Home | History | Annotate | Download | only in MSP430
      1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MSP430TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MSP430ISelLowering.h"
     15 #include "MSP430.h"
     16 #include "MSP430MachineFunctionInfo.h"
     17 #include "MSP430Subtarget.h"
     18 #include "MSP430TargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/SelectionDAGISel.h"
     25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     26 #include "llvm/CodeGen/ValueTypes.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GlobalAlias.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "msp430-lower"
     40 
     41 typedef enum {
     42   NoHWMult,
     43   HWMultIntr,
     44   HWMultNoIntr
     45 } HWMultUseMode;
     46 
     47 static cl::opt<HWMultUseMode>
     48 HWMultMode("msp430-hwmult-mode", cl::Hidden,
     49            cl::desc("Hardware multiplier use mode"),
     50            cl::init(HWMultNoIntr),
     51            cl::values(
     52              clEnumValN(NoHWMult, "no",
     53                 "Do not use hardware multiplier"),
     54              clEnumValN(HWMultIntr, "interrupts",
     55                 "Assume hardware multiplier can be used inside interrupts"),
     56              clEnumValN(HWMultNoIntr, "use",
     57                 "Assume hardware multiplier cannot be used inside interrupts"),
     58              clEnumValEnd));
     59 
     60 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
     61     : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
     62 
     63   // Set up the register classes.
     64   addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
     65   addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
     66 
     67   // Compute derived properties from the register classes
     68   computeRegisterProperties();
     69 
     70   // Provide all sorts of operation actions
     71 
     72   // Division is expensive
     73   setIntDivIsCheap(false);
     74 
     75   setStackPointerRegisterToSaveRestore(MSP430::SPW);
     76   setBooleanContents(ZeroOrOneBooleanContent);
     77   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     78 
     79   // We have post-incremented loads / stores.
     80   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
     81   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
     82 
     83   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
     84   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
     85   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
     86   setLoadExtAction(ISD::SEXTLOAD, MVT::i8,  Expand);
     87   setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
     88 
     89   // We don't have any truncstores
     90   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
     91 
     92   setOperationAction(ISD::SRA,              MVT::i8,    Custom);
     93   setOperationAction(ISD::SHL,              MVT::i8,    Custom);
     94   setOperationAction(ISD::SRL,              MVT::i8,    Custom);
     95   setOperationAction(ISD::SRA,              MVT::i16,   Custom);
     96   setOperationAction(ISD::SHL,              MVT::i16,   Custom);
     97   setOperationAction(ISD::SRL,              MVT::i16,   Custom);
     98   setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
     99   setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
    100   setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
    101   setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
    102   setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
    103   setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
    104   setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
    105   setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
    106   setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
    107   setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
    108   setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
    109   setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
    110   setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
    111   setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
    112   setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
    113   setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
    114   setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
    115   setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
    116   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
    117   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
    118 
    119   setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
    120   setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
    121   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i8,    Expand);
    122   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i16,   Expand);
    123   setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
    124   setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
    125   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i8,    Expand);
    126   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i16,   Expand);
    127   setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
    128   setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
    129 
    130   setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
    131   setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
    132   setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
    133   setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
    134   setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
    135   setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
    136 
    137   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
    138 
    139   // FIXME: Implement efficiently multiplication by a constant
    140   setOperationAction(ISD::MUL,              MVT::i8,    Expand);
    141   setOperationAction(ISD::MULHS,            MVT::i8,    Expand);
    142   setOperationAction(ISD::MULHU,            MVT::i8,    Expand);
    143   setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Expand);
    144   setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Expand);
    145   setOperationAction(ISD::MUL,              MVT::i16,   Expand);
    146   setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
    147   setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
    148   setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
    149   setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
    150 
    151   setOperationAction(ISD::UDIV,             MVT::i8,    Expand);
    152   setOperationAction(ISD::UDIVREM,          MVT::i8,    Expand);
    153   setOperationAction(ISD::UREM,             MVT::i8,    Expand);
    154   setOperationAction(ISD::SDIV,             MVT::i8,    Expand);
    155   setOperationAction(ISD::SDIVREM,          MVT::i8,    Expand);
    156   setOperationAction(ISD::SREM,             MVT::i8,    Expand);
    157   setOperationAction(ISD::UDIV,             MVT::i16,   Expand);
    158   setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
    159   setOperationAction(ISD::UREM,             MVT::i16,   Expand);
    160   setOperationAction(ISD::SDIV,             MVT::i16,   Expand);
    161   setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
    162   setOperationAction(ISD::SREM,             MVT::i16,   Expand);
    163 
    164   // varargs support
    165   setOperationAction(ISD::VASTART,          MVT::Other, Custom);
    166   setOperationAction(ISD::VAARG,            MVT::Other, Expand);
    167   setOperationAction(ISD::VAEND,            MVT::Other, Expand);
    168   setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
    169   setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
    170 
    171   // Libcalls names.
    172   if (HWMultMode == HWMultIntr) {
    173     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw");
    174     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
    175   } else if (HWMultMode == HWMultNoIntr) {
    176     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw_noint");
    177     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
    178   }
    179 
    180   setMinFunctionAlignment(1);
    181   setPrefFunctionAlignment(2);
    182 }
    183 
    184 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
    185                                              SelectionDAG &DAG) const {
    186   switch (Op.getOpcode()) {
    187   case ISD::SHL: // FALLTHROUGH
    188   case ISD::SRL:
    189   case ISD::SRA:              return LowerShifts(Op, DAG);
    190   case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
    191   case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
    192   case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
    193   case ISD::SETCC:            return LowerSETCC(Op, DAG);
    194   case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
    195   case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
    196   case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
    197   case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
    198   case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
    199   case ISD::VASTART:          return LowerVASTART(Op, DAG);
    200   case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
    201   default:
    202     llvm_unreachable("unimplemented operand");
    203   }
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 //                       MSP430 Inline Assembly Support
    208 //===----------------------------------------------------------------------===//
    209 
    210 /// getConstraintType - Given a constraint letter, return the type of
    211 /// constraint it is for this target.
    212 TargetLowering::ConstraintType
    213 MSP430TargetLowering::getConstraintType(const std::string &Constraint) const {
    214   if (Constraint.size() == 1) {
    215     switch (Constraint[0]) {
    216     case 'r':
    217       return C_RegisterClass;
    218     default:
    219       break;
    220     }
    221   }
    222   return TargetLowering::getConstraintType(Constraint);
    223 }
    224 
    225 std::pair<unsigned, const TargetRegisterClass*>
    226 MSP430TargetLowering::
    227 getRegForInlineAsmConstraint(const std::string &Constraint,
    228                              MVT VT) const {
    229   if (Constraint.size() == 1) {
    230     // GCC Constraint Letters
    231     switch (Constraint[0]) {
    232     default: break;
    233     case 'r':   // GENERAL_REGS
    234       if (VT == MVT::i8)
    235         return std::make_pair(0U, &MSP430::GR8RegClass);
    236 
    237       return std::make_pair(0U, &MSP430::GR16RegClass);
    238     }
    239   }
    240 
    241   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
    242 }
    243 
    244 //===----------------------------------------------------------------------===//
    245 //                      Calling Convention Implementation
    246 //===----------------------------------------------------------------------===//
    247 
    248 #include "MSP430GenCallingConv.inc"
    249 
    250 /// For each argument in a function store the number of pieces it is composed
    251 /// of.
    252 template<typename ArgT>
    253 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
    254                               SmallVectorImpl<unsigned> &Out) {
    255   unsigned CurrentArgIndex = ~0U;
    256   for (unsigned i = 0, e = Args.size(); i != e; i++) {
    257     if (CurrentArgIndex == Args[i].OrigArgIndex) {
    258       Out.back()++;
    259     } else {
    260       Out.push_back(1);
    261       CurrentArgIndex++;
    262     }
    263   }
    264 }
    265 
    266 static void AnalyzeVarArgs(CCState &State,
    267                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
    268   State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
    269 }
    270 
    271 static void AnalyzeVarArgs(CCState &State,
    272                            const SmallVectorImpl<ISD::InputArg> &Ins) {
    273   State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
    274 }
    275 
    276 /// Analyze incoming and outgoing function arguments. We need custom C++ code
    277 /// to handle special constraints in the ABI like reversing the order of the
    278 /// pieces of splitted arguments. In addition, all pieces of a certain argument
    279 /// have to be passed either using registers or the stack but never mixing both.
    280 template<typename ArgT>
    281 static void AnalyzeArguments(CCState &State,
    282                              SmallVectorImpl<CCValAssign> &ArgLocs,
    283                              const SmallVectorImpl<ArgT> &Args) {
    284   static const MCPhysReg RegList[] = {
    285     MSP430::R15W, MSP430::R14W, MSP430::R13W, MSP430::R12W
    286   };
    287   static const unsigned NbRegs = array_lengthof(RegList);
    288 
    289   if (State.isVarArg()) {
    290     AnalyzeVarArgs(State, Args);
    291     return;
    292   }
    293 
    294   SmallVector<unsigned, 4> ArgsParts;
    295   ParseFunctionArgs(Args, ArgsParts);
    296 
    297   unsigned RegsLeft = NbRegs;
    298   bool UseStack = false;
    299   unsigned ValNo = 0;
    300 
    301   for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
    302     MVT ArgVT = Args[ValNo].VT;
    303     ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
    304     MVT LocVT = ArgVT;
    305     CCValAssign::LocInfo LocInfo = CCValAssign::Full;
    306 
    307     // Promote i8 to i16
    308     if (LocVT == MVT::i8) {
    309       LocVT = MVT::i16;
    310       if (ArgFlags.isSExt())
    311           LocInfo = CCValAssign::SExt;
    312       else if (ArgFlags.isZExt())
    313           LocInfo = CCValAssign::ZExt;
    314       else
    315           LocInfo = CCValAssign::AExt;
    316     }
    317 
    318     // Handle byval arguments
    319     if (ArgFlags.isByVal()) {
    320       State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
    321       continue;
    322     }
    323 
    324     unsigned Parts = ArgsParts[i];
    325 
    326     if (!UseStack && Parts <= RegsLeft) {
    327       unsigned FirstVal = ValNo;
    328       for (unsigned j = 0; j < Parts; j++) {
    329         unsigned Reg = State.AllocateReg(RegList, NbRegs);
    330         State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
    331         RegsLeft--;
    332       }
    333 
    334       // Reverse the order of the pieces to agree with the "big endian" format
    335       // required in the calling convention ABI.
    336       SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
    337       std::reverse(B, B + Parts);
    338     } else {
    339       UseStack = true;
    340       for (unsigned j = 0; j < Parts; j++)
    341         CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
    342     }
    343   }
    344 }
    345 
    346 static void AnalyzeRetResult(CCState &State,
    347                              const SmallVectorImpl<ISD::InputArg> &Ins) {
    348   State.AnalyzeCallResult(Ins, RetCC_MSP430);
    349 }
    350 
    351 static void AnalyzeRetResult(CCState &State,
    352                              const SmallVectorImpl<ISD::OutputArg> &Outs) {
    353   State.AnalyzeReturn(Outs, RetCC_MSP430);
    354 }
    355 
    356 template<typename ArgT>
    357 static void AnalyzeReturnValues(CCState &State,
    358                                 SmallVectorImpl<CCValAssign> &RVLocs,
    359                                 const SmallVectorImpl<ArgT> &Args) {
    360   AnalyzeRetResult(State, Args);
    361 
    362   // Reverse splitted return values to get the "big endian" format required
    363   // to agree with the calling convention ABI.
    364   std::reverse(RVLocs.begin(), RVLocs.end());
    365 }
    366 
    367 SDValue
    368 MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
    369                                            CallingConv::ID CallConv,
    370                                            bool isVarArg,
    371                                            const SmallVectorImpl<ISD::InputArg>
    372                                              &Ins,
    373                                            SDLoc dl,
    374                                            SelectionDAG &DAG,
    375                                            SmallVectorImpl<SDValue> &InVals)
    376                                              const {
    377 
    378   switch (CallConv) {
    379   default:
    380     llvm_unreachable("Unsupported calling convention");
    381   case CallingConv::C:
    382   case CallingConv::Fast:
    383     return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
    384   case CallingConv::MSP430_INTR:
    385     if (Ins.empty())
    386       return Chain;
    387     report_fatal_error("ISRs cannot have arguments");
    388   }
    389 }
    390 
    391 SDValue
    392 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
    393                                 SmallVectorImpl<SDValue> &InVals) const {
    394   SelectionDAG &DAG                     = CLI.DAG;
    395   SDLoc &dl                             = CLI.DL;
    396   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    397   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
    398   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
    399   SDValue Chain                         = CLI.Chain;
    400   SDValue Callee                        = CLI.Callee;
    401   bool &isTailCall                      = CLI.IsTailCall;
    402   CallingConv::ID CallConv              = CLI.CallConv;
    403   bool isVarArg                         = CLI.IsVarArg;
    404 
    405   // MSP430 target does not yet support tail call optimization.
    406   isTailCall = false;
    407 
    408   switch (CallConv) {
    409   default:
    410     llvm_unreachable("Unsupported calling convention");
    411   case CallingConv::Fast:
    412   case CallingConv::C:
    413     return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
    414                           Outs, OutVals, Ins, dl, DAG, InVals);
    415   case CallingConv::MSP430_INTR:
    416     report_fatal_error("ISRs cannot be called directly");
    417   }
    418 }
    419 
    420 /// LowerCCCArguments - transform physical registers into virtual registers and
    421 /// generate load operations for arguments places on the stack.
    422 // FIXME: struct return stuff
    423 SDValue
    424 MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
    425                                         CallingConv::ID CallConv,
    426                                         bool isVarArg,
    427                                         const SmallVectorImpl<ISD::InputArg>
    428                                           &Ins,
    429                                         SDLoc dl,
    430                                         SelectionDAG &DAG,
    431                                         SmallVectorImpl<SDValue> &InVals)
    432                                           const {
    433   MachineFunction &MF = DAG.getMachineFunction();
    434   MachineFrameInfo *MFI = MF.getFrameInfo();
    435   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    436   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
    437 
    438   // Assign locations to all of the incoming arguments.
    439   SmallVector<CCValAssign, 16> ArgLocs;
    440   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
    441                  getTargetMachine(), ArgLocs, *DAG.getContext());
    442   AnalyzeArguments(CCInfo, ArgLocs, Ins);
    443 
    444   // Create frame index for the start of the first vararg value
    445   if (isVarArg) {
    446     unsigned Offset = CCInfo.getNextStackOffset();
    447     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
    448   }
    449 
    450   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    451     CCValAssign &VA = ArgLocs[i];
    452     if (VA.isRegLoc()) {
    453       // Arguments passed in registers
    454       EVT RegVT = VA.getLocVT();
    455       switch (RegVT.getSimpleVT().SimpleTy) {
    456       default:
    457         {
    458 #ifndef NDEBUG
    459           errs() << "LowerFormalArguments Unhandled argument type: "
    460                << RegVT.getSimpleVT().SimpleTy << "\n";
    461 #endif
    462           llvm_unreachable(nullptr);
    463         }
    464       case MVT::i16:
    465         unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
    466         RegInfo.addLiveIn(VA.getLocReg(), VReg);
    467         SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
    468 
    469         // If this is an 8-bit value, it is really passed promoted to 16
    470         // bits. Insert an assert[sz]ext to capture this, then truncate to the
    471         // right size.
    472         if (VA.getLocInfo() == CCValAssign::SExt)
    473           ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
    474                                  DAG.getValueType(VA.getValVT()));
    475         else if (VA.getLocInfo() == CCValAssign::ZExt)
    476           ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
    477                                  DAG.getValueType(VA.getValVT()));
    478 
    479         if (VA.getLocInfo() != CCValAssign::Full)
    480           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
    481 
    482         InVals.push_back(ArgValue);
    483       }
    484     } else {
    485       // Sanity check
    486       assert(VA.isMemLoc());
    487 
    488       SDValue InVal;
    489       ISD::ArgFlagsTy Flags = Ins[i].Flags;
    490 
    491       if (Flags.isByVal()) {
    492         int FI = MFI->CreateFixedObject(Flags.getByValSize(),
    493                                         VA.getLocMemOffset(), true);
    494         InVal = DAG.getFrameIndex(FI, getPointerTy());
    495       } else {
    496         // Load the argument to a virtual register
    497         unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
    498         if (ObjSize > 2) {
    499             errs() << "LowerFormalArguments Unhandled argument type: "
    500                 << EVT(VA.getLocVT()).getEVTString()
    501                 << "\n";
    502         }
    503         // Create the frame index object for this incoming parameter...
    504         int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
    505 
    506         // Create the SelectionDAG nodes corresponding to a load
    507         //from this parameter
    508         SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
    509         InVal = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
    510                             MachinePointerInfo::getFixedStack(FI),
    511                             false, false, false, 0);
    512       }
    513 
    514       InVals.push_back(InVal);
    515     }
    516   }
    517 
    518   return Chain;
    519 }
    520 
    521 SDValue
    522 MSP430TargetLowering::LowerReturn(SDValue Chain,
    523                                   CallingConv::ID CallConv, bool isVarArg,
    524                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    525                                   const SmallVectorImpl<SDValue> &OutVals,
    526                                   SDLoc dl, SelectionDAG &DAG) const {
    527 
    528   // CCValAssign - represent the assignment of the return value to a location
    529   SmallVector<CCValAssign, 16> RVLocs;
    530 
    531   // ISRs cannot return any value.
    532   if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
    533     report_fatal_error("ISRs cannot return any value");
    534 
    535   // CCState - Info about the registers and stack slot.
    536   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
    537                  getTargetMachine(), RVLocs, *DAG.getContext());
    538 
    539   // Analize return values.
    540   AnalyzeReturnValues(CCInfo, RVLocs, Outs);
    541 
    542   SDValue Flag;
    543   SmallVector<SDValue, 4> RetOps(1, Chain);
    544 
    545   // Copy the result values into the output registers.
    546   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    547     CCValAssign &VA = RVLocs[i];
    548     assert(VA.isRegLoc() && "Can only return in registers!");
    549 
    550     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
    551                              OutVals[i], Flag);
    552 
    553     // Guarantee that all emitted copies are stuck together,
    554     // avoiding something bad.
    555     Flag = Chain.getValue(1);
    556     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
    557   }
    558 
    559   unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
    560                   MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
    561 
    562   RetOps[0] = Chain;  // Update chain.
    563 
    564   // Add the flag if we have it.
    565   if (Flag.getNode())
    566     RetOps.push_back(Flag);
    567 
    568   return DAG.getNode(Opc, dl, MVT::Other, RetOps);
    569 }
    570 
    571 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
    572 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
    573 // TODO: sret.
    574 SDValue
    575 MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
    576                                      CallingConv::ID CallConv, bool isVarArg,
    577                                      bool isTailCall,
    578                                      const SmallVectorImpl<ISD::OutputArg>
    579                                        &Outs,
    580                                      const SmallVectorImpl<SDValue> &OutVals,
    581                                      const SmallVectorImpl<ISD::InputArg> &Ins,
    582                                      SDLoc dl, SelectionDAG &DAG,
    583                                      SmallVectorImpl<SDValue> &InVals) const {
    584   // Analyze operands of the call, assigning locations to each operand.
    585   SmallVector<CCValAssign, 16> ArgLocs;
    586   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
    587                  getTargetMachine(), ArgLocs, *DAG.getContext());
    588   AnalyzeArguments(CCInfo, ArgLocs, Outs);
    589 
    590   // Get a count of how many bytes are to be pushed on the stack.
    591   unsigned NumBytes = CCInfo.getNextStackOffset();
    592 
    593   Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
    594                                                       getPointerTy(), true),
    595                                dl);
    596 
    597   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
    598   SmallVector<SDValue, 12> MemOpChains;
    599   SDValue StackPtr;
    600 
    601   // Walk the register/memloc assignments, inserting copies/loads.
    602   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    603     CCValAssign &VA = ArgLocs[i];
    604 
    605     SDValue Arg = OutVals[i];
    606 
    607     // Promote the value if needed.
    608     switch (VA.getLocInfo()) {
    609       default: llvm_unreachable("Unknown loc info!");
    610       case CCValAssign::Full: break;
    611       case CCValAssign::SExt:
    612         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
    613         break;
    614       case CCValAssign::ZExt:
    615         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
    616         break;
    617       case CCValAssign::AExt:
    618         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
    619         break;
    620     }
    621 
    622     // Arguments that can be passed on register must be kept at RegsToPass
    623     // vector
    624     if (VA.isRegLoc()) {
    625       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    626     } else {
    627       assert(VA.isMemLoc());
    628 
    629       if (!StackPtr.getNode())
    630         StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SPW, getPointerTy());
    631 
    632       SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
    633                                    StackPtr,
    634                                    DAG.getIntPtrConstant(VA.getLocMemOffset()));
    635 
    636       SDValue MemOp;
    637       ISD::ArgFlagsTy Flags = Outs[i].Flags;
    638 
    639       if (Flags.isByVal()) {
    640         SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i16);
    641         MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
    642                               Flags.getByValAlign(),
    643                               /*isVolatile*/false,
    644                               /*AlwaysInline=*/true,
    645                               MachinePointerInfo(),
    646                               MachinePointerInfo());
    647       } else {
    648         MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
    649                              false, false, 0);
    650       }
    651 
    652       MemOpChains.push_back(MemOp);
    653     }
    654   }
    655 
    656   // Transform all store nodes into one single node because all store nodes are
    657   // independent of each other.
    658   if (!MemOpChains.empty())
    659     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
    660 
    661   // Build a sequence of copy-to-reg nodes chained together with token chain and
    662   // flag operands which copy the outgoing args into registers.  The InFlag in
    663   // necessary since all emitted instructions must be stuck together.
    664   SDValue InFlag;
    665   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    666     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
    667                              RegsToPass[i].second, InFlag);
    668     InFlag = Chain.getValue(1);
    669   }
    670 
    671   // If the callee is a GlobalAddress node (quite common, every direct call is)
    672   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
    673   // Likewise ExternalSymbol -> TargetExternalSymbol.
    674   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    675     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
    676   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
    677     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
    678 
    679   // Returns a chain & a flag for retval copy to use.
    680   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    681   SmallVector<SDValue, 8> Ops;
    682   Ops.push_back(Chain);
    683   Ops.push_back(Callee);
    684 
    685   // Add argument registers to the end of the list so that they are
    686   // known live into the call.
    687   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    688     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
    689                                   RegsToPass[i].second.getValueType()));
    690 
    691   if (InFlag.getNode())
    692     Ops.push_back(InFlag);
    693 
    694   Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
    695   InFlag = Chain.getValue(1);
    696 
    697   // Create the CALLSEQ_END node.
    698   Chain = DAG.getCALLSEQ_END(Chain,
    699                              DAG.getConstant(NumBytes, getPointerTy(), true),
    700                              DAG.getConstant(0, getPointerTy(), true),
    701                              InFlag, dl);
    702   InFlag = Chain.getValue(1);
    703 
    704   // Handle result values, copying them out of physregs into vregs that we
    705   // return.
    706   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
    707                          DAG, InVals);
    708 }
    709 
    710 /// LowerCallResult - Lower the result values of a call into the
    711 /// appropriate copies out of appropriate physical registers.
    712 ///
    713 SDValue
    714 MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
    715                                       CallingConv::ID CallConv, bool isVarArg,
    716                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    717                                       SDLoc dl, SelectionDAG &DAG,
    718                                       SmallVectorImpl<SDValue> &InVals) const {
    719 
    720   // Assign locations to each value returned by this call.
    721   SmallVector<CCValAssign, 16> RVLocs;
    722   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
    723                  getTargetMachine(), RVLocs, *DAG.getContext());
    724 
    725   AnalyzeReturnValues(CCInfo, RVLocs, Ins);
    726 
    727   // Copy all of the result registers out of their specified physreg.
    728   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    729     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
    730                                RVLocs[i].getValVT(), InFlag).getValue(1);
    731     InFlag = Chain.getValue(2);
    732     InVals.push_back(Chain.getValue(0));
    733   }
    734 
    735   return Chain;
    736 }
    737 
    738 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
    739                                           SelectionDAG &DAG) const {
    740   unsigned Opc = Op.getOpcode();
    741   SDNode* N = Op.getNode();
    742   EVT VT = Op.getValueType();
    743   SDLoc dl(N);
    744 
    745   // Expand non-constant shifts to loops:
    746   if (!isa<ConstantSDNode>(N->getOperand(1)))
    747     switch (Opc) {
    748     default: llvm_unreachable("Invalid shift opcode!");
    749     case ISD::SHL:
    750       return DAG.getNode(MSP430ISD::SHL, dl,
    751                          VT, N->getOperand(0), N->getOperand(1));
    752     case ISD::SRA:
    753       return DAG.getNode(MSP430ISD::SRA, dl,
    754                          VT, N->getOperand(0), N->getOperand(1));
    755     case ISD::SRL:
    756       return DAG.getNode(MSP430ISD::SRL, dl,
    757                          VT, N->getOperand(0), N->getOperand(1));
    758     }
    759 
    760   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    761 
    762   // Expand the stuff into sequence of shifts.
    763   // FIXME: for some shift amounts this might be done better!
    764   // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
    765   SDValue Victim = N->getOperand(0);
    766 
    767   if (Opc == ISD::SRL && ShiftAmount) {
    768     // Emit a special goodness here:
    769     // srl A, 1 => clrc; rrc A
    770     Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
    771     ShiftAmount -= 1;
    772   }
    773 
    774   while (ShiftAmount--)
    775     Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
    776                          dl, VT, Victim);
    777 
    778   return Victim;
    779 }
    780 
    781 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
    782                                                  SelectionDAG &DAG) const {
    783   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
    784   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
    785 
    786   // Create the TargetGlobalAddress node, folding in the constant offset.
    787   SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
    788                                               getPointerTy(), Offset);
    789   return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op),
    790                      getPointerTy(), Result);
    791 }
    792 
    793 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
    794                                                   SelectionDAG &DAG) const {
    795   SDLoc dl(Op);
    796   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
    797   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
    798 
    799   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
    800 }
    801 
    802 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
    803                                                 SelectionDAG &DAG) const {
    804   SDLoc dl(Op);
    805   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
    806   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
    807 
    808   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
    809 }
    810 
    811 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
    812                        ISD::CondCode CC,
    813                        SDLoc dl, SelectionDAG &DAG) {
    814   // FIXME: Handle bittests someday
    815   assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
    816 
    817   // FIXME: Handle jump negative someday
    818   MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
    819   switch (CC) {
    820   default: llvm_unreachable("Invalid integer condition!");
    821   case ISD::SETEQ:
    822     TCC = MSP430CC::COND_E;     // aka COND_Z
    823     // Minor optimization: if LHS is a constant, swap operands, then the
    824     // constant can be folded into comparison.
    825     if (LHS.getOpcode() == ISD::Constant)
    826       std::swap(LHS, RHS);
    827     break;
    828   case ISD::SETNE:
    829     TCC = MSP430CC::COND_NE;    // aka COND_NZ
    830     // Minor optimization: if LHS is a constant, swap operands, then the
    831     // constant can be folded into comparison.
    832     if (LHS.getOpcode() == ISD::Constant)
    833       std::swap(LHS, RHS);
    834     break;
    835   case ISD::SETULE:
    836     std::swap(LHS, RHS);        // FALLTHROUGH
    837   case ISD::SETUGE:
    838     // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
    839     // fold constant into instruction.
    840     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    841       LHS = RHS;
    842       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
    843       TCC = MSP430CC::COND_LO;
    844       break;
    845     }
    846     TCC = MSP430CC::COND_HS;    // aka COND_C
    847     break;
    848   case ISD::SETUGT:
    849     std::swap(LHS, RHS);        // FALLTHROUGH
    850   case ISD::SETULT:
    851     // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
    852     // fold constant into instruction.
    853     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    854       LHS = RHS;
    855       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
    856       TCC = MSP430CC::COND_HS;
    857       break;
    858     }
    859     TCC = MSP430CC::COND_LO;    // aka COND_NC
    860     break;
    861   case ISD::SETLE:
    862     std::swap(LHS, RHS);        // FALLTHROUGH
    863   case ISD::SETGE:
    864     // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
    865     // fold constant into instruction.
    866     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    867       LHS = RHS;
    868       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
    869       TCC = MSP430CC::COND_L;
    870       break;
    871     }
    872     TCC = MSP430CC::COND_GE;
    873     break;
    874   case ISD::SETGT:
    875     std::swap(LHS, RHS);        // FALLTHROUGH
    876   case ISD::SETLT:
    877     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
    878     // fold constant into instruction.
    879     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    880       LHS = RHS;
    881       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
    882       TCC = MSP430CC::COND_GE;
    883       break;
    884     }
    885     TCC = MSP430CC::COND_L;
    886     break;
    887   }
    888 
    889   TargetCC = DAG.getConstant(TCC, MVT::i8);
    890   return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
    891 }
    892 
    893 
    894 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
    895   SDValue Chain = Op.getOperand(0);
    896   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
    897   SDValue LHS   = Op.getOperand(2);
    898   SDValue RHS   = Op.getOperand(3);
    899   SDValue Dest  = Op.getOperand(4);
    900   SDLoc dl  (Op);
    901 
    902   SDValue TargetCC;
    903   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
    904 
    905   return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
    906                      Chain, Dest, TargetCC, Flag);
    907 }
    908 
    909 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
    910   SDValue LHS   = Op.getOperand(0);
    911   SDValue RHS   = Op.getOperand(1);
    912   SDLoc dl  (Op);
    913 
    914   // If we are doing an AND and testing against zero, then the CMP
    915   // will not be generated.  The AND (or BIT) will generate the condition codes,
    916   // but they are different from CMP.
    917   // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
    918   // lowering & isel wouldn't diverge.
    919   bool andCC = false;
    920   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
    921     if (RHSC->isNullValue() && LHS.hasOneUse() &&
    922         (LHS.getOpcode() == ISD::AND ||
    923          (LHS.getOpcode() == ISD::TRUNCATE &&
    924           LHS.getOperand(0).getOpcode() == ISD::AND))) {
    925       andCC = true;
    926     }
    927   }
    928   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    929   SDValue TargetCC;
    930   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
    931 
    932   // Get the condition codes directly from the status register, if its easy.
    933   // Otherwise a branch will be generated.  Note that the AND and BIT
    934   // instructions generate different flags than CMP, the carry bit can be used
    935   // for NE/EQ.
    936   bool Invert = false;
    937   bool Shift = false;
    938   bool Convert = true;
    939   switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
    940    default:
    941     Convert = false;
    942     break;
    943    case MSP430CC::COND_HS:
    944      // Res = SRW & 1, no processing is required
    945      break;
    946    case MSP430CC::COND_LO:
    947      // Res = ~(SRW & 1)
    948      Invert = true;
    949      break;
    950    case MSP430CC::COND_NE:
    951      if (andCC) {
    952        // C = ~Z, thus Res = SRW & 1, no processing is required
    953      } else {
    954        // Res = ~((SRW >> 1) & 1)
    955        Shift = true;
    956        Invert = true;
    957      }
    958      break;
    959    case MSP430CC::COND_E:
    960      Shift = true;
    961      // C = ~Z for AND instruction, thus we can put Res = ~(SRW & 1), however,
    962      // Res = (SRW >> 1) & 1 is 1 word shorter.
    963      break;
    964   }
    965   EVT VT = Op.getValueType();
    966   SDValue One  = DAG.getConstant(1, VT);
    967   if (Convert) {
    968     SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SRW,
    969                                     MVT::i16, Flag);
    970     if (Shift)
    971       // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
    972       SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
    973     SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
    974     if (Invert)
    975       SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
    976     return SR;
    977   } else {
    978     SDValue Zero = DAG.getConstant(0, VT);
    979     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    980     SmallVector<SDValue, 4> Ops;
    981     Ops.push_back(One);
    982     Ops.push_back(Zero);
    983     Ops.push_back(TargetCC);
    984     Ops.push_back(Flag);
    985     return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
    986   }
    987 }
    988 
    989 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
    990                                              SelectionDAG &DAG) const {
    991   SDValue LHS    = Op.getOperand(0);
    992   SDValue RHS    = Op.getOperand(1);
    993   SDValue TrueV  = Op.getOperand(2);
    994   SDValue FalseV = Op.getOperand(3);
    995   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
    996   SDLoc dl   (Op);
    997 
    998   SDValue TargetCC;
    999   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
   1000 
   1001   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1002   SmallVector<SDValue, 4> Ops;
   1003   Ops.push_back(TrueV);
   1004   Ops.push_back(FalseV);
   1005   Ops.push_back(TargetCC);
   1006   Ops.push_back(Flag);
   1007 
   1008   return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
   1009 }
   1010 
   1011 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
   1012                                                SelectionDAG &DAG) const {
   1013   SDValue Val = Op.getOperand(0);
   1014   EVT VT      = Op.getValueType();
   1015   SDLoc dl(Op);
   1016 
   1017   assert(VT == MVT::i16 && "Only support i16 for now!");
   1018 
   1019   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
   1020                      DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
   1021                      DAG.getValueType(Val.getValueType()));
   1022 }
   1023 
   1024 SDValue
   1025 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   1026   MachineFunction &MF = DAG.getMachineFunction();
   1027   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1028   int ReturnAddrIndex = FuncInfo->getRAIndex();
   1029 
   1030   if (ReturnAddrIndex == 0) {
   1031     // Set up a frame object for the return address.
   1032     uint64_t SlotSize = getDataLayout()->getPointerSize();
   1033     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   1034                                                            true);
   1035     FuncInfo->setRAIndex(ReturnAddrIndex);
   1036   }
   1037 
   1038   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   1039 }
   1040 
   1041 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
   1042                                               SelectionDAG &DAG) const {
   1043   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1044   MFI->setReturnAddressIsTaken(true);
   1045 
   1046   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   1047     return SDValue();
   1048 
   1049   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1050   SDLoc dl(Op);
   1051 
   1052   if (Depth > 0) {
   1053     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   1054     SDValue Offset =
   1055         DAG.getConstant(getDataLayout()->getPointerSize(), MVT::i16);
   1056     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   1057                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   1058                                    FrameAddr, Offset),
   1059                        MachinePointerInfo(), false, false, false, 0);
   1060   }
   1061 
   1062   // Just load the return address.
   1063   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   1064   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   1065                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   1066 }
   1067 
   1068 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
   1069                                              SelectionDAG &DAG) const {
   1070   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1071   MFI->setFrameAddressIsTaken(true);
   1072 
   1073   EVT VT = Op.getValueType();
   1074   SDLoc dl(Op);  // FIXME probably not meaningful
   1075   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1076   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   1077                                          MSP430::FPW, VT);
   1078   while (Depth--)
   1079     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   1080                             MachinePointerInfo(),
   1081                             false, false, false, 0);
   1082   return FrameAddr;
   1083 }
   1084 
   1085 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
   1086                                            SelectionDAG &DAG) const {
   1087   MachineFunction &MF = DAG.getMachineFunction();
   1088   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1089 
   1090   // Frame index of first vararg argument
   1091   SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1092                                          getPointerTy());
   1093   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1094 
   1095   // Create a store of the frame index to the location operand
   1096   return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
   1097                       Op.getOperand(1), MachinePointerInfo(SV),
   1098                       false, false, 0);
   1099 }
   1100 
   1101 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
   1102                                              SelectionDAG &DAG) const {
   1103     JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1104     SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
   1105     return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT),
   1106                        getPointerTy(), Result);
   1107 }
   1108 
   1109 /// getPostIndexedAddressParts - returns true by value, base pointer and
   1110 /// offset pointer and addressing mode by reference if this node can be
   1111 /// combined with a load / store to form a post-indexed load / store.
   1112 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   1113                                                       SDValue &Base,
   1114                                                       SDValue &Offset,
   1115                                                       ISD::MemIndexedMode &AM,
   1116                                                       SelectionDAG &DAG) const {
   1117 
   1118   LoadSDNode *LD = cast<LoadSDNode>(N);
   1119   if (LD->getExtensionType() != ISD::NON_EXTLOAD)
   1120     return false;
   1121 
   1122   EVT VT = LD->getMemoryVT();
   1123   if (VT != MVT::i8 && VT != MVT::i16)
   1124     return false;
   1125 
   1126   if (Op->getOpcode() != ISD::ADD)
   1127     return false;
   1128 
   1129   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
   1130     uint64_t RHSC = RHS->getZExtValue();
   1131     if ((VT == MVT::i16 && RHSC != 2) ||
   1132         (VT == MVT::i8 && RHSC != 1))
   1133       return false;
   1134 
   1135     Base = Op->getOperand(0);
   1136     Offset = DAG.getConstant(RHSC, VT);
   1137     AM = ISD::POST_INC;
   1138     return true;
   1139   }
   1140 
   1141   return false;
   1142 }
   1143 
   1144 
   1145 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
   1146   switch (Opcode) {
   1147   default: return nullptr;
   1148   case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
   1149   case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
   1150   case MSP430ISD::RRA:                return "MSP430ISD::RRA";
   1151   case MSP430ISD::RLA:                return "MSP430ISD::RLA";
   1152   case MSP430ISD::RRC:                return "MSP430ISD::RRC";
   1153   case MSP430ISD::CALL:               return "MSP430ISD::CALL";
   1154   case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
   1155   case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
   1156   case MSP430ISD::CMP:                return "MSP430ISD::CMP";
   1157   case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
   1158   case MSP430ISD::SHL:                return "MSP430ISD::SHL";
   1159   case MSP430ISD::SRA:                return "MSP430ISD::SRA";
   1160   }
   1161 }
   1162 
   1163 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
   1164                                           Type *Ty2) const {
   1165   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   1166     return false;
   1167 
   1168   return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
   1169 }
   1170 
   1171 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   1172   if (!VT1.isInteger() || !VT2.isInteger())
   1173     return false;
   1174 
   1175   return (VT1.getSizeInBits() > VT2.getSizeInBits());
   1176 }
   1177 
   1178 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   1179   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1180   return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
   1181 }
   1182 
   1183 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   1184   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1185   return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
   1186 }
   1187 
   1188 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   1189   return isZExtFree(Val.getValueType(), VT2);
   1190 }
   1191 
   1192 //===----------------------------------------------------------------------===//
   1193 //  Other Lowering Code
   1194 //===----------------------------------------------------------------------===//
   1195 
   1196 MachineBasicBlock*
   1197 MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
   1198                                      MachineBasicBlock *BB) const {
   1199   MachineFunction *F = BB->getParent();
   1200   MachineRegisterInfo &RI = F->getRegInfo();
   1201   DebugLoc dl = MI->getDebugLoc();
   1202   const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
   1203 
   1204   unsigned Opc;
   1205   const TargetRegisterClass * RC;
   1206   switch (MI->getOpcode()) {
   1207   default: llvm_unreachable("Invalid shift opcode!");
   1208   case MSP430::Shl8:
   1209    Opc = MSP430::SHL8r1;
   1210    RC = &MSP430::GR8RegClass;
   1211    break;
   1212   case MSP430::Shl16:
   1213    Opc = MSP430::SHL16r1;
   1214    RC = &MSP430::GR16RegClass;
   1215    break;
   1216   case MSP430::Sra8:
   1217    Opc = MSP430::SAR8r1;
   1218    RC = &MSP430::GR8RegClass;
   1219    break;
   1220   case MSP430::Sra16:
   1221    Opc = MSP430::SAR16r1;
   1222    RC = &MSP430::GR16RegClass;
   1223    break;
   1224   case MSP430::Srl8:
   1225    Opc = MSP430::SAR8r1c;
   1226    RC = &MSP430::GR8RegClass;
   1227    break;
   1228   case MSP430::Srl16:
   1229    Opc = MSP430::SAR16r1c;
   1230    RC = &MSP430::GR16RegClass;
   1231    break;
   1232   }
   1233 
   1234   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1235   MachineFunction::iterator I = BB;
   1236   ++I;
   1237 
   1238   // Create loop block
   1239   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
   1240   MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
   1241 
   1242   F->insert(I, LoopBB);
   1243   F->insert(I, RemBB);
   1244 
   1245   // Update machine-CFG edges by transferring all successors of the current
   1246   // block to the block containing instructions after shift.
   1247   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   1248                 BB->end());
   1249   RemBB->transferSuccessorsAndUpdatePHIs(BB);
   1250 
   1251   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
   1252   BB->addSuccessor(LoopBB);
   1253   BB->addSuccessor(RemBB);
   1254   LoopBB->addSuccessor(RemBB);
   1255   LoopBB->addSuccessor(LoopBB);
   1256 
   1257   unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1258   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1259   unsigned ShiftReg = RI.createVirtualRegister(RC);
   1260   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
   1261   unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
   1262   unsigned SrcReg = MI->getOperand(1).getReg();
   1263   unsigned DstReg = MI->getOperand(0).getReg();
   1264 
   1265   // BB:
   1266   // cmp 0, N
   1267   // je RemBB
   1268   BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
   1269     .addReg(ShiftAmtSrcReg).addImm(0);
   1270   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1271     .addMBB(RemBB)
   1272     .addImm(MSP430CC::COND_E);
   1273 
   1274   // LoopBB:
   1275   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
   1276   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
   1277   // ShiftReg2 = shift ShiftReg
   1278   // ShiftAmt2 = ShiftAmt - 1;
   1279   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
   1280     .addReg(SrcReg).addMBB(BB)
   1281     .addReg(ShiftReg2).addMBB(LoopBB);
   1282   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
   1283     .addReg(ShiftAmtSrcReg).addMBB(BB)
   1284     .addReg(ShiftAmtReg2).addMBB(LoopBB);
   1285   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
   1286     .addReg(ShiftReg);
   1287   BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
   1288     .addReg(ShiftAmtReg).addImm(1);
   1289   BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
   1290     .addMBB(LoopBB)
   1291     .addImm(MSP430CC::COND_NE);
   1292 
   1293   // RemBB:
   1294   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
   1295   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
   1296     .addReg(SrcReg).addMBB(BB)
   1297     .addReg(ShiftReg2).addMBB(LoopBB);
   1298 
   1299   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1300   return RemBB;
   1301 }
   1302 
   1303 MachineBasicBlock*
   1304 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1305                                                   MachineBasicBlock *BB) const {
   1306   unsigned Opc = MI->getOpcode();
   1307 
   1308   if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
   1309       Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
   1310       Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
   1311     return EmitShiftInstr(MI, BB);
   1312 
   1313   const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
   1314   DebugLoc dl = MI->getDebugLoc();
   1315 
   1316   assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
   1317          "Unexpected instr type to insert");
   1318 
   1319   // To "insert" a SELECT instruction, we actually have to insert the diamond
   1320   // control-flow pattern.  The incoming instruction knows the destination vreg
   1321   // to set, the condition code register to branch on, the true/false values to
   1322   // select between, and a branch opcode to use.
   1323   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1324   MachineFunction::iterator I = BB;
   1325   ++I;
   1326 
   1327   //  thisMBB:
   1328   //  ...
   1329   //   TrueVal = ...
   1330   //   cmpTY ccX, r1, r2
   1331   //   jCC copy1MBB
   1332   //   fallthrough --> copy0MBB
   1333   MachineBasicBlock *thisMBB = BB;
   1334   MachineFunction *F = BB->getParent();
   1335   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1336   MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1337   F->insert(I, copy0MBB);
   1338   F->insert(I, copy1MBB);
   1339   // Update machine-CFG edges by transferring all successors of the current
   1340   // block to the new block which will contain the Phi node for the select.
   1341   copy1MBB->splice(copy1MBB->begin(), BB,
   1342                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1343   copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
   1344   // Next, add the true and fallthrough blocks as its successors.
   1345   BB->addSuccessor(copy0MBB);
   1346   BB->addSuccessor(copy1MBB);
   1347 
   1348   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1349     .addMBB(copy1MBB)
   1350     .addImm(MI->getOperand(3).getImm());
   1351 
   1352   //  copy0MBB:
   1353   //   %FalseValue = ...
   1354   //   # fallthrough to copy1MBB
   1355   BB = copy0MBB;
   1356 
   1357   // Update machine-CFG edges
   1358   BB->addSuccessor(copy1MBB);
   1359 
   1360   //  copy1MBB:
   1361   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1362   //  ...
   1363   BB = copy1MBB;
   1364   BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
   1365           MI->getOperand(0).getReg())
   1366     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
   1367     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
   1368 
   1369   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1370   return BB;
   1371 }
   1372