Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/RecursiveASTVisitor.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/LiteralSupport.h"
     33 #include "clang/Lex/Preprocessor.h"
     34 #include "clang/Sema/AnalysisBasedWarnings.h"
     35 #include "clang/Sema/DeclSpec.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Sema/Designator.h"
     38 #include "clang/Sema/Initialization.h"
     39 #include "clang/Sema/Lookup.h"
     40 #include "clang/Sema/ParsedTemplate.h"
     41 #include "clang/Sema/Scope.h"
     42 #include "clang/Sema/ScopeInfo.h"
     43 #include "clang/Sema/SemaFixItUtils.h"
     44 #include "clang/Sema/Template.h"
     45 using namespace clang;
     46 using namespace sema;
     47 
     48 /// \brief Determine whether the use of this declaration is valid, without
     49 /// emitting diagnostics.
     50 bool Sema::CanUseDecl(NamedDecl *D) {
     51   // See if this is an auto-typed variable whose initializer we are parsing.
     52   if (ParsingInitForAutoVars.count(D))
     53     return false;
     54 
     55   // See if this is a deleted function.
     56   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     57     if (FD->isDeleted())
     58       return false;
     59 
     60     // If the function has a deduced return type, and we can't deduce it,
     61     // then we can't use it either.
     62     if (getLangOpts().CPlusPlus1y && FD->getReturnType()->isUndeducedType() &&
     63         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     64       return false;
     65   }
     66 
     67   // See if this function is unavailable.
     68   if (D->getAvailability() == AR_Unavailable &&
     69       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     70     return false;
     71 
     72   return true;
     73 }
     74 
     75 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     76   // Warn if this is used but marked unused.
     77   if (D->hasAttr<UnusedAttr>()) {
     78     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
     79     if (!DC->hasAttr<UnusedAttr>())
     80       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     81   }
     82 }
     83 
     84 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
     85                               NamedDecl *D, SourceLocation Loc,
     86                               const ObjCInterfaceDecl *UnknownObjCClass,
     87                               bool ObjCPropertyAccess) {
     88   // See if this declaration is unavailable or deprecated.
     89   std::string Message;
     90 
     91   // Forward class declarations get their attributes from their definition.
     92   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
     93     if (IDecl->getDefinition())
     94       D = IDecl->getDefinition();
     95   }
     96   AvailabilityResult Result = D->getAvailability(&Message);
     97   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
     98     if (Result == AR_Available) {
     99       const DeclContext *DC = ECD->getDeclContext();
    100       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    101         Result = TheEnumDecl->getAvailability(&Message);
    102     }
    103 
    104   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    105   if (Result == AR_Deprecated || Result == AR_Unavailable) {
    106     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    107       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    108         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    109         if (PDeclResult == Result)
    110           ObjCPDecl = PD;
    111       }
    112     }
    113   }
    114 
    115   switch (Result) {
    116     case AR_Available:
    117     case AR_NotYetIntroduced:
    118       break;
    119 
    120     case AR_Deprecated:
    121       if (S.getCurContextAvailability() != AR_Deprecated)
    122         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    123                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    124                                   ObjCPropertyAccess);
    125       break;
    126 
    127     case AR_Unavailable:
    128       if (S.getCurContextAvailability() != AR_Unavailable)
    129         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    130                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    131                                   ObjCPropertyAccess);
    132       break;
    133 
    134     }
    135     return Result;
    136 }
    137 
    138 /// \brief Emit a note explaining that this function is deleted.
    139 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    140   assert(Decl->isDeleted());
    141 
    142   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    143 
    144   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    145     // If the method was explicitly defaulted, point at that declaration.
    146     if (!Method->isImplicit())
    147       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    148 
    149     // Try to diagnose why this special member function was implicitly
    150     // deleted. This might fail, if that reason no longer applies.
    151     CXXSpecialMember CSM = getSpecialMember(Method);
    152     if (CSM != CXXInvalid)
    153       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    154 
    155     return;
    156   }
    157 
    158   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    159     if (CXXConstructorDecl *BaseCD =
    160             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    161       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    162       if (BaseCD->isDeleted()) {
    163         NoteDeletedFunction(BaseCD);
    164       } else {
    165         // FIXME: An explanation of why exactly it can't be inherited
    166         // would be nice.
    167         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    168       }
    169       return;
    170     }
    171   }
    172 
    173   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    174     << Decl << true;
    175 }
    176 
    177 /// \brief Determine whether a FunctionDecl was ever declared with an
    178 /// explicit storage class.
    179 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    180   for (auto I : D->redecls()) {
    181     if (I->getStorageClass() != SC_None)
    182       return true;
    183   }
    184   return false;
    185 }
    186 
    187 /// \brief Check whether we're in an extern inline function and referring to a
    188 /// variable or function with internal linkage (C11 6.7.4p3).
    189 ///
    190 /// This is only a warning because we used to silently accept this code, but
    191 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    192 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    193 /// and so while there may still be user mistakes, most of the time we can't
    194 /// prove that there are errors.
    195 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    196                                                       const NamedDecl *D,
    197                                                       SourceLocation Loc) {
    198   // This is disabled under C++; there are too many ways for this to fire in
    199   // contexts where the warning is a false positive, or where it is technically
    200   // correct but benign.
    201   if (S.getLangOpts().CPlusPlus)
    202     return;
    203 
    204   // Check if this is an inlined function or method.
    205   FunctionDecl *Current = S.getCurFunctionDecl();
    206   if (!Current)
    207     return;
    208   if (!Current->isInlined())
    209     return;
    210   if (!Current->isExternallyVisible())
    211     return;
    212 
    213   // Check if the decl has internal linkage.
    214   if (D->getFormalLinkage() != InternalLinkage)
    215     return;
    216 
    217   // Downgrade from ExtWarn to Extension if
    218   //  (1) the supposedly external inline function is in the main file,
    219   //      and probably won't be included anywhere else.
    220   //  (2) the thing we're referencing is a pure function.
    221   //  (3) the thing we're referencing is another inline function.
    222   // This last can give us false negatives, but it's better than warning on
    223   // wrappers for simple C library functions.
    224   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    225   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    226   if (!DowngradeWarning && UsedFn)
    227     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    228 
    229   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
    230                                : diag::warn_internal_in_extern_inline)
    231     << /*IsVar=*/!UsedFn << D;
    232 
    233   S.MaybeSuggestAddingStaticToDecl(Current);
    234 
    235   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    236       << D;
    237 }
    238 
    239 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    240   const FunctionDecl *First = Cur->getFirstDecl();
    241 
    242   // Suggest "static" on the function, if possible.
    243   if (!hasAnyExplicitStorageClass(First)) {
    244     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    245     Diag(DeclBegin, diag::note_convert_inline_to_static)
    246       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    247   }
    248 }
    249 
    250 /// \brief Determine whether the use of this declaration is valid, and
    251 /// emit any corresponding diagnostics.
    252 ///
    253 /// This routine diagnoses various problems with referencing
    254 /// declarations that can occur when using a declaration. For example,
    255 /// it might warn if a deprecated or unavailable declaration is being
    256 /// used, or produce an error (and return true) if a C++0x deleted
    257 /// function is being used.
    258 ///
    259 /// \returns true if there was an error (this declaration cannot be
    260 /// referenced), false otherwise.
    261 ///
    262 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    263                              const ObjCInterfaceDecl *UnknownObjCClass,
    264                              bool ObjCPropertyAccess) {
    265   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    266     // If there were any diagnostics suppressed by template argument deduction,
    267     // emit them now.
    268     SuppressedDiagnosticsMap::iterator
    269       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    270     if (Pos != SuppressedDiagnostics.end()) {
    271       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
    272       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
    273         Diag(Suppressed[I].first, Suppressed[I].second);
    274 
    275       // Clear out the list of suppressed diagnostics, so that we don't emit
    276       // them again for this specialization. However, we don't obsolete this
    277       // entry from the table, because we want to avoid ever emitting these
    278       // diagnostics again.
    279       Suppressed.clear();
    280     }
    281 
    282     // C++ [basic.start.main]p3:
    283     //   The function 'main' shall not be used within a program.
    284     if (cast<FunctionDecl>(D)->isMain())
    285       Diag(Loc, diag::ext_main_used);
    286   }
    287 
    288   // See if this is an auto-typed variable whose initializer we are parsing.
    289   if (ParsingInitForAutoVars.count(D)) {
    290     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    291       << D->getDeclName();
    292     return true;
    293   }
    294 
    295   // See if this is a deleted function.
    296   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    297     if (FD->isDeleted()) {
    298       Diag(Loc, diag::err_deleted_function_use);
    299       NoteDeletedFunction(FD);
    300       return true;
    301     }
    302 
    303     // If the function has a deduced return type, and we can't deduce it,
    304     // then we can't use it either.
    305     if (getLangOpts().CPlusPlus1y && FD->getReturnType()->isUndeducedType() &&
    306         DeduceReturnType(FD, Loc))
    307       return true;
    308   }
    309   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass, ObjCPropertyAccess);
    310 
    311   DiagnoseUnusedOfDecl(*this, D, Loc);
    312 
    313   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    314 
    315   return false;
    316 }
    317 
    318 /// \brief Retrieve the message suffix that should be added to a
    319 /// diagnostic complaining about the given function being deleted or
    320 /// unavailable.
    321 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    322   std::string Message;
    323   if (FD->getAvailability(&Message))
    324     return ": " + Message;
    325 
    326   return std::string();
    327 }
    328 
    329 /// DiagnoseSentinelCalls - This routine checks whether a call or
    330 /// message-send is to a declaration with the sentinel attribute, and
    331 /// if so, it checks that the requirements of the sentinel are
    332 /// satisfied.
    333 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    334                                  ArrayRef<Expr *> Args) {
    335   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    336   if (!attr)
    337     return;
    338 
    339   // The number of formal parameters of the declaration.
    340   unsigned numFormalParams;
    341 
    342   // The kind of declaration.  This is also an index into a %select in
    343   // the diagnostic.
    344   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    345 
    346   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    347     numFormalParams = MD->param_size();
    348     calleeType = CT_Method;
    349   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    350     numFormalParams = FD->param_size();
    351     calleeType = CT_Function;
    352   } else if (isa<VarDecl>(D)) {
    353     QualType type = cast<ValueDecl>(D)->getType();
    354     const FunctionType *fn = nullptr;
    355     if (const PointerType *ptr = type->getAs<PointerType>()) {
    356       fn = ptr->getPointeeType()->getAs<FunctionType>();
    357       if (!fn) return;
    358       calleeType = CT_Function;
    359     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    360       fn = ptr->getPointeeType()->castAs<FunctionType>();
    361       calleeType = CT_Block;
    362     } else {
    363       return;
    364     }
    365 
    366     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    367       numFormalParams = proto->getNumParams();
    368     } else {
    369       numFormalParams = 0;
    370     }
    371   } else {
    372     return;
    373   }
    374 
    375   // "nullPos" is the number of formal parameters at the end which
    376   // effectively count as part of the variadic arguments.  This is
    377   // useful if you would prefer to not have *any* formal parameters,
    378   // but the language forces you to have at least one.
    379   unsigned nullPos = attr->getNullPos();
    380   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    381   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    382 
    383   // The number of arguments which should follow the sentinel.
    384   unsigned numArgsAfterSentinel = attr->getSentinel();
    385 
    386   // If there aren't enough arguments for all the formal parameters,
    387   // the sentinel, and the args after the sentinel, complain.
    388   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    389     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    390     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    391     return;
    392   }
    393 
    394   // Otherwise, find the sentinel expression.
    395   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    396   if (!sentinelExpr) return;
    397   if (sentinelExpr->isValueDependent()) return;
    398   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    399 
    400   // Pick a reasonable string to insert.  Optimistically use 'nil' or
    401   // 'NULL' if those are actually defined in the context.  Only use
    402   // 'nil' for ObjC methods, where it's much more likely that the
    403   // variadic arguments form a list of object pointers.
    404   SourceLocation MissingNilLoc
    405     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
    406   std::string NullValue;
    407   if (calleeType == CT_Method &&
    408       PP.getIdentifierInfo("nil")->hasMacroDefinition())
    409     NullValue = "nil";
    410   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
    411     NullValue = "NULL";
    412   else
    413     NullValue = "(void*) 0";
    414 
    415   if (MissingNilLoc.isInvalid())
    416     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    417   else
    418     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    419       << int(calleeType)
    420       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    421   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    422 }
    423 
    424 SourceRange Sema::getExprRange(Expr *E) const {
    425   return E ? E->getSourceRange() : SourceRange();
    426 }
    427 
    428 //===----------------------------------------------------------------------===//
    429 //  Standard Promotions and Conversions
    430 //===----------------------------------------------------------------------===//
    431 
    432 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    433 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    434   // Handle any placeholder expressions which made it here.
    435   if (E->getType()->isPlaceholderType()) {
    436     ExprResult result = CheckPlaceholderExpr(E);
    437     if (result.isInvalid()) return ExprError();
    438     E = result.get();
    439   }
    440 
    441   QualType Ty = E->getType();
    442   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    443 
    444   if (Ty->isFunctionType()) {
    445     // If we are here, we are not calling a function but taking
    446     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    447     if (getLangOpts().OpenCL) {
    448       Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    449       return ExprError();
    450     }
    451     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    452                           CK_FunctionToPointerDecay).get();
    453   } else if (Ty->isArrayType()) {
    454     // In C90 mode, arrays only promote to pointers if the array expression is
    455     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    456     // type 'array of type' is converted to an expression that has type 'pointer
    457     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    458     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    459     // (C90) to "an expression" (C99).
    460     //
    461     // C++ 4.2p1:
    462     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    463     // T" can be converted to an rvalue of type "pointer to T".
    464     //
    465     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    466       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    467                             CK_ArrayToPointerDecay).get();
    468   }
    469   return E;
    470 }
    471 
    472 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    473   // Check to see if we are dereferencing a null pointer.  If so,
    474   // and if not volatile-qualified, this is undefined behavior that the
    475   // optimizer will delete, so warn about it.  People sometimes try to use this
    476   // to get a deterministic trap and are surprised by clang's behavior.  This
    477   // only handles the pattern "*null", which is a very syntactic check.
    478   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    479     if (UO->getOpcode() == UO_Deref &&
    480         UO->getSubExpr()->IgnoreParenCasts()->
    481           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    482         !UO->getType().isVolatileQualified()) {
    483     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    484                           S.PDiag(diag::warn_indirection_through_null)
    485                             << UO->getSubExpr()->getSourceRange());
    486     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    487                         S.PDiag(diag::note_indirection_through_null));
    488   }
    489 }
    490 
    491 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    492                                     SourceLocation AssignLoc,
    493                                     const Expr* RHS) {
    494   const ObjCIvarDecl *IV = OIRE->getDecl();
    495   if (!IV)
    496     return;
    497 
    498   DeclarationName MemberName = IV->getDeclName();
    499   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    500   if (!Member || !Member->isStr("isa"))
    501     return;
    502 
    503   const Expr *Base = OIRE->getBase();
    504   QualType BaseType = Base->getType();
    505   if (OIRE->isArrow())
    506     BaseType = BaseType->getPointeeType();
    507   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    508     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    509       ObjCInterfaceDecl *ClassDeclared = nullptr;
    510       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    511       if (!ClassDeclared->getSuperClass()
    512           && (*ClassDeclared->ivar_begin()) == IV) {
    513         if (RHS) {
    514           NamedDecl *ObjectSetClass =
    515             S.LookupSingleName(S.TUScope,
    516                                &S.Context.Idents.get("object_setClass"),
    517                                SourceLocation(), S.LookupOrdinaryName);
    518           if (ObjectSetClass) {
    519             SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
    520             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    521             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    522             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    523                                                      AssignLoc), ",") <<
    524             FixItHint::CreateInsertion(RHSLocEnd, ")");
    525           }
    526           else
    527             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    528         } else {
    529           NamedDecl *ObjectGetClass =
    530             S.LookupSingleName(S.TUScope,
    531                                &S.Context.Idents.get("object_getClass"),
    532                                SourceLocation(), S.LookupOrdinaryName);
    533           if (ObjectGetClass)
    534             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    535             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    536             FixItHint::CreateReplacement(
    537                                          SourceRange(OIRE->getOpLoc(),
    538                                                      OIRE->getLocEnd()), ")");
    539           else
    540             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    541         }
    542         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    543       }
    544     }
    545 }
    546 
    547 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    548   // Handle any placeholder expressions which made it here.
    549   if (E->getType()->isPlaceholderType()) {
    550     ExprResult result = CheckPlaceholderExpr(E);
    551     if (result.isInvalid()) return ExprError();
    552     E = result.get();
    553   }
    554 
    555   // C++ [conv.lval]p1:
    556   //   A glvalue of a non-function, non-array type T can be
    557   //   converted to a prvalue.
    558   if (!E->isGLValue()) return E;
    559 
    560   QualType T = E->getType();
    561   assert(!T.isNull() && "r-value conversion on typeless expression?");
    562 
    563   // We don't want to throw lvalue-to-rvalue casts on top of
    564   // expressions of certain types in C++.
    565   if (getLangOpts().CPlusPlus &&
    566       (E->getType() == Context.OverloadTy ||
    567        T->isDependentType() ||
    568        T->isRecordType()))
    569     return E;
    570 
    571   // The C standard is actually really unclear on this point, and
    572   // DR106 tells us what the result should be but not why.  It's
    573   // generally best to say that void types just doesn't undergo
    574   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    575   // 'void' type are never l-values, but qualified void can be.
    576   if (T->isVoidType())
    577     return E;
    578 
    579   // OpenCL usually rejects direct accesses to values of 'half' type.
    580   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    581       T->isHalfType()) {
    582     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    583       << 0 << T;
    584     return ExprError();
    585   }
    586 
    587   CheckForNullPointerDereference(*this, E);
    588   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    589     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    590                                      &Context.Idents.get("object_getClass"),
    591                                      SourceLocation(), LookupOrdinaryName);
    592     if (ObjectGetClass)
    593       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    594         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    595         FixItHint::CreateReplacement(
    596                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    597     else
    598       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    599   }
    600   else if (const ObjCIvarRefExpr *OIRE =
    601             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    602     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    603 
    604   // C++ [conv.lval]p1:
    605   //   [...] If T is a non-class type, the type of the prvalue is the
    606   //   cv-unqualified version of T. Otherwise, the type of the
    607   //   rvalue is T.
    608   //
    609   // C99 6.3.2.1p2:
    610   //   If the lvalue has qualified type, the value has the unqualified
    611   //   version of the type of the lvalue; otherwise, the value has the
    612   //   type of the lvalue.
    613   if (T.hasQualifiers())
    614     T = T.getUnqualifiedType();
    615 
    616   UpdateMarkingForLValueToRValue(E);
    617 
    618   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    619   // balance that.
    620   if (getLangOpts().ObjCAutoRefCount &&
    621       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    622     ExprNeedsCleanups = true;
    623 
    624   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    625                                             nullptr, VK_RValue);
    626 
    627   // C11 6.3.2.1p2:
    628   //   ... if the lvalue has atomic type, the value has the non-atomic version
    629   //   of the type of the lvalue ...
    630   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    631     T = Atomic->getValueType().getUnqualifiedType();
    632     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    633                                    nullptr, VK_RValue);
    634   }
    635 
    636   return Res;
    637 }
    638 
    639 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    640   ExprResult Res = DefaultFunctionArrayConversion(E);
    641   if (Res.isInvalid())
    642     return ExprError();
    643   Res = DefaultLvalueConversion(Res.get());
    644   if (Res.isInvalid())
    645     return ExprError();
    646   return Res;
    647 }
    648 
    649 /// CallExprUnaryConversions - a special case of an unary conversion
    650 /// performed on a function designator of a call expression.
    651 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    652   QualType Ty = E->getType();
    653   ExprResult Res = E;
    654   // Only do implicit cast for a function type, but not for a pointer
    655   // to function type.
    656   if (Ty->isFunctionType()) {
    657     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    658                             CK_FunctionToPointerDecay).get();
    659     if (Res.isInvalid())
    660       return ExprError();
    661   }
    662   Res = DefaultLvalueConversion(Res.get());
    663   if (Res.isInvalid())
    664     return ExprError();
    665   return Res.get();
    666 }
    667 
    668 /// UsualUnaryConversions - Performs various conversions that are common to most
    669 /// operators (C99 6.3). The conversions of array and function types are
    670 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    671 /// apply if the array is an argument to the sizeof or address (&) operators.
    672 /// In these instances, this routine should *not* be called.
    673 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    674   // First, convert to an r-value.
    675   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    676   if (Res.isInvalid())
    677     return ExprError();
    678   E = Res.get();
    679 
    680   QualType Ty = E->getType();
    681   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    682 
    683   // Half FP have to be promoted to float unless it is natively supported
    684   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    685     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    686 
    687   // Try to perform integral promotions if the object has a theoretically
    688   // promotable type.
    689   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    690     // C99 6.3.1.1p2:
    691     //
    692     //   The following may be used in an expression wherever an int or
    693     //   unsigned int may be used:
    694     //     - an object or expression with an integer type whose integer
    695     //       conversion rank is less than or equal to the rank of int
    696     //       and unsigned int.
    697     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    698     //
    699     //   If an int can represent all values of the original type, the
    700     //   value is converted to an int; otherwise, it is converted to an
    701     //   unsigned int. These are called the integer promotions. All
    702     //   other types are unchanged by the integer promotions.
    703 
    704     QualType PTy = Context.isPromotableBitField(E);
    705     if (!PTy.isNull()) {
    706       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    707       return E;
    708     }
    709     if (Ty->isPromotableIntegerType()) {
    710       QualType PT = Context.getPromotedIntegerType(Ty);
    711       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    712       return E;
    713     }
    714   }
    715   return E;
    716 }
    717 
    718 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    719 /// do not have a prototype. Arguments that have type float or __fp16
    720 /// are promoted to double. All other argument types are converted by
    721 /// UsualUnaryConversions().
    722 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    723   QualType Ty = E->getType();
    724   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    725 
    726   ExprResult Res = UsualUnaryConversions(E);
    727   if (Res.isInvalid())
    728     return ExprError();
    729   E = Res.get();
    730 
    731   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    732   // double.
    733   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    734   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    735               BTy->getKind() == BuiltinType::Float))
    736     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    737 
    738   // C++ performs lvalue-to-rvalue conversion as a default argument
    739   // promotion, even on class types, but note:
    740   //   C++11 [conv.lval]p2:
    741   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    742   //     operand or a subexpression thereof the value contained in the
    743   //     referenced object is not accessed. Otherwise, if the glvalue
    744   //     has a class type, the conversion copy-initializes a temporary
    745   //     of type T from the glvalue and the result of the conversion
    746   //     is a prvalue for the temporary.
    747   // FIXME: add some way to gate this entire thing for correctness in
    748   // potentially potentially evaluated contexts.
    749   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    750     ExprResult Temp = PerformCopyInitialization(
    751                        InitializedEntity::InitializeTemporary(E->getType()),
    752                                                 E->getExprLoc(), E);
    753     if (Temp.isInvalid())
    754       return ExprError();
    755     E = Temp.get();
    756   }
    757 
    758   return E;
    759 }
    760 
    761 /// Determine the degree of POD-ness for an expression.
    762 /// Incomplete types are considered POD, since this check can be performed
    763 /// when we're in an unevaluated context.
    764 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    765   if (Ty->isIncompleteType()) {
    766     // C++11 [expr.call]p7:
    767     //   After these conversions, if the argument does not have arithmetic,
    768     //   enumeration, pointer, pointer to member, or class type, the program
    769     //   is ill-formed.
    770     //
    771     // Since we've already performed array-to-pointer and function-to-pointer
    772     // decay, the only such type in C++ is cv void. This also handles
    773     // initializer lists as variadic arguments.
    774     if (Ty->isVoidType())
    775       return VAK_Invalid;
    776 
    777     if (Ty->isObjCObjectType())
    778       return VAK_Invalid;
    779     return VAK_Valid;
    780   }
    781 
    782   if (Ty.isCXX98PODType(Context))
    783     return VAK_Valid;
    784 
    785   // C++11 [expr.call]p7:
    786   //   Passing a potentially-evaluated argument of class type (Clause 9)
    787   //   having a non-trivial copy constructor, a non-trivial move constructor,
    788   //   or a non-trivial destructor, with no corresponding parameter,
    789   //   is conditionally-supported with implementation-defined semantics.
    790   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    791     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    792       if (!Record->hasNonTrivialCopyConstructor() &&
    793           !Record->hasNonTrivialMoveConstructor() &&
    794           !Record->hasNonTrivialDestructor())
    795         return VAK_ValidInCXX11;
    796 
    797   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    798     return VAK_Valid;
    799 
    800   if (Ty->isObjCObjectType())
    801     return VAK_Invalid;
    802 
    803   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    804   // permitted to reject them. We should consider doing so.
    805   return VAK_Undefined;
    806 }
    807 
    808 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    809   // Don't allow one to pass an Objective-C interface to a vararg.
    810   const QualType &Ty = E->getType();
    811   VarArgKind VAK = isValidVarArgType(Ty);
    812 
    813   // Complain about passing non-POD types through varargs.
    814   switch (VAK) {
    815   case VAK_ValidInCXX11:
    816     DiagRuntimeBehavior(
    817         E->getLocStart(), nullptr,
    818         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    819           << Ty << CT);
    820     // Fall through.
    821   case VAK_Valid:
    822     if (Ty->isRecordType()) {
    823       // This is unlikely to be what the user intended. If the class has a
    824       // 'c_str' member function, the user probably meant to call that.
    825       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    826                           PDiag(diag::warn_pass_class_arg_to_vararg)
    827                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    828     }
    829     break;
    830 
    831   case VAK_Undefined:
    832     DiagRuntimeBehavior(
    833         E->getLocStart(), nullptr,
    834         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    835           << getLangOpts().CPlusPlus11 << Ty << CT);
    836     break;
    837 
    838   case VAK_Invalid:
    839     if (Ty->isObjCObjectType())
    840       DiagRuntimeBehavior(
    841           E->getLocStart(), nullptr,
    842           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    843             << Ty << CT);
    844     else
    845       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    846         << isa<InitListExpr>(E) << Ty << CT;
    847     break;
    848   }
    849 }
    850 
    851 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    852 /// will create a trap if the resulting type is not a POD type.
    853 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    854                                                   FunctionDecl *FDecl) {
    855   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    856     // Strip the unbridged-cast placeholder expression off, if applicable.
    857     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    858         (CT == VariadicMethod ||
    859          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    860       E = stripARCUnbridgedCast(E);
    861 
    862     // Otherwise, do normal placeholder checking.
    863     } else {
    864       ExprResult ExprRes = CheckPlaceholderExpr(E);
    865       if (ExprRes.isInvalid())
    866         return ExprError();
    867       E = ExprRes.get();
    868     }
    869   }
    870 
    871   ExprResult ExprRes = DefaultArgumentPromotion(E);
    872   if (ExprRes.isInvalid())
    873     return ExprError();
    874   E = ExprRes.get();
    875 
    876   // Diagnostics regarding non-POD argument types are
    877   // emitted along with format string checking in Sema::CheckFunctionCall().
    878   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    879     // Turn this into a trap.
    880     CXXScopeSpec SS;
    881     SourceLocation TemplateKWLoc;
    882     UnqualifiedId Name;
    883     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    884                        E->getLocStart());
    885     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    886                                           Name, true, false);
    887     if (TrapFn.isInvalid())
    888       return ExprError();
    889 
    890     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    891                                     E->getLocStart(), None,
    892                                     E->getLocEnd());
    893     if (Call.isInvalid())
    894       return ExprError();
    895 
    896     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    897                                   Call.get(), E);
    898     if (Comma.isInvalid())
    899       return ExprError();
    900     return Comma.get();
    901   }
    902 
    903   if (!getLangOpts().CPlusPlus &&
    904       RequireCompleteType(E->getExprLoc(), E->getType(),
    905                           diag::err_call_incomplete_argument))
    906     return ExprError();
    907 
    908   return E;
    909 }
    910 
    911 /// \brief Converts an integer to complex float type.  Helper function of
    912 /// UsualArithmeticConversions()
    913 ///
    914 /// \return false if the integer expression is an integer type and is
    915 /// successfully converted to the complex type.
    916 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    917                                                   ExprResult &ComplexExpr,
    918                                                   QualType IntTy,
    919                                                   QualType ComplexTy,
    920                                                   bool SkipCast) {
    921   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
    922   if (SkipCast) return false;
    923   if (IntTy->isIntegerType()) {
    924     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    925     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
    926     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    927                                   CK_FloatingRealToComplex);
    928   } else {
    929     assert(IntTy->isComplexIntegerType());
    930     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    931                                   CK_IntegralComplexToFloatingComplex);
    932   }
    933   return false;
    934 }
    935 
    936 /// \brief Takes two complex float types and converts them to the same type.
    937 /// Helper function of UsualArithmeticConversions()
    938 static QualType
    939 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
    940                                             ExprResult &RHS, QualType LHSType,
    941                                             QualType RHSType,
    942                                             bool IsCompAssign) {
    943   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    944 
    945   if (order < 0) {
    946     // _Complex float -> _Complex double
    947     if (!IsCompAssign)
    948       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingComplexCast);
    949     return RHSType;
    950   }
    951   if (order > 0)
    952     // _Complex float -> _Complex double
    953     RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingComplexCast);
    954   return LHSType;
    955 }
    956 
    957 /// \brief Converts otherExpr to complex float and promotes complexExpr if
    958 /// necessary.  Helper function of UsualArithmeticConversions()
    959 static QualType handleOtherComplexFloatConversion(Sema &S,
    960                                                   ExprResult &ComplexExpr,
    961                                                   ExprResult &OtherExpr,
    962                                                   QualType ComplexTy,
    963                                                   QualType OtherTy,
    964                                                   bool ConvertComplexExpr,
    965                                                   bool ConvertOtherExpr) {
    966   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
    967 
    968   // If just the complexExpr is complex, the otherExpr needs to be converted,
    969   // and the complexExpr might need to be promoted.
    970   if (order > 0) { // complexExpr is wider
    971     // float -> _Complex double
    972     if (ConvertOtherExpr) {
    973       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
    974       OtherExpr = S.ImpCastExprToType(OtherExpr.get(), fp, CK_FloatingCast);
    975       OtherExpr = S.ImpCastExprToType(OtherExpr.get(), ComplexTy,
    976                                       CK_FloatingRealToComplex);
    977     }
    978     return ComplexTy;
    979   }
    980 
    981   // otherTy is at least as wide.  Find its corresponding complex type.
    982   QualType result = (order == 0 ? ComplexTy :
    983                                   S.Context.getComplexType(OtherTy));
    984 
    985   // double -> _Complex double
    986   if (ConvertOtherExpr)
    987     OtherExpr = S.ImpCastExprToType(OtherExpr.get(), result,
    988                                     CK_FloatingRealToComplex);
    989 
    990   // _Complex float -> _Complex double
    991   if (ConvertComplexExpr && order < 0)
    992     ComplexExpr = S.ImpCastExprToType(ComplexExpr.get(), result,
    993                                       CK_FloatingComplexCast);
    994 
    995   return result;
    996 }
    997 
    998 /// \brief Handle arithmetic conversion with complex types.  Helper function of
    999 /// UsualArithmeticConversions()
   1000 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1001                                              ExprResult &RHS, QualType LHSType,
   1002                                              QualType RHSType,
   1003                                              bool IsCompAssign) {
   1004   // if we have an integer operand, the result is the complex type.
   1005   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1006                                              /*skipCast*/false))
   1007     return LHSType;
   1008   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1009                                              /*skipCast*/IsCompAssign))
   1010     return RHSType;
   1011 
   1012   // This handles complex/complex, complex/float, or float/complex.
   1013   // When both operands are complex, the shorter operand is converted to the
   1014   // type of the longer, and that is the type of the result. This corresponds
   1015   // to what is done when combining two real floating-point operands.
   1016   // The fun begins when size promotion occur across type domains.
   1017   // From H&S 6.3.4: When one operand is complex and the other is a real
   1018   // floating-point type, the less precise type is converted, within it's
   1019   // real or complex domain, to the precision of the other type. For example,
   1020   // when combining a "long double" with a "double _Complex", the
   1021   // "double _Complex" is promoted to "long double _Complex".
   1022 
   1023   bool LHSComplexFloat = LHSType->isComplexType();
   1024   bool RHSComplexFloat = RHSType->isComplexType();
   1025 
   1026   // If both are complex, just cast to the more precise type.
   1027   if (LHSComplexFloat && RHSComplexFloat)
   1028     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
   1029                                                        LHSType, RHSType,
   1030                                                        IsCompAssign);
   1031 
   1032   // If only one operand is complex, promote it if necessary and convert the
   1033   // other operand to complex.
   1034   if (LHSComplexFloat)
   1035     return handleOtherComplexFloatConversion(
   1036         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
   1037         /*convertOtherExpr*/ true);
   1038 
   1039   assert(RHSComplexFloat);
   1040   return handleOtherComplexFloatConversion(
   1041       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
   1042       /*convertOtherExpr*/ !IsCompAssign);
   1043 }
   1044 
   1045 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1046 /// of UsualArithmeticConversions()
   1047 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1048                                            ExprResult &IntExpr,
   1049                                            QualType FloatTy, QualType IntTy,
   1050                                            bool ConvertFloat, bool ConvertInt) {
   1051   if (IntTy->isIntegerType()) {
   1052     if (ConvertInt)
   1053       // Convert intExpr to the lhs floating point type.
   1054       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1055                                     CK_IntegralToFloating);
   1056     return FloatTy;
   1057   }
   1058 
   1059   // Convert both sides to the appropriate complex float.
   1060   assert(IntTy->isComplexIntegerType());
   1061   QualType result = S.Context.getComplexType(FloatTy);
   1062 
   1063   // _Complex int -> _Complex float
   1064   if (ConvertInt)
   1065     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1066                                   CK_IntegralComplexToFloatingComplex);
   1067 
   1068   // float -> _Complex float
   1069   if (ConvertFloat)
   1070     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1071                                     CK_FloatingRealToComplex);
   1072 
   1073   return result;
   1074 }
   1075 
   1076 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1077 /// function of UsualArithmeticConversions()
   1078 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1079                                       ExprResult &RHS, QualType LHSType,
   1080                                       QualType RHSType, bool IsCompAssign) {
   1081   bool LHSFloat = LHSType->isRealFloatingType();
   1082   bool RHSFloat = RHSType->isRealFloatingType();
   1083 
   1084   // If we have two real floating types, convert the smaller operand
   1085   // to the bigger result.
   1086   if (LHSFloat && RHSFloat) {
   1087     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1088     if (order > 0) {
   1089       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1090       return LHSType;
   1091     }
   1092 
   1093     assert(order < 0 && "illegal float comparison");
   1094     if (!IsCompAssign)
   1095       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1096     return RHSType;
   1097   }
   1098 
   1099   if (LHSFloat)
   1100     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1101                                       /*convertFloat=*/!IsCompAssign,
   1102                                       /*convertInt=*/ true);
   1103   assert(RHSFloat);
   1104   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1105                                     /*convertInt=*/ true,
   1106                                     /*convertFloat=*/!IsCompAssign);
   1107 }
   1108 
   1109 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1110 
   1111 namespace {
   1112 /// These helper callbacks are placed in an anonymous namespace to
   1113 /// permit their use as function template parameters.
   1114 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1115   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1116 }
   1117 
   1118 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1119   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1120                              CK_IntegralComplexCast);
   1121 }
   1122 }
   1123 
   1124 /// \brief Handle integer arithmetic conversions.  Helper function of
   1125 /// UsualArithmeticConversions()
   1126 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1127 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1128                                         ExprResult &RHS, QualType LHSType,
   1129                                         QualType RHSType, bool IsCompAssign) {
   1130   // The rules for this case are in C99 6.3.1.8
   1131   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1132   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1133   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1134   if (LHSSigned == RHSSigned) {
   1135     // Same signedness; use the higher-ranked type
   1136     if (order >= 0) {
   1137       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1138       return LHSType;
   1139     } else if (!IsCompAssign)
   1140       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1141     return RHSType;
   1142   } else if (order != (LHSSigned ? 1 : -1)) {
   1143     // The unsigned type has greater than or equal rank to the
   1144     // signed type, so use the unsigned type
   1145     if (RHSSigned) {
   1146       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1147       return LHSType;
   1148     } else if (!IsCompAssign)
   1149       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1150     return RHSType;
   1151   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1152     // The two types are different widths; if we are here, that
   1153     // means the signed type is larger than the unsigned type, so
   1154     // use the signed type.
   1155     if (LHSSigned) {
   1156       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1157       return LHSType;
   1158     } else if (!IsCompAssign)
   1159       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1160     return RHSType;
   1161   } else {
   1162     // The signed type is higher-ranked than the unsigned type,
   1163     // but isn't actually any bigger (like unsigned int and long
   1164     // on most 32-bit systems).  Use the unsigned type corresponding
   1165     // to the signed type.
   1166     QualType result =
   1167       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1168     RHS = (*doRHSCast)(S, RHS.get(), result);
   1169     if (!IsCompAssign)
   1170       LHS = (*doLHSCast)(S, LHS.get(), result);
   1171     return result;
   1172   }
   1173 }
   1174 
   1175 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1176 /// of UsualArithmeticConversions()
   1177 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1178                                            ExprResult &RHS, QualType LHSType,
   1179                                            QualType RHSType,
   1180                                            bool IsCompAssign) {
   1181   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1182   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1183 
   1184   if (LHSComplexInt && RHSComplexInt) {
   1185     QualType LHSEltType = LHSComplexInt->getElementType();
   1186     QualType RHSEltType = RHSComplexInt->getElementType();
   1187     QualType ScalarType =
   1188       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1189         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1190 
   1191     return S.Context.getComplexType(ScalarType);
   1192   }
   1193 
   1194   if (LHSComplexInt) {
   1195     QualType LHSEltType = LHSComplexInt->getElementType();
   1196     QualType ScalarType =
   1197       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1198         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1199     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1200     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1201                               CK_IntegralRealToComplex);
   1202 
   1203     return ComplexType;
   1204   }
   1205 
   1206   assert(RHSComplexInt);
   1207 
   1208   QualType RHSEltType = RHSComplexInt->getElementType();
   1209   QualType ScalarType =
   1210     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1211       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1212   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1213 
   1214   if (!IsCompAssign)
   1215     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1216                               CK_IntegralRealToComplex);
   1217   return ComplexType;
   1218 }
   1219 
   1220 /// UsualArithmeticConversions - Performs various conversions that are common to
   1221 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1222 /// routine returns the first non-arithmetic type found. The client is
   1223 /// responsible for emitting appropriate error diagnostics.
   1224 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1225                                           bool IsCompAssign) {
   1226   if (!IsCompAssign) {
   1227     LHS = UsualUnaryConversions(LHS.get());
   1228     if (LHS.isInvalid())
   1229       return QualType();
   1230   }
   1231 
   1232   RHS = UsualUnaryConversions(RHS.get());
   1233   if (RHS.isInvalid())
   1234     return QualType();
   1235 
   1236   // For conversion purposes, we ignore any qualifiers.
   1237   // For example, "const float" and "float" are equivalent.
   1238   QualType LHSType =
   1239     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1240   QualType RHSType =
   1241     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1242 
   1243   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1244   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1245     LHSType = AtomicLHS->getValueType();
   1246 
   1247   // If both types are identical, no conversion is needed.
   1248   if (LHSType == RHSType)
   1249     return LHSType;
   1250 
   1251   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1252   // The caller can deal with this (e.g. pointer + int).
   1253   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1254     return QualType();
   1255 
   1256   // Apply unary and bitfield promotions to the LHS's type.
   1257   QualType LHSUnpromotedType = LHSType;
   1258   if (LHSType->isPromotableIntegerType())
   1259     LHSType = Context.getPromotedIntegerType(LHSType);
   1260   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1261   if (!LHSBitfieldPromoteTy.isNull())
   1262     LHSType = LHSBitfieldPromoteTy;
   1263   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1264     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1265 
   1266   // If both types are identical, no conversion is needed.
   1267   if (LHSType == RHSType)
   1268     return LHSType;
   1269 
   1270   // At this point, we have two different arithmetic types.
   1271 
   1272   // Handle complex types first (C99 6.3.1.8p1).
   1273   if (LHSType->isComplexType() || RHSType->isComplexType())
   1274     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1275                                         IsCompAssign);
   1276 
   1277   // Now handle "real" floating types (i.e. float, double, long double).
   1278   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1279     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1280                                  IsCompAssign);
   1281 
   1282   // Handle GCC complex int extension.
   1283   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1284     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1285                                       IsCompAssign);
   1286 
   1287   // Finally, we have two differing integer types.
   1288   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1289            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1290 }
   1291 
   1292 
   1293 //===----------------------------------------------------------------------===//
   1294 //  Semantic Analysis for various Expression Types
   1295 //===----------------------------------------------------------------------===//
   1296 
   1297 
   1298 ExprResult
   1299 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1300                                 SourceLocation DefaultLoc,
   1301                                 SourceLocation RParenLoc,
   1302                                 Expr *ControllingExpr,
   1303                                 ArrayRef<ParsedType> ArgTypes,
   1304                                 ArrayRef<Expr *> ArgExprs) {
   1305   unsigned NumAssocs = ArgTypes.size();
   1306   assert(NumAssocs == ArgExprs.size());
   1307 
   1308   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1309   for (unsigned i = 0; i < NumAssocs; ++i) {
   1310     if (ArgTypes[i])
   1311       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1312     else
   1313       Types[i] = nullptr;
   1314   }
   1315 
   1316   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1317                                              ControllingExpr,
   1318                                              llvm::makeArrayRef(Types, NumAssocs),
   1319                                              ArgExprs);
   1320   delete [] Types;
   1321   return ER;
   1322 }
   1323 
   1324 ExprResult
   1325 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1326                                  SourceLocation DefaultLoc,
   1327                                  SourceLocation RParenLoc,
   1328                                  Expr *ControllingExpr,
   1329                                  ArrayRef<TypeSourceInfo *> Types,
   1330                                  ArrayRef<Expr *> Exprs) {
   1331   unsigned NumAssocs = Types.size();
   1332   assert(NumAssocs == Exprs.size());
   1333   if (ControllingExpr->getType()->isPlaceholderType()) {
   1334     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
   1335     if (result.isInvalid()) return ExprError();
   1336     ControllingExpr = result.get();
   1337   }
   1338 
   1339   bool TypeErrorFound = false,
   1340        IsResultDependent = ControllingExpr->isTypeDependent(),
   1341        ContainsUnexpandedParameterPack
   1342          = ControllingExpr->containsUnexpandedParameterPack();
   1343 
   1344   for (unsigned i = 0; i < NumAssocs; ++i) {
   1345     if (Exprs[i]->containsUnexpandedParameterPack())
   1346       ContainsUnexpandedParameterPack = true;
   1347 
   1348     if (Types[i]) {
   1349       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1350         ContainsUnexpandedParameterPack = true;
   1351 
   1352       if (Types[i]->getType()->isDependentType()) {
   1353         IsResultDependent = true;
   1354       } else {
   1355         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1356         // complete object type other than a variably modified type."
   1357         unsigned D = 0;
   1358         if (Types[i]->getType()->isIncompleteType())
   1359           D = diag::err_assoc_type_incomplete;
   1360         else if (!Types[i]->getType()->isObjectType())
   1361           D = diag::err_assoc_type_nonobject;
   1362         else if (Types[i]->getType()->isVariablyModifiedType())
   1363           D = diag::err_assoc_type_variably_modified;
   1364 
   1365         if (D != 0) {
   1366           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1367             << Types[i]->getTypeLoc().getSourceRange()
   1368             << Types[i]->getType();
   1369           TypeErrorFound = true;
   1370         }
   1371 
   1372         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1373         // selection shall specify compatible types."
   1374         for (unsigned j = i+1; j < NumAssocs; ++j)
   1375           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1376               Context.typesAreCompatible(Types[i]->getType(),
   1377                                          Types[j]->getType())) {
   1378             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1379                  diag::err_assoc_compatible_types)
   1380               << Types[j]->getTypeLoc().getSourceRange()
   1381               << Types[j]->getType()
   1382               << Types[i]->getType();
   1383             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1384                  diag::note_compat_assoc)
   1385               << Types[i]->getTypeLoc().getSourceRange()
   1386               << Types[i]->getType();
   1387             TypeErrorFound = true;
   1388           }
   1389       }
   1390     }
   1391   }
   1392   if (TypeErrorFound)
   1393     return ExprError();
   1394 
   1395   // If we determined that the generic selection is result-dependent, don't
   1396   // try to compute the result expression.
   1397   if (IsResultDependent)
   1398     return new (Context) GenericSelectionExpr(
   1399         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1400         ContainsUnexpandedParameterPack);
   1401 
   1402   SmallVector<unsigned, 1> CompatIndices;
   1403   unsigned DefaultIndex = -1U;
   1404   for (unsigned i = 0; i < NumAssocs; ++i) {
   1405     if (!Types[i])
   1406       DefaultIndex = i;
   1407     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1408                                         Types[i]->getType()))
   1409       CompatIndices.push_back(i);
   1410   }
   1411 
   1412   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1413   // type compatible with at most one of the types named in its generic
   1414   // association list."
   1415   if (CompatIndices.size() > 1) {
   1416     // We strip parens here because the controlling expression is typically
   1417     // parenthesized in macro definitions.
   1418     ControllingExpr = ControllingExpr->IgnoreParens();
   1419     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1420       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1421       << (unsigned) CompatIndices.size();
   1422     for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
   1423          E = CompatIndices.end(); I != E; ++I) {
   1424       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
   1425            diag::note_compat_assoc)
   1426         << Types[*I]->getTypeLoc().getSourceRange()
   1427         << Types[*I]->getType();
   1428     }
   1429     return ExprError();
   1430   }
   1431 
   1432   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1433   // its controlling expression shall have type compatible with exactly one of
   1434   // the types named in its generic association list."
   1435   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1436     // We strip parens here because the controlling expression is typically
   1437     // parenthesized in macro definitions.
   1438     ControllingExpr = ControllingExpr->IgnoreParens();
   1439     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1440       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1441     return ExprError();
   1442   }
   1443 
   1444   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1445   // type name that is compatible with the type of the controlling expression,
   1446   // then the result expression of the generic selection is the expression
   1447   // in that generic association. Otherwise, the result expression of the
   1448   // generic selection is the expression in the default generic association."
   1449   unsigned ResultIndex =
   1450     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1451 
   1452   return new (Context) GenericSelectionExpr(
   1453       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1454       ContainsUnexpandedParameterPack, ResultIndex);
   1455 }
   1456 
   1457 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1458 /// location of the token and the offset of the ud-suffix within it.
   1459 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1460                                      unsigned Offset) {
   1461   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1462                                         S.getLangOpts());
   1463 }
   1464 
   1465 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1466 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1467 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1468                                                  IdentifierInfo *UDSuffix,
   1469                                                  SourceLocation UDSuffixLoc,
   1470                                                  ArrayRef<Expr*> Args,
   1471                                                  SourceLocation LitEndLoc) {
   1472   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1473 
   1474   QualType ArgTy[2];
   1475   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1476     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1477     if (ArgTy[ArgIdx]->isArrayType())
   1478       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1479   }
   1480 
   1481   DeclarationName OpName =
   1482     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1483   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1484   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1485 
   1486   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1487   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1488                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1489                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1490     return ExprError();
   1491 
   1492   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1493 }
   1494 
   1495 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1496 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1497 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1498 /// multiple tokens.  However, the common case is that StringToks points to one
   1499 /// string.
   1500 ///
   1501 ExprResult
   1502 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1503   assert(!StringToks.empty() && "Must have at least one string!");
   1504 
   1505   StringLiteralParser Literal(StringToks, PP);
   1506   if (Literal.hadError)
   1507     return ExprError();
   1508 
   1509   SmallVector<SourceLocation, 4> StringTokLocs;
   1510   for (unsigned i = 0; i != StringToks.size(); ++i)
   1511     StringTokLocs.push_back(StringToks[i].getLocation());
   1512 
   1513   QualType CharTy = Context.CharTy;
   1514   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1515   if (Literal.isWide()) {
   1516     CharTy = Context.getWideCharType();
   1517     Kind = StringLiteral::Wide;
   1518   } else if (Literal.isUTF8()) {
   1519     Kind = StringLiteral::UTF8;
   1520   } else if (Literal.isUTF16()) {
   1521     CharTy = Context.Char16Ty;
   1522     Kind = StringLiteral::UTF16;
   1523   } else if (Literal.isUTF32()) {
   1524     CharTy = Context.Char32Ty;
   1525     Kind = StringLiteral::UTF32;
   1526   } else if (Literal.isPascal()) {
   1527     CharTy = Context.UnsignedCharTy;
   1528   }
   1529 
   1530   QualType CharTyConst = CharTy;
   1531   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1532   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1533     CharTyConst.addConst();
   1534 
   1535   // Get an array type for the string, according to C99 6.4.5.  This includes
   1536   // the nul terminator character as well as the string length for pascal
   1537   // strings.
   1538   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1539                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1540                                  ArrayType::Normal, 0);
   1541 
   1542   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1543   if (getLangOpts().OpenCL) {
   1544     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1545   }
   1546 
   1547   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1548   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1549                                              Kind, Literal.Pascal, StrTy,
   1550                                              &StringTokLocs[0],
   1551                                              StringTokLocs.size());
   1552   if (Literal.getUDSuffix().empty())
   1553     return Lit;
   1554 
   1555   // We're building a user-defined literal.
   1556   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1557   SourceLocation UDSuffixLoc =
   1558     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1559                    Literal.getUDSuffixOffset());
   1560 
   1561   // Make sure we're allowed user-defined literals here.
   1562   if (!UDLScope)
   1563     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1564 
   1565   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1566   //   operator "" X (str, len)
   1567   QualType SizeType = Context.getSizeType();
   1568 
   1569   DeclarationName OpName =
   1570     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1571   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1572   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1573 
   1574   QualType ArgTy[] = {
   1575     Context.getArrayDecayedType(StrTy), SizeType
   1576   };
   1577 
   1578   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1579   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1580                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1581                                 /*AllowStringTemplate*/true)) {
   1582 
   1583   case LOLR_Cooked: {
   1584     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1585     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1586                                                     StringTokLocs[0]);
   1587     Expr *Args[] = { Lit, LenArg };
   1588 
   1589     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1590   }
   1591 
   1592   case LOLR_StringTemplate: {
   1593     TemplateArgumentListInfo ExplicitArgs;
   1594 
   1595     unsigned CharBits = Context.getIntWidth(CharTy);
   1596     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1597     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1598 
   1599     TemplateArgument TypeArg(CharTy);
   1600     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1601     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1602 
   1603     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1604       Value = Lit->getCodeUnit(I);
   1605       TemplateArgument Arg(Context, Value, CharTy);
   1606       TemplateArgumentLocInfo ArgInfo;
   1607       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1608     }
   1609     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1610                                     &ExplicitArgs);
   1611   }
   1612   case LOLR_Raw:
   1613   case LOLR_Template:
   1614     llvm_unreachable("unexpected literal operator lookup result");
   1615   case LOLR_Error:
   1616     return ExprError();
   1617   }
   1618   llvm_unreachable("unexpected literal operator lookup result");
   1619 }
   1620 
   1621 ExprResult
   1622 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1623                        SourceLocation Loc,
   1624                        const CXXScopeSpec *SS) {
   1625   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1626   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1627 }
   1628 
   1629 /// BuildDeclRefExpr - Build an expression that references a
   1630 /// declaration that does not require a closure capture.
   1631 ExprResult
   1632 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1633                        const DeclarationNameInfo &NameInfo,
   1634                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1635                        const TemplateArgumentListInfo *TemplateArgs) {
   1636   if (getLangOpts().CUDA)
   1637     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1638       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1639         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
   1640                            CalleeTarget = IdentifyCUDATarget(Callee);
   1641         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
   1642           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1643             << CalleeTarget << D->getIdentifier() << CallerTarget;
   1644           Diag(D->getLocation(), diag::note_previous_decl)
   1645             << D->getIdentifier();
   1646           return ExprError();
   1647         }
   1648       }
   1649 
   1650   bool refersToEnclosingScope =
   1651     (CurContext != D->getDeclContext() &&
   1652      D->getDeclContext()->isFunctionOrMethod()) ||
   1653     (isa<VarDecl>(D) &&
   1654      cast<VarDecl>(D)->isInitCapture());
   1655 
   1656   DeclRefExpr *E;
   1657   if (isa<VarTemplateSpecializationDecl>(D)) {
   1658     VarTemplateSpecializationDecl *VarSpec =
   1659         cast<VarTemplateSpecializationDecl>(D);
   1660 
   1661     E = DeclRefExpr::Create(
   1662         Context,
   1663         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1664         VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
   1665         NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
   1666   } else {
   1667     assert(!TemplateArgs && "No template arguments for non-variable"
   1668                             " template specialization references");
   1669     E = DeclRefExpr::Create(
   1670         Context,
   1671         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1672         SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
   1673   }
   1674 
   1675   MarkDeclRefReferenced(E);
   1676 
   1677   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
   1678       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1679       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1680       recordUseOfEvaluatedWeak(E);
   1681 
   1682   // Just in case we're building an illegal pointer-to-member.
   1683   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1684   if (FD && FD->isBitField())
   1685     E->setObjectKind(OK_BitField);
   1686 
   1687   return E;
   1688 }
   1689 
   1690 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1691 /// possibly a list of template arguments.
   1692 ///
   1693 /// If this produces template arguments, it is permitted to call
   1694 /// DecomposeTemplateName.
   1695 ///
   1696 /// This actually loses a lot of source location information for
   1697 /// non-standard name kinds; we should consider preserving that in
   1698 /// some way.
   1699 void
   1700 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1701                              TemplateArgumentListInfo &Buffer,
   1702                              DeclarationNameInfo &NameInfo,
   1703                              const TemplateArgumentListInfo *&TemplateArgs) {
   1704   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1705     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1706     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1707 
   1708     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1709                                        Id.TemplateId->NumArgs);
   1710     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1711 
   1712     TemplateName TName = Id.TemplateId->Template.get();
   1713     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1714     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1715     TemplateArgs = &Buffer;
   1716   } else {
   1717     NameInfo = GetNameFromUnqualifiedId(Id);
   1718     TemplateArgs = nullptr;
   1719   }
   1720 }
   1721 
   1722 /// Diagnose an empty lookup.
   1723 ///
   1724 /// \return false if new lookup candidates were found
   1725 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1726                                CorrectionCandidateCallback &CCC,
   1727                                TemplateArgumentListInfo *ExplicitTemplateArgs,
   1728                                ArrayRef<Expr *> Args) {
   1729   DeclarationName Name = R.getLookupName();
   1730 
   1731   unsigned diagnostic = diag::err_undeclared_var_use;
   1732   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1733   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1734       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1735       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1736     diagnostic = diag::err_undeclared_use;
   1737     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1738   }
   1739 
   1740   // If the original lookup was an unqualified lookup, fake an
   1741   // unqualified lookup.  This is useful when (for example) the
   1742   // original lookup would not have found something because it was a
   1743   // dependent name.
   1744   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
   1745     ? CurContext : nullptr;
   1746   while (DC) {
   1747     if (isa<CXXRecordDecl>(DC)) {
   1748       LookupQualifiedName(R, DC);
   1749 
   1750       if (!R.empty()) {
   1751         // Don't give errors about ambiguities in this lookup.
   1752         R.suppressDiagnostics();
   1753 
   1754         // During a default argument instantiation the CurContext points
   1755         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1756         // function parameter list, hence add an explicit check.
   1757         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1758                               ActiveTemplateInstantiations.back().Kind ==
   1759             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1760         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1761         bool isInstance = CurMethod &&
   1762                           CurMethod->isInstance() &&
   1763                           DC == CurMethod->getParent() && !isDefaultArgument;
   1764 
   1765 
   1766         // Give a code modification hint to insert 'this->'.
   1767         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1768         // Actually quite difficult!
   1769         if (getLangOpts().MSVCCompat)
   1770           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1771         if (isInstance) {
   1772           Diag(R.getNameLoc(), diagnostic) << Name
   1773             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1774           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1775               CallsUndergoingInstantiation.back()->getCallee());
   1776 
   1777           CXXMethodDecl *DepMethod;
   1778           if (CurMethod->isDependentContext())
   1779             DepMethod = CurMethod;
   1780           else if (CurMethod->getTemplatedKind() ==
   1781               FunctionDecl::TK_FunctionTemplateSpecialization)
   1782             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
   1783                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
   1784           else
   1785             DepMethod = cast<CXXMethodDecl>(
   1786                 CurMethod->getInstantiatedFromMemberFunction());
   1787           assert(DepMethod && "No template pattern found");
   1788 
   1789           QualType DepThisType = DepMethod->getThisType(Context);
   1790           CheckCXXThisCapture(R.getNameLoc());
   1791           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1792                                      R.getNameLoc(), DepThisType, false);
   1793           TemplateArgumentListInfo TList;
   1794           if (ULE->hasExplicitTemplateArgs())
   1795             ULE->copyTemplateArgumentsInto(TList);
   1796 
   1797           CXXScopeSpec SS;
   1798           SS.Adopt(ULE->getQualifierLoc());
   1799           CXXDependentScopeMemberExpr *DepExpr =
   1800               CXXDependentScopeMemberExpr::Create(
   1801                   Context, DepThis, DepThisType, true, SourceLocation(),
   1802                   SS.getWithLocInContext(Context),
   1803                   ULE->getTemplateKeywordLoc(), nullptr,
   1804                   R.getLookupNameInfo(),
   1805                   ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
   1806           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1807         } else {
   1808           Diag(R.getNameLoc(), diagnostic) << Name;
   1809         }
   1810 
   1811         // Do we really want to note all of these?
   1812         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1813           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1814 
   1815         // Return true if we are inside a default argument instantiation
   1816         // and the found name refers to an instance member function, otherwise
   1817         // the function calling DiagnoseEmptyLookup will try to create an
   1818         // implicit member call and this is wrong for default argument.
   1819         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1820           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1821           return true;
   1822         }
   1823 
   1824         // Tell the callee to try to recover.
   1825         return false;
   1826       }
   1827 
   1828       R.clear();
   1829     }
   1830 
   1831     // In Microsoft mode, if we are performing lookup from within a friend
   1832     // function definition declared at class scope then we must set
   1833     // DC to the lexical parent to be able to search into the parent
   1834     // class.
   1835     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1836         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1837         DC->getLexicalParent()->isRecord())
   1838       DC = DC->getLexicalParent();
   1839     else
   1840       DC = DC->getParent();
   1841   }
   1842 
   1843   // We didn't find anything, so try to correct for a typo.
   1844   TypoCorrection Corrected;
   1845   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
   1846                                     S, &SS, CCC, CTK_ErrorRecovery))) {
   1847     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1848     bool DroppedSpecifier =
   1849         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1850     R.setLookupName(Corrected.getCorrection());
   1851 
   1852     bool AcceptableWithRecovery = false;
   1853     bool AcceptableWithoutRecovery = false;
   1854     NamedDecl *ND = Corrected.getCorrectionDecl();
   1855     if (ND) {
   1856       if (Corrected.isOverloaded()) {
   1857         OverloadCandidateSet OCS(R.getNameLoc(),
   1858                                  OverloadCandidateSet::CSK_Normal);
   1859         OverloadCandidateSet::iterator Best;
   1860         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   1861                                         CDEnd = Corrected.end();
   1862              CD != CDEnd; ++CD) {
   1863           if (FunctionTemplateDecl *FTD =
   1864                    dyn_cast<FunctionTemplateDecl>(*CD))
   1865             AddTemplateOverloadCandidate(
   1866                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1867                 Args, OCS);
   1868           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   1869             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1870               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1871                                    Args, OCS);
   1872         }
   1873         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1874         case OR_Success:
   1875           ND = Best->Function;
   1876           Corrected.setCorrectionDecl(ND);
   1877           break;
   1878         default:
   1879           // FIXME: Arbitrarily pick the first declaration for the note.
   1880           Corrected.setCorrectionDecl(ND);
   1881           break;
   1882         }
   1883       }
   1884       R.addDecl(ND);
   1885       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1886         CXXRecordDecl *Record = nullptr;
   1887         if (Corrected.getCorrectionSpecifier()) {
   1888           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   1889           Record = Ty->getAsCXXRecordDecl();
   1890         }
   1891         if (!Record)
   1892           Record = cast<CXXRecordDecl>(
   1893               ND->getDeclContext()->getRedeclContext());
   1894         R.setNamingClass(Record);
   1895       }
   1896 
   1897       AcceptableWithRecovery =
   1898           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
   1899       // FIXME: If we ended up with a typo for a type name or
   1900       // Objective-C class name, we're in trouble because the parser
   1901       // is in the wrong place to recover. Suggest the typo
   1902       // correction, but don't make it a fix-it since we're not going
   1903       // to recover well anyway.
   1904       AcceptableWithoutRecovery =
   1905           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
   1906     } else {
   1907       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1908       // because we aren't able to recover.
   1909       AcceptableWithoutRecovery = true;
   1910     }
   1911 
   1912     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   1913       unsigned NoteID = (Corrected.getCorrectionDecl() &&
   1914                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
   1915                             ? diag::note_implicit_param_decl
   1916                             : diag::note_previous_decl;
   1917       if (SS.isEmpty())
   1918         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   1919                      PDiag(NoteID), AcceptableWithRecovery);
   1920       else
   1921         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   1922                                   << Name << computeDeclContext(SS, false)
   1923                                   << DroppedSpecifier << SS.getRange(),
   1924                      PDiag(NoteID), AcceptableWithRecovery);
   1925 
   1926       // Tell the callee whether to try to recover.
   1927       return !AcceptableWithRecovery;
   1928     }
   1929   }
   1930   R.clear();
   1931 
   1932   // Emit a special diagnostic for failed member lookups.
   1933   // FIXME: computing the declaration context might fail here (?)
   1934   if (!SS.isEmpty()) {
   1935     Diag(R.getNameLoc(), diag::err_no_member)
   1936       << Name << computeDeclContext(SS, false)
   1937       << SS.getRange();
   1938     return true;
   1939   }
   1940 
   1941   // Give up, we can't recover.
   1942   Diag(R.getNameLoc(), diagnostic) << Name;
   1943   return true;
   1944 }
   1945 
   1946 /// In Microsoft mode, if we are inside a template class whose parent class has
   1947 /// dependent base classes, and we can't resolve an unqualified identifier, then
   1948 /// assume the identifier is a member of a dependent base class.  We can only
   1949 /// recover successfully in static methods, instance methods, and other contexts
   1950 /// where 'this' is available.  This doesn't precisely match MSVC's
   1951 /// instantiation model, but it's close enough.
   1952 static Expr *
   1953 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   1954                                DeclarationNameInfo &NameInfo,
   1955                                SourceLocation TemplateKWLoc,
   1956                                const TemplateArgumentListInfo *TemplateArgs) {
   1957   // Only try to recover from lookup into dependent bases in static methods or
   1958   // contexts where 'this' is available.
   1959   QualType ThisType = S.getCurrentThisType();
   1960   const CXXRecordDecl *RD = nullptr;
   1961   if (!ThisType.isNull())
   1962     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   1963   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   1964     RD = MD->getParent();
   1965   if (!RD || !RD->hasAnyDependentBases())
   1966     return nullptr;
   1967 
   1968   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   1969   // is available, suggest inserting 'this->' as a fixit.
   1970   SourceLocation Loc = NameInfo.getLoc();
   1971   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   1972   DB << NameInfo.getName() << RD;
   1973 
   1974   if (!ThisType.isNull()) {
   1975     DB << FixItHint::CreateInsertion(Loc, "this->");
   1976     return CXXDependentScopeMemberExpr::Create(
   1977         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   1978         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   1979         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   1980   }
   1981 
   1982   // Synthesize a fake NNS that points to the derived class.  This will
   1983   // perform name lookup during template instantiation.
   1984   CXXScopeSpec SS;
   1985   auto *NNS =
   1986       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   1987   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   1988   return DependentScopeDeclRefExpr::Create(
   1989       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   1990       TemplateArgs);
   1991 }
   1992 
   1993 ExprResult Sema::ActOnIdExpression(Scope *S,
   1994                                    CXXScopeSpec &SS,
   1995                                    SourceLocation TemplateKWLoc,
   1996                                    UnqualifiedId &Id,
   1997                                    bool HasTrailingLParen,
   1998                                    bool IsAddressOfOperand,
   1999                                    CorrectionCandidateCallback *CCC,
   2000                                    bool IsInlineAsmIdentifier) {
   2001   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2002          "cannot be direct & operand and have a trailing lparen");
   2003   if (SS.isInvalid())
   2004     return ExprError();
   2005 
   2006   TemplateArgumentListInfo TemplateArgsBuffer;
   2007 
   2008   // Decompose the UnqualifiedId into the following data.
   2009   DeclarationNameInfo NameInfo;
   2010   const TemplateArgumentListInfo *TemplateArgs;
   2011   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2012 
   2013   DeclarationName Name = NameInfo.getName();
   2014   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2015   SourceLocation NameLoc = NameInfo.getLoc();
   2016 
   2017   // C++ [temp.dep.expr]p3:
   2018   //   An id-expression is type-dependent if it contains:
   2019   //     -- an identifier that was declared with a dependent type,
   2020   //        (note: handled after lookup)
   2021   //     -- a template-id that is dependent,
   2022   //        (note: handled in BuildTemplateIdExpr)
   2023   //     -- a conversion-function-id that specifies a dependent type,
   2024   //     -- a nested-name-specifier that contains a class-name that
   2025   //        names a dependent type.
   2026   // Determine whether this is a member of an unknown specialization;
   2027   // we need to handle these differently.
   2028   bool DependentID = false;
   2029   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2030       Name.getCXXNameType()->isDependentType()) {
   2031     DependentID = true;
   2032   } else if (SS.isSet()) {
   2033     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2034       if (RequireCompleteDeclContext(SS, DC))
   2035         return ExprError();
   2036     } else {
   2037       DependentID = true;
   2038     }
   2039   }
   2040 
   2041   if (DependentID)
   2042     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2043                                       IsAddressOfOperand, TemplateArgs);
   2044 
   2045   // Perform the required lookup.
   2046   LookupResult R(*this, NameInfo,
   2047                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2048                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2049   if (TemplateArgs) {
   2050     // Lookup the template name again to correctly establish the context in
   2051     // which it was found. This is really unfortunate as we already did the
   2052     // lookup to determine that it was a template name in the first place. If
   2053     // this becomes a performance hit, we can work harder to preserve those
   2054     // results until we get here but it's likely not worth it.
   2055     bool MemberOfUnknownSpecialization;
   2056     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2057                        MemberOfUnknownSpecialization);
   2058 
   2059     if (MemberOfUnknownSpecialization ||
   2060         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2061       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2062                                         IsAddressOfOperand, TemplateArgs);
   2063   } else {
   2064     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2065     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2066 
   2067     // If the result might be in a dependent base class, this is a dependent
   2068     // id-expression.
   2069     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2070       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2071                                         IsAddressOfOperand, TemplateArgs);
   2072 
   2073     // If this reference is in an Objective-C method, then we need to do
   2074     // some special Objective-C lookup, too.
   2075     if (IvarLookupFollowUp) {
   2076       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2077       if (E.isInvalid())
   2078         return ExprError();
   2079 
   2080       if (Expr *Ex = E.getAs<Expr>())
   2081         return Ex;
   2082     }
   2083   }
   2084 
   2085   if (R.isAmbiguous())
   2086     return ExprError();
   2087 
   2088   // This could be an implicitly declared function reference (legal in C90,
   2089   // extension in C99, forbidden in C++).
   2090   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2091     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2092     if (D) R.addDecl(D);
   2093   }
   2094 
   2095   // Determine whether this name might be a candidate for
   2096   // argument-dependent lookup.
   2097   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2098 
   2099   if (R.empty() && !ADL) {
   2100     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2101       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2102                                                    TemplateKWLoc, TemplateArgs))
   2103         return E;
   2104     }
   2105 
   2106     // Don't diagnose an empty lookup for inline assembly.
   2107     if (IsInlineAsmIdentifier)
   2108       return ExprError();
   2109 
   2110     // If this name wasn't predeclared and if this is not a function
   2111     // call, diagnose the problem.
   2112     CorrectionCandidateCallback DefaultValidator;
   2113     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
   2114     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2115            "Typo correction callback misconfigured");
   2116     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
   2117       return ExprError();
   2118 
   2119     assert(!R.empty() &&
   2120            "DiagnoseEmptyLookup returned false but added no results");
   2121 
   2122     // If we found an Objective-C instance variable, let
   2123     // LookupInObjCMethod build the appropriate expression to
   2124     // reference the ivar.
   2125     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2126       R.clear();
   2127       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2128       // In a hopelessly buggy code, Objective-C instance variable
   2129       // lookup fails and no expression will be built to reference it.
   2130       if (!E.isInvalid() && !E.get())
   2131         return ExprError();
   2132       return E;
   2133     }
   2134   }
   2135 
   2136   // This is guaranteed from this point on.
   2137   assert(!R.empty() || ADL);
   2138 
   2139   // Check whether this might be a C++ implicit instance member access.
   2140   // C++ [class.mfct.non-static]p3:
   2141   //   When an id-expression that is not part of a class member access
   2142   //   syntax and not used to form a pointer to member is used in the
   2143   //   body of a non-static member function of class X, if name lookup
   2144   //   resolves the name in the id-expression to a non-static non-type
   2145   //   member of some class C, the id-expression is transformed into a
   2146   //   class member access expression using (*this) as the
   2147   //   postfix-expression to the left of the . operator.
   2148   //
   2149   // But we don't actually need to do this for '&' operands if R
   2150   // resolved to a function or overloaded function set, because the
   2151   // expression is ill-formed if it actually works out to be a
   2152   // non-static member function:
   2153   //
   2154   // C++ [expr.ref]p4:
   2155   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2156   //   [t]he expression can be used only as the left-hand operand of a
   2157   //   member function call.
   2158   //
   2159   // There are other safeguards against such uses, but it's important
   2160   // to get this right here so that we don't end up making a
   2161   // spuriously dependent expression if we're inside a dependent
   2162   // instance method.
   2163   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2164     bool MightBeImplicitMember;
   2165     if (!IsAddressOfOperand)
   2166       MightBeImplicitMember = true;
   2167     else if (!SS.isEmpty())
   2168       MightBeImplicitMember = false;
   2169     else if (R.isOverloadedResult())
   2170       MightBeImplicitMember = false;
   2171     else if (R.isUnresolvableResult())
   2172       MightBeImplicitMember = true;
   2173     else
   2174       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2175                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2176                               isa<MSPropertyDecl>(R.getFoundDecl());
   2177 
   2178     if (MightBeImplicitMember)
   2179       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2180                                              R, TemplateArgs);
   2181   }
   2182 
   2183   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2184 
   2185     // In C++1y, if this is a variable template id, then check it
   2186     // in BuildTemplateIdExpr().
   2187     // The single lookup result must be a variable template declaration.
   2188     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2189         Id.TemplateId->Kind == TNK_Var_template) {
   2190       assert(R.getAsSingle<VarTemplateDecl>() &&
   2191              "There should only be one declaration found.");
   2192     }
   2193 
   2194     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2195   }
   2196 
   2197   return BuildDeclarationNameExpr(SS, R, ADL);
   2198 }
   2199 
   2200 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2201 /// declaration name, generally during template instantiation.
   2202 /// There's a large number of things which don't need to be done along
   2203 /// this path.
   2204 ExprResult
   2205 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   2206                                         const DeclarationNameInfo &NameInfo,
   2207                                         bool IsAddressOfOperand,
   2208                                         TypeSourceInfo **RecoveryTSI) {
   2209   DeclContext *DC = computeDeclContext(SS, false);
   2210   if (!DC)
   2211     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2212                                      NameInfo, /*TemplateArgs=*/nullptr);
   2213 
   2214   if (RequireCompleteDeclContext(SS, DC))
   2215     return ExprError();
   2216 
   2217   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2218   LookupQualifiedName(R, DC);
   2219 
   2220   if (R.isAmbiguous())
   2221     return ExprError();
   2222 
   2223   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2224     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2225                                      NameInfo, /*TemplateArgs=*/nullptr);
   2226 
   2227   if (R.empty()) {
   2228     Diag(NameInfo.getLoc(), diag::err_no_member)
   2229       << NameInfo.getName() << DC << SS.getRange();
   2230     return ExprError();
   2231   }
   2232 
   2233   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2234     // Diagnose a missing typename if this resolved unambiguously to a type in
   2235     // a dependent context.  If we can recover with a type, downgrade this to
   2236     // a warning in Microsoft compatibility mode.
   2237     unsigned DiagID = diag::err_typename_missing;
   2238     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2239       DiagID = diag::ext_typename_missing;
   2240     SourceLocation Loc = SS.getBeginLoc();
   2241     auto D = Diag(Loc, DiagID);
   2242     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2243       << SourceRange(Loc, NameInfo.getEndLoc());
   2244 
   2245     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2246     // context.
   2247     if (!RecoveryTSI)
   2248       return ExprError();
   2249 
   2250     // Only issue the fixit if we're prepared to recover.
   2251     D << FixItHint::CreateInsertion(Loc, "typename ");
   2252 
   2253     // Recover by pretending this was an elaborated type.
   2254     QualType Ty = Context.getTypeDeclType(TD);
   2255     TypeLocBuilder TLB;
   2256     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2257 
   2258     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2259     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2260     QTL.setElaboratedKeywordLoc(SourceLocation());
   2261     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2262 
   2263     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2264 
   2265     return ExprEmpty();
   2266   }
   2267 
   2268   // Defend against this resolving to an implicit member access. We usually
   2269   // won't get here if this might be a legitimate a class member (we end up in
   2270   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2271   // a pointer-to-member or in an unevaluated context in C++11.
   2272   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2273     return BuildPossibleImplicitMemberExpr(SS,
   2274                                            /*TemplateKWLoc=*/SourceLocation(),
   2275                                            R, /*TemplateArgs=*/nullptr);
   2276 
   2277   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2278 }
   2279 
   2280 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2281 /// detected that we're currently inside an ObjC method.  Perform some
   2282 /// additional lookup.
   2283 ///
   2284 /// Ideally, most of this would be done by lookup, but there's
   2285 /// actually quite a lot of extra work involved.
   2286 ///
   2287 /// Returns a null sentinel to indicate trivial success.
   2288 ExprResult
   2289 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2290                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2291   SourceLocation Loc = Lookup.getNameLoc();
   2292   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2293 
   2294   // Check for error condition which is already reported.
   2295   if (!CurMethod)
   2296     return ExprError();
   2297 
   2298   // There are two cases to handle here.  1) scoped lookup could have failed,
   2299   // in which case we should look for an ivar.  2) scoped lookup could have
   2300   // found a decl, but that decl is outside the current instance method (i.e.
   2301   // a global variable).  In these two cases, we do a lookup for an ivar with
   2302   // this name, if the lookup sucedes, we replace it our current decl.
   2303 
   2304   // If we're in a class method, we don't normally want to look for
   2305   // ivars.  But if we don't find anything else, and there's an
   2306   // ivar, that's an error.
   2307   bool IsClassMethod = CurMethod->isClassMethod();
   2308 
   2309   bool LookForIvars;
   2310   if (Lookup.empty())
   2311     LookForIvars = true;
   2312   else if (IsClassMethod)
   2313     LookForIvars = false;
   2314   else
   2315     LookForIvars = (Lookup.isSingleResult() &&
   2316                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2317   ObjCInterfaceDecl *IFace = nullptr;
   2318   if (LookForIvars) {
   2319     IFace = CurMethod->getClassInterface();
   2320     ObjCInterfaceDecl *ClassDeclared;
   2321     ObjCIvarDecl *IV = nullptr;
   2322     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2323       // Diagnose using an ivar in a class method.
   2324       if (IsClassMethod)
   2325         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2326                          << IV->getDeclName());
   2327 
   2328       // If we're referencing an invalid decl, just return this as a silent
   2329       // error node.  The error diagnostic was already emitted on the decl.
   2330       if (IV->isInvalidDecl())
   2331         return ExprError();
   2332 
   2333       // Check if referencing a field with __attribute__((deprecated)).
   2334       if (DiagnoseUseOfDecl(IV, Loc))
   2335         return ExprError();
   2336 
   2337       // Diagnose the use of an ivar outside of the declaring class.
   2338       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2339           !declaresSameEntity(ClassDeclared, IFace) &&
   2340           !getLangOpts().DebuggerSupport)
   2341         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2342 
   2343       // FIXME: This should use a new expr for a direct reference, don't
   2344       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2345       IdentifierInfo &II = Context.Idents.get("self");
   2346       UnqualifiedId SelfName;
   2347       SelfName.setIdentifier(&II, SourceLocation());
   2348       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2349       CXXScopeSpec SelfScopeSpec;
   2350       SourceLocation TemplateKWLoc;
   2351       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2352                                               SelfName, false, false);
   2353       if (SelfExpr.isInvalid())
   2354         return ExprError();
   2355 
   2356       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2357       if (SelfExpr.isInvalid())
   2358         return ExprError();
   2359 
   2360       MarkAnyDeclReferenced(Loc, IV, true);
   2361 
   2362       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2363       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2364           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2365         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2366 
   2367       ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   2368                                                               Loc, IV->getLocation(),
   2369                                                               SelfExpr.get(),
   2370                                                               true, true);
   2371 
   2372       if (getLangOpts().ObjCAutoRefCount) {
   2373         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2374           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2375             recordUseOfEvaluatedWeak(Result);
   2376         }
   2377         if (CurContext->isClosure())
   2378           Diag(Loc, diag::warn_implicitly_retains_self)
   2379             << FixItHint::CreateInsertion(Loc, "self->");
   2380       }
   2381 
   2382       return Result;
   2383     }
   2384   } else if (CurMethod->isInstanceMethod()) {
   2385     // We should warn if a local variable hides an ivar.
   2386     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2387       ObjCInterfaceDecl *ClassDeclared;
   2388       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2389         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2390             declaresSameEntity(IFace, ClassDeclared))
   2391           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2392       }
   2393     }
   2394   } else if (Lookup.isSingleResult() &&
   2395              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2396     // If accessing a stand-alone ivar in a class method, this is an error.
   2397     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2398       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2399                        << IV->getDeclName());
   2400   }
   2401 
   2402   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2403     // FIXME. Consolidate this with similar code in LookupName.
   2404     if (unsigned BuiltinID = II->getBuiltinID()) {
   2405       if (!(getLangOpts().CPlusPlus &&
   2406             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2407         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2408                                            S, Lookup.isForRedeclaration(),
   2409                                            Lookup.getNameLoc());
   2410         if (D) Lookup.addDecl(D);
   2411       }
   2412     }
   2413   }
   2414   // Sentinel value saying that we didn't do anything special.
   2415   return ExprResult((Expr *)nullptr);
   2416 }
   2417 
   2418 /// \brief Cast a base object to a member's actual type.
   2419 ///
   2420 /// Logically this happens in three phases:
   2421 ///
   2422 /// * First we cast from the base type to the naming class.
   2423 ///   The naming class is the class into which we were looking
   2424 ///   when we found the member;  it's the qualifier type if a
   2425 ///   qualifier was provided, and otherwise it's the base type.
   2426 ///
   2427 /// * Next we cast from the naming class to the declaring class.
   2428 ///   If the member we found was brought into a class's scope by
   2429 ///   a using declaration, this is that class;  otherwise it's
   2430 ///   the class declaring the member.
   2431 ///
   2432 /// * Finally we cast from the declaring class to the "true"
   2433 ///   declaring class of the member.  This conversion does not
   2434 ///   obey access control.
   2435 ExprResult
   2436 Sema::PerformObjectMemberConversion(Expr *From,
   2437                                     NestedNameSpecifier *Qualifier,
   2438                                     NamedDecl *FoundDecl,
   2439                                     NamedDecl *Member) {
   2440   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2441   if (!RD)
   2442     return From;
   2443 
   2444   QualType DestRecordType;
   2445   QualType DestType;
   2446   QualType FromRecordType;
   2447   QualType FromType = From->getType();
   2448   bool PointerConversions = false;
   2449   if (isa<FieldDecl>(Member)) {
   2450     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2451 
   2452     if (FromType->getAs<PointerType>()) {
   2453       DestType = Context.getPointerType(DestRecordType);
   2454       FromRecordType = FromType->getPointeeType();
   2455       PointerConversions = true;
   2456     } else {
   2457       DestType = DestRecordType;
   2458       FromRecordType = FromType;
   2459     }
   2460   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2461     if (Method->isStatic())
   2462       return From;
   2463 
   2464     DestType = Method->getThisType(Context);
   2465     DestRecordType = DestType->getPointeeType();
   2466 
   2467     if (FromType->getAs<PointerType>()) {
   2468       FromRecordType = FromType->getPointeeType();
   2469       PointerConversions = true;
   2470     } else {
   2471       FromRecordType = FromType;
   2472       DestType = DestRecordType;
   2473     }
   2474   } else {
   2475     // No conversion necessary.
   2476     return From;
   2477   }
   2478 
   2479   if (DestType->isDependentType() || FromType->isDependentType())
   2480     return From;
   2481 
   2482   // If the unqualified types are the same, no conversion is necessary.
   2483   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2484     return From;
   2485 
   2486   SourceRange FromRange = From->getSourceRange();
   2487   SourceLocation FromLoc = FromRange.getBegin();
   2488 
   2489   ExprValueKind VK = From->getValueKind();
   2490 
   2491   // C++ [class.member.lookup]p8:
   2492   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2493   //   class name.
   2494   //
   2495   // If the member was a qualified name and the qualified referred to a
   2496   // specific base subobject type, we'll cast to that intermediate type
   2497   // first and then to the object in which the member is declared. That allows
   2498   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2499   //
   2500   //   class Base { public: int x; };
   2501   //   class Derived1 : public Base { };
   2502   //   class Derived2 : public Base { };
   2503   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2504   //
   2505   //   void VeryDerived::f() {
   2506   //     x = 17; // error: ambiguous base subobjects
   2507   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2508   //   }
   2509   if (Qualifier && Qualifier->getAsType()) {
   2510     QualType QType = QualType(Qualifier->getAsType(), 0);
   2511     assert(QType->isRecordType() && "lookup done with non-record type");
   2512 
   2513     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2514 
   2515     // In C++98, the qualifier type doesn't actually have to be a base
   2516     // type of the object type, in which case we just ignore it.
   2517     // Otherwise build the appropriate casts.
   2518     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   2519       CXXCastPath BasePath;
   2520       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2521                                        FromLoc, FromRange, &BasePath))
   2522         return ExprError();
   2523 
   2524       if (PointerConversions)
   2525         QType = Context.getPointerType(QType);
   2526       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2527                                VK, &BasePath).get();
   2528 
   2529       FromType = QType;
   2530       FromRecordType = QRecordType;
   2531 
   2532       // If the qualifier type was the same as the destination type,
   2533       // we're done.
   2534       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2535         return From;
   2536     }
   2537   }
   2538 
   2539   bool IgnoreAccess = false;
   2540 
   2541   // If we actually found the member through a using declaration, cast
   2542   // down to the using declaration's type.
   2543   //
   2544   // Pointer equality is fine here because only one declaration of a
   2545   // class ever has member declarations.
   2546   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2547     assert(isa<UsingShadowDecl>(FoundDecl));
   2548     QualType URecordType = Context.getTypeDeclType(
   2549                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2550 
   2551     // We only need to do this if the naming-class to declaring-class
   2552     // conversion is non-trivial.
   2553     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2554       assert(IsDerivedFrom(FromRecordType, URecordType));
   2555       CXXCastPath BasePath;
   2556       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2557                                        FromLoc, FromRange, &BasePath))
   2558         return ExprError();
   2559 
   2560       QualType UType = URecordType;
   2561       if (PointerConversions)
   2562         UType = Context.getPointerType(UType);
   2563       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2564                                VK, &BasePath).get();
   2565       FromType = UType;
   2566       FromRecordType = URecordType;
   2567     }
   2568 
   2569     // We don't do access control for the conversion from the
   2570     // declaring class to the true declaring class.
   2571     IgnoreAccess = true;
   2572   }
   2573 
   2574   CXXCastPath BasePath;
   2575   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2576                                    FromLoc, FromRange, &BasePath,
   2577                                    IgnoreAccess))
   2578     return ExprError();
   2579 
   2580   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2581                            VK, &BasePath);
   2582 }
   2583 
   2584 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2585                                       const LookupResult &R,
   2586                                       bool HasTrailingLParen) {
   2587   // Only when used directly as the postfix-expression of a call.
   2588   if (!HasTrailingLParen)
   2589     return false;
   2590 
   2591   // Never if a scope specifier was provided.
   2592   if (SS.isSet())
   2593     return false;
   2594 
   2595   // Only in C++ or ObjC++.
   2596   if (!getLangOpts().CPlusPlus)
   2597     return false;
   2598 
   2599   // Turn off ADL when we find certain kinds of declarations during
   2600   // normal lookup:
   2601   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2602     NamedDecl *D = *I;
   2603 
   2604     // C++0x [basic.lookup.argdep]p3:
   2605     //     -- a declaration of a class member
   2606     // Since using decls preserve this property, we check this on the
   2607     // original decl.
   2608     if (D->isCXXClassMember())
   2609       return false;
   2610 
   2611     // C++0x [basic.lookup.argdep]p3:
   2612     //     -- a block-scope function declaration that is not a
   2613     //        using-declaration
   2614     // NOTE: we also trigger this for function templates (in fact, we
   2615     // don't check the decl type at all, since all other decl types
   2616     // turn off ADL anyway).
   2617     if (isa<UsingShadowDecl>(D))
   2618       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2619     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2620       return false;
   2621 
   2622     // C++0x [basic.lookup.argdep]p3:
   2623     //     -- a declaration that is neither a function or a function
   2624     //        template
   2625     // And also for builtin functions.
   2626     if (isa<FunctionDecl>(D)) {
   2627       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2628 
   2629       // But also builtin functions.
   2630       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2631         return false;
   2632     } else if (!isa<FunctionTemplateDecl>(D))
   2633       return false;
   2634   }
   2635 
   2636   return true;
   2637 }
   2638 
   2639 
   2640 /// Diagnoses obvious problems with the use of the given declaration
   2641 /// as an expression.  This is only actually called for lookups that
   2642 /// were not overloaded, and it doesn't promise that the declaration
   2643 /// will in fact be used.
   2644 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2645   if (isa<TypedefNameDecl>(D)) {
   2646     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2647     return true;
   2648   }
   2649 
   2650   if (isa<ObjCInterfaceDecl>(D)) {
   2651     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2652     return true;
   2653   }
   2654 
   2655   if (isa<NamespaceDecl>(D)) {
   2656     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2657     return true;
   2658   }
   2659 
   2660   return false;
   2661 }
   2662 
   2663 ExprResult
   2664 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2665                                LookupResult &R,
   2666                                bool NeedsADL) {
   2667   // If this is a single, fully-resolved result and we don't need ADL,
   2668   // just build an ordinary singleton decl ref.
   2669   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2670     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2671                                     R.getRepresentativeDecl());
   2672 
   2673   // We only need to check the declaration if there's exactly one
   2674   // result, because in the overloaded case the results can only be
   2675   // functions and function templates.
   2676   if (R.isSingleResult() &&
   2677       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2678     return ExprError();
   2679 
   2680   // Otherwise, just build an unresolved lookup expression.  Suppress
   2681   // any lookup-related diagnostics; we'll hash these out later, when
   2682   // we've picked a target.
   2683   R.suppressDiagnostics();
   2684 
   2685   UnresolvedLookupExpr *ULE
   2686     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2687                                    SS.getWithLocInContext(Context),
   2688                                    R.getLookupNameInfo(),
   2689                                    NeedsADL, R.isOverloadedResult(),
   2690                                    R.begin(), R.end());
   2691 
   2692   return ULE;
   2693 }
   2694 
   2695 /// \brief Complete semantic analysis for a reference to the given declaration.
   2696 ExprResult Sema::BuildDeclarationNameExpr(
   2697     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2698     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
   2699   assert(D && "Cannot refer to a NULL declaration");
   2700   assert(!isa<FunctionTemplateDecl>(D) &&
   2701          "Cannot refer unambiguously to a function template");
   2702 
   2703   SourceLocation Loc = NameInfo.getLoc();
   2704   if (CheckDeclInExpr(*this, Loc, D))
   2705     return ExprError();
   2706 
   2707   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2708     // Specifically diagnose references to class templates that are missing
   2709     // a template argument list.
   2710     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2711                                            << Template << SS.getRange();
   2712     Diag(Template->getLocation(), diag::note_template_decl_here);
   2713     return ExprError();
   2714   }
   2715 
   2716   // Make sure that we're referring to a value.
   2717   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2718   if (!VD) {
   2719     Diag(Loc, diag::err_ref_non_value)
   2720       << D << SS.getRange();
   2721     Diag(D->getLocation(), diag::note_declared_at);
   2722     return ExprError();
   2723   }
   2724 
   2725   // Check whether this declaration can be used. Note that we suppress
   2726   // this check when we're going to perform argument-dependent lookup
   2727   // on this function name, because this might not be the function
   2728   // that overload resolution actually selects.
   2729   if (DiagnoseUseOfDecl(VD, Loc))
   2730     return ExprError();
   2731 
   2732   // Only create DeclRefExpr's for valid Decl's.
   2733   if (VD->isInvalidDecl())
   2734     return ExprError();
   2735 
   2736   // Handle members of anonymous structs and unions.  If we got here,
   2737   // and the reference is to a class member indirect field, then this
   2738   // must be the subject of a pointer-to-member expression.
   2739   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2740     if (!indirectField->isCXXClassMember())
   2741       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2742                                                       indirectField);
   2743 
   2744   {
   2745     QualType type = VD->getType();
   2746     ExprValueKind valueKind = VK_RValue;
   2747 
   2748     switch (D->getKind()) {
   2749     // Ignore all the non-ValueDecl kinds.
   2750 #define ABSTRACT_DECL(kind)
   2751 #define VALUE(type, base)
   2752 #define DECL(type, base) \
   2753     case Decl::type:
   2754 #include "clang/AST/DeclNodes.inc"
   2755       llvm_unreachable("invalid value decl kind");
   2756 
   2757     // These shouldn't make it here.
   2758     case Decl::ObjCAtDefsField:
   2759     case Decl::ObjCIvar:
   2760       llvm_unreachable("forming non-member reference to ivar?");
   2761 
   2762     // Enum constants are always r-values and never references.
   2763     // Unresolved using declarations are dependent.
   2764     case Decl::EnumConstant:
   2765     case Decl::UnresolvedUsingValue:
   2766       valueKind = VK_RValue;
   2767       break;
   2768 
   2769     // Fields and indirect fields that got here must be for
   2770     // pointer-to-member expressions; we just call them l-values for
   2771     // internal consistency, because this subexpression doesn't really
   2772     // exist in the high-level semantics.
   2773     case Decl::Field:
   2774     case Decl::IndirectField:
   2775       assert(getLangOpts().CPlusPlus &&
   2776              "building reference to field in C?");
   2777 
   2778       // These can't have reference type in well-formed programs, but
   2779       // for internal consistency we do this anyway.
   2780       type = type.getNonReferenceType();
   2781       valueKind = VK_LValue;
   2782       break;
   2783 
   2784     // Non-type template parameters are either l-values or r-values
   2785     // depending on the type.
   2786     case Decl::NonTypeTemplateParm: {
   2787       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2788         type = reftype->getPointeeType();
   2789         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2790         break;
   2791       }
   2792 
   2793       // For non-references, we need to strip qualifiers just in case
   2794       // the template parameter was declared as 'const int' or whatever.
   2795       valueKind = VK_RValue;
   2796       type = type.getUnqualifiedType();
   2797       break;
   2798     }
   2799 
   2800     case Decl::Var:
   2801     case Decl::VarTemplateSpecialization:
   2802     case Decl::VarTemplatePartialSpecialization:
   2803       // In C, "extern void blah;" is valid and is an r-value.
   2804       if (!getLangOpts().CPlusPlus &&
   2805           !type.hasQualifiers() &&
   2806           type->isVoidType()) {
   2807         valueKind = VK_RValue;
   2808         break;
   2809       }
   2810       // fallthrough
   2811 
   2812     case Decl::ImplicitParam:
   2813     case Decl::ParmVar: {
   2814       // These are always l-values.
   2815       valueKind = VK_LValue;
   2816       type = type.getNonReferenceType();
   2817 
   2818       // FIXME: Does the addition of const really only apply in
   2819       // potentially-evaluated contexts? Since the variable isn't actually
   2820       // captured in an unevaluated context, it seems that the answer is no.
   2821       if (!isUnevaluatedContext()) {
   2822         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2823         if (!CapturedType.isNull())
   2824           type = CapturedType;
   2825       }
   2826 
   2827       break;
   2828     }
   2829 
   2830     case Decl::Function: {
   2831       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2832         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2833           type = Context.BuiltinFnTy;
   2834           valueKind = VK_RValue;
   2835           break;
   2836         }
   2837       }
   2838 
   2839       const FunctionType *fty = type->castAs<FunctionType>();
   2840 
   2841       // If we're referring to a function with an __unknown_anytype
   2842       // result type, make the entire expression __unknown_anytype.
   2843       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2844         type = Context.UnknownAnyTy;
   2845         valueKind = VK_RValue;
   2846         break;
   2847       }
   2848 
   2849       // Functions are l-values in C++.
   2850       if (getLangOpts().CPlusPlus) {
   2851         valueKind = VK_LValue;
   2852         break;
   2853       }
   2854 
   2855       // C99 DR 316 says that, if a function type comes from a
   2856       // function definition (without a prototype), that type is only
   2857       // used for checking compatibility. Therefore, when referencing
   2858       // the function, we pretend that we don't have the full function
   2859       // type.
   2860       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2861           isa<FunctionProtoType>(fty))
   2862         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   2863                                               fty->getExtInfo());
   2864 
   2865       // Functions are r-values in C.
   2866       valueKind = VK_RValue;
   2867       break;
   2868     }
   2869 
   2870     case Decl::MSProperty:
   2871       valueKind = VK_LValue;
   2872       break;
   2873 
   2874     case Decl::CXXMethod:
   2875       // If we're referring to a method with an __unknown_anytype
   2876       // result type, make the entire expression __unknown_anytype.
   2877       // This should only be possible with a type written directly.
   2878       if (const FunctionProtoType *proto
   2879             = dyn_cast<FunctionProtoType>(VD->getType()))
   2880         if (proto->getReturnType() == Context.UnknownAnyTy) {
   2881           type = Context.UnknownAnyTy;
   2882           valueKind = VK_RValue;
   2883           break;
   2884         }
   2885 
   2886       // C++ methods are l-values if static, r-values if non-static.
   2887       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2888         valueKind = VK_LValue;
   2889         break;
   2890       }
   2891       // fallthrough
   2892 
   2893     case Decl::CXXConversion:
   2894     case Decl::CXXDestructor:
   2895     case Decl::CXXConstructor:
   2896       valueKind = VK_RValue;
   2897       break;
   2898     }
   2899 
   2900     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2901                             TemplateArgs);
   2902   }
   2903 }
   2904 
   2905 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   2906                                      PredefinedExpr::IdentType IT) {
   2907   // Pick the current block, lambda, captured statement or function.
   2908   Decl *currentDecl = nullptr;
   2909   if (const BlockScopeInfo *BSI = getCurBlock())
   2910     currentDecl = BSI->TheDecl;
   2911   else if (const LambdaScopeInfo *LSI = getCurLambda())
   2912     currentDecl = LSI->CallOperator;
   2913   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   2914     currentDecl = CSI->TheCapturedDecl;
   2915   else
   2916     currentDecl = getCurFunctionOrMethodDecl();
   2917 
   2918   if (!currentDecl) {
   2919     Diag(Loc, diag::ext_predef_outside_function);
   2920     currentDecl = Context.getTranslationUnitDecl();
   2921   }
   2922 
   2923   QualType ResTy;
   2924   if (cast<DeclContext>(currentDecl)->isDependentContext())
   2925     ResTy = Context.DependentTy;
   2926   else {
   2927     // Pre-defined identifiers are of type char[x], where x is the length of
   2928     // the string.
   2929     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
   2930 
   2931     llvm::APInt LengthI(32, Length + 1);
   2932     if (IT == PredefinedExpr::LFunction)
   2933       ResTy = Context.WideCharTy.withConst();
   2934     else
   2935       ResTy = Context.CharTy.withConst();
   2936     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
   2937   }
   2938 
   2939   return new (Context) PredefinedExpr(Loc, ResTy, IT);
   2940 }
   2941 
   2942 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   2943   PredefinedExpr::IdentType IT;
   2944 
   2945   switch (Kind) {
   2946   default: llvm_unreachable("Unknown simple primary expr!");
   2947   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   2948   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   2949   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   2950   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   2951   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   2952   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   2953   }
   2954 
   2955   return BuildPredefinedExpr(Loc, IT);
   2956 }
   2957 
   2958 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   2959   SmallString<16> CharBuffer;
   2960   bool Invalid = false;
   2961   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   2962   if (Invalid)
   2963     return ExprError();
   2964 
   2965   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   2966                             PP, Tok.getKind());
   2967   if (Literal.hadError())
   2968     return ExprError();
   2969 
   2970   QualType Ty;
   2971   if (Literal.isWide())
   2972     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   2973   else if (Literal.isUTF16())
   2974     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   2975   else if (Literal.isUTF32())
   2976     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   2977   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   2978     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   2979   else
   2980     Ty = Context.CharTy;  // 'x' -> char in C++
   2981 
   2982   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   2983   if (Literal.isWide())
   2984     Kind = CharacterLiteral::Wide;
   2985   else if (Literal.isUTF16())
   2986     Kind = CharacterLiteral::UTF16;
   2987   else if (Literal.isUTF32())
   2988     Kind = CharacterLiteral::UTF32;
   2989 
   2990   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   2991                                              Tok.getLocation());
   2992 
   2993   if (Literal.getUDSuffix().empty())
   2994     return Lit;
   2995 
   2996   // We're building a user-defined literal.
   2997   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2998   SourceLocation UDSuffixLoc =
   2999     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3000 
   3001   // Make sure we're allowed user-defined literals here.
   3002   if (!UDLScope)
   3003     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3004 
   3005   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3006   //   operator "" X (ch)
   3007   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3008                                         Lit, Tok.getLocation());
   3009 }
   3010 
   3011 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3012   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3013   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3014                                 Context.IntTy, Loc);
   3015 }
   3016 
   3017 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3018                                   QualType Ty, SourceLocation Loc) {
   3019   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3020 
   3021   using llvm::APFloat;
   3022   APFloat Val(Format);
   3023 
   3024   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3025 
   3026   // Overflow is always an error, but underflow is only an error if
   3027   // we underflowed to zero (APFloat reports denormals as underflow).
   3028   if ((result & APFloat::opOverflow) ||
   3029       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3030     unsigned diagnostic;
   3031     SmallString<20> buffer;
   3032     if (result & APFloat::opOverflow) {
   3033       diagnostic = diag::warn_float_overflow;
   3034       APFloat::getLargest(Format).toString(buffer);
   3035     } else {
   3036       diagnostic = diag::warn_float_underflow;
   3037       APFloat::getSmallest(Format).toString(buffer);
   3038     }
   3039 
   3040     S.Diag(Loc, diagnostic)
   3041       << Ty
   3042       << StringRef(buffer.data(), buffer.size());
   3043   }
   3044 
   3045   bool isExact = (result == APFloat::opOK);
   3046   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3047 }
   3048 
   3049 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3050   // Fast path for a single digit (which is quite common).  A single digit
   3051   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3052   if (Tok.getLength() == 1) {
   3053     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3054     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3055   }
   3056 
   3057   SmallString<128> SpellingBuffer;
   3058   // NumericLiteralParser wants to overread by one character.  Add padding to
   3059   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3060   // returns a StringRef to the memory buffer, it should have a null char at
   3061   // the EOF, so it is also safe.
   3062   SpellingBuffer.resize(Tok.getLength() + 1);
   3063 
   3064   // Get the spelling of the token, which eliminates trigraphs, etc.
   3065   bool Invalid = false;
   3066   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3067   if (Invalid)
   3068     return ExprError();
   3069 
   3070   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3071   if (Literal.hadError)
   3072     return ExprError();
   3073 
   3074   if (Literal.hasUDSuffix()) {
   3075     // We're building a user-defined literal.
   3076     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3077     SourceLocation UDSuffixLoc =
   3078       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3079 
   3080     // Make sure we're allowed user-defined literals here.
   3081     if (!UDLScope)
   3082       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3083 
   3084     QualType CookedTy;
   3085     if (Literal.isFloatingLiteral()) {
   3086       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3087       // long double, the literal is treated as a call of the form
   3088       //   operator "" X (f L)
   3089       CookedTy = Context.LongDoubleTy;
   3090     } else {
   3091       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3092       // unsigned long long, the literal is treated as a call of the form
   3093       //   operator "" X (n ULL)
   3094       CookedTy = Context.UnsignedLongLongTy;
   3095     }
   3096 
   3097     DeclarationName OpName =
   3098       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3099     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3100     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3101 
   3102     SourceLocation TokLoc = Tok.getLocation();
   3103 
   3104     // Perform literal operator lookup to determine if we're building a raw
   3105     // literal or a cooked one.
   3106     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3107     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3108                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3109                                   /*AllowStringTemplate*/false)) {
   3110     case LOLR_Error:
   3111       return ExprError();
   3112 
   3113     case LOLR_Cooked: {
   3114       Expr *Lit;
   3115       if (Literal.isFloatingLiteral()) {
   3116         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3117       } else {
   3118         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3119         if (Literal.GetIntegerValue(ResultVal))
   3120           Diag(Tok.getLocation(), diag::err_integer_too_large);
   3121         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3122                                      Tok.getLocation());
   3123       }
   3124       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3125     }
   3126 
   3127     case LOLR_Raw: {
   3128       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3129       // literal is treated as a call of the form
   3130       //   operator "" X ("n")
   3131       unsigned Length = Literal.getUDSuffixOffset();
   3132       QualType StrTy = Context.getConstantArrayType(
   3133           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3134           ArrayType::Normal, 0);
   3135       Expr *Lit = StringLiteral::Create(
   3136           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3137           /*Pascal*/false, StrTy, &TokLoc, 1);
   3138       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3139     }
   3140 
   3141     case LOLR_Template: {
   3142       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3143       // template), L is treated as a call fo the form
   3144       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3145       // where n is the source character sequence c1 c2 ... ck.
   3146       TemplateArgumentListInfo ExplicitArgs;
   3147       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3148       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3149       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3150       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3151         Value = TokSpelling[I];
   3152         TemplateArgument Arg(Context, Value, Context.CharTy);
   3153         TemplateArgumentLocInfo ArgInfo;
   3154         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3155       }
   3156       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3157                                       &ExplicitArgs);
   3158     }
   3159     case LOLR_StringTemplate:
   3160       llvm_unreachable("unexpected literal operator lookup result");
   3161     }
   3162   }
   3163 
   3164   Expr *Res;
   3165 
   3166   if (Literal.isFloatingLiteral()) {
   3167     QualType Ty;
   3168     if (Literal.isFloat)
   3169       Ty = Context.FloatTy;
   3170     else if (!Literal.isLong)
   3171       Ty = Context.DoubleTy;
   3172     else
   3173       Ty = Context.LongDoubleTy;
   3174 
   3175     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3176 
   3177     if (Ty == Context.DoubleTy) {
   3178       if (getLangOpts().SinglePrecisionConstants) {
   3179         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3180       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
   3181         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3182         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3183       }
   3184     }
   3185   } else if (!Literal.isIntegerLiteral()) {
   3186     return ExprError();
   3187   } else {
   3188     QualType Ty;
   3189 
   3190     // 'long long' is a C99 or C++11 feature.
   3191     if (!getLangOpts().C99 && Literal.isLongLong) {
   3192       if (getLangOpts().CPlusPlus)
   3193         Diag(Tok.getLocation(),
   3194              getLangOpts().CPlusPlus11 ?
   3195              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3196       else
   3197         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3198     }
   3199 
   3200     // Get the value in the widest-possible width.
   3201     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3202     // The microsoft literal suffix extensions support 128-bit literals, which
   3203     // may be wider than [u]intmax_t.
   3204     // FIXME: Actually, they don't. We seem to have accidentally invented the
   3205     //        i128 suffix.
   3206     if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
   3207         Context.getTargetInfo().hasInt128Type())
   3208       MaxWidth = 128;
   3209     llvm::APInt ResultVal(MaxWidth, 0);
   3210 
   3211     if (Literal.GetIntegerValue(ResultVal)) {
   3212       // If this value didn't fit into uintmax_t, error and force to ull.
   3213       Diag(Tok.getLocation(), diag::err_integer_too_large);
   3214       Ty = Context.UnsignedLongLongTy;
   3215       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3216              "long long is not intmax_t?");
   3217     } else {
   3218       // If this value fits into a ULL, try to figure out what else it fits into
   3219       // according to the rules of C99 6.4.4.1p5.
   3220 
   3221       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3222       // be an unsigned int.
   3223       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3224 
   3225       // Check from smallest to largest, picking the smallest type we can.
   3226       unsigned Width = 0;
   3227 
   3228       // Microsoft specific integer suffixes are explicitly sized.
   3229       if (Literal.MicrosoftInteger) {
   3230         if (Literal.MicrosoftInteger > MaxWidth) {
   3231           // If this target doesn't support __int128, error and force to ull.
   3232           Diag(Tok.getLocation(), diag::err_int128_unsupported);
   3233           Width = MaxWidth;
   3234           Ty = Context.getIntMaxType();
   3235         } else {
   3236           Width = Literal.MicrosoftInteger;
   3237           Ty = Context.getIntTypeForBitwidth(Width,
   3238                                              /*Signed=*/!Literal.isUnsigned);
   3239         }
   3240       }
   3241 
   3242       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3243         // Are int/unsigned possibilities?
   3244         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3245 
   3246         // Does it fit in a unsigned int?
   3247         if (ResultVal.isIntN(IntSize)) {
   3248           // Does it fit in a signed int?
   3249           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3250             Ty = Context.IntTy;
   3251           else if (AllowUnsigned)
   3252             Ty = Context.UnsignedIntTy;
   3253           Width = IntSize;
   3254         }
   3255       }
   3256 
   3257       // Are long/unsigned long possibilities?
   3258       if (Ty.isNull() && !Literal.isLongLong) {
   3259         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3260 
   3261         // Does it fit in a unsigned long?
   3262         if (ResultVal.isIntN(LongSize)) {
   3263           // Does it fit in a signed long?
   3264           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3265             Ty = Context.LongTy;
   3266           else if (AllowUnsigned)
   3267             Ty = Context.UnsignedLongTy;
   3268           Width = LongSize;
   3269         }
   3270       }
   3271 
   3272       // Check long long if needed.
   3273       if (Ty.isNull()) {
   3274         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3275 
   3276         // Does it fit in a unsigned long long?
   3277         if (ResultVal.isIntN(LongLongSize)) {
   3278           // Does it fit in a signed long long?
   3279           // To be compatible with MSVC, hex integer literals ending with the
   3280           // LL or i64 suffix are always signed in Microsoft mode.
   3281           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3282               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3283             Ty = Context.LongLongTy;
   3284           else if (AllowUnsigned)
   3285             Ty = Context.UnsignedLongLongTy;
   3286           Width = LongLongSize;
   3287         }
   3288       }
   3289 
   3290       // If we still couldn't decide a type, we probably have something that
   3291       // does not fit in a signed long long, but has no U suffix.
   3292       if (Ty.isNull()) {
   3293         Diag(Tok.getLocation(), diag::ext_integer_too_large_for_signed);
   3294         Ty = Context.UnsignedLongLongTy;
   3295         Width = Context.getTargetInfo().getLongLongWidth();
   3296       }
   3297 
   3298       if (ResultVal.getBitWidth() != Width)
   3299         ResultVal = ResultVal.trunc(Width);
   3300     }
   3301     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3302   }
   3303 
   3304   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3305   if (Literal.isImaginary)
   3306     Res = new (Context) ImaginaryLiteral(Res,
   3307                                         Context.getComplexType(Res->getType()));
   3308 
   3309   return Res;
   3310 }
   3311 
   3312 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3313   assert(E && "ActOnParenExpr() missing expr");
   3314   return new (Context) ParenExpr(L, R, E);
   3315 }
   3316 
   3317 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3318                                          SourceLocation Loc,
   3319                                          SourceRange ArgRange) {
   3320   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3321   // scalar or vector data type argument..."
   3322   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3323   // type (C99 6.2.5p18) or void.
   3324   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3325     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3326       << T << ArgRange;
   3327     return true;
   3328   }
   3329 
   3330   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3331          "Scalar types should always be complete");
   3332   return false;
   3333 }
   3334 
   3335 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3336                                            SourceLocation Loc,
   3337                                            SourceRange ArgRange,
   3338                                            UnaryExprOrTypeTrait TraitKind) {
   3339   // Invalid types must be hard errors for SFINAE in C++.
   3340   if (S.LangOpts.CPlusPlus)
   3341     return true;
   3342 
   3343   // C99 6.5.3.4p1:
   3344   if (T->isFunctionType() &&
   3345       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3346     // sizeof(function)/alignof(function) is allowed as an extension.
   3347     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3348       << TraitKind << ArgRange;
   3349     return false;
   3350   }
   3351 
   3352   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3353   // this is an error (OpenCL v1.1 s6.3.k)
   3354   if (T->isVoidType()) {
   3355     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3356                                         : diag::ext_sizeof_alignof_void_type;
   3357     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3358     return false;
   3359   }
   3360 
   3361   return true;
   3362 }
   3363 
   3364 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3365                                              SourceLocation Loc,
   3366                                              SourceRange ArgRange,
   3367                                              UnaryExprOrTypeTrait TraitKind) {
   3368   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3369   // runtime doesn't allow it.
   3370   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3371     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3372       << T << (TraitKind == UETT_SizeOf)
   3373       << ArgRange;
   3374     return true;
   3375   }
   3376 
   3377   return false;
   3378 }
   3379 
   3380 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3381 /// pointer type is equal to T) and emit a warning if it is.
   3382 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3383                                      Expr *E) {
   3384   // Don't warn if the operation changed the type.
   3385   if (T != E->getType())
   3386     return;
   3387 
   3388   // Now look for array decays.
   3389   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3390   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3391     return;
   3392 
   3393   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3394                                              << ICE->getType()
   3395                                              << ICE->getSubExpr()->getType();
   3396 }
   3397 
   3398 /// \brief Check the constraints on expression operands to unary type expression
   3399 /// and type traits.
   3400 ///
   3401 /// Completes any types necessary and validates the constraints on the operand
   3402 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3403 /// the expression as it completes the type for that expression through template
   3404 /// instantiation, etc.
   3405 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3406                                             UnaryExprOrTypeTrait ExprKind) {
   3407   QualType ExprTy = E->getType();
   3408   assert(!ExprTy->isReferenceType());
   3409 
   3410   if (ExprKind == UETT_VecStep)
   3411     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3412                                         E->getSourceRange());
   3413 
   3414   // Whitelist some types as extensions
   3415   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3416                                       E->getSourceRange(), ExprKind))
   3417     return false;
   3418 
   3419   // 'alignof' applied to an expression only requires the base element type of
   3420   // the expression to be complete. 'sizeof' requires the expression's type to
   3421   // be complete (and will attempt to complete it if it's an array of unknown
   3422   // bound).
   3423   if (ExprKind == UETT_AlignOf) {
   3424     if (RequireCompleteType(E->getExprLoc(),
   3425                             Context.getBaseElementType(E->getType()),
   3426                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3427                             E->getSourceRange()))
   3428       return true;
   3429   } else {
   3430     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3431                                 ExprKind, E->getSourceRange()))
   3432       return true;
   3433   }
   3434 
   3435   // Completing the expression's type may have changed it.
   3436   ExprTy = E->getType();
   3437   assert(!ExprTy->isReferenceType());
   3438 
   3439   if (ExprTy->isFunctionType()) {
   3440     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3441       << ExprKind << E->getSourceRange();
   3442     return true;
   3443   }
   3444 
   3445   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3446                                        E->getSourceRange(), ExprKind))
   3447     return true;
   3448 
   3449   if (ExprKind == UETT_SizeOf) {
   3450     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3451       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3452         QualType OType = PVD->getOriginalType();
   3453         QualType Type = PVD->getType();
   3454         if (Type->isPointerType() && OType->isArrayType()) {
   3455           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3456             << Type << OType;
   3457           Diag(PVD->getLocation(), diag::note_declared_at);
   3458         }
   3459       }
   3460     }
   3461 
   3462     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3463     // decays into a pointer and returns an unintended result. This is most
   3464     // likely a typo for "sizeof(array) op x".
   3465     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3466       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3467                                BO->getLHS());
   3468       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3469                                BO->getRHS());
   3470     }
   3471   }
   3472 
   3473   return false;
   3474 }
   3475 
   3476 /// \brief Check the constraints on operands to unary expression and type
   3477 /// traits.
   3478 ///
   3479 /// This will complete any types necessary, and validate the various constraints
   3480 /// on those operands.
   3481 ///
   3482 /// The UsualUnaryConversions() function is *not* called by this routine.
   3483 /// C99 6.3.2.1p[2-4] all state:
   3484 ///   Except when it is the operand of the sizeof operator ...
   3485 ///
   3486 /// C++ [expr.sizeof]p4
   3487 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3488 ///   standard conversions are not applied to the operand of sizeof.
   3489 ///
   3490 /// This policy is followed for all of the unary trait expressions.
   3491 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3492                                             SourceLocation OpLoc,
   3493                                             SourceRange ExprRange,
   3494                                             UnaryExprOrTypeTrait ExprKind) {
   3495   if (ExprType->isDependentType())
   3496     return false;
   3497 
   3498   // C++ [expr.sizeof]p2:
   3499   //     When applied to a reference or a reference type, the result
   3500   //     is the size of the referenced type.
   3501   // C++11 [expr.alignof]p3:
   3502   //     When alignof is applied to a reference type, the result
   3503   //     shall be the alignment of the referenced type.
   3504   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3505     ExprType = Ref->getPointeeType();
   3506 
   3507   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3508   //   When alignof or _Alignof is applied to an array type, the result
   3509   //   is the alignment of the element type.
   3510   if (ExprKind == UETT_AlignOf)
   3511     ExprType = Context.getBaseElementType(ExprType);
   3512 
   3513   if (ExprKind == UETT_VecStep)
   3514     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3515 
   3516   // Whitelist some types as extensions
   3517   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3518                                       ExprKind))
   3519     return false;
   3520 
   3521   if (RequireCompleteType(OpLoc, ExprType,
   3522                           diag::err_sizeof_alignof_incomplete_type,
   3523                           ExprKind, ExprRange))
   3524     return true;
   3525 
   3526   if (ExprType->isFunctionType()) {
   3527     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3528       << ExprKind << ExprRange;
   3529     return true;
   3530   }
   3531 
   3532   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3533                                        ExprKind))
   3534     return true;
   3535 
   3536   return false;
   3537 }
   3538 
   3539 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3540   E = E->IgnoreParens();
   3541 
   3542   // Cannot know anything else if the expression is dependent.
   3543   if (E->isTypeDependent())
   3544     return false;
   3545 
   3546   if (E->getObjectKind() == OK_BitField) {
   3547     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   3548        << 1 << E->getSourceRange();
   3549     return true;
   3550   }
   3551 
   3552   ValueDecl *D = nullptr;
   3553   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3554     D = DRE->getDecl();
   3555   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3556     D = ME->getMemberDecl();
   3557   }
   3558 
   3559   // If it's a field, require the containing struct to have a
   3560   // complete definition so that we can compute the layout.
   3561   //
   3562   // This can happen in C++11 onwards, either by naming the member
   3563   // in a way that is not transformed into a member access expression
   3564   // (in an unevaluated operand, for instance), or by naming the member
   3565   // in a trailing-return-type.
   3566   //
   3567   // For the record, since __alignof__ on expressions is a GCC
   3568   // extension, GCC seems to permit this but always gives the
   3569   // nonsensical answer 0.
   3570   //
   3571   // We don't really need the layout here --- we could instead just
   3572   // directly check for all the appropriate alignment-lowing
   3573   // attributes --- but that would require duplicating a lot of
   3574   // logic that just isn't worth duplicating for such a marginal
   3575   // use-case.
   3576   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3577     // Fast path this check, since we at least know the record has a
   3578     // definition if we can find a member of it.
   3579     if (!FD->getParent()->isCompleteDefinition()) {
   3580       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3581         << E->getSourceRange();
   3582       return true;
   3583     }
   3584 
   3585     // Otherwise, if it's a field, and the field doesn't have
   3586     // reference type, then it must have a complete type (or be a
   3587     // flexible array member, which we explicitly want to
   3588     // white-list anyway), which makes the following checks trivial.
   3589     if (!FD->getType()->isReferenceType())
   3590       return false;
   3591   }
   3592 
   3593   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3594 }
   3595 
   3596 bool Sema::CheckVecStepExpr(Expr *E) {
   3597   E = E->IgnoreParens();
   3598 
   3599   // Cannot know anything else if the expression is dependent.
   3600   if (E->isTypeDependent())
   3601     return false;
   3602 
   3603   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3604 }
   3605 
   3606 /// \brief Build a sizeof or alignof expression given a type operand.
   3607 ExprResult
   3608 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3609                                      SourceLocation OpLoc,
   3610                                      UnaryExprOrTypeTrait ExprKind,
   3611                                      SourceRange R) {
   3612   if (!TInfo)
   3613     return ExprError();
   3614 
   3615   QualType T = TInfo->getType();
   3616 
   3617   if (!T->isDependentType() &&
   3618       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3619     return ExprError();
   3620 
   3621   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3622   return new (Context) UnaryExprOrTypeTraitExpr(
   3623       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3624 }
   3625 
   3626 /// \brief Build a sizeof or alignof expression given an expression
   3627 /// operand.
   3628 ExprResult
   3629 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3630                                      UnaryExprOrTypeTrait ExprKind) {
   3631   ExprResult PE = CheckPlaceholderExpr(E);
   3632   if (PE.isInvalid())
   3633     return ExprError();
   3634 
   3635   E = PE.get();
   3636 
   3637   // Verify that the operand is valid.
   3638   bool isInvalid = false;
   3639   if (E->isTypeDependent()) {
   3640     // Delay type-checking for type-dependent expressions.
   3641   } else if (ExprKind == UETT_AlignOf) {
   3642     isInvalid = CheckAlignOfExpr(*this, E);
   3643   } else if (ExprKind == UETT_VecStep) {
   3644     isInvalid = CheckVecStepExpr(E);
   3645   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3646     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   3647     isInvalid = true;
   3648   } else {
   3649     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3650   }
   3651 
   3652   if (isInvalid)
   3653     return ExprError();
   3654 
   3655   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3656     PE = TransformToPotentiallyEvaluated(E);
   3657     if (PE.isInvalid()) return ExprError();
   3658     E = PE.get();
   3659   }
   3660 
   3661   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3662   return new (Context) UnaryExprOrTypeTraitExpr(
   3663       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   3664 }
   3665 
   3666 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3667 /// expr and the same for @c alignof and @c __alignof
   3668 /// Note that the ArgRange is invalid if isType is false.
   3669 ExprResult
   3670 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3671                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3672                                     void *TyOrEx, const SourceRange &ArgRange) {
   3673   // If error parsing type, ignore.
   3674   if (!TyOrEx) return ExprError();
   3675 
   3676   if (IsType) {
   3677     TypeSourceInfo *TInfo;
   3678     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3679     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3680   }
   3681 
   3682   Expr *ArgEx = (Expr *)TyOrEx;
   3683   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3684   return Result;
   3685 }
   3686 
   3687 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3688                                      bool IsReal) {
   3689   if (V.get()->isTypeDependent())
   3690     return S.Context.DependentTy;
   3691 
   3692   // _Real and _Imag are only l-values for normal l-values.
   3693   if (V.get()->getObjectKind() != OK_Ordinary) {
   3694     V = S.DefaultLvalueConversion(V.get());
   3695     if (V.isInvalid())
   3696       return QualType();
   3697   }
   3698 
   3699   // These operators return the element type of a complex type.
   3700   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3701     return CT->getElementType();
   3702 
   3703   // Otherwise they pass through real integer and floating point types here.
   3704   if (V.get()->getType()->isArithmeticType())
   3705     return V.get()->getType();
   3706 
   3707   // Test for placeholders.
   3708   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3709   if (PR.isInvalid()) return QualType();
   3710   if (PR.get() != V.get()) {
   3711     V = PR;
   3712     return CheckRealImagOperand(S, V, Loc, IsReal);
   3713   }
   3714 
   3715   // Reject anything else.
   3716   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3717     << (IsReal ? "__real" : "__imag");
   3718   return QualType();
   3719 }
   3720 
   3721 
   3722 
   3723 ExprResult
   3724 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3725                           tok::TokenKind Kind, Expr *Input) {
   3726   UnaryOperatorKind Opc;
   3727   switch (Kind) {
   3728   default: llvm_unreachable("Unknown unary op!");
   3729   case tok::plusplus:   Opc = UO_PostInc; break;
   3730   case tok::minusminus: Opc = UO_PostDec; break;
   3731   }
   3732 
   3733   // Since this might is a postfix expression, get rid of ParenListExprs.
   3734   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3735   if (Result.isInvalid()) return ExprError();
   3736   Input = Result.get();
   3737 
   3738   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3739 }
   3740 
   3741 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3742 ///
   3743 /// \return true on error
   3744 static bool checkArithmeticOnObjCPointer(Sema &S,
   3745                                          SourceLocation opLoc,
   3746                                          Expr *op) {
   3747   assert(op->getType()->isObjCObjectPointerType());
   3748   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   3749       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   3750     return false;
   3751 
   3752   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3753     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3754     << op->getSourceRange();
   3755   return true;
   3756 }
   3757 
   3758 ExprResult
   3759 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3760                               Expr *idx, SourceLocation rbLoc) {
   3761   // Since this might be a postfix expression, get rid of ParenListExprs.
   3762   if (isa<ParenListExpr>(base)) {
   3763     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3764     if (result.isInvalid()) return ExprError();
   3765     base = result.get();
   3766   }
   3767 
   3768   // Handle any non-overload placeholder types in the base and index
   3769   // expressions.  We can't handle overloads here because the other
   3770   // operand might be an overloadable type, in which case the overload
   3771   // resolution for the operator overload should get the first crack
   3772   // at the overload.
   3773   if (base->getType()->isNonOverloadPlaceholderType()) {
   3774     ExprResult result = CheckPlaceholderExpr(base);
   3775     if (result.isInvalid()) return ExprError();
   3776     base = result.get();
   3777   }
   3778   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3779     ExprResult result = CheckPlaceholderExpr(idx);
   3780     if (result.isInvalid()) return ExprError();
   3781     idx = result.get();
   3782   }
   3783 
   3784   // Build an unanalyzed expression if either operand is type-dependent.
   3785   if (getLangOpts().CPlusPlus &&
   3786       (base->isTypeDependent() || idx->isTypeDependent())) {
   3787     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   3788                                             VK_LValue, OK_Ordinary, rbLoc);
   3789   }
   3790 
   3791   // Use C++ overloaded-operator rules if either operand has record
   3792   // type.  The spec says to do this if either type is *overloadable*,
   3793   // but enum types can't declare subscript operators or conversion
   3794   // operators, so there's nothing interesting for overload resolution
   3795   // to do if there aren't any record types involved.
   3796   //
   3797   // ObjC pointers have their own subscripting logic that is not tied
   3798   // to overload resolution and so should not take this path.
   3799   if (getLangOpts().CPlusPlus &&
   3800       (base->getType()->isRecordType() ||
   3801        (!base->getType()->isObjCObjectPointerType() &&
   3802         idx->getType()->isRecordType()))) {
   3803     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3804   }
   3805 
   3806   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3807 }
   3808 
   3809 ExprResult
   3810 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   3811                                       Expr *Idx, SourceLocation RLoc) {
   3812   Expr *LHSExp = Base;
   3813   Expr *RHSExp = Idx;
   3814 
   3815   // Perform default conversions.
   3816   if (!LHSExp->getType()->getAs<VectorType>()) {
   3817     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   3818     if (Result.isInvalid())
   3819       return ExprError();
   3820     LHSExp = Result.get();
   3821   }
   3822   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   3823   if (Result.isInvalid())
   3824     return ExprError();
   3825   RHSExp = Result.get();
   3826 
   3827   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   3828   ExprValueKind VK = VK_LValue;
   3829   ExprObjectKind OK = OK_Ordinary;
   3830 
   3831   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   3832   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   3833   // in the subscript position. As a result, we need to derive the array base
   3834   // and index from the expression types.
   3835   Expr *BaseExpr, *IndexExpr;
   3836   QualType ResultType;
   3837   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   3838     BaseExpr = LHSExp;
   3839     IndexExpr = RHSExp;
   3840     ResultType = Context.DependentTy;
   3841   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3842     BaseExpr = LHSExp;
   3843     IndexExpr = RHSExp;
   3844     ResultType = PTy->getPointeeType();
   3845   } else if (const ObjCObjectPointerType *PTy =
   3846                LHSTy->getAs<ObjCObjectPointerType>()) {
   3847     BaseExpr = LHSExp;
   3848     IndexExpr = RHSExp;
   3849 
   3850     // Use custom logic if this should be the pseudo-object subscript
   3851     // expression.
   3852     if (!LangOpts.isSubscriptPointerArithmetic())
   3853       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   3854                                           nullptr);
   3855 
   3856     ResultType = PTy->getPointeeType();
   3857   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   3858      // Handle the uncommon case of "123[Ptr]".
   3859     BaseExpr = RHSExp;
   3860     IndexExpr = LHSExp;
   3861     ResultType = PTy->getPointeeType();
   3862   } else if (const ObjCObjectPointerType *PTy =
   3863                RHSTy->getAs<ObjCObjectPointerType>()) {
   3864      // Handle the uncommon case of "123[Ptr]".
   3865     BaseExpr = RHSExp;
   3866     IndexExpr = LHSExp;
   3867     ResultType = PTy->getPointeeType();
   3868     if (!LangOpts.isSubscriptPointerArithmetic()) {
   3869       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3870         << ResultType << BaseExpr->getSourceRange();
   3871       return ExprError();
   3872     }
   3873   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   3874     BaseExpr = LHSExp;    // vectors: V[123]
   3875     IndexExpr = RHSExp;
   3876     VK = LHSExp->getValueKind();
   3877     if (VK != VK_RValue)
   3878       OK = OK_VectorComponent;
   3879 
   3880     // FIXME: need to deal with const...
   3881     ResultType = VTy->getElementType();
   3882   } else if (LHSTy->isArrayType()) {
   3883     // If we see an array that wasn't promoted by
   3884     // DefaultFunctionArrayLvalueConversion, it must be an array that
   3885     // wasn't promoted because of the C90 rule that doesn't
   3886     // allow promoting non-lvalue arrays.  Warn, then
   3887     // force the promotion here.
   3888     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3889         LHSExp->getSourceRange();
   3890     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   3891                                CK_ArrayToPointerDecay).get();
   3892     LHSTy = LHSExp->getType();
   3893 
   3894     BaseExpr = LHSExp;
   3895     IndexExpr = RHSExp;
   3896     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   3897   } else if (RHSTy->isArrayType()) {
   3898     // Same as previous, except for 123[f().a] case
   3899     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3900         RHSExp->getSourceRange();
   3901     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   3902                                CK_ArrayToPointerDecay).get();
   3903     RHSTy = RHSExp->getType();
   3904 
   3905     BaseExpr = RHSExp;
   3906     IndexExpr = LHSExp;
   3907     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   3908   } else {
   3909     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   3910        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   3911   }
   3912   // C99 6.5.2.1p1
   3913   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   3914     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   3915                      << IndexExpr->getSourceRange());
   3916 
   3917   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3918        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   3919          && !IndexExpr->isTypeDependent())
   3920     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   3921 
   3922   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   3923   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   3924   // type. Note that Functions are not objects, and that (in C99 parlance)
   3925   // incomplete types are not object types.
   3926   if (ResultType->isFunctionType()) {
   3927     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   3928       << ResultType << BaseExpr->getSourceRange();
   3929     return ExprError();
   3930   }
   3931 
   3932   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   3933     // GNU extension: subscripting on pointer to void
   3934     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   3935       << BaseExpr->getSourceRange();
   3936 
   3937     // C forbids expressions of unqualified void type from being l-values.
   3938     // See IsCForbiddenLValueType.
   3939     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   3940   } else if (!ResultType->isDependentType() &&
   3941       RequireCompleteType(LLoc, ResultType,
   3942                           diag::err_subscript_incomplete_type, BaseExpr))
   3943     return ExprError();
   3944 
   3945   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   3946          !ResultType.isCForbiddenLValueType());
   3947 
   3948   return new (Context)
   3949       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   3950 }
   3951 
   3952 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   3953                                         FunctionDecl *FD,
   3954                                         ParmVarDecl *Param) {
   3955   if (Param->hasUnparsedDefaultArg()) {
   3956     Diag(CallLoc,
   3957          diag::err_use_of_default_argument_to_function_declared_later) <<
   3958       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   3959     Diag(UnparsedDefaultArgLocs[Param],
   3960          diag::note_default_argument_declared_here);
   3961     return ExprError();
   3962   }
   3963 
   3964   if (Param->hasUninstantiatedDefaultArg()) {
   3965     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   3966 
   3967     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   3968                                                  Param);
   3969 
   3970     // Instantiate the expression.
   3971     MultiLevelTemplateArgumentList MutiLevelArgList
   3972       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   3973 
   3974     InstantiatingTemplate Inst(*this, CallLoc, Param,
   3975                                MutiLevelArgList.getInnermost());
   3976     if (Inst.isInvalid())
   3977       return ExprError();
   3978 
   3979     ExprResult Result;
   3980     {
   3981       // C++ [dcl.fct.default]p5:
   3982       //   The names in the [default argument] expression are bound, and
   3983       //   the semantic constraints are checked, at the point where the
   3984       //   default argument expression appears.
   3985       ContextRAII SavedContext(*this, FD);
   3986       LocalInstantiationScope Local(*this);
   3987       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   3988     }
   3989     if (Result.isInvalid())
   3990       return ExprError();
   3991 
   3992     // Check the expression as an initializer for the parameter.
   3993     InitializedEntity Entity
   3994       = InitializedEntity::InitializeParameter(Context, Param);
   3995     InitializationKind Kind
   3996       = InitializationKind::CreateCopy(Param->getLocation(),
   3997              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   3998     Expr *ResultE = Result.getAs<Expr>();
   3999 
   4000     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4001     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4002     if (Result.isInvalid())
   4003       return ExprError();
   4004 
   4005     Expr *Arg = Result.getAs<Expr>();
   4006     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   4007     // Build the default argument expression.
   4008     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
   4009   }
   4010 
   4011   // If the default expression creates temporaries, we need to
   4012   // push them to the current stack of expression temporaries so they'll
   4013   // be properly destroyed.
   4014   // FIXME: We should really be rebuilding the default argument with new
   4015   // bound temporaries; see the comment in PR5810.
   4016   // We don't need to do that with block decls, though, because
   4017   // blocks in default argument expression can never capture anything.
   4018   if (isa<ExprWithCleanups>(Param->getInit())) {
   4019     // Set the "needs cleanups" bit regardless of whether there are
   4020     // any explicit objects.
   4021     ExprNeedsCleanups = true;
   4022 
   4023     // Append all the objects to the cleanup list.  Right now, this
   4024     // should always be a no-op, because blocks in default argument
   4025     // expressions should never be able to capture anything.
   4026     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   4027            "default argument expression has capturing blocks?");
   4028   }
   4029 
   4030   // We already type-checked the argument, so we know it works.
   4031   // Just mark all of the declarations in this potentially-evaluated expression
   4032   // as being "referenced".
   4033   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4034                                    /*SkipLocalVariables=*/true);
   4035   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4036 }
   4037 
   4038 
   4039 Sema::VariadicCallType
   4040 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4041                           Expr *Fn) {
   4042   if (Proto && Proto->isVariadic()) {
   4043     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4044       return VariadicConstructor;
   4045     else if (Fn && Fn->getType()->isBlockPointerType())
   4046       return VariadicBlock;
   4047     else if (FDecl) {
   4048       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4049         if (Method->isInstance())
   4050           return VariadicMethod;
   4051     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4052       return VariadicMethod;
   4053     return VariadicFunction;
   4054   }
   4055   return VariadicDoesNotApply;
   4056 }
   4057 
   4058 namespace {
   4059 class FunctionCallCCC : public FunctionCallFilterCCC {
   4060 public:
   4061   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4062                   unsigned NumArgs, MemberExpr *ME)
   4063       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4064         FunctionName(FuncName) {}
   4065 
   4066   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4067     if (!candidate.getCorrectionSpecifier() ||
   4068         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4069       return false;
   4070     }
   4071 
   4072     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4073   }
   4074 
   4075 private:
   4076   const IdentifierInfo *const FunctionName;
   4077 };
   4078 }
   4079 
   4080 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4081                                                FunctionDecl *FDecl,
   4082                                                ArrayRef<Expr *> Args) {
   4083   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4084   DeclarationName FuncName = FDecl->getDeclName();
   4085   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4086   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
   4087 
   4088   if (TypoCorrection Corrected = S.CorrectTypo(
   4089           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4090           S.getScopeForContext(S.CurContext), nullptr, CCC,
   4091           Sema::CTK_ErrorRecovery)) {
   4092     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   4093       if (Corrected.isOverloaded()) {
   4094         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4095         OverloadCandidateSet::iterator Best;
   4096         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   4097                                            CDEnd = Corrected.end();
   4098              CD != CDEnd; ++CD) {
   4099           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   4100             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4101                                    OCS);
   4102         }
   4103         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4104         case OR_Success:
   4105           ND = Best->Function;
   4106           Corrected.setCorrectionDecl(ND);
   4107           break;
   4108         default:
   4109           break;
   4110         }
   4111       }
   4112       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   4113         return Corrected;
   4114       }
   4115     }
   4116   }
   4117   return TypoCorrection();
   4118 }
   4119 
   4120 /// ConvertArgumentsForCall - Converts the arguments specified in
   4121 /// Args/NumArgs to the parameter types of the function FDecl with
   4122 /// function prototype Proto. Call is the call expression itself, and
   4123 /// Fn is the function expression. For a C++ member function, this
   4124 /// routine does not attempt to convert the object argument. Returns
   4125 /// true if the call is ill-formed.
   4126 bool
   4127 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4128                               FunctionDecl *FDecl,
   4129                               const FunctionProtoType *Proto,
   4130                               ArrayRef<Expr *> Args,
   4131                               SourceLocation RParenLoc,
   4132                               bool IsExecConfig) {
   4133   // Bail out early if calling a builtin with custom typechecking.
   4134   // We don't need to do this in the
   4135   if (FDecl)
   4136     if (unsigned ID = FDecl->getBuiltinID())
   4137       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4138         return false;
   4139 
   4140   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4141   // assignment, to the types of the corresponding parameter, ...
   4142   unsigned NumParams = Proto->getNumParams();
   4143   bool Invalid = false;
   4144   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4145   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4146                        ? 1 /* block */
   4147                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4148                                        : 0 /* function */);
   4149 
   4150   // If too few arguments are available (and we don't have default
   4151   // arguments for the remaining parameters), don't make the call.
   4152   if (Args.size() < NumParams) {
   4153     if (Args.size() < MinArgs) {
   4154       TypoCorrection TC;
   4155       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4156         unsigned diag_id =
   4157             MinArgs == NumParams && !Proto->isVariadic()
   4158                 ? diag::err_typecheck_call_too_few_args_suggest
   4159                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4160         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4161                                         << static_cast<unsigned>(Args.size())
   4162                                         << TC.getCorrectionRange());
   4163       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4164         Diag(RParenLoc,
   4165              MinArgs == NumParams && !Proto->isVariadic()
   4166                  ? diag::err_typecheck_call_too_few_args_one
   4167                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4168             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4169       else
   4170         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4171                             ? diag::err_typecheck_call_too_few_args
   4172                             : diag::err_typecheck_call_too_few_args_at_least)
   4173             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4174             << Fn->getSourceRange();
   4175 
   4176       // Emit the location of the prototype.
   4177       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4178         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4179           << FDecl;
   4180 
   4181       return true;
   4182     }
   4183     Call->setNumArgs(Context, NumParams);
   4184   }
   4185 
   4186   // If too many are passed and not variadic, error on the extras and drop
   4187   // them.
   4188   if (Args.size() > NumParams) {
   4189     if (!Proto->isVariadic()) {
   4190       TypoCorrection TC;
   4191       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4192         unsigned diag_id =
   4193             MinArgs == NumParams && !Proto->isVariadic()
   4194                 ? diag::err_typecheck_call_too_many_args_suggest
   4195                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4196         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4197                                         << static_cast<unsigned>(Args.size())
   4198                                         << TC.getCorrectionRange());
   4199       } else if (NumParams == 1 && FDecl &&
   4200                  FDecl->getParamDecl(0)->getDeclName())
   4201         Diag(Args[NumParams]->getLocStart(),
   4202              MinArgs == NumParams
   4203                  ? diag::err_typecheck_call_too_many_args_one
   4204                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4205             << FnKind << FDecl->getParamDecl(0)
   4206             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4207             << SourceRange(Args[NumParams]->getLocStart(),
   4208                            Args.back()->getLocEnd());
   4209       else
   4210         Diag(Args[NumParams]->getLocStart(),
   4211              MinArgs == NumParams
   4212                  ? diag::err_typecheck_call_too_many_args
   4213                  : diag::err_typecheck_call_too_many_args_at_most)
   4214             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4215             << Fn->getSourceRange()
   4216             << SourceRange(Args[NumParams]->getLocStart(),
   4217                            Args.back()->getLocEnd());
   4218 
   4219       // Emit the location of the prototype.
   4220       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4221         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4222           << FDecl;
   4223 
   4224       // This deletes the extra arguments.
   4225       Call->setNumArgs(Context, NumParams);
   4226       return true;
   4227     }
   4228   }
   4229   SmallVector<Expr *, 8> AllArgs;
   4230   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4231 
   4232   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4233                                    Proto, 0, Args, AllArgs, CallType);
   4234   if (Invalid)
   4235     return true;
   4236   unsigned TotalNumArgs = AllArgs.size();
   4237   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4238     Call->setArg(i, AllArgs[i]);
   4239 
   4240   return false;
   4241 }
   4242 
   4243 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4244                                   const FunctionProtoType *Proto,
   4245                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4246                                   SmallVectorImpl<Expr *> &AllArgs,
   4247                                   VariadicCallType CallType, bool AllowExplicit,
   4248                                   bool IsListInitialization) {
   4249   unsigned NumParams = Proto->getNumParams();
   4250   bool Invalid = false;
   4251   unsigned ArgIx = 0;
   4252   // Continue to check argument types (even if we have too few/many args).
   4253   for (unsigned i = FirstParam; i < NumParams; i++) {
   4254     QualType ProtoArgType = Proto->getParamType(i);
   4255 
   4256     Expr *Arg;
   4257     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4258     if (ArgIx < Args.size()) {
   4259       Arg = Args[ArgIx++];
   4260 
   4261       if (RequireCompleteType(Arg->getLocStart(),
   4262                               ProtoArgType,
   4263                               diag::err_call_incomplete_argument, Arg))
   4264         return true;
   4265 
   4266       // Strip the unbridged-cast placeholder expression off, if applicable.
   4267       bool CFAudited = false;
   4268       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4269           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4270           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4271         Arg = stripARCUnbridgedCast(Arg);
   4272       else if (getLangOpts().ObjCAutoRefCount &&
   4273                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4274                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4275         CFAudited = true;
   4276 
   4277       InitializedEntity Entity =
   4278           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4279                                                          ProtoArgType)
   4280                 : InitializedEntity::InitializeParameter(
   4281                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4282 
   4283       // Remember that parameter belongs to a CF audited API.
   4284       if (CFAudited)
   4285         Entity.setParameterCFAudited();
   4286 
   4287       ExprResult ArgE = PerformCopyInitialization(
   4288           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4289       if (ArgE.isInvalid())
   4290         return true;
   4291 
   4292       Arg = ArgE.getAs<Expr>();
   4293     } else {
   4294       assert(Param && "can't use default arguments without a known callee");
   4295 
   4296       ExprResult ArgExpr =
   4297         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4298       if (ArgExpr.isInvalid())
   4299         return true;
   4300 
   4301       Arg = ArgExpr.getAs<Expr>();
   4302     }
   4303 
   4304     // Check for array bounds violations for each argument to the call. This
   4305     // check only triggers warnings when the argument isn't a more complex Expr
   4306     // with its own checking, such as a BinaryOperator.
   4307     CheckArrayAccess(Arg);
   4308 
   4309     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4310     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4311 
   4312     AllArgs.push_back(Arg);
   4313   }
   4314 
   4315   // If this is a variadic call, handle args passed through "...".
   4316   if (CallType != VariadicDoesNotApply) {
   4317     // Assume that extern "C" functions with variadic arguments that
   4318     // return __unknown_anytype aren't *really* variadic.
   4319     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4320         FDecl->isExternC()) {
   4321       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4322         QualType paramType; // ignored
   4323         ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
   4324         Invalid |= arg.isInvalid();
   4325         AllArgs.push_back(arg.get());
   4326       }
   4327 
   4328     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4329     } else {
   4330       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4331         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
   4332                                                           FDecl);
   4333         Invalid |= Arg.isInvalid();
   4334         AllArgs.push_back(Arg.get());
   4335       }
   4336     }
   4337 
   4338     // Check for array bounds violations.
   4339     for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
   4340       CheckArrayAccess(Args[i]);
   4341   }
   4342   return Invalid;
   4343 }
   4344 
   4345 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4346   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4347   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4348     TL = DTL.getOriginalLoc();
   4349   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4350     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4351       << ATL.getLocalSourceRange();
   4352 }
   4353 
   4354 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4355 /// array parameter, check that it is non-null, and that if it is formed by
   4356 /// array-to-pointer decay, the underlying array is sufficiently large.
   4357 ///
   4358 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4359 /// array type derivation, then for each call to the function, the value of the
   4360 /// corresponding actual argument shall provide access to the first element of
   4361 /// an array with at least as many elements as specified by the size expression.
   4362 void
   4363 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4364                                ParmVarDecl *Param,
   4365                                const Expr *ArgExpr) {
   4366   // Static array parameters are not supported in C++.
   4367   if (!Param || getLangOpts().CPlusPlus)
   4368     return;
   4369 
   4370   QualType OrigTy = Param->getOriginalType();
   4371 
   4372   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4373   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4374     return;
   4375 
   4376   if (ArgExpr->isNullPointerConstant(Context,
   4377                                      Expr::NPC_NeverValueDependent)) {
   4378     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4379     DiagnoseCalleeStaticArrayParam(*this, Param);
   4380     return;
   4381   }
   4382 
   4383   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4384   if (!CAT)
   4385     return;
   4386 
   4387   const ConstantArrayType *ArgCAT =
   4388     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4389   if (!ArgCAT)
   4390     return;
   4391 
   4392   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4393     Diag(CallLoc, diag::warn_static_array_too_small)
   4394       << ArgExpr->getSourceRange()
   4395       << (unsigned) ArgCAT->getSize().getZExtValue()
   4396       << (unsigned) CAT->getSize().getZExtValue();
   4397     DiagnoseCalleeStaticArrayParam(*this, Param);
   4398   }
   4399 }
   4400 
   4401 /// Given a function expression of unknown-any type, try to rebuild it
   4402 /// to have a function type.
   4403 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4404 
   4405 /// Is the given type a placeholder that we need to lower out
   4406 /// immediately during argument processing?
   4407 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4408   // Placeholders are never sugared.
   4409   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4410   if (!placeholder) return false;
   4411 
   4412   switch (placeholder->getKind()) {
   4413   // Ignore all the non-placeholder types.
   4414 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4415 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4416 #include "clang/AST/BuiltinTypes.def"
   4417     return false;
   4418 
   4419   // We cannot lower out overload sets; they might validly be resolved
   4420   // by the call machinery.
   4421   case BuiltinType::Overload:
   4422     return false;
   4423 
   4424   // Unbridged casts in ARC can be handled in some call positions and
   4425   // should be left in place.
   4426   case BuiltinType::ARCUnbridgedCast:
   4427     return false;
   4428 
   4429   // Pseudo-objects should be converted as soon as possible.
   4430   case BuiltinType::PseudoObject:
   4431     return true;
   4432 
   4433   // The debugger mode could theoretically but currently does not try
   4434   // to resolve unknown-typed arguments based on known parameter types.
   4435   case BuiltinType::UnknownAny:
   4436     return true;
   4437 
   4438   // These are always invalid as call arguments and should be reported.
   4439   case BuiltinType::BoundMember:
   4440   case BuiltinType::BuiltinFn:
   4441     return true;
   4442   }
   4443   llvm_unreachable("bad builtin type kind");
   4444 }
   4445 
   4446 /// Check an argument list for placeholders that we won't try to
   4447 /// handle later.
   4448 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   4449   // Apply this processing to all the arguments at once instead of
   4450   // dying at the first failure.
   4451   bool hasInvalid = false;
   4452   for (size_t i = 0, e = args.size(); i != e; i++) {
   4453     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   4454       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   4455       if (result.isInvalid()) hasInvalid = true;
   4456       else args[i] = result.get();
   4457     }
   4458   }
   4459   return hasInvalid;
   4460 }
   4461 
   4462 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   4463 /// This provides the location of the left/right parens and a list of comma
   4464 /// locations.
   4465 ExprResult
   4466 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   4467                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   4468                     Expr *ExecConfig, bool IsExecConfig) {
   4469   // Since this might be a postfix expression, get rid of ParenListExprs.
   4470   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   4471   if (Result.isInvalid()) return ExprError();
   4472   Fn = Result.get();
   4473 
   4474   if (checkArgsForPlaceholders(*this, ArgExprs))
   4475     return ExprError();
   4476 
   4477   if (getLangOpts().CPlusPlus) {
   4478     // If this is a pseudo-destructor expression, build the call immediately.
   4479     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   4480       if (!ArgExprs.empty()) {
   4481         // Pseudo-destructor calls should not have any arguments.
   4482         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   4483           << FixItHint::CreateRemoval(
   4484                                     SourceRange(ArgExprs[0]->getLocStart(),
   4485                                                 ArgExprs.back()->getLocEnd()));
   4486       }
   4487 
   4488       return new (Context)
   4489           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   4490     }
   4491     if (Fn->getType() == Context.PseudoObjectTy) {
   4492       ExprResult result = CheckPlaceholderExpr(Fn);
   4493       if (result.isInvalid()) return ExprError();
   4494       Fn = result.get();
   4495     }
   4496 
   4497     // Determine whether this is a dependent call inside a C++ template,
   4498     // in which case we won't do any semantic analysis now.
   4499     // FIXME: Will need to cache the results of name lookup (including ADL) in
   4500     // Fn.
   4501     bool Dependent = false;
   4502     if (Fn->isTypeDependent())
   4503       Dependent = true;
   4504     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   4505       Dependent = true;
   4506 
   4507     if (Dependent) {
   4508       if (ExecConfig) {
   4509         return new (Context) CUDAKernelCallExpr(
   4510             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   4511             Context.DependentTy, VK_RValue, RParenLoc);
   4512       } else {
   4513         return new (Context) CallExpr(
   4514             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
   4515       }
   4516     }
   4517 
   4518     // Determine whether this is a call to an object (C++ [over.call.object]).
   4519     if (Fn->getType()->isRecordType())
   4520       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
   4521                                           RParenLoc);
   4522 
   4523     if (Fn->getType() == Context.UnknownAnyTy) {
   4524       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4525       if (result.isInvalid()) return ExprError();
   4526       Fn = result.get();
   4527     }
   4528 
   4529     if (Fn->getType() == Context.BoundMemberTy) {
   4530       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   4531     }
   4532   }
   4533 
   4534   // Check for overloaded calls.  This can happen even in C due to extensions.
   4535   if (Fn->getType() == Context.OverloadTy) {
   4536     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   4537 
   4538     // We aren't supposed to apply this logic for if there's an '&' involved.
   4539     if (!find.HasFormOfMemberPointer) {
   4540       OverloadExpr *ovl = find.Expression;
   4541       if (isa<UnresolvedLookupExpr>(ovl)) {
   4542         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   4543         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
   4544                                        RParenLoc, ExecConfig);
   4545       } else {
   4546         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
   4547                                          RParenLoc);
   4548       }
   4549     }
   4550   }
   4551 
   4552   // If we're directly calling a function, get the appropriate declaration.
   4553   if (Fn->getType() == Context.UnknownAnyTy) {
   4554     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4555     if (result.isInvalid()) return ExprError();
   4556     Fn = result.get();
   4557   }
   4558 
   4559   Expr *NakedFn = Fn->IgnoreParens();
   4560 
   4561   NamedDecl *NDecl = nullptr;
   4562   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   4563     if (UnOp->getOpcode() == UO_AddrOf)
   4564       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   4565 
   4566   if (isa<DeclRefExpr>(NakedFn))
   4567     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   4568   else if (isa<MemberExpr>(NakedFn))
   4569     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   4570 
   4571   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
   4572     if (FD->hasAttr<EnableIfAttr>()) {
   4573       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
   4574         Diag(Fn->getLocStart(),
   4575              isa<CXXMethodDecl>(FD) ?
   4576                  diag::err_ovl_no_viable_member_function_in_call :
   4577                  diag::err_ovl_no_viable_function_in_call)
   4578           << FD << FD->getSourceRange();
   4579         Diag(FD->getLocation(),
   4580              diag::note_ovl_candidate_disabled_by_enable_if_attr)
   4581             << Attr->getCond()->getSourceRange() << Attr->getMessage();
   4582       }
   4583     }
   4584   }
   4585 
   4586   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
   4587                                ExecConfig, IsExecConfig);
   4588 }
   4589 
   4590 ExprResult
   4591 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
   4592                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
   4593   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
   4594   if (!ConfigDecl)
   4595     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
   4596                           << "cudaConfigureCall");
   4597   QualType ConfigQTy = ConfigDecl->getType();
   4598 
   4599   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
   4600       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
   4601   MarkFunctionReferenced(LLLLoc, ConfigDecl);
   4602 
   4603   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
   4604                        /*IsExecConfig=*/true);
   4605 }
   4606 
   4607 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   4608 ///
   4609 /// __builtin_astype( value, dst type )
   4610 ///
   4611 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   4612                                  SourceLocation BuiltinLoc,
   4613                                  SourceLocation RParenLoc) {
   4614   ExprValueKind VK = VK_RValue;
   4615   ExprObjectKind OK = OK_Ordinary;
   4616   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   4617   QualType SrcTy = E->getType();
   4618   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   4619     return ExprError(Diag(BuiltinLoc,
   4620                           diag::err_invalid_astype_of_different_size)
   4621                      << DstTy
   4622                      << SrcTy
   4623                      << E->getSourceRange());
   4624   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   4625 }
   4626 
   4627 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
   4628 /// provided arguments.
   4629 ///
   4630 /// __builtin_convertvector( value, dst type )
   4631 ///
   4632 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
   4633                                         SourceLocation BuiltinLoc,
   4634                                         SourceLocation RParenLoc) {
   4635   TypeSourceInfo *TInfo;
   4636   GetTypeFromParser(ParsedDestTy, &TInfo);
   4637   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
   4638 }
   4639 
   4640 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   4641 /// i.e. an expression not of \p OverloadTy.  The expression should
   4642 /// unary-convert to an expression of function-pointer or
   4643 /// block-pointer type.
   4644 ///
   4645 /// \param NDecl the declaration being called, if available
   4646 ExprResult
   4647 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   4648                             SourceLocation LParenLoc,
   4649                             ArrayRef<Expr *> Args,
   4650                             SourceLocation RParenLoc,
   4651                             Expr *Config, bool IsExecConfig) {
   4652   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   4653   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   4654 
   4655   // Promote the function operand.
   4656   // We special-case function promotion here because we only allow promoting
   4657   // builtin functions to function pointers in the callee of a call.
   4658   ExprResult Result;
   4659   if (BuiltinID &&
   4660       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   4661     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   4662                                CK_BuiltinFnToFnPtr).get();
   4663   } else {
   4664     Result = CallExprUnaryConversions(Fn);
   4665   }
   4666   if (Result.isInvalid())
   4667     return ExprError();
   4668   Fn = Result.get();
   4669 
   4670   // Make the call expr early, before semantic checks.  This guarantees cleanup
   4671   // of arguments and function on error.
   4672   CallExpr *TheCall;
   4673   if (Config)
   4674     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   4675                                                cast<CallExpr>(Config), Args,
   4676                                                Context.BoolTy, VK_RValue,
   4677                                                RParenLoc);
   4678   else
   4679     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
   4680                                      VK_RValue, RParenLoc);
   4681 
   4682   // Bail out early if calling a builtin with custom typechecking.
   4683   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   4684     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4685 
   4686  retry:
   4687   const FunctionType *FuncT;
   4688   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   4689     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   4690     // have type pointer to function".
   4691     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   4692     if (!FuncT)
   4693       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4694                          << Fn->getType() << Fn->getSourceRange());
   4695   } else if (const BlockPointerType *BPT =
   4696                Fn->getType()->getAs<BlockPointerType>()) {
   4697     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   4698   } else {
   4699     // Handle calls to expressions of unknown-any type.
   4700     if (Fn->getType() == Context.UnknownAnyTy) {
   4701       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   4702       if (rewrite.isInvalid()) return ExprError();
   4703       Fn = rewrite.get();
   4704       TheCall->setCallee(Fn);
   4705       goto retry;
   4706     }
   4707 
   4708     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4709       << Fn->getType() << Fn->getSourceRange());
   4710   }
   4711 
   4712   if (getLangOpts().CUDA) {
   4713     if (Config) {
   4714       // CUDA: Kernel calls must be to global functions
   4715       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   4716         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   4717             << FDecl->getName() << Fn->getSourceRange());
   4718 
   4719       // CUDA: Kernel function must have 'void' return type
   4720       if (!FuncT->getReturnType()->isVoidType())
   4721         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   4722             << Fn->getType() << Fn->getSourceRange());
   4723     } else {
   4724       // CUDA: Calls to global functions must be configured
   4725       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   4726         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   4727             << FDecl->getName() << Fn->getSourceRange());
   4728     }
   4729   }
   4730 
   4731   // Check for a valid return type
   4732   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
   4733                           FDecl))
   4734     return ExprError();
   4735 
   4736   // We know the result type of the call, set it.
   4737   TheCall->setType(FuncT->getCallResultType(Context));
   4738   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
   4739 
   4740   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   4741   if (Proto) {
   4742     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
   4743                                 IsExecConfig))
   4744       return ExprError();
   4745   } else {
   4746     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   4747 
   4748     if (FDecl) {
   4749       // Check if we have too few/too many template arguments, based
   4750       // on our knowledge of the function definition.
   4751       const FunctionDecl *Def = nullptr;
   4752       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
   4753         Proto = Def->getType()->getAs<FunctionProtoType>();
   4754        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
   4755           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   4756           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
   4757       }
   4758 
   4759       // If the function we're calling isn't a function prototype, but we have
   4760       // a function prototype from a prior declaratiom, use that prototype.
   4761       if (!FDecl->hasPrototype())
   4762         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   4763     }
   4764 
   4765     // Promote the arguments (C99 6.5.2.2p6).
   4766     for (unsigned i = 0, e = Args.size(); i != e; i++) {
   4767       Expr *Arg = Args[i];
   4768 
   4769       if (Proto && i < Proto->getNumParams()) {
   4770         InitializedEntity Entity = InitializedEntity::InitializeParameter(
   4771             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
   4772         ExprResult ArgE =
   4773             PerformCopyInitialization(Entity, SourceLocation(), Arg);
   4774         if (ArgE.isInvalid())
   4775           return true;
   4776 
   4777         Arg = ArgE.getAs<Expr>();
   4778 
   4779       } else {
   4780         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   4781 
   4782         if (ArgE.isInvalid())
   4783           return true;
   4784 
   4785         Arg = ArgE.getAs<Expr>();
   4786       }
   4787 
   4788       if (RequireCompleteType(Arg->getLocStart(),
   4789                               Arg->getType(),
   4790                               diag::err_call_incomplete_argument, Arg))
   4791         return ExprError();
   4792 
   4793       TheCall->setArg(i, Arg);
   4794     }
   4795   }
   4796 
   4797   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4798     if (!Method->isStatic())
   4799       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   4800         << Fn->getSourceRange());
   4801 
   4802   // Check for sentinels
   4803   if (NDecl)
   4804     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
   4805 
   4806   // Do special checking on direct calls to functions.
   4807   if (FDecl) {
   4808     if (CheckFunctionCall(FDecl, TheCall, Proto))
   4809       return ExprError();
   4810 
   4811     if (BuiltinID)
   4812       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4813   } else if (NDecl) {
   4814     if (CheckPointerCall(NDecl, TheCall, Proto))
   4815       return ExprError();
   4816   } else {
   4817     if (CheckOtherCall(TheCall, Proto))
   4818       return ExprError();
   4819   }
   4820 
   4821   return MaybeBindToTemporary(TheCall);
   4822 }
   4823 
   4824 ExprResult
   4825 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   4826                            SourceLocation RParenLoc, Expr *InitExpr) {
   4827   assert(Ty && "ActOnCompoundLiteral(): missing type");
   4828   // FIXME: put back this assert when initializers are worked out.
   4829   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
   4830 
   4831   TypeSourceInfo *TInfo;
   4832   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   4833   if (!TInfo)
   4834     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   4835 
   4836   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   4837 }
   4838 
   4839 ExprResult
   4840 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   4841                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   4842   QualType literalType = TInfo->getType();
   4843 
   4844   if (literalType->isArrayType()) {
   4845     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   4846           diag::err_illegal_decl_array_incomplete_type,
   4847           SourceRange(LParenLoc,
   4848                       LiteralExpr->getSourceRange().getEnd())))
   4849       return ExprError();
   4850     if (literalType->isVariableArrayType())
   4851       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   4852         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   4853   } else if (!literalType->isDependentType() &&
   4854              RequireCompleteType(LParenLoc, literalType,
   4855                diag::err_typecheck_decl_incomplete_type,
   4856                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   4857     return ExprError();
   4858 
   4859   InitializedEntity Entity
   4860     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
   4861   InitializationKind Kind
   4862     = InitializationKind::CreateCStyleCast(LParenLoc,
   4863                                            SourceRange(LParenLoc, RParenLoc),
   4864                                            /*InitList=*/true);
   4865   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
   4866   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   4867                                       &literalType);
   4868   if (Result.isInvalid())
   4869     return ExprError();
   4870   LiteralExpr = Result.get();
   4871 
   4872   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
   4873   if (isFileScope &&
   4874       !LiteralExpr->isTypeDependent() &&
   4875       !LiteralExpr->isValueDependent() &&
   4876       !literalType->isDependentType()) { // 6.5.2.5p3
   4877     if (CheckForConstantInitializer(LiteralExpr, literalType))
   4878       return ExprError();
   4879   }
   4880 
   4881   // In C, compound literals are l-values for some reason.
   4882   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   4883 
   4884   return MaybeBindToTemporary(
   4885            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   4886                                              VK, LiteralExpr, isFileScope));
   4887 }
   4888 
   4889 ExprResult
   4890 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   4891                     SourceLocation RBraceLoc) {
   4892   // Immediately handle non-overload placeholders.  Overloads can be
   4893   // resolved contextually, but everything else here can't.
   4894   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   4895     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   4896       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   4897 
   4898       // Ignore failures; dropping the entire initializer list because
   4899       // of one failure would be terrible for indexing/etc.
   4900       if (result.isInvalid()) continue;
   4901 
   4902       InitArgList[I] = result.get();
   4903     }
   4904   }
   4905 
   4906   // Semantic analysis for initializers is done by ActOnDeclarator() and
   4907   // CheckInitializer() - it requires knowledge of the object being intialized.
   4908 
   4909   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   4910                                                RBraceLoc);
   4911   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   4912   return E;
   4913 }
   4914 
   4915 /// Do an explicit extend of the given block pointer if we're in ARC.
   4916 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
   4917   assert(E.get()->getType()->isBlockPointerType());
   4918   assert(E.get()->isRValue());
   4919 
   4920   // Only do this in an r-value context.
   4921   if (!S.getLangOpts().ObjCAutoRefCount) return;
   4922 
   4923   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
   4924                                CK_ARCExtendBlockObject, E.get(),
   4925                                /*base path*/ nullptr, VK_RValue);
   4926   S.ExprNeedsCleanups = true;
   4927 }
   4928 
   4929 /// Prepare a conversion of the given expression to an ObjC object
   4930 /// pointer type.
   4931 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   4932   QualType type = E.get()->getType();
   4933   if (type->isObjCObjectPointerType()) {
   4934     return CK_BitCast;
   4935   } else if (type->isBlockPointerType()) {
   4936     maybeExtendBlockObject(*this, E);
   4937     return CK_BlockPointerToObjCPointerCast;
   4938   } else {
   4939     assert(type->isPointerType());
   4940     return CK_CPointerToObjCPointerCast;
   4941   }
   4942 }
   4943 
   4944 /// Prepares for a scalar cast, performing all the necessary stages
   4945 /// except the final cast and returning the kind required.
   4946 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   4947   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   4948   // Also, callers should have filtered out the invalid cases with
   4949   // pointers.  Everything else should be possible.
   4950 
   4951   QualType SrcTy = Src.get()->getType();
   4952   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   4953     return CK_NoOp;
   4954 
   4955   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   4956   case Type::STK_MemberPointer:
   4957     llvm_unreachable("member pointer type in C");
   4958 
   4959   case Type::STK_CPointer:
   4960   case Type::STK_BlockPointer:
   4961   case Type::STK_ObjCObjectPointer:
   4962     switch (DestTy->getScalarTypeKind()) {
   4963     case Type::STK_CPointer: {
   4964       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
   4965       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
   4966       if (SrcAS != DestAS)
   4967         return CK_AddressSpaceConversion;
   4968       return CK_BitCast;
   4969     }
   4970     case Type::STK_BlockPointer:
   4971       return (SrcKind == Type::STK_BlockPointer
   4972                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   4973     case Type::STK_ObjCObjectPointer:
   4974       if (SrcKind == Type::STK_ObjCObjectPointer)
   4975         return CK_BitCast;
   4976       if (SrcKind == Type::STK_CPointer)
   4977         return CK_CPointerToObjCPointerCast;
   4978       maybeExtendBlockObject(*this, Src);
   4979       return CK_BlockPointerToObjCPointerCast;
   4980     case Type::STK_Bool:
   4981       return CK_PointerToBoolean;
   4982     case Type::STK_Integral:
   4983       return CK_PointerToIntegral;
   4984     case Type::STK_Floating:
   4985     case Type::STK_FloatingComplex:
   4986     case Type::STK_IntegralComplex:
   4987     case Type::STK_MemberPointer:
   4988       llvm_unreachable("illegal cast from pointer");
   4989     }
   4990     llvm_unreachable("Should have returned before this");
   4991 
   4992   case Type::STK_Bool: // casting from bool is like casting from an integer
   4993   case Type::STK_Integral:
   4994     switch (DestTy->getScalarTypeKind()) {
   4995     case Type::STK_CPointer:
   4996     case Type::STK_ObjCObjectPointer:
   4997     case Type::STK_BlockPointer:
   4998       if (Src.get()->isNullPointerConstant(Context,
   4999                                            Expr::NPC_ValueDependentIsNull))
   5000         return CK_NullToPointer;
   5001       return CK_IntegralToPointer;
   5002     case Type::STK_Bool:
   5003       return CK_IntegralToBoolean;
   5004     case Type::STK_Integral:
   5005       return CK_IntegralCast;
   5006     case Type::STK_Floating:
   5007       return CK_IntegralToFloating;
   5008     case Type::STK_IntegralComplex:
   5009       Src = ImpCastExprToType(Src.get(),
   5010                               DestTy->castAs<ComplexType>()->getElementType(),
   5011                               CK_IntegralCast);
   5012       return CK_IntegralRealToComplex;
   5013     case Type::STK_FloatingComplex:
   5014       Src = ImpCastExprToType(Src.get(),
   5015                               DestTy->castAs<ComplexType>()->getElementType(),
   5016                               CK_IntegralToFloating);
   5017       return CK_FloatingRealToComplex;
   5018     case Type::STK_MemberPointer:
   5019       llvm_unreachable("member pointer type in C");
   5020     }
   5021     llvm_unreachable("Should have returned before this");
   5022 
   5023   case Type::STK_Floating:
   5024     switch (DestTy->getScalarTypeKind()) {
   5025     case Type::STK_Floating:
   5026       return CK_FloatingCast;
   5027     case Type::STK_Bool:
   5028       return CK_FloatingToBoolean;
   5029     case Type::STK_Integral:
   5030       return CK_FloatingToIntegral;
   5031     case Type::STK_FloatingComplex:
   5032       Src = ImpCastExprToType(Src.get(),
   5033                               DestTy->castAs<ComplexType>()->getElementType(),
   5034                               CK_FloatingCast);
   5035       return CK_FloatingRealToComplex;
   5036     case Type::STK_IntegralComplex:
   5037       Src = ImpCastExprToType(Src.get(),
   5038                               DestTy->castAs<ComplexType>()->getElementType(),
   5039                               CK_FloatingToIntegral);
   5040       return CK_IntegralRealToComplex;
   5041     case Type::STK_CPointer:
   5042     case Type::STK_ObjCObjectPointer:
   5043     case Type::STK_BlockPointer:
   5044       llvm_unreachable("valid float->pointer cast?");
   5045     case Type::STK_MemberPointer:
   5046       llvm_unreachable("member pointer type in C");
   5047     }
   5048     llvm_unreachable("Should have returned before this");
   5049 
   5050   case Type::STK_FloatingComplex:
   5051     switch (DestTy->getScalarTypeKind()) {
   5052     case Type::STK_FloatingComplex:
   5053       return CK_FloatingComplexCast;
   5054     case Type::STK_IntegralComplex:
   5055       return CK_FloatingComplexToIntegralComplex;
   5056     case Type::STK_Floating: {
   5057       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5058       if (Context.hasSameType(ET, DestTy))
   5059         return CK_FloatingComplexToReal;
   5060       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
   5061       return CK_FloatingCast;
   5062     }
   5063     case Type::STK_Bool:
   5064       return CK_FloatingComplexToBoolean;
   5065     case Type::STK_Integral:
   5066       Src = ImpCastExprToType(Src.get(),
   5067                               SrcTy->castAs<ComplexType>()->getElementType(),
   5068                               CK_FloatingComplexToReal);
   5069       return CK_FloatingToIntegral;
   5070     case Type::STK_CPointer:
   5071     case Type::STK_ObjCObjectPointer:
   5072     case Type::STK_BlockPointer:
   5073       llvm_unreachable("valid complex float->pointer cast?");
   5074     case Type::STK_MemberPointer:
   5075       llvm_unreachable("member pointer type in C");
   5076     }
   5077     llvm_unreachable("Should have returned before this");
   5078 
   5079   case Type::STK_IntegralComplex:
   5080     switch (DestTy->getScalarTypeKind()) {
   5081     case Type::STK_FloatingComplex:
   5082       return CK_IntegralComplexToFloatingComplex;
   5083     case Type::STK_IntegralComplex:
   5084       return CK_IntegralComplexCast;
   5085     case Type::STK_Integral: {
   5086       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5087       if (Context.hasSameType(ET, DestTy))
   5088         return CK_IntegralComplexToReal;
   5089       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
   5090       return CK_IntegralCast;
   5091     }
   5092     case Type::STK_Bool:
   5093       return CK_IntegralComplexToBoolean;
   5094     case Type::STK_Floating:
   5095       Src = ImpCastExprToType(Src.get(),
   5096                               SrcTy->castAs<ComplexType>()->getElementType(),
   5097                               CK_IntegralComplexToReal);
   5098       return CK_IntegralToFloating;
   5099     case Type::STK_CPointer:
   5100     case Type::STK_ObjCObjectPointer:
   5101     case Type::STK_BlockPointer:
   5102       llvm_unreachable("valid complex int->pointer cast?");
   5103     case Type::STK_MemberPointer:
   5104       llvm_unreachable("member pointer type in C");
   5105     }
   5106     llvm_unreachable("Should have returned before this");
   5107   }
   5108 
   5109   llvm_unreachable("Unhandled scalar cast");
   5110 }
   5111 
   5112 static bool breakDownVectorType(QualType type, uint64_t &len,
   5113                                 QualType &eltType) {
   5114   // Vectors are simple.
   5115   if (const VectorType *vecType = type->getAs<VectorType>()) {
   5116     len = vecType->getNumElements();
   5117     eltType = vecType->getElementType();
   5118     assert(eltType->isScalarType());
   5119     return true;
   5120   }
   5121 
   5122   // We allow lax conversion to and from non-vector types, but only if
   5123   // they're real types (i.e. non-complex, non-pointer scalar types).
   5124   if (!type->isRealType()) return false;
   5125 
   5126   len = 1;
   5127   eltType = type;
   5128   return true;
   5129 }
   5130 
   5131 static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
   5132   uint64_t srcLen, destLen;
   5133   QualType srcElt, destElt;
   5134   if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
   5135   if (!breakDownVectorType(destTy, destLen, destElt)) return false;
   5136 
   5137   // ASTContext::getTypeSize will return the size rounded up to a
   5138   // power of 2, so instead of using that, we need to use the raw
   5139   // element size multiplied by the element count.
   5140   uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
   5141   uint64_t destEltSize = S.Context.getTypeSize(destElt);
   5142 
   5143   return (srcLen * srcEltSize == destLen * destEltSize);
   5144 }
   5145 
   5146 /// Is this a legal conversion between two known vector types?
   5147 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
   5148   assert(destTy->isVectorType() || srcTy->isVectorType());
   5149 
   5150   if (!Context.getLangOpts().LaxVectorConversions)
   5151     return false;
   5152   return VectorTypesMatch(*this, srcTy, destTy);
   5153 }
   5154 
   5155 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   5156                            CastKind &Kind) {
   5157   assert(VectorTy->isVectorType() && "Not a vector type!");
   5158 
   5159   if (Ty->isVectorType() || Ty->isIntegerType()) {
   5160     if (!VectorTypesMatch(*this, Ty, VectorTy))
   5161       return Diag(R.getBegin(),
   5162                   Ty->isVectorType() ?
   5163                   diag::err_invalid_conversion_between_vectors :
   5164                   diag::err_invalid_conversion_between_vector_and_integer)
   5165         << VectorTy << Ty << R;
   5166   } else
   5167     return Diag(R.getBegin(),
   5168                 diag::err_invalid_conversion_between_vector_and_scalar)
   5169       << VectorTy << Ty << R;
   5170 
   5171   Kind = CK_BitCast;
   5172   return false;
   5173 }
   5174 
   5175 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   5176                                     Expr *CastExpr, CastKind &Kind) {
   5177   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   5178 
   5179   QualType SrcTy = CastExpr->getType();
   5180 
   5181   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   5182   // an ExtVectorType.
   5183   // In OpenCL, casts between vectors of different types are not allowed.
   5184   // (See OpenCL 6.2).
   5185   if (SrcTy->isVectorType()) {
   5186     if (!VectorTypesMatch(*this, SrcTy, DestTy)
   5187         || (getLangOpts().OpenCL &&
   5188             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   5189       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   5190         << DestTy << SrcTy << R;
   5191       return ExprError();
   5192     }
   5193     Kind = CK_BitCast;
   5194     return CastExpr;
   5195   }
   5196 
   5197   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   5198   // conversion will take place first from scalar to elt type, and then
   5199   // splat from elt type to vector.
   5200   if (SrcTy->isPointerType())
   5201     return Diag(R.getBegin(),
   5202                 diag::err_invalid_conversion_between_vector_and_scalar)
   5203       << DestTy << SrcTy << R;
   5204 
   5205   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   5206   ExprResult CastExprRes = CastExpr;
   5207   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
   5208   if (CastExprRes.isInvalid())
   5209     return ExprError();
   5210   CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
   5211 
   5212   Kind = CK_VectorSplat;
   5213   return CastExpr;
   5214 }
   5215 
   5216 ExprResult
   5217 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   5218                     Declarator &D, ParsedType &Ty,
   5219                     SourceLocation RParenLoc, Expr *CastExpr) {
   5220   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
   5221          "ActOnCastExpr(): missing type or expr");
   5222 
   5223   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   5224   if (D.isInvalidType())
   5225     return ExprError();
   5226 
   5227   if (getLangOpts().CPlusPlus) {
   5228     // Check that there are no default arguments (C++ only).
   5229     CheckExtraCXXDefaultArguments(D);
   5230   }
   5231 
   5232   checkUnusedDeclAttributes(D);
   5233 
   5234   QualType castType = castTInfo->getType();
   5235   Ty = CreateParsedType(castType, castTInfo);
   5236 
   5237   bool isVectorLiteral = false;
   5238 
   5239   // Check for an altivec or OpenCL literal,
   5240   // i.e. all the elements are integer constants.
   5241   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   5242   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   5243   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
   5244        && castType->isVectorType() && (PE || PLE)) {
   5245     if (PLE && PLE->getNumExprs() == 0) {
   5246       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   5247       return ExprError();
   5248     }
   5249     if (PE || PLE->getNumExprs() == 1) {
   5250       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   5251       if (!E->getType()->isVectorType())
   5252         isVectorLiteral = true;
   5253     }
   5254     else
   5255       isVectorLiteral = true;
   5256   }
   5257 
   5258   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   5259   // then handle it as such.
   5260   if (isVectorLiteral)
   5261     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   5262 
   5263   // If the Expr being casted is a ParenListExpr, handle it specially.
   5264   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   5265   // sequence of BinOp comma operators.
   5266   if (isa<ParenListExpr>(CastExpr)) {
   5267     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   5268     if (Result.isInvalid()) return ExprError();
   5269     CastExpr = Result.get();
   5270   }
   5271 
   5272   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
   5273       !getSourceManager().isInSystemMacro(LParenLoc))
   5274     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
   5275 
   5276   CheckTollFreeBridgeCast(castType, CastExpr);
   5277 
   5278   CheckObjCBridgeRelatedCast(castType, CastExpr);
   5279 
   5280   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   5281 }
   5282 
   5283 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   5284                                     SourceLocation RParenLoc, Expr *E,
   5285                                     TypeSourceInfo *TInfo) {
   5286   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   5287          "Expected paren or paren list expression");
   5288 
   5289   Expr **exprs;
   5290   unsigned numExprs;
   5291   Expr *subExpr;
   5292   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   5293   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   5294     LiteralLParenLoc = PE->getLParenLoc();
   5295     LiteralRParenLoc = PE->getRParenLoc();
   5296     exprs = PE->getExprs();
   5297     numExprs = PE->getNumExprs();
   5298   } else { // isa<ParenExpr> by assertion at function entrance
   5299     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   5300     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   5301     subExpr = cast<ParenExpr>(E)->getSubExpr();
   5302     exprs = &subExpr;
   5303     numExprs = 1;
   5304   }
   5305 
   5306   QualType Ty = TInfo->getType();
   5307   assert(Ty->isVectorType() && "Expected vector type");
   5308 
   5309   SmallVector<Expr *, 8> initExprs;
   5310   const VectorType *VTy = Ty->getAs<VectorType>();
   5311   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   5312 
   5313   // '(...)' form of vector initialization in AltiVec: the number of
   5314   // initializers must be one or must match the size of the vector.
   5315   // If a single value is specified in the initializer then it will be
   5316   // replicated to all the components of the vector
   5317   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   5318     // The number of initializers must be one or must match the size of the
   5319     // vector. If a single value is specified in the initializer then it will
   5320     // be replicated to all the components of the vector
   5321     if (numExprs == 1) {
   5322       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5323       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5324       if (Literal.isInvalid())
   5325         return ExprError();
   5326       Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5327                                   PrepareScalarCast(Literal, ElemTy));
   5328       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5329     }
   5330     else if (numExprs < numElems) {
   5331       Diag(E->getExprLoc(),
   5332            diag::err_incorrect_number_of_vector_initializers);
   5333       return ExprError();
   5334     }
   5335     else
   5336       initExprs.append(exprs, exprs + numExprs);
   5337   }
   5338   else {
   5339     // For OpenCL, when the number of initializers is a single value,
   5340     // it will be replicated to all components of the vector.
   5341     if (getLangOpts().OpenCL &&
   5342         VTy->getVectorKind() == VectorType::GenericVector &&
   5343         numExprs == 1) {
   5344         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5345         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5346         if (Literal.isInvalid())
   5347           return ExprError();
   5348         Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5349                                     PrepareScalarCast(Literal, ElemTy));
   5350         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5351     }
   5352 
   5353     initExprs.append(exprs, exprs + numExprs);
   5354   }
   5355   // FIXME: This means that pretty-printing the final AST will produce curly
   5356   // braces instead of the original commas.
   5357   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   5358                                                    initExprs, LiteralRParenLoc);
   5359   initE->setType(Ty);
   5360   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   5361 }
   5362 
   5363 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   5364 /// the ParenListExpr into a sequence of comma binary operators.
   5365 ExprResult
   5366 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   5367   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   5368   if (!E)
   5369     return OrigExpr;
   5370 
   5371   ExprResult Result(E->getExpr(0));
   5372 
   5373   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   5374     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   5375                         E->getExpr(i));
   5376 
   5377   if (Result.isInvalid()) return ExprError();
   5378 
   5379   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   5380 }
   5381 
   5382 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   5383                                     SourceLocation R,
   5384                                     MultiExprArg Val) {
   5385   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   5386   return expr;
   5387 }
   5388 
   5389 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   5390 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   5391 /// emitted.
   5392 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   5393                                       SourceLocation QuestionLoc) {
   5394   Expr *NullExpr = LHSExpr;
   5395   Expr *NonPointerExpr = RHSExpr;
   5396   Expr::NullPointerConstantKind NullKind =
   5397       NullExpr->isNullPointerConstant(Context,
   5398                                       Expr::NPC_ValueDependentIsNotNull);
   5399 
   5400   if (NullKind == Expr::NPCK_NotNull) {
   5401     NullExpr = RHSExpr;
   5402     NonPointerExpr = LHSExpr;
   5403     NullKind =
   5404         NullExpr->isNullPointerConstant(Context,
   5405                                         Expr::NPC_ValueDependentIsNotNull);
   5406   }
   5407 
   5408   if (NullKind == Expr::NPCK_NotNull)
   5409     return false;
   5410 
   5411   if (NullKind == Expr::NPCK_ZeroExpression)
   5412     return false;
   5413 
   5414   if (NullKind == Expr::NPCK_ZeroLiteral) {
   5415     // In this case, check to make sure that we got here from a "NULL"
   5416     // string in the source code.
   5417     NullExpr = NullExpr->IgnoreParenImpCasts();
   5418     SourceLocation loc = NullExpr->getExprLoc();
   5419     if (!findMacroSpelling(loc, "NULL"))
   5420       return false;
   5421   }
   5422 
   5423   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   5424   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   5425       << NonPointerExpr->getType() << DiagType
   5426       << NonPointerExpr->getSourceRange();
   5427   return true;
   5428 }
   5429 
   5430 /// \brief Return false if the condition expression is valid, true otherwise.
   5431 static bool checkCondition(Sema &S, Expr *Cond) {
   5432   QualType CondTy = Cond->getType();
   5433 
   5434   // C99 6.5.15p2
   5435   if (CondTy->isScalarType()) return false;
   5436 
   5437   // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
   5438   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
   5439     return false;
   5440 
   5441   // Emit the proper error message.
   5442   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
   5443                               diag::err_typecheck_cond_expect_scalar :
   5444                               diag::err_typecheck_cond_expect_scalar_or_vector)
   5445     << CondTy;
   5446   return true;
   5447 }
   5448 
   5449 /// \brief Return false if the two expressions can be converted to a vector,
   5450 /// true otherwise
   5451 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
   5452                                                     ExprResult &RHS,
   5453                                                     QualType CondTy) {
   5454   // Both operands should be of scalar type.
   5455   if (!LHS.get()->getType()->isScalarType()) {
   5456     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   5457       << CondTy;
   5458     return true;
   5459   }
   5460   if (!RHS.get()->getType()->isScalarType()) {
   5461     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   5462       << CondTy;
   5463     return true;
   5464   }
   5465 
   5466   // Implicity convert these scalars to the type of the condition.
   5467   LHS = S.ImpCastExprToType(LHS.get(), CondTy, CK_IntegralCast);
   5468   RHS = S.ImpCastExprToType(RHS.get(), CondTy, CK_IntegralCast);
   5469   return false;
   5470 }
   5471 
   5472 /// \brief Handle when one or both operands are void type.
   5473 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   5474                                          ExprResult &RHS) {
   5475     Expr *LHSExpr = LHS.get();
   5476     Expr *RHSExpr = RHS.get();
   5477 
   5478     if (!LHSExpr->getType()->isVoidType())
   5479       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5480         << RHSExpr->getSourceRange();
   5481     if (!RHSExpr->getType()->isVoidType())
   5482       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5483         << LHSExpr->getSourceRange();
   5484     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
   5485     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
   5486     return S.Context.VoidTy;
   5487 }
   5488 
   5489 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   5490 /// true otherwise.
   5491 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   5492                                         QualType PointerTy) {
   5493   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   5494       !NullExpr.get()->isNullPointerConstant(S.Context,
   5495                                             Expr::NPC_ValueDependentIsNull))
   5496     return true;
   5497 
   5498   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
   5499   return false;
   5500 }
   5501 
   5502 /// \brief Checks compatibility between two pointers and return the resulting
   5503 /// type.
   5504 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   5505                                                      ExprResult &RHS,
   5506                                                      SourceLocation Loc) {
   5507   QualType LHSTy = LHS.get()->getType();
   5508   QualType RHSTy = RHS.get()->getType();
   5509 
   5510   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   5511     // Two identical pointers types are always compatible.
   5512     return LHSTy;
   5513   }
   5514 
   5515   QualType lhptee, rhptee;
   5516 
   5517   // Get the pointee types.
   5518   bool IsBlockPointer = false;
   5519   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   5520     lhptee = LHSBTy->getPointeeType();
   5521     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   5522     IsBlockPointer = true;
   5523   } else {
   5524     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   5525     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   5526   }
   5527 
   5528   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   5529   // differently qualified versions of compatible types, the result type is
   5530   // a pointer to an appropriately qualified version of the composite
   5531   // type.
   5532 
   5533   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   5534   // clause doesn't make sense for our extensions. E.g. address space 2 should
   5535   // be incompatible with address space 3: they may live on different devices or
   5536   // anything.
   5537   Qualifiers lhQual = lhptee.getQualifiers();
   5538   Qualifiers rhQual = rhptee.getQualifiers();
   5539 
   5540   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   5541   lhQual.removeCVRQualifiers();
   5542   rhQual.removeCVRQualifiers();
   5543 
   5544   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   5545   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   5546 
   5547   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   5548 
   5549   if (CompositeTy.isNull()) {
   5550     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
   5551       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5552       << RHS.get()->getSourceRange();
   5553     // In this situation, we assume void* type. No especially good
   5554     // reason, but this is what gcc does, and we do have to pick
   5555     // to get a consistent AST.
   5556     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   5557     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   5558     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   5559     return incompatTy;
   5560   }
   5561 
   5562   // The pointer types are compatible.
   5563   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   5564   if (IsBlockPointer)
   5565     ResultTy = S.Context.getBlockPointerType(ResultTy);
   5566   else
   5567     ResultTy = S.Context.getPointerType(ResultTy);
   5568 
   5569   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
   5570   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
   5571   return ResultTy;
   5572 }
   5573 
   5574 /// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
   5575 /// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
   5576 /// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
   5577 static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
   5578   if (QT->isObjCIdType())
   5579     return true;
   5580 
   5581   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   5582   if (!OPT)
   5583     return false;
   5584 
   5585   if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
   5586     if (ID->getIdentifier() != &C.Idents.get("NSObject"))
   5587       return false;
   5588 
   5589   ObjCProtocolDecl* PNSCopying =
   5590     S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
   5591   ObjCProtocolDecl* PNSObject =
   5592     S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
   5593 
   5594   for (auto *Proto : OPT->quals()) {
   5595     if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
   5596         (PNSObject && declaresSameEntity(Proto, PNSObject)))
   5597       ;
   5598     else
   5599       return false;
   5600   }
   5601   return true;
   5602 }
   5603 
   5604 /// \brief Return the resulting type when the operands are both block pointers.
   5605 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   5606                                                           ExprResult &LHS,
   5607                                                           ExprResult &RHS,
   5608                                                           SourceLocation Loc) {
   5609   QualType LHSTy = LHS.get()->getType();
   5610   QualType RHSTy = RHS.get()->getType();
   5611 
   5612   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   5613     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   5614       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   5615       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5616       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5617       return destType;
   5618     }
   5619     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   5620       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5621       << RHS.get()->getSourceRange();
   5622     return QualType();
   5623   }
   5624 
   5625   // We have 2 block pointer types.
   5626   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5627 }
   5628 
   5629 /// \brief Return the resulting type when the operands are both pointers.
   5630 static QualType
   5631 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   5632                                             ExprResult &RHS,
   5633                                             SourceLocation Loc) {
   5634   // get the pointer types
   5635   QualType LHSTy = LHS.get()->getType();
   5636   QualType RHSTy = RHS.get()->getType();
   5637 
   5638   // get the "pointed to" types
   5639   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   5640   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   5641 
   5642   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   5643   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   5644     // Figure out necessary qualifiers (C99 6.5.15p6)
   5645     QualType destPointee
   5646       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   5647     QualType destType = S.Context.getPointerType(destPointee);
   5648     // Add qualifiers if necessary.
   5649     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   5650     // Promote to void*.
   5651     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5652     return destType;
   5653   }
   5654   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   5655     QualType destPointee
   5656       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   5657     QualType destType = S.Context.getPointerType(destPointee);
   5658     // Add qualifiers if necessary.
   5659     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   5660     // Promote to void*.
   5661     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5662     return destType;
   5663   }
   5664 
   5665   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5666 }
   5667 
   5668 /// \brief Return false if the first expression is not an integer and the second
   5669 /// expression is not a pointer, true otherwise.
   5670 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   5671                                         Expr* PointerExpr, SourceLocation Loc,
   5672                                         bool IsIntFirstExpr) {
   5673   if (!PointerExpr->getType()->isPointerType() ||
   5674       !Int.get()->getType()->isIntegerType())
   5675     return false;
   5676 
   5677   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   5678   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   5679 
   5680   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
   5681     << Expr1->getType() << Expr2->getType()
   5682     << Expr1->getSourceRange() << Expr2->getSourceRange();
   5683   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
   5684                             CK_IntegralToPointer);
   5685   return true;
   5686 }
   5687 
   5688 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   5689 /// In that case, LHS = cond.
   5690 /// C99 6.5.15
   5691 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   5692                                         ExprResult &RHS, ExprValueKind &VK,
   5693                                         ExprObjectKind &OK,
   5694                                         SourceLocation QuestionLoc) {
   5695 
   5696   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   5697   if (!LHSResult.isUsable()) return QualType();
   5698   LHS = LHSResult;
   5699 
   5700   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   5701   if (!RHSResult.isUsable()) return QualType();
   5702   RHS = RHSResult;
   5703 
   5704   // C++ is sufficiently different to merit its own checker.
   5705   if (getLangOpts().CPlusPlus)
   5706     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   5707 
   5708   VK = VK_RValue;
   5709   OK = OK_Ordinary;
   5710 
   5711   // First, check the condition.
   5712   Cond = UsualUnaryConversions(Cond.get());
   5713   if (Cond.isInvalid())
   5714     return QualType();
   5715   if (checkCondition(*this