrcTy = I.getOperand(0)->getType();
   1460   Type *DestTy = I.getType();
   1461 
   1462   Assert1(SrcTy->getScalarType()->isIntegerTy(),
   1463           "IntToPtr source must be an integral", &I);
   1464   Assert1(DestTy->getScalarType()->isPointerTy(),
   1465           "IntToPtr result must be a pointer",&I);
   1466   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1467           "IntToPtr type mismatch", &I);
   1468   if (SrcTy->isVectorTy()) {
   1469     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1470     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1471     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1472           "IntToPtr Vector width mismatch", &I);
   1473   }
   1474   visitInstruction(I);
   1475 }
   1476 
   1477 void Verifier::visitBitCastInst(BitCastInst &I) {
   1478   Type *SrcTy = I.getOperand(0)->getType();
   1479   Type *DestTy = I.getType();
   1480   VerifyBitcastType(&I, DestTy, SrcTy);
   1481   visitInstruction(I);
   1482 }
   1483 
   1484 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
   1485   Type *SrcTy = I.getOperand(0)->getType();
   1486   Type *DestTy = I.getType();
   1487 
   1488   Assert1(SrcTy->isPtrOrPtrVectorTy(),
   1489           "AddrSpaceCast source must be a pointer", &I);
   1490   Assert1(DestTy->isPtrOrPtrVectorTy(),
   1491           "AddrSpaceCast result must be a pointer", &I);
   1492   Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
   1493           "AddrSpaceCast must be between different address spaces", &I);
   1494   if (SrcTy->isVectorTy())
   1495     Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
   1496             "AddrSpaceCast vector pointer number of elements mismatch", &I);
   1497   visitInstruction(I);
   1498 }
   1499 
   1500 /// visitPHINode - Ensure that a PHI node is well formed.
   1501 ///
   1502 void Verifier::visitPHINode(PHINode &PN) {
   1503   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1504   // This can be tested by checking whether the instruction before this is
   1505   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1506   // then there is some other instruction before a PHI.
   1507   Assert2(&PN == &PN.getParent()->front() ||
   1508           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1509           "PHI nodes not grouped at top of basic block!",
   1510           &PN, PN.getParent());
   1511 
   1512   // Check that all of the values of the PHI node have the same type as the
   1513   // result, and that the incoming blocks are really basic blocks.
   1514   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1515     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1516             "PHI node operands are not the same type as the result!", &PN);
   1517   }
   1518 
   1519   // All other PHI node constraints are checked in the visitBasicBlock method.
   1520 
   1521   visitInstruction(PN);
   1522 }
   1523 
   1524 void Verifier::VerifyCallSite(CallSite CS) {
   1525   Instruction *I = CS.getInstruction();
   1526 
   1527   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1528           "Called function must be a pointer!", I);
   1529   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1530 
   1531   Assert1(FPTy->getElementType()->isFunctionTy(),
   1532           "Called function is not pointer to function type!", I);
   1533   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1534 
   1535   // Verify that the correct number of arguments are being passed
   1536   if (FTy->isVarArg())
   1537     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1538             "Called function requires more parameters than were provided!",I);
   1539   else
   1540     Assert1(CS.arg_size() == FTy->getNumParams(),
   1541             "Incorrect number of arguments passed to called function!", I);
   1542 
   1543   // Verify that all arguments to the call match the function type.
   1544   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1545     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1546             "Call parameter type does not match function signature!",
   1547             CS.getArgument(i), FTy->getParamType(i), I);
   1548 
   1549   AttributeSet Attrs = CS.getAttributes();
   1550 
   1551   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1552           "Attribute after last parameter!", I);
   1553 
   1554   // Verify call attributes.
   1555   VerifyFunctionAttrs(FTy, Attrs, I);
   1556 
   1557   // Conservatively check the inalloca argument.
   1558   // We have a bug if we can find that there is an underlying alloca without
   1559   // inalloca.
   1560   if (CS.hasInAllocaArgument()) {
   1561     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
   1562     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
   1563       Assert2(AI->isUsedWithInAlloca(),
   1564               "inalloca argument for call has mismatched alloca", AI, I);
   1565   }
   1566 
   1567   if (FTy->isVarArg()) {
   1568     // FIXME? is 'nest' even legal here?
   1569     bool SawNest = false;
   1570     bool SawReturned = false;
   1571 
   1572     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
   1573       if (Attrs.hasAttribute(Idx, Attribute::Nest))
   1574         SawNest = true;
   1575       if (Attrs.hasAttribute(Idx, Attribute::Returned))
   1576         SawReturned = true;
   1577     }
   1578 
   1579     // Check attributes on the varargs part.
   1580     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1581       Type *Ty = CS.getArgument(Idx-1)->getType();
   1582       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
   1583 
   1584       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   1585         Assert1(!SawNest, "More than one parameter has attribute nest!", I);
   1586         SawNest = true;
   1587       }
   1588 
   1589       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   1590         Assert1(!SawReturned, "More than one parameter has attribute returned!",
   1591                 I);
   1592         Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
   1593                 "Incompatible argument and return types for 'returned' "
   1594                 "attribute", I);
   1595         SawReturned = true;
   1596       }
   1597 
   1598       Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
   1599               "Attribute 'sret' cannot be used for vararg call arguments!", I);
   1600 
   1601       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
   1602         Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
   1603                 I);
   1604     }
   1605   }
   1606 
   1607   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1608   if (CS.getCalledFunction() == nullptr ||
   1609       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1610     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1611            PE = FTy->param_end(); PI != PE; ++PI)
   1612       Assert1(!(*PI)->isMetadataTy(),
   1613               "Function has metadata parameter but isn't an intrinsic", I);
   1614   }
   1615 
   1616   visitInstruction(*I);
   1617 }
   1618 
   1619 /// Two types are "congruent" if they are identical, or if they are both pointer
   1620 /// types with different pointee types and the same address space.
   1621 static bool isTypeCongruent(Type *L, Type *R) {
   1622   if (L == R)
   1623     return true;
   1624   PointerType *PL = dyn_cast<PointerType>(L);
   1625   PointerType *PR = dyn_cast<PointerType>(R);
   1626   if (!PL || !PR)
   1627     return false;
   1628   return PL->getAddressSpace() == PR->getAddressSpace();
   1629 }
   1630 
   1631 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
   1632   static const Attribute::AttrKind ABIAttrs[] = {
   1633       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
   1634       Attribute::InReg, Attribute::Returned};
   1635   AttrBuilder Copy;
   1636   for (auto AK : ABIAttrs) {
   1637     if (Attrs.hasAttribute(I + 1, AK))
   1638       Copy.addAttribute(AK);
   1639   }
   1640   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
   1641     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
   1642   return Copy;
   1643 }
   1644 
   1645 void Verifier::verifyMustTailCall(CallInst &CI) {
   1646   Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
   1647 
   1648   // - The caller and callee prototypes must match.  Pointer types of
   1649   //   parameters or return types may differ in pointee type, but not
   1650   //   address space.
   1651   Function *F = CI.getParent()->getParent();
   1652   auto GetFnTy = [](Value *V) {
   1653     return cast<FunctionType>(
   1654         cast<PointerType>(V->getType())->getElementType());
   1655   };
   1656   FunctionType *CallerTy = GetFnTy(F);
   1657   FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
   1658   Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
   1659           "cannot guarantee tail call due to mismatched parameter counts", &CI);
   1660   Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
   1661           "cannot guarantee tail call due to mismatched varargs", &CI);
   1662   Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
   1663           "cannot guarantee tail call due to mismatched return types", &CI);
   1664   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   1665     Assert1(
   1666         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
   1667         "cannot guarantee tail call due to mismatched parameter types", &CI);
   1668   }
   1669 
   1670   // - The calling conventions of the caller and callee must match.
   1671   Assert1(F->getCallingConv() == CI.getCallingConv(),
   1672           "cannot guarantee tail call due to mismatched calling conv", &CI);
   1673 
   1674   // - All ABI-impacting function attributes, such as sret, byval, inreg,
   1675   //   returned, and inalloca, must match.
   1676   AttributeSet CallerAttrs = F->getAttributes();
   1677   AttributeSet CalleeAttrs = CI.getAttributes();
   1678   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   1679     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
   1680     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
   1681     Assert2(CallerABIAttrs == CalleeABIAttrs,
   1682             "cannot guarantee tail call due to mismatched ABI impacting "
   1683             "function attributes", &CI, CI.getOperand(I));
   1684   }
   1685 
   1686   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
   1687   //   or a pointer bitcast followed by a ret instruction.
   1688   // - The ret instruction must return the (possibly bitcasted) value
   1689   //   produced by the call or void.
   1690   Value *RetVal = &CI;
   1691   Instruction *Next = CI.getNextNode();
   1692 
   1693   // Handle the optional bitcast.
   1694   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
   1695     Assert1(BI->getOperand(0) == RetVal,
   1696             "bitcast following musttail call must use the call", BI);
   1697     RetVal = BI;
   1698     Next = BI->getNextNode();
   1699   }
   1700 
   1701   // Check the return.
   1702   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
   1703   Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
   1704           &CI);
   1705   Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
   1706           "musttail call result must be returned", Ret);
   1707 }
   1708 
   1709 void Verifier::visitCallInst(CallInst &CI) {
   1710   VerifyCallSite(&CI);
   1711 
   1712   if (CI.isMustTailCall())
   1713     verifyMustTailCall(CI);
   1714 
   1715   if (Function *F = CI.getCalledFunction())
   1716     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1717       visitIntrinsicFunctionCall(ID, CI);
   1718 }
   1719 
   1720 void Verifier::visitInvokeInst(InvokeInst &II) {
   1721   VerifyCallSite(&II);
   1722 
   1723   // Verify that there is a landingpad instruction as the first non-PHI
   1724   // instruction of the 'unwind' destination.
   1725   Assert1(II.getUnwindDest()->isLandingPad(),
   1726           "The unwind destination does not have a landingpad instruction!",&II);
   1727 
   1728   visitTerminatorInst(II);
   1729 }
   1730 
   1731 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1732 /// of the same type!
   1733 ///
   1734 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1735   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1736           "Both operands to a binary operator are not of the same type!", &B);
   1737 
   1738   switch (B.getOpcode()) {
   1739   // Check that integer arithmetic operators are only used with
   1740   // integral operands.
   1741   case Instruction::Add:
   1742   case Instruction::Sub:
   1743   case Instruction::Mul:
   1744   case Instruction::SDiv:
   1745   case Instruction::UDiv:
   1746   case Instruction::SRem:
   1747   case Instruction::URem:
   1748     Assert1(B.getType()->isIntOrIntVectorTy(),
   1749             "Integer arithmetic operators only work with integral types!", &B);
   1750     Assert1(B.getType() == B.getOperand(0)->getType(),
   1751             "Integer arithmetic operators must have same type "
   1752             "for operands and result!", &B);
   1753     break;
   1754   // Check that floating-point arithmetic operators are only used with
   1755   // floating-point operands.
   1756   case Instruction::FAdd:
   1757   case Instruction::FSub:
   1758   case Instruction::FMul:
   1759   case Instruction::FDiv:
   1760   case Instruction::FRem:
   1761     Assert1(B.getType()->isFPOrFPVectorTy(),
   1762             "Floating-point arithmetic operators only work with "
   1763             "floating-point types!", &B);
   1764     Assert1(B.getType() == B.getOperand(0)->getType(),
   1765             "Floating-point arithmetic operators must have same type "
   1766             "for operands and result!", &B);
   1767     break;
   1768   // Check that logical operators are only used with integral operands.
   1769   case Instruction::And:
   1770   case Instruction::Or:
   1771   case Instruction::Xor:
   1772     Assert1(B.getType()->isIntOrIntVectorTy(),
   1773             "Logical operators only work with integral types!", &B);
   1774     Assert1(B.getType() == B.getOperand(0)->getType(),
   1775             "Logical operators must have same type for operands and result!",
   1776             &B);
   1777     break;
   1778   case Instruction::Shl:
   1779   case Instruction::LShr:
   1780   case Instruction::AShr:
   1781     Assert1(B.getType()->isIntOrIntVectorTy(),
   1782             "Shifts only work with integral types!", &B);
   1783     Assert1(B.getType() == B.getOperand(0)->getType(),
   1784             "Shift return type must be same as operands!", &B);
   1785     break;
   1786   default:
   1787     llvm_unreachable("Unknown BinaryOperator opcode!");
   1788   }
   1789 
   1790   visitInstruction(B);
   1791 }
   1792 
   1793 void Verifier::visitICmpInst(ICmpInst &IC) {
   1794   // Check that the operands are the same type
   1795   Type *Op0Ty = IC.getOperand(0)->getType();
   1796   Type *Op1Ty = IC.getOperand(1)->getType();
   1797   Assert1(Op0Ty == Op1Ty,
   1798           "Both operands to ICmp instruction are not of the same type!", &IC);
   1799   // Check that the operands are the right type
   1800   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   1801           "Invalid operand types for ICmp instruction", &IC);
   1802   // Check that the predicate is valid.
   1803   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1804           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1805           "Invalid predicate in ICmp instruction!", &IC);
   1806 
   1807   visitInstruction(IC);
   1808 }
   1809 
   1810 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1811   // Check that the operands are the same type
   1812   Type *Op0Ty = FC.getOperand(0)->getType();
   1813   Type *Op1Ty = FC.getOperand(1)->getType();
   1814   Assert1(Op0Ty == Op1Ty,
   1815           "Both operands to FCmp instruction are not of the same type!", &FC);
   1816   // Check that the operands are the right type
   1817   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1818           "Invalid operand types for FCmp instruction", &FC);
   1819   // Check that the predicate is valid.
   1820   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1821           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1822           "Invalid predicate in FCmp instruction!", &FC);
   1823 
   1824   visitInstruction(FC);
   1825 }
   1826 
   1827 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1828   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1829                                               EI.getOperand(1)),
   1830           "Invalid extractelement operands!", &EI);
   1831   visitInstruction(EI);
   1832 }
   1833 
   1834 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1835   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1836                                              IE.getOperand(1),
   1837                                              IE.getOperand(2)),
   1838           "Invalid insertelement operands!", &IE);
   1839   visitInstruction(IE);
   1840 }
   1841 
   1842 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1843   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1844                                              SV.getOperand(2)),
   1845           "Invalid shufflevector operands!", &SV);
   1846   visitInstruction(SV);
   1847 }
   1848 
   1849 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1850   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   1851 
   1852   Assert1(isa<PointerType>(TargetTy),
   1853     "GEP base pointer is not a vector or a vector of pointers", &GEP);
   1854   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
   1855           "GEP into unsized type!", &GEP);
   1856   Assert1(GEP.getPointerOperandType()->isVectorTy() ==
   1857           GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
   1858           &GEP);
   1859 
   1860   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1861   Type *ElTy =
   1862     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
   1863   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1864 
   1865   Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
   1866           cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
   1867           == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
   1868 
   1869   if (GEP.getPointerOperandType()->isVectorTy()) {
   1870     // Additional checks for vector GEPs.
   1871     unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
   1872     Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
   1873             "Vector GEP result width doesn't match operand's", &GEP);
   1874     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1875       Type *IndexTy = Idxs[i]->getType();
   1876       Assert1(IndexTy->isVectorTy(),
   1877               "Vector GEP must have vector indices!", &GEP);
   1878       unsigned IndexWidth = IndexTy->getVectorNumElements();
   1879       Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
   1880     }
   1881   }
   1882   visitInstruction(GEP);
   1883 }
   1884 
   1885 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
   1886   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
   1887 }
   1888 
   1889 void Verifier::visitLoadInst(LoadInst &LI) {
   1890   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1891   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1892   Type *ElTy = PTy->getElementType();
   1893   Assert2(ElTy == LI.getType(),
   1894           "Load result type does not match pointer operand type!", &LI, ElTy);
   1895   if (LI.isAtomic()) {
   1896     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   1897             "Load cannot have Release ordering", &LI);
   1898     Assert1(LI.getAlignment() != 0,
   1899             "Atomic load must specify explicit alignment", &LI);
   1900     if (!ElTy->isPointerTy()) {
   1901       Assert2(ElTy->isIntegerTy(),
   1902               "atomic load operand must have integer type!",
   1903               &LI, ElTy);
   1904       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1905       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1906               "atomic load operand must be power-of-two byte-sized integer",
   1907               &LI, ElTy);
   1908     }
   1909   } else {
   1910     Assert1(LI.getSynchScope() == CrossThread,
   1911             "Non-atomic load cannot have SynchronizationScope specified", &LI);
   1912   }
   1913 
   1914   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
   1915     unsigned NumOperands = Range->getNumOperands();
   1916     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
   1917     unsigned NumRanges = NumOperands / 2;
   1918     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
   1919 
   1920     ConstantRange LastRange(1); // Dummy initial value
   1921     for (unsigned i = 0; i < NumRanges; ++i) {
   1922       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
   1923       Assert1(Low, "The lower limit must be an integer!", Low);
   1924       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
   1925       Assert1(High, "The upper limit must be an integer!", High);
   1926       Assert1(High->getType() == Low->getType() &&
   1927               High->getType() == ElTy, "Range types must match load type!",
   1928               &LI);
   1929 
   1930       APInt HighV = High->getValue();
   1931       APInt LowV = Low->getValue();
   1932       ConstantRange CurRange(LowV, HighV);
   1933       Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
   1934               "Range must not be empty!", Range);
   1935       if (i != 0) {
   1936         Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
   1937                 "Intervals are overlapping", Range);
   1938         Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
   1939                 Range);
   1940         Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
   1941                 Range);
   1942       }
   1943       LastRange = ConstantRange(LowV, HighV);
   1944     }
   1945     if (NumRanges > 2) {
   1946       APInt FirstLow =
   1947         dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
   1948       APInt FirstHigh =
   1949         dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
   1950       ConstantRange FirstRange(FirstLow, FirstHigh);
   1951       Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
   1952               "Intervals are overlapping", Range);
   1953       Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
   1954               Range);
   1955     }
   1956 
   1957 
   1958   }
   1959 
   1960   visitInstruction(LI);
   1961 }
   1962 
   1963 void Verifier::visitStoreInst(StoreInst &SI) {
   1964   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1965   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1966   Type *ElTy = PTy->getElementType();
   1967   Assert2(ElTy == SI.getOperand(0)->getType(),
   1968           "Stored value type does not match pointer operand type!",
   1969           &SI, ElTy);
   1970   if (SI.isAtomic()) {
   1971     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   1972             "Store cannot have Acquire ordering", &SI);
   1973     Assert1(SI.getAlignment() != 0,
   1974             "Atomic store must specify explicit alignment", &SI);
   1975     if (!ElTy->isPointerTy()) {
   1976       Assert2(ElTy->isIntegerTy(),
   1977               "atomic store operand must have integer type!",
   1978               &SI, ElTy);
   1979       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1980       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1981               "atomic store operand must be power-of-two byte-sized integer",
   1982               &SI, ElTy);
   1983     }
   1984   } else {
   1985     Assert1(SI.getSynchScope() == CrossThread,
   1986             "Non-atomic store cannot have SynchronizationScope specified", &SI);
   1987   }
   1988   visitInstruction(SI);
   1989 }
   1990 
   1991 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1992   SmallPtrSet<const Type*, 4> Visited;
   1993   PointerType *PTy = AI.getType();
   1994   Assert1(PTy->getAddressSpace() == 0,
   1995           "Allocation instruction pointer not in the generic address space!",
   1996           &AI);
   1997   Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
   1998           &AI);
   1999   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   2000           "Alloca array size must have integer type", &AI);
   2001 
   2002   visitInstruction(AI);
   2003 }
   2004 
   2005 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   2006 
   2007   // FIXME: more conditions???
   2008   Assert1(CXI.getSuccessOrdering() != NotAtomic,
   2009           "cmpxchg instructions must be atomic.", &CXI);
   2010   Assert1(CXI.getFailureOrdering() != NotAtomic,
   2011           "cmpxchg instructions must be atomic.", &CXI);
   2012   Assert1(CXI.getSuccessOrdering() != Unordered,
   2013           "cmpxchg instructions cannot be unordered.", &CXI);
   2014   Assert1(CXI.getFailureOrdering() != Unordered,
   2015           "cmpxchg instructions cannot be unordered.", &CXI);
   2016   Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
   2017           "cmpxchg instructions be at least as constrained on success as fail",
   2018           &CXI);
   2019   Assert1(CXI.getFailureOrdering() != Release &&
   2020               CXI.getFailureOrdering() != AcquireRelease,
   2021           "cmpxchg failure ordering cannot include release semantics", &CXI);
   2022 
   2023   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   2024   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   2025   Type *ElTy = PTy->getElementType();
   2026   Assert2(ElTy->isIntegerTy(),
   2027           "cmpxchg operand must have integer type!",
   2028           &CXI, ElTy);
   2029   unsigned Size = ElTy->getPrimitiveSizeInBits();
   2030   Assert2(Size >= 8 && !(Size & (Size - 1)),
   2031           "cmpxchg operand must be power-of-two byte-sized integer",
   2032           &CXI, ElTy);
   2033   Assert2(ElTy == CXI.getOperand(1)->getType(),
   2034           "Expected value type does not match pointer operand type!",
   2035           &CXI, ElTy);
   2036   Assert2(ElTy == CXI.getOperand(2)->getType(),
   2037           "Stored value type does not match pointer operand type!",
   2038           &CXI, ElTy);
   2039   visitInstruction(CXI);
   2040 }
   2041 
   2042 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   2043   Assert1(RMWI.getOrdering() != NotAtomic,
   2044           "atomicrmw instructions must be atomic.", &RMWI);
   2045   Assert1(RMWI.getOrdering() != Unordered,
   2046           "atomicrmw instructions cannot be unordered.", &RMWI);
   2047   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   2048   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   2049   Type *ElTy = PTy->getElementType();
   2050   Assert2(ElTy->isIntegerTy(),
   2051           "atomicrmw operand must have integer type!",
   2052           &RMWI, ElTy);
   2053   unsigned Size = ElTy->getPrimitiveSizeInBits();
   2054   Assert2(Size >= 8 && !(Size & (Size - 1)),
   2055           "atomicrmw operand must be power-of-two byte-sized integer",
   2056           &RMWI, ElTy);
   2057   Assert2(ElTy == RMWI.getOperand(1)->getType(),
   2058           "Argument value type does not match pointer operand type!",
   2059           &RMWI, ElTy);
   2060   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   2061           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   2062           "Invalid binary operation!", &RMWI);
   2063   visitInstruction(RMWI);
   2064 }
   2065 
   2066 void Verifier::visitFenceInst(FenceInst &FI) {
   2067   const AtomicOrdering Ordering = FI.getOrdering();
   2068   Assert1(Ordering == Acquire || Ordering == Release ||
   2069           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   2070           "fence instructions may only have "
   2071           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
   2072   visitInstruction(FI);
   2073 }
   2074 
   2075 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   2076   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   2077                                            EVI.getIndices()) ==
   2078           EVI.getType(),
   2079           "Invalid ExtractValueInst operands!", &EVI);
   2080 
   2081   visitInstruction(EVI);
   2082 }
   2083 
   2084 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   2085   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   2086                                            IVI.getIndices()) ==
   2087           IVI.getOperand(1)->getType(),
   2088           "Invalid InsertValueInst operands!", &IVI);
   2089 
   2090   visitInstruction(IVI);
   2091 }
   2092 
   2093 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   2094   BasicBlock *BB = LPI.getParent();
   2095 
   2096   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   2097   // isn't a cleanup.
   2098   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   2099           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   2100 
   2101   // The landingpad instruction defines its parent as a landing pad block. The
   2102   // landing pad block may be branched to only by the unwind edge of an invoke.
   2103   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
   2104     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
   2105     Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
   2106             "Block containing LandingPadInst must be jumped to "
   2107             "only by the unwind edge of an invoke.", &LPI);
   2108   }
   2109 
   2110   // The landingpad instruction must be the first non-PHI instruction in the
   2111   // block.
   2112   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
   2113           "LandingPadInst not the first non-PHI instruction in the block.",
   2114           &LPI);
   2115 
   2116   // The personality functions for all landingpad instructions within the same
   2117   // function should match.
   2118   if (PersonalityFn)
   2119     Assert1(LPI.getPersonalityFn() == PersonalityFn,
   2120             "Personality function doesn't match others in function", &LPI);
   2121   PersonalityFn = LPI.getPersonalityFn();
   2122 
   2123   // All operands must be constants.
   2124   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
   2125           &LPI);
   2126   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   2127     Constant *Clause = LPI.getClause(i);
   2128     if (LPI.isCatch(i)) {
   2129       Assert1(isa<PointerType>(Clause->getType()),
   2130               "Catch operand does not have pointer type!", &LPI);
   2131     } else {
   2132       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   2133       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   2134               "Filter operand is not an array of constants!", &LPI);
   2135     }
   2136   }
   2137 
   2138   visitInstruction(LPI);
   2139 }
   2140 
   2141 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   2142   Instruction *Op = cast<Instruction>(I.getOperand(i));
   2143   // If the we have an invalid invoke, don't try to compute the dominance.
   2144   // We already reject it in the invoke specific checks and the dominance
   2145   // computation doesn't handle multiple edges.
   2146   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   2147     if (II->getNormalDest() == II->getUnwindDest())
   2148       return;
   2149   }
   2150 
   2151   const Use &U = I.getOperandUse(i);
   2152   Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
   2153           "Instruction does not dominate all uses!", Op, &I);
   2154 }
   2155 
   2156 /// verifyInstruction - Verify that an instruction is well formed.
   2157 ///
   2158 void Verifier::visitInstruction(Instruction &I) {
   2159   BasicBlock *BB = I.getParent();
   2160   Assert1(BB, "Instruction not embedded in basic block!", &I);
   2161 
   2162   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   2163     for (User *U : I.users()) {
   2164       Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
   2165               "Only PHI nodes may reference their own value!", &I);
   2166     }
   2167   }
   2168 
   2169   // Check that void typed values don't have names
   2170   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   2171           "Instruction has a name, but provides a void value!", &I);
   2172 
   2173   // Check that the return value of the instruction is either void or a legal
   2174   // value type.
   2175   Assert1(I.getType()->isVoidTy() ||
   2176           I.getType()->isFirstClassType(),
   2177           "Instruction returns a non-scalar type!", &I);
   2178 
   2179   // Check that the instruction doesn't produce metadata. Calls are already
   2180   // checked against the callee type.
   2181   Assert1(!I.getType()->isMetadataTy() ||
   2182           isa<CallInst>(I) || isa<InvokeInst>(I),
   2183           "Invalid use of metadata!", &I);
   2184 
   2185   // Check that all uses of the instruction, if they are instructions
   2186   // themselves, actually have parent basic blocks.  If the use is not an
   2187   // instruction, it is an error!
   2188   for (Use &U : I.uses()) {
   2189     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
   2190       Assert2(Used->getParent() != nullptr, "Instruction referencing"
   2191               " instruction not embedded in a basic block!", &I, Used);
   2192     else {
   2193       CheckFailed("Use of instruction is not an instruction!", U);
   2194       return;
   2195     }
   2196   }
   2197 
   2198   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   2199     Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
   2200 
   2201     // Check to make sure that only first-class-values are operands to
   2202     // instructions.
   2203     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   2204       Assert1(0, "Instruction operands must be first-class values!", &I);
   2205     }
   2206 
   2207     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   2208       // Check to make sure that the "address of" an intrinsic function is never
   2209       // taken.
   2210       Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
   2211               "Cannot take the address of an intrinsic!", &I);
   2212       Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
   2213               F->getIntrinsicID() == Intrinsic::donothing,
   2214               "Cannot invoke an intrinsinc other than donothing", &I);
   2215       Assert1(F->getParent() == M, "Referencing function in another module!",
   2216               &I);
   2217     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   2218       Assert1(OpBB->getParent() == BB->getParent(),
   2219               "Referring to a basic block in another function!", &I);
   2220     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   2221       Assert1(OpArg->getParent() == BB->getParent(),
   2222               "Referring to an argument in another function!", &I);
   2223     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   2224       Assert1(GV->getParent() == M, "Referencing global in another module!",
   2225               &I);
   2226     } else if (isa<Instruction>(I.getOperand(i))) {
   2227       verifyDominatesUse(I, i);
   2228     } else if (isa<InlineAsm>(I.getOperand(i))) {
   2229       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   2230               (i + 3 == e && isa<InvokeInst>(I)),
   2231               "Cannot take the address of an inline asm!", &I);
   2232     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
   2233       if (CE->getType()->isPtrOrPtrVectorTy()) {
   2234         // If we have a ConstantExpr pointer, we need to see if it came from an
   2235         // illegal bitcast (inttoptr <constant int> )
   2236         SmallVector<const ConstantExpr *, 4> Stack;
   2237         SmallPtrSet<const ConstantExpr *, 4> Visited;
   2238         Stack.push_back(CE);
   2239 
   2240         while (!Stack.empty()) {
   2241           const ConstantExpr *V = Stack.pop_back_val();
   2242           if (!Visited.insert(V))
   2243             continue;
   2244 
   2245           VerifyConstantExprBitcastType(V);
   2246 
   2247           for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
   2248             if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
   2249               Stack.push_back(Op);
   2250           }
   2251         }
   2252       }
   2253     }
   2254   }
   2255 
   2256   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   2257     Assert1(I.getType()->isFPOrFPVectorTy(),
   2258             "fpmath requires a floating point result!", &I);
   2259     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   2260     Value *Op0 = MD->getOperand(0);
   2261     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
   2262       APFloat Accuracy = CFP0->getValueAPF();
   2263       Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
   2264               "fpmath accuracy not a positive number!", &I);
   2265     } else {
   2266       Assert1(false, "invalid fpmath accuracy!", &I);
   2267     }
   2268   }
   2269 
   2270   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
   2271   Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
   2272           "Ranges are only for loads, calls and invokes!", &I);
   2273 
   2274   InstsInThisBlock.insert(&I);
   2275 }
   2276 
   2277 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
   2278 /// intrinsic argument or return value) matches the type constraints specified
   2279 /// by the .td file (e.g. an "any integer" argument really is an integer).
   2280 ///
   2281 /// This return true on error but does not print a message.
   2282 bool Verifier::VerifyIntrinsicType(Type *Ty,
   2283                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
   2284                                    SmallVectorImpl<Type*> &ArgTys) {
   2285   using namespace Intrinsic;
   2286 
   2287   // If we ran out of descriptors, there are too many arguments.
   2288   if (Infos.empty()) return true;
   2289   IITDescriptor D = Infos.front();
   2290   Infos = Infos.slice(1);
   2291 
   2292   switch (D.Kind) {
   2293   case IITDescriptor::Void: return !Ty->isVoidTy();
   2294   case IITDescriptor::VarArg: return true;
   2295   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
   2296   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
   2297   case IITDescriptor::Half: return !Ty->isHalfTy();
   2298   case IITDescriptor::Float: return !Ty->isFloatTy();
   2299   case IITDescriptor::Double: return !Ty->isDoubleTy();
   2300   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
   2301   case IITDescriptor::Vector: {
   2302     VectorType *VT = dyn_cast<VectorType>(Ty);
   2303     return !VT || VT->getNumElements() != D.Vector_Width ||
   2304            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
   2305   }
   2306   case IITDescriptor::Pointer: {
   2307     PointerType *PT = dyn_cast<PointerType>(Ty);
   2308     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
   2309            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
   2310   }
   2311 
   2312   case IITDescriptor::Struct: {
   2313     StructType *ST = dyn_cast<StructType>(Ty);
   2314     if (!ST || ST->getNumElements() != D.Struct_NumElements)
   2315       return true;
   2316 
   2317     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
   2318       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
   2319         return true;
   2320     return false;
   2321   }
   2322 
   2323   case IITDescriptor::Argument:
   2324     // Two cases here - If this is the second occurrence of an argument, verify
   2325     // that the later instance matches the previous instance.
   2326     if (D.getArgumentNumber() < ArgTys.size())
   2327       return Ty != ArgTys[D.getArgumentNumber()];
   2328 
   2329     // Otherwise, if this is the first instance of an argument, record it and
   2330     // verify the "Any" kind.
   2331     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
   2332     ArgTys.push_back(Ty);
   2333 
   2334     switch (D.getArgumentKind()) {
   2335     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
   2336     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
   2337     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
   2338     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
   2339     }
   2340     llvm_unreachable("all argument kinds not covered");
   2341 
   2342   case IITDescriptor::ExtendArgument: {
   2343     // This may only be used when referring to a previous vector argument.
   2344     if (D.getArgumentNumber() >= ArgTys.size())
   2345       return true;
   2346 
   2347     Type *NewTy = ArgTys[D.getArgumentNumber()];
   2348     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
   2349       NewTy = VectorType::getExtendedElementVectorType(VTy);
   2350     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
   2351       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
   2352     else
   2353       return true;
   2354 
   2355     return Ty != NewTy;
   2356   }
   2357   case IITDescriptor::TruncArgument: {
   2358     // This may only be used when referring to a previous vector argument.
   2359     if (D.getArgumentNumber() >= ArgTys.size())
   2360       return true;
   2361 
   2362     Type *NewTy = ArgTys[D.getArgumentNumber()];
   2363     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
   2364       NewTy = VectorType::getTruncatedElementVectorType(VTy);
   2365     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
   2366       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
   2367     else
   2368       return true;
   2369 
   2370     return Ty != NewTy;
   2371   }
   2372   case IITDescriptor::HalfVecArgument:
   2373     // This may only be used when referring to a previous vector argument.
   2374     return D.getArgumentNumber() >= ArgTys.size() ||
   2375            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   2376            VectorType::getHalfElementsVectorType(
   2377                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   2378   }
   2379   llvm_unreachable("unhandled");
   2380 }
   2381 
   2382 /// \brief Verify if the intrinsic has variable arguments.
   2383 /// This method is intended to be called after all the fixed arguments have been
   2384 /// verified first.
   2385 ///
   2386 /// This method returns true on error and does not print an error message.
   2387 bool
   2388 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
   2389                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
   2390   using namespace Intrinsic;
   2391 
   2392   // If there are no descriptors left, then it can't be a vararg.
   2393   if (Infos.empty())
   2394     return isVarArg ? true : false;
   2395 
   2396   // There should be only one descriptor remaining at this point.
   2397   if (Infos.size() != 1)
   2398     return true;
   2399 
   2400   // Check and verify the descriptor.
   2401   IITDescriptor D = Infos.front();
   2402   Infos = Infos.slice(1);
   2403   if (D.Kind == IITDescriptor::VarArg)
   2404     return isVarArg ? false : true;
   2405 
   2406   return true;
   2407 }
   2408 
   2409 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   2410 ///
   2411 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   2412   Function *IF = CI.getCalledFunction();
   2413   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   2414           IF);
   2415 
   2416   // Verify that the intrinsic prototype lines up with what the .td files
   2417   // describe.
   2418   FunctionType *IFTy = IF->getFunctionType();
   2419   bool IsVarArg = IFTy->isVarArg();
   2420 
   2421   SmallVector<Intrinsic::IITDescriptor, 8> Table;
   2422   getIntrinsicInfoTableEntries(ID, Table);
   2423   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   2424 
   2425   SmallVector<Type *, 4> ArgTys;
   2426   Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
   2427           "Intrinsic has incorrect return type!", IF);
   2428   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
   2429     Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
   2430             "Intrinsic has incorrect argument type!", IF);
   2431 
   2432   // Verify if the intrinsic call matches the vararg property.
   2433   if (IsVarArg)
   2434     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
   2435             "Intrinsic was not defined with variable arguments!", IF);
   2436   else
   2437     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
   2438             "Callsite was not defined with variable arguments!", IF);
   2439 
   2440   // All descriptors should be absorbed by now.
   2441   Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
   2442 
   2443   // Now that we have the intrinsic ID and the actual argument types (and we
   2444   // know they are legal for the intrinsic!) get the intrinsic name through the
   2445   // usual means.  This allows us to verify the mangling of argument types into
   2446   // the name.
   2447   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
   2448   Assert1(ExpectedName == IF->getName(),
   2449           "Intrinsic name not mangled correctly for type arguments! "
   2450           "Should be: " + ExpectedName, IF);
   2451 
   2452   // If the intrinsic takes MDNode arguments, verify that they are either global
   2453   // or are local to *this* function.
   2454   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   2455     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   2456       visitMDNode(*MD, CI.getParent()->getParent());
   2457 
   2458   switch (ID) {
   2459   default:
   2460     break;
   2461   case Intrinsic::ctlz:  // llvm.ctlz
   2462   case Intrinsic::cttz:  // llvm.cttz
   2463     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   2464             "is_zero_undef argument of bit counting intrinsics must be a "
   2465             "constant int", &CI);
   2466     break;
   2467   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   2468     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   2469                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   2470     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   2471     Assert1(MD->getNumOperands() == 1,
   2472                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   2473   } break;
   2474   case Intrinsic::memcpy:
   2475   case Intrinsic::memmove:
   2476   case Intrinsic::memset:
   2477     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   2478             "alignment argument of memory intrinsics must be a constant int",
   2479             &CI);
   2480     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   2481             "isvolatile argument of memory intrinsics must be a constant int",
   2482             &CI);
   2483     break;
   2484   case Intrinsic::gcroot:
   2485   case Intrinsic::gcwrite:
   2486   case Intrinsic::gcread:
   2487     if (ID == Intrinsic::gcroot) {
   2488       AllocaInst *AI =
   2489         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   2490       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   2491       Assert1(isa<Constant>(CI.getArgOperand(1)),
   2492               "llvm.gcroot parameter #2 must be a constant.", &CI);
   2493       if (!AI->getType()->getElementType()->isPointerTy()) {
   2494         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   2495                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   2496                 "or argument #2 must be a non-null constant.", &CI);
   2497       }
   2498     }
   2499 
   2500     Assert1(CI.getParent()->getParent()->hasGC(),
   2501             "Enclosing function does not use GC.", &CI);
   2502     break;
   2503   case Intrinsic::init_trampoline:
   2504     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   2505             "llvm.init_trampoline parameter #2 must resolve to a function.",
   2506             &CI);
   2507     break;
   2508   case Intrinsic::prefetch:
   2509     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   2510             isa<ConstantInt>(CI.getArgOperand(2)) &&
   2511             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   2512             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   2513             "invalid arguments to llvm.prefetch",
   2514             &CI);
   2515     break;
   2516   case Intrinsic::stackprotector:
   2517     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   2518             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   2519             &CI);
   2520     break;
   2521   case Intrinsic::lifetime_start:
   2522   case Intrinsic::lifetime_end:
   2523   case Intrinsic::invariant_start:
   2524     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   2525             "size argument of memory use markers must be a constant integer",
   2526             &CI);
   2527     break;
   2528   case Intrinsic::invariant_end:
   2529     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   2530             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   2531     break;
   2532   }
   2533 }
   2534 
   2535 void DebugInfoVerifier::verifyDebugInfo() {
   2536   if (!VerifyDebugInfo)
   2537     return;
   2538 
   2539   DebugInfoFinder Finder;
   2540   Finder.processModule(*M);
   2541   processInstructions(Finder);
   2542 
   2543   // Verify Debug Info.
   2544   //
   2545   // NOTE:  The loud braces are necessary for MSVC compatibility.
   2546   for (DICompileUnit CU : Finder.compile_units()) {
   2547     Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
   2548   }
   2549   for (DISubprogram S : Finder.subprograms()) {
   2550     Assert1(S.Verify(), "DISubprogram does not Verify!", S);
   2551   }
   2552   for (DIGlobalVariable GV : Finder.global_variables()) {
   2553     Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
   2554   }
   2555   for (DIType T : Finder.types()) {
   2556     Assert1(T.Verify(), "DIType does not Verify!", T);
   2557   }
   2558   for (DIScope S : Finder.scopes()) {
   2559     Assert1(S.Verify(), "DIScope does not Verify!", S);
   2560   }
   2561 }
   2562 
   2563 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
   2564   for (const Function &F : *M)
   2565     for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
   2566       if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
   2567         Finder.processLocation(*M, DILocation(MD));
   2568       if (const CallInst *CI = dyn_cast<CallInst>(&*I))
   2569         processCallInst(Finder, *CI);
   2570     }
   2571 }
   2572 
   2573 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
   2574                                         const CallInst &CI) {
   2575   if (Function *F = CI.getCalledFunction())
   2576     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   2577       switch (ID) {
   2578       case Intrinsic::dbg_declare:
   2579         Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
   2580         break;
   2581       case Intrinsic::dbg_value:
   2582         Finder.processValue(*M, cast<DbgValueInst>(&CI));
   2583         break;
   2584       default:
   2585         break;
   2586       }
   2587 }
   2588 
   2589 //===----------------------------------------------------------------------===//
   2590 //  Implement the public interfaces to this file...
   2591 //===----------------------------------------------------------------------===//
   2592 
   2593 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
   2594   Function &F = const_cast<Function &>(f);
   2595   assert(!F.isDeclaration() && "Cannot verify external functions");
   2596 
   2597   raw_null_ostream NullStr;
   2598   Verifier V(OS ? *OS : NullStr);
   2599 
   2600   // Note that this function's return value is inverted from what you would
   2601   // expect of a function called "verify".
   2602   return !V.verify(F);
   2603 }
   2604 
   2605 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
   2606   raw_null_ostream NullStr;
   2607   Verifier V(OS ? *OS : NullStr);
   2608 
   2609   bool Broken = false;
   2610   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
   2611     if (!I->isDeclaration())
   2612       Broken |= !V.verify(*I);
   2613 
   2614   // Note that this function's return value is inverted from what you would
   2615   // expect of a function called "verify".
   2616   DebugInfoVerifier DIV(OS ? *OS : NullStr);
   2617   return !V.verify(M) || !DIV.verify(M) || Broken;
   2618 }
   2619 
   2620 namespace {
   2621 struct VerifierLegacyPass : public FunctionPass {
   2622   static char ID;
   2623 
   2624   Verifier V;
   2625   bool FatalErrors;
   2626 
   2627   VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
   2628     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   2629   }
   2630   explicit VerifierLegacyPass(bool FatalErrors)
   2631       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
   2632     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   2633   }
   2634 
   2635   bool runOnFunction(Function &F) override {
   2636     if (!V.verify(F) && FatalErrors)
   2637       report_fatal_error("Broken function found, compilation aborted!");
   2638 
   2639     return false;
   2640   }
   2641 
   2642   bool doFinalization(Module &M) override {
   2643     if (!V.verify(M) && FatalErrors)
   2644       report_fatal_error("Broken module found, compilation aborted!");
   2645 
   2646     return false;
   2647   }
   2648 
   2649   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2650     AU.setPreservesAll();
   2651   }
   2652 };
   2653 struct DebugInfoVerifierLegacyPass : public ModulePass {
   2654   static char ID;
   2655 
   2656   DebugInfoVerifier V;
   2657   bool FatalErrors;
   2658 
   2659   DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
   2660     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   2661   }
   2662   explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
   2663       : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
   2664     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   2665   }
   2666 
   2667   bool runOnModule(Module &M) override {
   2668     if (!V.verify(M) && FatalErrors)
   2669       report_fatal_error("Broken debug info found, compilation aborted!");
   2670 
   2671     return false;
   2672   }
   2673 
   2674   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2675     AU.setPreservesAll();
   2676   }
   2677 };
   2678 }
   2679 
   2680 char VerifierLegacyPass::ID = 0;
   2681 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
   2682 
   2683 char DebugInfoVerifierLegacyPass::ID = 0;
   2684 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
   2685                 false, false)
   2686 
   2687 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
   2688   return new VerifierLegacyPass(FatalErrors);
   2689 }
   2690 
   2691 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
   2692   return new DebugInfoVerifierLegacyPass(FatalErrors);
   2693 }
   2694 
   2695 PreservedAnalyses VerifierPass::run(Module *M) {
   2696   if (verifyModule(*M, &dbgs()) && FatalErrors)
   2697     report_fatal_error("Broken module found, compilation aborted!");
   2698 
   2699   return PreservedAnalyses::all();
   2700 }
   2701 
   2702 PreservedAnalyses VerifierPass::run(Function *F) {
   2703   if (verifyFunction(*F, &dbgs()) && FatalErrors)
   2704     report_fatal_error("Broken function found, compilation aborted!");
   2705 
   2706   return PreservedAnalyses::all();
   2707 }
   2708