Home | History | Annotate | Download | only in Mips
      1 //===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsTargetLowering specialized for mips32/64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "MipsSEISelLowering.h"
     14 #include "MipsRegisterInfo.h"
     15 #include "MipsTargetMachine.h"
     16 #include "llvm/CodeGen/MachineInstrBuilder.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/IR/Intrinsics.h"
     19 #include "llvm/Support/CommandLine.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "mips-isel"
     27 
     28 static cl::opt<bool>
     29 EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
     30                     cl::desc("MIPS: Enable tail calls."), cl::init(false));
     31 
     32 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
     33                                    cl::desc("Expand double precision loads and "
     34                                             "stores to their single precision "
     35                                             "counterparts"));
     36 
     37 MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
     38   : MipsTargetLowering(TM) {
     39   // Set up the register classes
     40   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
     41 
     42   if (Subtarget->isGP64bit())
     43     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
     44 
     45   if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
     46     // Expand all truncating stores and extending loads.
     47     unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
     48     unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
     49 
     50     for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
     51       for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
     52         setTruncStoreAction((MVT::SimpleValueType)VT0,
     53                             (MVT::SimpleValueType)VT1, Expand);
     54 
     55       setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
     56       setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
     57       setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
     58     }
     59   }
     60 
     61   if (Subtarget->hasDSP()) {
     62     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
     63 
     64     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
     65       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
     66 
     67       // Expand all builtin opcodes.
     68       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
     69         setOperationAction(Opc, VecTys[i], Expand);
     70 
     71       setOperationAction(ISD::ADD, VecTys[i], Legal);
     72       setOperationAction(ISD::SUB, VecTys[i], Legal);
     73       setOperationAction(ISD::LOAD, VecTys[i], Legal);
     74       setOperationAction(ISD::STORE, VecTys[i], Legal);
     75       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
     76     }
     77 
     78     setTargetDAGCombine(ISD::SHL);
     79     setTargetDAGCombine(ISD::SRA);
     80     setTargetDAGCombine(ISD::SRL);
     81     setTargetDAGCombine(ISD::SETCC);
     82     setTargetDAGCombine(ISD::VSELECT);
     83   }
     84 
     85   if (Subtarget->hasDSPR2())
     86     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
     87 
     88   if (Subtarget->hasMSA()) {
     89     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
     90     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
     91     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
     92     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
     93     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
     94     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
     95     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
     96 
     97     setTargetDAGCombine(ISD::AND);
     98     setTargetDAGCombine(ISD::OR);
     99     setTargetDAGCombine(ISD::SRA);
    100     setTargetDAGCombine(ISD::VSELECT);
    101     setTargetDAGCombine(ISD::XOR);
    102   }
    103 
    104   if (!Subtarget->mipsSEUsesSoftFloat()) {
    105     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
    106 
    107     // When dealing with single precision only, use libcalls
    108     if (!Subtarget->isSingleFloat()) {
    109       if (Subtarget->isFP64bit())
    110         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
    111       else
    112         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
    113     }
    114   }
    115 
    116   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
    117   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
    118   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
    119   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
    120 
    121   if (Subtarget->hasCnMips())
    122     setOperationAction(ISD::MUL,              MVT::i64, Legal);
    123   else if (Subtarget->isGP64bit())
    124     setOperationAction(ISD::MUL,              MVT::i64, Custom);
    125 
    126   if (Subtarget->isGP64bit()) {
    127     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
    128     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
    129   }
    130 
    131   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
    132   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
    133 
    134   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    135   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    136   setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
    137   setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
    138   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
    139   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
    140   setOperationAction(ISD::STORE,              MVT::i32, Custom);
    141 
    142   setTargetDAGCombine(ISD::ADDE);
    143   setTargetDAGCombine(ISD::SUBE);
    144   setTargetDAGCombine(ISD::MUL);
    145 
    146   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    147   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    148   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
    149 
    150   if (NoDPLoadStore) {
    151     setOperationAction(ISD::LOAD, MVT::f64, Custom);
    152     setOperationAction(ISD::STORE, MVT::f64, Custom);
    153   }
    154 
    155   if (Subtarget->hasMips32r6()) {
    156     // MIPS32r6 replaces the accumulator-based multiplies with a three register
    157     // instruction
    158     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    159     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    160     setOperationAction(ISD::MUL, MVT::i32, Legal);
    161     setOperationAction(ISD::MULHS, MVT::i32, Legal);
    162     setOperationAction(ISD::MULHU, MVT::i32, Legal);
    163 
    164     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    165     // three register division and remainder instructions.
    166     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    167     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    168     setOperationAction(ISD::SDIV, MVT::i32, Legal);
    169     setOperationAction(ISD::UDIV, MVT::i32, Legal);
    170     setOperationAction(ISD::SREM, MVT::i32, Legal);
    171     setOperationAction(ISD::UREM, MVT::i32, Legal);
    172 
    173     // MIPS32r6 replaces conditional moves with an equivalent that removes the
    174     // need for three GPR read ports.
    175     setOperationAction(ISD::SETCC, MVT::i32, Legal);
    176     setOperationAction(ISD::SELECT, MVT::i32, Legal);
    177     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
    178 
    179     setOperationAction(ISD::SETCC, MVT::f32, Legal);
    180     setOperationAction(ISD::SELECT, MVT::f32, Legal);
    181     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
    182 
    183     assert(Subtarget->isFP64bit() && "FR=1 is required for MIPS32r6");
    184     setOperationAction(ISD::SETCC, MVT::f64, Legal);
    185     setOperationAction(ISD::SELECT, MVT::f64, Legal);
    186     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
    187 
    188     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
    189 
    190     // Floating point > and >= are supported via < and <=
    191     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    192     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
    193     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
    194     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    195 
    196     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    197     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
    198     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
    199     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    200   }
    201 
    202   if (Subtarget->hasMips64r6()) {
    203     // MIPS64r6 replaces the accumulator-based multiplies with a three register
    204     // instruction
    205     setOperationAction(ISD::MUL, MVT::i64, Legal);
    206     setOperationAction(ISD::MULHS, MVT::i64, Legal);
    207     setOperationAction(ISD::MULHU, MVT::i64, Legal);
    208 
    209     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    210     // three register division and remainder instructions.
    211     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    212     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    213     setOperationAction(ISD::SDIV, MVT::i64, Legal);
    214     setOperationAction(ISD::UDIV, MVT::i64, Legal);
    215     setOperationAction(ISD::SREM, MVT::i64, Legal);
    216     setOperationAction(ISD::UREM, MVT::i64, Legal);
    217 
    218     // MIPS64r6 replaces conditional moves with an equivalent that removes the
    219     // need for three GPR read ports.
    220     setOperationAction(ISD::SETCC, MVT::i64, Legal);
    221     setOperationAction(ISD::SELECT, MVT::i64, Legal);
    222     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    223   }
    224 
    225   computeRegisterProperties();
    226 }
    227 
    228 const MipsTargetLowering *
    229 llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
    230   return new MipsSETargetLowering(TM);
    231 }
    232 
    233 const TargetRegisterClass *
    234 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
    235   if (VT == MVT::Untyped)
    236     return Subtarget->hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
    237 
    238   return TargetLowering::getRepRegClassFor(VT);
    239 }
    240 
    241 // Enable MSA support for the given integer type and Register class.
    242 void MipsSETargetLowering::
    243 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    244   addRegisterClass(Ty, RC);
    245 
    246   // Expand all builtin opcodes.
    247   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    248     setOperationAction(Opc, Ty, Expand);
    249 
    250   setOperationAction(ISD::BITCAST, Ty, Legal);
    251   setOperationAction(ISD::LOAD, Ty, Legal);
    252   setOperationAction(ISD::STORE, Ty, Legal);
    253   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
    254   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    255   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    256 
    257   setOperationAction(ISD::ADD, Ty, Legal);
    258   setOperationAction(ISD::AND, Ty, Legal);
    259   setOperationAction(ISD::CTLZ, Ty, Legal);
    260   setOperationAction(ISD::CTPOP, Ty, Legal);
    261   setOperationAction(ISD::MUL, Ty, Legal);
    262   setOperationAction(ISD::OR, Ty, Legal);
    263   setOperationAction(ISD::SDIV, Ty, Legal);
    264   setOperationAction(ISD::SREM, Ty, Legal);
    265   setOperationAction(ISD::SHL, Ty, Legal);
    266   setOperationAction(ISD::SRA, Ty, Legal);
    267   setOperationAction(ISD::SRL, Ty, Legal);
    268   setOperationAction(ISD::SUB, Ty, Legal);
    269   setOperationAction(ISD::UDIV, Ty, Legal);
    270   setOperationAction(ISD::UREM, Ty, Legal);
    271   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
    272   setOperationAction(ISD::VSELECT, Ty, Legal);
    273   setOperationAction(ISD::XOR, Ty, Legal);
    274 
    275   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
    276     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
    277     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
    278     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
    279     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
    280   }
    281 
    282   setOperationAction(ISD::SETCC, Ty, Legal);
    283   setCondCodeAction(ISD::SETNE, Ty, Expand);
    284   setCondCodeAction(ISD::SETGE, Ty, Expand);
    285   setCondCodeAction(ISD::SETGT, Ty, Expand);
    286   setCondCodeAction(ISD::SETUGE, Ty, Expand);
    287   setCondCodeAction(ISD::SETUGT, Ty, Expand);
    288 }
    289 
    290 // Enable MSA support for the given floating-point type and Register class.
    291 void MipsSETargetLowering::
    292 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    293   addRegisterClass(Ty, RC);
    294 
    295   // Expand all builtin opcodes.
    296   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    297     setOperationAction(Opc, Ty, Expand);
    298 
    299   setOperationAction(ISD::LOAD, Ty, Legal);
    300   setOperationAction(ISD::STORE, Ty, Legal);
    301   setOperationAction(ISD::BITCAST, Ty, Legal);
    302   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
    303   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    304   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    305 
    306   if (Ty != MVT::v8f16) {
    307     setOperationAction(ISD::FABS,  Ty, Legal);
    308     setOperationAction(ISD::FADD,  Ty, Legal);
    309     setOperationAction(ISD::FDIV,  Ty, Legal);
    310     setOperationAction(ISD::FEXP2, Ty, Legal);
    311     setOperationAction(ISD::FLOG2, Ty, Legal);
    312     setOperationAction(ISD::FMA,   Ty, Legal);
    313     setOperationAction(ISD::FMUL,  Ty, Legal);
    314     setOperationAction(ISD::FRINT, Ty, Legal);
    315     setOperationAction(ISD::FSQRT, Ty, Legal);
    316     setOperationAction(ISD::FSUB,  Ty, Legal);
    317     setOperationAction(ISD::VSELECT, Ty, Legal);
    318 
    319     setOperationAction(ISD::SETCC, Ty, Legal);
    320     setCondCodeAction(ISD::SETOGE, Ty, Expand);
    321     setCondCodeAction(ISD::SETOGT, Ty, Expand);
    322     setCondCodeAction(ISD::SETUGE, Ty, Expand);
    323     setCondCodeAction(ISD::SETUGT, Ty, Expand);
    324     setCondCodeAction(ISD::SETGE,  Ty, Expand);
    325     setCondCodeAction(ISD::SETGT,  Ty, Expand);
    326   }
    327 }
    328 
    329 bool
    330 MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
    331                                                     unsigned,
    332                                                     bool *Fast) const {
    333   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
    334 
    335   if (Subtarget->systemSupportsUnalignedAccess()) {
    336     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
    337     // implementation defined whether this is handled by hardware, software, or
    338     // a hybrid of the two but it's expected that most implementations will
    339     // handle the majority of cases in hardware.
    340     if (Fast)
    341       *Fast = true;
    342     return true;
    343   }
    344 
    345   switch (SVT) {
    346   case MVT::i64:
    347   case MVT::i32:
    348     if (Fast)
    349       *Fast = true;
    350     return true;
    351   default:
    352     return false;
    353   }
    354 }
    355 
    356 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
    357                                              SelectionDAG &DAG) const {
    358   switch(Op.getOpcode()) {
    359   case ISD::LOAD:  return lowerLOAD(Op, DAG);
    360   case ISD::STORE: return lowerSTORE(Op, DAG);
    361   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
    362   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
    363   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
    364   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
    365   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
    366   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
    367   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
    368                                           DAG);
    369   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
    370   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
    371   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
    372   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
    373   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
    374   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
    375   }
    376 
    377   return MipsTargetLowering::LowerOperation(Op, DAG);
    378 }
    379 
    380 // selectMADD -
    381 // Transforms a subgraph in CurDAG if the following pattern is found:
    382 //  (addc multLo, Lo0), (adde multHi, Hi0),
    383 // where,
    384 //  multHi/Lo: product of multiplication
    385 //  Lo0: initial value of Lo register
    386 //  Hi0: initial value of Hi register
    387 // Return true if pattern matching was successful.
    388 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
    389   // ADDENode's second operand must be a flag output of an ADDC node in order
    390   // for the matching to be successful.
    391   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
    392 
    393   if (ADDCNode->getOpcode() != ISD::ADDC)
    394     return false;
    395 
    396   SDValue MultHi = ADDENode->getOperand(0);
    397   SDValue MultLo = ADDCNode->getOperand(0);
    398   SDNode *MultNode = MultHi.getNode();
    399   unsigned MultOpc = MultHi.getOpcode();
    400 
    401   // MultHi and MultLo must be generated by the same node,
    402   if (MultLo.getNode() != MultNode)
    403     return false;
    404 
    405   // and it must be a multiplication.
    406   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    407     return false;
    408 
    409   // MultLo amd MultHi must be the first and second output of MultNode
    410   // respectively.
    411   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    412     return false;
    413 
    414   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
    415   // of the values of MultNode, in which case MultNode will be removed in later
    416   // phases.
    417   // If there exist users other than ADDENode or ADDCNode, this function returns
    418   // here, which will result in MultNode being mapped to a single MULT
    419   // instruction node rather than a pair of MULT and MADD instructions being
    420   // produced.
    421   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    422     return false;
    423 
    424   SDLoc DL(ADDENode);
    425 
    426   // Initialize accumulator.
    427   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    428                                   ADDCNode->getOperand(1),
    429                                   ADDENode->getOperand(1));
    430 
    431   // create MipsMAdd(u) node
    432   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
    433 
    434   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
    435                                  MultNode->getOperand(0),// Factor 0
    436                                  MultNode->getOperand(1),// Factor 1
    437                                  ACCIn);
    438 
    439   // replace uses of adde and addc here
    440   if (!SDValue(ADDCNode, 0).use_empty()) {
    441     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
    442     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
    443   }
    444   if (!SDValue(ADDENode, 0).use_empty()) {
    445     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
    446     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
    447   }
    448 
    449   return true;
    450 }
    451 
    452 // selectMSUB -
    453 // Transforms a subgraph in CurDAG if the following pattern is found:
    454 //  (addc Lo0, multLo), (sube Hi0, multHi),
    455 // where,
    456 //  multHi/Lo: product of multiplication
    457 //  Lo0: initial value of Lo register
    458 //  Hi0: initial value of Hi register
    459 // Return true if pattern matching was successful.
    460 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
    461   // SUBENode's second operand must be a flag output of an SUBC node in order
    462   // for the matching to be successful.
    463   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
    464 
    465   if (SUBCNode->getOpcode() != ISD::SUBC)
    466     return false;
    467 
    468   SDValue MultHi = SUBENode->getOperand(1);
    469   SDValue MultLo = SUBCNode->getOperand(1);
    470   SDNode *MultNode = MultHi.getNode();
    471   unsigned MultOpc = MultHi.getOpcode();
    472 
    473   // MultHi and MultLo must be generated by the same node,
    474   if (MultLo.getNode() != MultNode)
    475     return false;
    476 
    477   // and it must be a multiplication.
    478   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    479     return false;
    480 
    481   // MultLo amd MultHi must be the first and second output of MultNode
    482   // respectively.
    483   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    484     return false;
    485 
    486   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
    487   // of the values of MultNode, in which case MultNode will be removed in later
    488   // phases.
    489   // If there exist users other than SUBENode or SUBCNode, this function returns
    490   // here, which will result in MultNode being mapped to a single MULT
    491   // instruction node rather than a pair of MULT and MSUB instructions being
    492   // produced.
    493   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    494     return false;
    495 
    496   SDLoc DL(SUBENode);
    497 
    498   // Initialize accumulator.
    499   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    500                                   SUBCNode->getOperand(0),
    501                                   SUBENode->getOperand(0));
    502 
    503   // create MipsSub(u) node
    504   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
    505 
    506   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
    507                                  MultNode->getOperand(0),// Factor 0
    508                                  MultNode->getOperand(1),// Factor 1
    509                                  ACCIn);
    510 
    511   // replace uses of sube and subc here
    512   if (!SDValue(SUBCNode, 0).use_empty()) {
    513     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
    514     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
    515   }
    516   if (!SDValue(SUBENode, 0).use_empty()) {
    517     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
    518     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
    519   }
    520 
    521   return true;
    522 }
    523 
    524 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
    525                                   TargetLowering::DAGCombinerInfo &DCI,
    526                                   const MipsSubtarget *Subtarget) {
    527   if (DCI.isBeforeLegalize())
    528     return SDValue();
    529 
    530   if (Subtarget->hasMips32() && !Subtarget->hasMips32r6() &&
    531       N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
    532     return SDValue(N, 0);
    533 
    534   return SDValue();
    535 }
    536 
    537 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
    538 //
    539 // Performs the following transformations:
    540 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
    541 //   sign/zero-extension is completely overwritten by the new one performed by
    542 //   the ISD::AND.
    543 // - Removes redundant zero extensions performed by an ISD::AND.
    544 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    545                                  TargetLowering::DAGCombinerInfo &DCI,
    546                                  const MipsSubtarget *Subtarget) {
    547   if (!Subtarget->hasMSA())
    548     return SDValue();
    549 
    550   SDValue Op0 = N->getOperand(0);
    551   SDValue Op1 = N->getOperand(1);
    552   unsigned Op0Opcode = Op0->getOpcode();
    553 
    554   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
    555   // where $d + 1 == 2^n and n == 32
    556   // or    $d + 1 == 2^n and n <= 32 and ZExt
    557   // -> (MipsVExtractZExt $a, $b, $c)
    558   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
    559       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
    560     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
    561 
    562     if (!Mask)
    563       return SDValue();
    564 
    565     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
    566 
    567     if (Log2IfPositive <= 0)
    568       return SDValue(); // Mask+1 is not a power of 2
    569 
    570     SDValue Op0Op2 = Op0->getOperand(2);
    571     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
    572     unsigned ExtendTySize = ExtendTy.getSizeInBits();
    573     unsigned Log2 = Log2IfPositive;
    574 
    575     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
    576         Log2 == ExtendTySize) {
    577       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
    578       DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
    579                       Op0->getVTList(),
    580                       makeArrayRef(Ops, Op0->getNumOperands()));
    581       return Op0;
    582     }
    583   }
    584 
    585   return SDValue();
    586 }
    587 
    588 // Determine if the specified node is a constant vector splat.
    589 //
    590 // Returns true and sets Imm if:
    591 // * N is a ISD::BUILD_VECTOR representing a constant splat
    592 //
    593 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
    594 // differences are that it assumes the MSA has already been checked and the
    595 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
    596 // must not be in order for binsri.d to be selectable).
    597 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
    598   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
    599 
    600   if (!Node)
    601     return false;
    602 
    603   APInt SplatValue, SplatUndef;
    604   unsigned SplatBitSize;
    605   bool HasAnyUndefs;
    606 
    607   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    608                              8, !IsLittleEndian))
    609     return false;
    610 
    611   Imm = SplatValue;
    612 
    613   return true;
    614 }
    615 
    616 // Test whether the given node is an all-ones build_vector.
    617 static bool isVectorAllOnes(SDValue N) {
    618   // Look through bitcasts. Endianness doesn't matter because we are looking
    619   // for an all-ones value.
    620   if (N->getOpcode() == ISD::BITCAST)
    621     N = N->getOperand(0);
    622 
    623   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
    624 
    625   if (!BVN)
    626     return false;
    627 
    628   APInt SplatValue, SplatUndef;
    629   unsigned SplatBitSize;
    630   bool HasAnyUndefs;
    631 
    632   // Endianness doesn't matter in this context because we are looking for
    633   // an all-ones value.
    634   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
    635     return SplatValue.isAllOnesValue();
    636 
    637   return false;
    638 }
    639 
    640 // Test whether N is the bitwise inverse of OfNode.
    641 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
    642   if (N->getOpcode() != ISD::XOR)
    643     return false;
    644 
    645   if (isVectorAllOnes(N->getOperand(0)))
    646     return N->getOperand(1) == OfNode;
    647 
    648   if (isVectorAllOnes(N->getOperand(1)))
    649     return N->getOperand(0) == OfNode;
    650 
    651   return false;
    652 }
    653 
    654 // Perform combines where ISD::OR is the root node.
    655 //
    656 // Performs the following transformations:
    657 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
    658 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
    659 //   vector type.
    660 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    661                                 TargetLowering::DAGCombinerInfo &DCI,
    662                                 const MipsSubtarget *Subtarget) {
    663   if (!Subtarget->hasMSA())
    664     return SDValue();
    665 
    666   EVT Ty = N->getValueType(0);
    667 
    668   if (!Ty.is128BitVector())
    669     return SDValue();
    670 
    671   SDValue Op0 = N->getOperand(0);
    672   SDValue Op1 = N->getOperand(1);
    673 
    674   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
    675     SDValue Op0Op0 = Op0->getOperand(0);
    676     SDValue Op0Op1 = Op0->getOperand(1);
    677     SDValue Op1Op0 = Op1->getOperand(0);
    678     SDValue Op1Op1 = Op1->getOperand(1);
    679     bool IsLittleEndian = !Subtarget->isLittle();
    680 
    681     SDValue IfSet, IfClr, Cond;
    682     bool IsConstantMask = false;
    683     APInt Mask, InvMask;
    684 
    685     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
    686     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
    687     // looking.
    688     // IfClr will be set if we find a valid match.
    689     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
    690       Cond = Op0Op0;
    691       IfSet = Op0Op1;
    692 
    693       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    694           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    695         IfClr = Op1Op1;
    696       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    697                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    698         IfClr = Op1Op0;
    699 
    700       IsConstantMask = true;
    701     }
    702 
    703     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
    704     // thing again using this mask.
    705     // IfClr will be set if we find a valid match.
    706     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
    707       Cond = Op0Op1;
    708       IfSet = Op0Op0;
    709 
    710       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    711           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    712         IfClr = Op1Op1;
    713       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    714                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    715         IfClr = Op1Op0;
    716 
    717       IsConstantMask = true;
    718     }
    719 
    720     // If IfClr is not yet set, try looking for a non-constant match.
    721     // IfClr will be set if we find a valid match amongst the eight
    722     // possibilities.
    723     if (!IfClr.getNode()) {
    724       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
    725         Cond = Op1Op0;
    726         IfSet = Op1Op1;
    727         IfClr = Op0Op1;
    728       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
    729         Cond = Op1Op0;
    730         IfSet = Op1Op1;
    731         IfClr = Op0Op0;
    732       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
    733         Cond = Op1Op1;
    734         IfSet = Op1Op0;
    735         IfClr = Op0Op1;
    736       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
    737         Cond = Op1Op1;
    738         IfSet = Op1Op0;
    739         IfClr = Op0Op0;
    740       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
    741         Cond = Op0Op0;
    742         IfSet = Op0Op1;
    743         IfClr = Op1Op1;
    744       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
    745         Cond = Op0Op0;
    746         IfSet = Op0Op1;
    747         IfClr = Op1Op0;
    748       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
    749         Cond = Op0Op1;
    750         IfSet = Op0Op0;
    751         IfClr = Op1Op1;
    752       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
    753         Cond = Op0Op1;
    754         IfSet = Op0Op0;
    755         IfClr = Op1Op0;
    756       }
    757     }
    758 
    759     // At this point, IfClr will be set if we have a valid match.
    760     if (!IfClr.getNode())
    761       return SDValue();
    762 
    763     assert(Cond.getNode() && IfSet.getNode());
    764 
    765     // Fold degenerate cases.
    766     if (IsConstantMask) {
    767       if (Mask.isAllOnesValue())
    768         return IfSet;
    769       else if (Mask == 0)
    770         return IfClr;
    771     }
    772 
    773     // Transform the DAG into an equivalent VSELECT.
    774     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
    775   }
    776 
    777   return SDValue();
    778 }
    779 
    780 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
    781                                   TargetLowering::DAGCombinerInfo &DCI,
    782                                   const MipsSubtarget *Subtarget) {
    783   if (DCI.isBeforeLegalize())
    784     return SDValue();
    785 
    786   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
    787       selectMSUB(N, &DAG))
    788     return SDValue(N, 0);
    789 
    790   return SDValue();
    791 }
    792 
    793 static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
    794                             EVT ShiftTy, SelectionDAG &DAG) {
    795   // Clear the upper (64 - VT.sizeInBits) bits.
    796   C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
    797 
    798   // Return 0.
    799   if (C == 0)
    800     return DAG.getConstant(0, VT);
    801 
    802   // Return x.
    803   if (C == 1)
    804     return X;
    805 
    806   // If c is power of 2, return (shl x, log2(c)).
    807   if (isPowerOf2_64(C))
    808     return DAG.getNode(ISD::SHL, DL, VT, X,
    809                        DAG.getConstant(Log2_64(C), ShiftTy));
    810 
    811   unsigned Log2Ceil = Log2_64_Ceil(C);
    812   uint64_t Floor = 1LL << Log2_64(C);
    813   uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
    814 
    815   // If |c - floor_c| <= |c - ceil_c|,
    816   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
    817   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
    818   if (C - Floor <= Ceil - C) {
    819     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
    820     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
    821     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
    822   }
    823 
    824   // If |c - floor_c| > |c - ceil_c|,
    825   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
    826   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
    827   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
    828   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
    829 }
    830 
    831 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
    832                                  const TargetLowering::DAGCombinerInfo &DCI,
    833                                  const MipsSETargetLowering *TL) {
    834   EVT VT = N->getValueType(0);
    835 
    836   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    837     if (!VT.isVector())
    838       return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
    839                           VT, TL->getScalarShiftAmountTy(VT), DAG);
    840 
    841   return SDValue(N, 0);
    842 }
    843 
    844 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
    845                                       SelectionDAG &DAG,
    846                                       const MipsSubtarget *Subtarget) {
    847   // See if this is a vector splat immediate node.
    848   APInt SplatValue, SplatUndef;
    849   unsigned SplatBitSize;
    850   bool HasAnyUndefs;
    851   unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
    852   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
    853 
    854   if (!Subtarget->hasDSP())
    855     return SDValue();
    856 
    857   if (!BV ||
    858       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    859                            EltSize, !Subtarget->isLittle()) ||
    860       (SplatBitSize != EltSize) ||
    861       (SplatValue.getZExtValue() >= EltSize))
    862     return SDValue();
    863 
    864   return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
    865                      DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
    866 }
    867 
    868 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
    869                                  TargetLowering::DAGCombinerInfo &DCI,
    870                                  const MipsSubtarget *Subtarget) {
    871   EVT Ty = N->getValueType(0);
    872 
    873   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    874     return SDValue();
    875 
    876   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
    877 }
    878 
    879 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
    880 // constant splats into MipsISD::SHRA_DSP for DSPr2.
    881 //
    882 // Performs the following transformations:
    883 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
    884 //   sign/zero-extension is completely overwritten by the new one performed by
    885 //   the ISD::SRA and ISD::SHL nodes.
    886 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
    887 //   sequence.
    888 //
    889 // See performDSPShiftCombine for more information about the transformation
    890 // used for DSPr2.
    891 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
    892                                  TargetLowering::DAGCombinerInfo &DCI,
    893                                  const MipsSubtarget *Subtarget) {
    894   EVT Ty = N->getValueType(0);
    895 
    896   if (Subtarget->hasMSA()) {
    897     SDValue Op0 = N->getOperand(0);
    898     SDValue Op1 = N->getOperand(1);
    899 
    900     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
    901     // where $d + sizeof($c) == 32
    902     // or    $d + sizeof($c) <= 32 and SExt
    903     // -> (MipsVExtractSExt $a, $b, $c)
    904     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
    905       SDValue Op0Op0 = Op0->getOperand(0);
    906       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
    907 
    908       if (!ShAmount)
    909         return SDValue();
    910 
    911       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
    912           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
    913         return SDValue();
    914 
    915       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
    916       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
    917 
    918       if (TotalBits == 32 ||
    919           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
    920            TotalBits <= 32)) {
    921         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
    922                           Op0Op0->getOperand(2) };
    923         DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
    924                         Op0Op0->getVTList(),
    925                         makeArrayRef(Ops, Op0Op0->getNumOperands()));
    926         return Op0Op0;
    927       }
    928     }
    929   }
    930 
    931   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
    932     return SDValue();
    933 
    934   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
    935 }
    936 
    937 
    938 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
    939                                  TargetLowering::DAGCombinerInfo &DCI,
    940                                  const MipsSubtarget *Subtarget) {
    941   EVT Ty = N->getValueType(0);
    942 
    943   if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
    944     return SDValue();
    945 
    946   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
    947 }
    948 
    949 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
    950   bool IsV216 = (Ty == MVT::v2i16);
    951 
    952   switch (CC) {
    953   case ISD::SETEQ:
    954   case ISD::SETNE:  return true;
    955   case ISD::SETLT:
    956   case ISD::SETLE:
    957   case ISD::SETGT:
    958   case ISD::SETGE:  return IsV216;
    959   case ISD::SETULT:
    960   case ISD::SETULE:
    961   case ISD::SETUGT:
    962   case ISD::SETUGE: return !IsV216;
    963   default:          return false;
    964   }
    965 }
    966 
    967 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
    968   EVT Ty = N->getValueType(0);
    969 
    970   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    971     return SDValue();
    972 
    973   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
    974     return SDValue();
    975 
    976   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
    977                      N->getOperand(1), N->getOperand(2));
    978 }
    979 
    980 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
    981   EVT Ty = N->getValueType(0);
    982 
    983   if (Ty.is128BitVector() && Ty.isInteger()) {
    984     // Try the following combines:
    985     //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
    986     //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
    987     //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
    988     //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
    989     //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
    990     //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
    991     //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
    992     //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
    993     // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
    994     // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
    995     // legalizer.
    996     SDValue Op0 = N->getOperand(0);
    997 
    998     if (Op0->getOpcode() != ISD::SETCC)
    999       return SDValue();
   1000 
   1001     ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
   1002     bool Signed;
   1003 
   1004     if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
   1005       Signed = true;
   1006     else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
   1007       Signed = false;
   1008     else
   1009       return SDValue();
   1010 
   1011     SDValue Op1 = N->getOperand(1);
   1012     SDValue Op2 = N->getOperand(2);
   1013     SDValue Op0Op0 = Op0->getOperand(0);
   1014     SDValue Op0Op1 = Op0->getOperand(1);
   1015 
   1016     if (Op1 == Op0Op0 && Op2 == Op0Op1)
   1017       return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
   1018                          Ty, Op1, Op2);
   1019     else if (Op1 == Op0Op1 && Op2 == Op0Op0)
   1020       return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
   1021                          Ty, Op1, Op2);
   1022   } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
   1023     SDValue SetCC = N->getOperand(0);
   1024 
   1025     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
   1026       return SDValue();
   1027 
   1028     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
   1029                        SetCC.getOperand(0), SetCC.getOperand(1),
   1030                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
   1031   }
   1032 
   1033   return SDValue();
   1034 }
   1035 
   1036 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
   1037                                  const MipsSubtarget *Subtarget) {
   1038   EVT Ty = N->getValueType(0);
   1039 
   1040   if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
   1041     // Try the following combines:
   1042     //   (xor (or $a, $b), (build_vector allones))
   1043     //   (xor (or $a, $b), (bitcast (build_vector allones)))
   1044     SDValue Op0 = N->getOperand(0);
   1045     SDValue Op1 = N->getOperand(1);
   1046     SDValue NotOp;
   1047 
   1048     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
   1049       NotOp = Op1;
   1050     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
   1051       NotOp = Op0;
   1052     else
   1053       return SDValue();
   1054 
   1055     if (NotOp->getOpcode() == ISD::OR)
   1056       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
   1057                          NotOp->getOperand(1));
   1058   }
   1059 
   1060   return SDValue();
   1061 }
   1062 
   1063 SDValue
   1064 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   1065   SelectionDAG &DAG = DCI.DAG;
   1066   SDValue Val;
   1067 
   1068   switch (N->getOpcode()) {
   1069   case ISD::ADDE:
   1070     return performADDECombine(N, DAG, DCI, Subtarget);
   1071   case ISD::AND:
   1072     Val = performANDCombine(N, DAG, DCI, Subtarget);
   1073     break;
   1074   case ISD::OR:
   1075     Val = performORCombine(N, DAG, DCI, Subtarget);
   1076     break;
   1077   case ISD::SUBE:
   1078     return performSUBECombine(N, DAG, DCI, Subtarget);
   1079   case ISD::MUL:
   1080     return performMULCombine(N, DAG, DCI, this);
   1081   case ISD::SHL:
   1082     return performSHLCombine(N, DAG, DCI, Subtarget);
   1083   case ISD::SRA:
   1084     return performSRACombine(N, DAG, DCI, Subtarget);
   1085   case ISD::SRL:
   1086     return performSRLCombine(N, DAG, DCI, Subtarget);
   1087   case ISD::VSELECT:
   1088     return performVSELECTCombine(N, DAG);
   1089   case ISD::XOR:
   1090     Val = performXORCombine(N, DAG, Subtarget);
   1091     break;
   1092   case ISD::SETCC:
   1093     Val = performSETCCCombine(N, DAG);
   1094     break;
   1095   }
   1096 
   1097   if (Val.getNode()) {
   1098     DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
   1099           N->printrWithDepth(dbgs(), &DAG);
   1100           dbgs() << "\n=> \n";
   1101           Val.getNode()->printrWithDepth(dbgs(), &DAG);
   1102           dbgs() << "\n");
   1103     return Val;
   1104   }
   1105 
   1106   return MipsTargetLowering::PerformDAGCombine(N, DCI);
   1107 }
   1108 
   1109 MachineBasicBlock *
   1110 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1111                                                   MachineBasicBlock *BB) const {
   1112   switch (MI->getOpcode()) {
   1113   default:
   1114     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
   1115   case Mips::BPOSGE32_PSEUDO:
   1116     return emitBPOSGE32(MI, BB);
   1117   case Mips::SNZ_B_PSEUDO:
   1118     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
   1119   case Mips::SNZ_H_PSEUDO:
   1120     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
   1121   case Mips::SNZ_W_PSEUDO:
   1122     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
   1123   case Mips::SNZ_D_PSEUDO:
   1124     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
   1125   case Mips::SNZ_V_PSEUDO:
   1126     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
   1127   case Mips::SZ_B_PSEUDO:
   1128     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
   1129   case Mips::SZ_H_PSEUDO:
   1130     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
   1131   case Mips::SZ_W_PSEUDO:
   1132     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
   1133   case Mips::SZ_D_PSEUDO:
   1134     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
   1135   case Mips::SZ_V_PSEUDO:
   1136     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
   1137   case Mips::COPY_FW_PSEUDO:
   1138     return emitCOPY_FW(MI, BB);
   1139   case Mips::COPY_FD_PSEUDO:
   1140     return emitCOPY_FD(MI, BB);
   1141   case Mips::INSERT_FW_PSEUDO:
   1142     return emitINSERT_FW(MI, BB);
   1143   case Mips::INSERT_FD_PSEUDO:
   1144     return emitINSERT_FD(MI, BB);
   1145   case Mips::INSERT_B_VIDX_PSEUDO:
   1146     return emitINSERT_DF_VIDX(MI, BB, 1, false);
   1147   case Mips::INSERT_H_VIDX_PSEUDO:
   1148     return emitINSERT_DF_VIDX(MI, BB, 2, false);
   1149   case Mips::INSERT_W_VIDX_PSEUDO:
   1150     return emitINSERT_DF_VIDX(MI, BB, 4, false);
   1151   case Mips::INSERT_D_VIDX_PSEUDO:
   1152     return emitINSERT_DF_VIDX(MI, BB, 8, false);
   1153   case Mips::INSERT_FW_VIDX_PSEUDO:
   1154     return emitINSERT_DF_VIDX(MI, BB, 4, true);
   1155   case Mips::INSERT_FD_VIDX_PSEUDO:
   1156     return emitINSERT_DF_VIDX(MI, BB, 8, true);
   1157   case Mips::FILL_FW_PSEUDO:
   1158     return emitFILL_FW(MI, BB);
   1159   case Mips::FILL_FD_PSEUDO:
   1160     return emitFILL_FD(MI, BB);
   1161   case Mips::FEXP2_W_1_PSEUDO:
   1162     return emitFEXP2_W_1(MI, BB);
   1163   case Mips::FEXP2_D_1_PSEUDO:
   1164     return emitFEXP2_D_1(MI, BB);
   1165   }
   1166 }
   1167 
   1168 bool MipsSETargetLowering::
   1169 isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
   1170                                   unsigned NextStackOffset,
   1171                                   const MipsFunctionInfo& FI) const {
   1172   if (!EnableMipsTailCalls)
   1173     return false;
   1174 
   1175   // Return false if either the callee or caller has a byval argument.
   1176   if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
   1177     return false;
   1178 
   1179   // Return true if the callee's argument area is no larger than the
   1180   // caller's.
   1181   return NextStackOffset <= FI.getIncomingArgSize();
   1182 }
   1183 
   1184 void MipsSETargetLowering::
   1185 getOpndList(SmallVectorImpl<SDValue> &Ops,
   1186             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   1187             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   1188             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
   1189   Ops.push_back(Callee);
   1190   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
   1191                                   InternalLinkage, CLI, Callee, Chain);
   1192 }
   1193 
   1194 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   1195   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
   1196 
   1197   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1198     return MipsTargetLowering::lowerLOAD(Op, DAG);
   1199 
   1200   // Replace a double precision load with two i32 loads and a buildpair64.
   1201   SDLoc DL(Op);
   1202   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1203   EVT PtrVT = Ptr.getValueType();
   1204 
   1205   // i32 load from lower address.
   1206   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
   1207                            MachinePointerInfo(), Nd.isVolatile(),
   1208                            Nd.isNonTemporal(), Nd.isInvariant(),
   1209                            Nd.getAlignment());
   1210 
   1211   // i32 load from higher address.
   1212   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
   1213   SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
   1214                            MachinePointerInfo(), Nd.isVolatile(),
   1215                            Nd.isNonTemporal(), Nd.isInvariant(),
   1216                            std::min(Nd.getAlignment(), 4U));
   1217 
   1218   if (!Subtarget->isLittle())
   1219     std::swap(Lo, Hi);
   1220 
   1221   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
   1222   SDValue Ops[2] = {BP, Hi.getValue(1)};
   1223   return DAG.getMergeValues(Ops, DL);
   1224 }
   1225 
   1226 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   1227   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
   1228 
   1229   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1230     return MipsTargetLowering::lowerSTORE(Op, DAG);
   1231 
   1232   // Replace a double precision store with two extractelement64s and i32 stores.
   1233   SDLoc DL(Op);
   1234   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1235   EVT PtrVT = Ptr.getValueType();
   1236   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1237                            Val, DAG.getConstant(0, MVT::i32));
   1238   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1239                            Val, DAG.getConstant(1, MVT::i32));
   1240 
   1241   if (!Subtarget->isLittle())
   1242     std::swap(Lo, Hi);
   1243 
   1244   // i32 store to lower address.
   1245   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
   1246                        Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
   1247                        Nd.getTBAAInfo());
   1248 
   1249   // i32 store to higher address.
   1250   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
   1251   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
   1252                       Nd.isVolatile(), Nd.isNonTemporal(),
   1253                       std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
   1254 }
   1255 
   1256 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
   1257                                           bool HasLo, bool HasHi,
   1258                                           SelectionDAG &DAG) const {
   1259   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
   1260   assert(!Subtarget->hasMips32r6());
   1261 
   1262   EVT Ty = Op.getOperand(0).getValueType();
   1263   SDLoc DL(Op);
   1264   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
   1265                              Op.getOperand(0), Op.getOperand(1));
   1266   SDValue Lo, Hi;
   1267 
   1268   if (HasLo)
   1269     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
   1270   if (HasHi)
   1271     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
   1272 
   1273   if (!HasLo || !HasHi)
   1274     return HasLo ? Lo : Hi;
   1275 
   1276   SDValue Vals[] = { Lo, Hi };
   1277   return DAG.getMergeValues(Vals, DL);
   1278 }
   1279 
   1280 
   1281 static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
   1282   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1283                              DAG.getConstant(0, MVT::i32));
   1284   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1285                              DAG.getConstant(1, MVT::i32));
   1286   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
   1287 }
   1288 
   1289 static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
   1290   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
   1291   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
   1292   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
   1293 }
   1294 
   1295 // This function expands mips intrinsic nodes which have 64-bit input operands
   1296 // or output values.
   1297 //
   1298 // out64 = intrinsic-node in64
   1299 // =>
   1300 // lo = copy (extract-element (in64, 0))
   1301 // hi = copy (extract-element (in64, 1))
   1302 // mips-specific-node
   1303 // v0 = copy lo
   1304 // v1 = copy hi
   1305 // out64 = merge-values (v0, v1)
   1306 //
   1307 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1308   SDLoc DL(Op);
   1309   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
   1310   SmallVector<SDValue, 3> Ops;
   1311   unsigned OpNo = 0;
   1312 
   1313   // See if Op has a chain input.
   1314   if (HasChainIn)
   1315     Ops.push_back(Op->getOperand(OpNo++));
   1316 
   1317   // The next operand is the intrinsic opcode.
   1318   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
   1319 
   1320   // See if the next operand has type i64.
   1321   SDValue Opnd = Op->getOperand(++OpNo), In64;
   1322 
   1323   if (Opnd.getValueType() == MVT::i64)
   1324     In64 = initAccumulator(Opnd, DL, DAG);
   1325   else
   1326     Ops.push_back(Opnd);
   1327 
   1328   // Push the remaining operands.
   1329   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
   1330     Ops.push_back(Op->getOperand(OpNo));
   1331 
   1332   // Add In64 to the end of the list.
   1333   if (In64.getNode())
   1334     Ops.push_back(In64);
   1335 
   1336   // Scan output.
   1337   SmallVector<EVT, 2> ResTys;
   1338 
   1339   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
   1340        I != E; ++I)
   1341     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
   1342 
   1343   // Create node.
   1344   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
   1345   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
   1346 
   1347   if (!HasChainIn)
   1348     return Out;
   1349 
   1350   assert(Val->getValueType(1) == MVT::Other);
   1351   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
   1352   return DAG.getMergeValues(Vals, DL);
   1353 }
   1354 
   1355 // Lower an MSA copy intrinsic into the specified SelectionDAG node
   1356 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1357   SDLoc DL(Op);
   1358   SDValue Vec = Op->getOperand(1);
   1359   SDValue Idx = Op->getOperand(2);
   1360   EVT ResTy = Op->getValueType(0);
   1361   EVT EltTy = Vec->getValueType(0).getVectorElementType();
   1362 
   1363   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
   1364                                DAG.getValueType(EltTy));
   1365 
   1366   return Result;
   1367 }
   1368 
   1369 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
   1370   EVT ResVecTy = Op->getValueType(0);
   1371   EVT ViaVecTy = ResVecTy;
   1372   SDLoc DL(Op);
   1373 
   1374   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
   1375   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
   1376   // lanes.
   1377   SDValue LaneA;
   1378   SDValue LaneB = Op->getOperand(2);
   1379 
   1380   if (ResVecTy == MVT::v2i64) {
   1381     LaneA = DAG.getConstant(0, MVT::i32);
   1382     ViaVecTy = MVT::v4i32;
   1383   } else
   1384     LaneA = LaneB;
   1385 
   1386   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
   1387                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
   1388 
   1389   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
   1390                        makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1391 
   1392   if (ViaVecTy != ResVecTy)
   1393     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
   1394 
   1395   return Result;
   1396 }
   1397 
   1398 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
   1399   return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
   1400 }
   1401 
   1402 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
   1403                                    bool BigEndian, SelectionDAG &DAG) {
   1404   EVT ViaVecTy = VecTy;
   1405   SDValue SplatValueA = SplatValue;
   1406   SDValue SplatValueB = SplatValue;
   1407   SDLoc DL(SplatValue);
   1408 
   1409   if (VecTy == MVT::v2i64) {
   1410     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
   1411     ViaVecTy = MVT::v4i32;
   1412 
   1413     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
   1414     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
   1415                               DAG.getConstant(32, MVT::i32));
   1416     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
   1417   }
   1418 
   1419   // We currently hold the parts in little endian order. Swap them if
   1420   // necessary.
   1421   if (BigEndian)
   1422     std::swap(SplatValueA, SplatValueB);
   1423 
   1424   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1425                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1426                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1427                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
   1428 
   1429   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
   1430                        makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1431 
   1432   if (VecTy != ViaVecTy)
   1433     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
   1434 
   1435   return Result;
   1436 }
   1437 
   1438 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
   1439                                         unsigned Opc, SDValue Imm,
   1440                                         bool BigEndian) {
   1441   EVT VecTy = Op->getValueType(0);
   1442   SDValue Exp2Imm;
   1443   SDLoc DL(Op);
   1444 
   1445   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
   1446   // here for now.
   1447   if (VecTy == MVT::v2i64) {
   1448     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
   1449       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
   1450 
   1451       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
   1452       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
   1453 
   1454       if (BigEndian)
   1455         std::swap(BitImmLoOp, BitImmHiOp);
   1456 
   1457       Exp2Imm =
   1458           DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
   1459                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
   1460                                   BitImmHiOp, BitImmLoOp, BitImmHiOp));
   1461     }
   1462   }
   1463 
   1464   if (!Exp2Imm.getNode()) {
   1465     // We couldnt constant fold, do a vector shift instead
   1466 
   1467     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
   1468     // only values 0-63 are valid.
   1469     if (VecTy == MVT::v2i64)
   1470       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
   1471 
   1472     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
   1473 
   1474     Exp2Imm =
   1475         DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
   1476   }
   1477 
   1478   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
   1479 }
   1480 
   1481 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
   1482   EVT ResTy = Op->getValueType(0);
   1483   SDLoc DL(Op);
   1484   SDValue One = DAG.getConstant(1, ResTy);
   1485   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
   1486 
   1487   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
   1488                      DAG.getNOT(DL, Bit, ResTy));
   1489 }
   1490 
   1491 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
   1492   SDLoc DL(Op);
   1493   EVT ResTy = Op->getValueType(0);
   1494   APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
   1495                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
   1496   SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
   1497 
   1498   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
   1499 }
   1500 
   1501 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   1502                                                       SelectionDAG &DAG) const {
   1503   SDLoc DL(Op);
   1504 
   1505   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
   1506   default:
   1507     return SDValue();
   1508   case Intrinsic::mips_shilo:
   1509     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
   1510   case Intrinsic::mips_dpau_h_qbl:
   1511     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
   1512   case Intrinsic::mips_dpau_h_qbr:
   1513     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
   1514   case Intrinsic::mips_dpsu_h_qbl:
   1515     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
   1516   case Intrinsic::mips_dpsu_h_qbr:
   1517     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
   1518   case Intrinsic::mips_dpa_w_ph:
   1519     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
   1520   case Intrinsic::mips_dps_w_ph:
   1521     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
   1522   case Intrinsic::mips_dpax_w_ph:
   1523     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
   1524   case Intrinsic::mips_dpsx_w_ph:
   1525     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
   1526   case Intrinsic::mips_mulsa_w_ph:
   1527     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
   1528   case Intrinsic::mips_mult:
   1529     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
   1530   case Intrinsic::mips_multu:
   1531     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
   1532   case Intrinsic::mips_madd:
   1533     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
   1534   case Intrinsic::mips_maddu:
   1535     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
   1536   case Intrinsic::mips_msub:
   1537     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
   1538   case Intrinsic::mips_msubu:
   1539     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
   1540   case Intrinsic::mips_addv_b:
   1541   case Intrinsic::mips_addv_h:
   1542   case Intrinsic::mips_addv_w:
   1543   case Intrinsic::mips_addv_d:
   1544     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1545                        Op->getOperand(2));
   1546   case Intrinsic::mips_addvi_b:
   1547   case Intrinsic::mips_addvi_h:
   1548   case Intrinsic::mips_addvi_w:
   1549   case Intrinsic::mips_addvi_d:
   1550     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1551                        lowerMSASplatImm(Op, 2, DAG));
   1552   case Intrinsic::mips_and_v:
   1553     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1554                        Op->getOperand(2));
   1555   case Intrinsic::mips_andi_b:
   1556     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1557                        lowerMSASplatImm(Op, 2, DAG));
   1558   case Intrinsic::mips_bclr_b:
   1559   case Intrinsic::mips_bclr_h:
   1560   case Intrinsic::mips_bclr_w:
   1561   case Intrinsic::mips_bclr_d:
   1562     return lowerMSABitClear(Op, DAG);
   1563   case Intrinsic::mips_bclri_b:
   1564   case Intrinsic::mips_bclri_h:
   1565   case Intrinsic::mips_bclri_w:
   1566   case Intrinsic::mips_bclri_d:
   1567     return lowerMSABitClearImm(Op, DAG);
   1568   case Intrinsic::mips_binsli_b:
   1569   case Intrinsic::mips_binsli_h:
   1570   case Intrinsic::mips_binsli_w:
   1571   case Intrinsic::mips_binsli_d: {
   1572     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
   1573     EVT VecTy = Op->getValueType(0);
   1574     EVT EltTy = VecTy.getVectorElementType();
   1575     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
   1576                                        Op->getConstantOperandVal(3));
   1577     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1578                        DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
   1579                        Op->getOperand(1));
   1580   }
   1581   case Intrinsic::mips_binsri_b:
   1582   case Intrinsic::mips_binsri_h:
   1583   case Intrinsic::mips_binsri_w:
   1584   case Intrinsic::mips_binsri_d: {
   1585     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
   1586     EVT VecTy = Op->getValueType(0);
   1587     EVT EltTy = VecTy.getVectorElementType();
   1588     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
   1589                                       Op->getConstantOperandVal(3));
   1590     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1591                        DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
   1592                        Op->getOperand(1));
   1593   }
   1594   case Intrinsic::mips_bmnz_v:
   1595     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1596                        Op->getOperand(2), Op->getOperand(1));
   1597   case Intrinsic::mips_bmnzi_b:
   1598     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1599                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
   1600                        Op->getOperand(1));
   1601   case Intrinsic::mips_bmz_v:
   1602     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1603                        Op->getOperand(1), Op->getOperand(2));
   1604   case Intrinsic::mips_bmzi_b:
   1605     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1606                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
   1607                        Op->getOperand(2));
   1608   case Intrinsic::mips_bneg_b:
   1609   case Intrinsic::mips_bneg_h:
   1610   case Intrinsic::mips_bneg_w:
   1611   case Intrinsic::mips_bneg_d: {
   1612     EVT VecTy = Op->getValueType(0);
   1613     SDValue One = DAG.getConstant(1, VecTy);
   1614 
   1615     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
   1616                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1617                                    Op->getOperand(2)));
   1618   }
   1619   case Intrinsic::mips_bnegi_b:
   1620   case Intrinsic::mips_bnegi_h:
   1621   case Intrinsic::mips_bnegi_w:
   1622   case Intrinsic::mips_bnegi_d:
   1623     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
   1624                                     !Subtarget->isLittle());
   1625   case Intrinsic::mips_bnz_b:
   1626   case Intrinsic::mips_bnz_h:
   1627   case Intrinsic::mips_bnz_w:
   1628   case Intrinsic::mips_bnz_d:
   1629     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
   1630                        Op->getOperand(1));
   1631   case Intrinsic::mips_bnz_v:
   1632     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
   1633                        Op->getOperand(1));
   1634   case Intrinsic::mips_bsel_v:
   1635     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1636     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1637                        Op->getOperand(1), Op->getOperand(3),
   1638                        Op->getOperand(2));
   1639   case Intrinsic::mips_bseli_b:
   1640     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1641     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1642                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
   1643                        Op->getOperand(2));
   1644   case Intrinsic::mips_bset_b:
   1645   case Intrinsic::mips_bset_h:
   1646   case Intrinsic::mips_bset_w:
   1647   case Intrinsic::mips_bset_d: {
   1648     EVT VecTy = Op->getValueType(0);
   1649     SDValue One = DAG.getConstant(1, VecTy);
   1650 
   1651     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
   1652                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1653                                    Op->getOperand(2)));
   1654   }
   1655   case Intrinsic::mips_bseti_b:
   1656   case Intrinsic::mips_bseti_h:
   1657   case Intrinsic::mips_bseti_w:
   1658   case Intrinsic::mips_bseti_d:
   1659     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
   1660                                     !Subtarget->isLittle());
   1661   case Intrinsic::mips_bz_b:
   1662   case Intrinsic::mips_bz_h:
   1663   case Intrinsic::mips_bz_w:
   1664   case Intrinsic::mips_bz_d:
   1665     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
   1666                        Op->getOperand(1));
   1667   case Intrinsic::mips_bz_v:
   1668     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
   1669                        Op->getOperand(1));
   1670   case Intrinsic::mips_ceq_b:
   1671   case Intrinsic::mips_ceq_h:
   1672   case Intrinsic::mips_ceq_w:
   1673   case Intrinsic::mips_ceq_d:
   1674     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1675                         Op->getOperand(2), ISD::SETEQ);
   1676   case Intrinsic::mips_ceqi_b:
   1677   case Intrinsic::mips_ceqi_h:
   1678   case Intrinsic::mips_ceqi_w:
   1679   case Intrinsic::mips_ceqi_d:
   1680     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1681                         lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
   1682   case Intrinsic::mips_cle_s_b:
   1683   case Intrinsic::mips_cle_s_h:
   1684   case Intrinsic::mips_cle_s_w:
   1685   case Intrinsic::mips_cle_s_d:
   1686     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1687                         Op->getOperand(2), ISD::SETLE);
   1688   case Intrinsic::mips_clei_s_b:
   1689   case Intrinsic::mips_clei_s_h:
   1690   case Intrinsic::mips_clei_s_w:
   1691   case Intrinsic::mips_clei_s_d:
   1692     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1693                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
   1694   case Intrinsic::mips_cle_u_b:
   1695   case Intrinsic::mips_cle_u_h:
   1696   case Intrinsic::mips_cle_u_w:
   1697   case Intrinsic::mips_cle_u_d:
   1698     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1699                         Op->getOperand(2), ISD::SETULE);
   1700   case Intrinsic::mips_clei_u_b:
   1701   case Intrinsic::mips_clei_u_h:
   1702   case Intrinsic::mips_clei_u_w:
   1703   case Intrinsic::mips_clei_u_d:
   1704     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1705                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
   1706   case Intrinsic::mips_clt_s_b:
   1707   case Intrinsic::mips_clt_s_h:
   1708   case Intrinsic::mips_clt_s_w:
   1709   case Intrinsic::mips_clt_s_d:
   1710     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1711                         Op->getOperand(2), ISD::SETLT);
   1712   case Intrinsic::mips_clti_s_b:
   1713   case Intrinsic::mips_clti_s_h:
   1714   case Intrinsic::mips_clti_s_w:
   1715   case Intrinsic::mips_clti_s_d:
   1716     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1717                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
   1718   case Intrinsic::mips_clt_u_b:
   1719   case Intrinsic::mips_clt_u_h:
   1720   case Intrinsic::mips_clt_u_w:
   1721   case Intrinsic::mips_clt_u_d:
   1722     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1723                         Op->getOperand(2), ISD::SETULT);
   1724   case Intrinsic::mips_clti_u_b:
   1725   case Intrinsic::mips_clti_u_h:
   1726   case Intrinsic::mips_clti_u_w:
   1727   case Intrinsic::mips_clti_u_d:
   1728     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1729                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
   1730   case Intrinsic::mips_copy_s_b:
   1731   case Intrinsic::mips_copy_s_h:
   1732   case Intrinsic::mips_copy_s_w:
   1733     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1734   case Intrinsic::mips_copy_s_d:
   1735     if (Subtarget->hasMips64())
   1736       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
   1737       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1738     else {
   1739       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1740       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1741       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1742                          Op->getValueType(0), Op->getOperand(1),
   1743                          Op->getOperand(2));
   1744     }
   1745   case Intrinsic::mips_copy_u_b:
   1746   case Intrinsic::mips_copy_u_h:
   1747   case Intrinsic::mips_copy_u_w:
   1748     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1749   case Intrinsic::mips_copy_u_d:
   1750     if (Subtarget->hasMips64())
   1751       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
   1752       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1753     else {
   1754       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1755       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1756       // Note: When i64 is illegal, this results in copy_s.w instructions
   1757       // instead of copy_u.w instructions. This makes no difference to the
   1758       // behaviour since i64 is only illegal when the register file is 32-bit.
   1759       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1760                          Op->getValueType(0), Op->getOperand(1),
   1761                          Op->getOperand(2));
   1762     }
   1763   case Intrinsic::mips_div_s_b:
   1764   case Intrinsic::mips_div_s_h:
   1765   case Intrinsic::mips_div_s_w:
   1766   case Intrinsic::mips_div_s_d:
   1767     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1768                        Op->getOperand(2));
   1769   case Intrinsic::mips_div_u_b:
   1770   case Intrinsic::mips_div_u_h:
   1771   case Intrinsic::mips_div_u_w:
   1772   case Intrinsic::mips_div_u_d:
   1773     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1774                        Op->getOperand(2));
   1775   case Intrinsic::mips_fadd_w:
   1776   case Intrinsic::mips_fadd_d:
   1777     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
   1778                        Op->getOperand(2));
   1779   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
   1780   case Intrinsic::mips_fceq_w:
   1781   case Intrinsic::mips_fceq_d:
   1782     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1783                         Op->getOperand(2), ISD::SETOEQ);
   1784   case Intrinsic::mips_fcle_w:
   1785   case Intrinsic::mips_fcle_d:
   1786     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1787                         Op->getOperand(2), ISD::SETOLE);
   1788   case Intrinsic::mips_fclt_w:
   1789   case Intrinsic::mips_fclt_d:
   1790     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1791                         Op->getOperand(2), ISD::SETOLT);
   1792   case Intrinsic::mips_fcne_w:
   1793   case Intrinsic::mips_fcne_d:
   1794     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1795                         Op->getOperand(2), ISD::SETONE);
   1796   case Intrinsic::mips_fcor_w:
   1797   case Intrinsic::mips_fcor_d:
   1798     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1799                         Op->getOperand(2), ISD::SETO);
   1800   case Intrinsic::mips_fcueq_w:
   1801   case Intrinsic::mips_fcueq_d:
   1802     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1803                         Op->getOperand(2), ISD::SETUEQ);
   1804   case Intrinsic::mips_fcule_w:
   1805   case Intrinsic::mips_fcule_d:
   1806     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1807                         Op->getOperand(2), ISD::SETULE);
   1808   case Intrinsic::mips_fcult_w:
   1809   case Intrinsic::mips_fcult_d:
   1810     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1811                         Op->getOperand(2), ISD::SETULT);
   1812   case Intrinsic::mips_fcun_w:
   1813   case Intrinsic::mips_fcun_d:
   1814     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1815                         Op->getOperand(2), ISD::SETUO);
   1816   case Intrinsic::mips_fcune_w:
   1817   case Intrinsic::mips_fcune_d:
   1818     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1819                         Op->getOperand(2), ISD::SETUNE);
   1820   case Intrinsic::mips_fdiv_w:
   1821   case Intrinsic::mips_fdiv_d:
   1822     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1823                        Op->getOperand(2));
   1824   case Intrinsic::mips_ffint_u_w:
   1825   case Intrinsic::mips_ffint_u_d:
   1826     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
   1827                        Op->getOperand(1));
   1828   case Intrinsic::mips_ffint_s_w:
   1829   case Intrinsic::mips_ffint_s_d:
   1830     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
   1831                        Op->getOperand(1));
   1832   case Intrinsic::mips_fill_b:
   1833   case Intrinsic::mips_fill_h:
   1834   case Intrinsic::mips_fill_w:
   1835   case Intrinsic::mips_fill_d: {
   1836     SmallVector<SDValue, 16> Ops;
   1837     EVT ResTy = Op->getValueType(0);
   1838 
   1839     for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
   1840       Ops.push_back(Op->getOperand(1));
   1841 
   1842     // If ResTy is v2i64 then the type legalizer will break this node down into
   1843     // an equivalent v4i32.
   1844     return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
   1845   }
   1846   case Intrinsic::mips_fexp2_w:
   1847   case Intrinsic::mips_fexp2_d: {
   1848     EVT ResTy = Op->getValueType(0);
   1849     return DAG.getNode(
   1850         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
   1851         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
   1852   }
   1853   case Intrinsic::mips_flog2_w:
   1854   case Intrinsic::mips_flog2_d:
   1855     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
   1856   case Intrinsic::mips_fmadd_w:
   1857   case Intrinsic::mips_fmadd_d:
   1858     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
   1859                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   1860   case Intrinsic::mips_fmul_w:
   1861   case Intrinsic::mips_fmul_d:
   1862     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
   1863                        Op->getOperand(2));
   1864   case Intrinsic::mips_fmsub_w:
   1865   case Intrinsic::mips_fmsub_d: {
   1866     EVT ResTy = Op->getValueType(0);
   1867     return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
   1868                        DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
   1869                                    Op->getOperand(2), Op->getOperand(3)));
   1870   }
   1871   case Intrinsic::mips_frint_w:
   1872   case Intrinsic::mips_frint_d:
   1873     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
   1874   case Intrinsic::mips_fsqrt_w:
   1875   case Intrinsic::mips_fsqrt_d:
   1876     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
   1877   case Intrinsic::mips_fsub_w:
   1878   case Intrinsic::mips_fsub_d:
   1879     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
   1880                        Op->getOperand(2));
   1881   case Intrinsic::mips_ftrunc_u_w:
   1882   case Intrinsic::mips_ftrunc_u_d:
   1883     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
   1884                        Op->getOperand(1));
   1885   case Intrinsic::mips_ftrunc_s_w:
   1886   case Intrinsic::mips_ftrunc_s_d:
   1887     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
   1888                        Op->getOperand(1));
   1889   case Intrinsic::mips_ilvev_b:
   1890   case Intrinsic::mips_ilvev_h:
   1891   case Intrinsic::mips_ilvev_w:
   1892   case Intrinsic::mips_ilvev_d:
   1893     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
   1894                        Op->getOperand(1), Op->getOperand(2));
   1895   case Intrinsic::mips_ilvl_b:
   1896   case Intrinsic::mips_ilvl_h:
   1897   case Intrinsic::mips_ilvl_w:
   1898   case Intrinsic::mips_ilvl_d:
   1899     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
   1900                        Op->getOperand(1), Op->getOperand(2));
   1901   case Intrinsic::mips_ilvod_b:
   1902   case Intrinsic::mips_ilvod_h:
   1903   case Intrinsic::mips_ilvod_w:
   1904   case Intrinsic::mips_ilvod_d:
   1905     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
   1906                        Op->getOperand(1), Op->getOperand(2));
   1907   case Intrinsic::mips_ilvr_b:
   1908   case Intrinsic::mips_ilvr_h:
   1909   case Intrinsic::mips_ilvr_w:
   1910   case Intrinsic::mips_ilvr_d:
   1911     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
   1912                        Op->getOperand(1), Op->getOperand(2));
   1913   case Intrinsic::mips_insert_b:
   1914   case Intrinsic::mips_insert_h:
   1915   case Intrinsic::mips_insert_w:
   1916   case Intrinsic::mips_insert_d:
   1917     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
   1918                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
   1919   case Intrinsic::mips_insve_b:
   1920   case Intrinsic::mips_insve_h:
   1921   case Intrinsic::mips_insve_w:
   1922   case Intrinsic::mips_insve_d:
   1923     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
   1924                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
   1925                        DAG.getConstant(0, MVT::i32));
   1926   case Intrinsic::mips_ldi_b:
   1927   case Intrinsic::mips_ldi_h:
   1928   case Intrinsic::mips_ldi_w:
   1929   case Intrinsic::mips_ldi_d:
   1930     return lowerMSASplatImm(Op, 1, DAG);
   1931   case Intrinsic::mips_lsa:
   1932   case Intrinsic::mips_dlsa: {
   1933     EVT ResTy = Op->getValueType(0);
   1934     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1935                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
   1936                                    Op->getOperand(2), Op->getOperand(3)));
   1937   }
   1938   case Intrinsic::mips_maddv_b:
   1939   case Intrinsic::mips_maddv_h:
   1940   case Intrinsic::mips_maddv_w:
   1941   case Intrinsic::mips_maddv_d: {
   1942     EVT ResTy = Op->getValueType(0);
   1943     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1944                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   1945                                    Op->getOperand(2), Op->getOperand(3)));
   1946   }
   1947   case Intrinsic::mips_max_s_b:
   1948   case Intrinsic::mips_max_s_h:
   1949   case Intrinsic::mips_max_s_w:
   1950   case Intrinsic::mips_max_s_d:
   1951     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1952                        Op->getOperand(1), Op->getOperand(2));
   1953   case Intrinsic::mips_max_u_b:
   1954   case Intrinsic::mips_max_u_h:
   1955   case Intrinsic::mips_max_u_w:
   1956   case Intrinsic::mips_max_u_d:
   1957     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1958                        Op->getOperand(1), Op->getOperand(2));
   1959   case Intrinsic::mips_maxi_s_b:
   1960   case Intrinsic::mips_maxi_s_h:
   1961   case Intrinsic::mips_maxi_s_w:
   1962   case Intrinsic::mips_maxi_s_d:
   1963     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1964                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1965   case Intrinsic::mips_maxi_u_b:
   1966   case Intrinsic::mips_maxi_u_h:
   1967   case Intrinsic::mips_maxi_u_w:
   1968   case Intrinsic::mips_maxi_u_d:
   1969     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1970                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1971   case Intrinsic::mips_min_s_b:
   1972   case Intrinsic::mips_min_s_h:
   1973   case Intrinsic::mips_min_s_w:
   1974   case Intrinsic::mips_min_s_d:
   1975     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   1976                        Op->getOperand(1), Op->getOperand(2));
   1977   case Intrinsic::mips_min_u_b:
   1978   case Intrinsic::mips_min_u_h:
   1979   case Intrinsic::mips_min_u_w:
   1980   case Intrinsic::mips_min_u_d:
   1981     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   1982                        Op->getOperand(1), Op->getOperand(2));
   1983   case Intrinsic::mips_mini_s_b:
   1984   case Intrinsic::mips_mini_s_h:
   1985   case Intrinsic::mips_mini_s_w:
   1986   case Intrinsic::mips_mini_s_d:
   1987     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   1988                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1989   case Intrinsic::mips_mini_u_b:
   1990   case Intrinsic::mips_mini_u_h:
   1991   case Intrinsic::mips_mini_u_w:
   1992   case Intrinsic::mips_mini_u_d:
   1993     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   1994                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1995   case Intrinsic::mips_mod_s_b:
   1996   case Intrinsic::mips_mod_s_h:
   1997   case Intrinsic::mips_mod_s_w:
   1998   case Intrinsic::mips_mod_s_d:
   1999     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
   2000                        Op->getOperand(2));
   2001   case Intrinsic::mips_mod_u_b:
   2002   case Intrinsic::mips_mod_u_h:
   2003   case Intrinsic::mips_mod_u_w:
   2004   case Intrinsic::mips_mod_u_d:
   2005     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
   2006                        Op->getOperand(2));
   2007   case Intrinsic::mips_mulv_b:
   2008   case Intrinsic::mips_mulv_h:
   2009   case Intrinsic::mips_mulv_w:
   2010   case Intrinsic::mips_mulv_d:
   2011     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
   2012                        Op->getOperand(2));
   2013   case Intrinsic::mips_msubv_b:
   2014   case Intrinsic::mips_msubv_h:
   2015   case Intrinsic::mips_msubv_w:
   2016   case Intrinsic::mips_msubv_d: {
   2017     EVT ResTy = Op->getValueType(0);
   2018     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
   2019                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   2020                                    Op->getOperand(2), Op->getOperand(3)));
   2021   }
   2022   case Intrinsic::mips_nlzc_b:
   2023   case Intrinsic::mips_nlzc_h:
   2024   case Intrinsic::mips_nlzc_w:
   2025   case Intrinsic::mips_nlzc_d:
   2026     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
   2027   case Intrinsic::mips_nor_v: {
   2028     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2029                               Op->getOperand(1), Op->getOperand(2));
   2030     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2031   }
   2032   case Intrinsic::mips_nori_b: {
   2033     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2034                                Op->getOperand(1),
   2035                                lowerMSASplatImm(Op, 2, DAG));
   2036     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2037   }
   2038   case Intrinsic::mips_or_v:
   2039     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
   2040                        Op->getOperand(2));
   2041   case Intrinsic::mips_ori_b:
   2042     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2043                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2044   case Intrinsic::mips_pckev_b:
   2045   case Intrinsic::mips_pckev_h:
   2046   case Intrinsic::mips_pckev_w:
   2047   case Intrinsic::mips_pckev_d:
   2048     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
   2049                        Op->getOperand(1), Op->getOperand(2));
   2050   case Intrinsic::mips_pckod_b:
   2051   case Intrinsic::mips_pckod_h:
   2052   case Intrinsic::mips_pckod_w:
   2053   case Intrinsic::mips_pckod_d:
   2054     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
   2055                        Op->getOperand(1), Op->getOperand(2));
   2056   case Intrinsic::mips_pcnt_b:
   2057   case Intrinsic::mips_pcnt_h:
   2058   case Intrinsic::mips_pcnt_w:
   2059   case Intrinsic::mips_pcnt_d:
   2060     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
   2061   case Intrinsic::mips_shf_b:
   2062   case Intrinsic::mips_shf_h:
   2063   case Intrinsic::mips_shf_w:
   2064     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
   2065                        Op->getOperand(2), Op->getOperand(1));
   2066   case Intrinsic::mips_sll_b:
   2067   case Intrinsic::mips_sll_h:
   2068   case Intrinsic::mips_sll_w:
   2069   case Intrinsic::mips_sll_d:
   2070     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
   2071                        Op->getOperand(2));
   2072   case Intrinsic::mips_slli_b:
   2073   case Intrinsic::mips_slli_h:
   2074   case Intrinsic::mips_slli_w:
   2075   case Intrinsic::mips_slli_d:
   2076     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
   2077                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2078   case Intrinsic::mips_splat_b:
   2079   case Intrinsic::mips_splat_h:
   2080   case Intrinsic::mips_splat_w:
   2081   case Intrinsic::mips_splat_d:
   2082     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
   2083     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
   2084     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
   2085     // Instead we lower to MipsISD::VSHF and match from there.
   2086     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2087                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
   2088                        Op->getOperand(1));
   2089   case Intrinsic::mips_splati_b:
   2090   case Intrinsic::mips_splati_h:
   2091   case Intrinsic::mips_splati_w:
   2092   case Intrinsic::mips_splati_d:
   2093     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2094                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
   2095                        Op->getOperand(1));
   2096   case Intrinsic::mips_sra_b:
   2097   case Intrinsic::mips_sra_h:
   2098   case Intrinsic::mips_sra_w:
   2099   case Intrinsic::mips_sra_d:
   2100     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
   2101                        Op->getOperand(2));
   2102   case Intrinsic::mips_srai_b:
   2103   case Intrinsic::mips_srai_h:
   2104   case Intrinsic::mips_srai_w:
   2105   case Intrinsic::mips_srai_d:
   2106     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
   2107                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2108   case Intrinsic::mips_srl_b:
   2109   case Intrinsic::mips_srl_h:
   2110   case Intrinsic::mips_srl_w:
   2111   case Intrinsic::mips_srl_d:
   2112     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
   2113                        Op->getOperand(2));
   2114   case Intrinsic::mips_srli_b:
   2115   case Intrinsic::mips_srli_h:
   2116   case Intrinsic::mips_srli_w:
   2117   case Intrinsic::mips_srli_d:
   2118     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
   2119                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2120   case Intrinsic::mips_subv_b:
   2121   case Intrinsic::mips_subv_h:
   2122   case Intrinsic::mips_subv_w:
   2123   case Intrinsic::mips_subv_d:
   2124     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
   2125                        Op->getOperand(2));
   2126   case Intrinsic::mips_subvi_b:
   2127   case Intrinsic::mips_subvi_h:
   2128   case Intrinsic::mips_subvi_w:
   2129   case Intrinsic::mips_subvi_d:
   2130     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
   2131                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2132   case Intrinsic::mips_vshf_b:
   2133   case Intrinsic::mips_vshf_h:
   2134   case Intrinsic::mips_vshf_w:
   2135   case Intrinsic::mips_vshf_d:
   2136     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2137                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   2138   case Intrinsic::mips_xor_v:
   2139     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
   2140                        Op->getOperand(2));
   2141   case Intrinsic::mips_xori_b:
   2142     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
   2143                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2144   }
   2145 }
   2146 
   2147 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2148   SDLoc DL(Op);
   2149   SDValue ChainIn = Op->getOperand(0);
   2150   SDValue Address = Op->getOperand(2);
   2151   SDValue Offset  = Op->getOperand(3);
   2152   EVT ResTy = Op->getValueType(0);
   2153   EVT PtrTy = Address->getValueType(0);
   2154 
   2155   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2156 
   2157   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
   2158                      false, false, 16);
   2159 }
   2160 
   2161 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   2162                                                      SelectionDAG &DAG) const {
   2163   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2164   switch (Intr) {
   2165   default:
   2166     return SDValue();
   2167   case Intrinsic::mips_extp:
   2168     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
   2169   case Intrinsic::mips_extpdp:
   2170     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
   2171   case Intrinsic::mips_extr_w:
   2172     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
   2173   case Intrinsic::mips_extr_r_w:
   2174     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
   2175   case Intrinsic::mips_extr_rs_w:
   2176     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
   2177   case Intrinsic::mips_extr_s_h:
   2178     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
   2179   case Intrinsic::mips_mthlip:
   2180     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
   2181   case Intrinsic::mips_mulsaq_s_w_ph:
   2182     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
   2183   case Intrinsic::mips_maq_s_w_phl:
   2184     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
   2185   case Intrinsic::mips_maq_s_w_phr:
   2186     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
   2187   case Intrinsic::mips_maq_sa_w_phl:
   2188     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
   2189   case Intrinsic::mips_maq_sa_w_phr:
   2190     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
   2191   case Intrinsic::mips_dpaq_s_w_ph:
   2192     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
   2193   case Intrinsic::mips_dpsq_s_w_ph:
   2194     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
   2195   case Intrinsic::mips_dpaq_sa_l_w:
   2196     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
   2197   case Intrinsic::mips_dpsq_sa_l_w:
   2198     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
   2199   case Intrinsic::mips_dpaqx_s_w_ph:
   2200     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
   2201   case Intrinsic::mips_dpaqx_sa_w_ph:
   2202     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
   2203   case Intrinsic::mips_dpsqx_s_w_ph:
   2204     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
   2205   case Intrinsic::mips_dpsqx_sa_w_ph:
   2206     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
   2207   case Intrinsic::mips_ld_b:
   2208   case Intrinsic::mips_ld_h:
   2209   case Intrinsic::mips_ld_w:
   2210   case Intrinsic::mips_ld_d:
   2211    return lowerMSALoadIntr(Op, DAG, Intr);
   2212   }
   2213 }
   2214 
   2215 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2216   SDLoc DL(Op);
   2217   SDValue ChainIn = Op->getOperand(0);
   2218   SDValue Value   = Op->getOperand(2);
   2219   SDValue Address = Op->getOperand(3);
   2220   SDValue Offset  = Op->getOperand(4);
   2221   EVT PtrTy = Address->getValueType(0);
   2222 
   2223   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2224 
   2225   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
   2226                       false, 16);
   2227 }
   2228 
   2229 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
   2230                                                   SelectionDAG &DAG) const {
   2231   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2232   switch (Intr) {
   2233   default:
   2234     return SDValue();
   2235   case Intrinsic::mips_st_b:
   2236   case Intrinsic::mips_st_h:
   2237   case Intrinsic::mips_st_w:
   2238   case Intrinsic::mips_st_d:
   2239     return lowerMSAStoreIntr(Op, DAG, Intr);
   2240   }
   2241 }
   2242 
   2243 /// \brief Check if the given BuildVectorSDNode is a splat.
   2244 /// This method currently relies on DAG nodes being reused when equivalent,
   2245 /// so it's possible for this to return false even when isConstantSplat returns
   2246 /// true.
   2247 static bool isSplatVector(const BuildVectorSDNode *N) {
   2248   unsigned int nOps = N->getNumOperands();
   2249   assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
   2250 
   2251   SDValue Operand0 = N->getOperand(0);
   2252 
   2253   for (unsigned int i = 1; i < nOps; ++i) {
   2254     if (N->getOperand(i) != Operand0)
   2255       return false;
   2256   }
   2257 
   2258   return true;
   2259 }
   2260 
   2261 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
   2262 //
   2263 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
   2264 // choose to sign-extend but we could have equally chosen zero-extend. The
   2265 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
   2266 // result into this node later (possibly changing it to a zero-extend in the
   2267 // process).
   2268 SDValue MipsSETargetLowering::
   2269 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   2270   SDLoc DL(Op);
   2271   EVT ResTy = Op->getValueType(0);
   2272   SDValue Op0 = Op->getOperand(0);
   2273   EVT VecTy = Op0->getValueType(0);
   2274 
   2275   if (!VecTy.is128BitVector())
   2276     return SDValue();
   2277 
   2278   if (ResTy.isInteger()) {
   2279     SDValue Op1 = Op->getOperand(1);
   2280     EVT EltTy = VecTy.getVectorElementType();
   2281     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
   2282                        DAG.getValueType(EltTy));
   2283   }
   2284 
   2285   return Op;
   2286 }
   2287 
   2288 static bool isConstantOrUndef(const SDValue Op) {
   2289   if (Op->getOpcode() == ISD::UNDEF)
   2290     return true;
   2291   if (dyn_cast<ConstantSDNode>(Op))
   2292     return true;
   2293   if (dyn_cast<ConstantFPSDNode>(Op))
   2294     return true;
   2295   return false;
   2296 }
   2297 
   2298 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
   2299   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
   2300     if (isConstantOrUndef(Op->getOperand(i)))
   2301       return true;
   2302   return false;
   2303 }
   2304 
   2305 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
   2306 // backend.
   2307 //
   2308 // Lowers according to the following rules:
   2309 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
   2310 //   2 less than or equal to 64 and the value fits into a signed 10-bit
   2311 //   immediate
   2312 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
   2313 //   is a power of 2 less than or equal to 64 and the value does not fit into a
   2314 //   signed 10-bit immediate
   2315 // - Non-constant splats are legal as-is.
   2316 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
   2317 // - All others are illegal and must be expanded.
   2318 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
   2319                                                 SelectionDAG &DAG) const {
   2320   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
   2321   EVT ResTy = Op->getValueType(0);
   2322   SDLoc DL(Op);
   2323   APInt SplatValue, SplatUndef;
   2324   unsigned SplatBitSize;
   2325   bool HasAnyUndefs;
   2326 
   2327   if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
   2328     return SDValue();
   2329 
   2330   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   2331                             HasAnyUndefs, 8,
   2332                             !Subtarget->isLittle()) && SplatBitSize <= 64) {
   2333     // We can only cope with 8, 16, 32, or 64-bit elements
   2334     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
   2335         SplatBitSize != 64)
   2336       return SDValue();
   2337 
   2338     // If the value fits into a simm10 then we can use ldi.[bhwd]
   2339     // However, if it isn't an integer type we will have to bitcast from an
   2340     // integer type first. Also, if there are any undefs, we must lower them
   2341     // to defined values first.
   2342     if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
   2343       return Op;
   2344 
   2345     EVT ViaVecTy;
   2346 
   2347     switch (SplatBitSize) {
   2348     default:
   2349       return SDValue();
   2350     case 8:
   2351       ViaVecTy = MVT::v16i8;
   2352       break;
   2353     case 16:
   2354       ViaVecTy = MVT::v8i16;
   2355       break;
   2356     case 32:
   2357       ViaVecTy = MVT::v4i32;
   2358       break;
   2359     case 64:
   2360       // There's no fill.d to fall back on for 64-bit values
   2361       return SDValue();
   2362     }
   2363 
   2364     // SelectionDAG::getConstant will promote SplatValue appropriately.
   2365     SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
   2366 
   2367     // Bitcast to the type we originally wanted
   2368     if (ViaVecTy != ResTy)
   2369       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
   2370 
   2371     return Result;
   2372   } else if (isSplatVector(Node))
   2373     return Op;
   2374   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
   2375     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
   2376     // The resulting code is the same length as the expansion, but it doesn't
   2377     // use memory operations
   2378     EVT ResTy = Node->getValueType(0);
   2379 
   2380     assert(ResTy.isVector());
   2381 
   2382     unsigned NumElts = ResTy.getVectorNumElements();
   2383     SDValue Vector = DAG.getUNDEF(ResTy);
   2384     for (unsigned i = 0; i < NumElts; ++i) {
   2385       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
   2386                            Node->getOperand(i),
   2387                            DAG.getConstant(i, MVT::i32));
   2388     }
   2389     return Vector;
   2390   }
   2391 
   2392   return SDValue();
   2393 }
   2394 
   2395 // Lower VECTOR_SHUFFLE into SHF (if possible).
   2396 //
   2397 // SHF splits the vector into blocks of four elements, then shuffles these
   2398 // elements according to a <4 x i2> constant (encoded as an integer immediate).
   2399 //
   2400 // It is therefore possible to lower into SHF when the mask takes the form:
   2401 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
   2402 // When undef's appear they are treated as if they were whatever value is
   2403 // necessary in order to fit the above form.
   2404 //
   2405 // For example:
   2406 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
   2407 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
   2408 //                                 i32 7, i32 6, i32 5, i32 4>
   2409 // is lowered to:
   2410 //   (SHF_H $w0, $w1, 27)
   2411 // where the 27 comes from:
   2412 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
   2413 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
   2414                                        SmallVector<int, 16> Indices,
   2415                                        SelectionDAG &DAG) {
   2416   int SHFIndices[4] = { -1, -1, -1, -1 };
   2417 
   2418   if (Indices.size() < 4)
   2419     return SDValue();
   2420 
   2421   for (unsigned i = 0; i < 4; ++i) {
   2422     for (unsigned j = i; j < Indices.size(); j += 4) {
   2423       int Idx = Indices[j];
   2424 
   2425       // Convert from vector index to 4-element subvector index
   2426       // If an index refers to an element outside of the subvector then give up
   2427       if (Idx != -1) {
   2428         Idx -= 4 * (j / 4);
   2429         if (Idx < 0 || Idx >= 4)
   2430           return SDValue();
   2431       }
   2432 
   2433       // If the mask has an undef, replace it with the current index.
   2434       // Note that it might still be undef if the current index is also undef
   2435       if (SHFIndices[i] == -1)
   2436         SHFIndices[i] = Idx;
   2437 
   2438       // Check that non-undef values are the same as in the mask. If they
   2439       // aren't then give up
   2440       if (!(Idx == -1 || Idx == SHFIndices[i]))
   2441         return SDValue();
   2442     }
   2443   }
   2444 
   2445   // Calculate the immediate. Replace any remaining undefs with zero
   2446   APInt Imm(32, 0);
   2447   for (int i = 3; i >= 0; --i) {
   2448     int Idx = SHFIndices[i];
   2449 
   2450     if (Idx == -1)
   2451       Idx = 0;
   2452 
   2453     Imm <<= 2;
   2454     Imm |= Idx & 0x3;
   2455   }
   2456 
   2457   return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
   2458                      DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
   2459 }
   2460 
   2461 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
   2462 //
   2463 // ILVEV interleaves the even elements from each vector.
   2464 //
   2465 // It is possible to lower into ILVEV when the mask takes the form:
   2466 //   <0, n, 2, n+2, 4, n+4, ...>
   2467 // where n is the number of elements in the vector.
   2468 //
   2469 // When undef's appear in the mask they are treated as if they were whatever
   2470 // value is necessary in order to fit the above form.
   2471 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
   2472                                          SmallVector<int, 16> Indices,
   2473                                          SelectionDAG &DAG) {
   2474   assert ((Indices.size() % 2) == 0);
   2475   int WsIdx = 0;
   2476   int WtIdx = ResTy.getVectorNumElements();
   2477 
   2478   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2479     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2480       return SDValue();
   2481     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2482       return SDValue();
   2483     WsIdx += 2;
   2484     WtIdx += 2;
   2485   }
   2486 
   2487   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
   2488                      Op->getOperand(1));
   2489 }
   2490 
   2491 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
   2492 //
   2493 // ILVOD interleaves the odd elements from each vector.
   2494 //
   2495 // It is possible to lower into ILVOD when the mask takes the form:
   2496 //   <1, n+1, 3, n+3, 5, n+5, ...>
   2497 // where n is the number of elements in the vector.
   2498 //
   2499 // When undef's appear in the mask they are treated as if they were whatever
   2500 // value is necessary in order to fit the above form.
   2501 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
   2502                                          SmallVector<int, 16> Indices,
   2503                                          SelectionDAG &DAG) {
   2504   assert ((Indices.size() % 2) == 0);
   2505   int WsIdx = 1;
   2506   int WtIdx = ResTy.getVectorNumElements() + 1;
   2507 
   2508   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2509     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2510       return SDValue();
   2511     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2512       return SDValue();
   2513     WsIdx += 2;
   2514     WtIdx += 2;
   2515   }
   2516 
   2517   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
   2518                      Op->getOperand(1));
   2519 }
   2520 
   2521 // Lower VECTOR_SHUFFLE into ILVL (if possible).
   2522 //
   2523 // ILVL interleaves consecutive elements from the left half of each vector.
   2524 //
   2525 // It is possible to lower into ILVL when the mask takes the form:
   2526 //   <0, n, 1, n+1, 2, n+2, ...>
   2527 // where n is the number of elements in the vector.
   2528 //
   2529 // When undef's appear in the mask they are treated as if they were whatever
   2530 // value is necessary in order to fit the above form.
   2531 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
   2532                                         SmallVector<int, 16> Indices,
   2533                                         SelectionDAG &DAG) {
   2534   assert ((Indices.size() % 2) == 0);
   2535   int WsIdx = 0;
   2536   int WtIdx = ResTy.getVectorNumElements();
   2537 
   2538   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2539     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2540       return SDValue();
   2541     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2542       return SDValue();
   2543     WsIdx ++;
   2544     WtIdx ++;
   2545   }
   2546 
   2547   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
   2548                      Op->getOperand(1));
   2549 }
   2550 
   2551 // Lower VECTOR_SHUFFLE into ILVR (if possible).
   2552 //
   2553 // ILVR interleaves consecutive elements from the right half of each vector.
   2554 //
   2555 // It is possible to lower into ILVR when the mask takes the form:
   2556 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
   2557 // where n is the number of elements in the vector and x is half n.
   2558 //
   2559 // When undef's appear in the mask they are treated as if they were whatever
   2560 // value is necessary in order to fit the above form.
   2561 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
   2562                                         SmallVector<int, 16> Indices,
   2563                                         SelectionDAG &DAG) {
   2564   assert ((Indices.size() % 2) == 0);
   2565   unsigned NumElts = ResTy.getVectorNumElements();
   2566   int WsIdx = NumElts / 2;
   2567   int WtIdx = NumElts + NumElts / 2;
   2568 
   2569   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2570     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2571       return SDValue();
   2572     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2573       return SDValue();
   2574     WsIdx ++;
   2575     WtIdx ++;
   2576   }
   2577 
   2578   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
   2579                      Op->getOperand(1));
   2580 }
   2581 
   2582 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
   2583 //
   2584 // PCKEV copies the even elements of each vector into the result vector.
   2585 //
   2586 // It is possible to lower into PCKEV when the mask takes the form:
   2587 //   <0, 2, 4, ..., n, n+2, n+4, ...>
   2588 // where n is the number of elements in the vector.
   2589 //
   2590 // When undef's appear in the mask they are treated as if they were whatever
   2591 // value is necessary in order to fit the above form.
   2592 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
   2593                                          SmallVector<int, 16> Indices,
   2594                                          SelectionDAG &DAG) {
   2595   assert ((Indices.size() % 2) == 0);
   2596   int Idx = 0;
   2597 
   2598   for (unsigned i = 0; i < Indices.size(); ++i) {
   2599     if (Indices[i] != -1 && Indices[i] != Idx)
   2600       return SDValue();
   2601     Idx += 2;
   2602   }
   2603 
   2604   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
   2605                      Op->getOperand(1));
   2606 }
   2607 
   2608 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
   2609 //
   2610 // PCKOD copies the odd elements of each vector into the result vector.
   2611 //
   2612 // It is possible to lower into PCKOD when the mask takes the form:
   2613 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
   2614 // where n is the number of elements in the vector.
   2615 //
   2616 // When undef's appear in the mask they are treated as if they were whatever
   2617 // value is necessary in order to fit the above form.
   2618 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
   2619                                          SmallVector<int, 16> Indices,
   2620                                          SelectionDAG &DAG) {
   2621   assert ((Indices.size() % 2) == 0);
   2622   int Idx = 1;
   2623 
   2624   for (unsigned i = 0; i < Indices.size(); ++i) {
   2625     if (Indices[i] != -1 && Indices[i] != Idx)
   2626       return SDValue();
   2627     Idx += 2;
   2628   }
   2629 
   2630   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
   2631                      Op->getOperand(1));
   2632 }
   2633 
   2634 // Lower VECTOR_SHUFFLE into VSHF.
   2635 //
   2636 // This mostly consists of converting the shuffle indices in Indices into a
   2637 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
   2638 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
   2639 // if the type is v8i16 and all the indices are less than 8 then the second
   2640 // operand is unused and can be replaced with anything. We choose to replace it
   2641 // with the used operand since this reduces the number of instructions overall.
   2642 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
   2643                                         SmallVector<int, 16> Indices,
   2644                                         SelectionDAG &DAG) {
   2645   SmallVector<SDValue, 16> Ops;
   2646   SDValue Op0;
   2647   SDValue Op1;
   2648   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
   2649   EVT MaskEltTy = MaskVecTy.getVectorElementType();
   2650   bool Using1stVec = false;
   2651   bool Using2ndVec = false;
   2652   SDLoc DL(Op);
   2653   int ResTyNumElts = ResTy.getVectorNumElements();
   2654 
   2655   for (int i = 0; i < ResTyNumElts; ++i) {
   2656     // Idx == -1 means UNDEF
   2657     int Idx = Indices[i];
   2658 
   2659     if (0 <= Idx && Idx < ResTyNumElts)
   2660       Using1stVec = true;
   2661     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
   2662       Using2ndVec = true;
   2663   }
   2664 
   2665   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
   2666        ++I)
   2667     Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
   2668 
   2669   SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
   2670 
   2671   if (Using1stVec && Using2ndVec) {
   2672     Op0 = Op->getOperand(0);
   2673     Op1 = Op->getOperand(1);
   2674   } else if (Using1stVec)
   2675     Op0 = Op1 = Op->getOperand(0);
   2676   else if (Using2ndVec)
   2677     Op0 = Op1 = Op->getOperand(1);
   2678   else
   2679     llvm_unreachable("shuffle vector mask references neither vector operand?");
   2680 
   2681   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
   2682   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
   2683   // VSHF concatenates the vectors in a bitwise fashion:
   2684   // <0b00, 0b01> + <0b10, 0b11> ->
   2685   // 0b0100       + 0b1110       -> 0b01001110
   2686   //                                <0b10, 0b11, 0b00, 0b01>
   2687   // We must therefore swap the operands to get the correct result.
   2688   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
   2689 }
   2690 
   2691 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
   2692 // indices in the shuffle.
   2693 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
   2694                                                   SelectionDAG &DAG) const {
   2695   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
   2696   EVT ResTy = Op->getValueType(0);
   2697 
   2698   if (!ResTy.is128BitVector())
   2699     return SDValue();
   2700 
   2701   int ResTyNumElts = ResTy.getVectorNumElements();
   2702   SmallVector<int, 16> Indices;
   2703 
   2704   for (int i = 0; i < ResTyNumElts; ++i)
   2705     Indices.push_back(Node->getMaskElt(i));
   2706 
   2707   SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
   2708   if (Result.getNode())
   2709     return Result;
   2710   Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
   2711   if (Result.getNode())
   2712     return Result;
   2713   Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
   2714   if (Result.getNode())
   2715     return Result;
   2716   Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
   2717   if (Result.getNode())
   2718     return Result;
   2719   Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
   2720   if (Result.getNode())
   2721     return Result;
   2722   Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
   2723   if (Result.getNode())
   2724     return Result;
   2725   Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
   2726   if (Result.getNode())
   2727     return Result;
   2728   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
   2729 }
   2730 
   2731 MachineBasicBlock * MipsSETargetLowering::
   2732 emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
   2733   // $bb:
   2734   //  bposge32_pseudo $vr0
   2735   //  =>
   2736   // $bb:
   2737   //  bposge32 $tbb
   2738   // $fbb:
   2739   //  li $vr2, 0
   2740   //  b $sink
   2741   // $tbb:
   2742   //  li $vr1, 1
   2743   // $sink:
   2744   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
   2745 
   2746   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2747   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2748   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2749   DebugLoc DL = MI->getDebugLoc();
   2750   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2751   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2752   MachineFunction *F = BB->getParent();
   2753   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   2754   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   2755   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   2756   F->insert(It, FBB);
   2757   F->insert(It, TBB);
   2758   F->insert(It, Sink);
   2759 
   2760   // Transfer the remainder of BB and its successor edges to Sink.
   2761   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   2762                BB->end());
   2763   Sink->transferSuccessorsAndUpdatePHIs(BB);
   2764 
   2765   // Add successors.
   2766   BB->addSuccessor(FBB);
   2767   BB->addSuccessor(TBB);
   2768   FBB->addSuccessor(Sink);
   2769   TBB->addSuccessor(Sink);
   2770 
   2771   // Insert the real bposge32 instruction to $BB.
   2772   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
   2773 
   2774   // Fill $FBB.
   2775   unsigned VR2 = RegInfo.createVirtualRegister(RC);
   2776   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
   2777     .addReg(Mips::ZERO).addImm(0);
   2778   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   2779 
   2780   // Fill $TBB.
   2781   unsigned VR1 = RegInfo.createVirtualRegister(RC);
   2782   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
   2783     .addReg(Mips::ZERO).addImm(1);
   2784 
   2785   // Insert phi function to $Sink.
   2786   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   2787           MI->getOperand(0).getReg())
   2788     .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
   2789 
   2790   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2791   return Sink;
   2792 }
   2793 
   2794 MachineBasicBlock * MipsSETargetLowering::
   2795 emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
   2796                      unsigned BranchOp) const{
   2797   // $bb:
   2798   //  vany_nonzero $rd, $ws
   2799   //  =>
   2800   // $bb:
   2801   //  bnz.b $ws, $tbb
   2802   //  b $fbb
   2803   // $fbb:
   2804   //  li $rd1, 0
   2805   //  b $sink
   2806   // $tbb:
   2807   //  li $rd2, 1
   2808   // $sink:
   2809   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
   2810 
   2811   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2812   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2813   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2814   DebugLoc DL = MI->getDebugLoc();
   2815   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2816   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2817   MachineFunction *F = BB->getParent();
   2818   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   2819   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   2820   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   2821   F->insert(It, FBB);
   2822   F->insert(It, TBB);
   2823   F->insert(It, Sink);
   2824 
   2825   // Transfer the remainder of BB and its successor edges to Sink.
   2826   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   2827                BB->end());
   2828   Sink->transferSuccessorsAndUpdatePHIs(BB);
   2829 
   2830   // Add successors.
   2831   BB->addSuccessor(FBB);
   2832   BB->addSuccessor(TBB);
   2833   FBB->addSuccessor(Sink);
   2834   TBB->addSuccessor(Sink);
   2835 
   2836   // Insert the real bnz.b instruction to $BB.
   2837   BuildMI(BB, DL, TII->get(BranchOp))
   2838     .addReg(MI->getOperand(1).getReg())
   2839     .addMBB(TBB);
   2840 
   2841   // Fill $FBB.
   2842   unsigned RD1 = RegInfo.createVirtualRegister(RC);
   2843   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
   2844     .addReg(Mips::ZERO).addImm(0);
   2845   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   2846 
   2847   // Fill $TBB.
   2848   unsigned RD2 = RegInfo.createVirtualRegister(RC);
   2849   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
   2850     .addReg(Mips::ZERO).addImm(1);
   2851 
   2852   // Insert phi function to $Sink.
   2853   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   2854           MI->getOperand(0).getReg())
   2855     .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
   2856 
   2857   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2858   return Sink;
   2859 }
   2860 
   2861 // Emit the COPY_FW pseudo instruction.
   2862 //
   2863 // copy_fw_pseudo $fd, $ws, n
   2864 // =>
   2865 // copy_u_w $rt, $ws, $n
   2866 // mtc1     $rt, $fd
   2867 //
   2868 // When n is zero, the equivalent operation can be performed with (potentially)
   2869 // zero instructions due to register overlaps. This optimization is never valid
   2870 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
   2871 MachineBasicBlock * MipsSETargetLowering::
   2872 emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
   2873   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2874   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2875   DebugLoc DL = MI->getDebugLoc();
   2876   unsigned Fd = MI->getOperand(0).getReg();
   2877   unsigned Ws = MI->getOperand(1).getReg();
   2878   unsigned Lane = MI->getOperand(2).getImm();
   2879 
   2880   if (Lane == 0)
   2881     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
   2882   else {
   2883     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   2884 
   2885     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
   2886     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
   2887   }
   2888 
   2889   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2890   return BB;
   2891 }
   2892 
   2893 // Emit the COPY_FD pseudo instruction.
   2894 //
   2895 // copy_fd_pseudo $fd, $ws, n
   2896 // =>
   2897 // splati.d $wt, $ws, $n
   2898 // copy $fd, $wt:sub_64
   2899 //
   2900 // When n is zero, the equivalent operation can be performed with (potentially)
   2901 // zero instructions due to register overlaps. This optimization is always
   2902 // valid because FR=1 mode which is the only supported mode in MSA.
   2903 MachineBasicBlock * MipsSETargetLowering::
   2904 emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
   2905   assert(Subtarget->isFP64bit());
   2906 
   2907   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2908   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2909   unsigned Fd  = MI->getOperand(0).getReg();
   2910   unsigned Ws  = MI->getOperand(1).getReg();
   2911   unsigned Lane = MI->getOperand(2).getImm() * 2;
   2912   DebugLoc DL = MI->getDebugLoc();
   2913 
   2914   if (Lane == 0)
   2915     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
   2916   else {
   2917     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   2918 
   2919     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
   2920     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
   2921   }
   2922 
   2923   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2924   return BB;
   2925 }
   2926 
   2927 // Emit the INSERT_FW pseudo instruction.
   2928 //
   2929 // insert_fw_pseudo $wd, $wd_in, $n, $fs
   2930 // =>
   2931 // subreg_to_reg $wt:sub_lo, $fs
   2932 // insve_w $wd[$n], $wd_in, $wt[0]
   2933 MachineBasicBlock *
   2934 MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
   2935                                     MachineBasicBlock *BB) const {
   2936   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2937   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2938   DebugLoc DL = MI->getDebugLoc();
   2939   unsigned Wd = MI->getOperand(0).getReg();
   2940   unsigned Wd_in = MI->getOperand(1).getReg();
   2941   unsigned Lane = MI->getOperand(2).getImm();
   2942   unsigned Fs = MI->getOperand(3).getReg();
   2943   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   2944 
   2945   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   2946       .addImm(0)
   2947       .addReg(Fs)
   2948       .addImm(Mips::sub_lo);
   2949   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
   2950       .addReg(Wd_in)
   2951       .addImm(Lane)
   2952       .addReg(Wt)
   2953       .addImm(0);
   2954 
   2955   MI->eraseFromParent(); // The pseudo instruction is gone now.
   2956   return BB;
   2957 }
   2958 
   2959 // Emit the INSERT_FD pseudo instruction.
   2960 //
   2961 // insert_fd_pseudo $wd, $fs, n
   2962 // =>
   2963 // subreg_to_reg $wt:sub_64, $fs
   2964 // insve_d $wd[$n], $wd_in, $wt[0]
   2965 MachineBasicBlock *
   2966 MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
   2967                                     MachineBasicBlock *BB) const {
   2968   assert(Subtarget->isFP64bit());
   2969 
   2970   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   2971   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2972   DebugLoc DL = MI->getDebugLoc();
   2973   unsigned Wd = MI->getOperand(0).getReg();
   2974   unsigned Wd_in = MI->getOperand(1).getReg();
   2975   unsigned Lane = MI->getOperand(2).getImm();
   2976   unsigned Fs = MI->getOperand(3).getReg();
   2977   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   2978 
   2979   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   2980       .addImm(0)
   2981       .addReg(Fs)
   2982       .addImm(Mips::sub_64);
   2983   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
   2984       .addReg(Wd_in)
   2985       .addImm(Lane)
   2986       .addReg(Wt)
   2987       .addImm(0);
   2988 
   2989   MI->eraseFromParent(); // The pseudo instruction is gone now.
   2990   return BB;
   2991 }
   2992 
   2993 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
   2994 //
   2995 // For integer:
   2996 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
   2997 // =>
   2998 // (SLL $lanetmp1, $lane, <log2size)
   2999 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3000 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
   3001 // (NEG $lanetmp2, $lanetmp1)
   3002 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3003 //
   3004 // For floating point:
   3005 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
   3006 // =>
   3007 // (SUBREG_TO_REG $wt, $fs, <subreg>)
   3008 // (SLL $lanetmp1, $lane, <log2size)
   3009 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3010 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
   3011 // (NEG $lanetmp2, $lanetmp1)
   3012 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3013 MachineBasicBlock *
   3014 MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
   3015                                          MachineBasicBlock *BB,
   3016                                          unsigned EltSizeInBytes,
   3017                                          bool IsFP) const {
   3018   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   3019   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3020   DebugLoc DL = MI->getDebugLoc();
   3021   unsigned Wd = MI->getOperand(0).getReg();
   3022   unsigned SrcVecReg = MI->getOperand(1).getReg();
   3023   unsigned LaneReg = MI->getOperand(2).getReg();
   3024   unsigned SrcValReg = MI->getOperand(3).getReg();
   3025 
   3026   const TargetRegisterClass *VecRC = nullptr;
   3027   const TargetRegisterClass *GPRRC =
   3028       Subtarget->isGP64bit() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
   3029   unsigned EltLog2Size;
   3030   unsigned InsertOp = 0;
   3031   unsigned InsveOp = 0;
   3032   switch (EltSizeInBytes) {
   3033   default:
   3034     llvm_unreachable("Unexpected size");
   3035   case 1:
   3036     EltLog2Size = 0;
   3037     InsertOp = Mips::INSERT_B;
   3038     InsveOp = Mips::INSVE_B;
   3039     VecRC = &Mips::MSA128BRegClass;
   3040     break;
   3041   case 2:
   3042     EltLog2Size = 1;
   3043     InsertOp = Mips::INSERT_H;
   3044     InsveOp = Mips::INSVE_H;
   3045     VecRC = &Mips::MSA128HRegClass;
   3046     break;
   3047   case 4:
   3048     EltLog2Size = 2;
   3049     InsertOp = Mips::INSERT_W;
   3050     InsveOp = Mips::INSVE_W;
   3051     VecRC = &Mips::MSA128WRegClass;
   3052     break;
   3053   case 8:
   3054     EltLog2Size = 3;
   3055     InsertOp = Mips::INSERT_D;
   3056     InsveOp = Mips::INSVE_D;
   3057     VecRC = &Mips::MSA128DRegClass;
   3058     break;
   3059   }
   3060 
   3061   if (IsFP) {
   3062     unsigned Wt = RegInfo.createVirtualRegister(VecRC);
   3063     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   3064         .addImm(0)
   3065         .addReg(SrcValReg)
   3066         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
   3067     SrcValReg = Wt;
   3068   }
   3069 
   3070   // Convert the lane index into a byte index
   3071   if (EltSizeInBytes != 1) {
   3072     unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
   3073     BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
   3074         .addReg(LaneReg)
   3075         .addImm(EltLog2Size);
   3076     LaneReg = LaneTmp1;
   3077   }
   3078 
   3079   // Rotate bytes around so that the desired lane is element zero
   3080   unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
   3081   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
   3082       .addReg(SrcVecReg)
   3083       .addReg(SrcVecReg)
   3084       .addReg(LaneReg);
   3085 
   3086   unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
   3087   if (IsFP) {
   3088     // Use insve.df to insert to element zero
   3089     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
   3090         .addReg(WdTmp1)
   3091         .addImm(0)
   3092         .addReg(SrcValReg)
   3093         .addImm(0);
   3094   } else {
   3095     // Use insert.df to insert to element zero
   3096     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
   3097         .addReg(WdTmp1)
   3098         .addReg(SrcValReg)
   3099         .addImm(0);
   3100   }
   3101 
   3102   // Rotate elements the rest of the way for a full rotation.
   3103   // sld.df inteprets $rt modulo the number of columns so we only need to negate
   3104   // the lane index to do this.
   3105   unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
   3106   BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
   3107       .addReg(Mips::ZERO)
   3108       .addReg(LaneReg);
   3109   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
   3110       .addReg(WdTmp2)
   3111       .addReg(WdTmp2)
   3112       .addReg(LaneTmp2);
   3113 
   3114   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3115   return BB;
   3116 }
   3117 
   3118 // Emit the FILL_FW pseudo instruction.
   3119 //
   3120 // fill_fw_pseudo $wd, $fs
   3121 // =>
   3122 // implicit_def $wt1
   3123 // insert_subreg $wt2:subreg_lo, $wt1, $fs
   3124 // splati.w $wd, $wt2[0]
   3125 MachineBasicBlock *
   3126 MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
   3127                                   MachineBasicBlock *BB) const {
   3128   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   3129   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3130   DebugLoc DL = MI->getDebugLoc();
   3131   unsigned Wd = MI->getOperand(0).getReg();
   3132   unsigned Fs = MI->getOperand(1).getReg();
   3133   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3134   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3135 
   3136   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3137   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3138       .addReg(Wt1)
   3139       .addReg(Fs)
   3140       .addImm(Mips::sub_lo);
   3141   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
   3142 
   3143   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3144   return BB;
   3145 }
   3146 
   3147 // Emit the FILL_FD pseudo instruction.
   3148 //
   3149 // fill_fd_pseudo $wd, $fs
   3150 // =>
   3151 // implicit_def $wt1
   3152 // insert_subreg $wt2:subreg_64, $wt1, $fs
   3153 // splati.d $wd, $wt2[0]
   3154 MachineBasicBlock *
   3155 MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
   3156                                   MachineBasicBlock *BB) const {
   3157   assert(Subtarget->isFP64bit());
   3158 
   3159   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   3160   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3161   DebugLoc DL = MI->getDebugLoc();
   3162   unsigned Wd = MI->getOperand(0).getReg();
   3163   unsigned Fs = MI->getOperand(1).getReg();
   3164   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3165   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3166 
   3167   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3168   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3169       .addReg(Wt1)
   3170       .addReg(Fs)
   3171       .addImm(Mips::sub_64);
   3172   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
   3173 
   3174   MI->eraseFromParent();   // The pseudo instruction is gone now.
   3175   return BB;
   3176 }
   3177 
   3178 // Emit the FEXP2_W_1 pseudo instructions.
   3179 //
   3180 // fexp2_w_1_pseudo $wd, $wt
   3181 // =>
   3182 // ldi.w $ws, 1
   3183 // fexp2.w $wd, $ws, $wt
   3184 MachineBasicBlock *
   3185 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
   3186                                     MachineBasicBlock *BB) const {
   3187   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   3188   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3189   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
   3190   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3191   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3192   DebugLoc DL = MI->getDebugLoc();
   3193 
   3194   // Splat 1.0 into a vector
   3195   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
   3196   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
   3197 
   3198   // Emit 1.0 * fexp2(Wt)
   3199   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
   3200       .addReg(Ws2)
   3201       .addReg(MI->getOperand(1).getReg());
   3202 
   3203   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3204   return BB;
   3205 }
   3206 
   3207 // Emit the FEXP2_D_1 pseudo instructions.
   3208 //
   3209 // fexp2_d_1_pseudo $wd, $wt
   3210 // =>
   3211 // ldi.d $ws, 1
   3212 // fexp2.d $wd, $ws, $wt
   3213 MachineBasicBlock *
   3214 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
   3215                                     MachineBasicBlock *BB) const {
   3216   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   3217   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3218   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
   3219   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3220   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3221   DebugLoc DL = MI->getDebugLoc();
   3222 
   3223   // Splat 1.0 into a vector
   3224   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
   3225   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
   3226 
   3227   // Emit 1.0 * fexp2(Wt)
   3228   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
   3229       .addReg(Ws2)
   3230       .addReg(MI->getOperand(1).getReg());
   3231 
   3232   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3233   return BB;
   3234 }
   3235