Home | History | Annotate | Download | only in gpu
      1 
      2 /*
      3  * Copyright 2012 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 #include "GrAAConvexPathRenderer.h"
     10 
     11 #include "GrContext.h"
     12 #include "GrDrawState.h"
     13 #include "GrDrawTargetCaps.h"
     14 #include "GrProcessor.h"
     15 #include "GrPathUtils.h"
     16 #include "GrTBackendProcessorFactory.h"
     17 #include "SkString.h"
     18 #include "SkStrokeRec.h"
     19 #include "SkTraceEvent.h"
     20 
     21 #include "gl/builders/GrGLFullProgramBuilder.h"
     22 #include "gl/GrGLProcessor.h"
     23 #include "gl/GrGLSL.h"
     24 #include "gl/GrGLGeometryProcessor.h"
     25 
     26 #include "GrGeometryProcessor.h"
     27 
     28 GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
     29 }
     30 
     31 struct Segment {
     32     enum {
     33         // These enum values are assumed in member functions below.
     34         kLine = 0,
     35         kQuad = 1,
     36     } fType;
     37 
     38     // line uses one pt, quad uses 2 pts
     39     SkPoint fPts[2];
     40     // normal to edge ending at each pt
     41     SkVector fNorms[2];
     42     // is the corner where the previous segment meets this segment
     43     // sharp. If so, fMid is a normalized bisector facing outward.
     44     SkVector fMid;
     45 
     46     int countPoints() {
     47         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
     48         return fType + 1;
     49     }
     50     const SkPoint& endPt() const {
     51         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
     52         return fPts[fType];
     53     };
     54     const SkPoint& endNorm() const {
     55         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
     56         return fNorms[fType];
     57     };
     58 };
     59 
     60 typedef SkTArray<Segment, true> SegmentArray;
     61 
     62 static void center_of_mass(const SegmentArray& segments, SkPoint* c) {
     63     SkScalar area = 0;
     64     SkPoint center = {0, 0};
     65     int count = segments.count();
     66     SkPoint p0 = {0, 0};
     67     if (count > 2) {
     68         // We translate the polygon so that the first point is at the origin.
     69         // This avoids some precision issues with small area polygons far away
     70         // from the origin.
     71         p0 = segments[0].endPt();
     72         SkPoint pi;
     73         SkPoint pj;
     74         // the first and last iteration of the below loop would compute
     75         // zeros since the starting / ending point is (0,0). So instead we start
     76         // at i=1 and make the last iteration i=count-2.
     77         pj = segments[1].endPt() - p0;
     78         for (int i = 1; i < count - 1; ++i) {
     79             pi = pj;
     80             const SkPoint pj = segments[i + 1].endPt() - p0;
     81 
     82             SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY);
     83             area += t;
     84             center.fX += (pi.fX + pj.fX) * t;
     85             center.fY += (pi.fY + pj.fY) * t;
     86 
     87         }
     88     }
     89     // If the poly has no area then we instead return the average of
     90     // its points.
     91     if (SkScalarNearlyZero(area)) {
     92         SkPoint avg;
     93         avg.set(0, 0);
     94         for (int i = 0; i < count; ++i) {
     95             const SkPoint& pt = segments[i].endPt();
     96             avg.fX += pt.fX;
     97             avg.fY += pt.fY;
     98         }
     99         SkScalar denom = SK_Scalar1 / count;
    100         avg.scale(denom);
    101         *c = avg;
    102     } else {
    103         area *= 3;
    104         area = SkScalarDiv(SK_Scalar1, area);
    105         center.fX = SkScalarMul(center.fX, area);
    106         center.fY = SkScalarMul(center.fY, area);
    107         // undo the translate of p0 to the origin.
    108         *c = center + p0;
    109     }
    110     SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
    111 }
    112 
    113 static void compute_vectors(SegmentArray* segments,
    114                             SkPoint* fanPt,
    115                             SkPath::Direction dir,
    116                             int* vCount,
    117                             int* iCount) {
    118     center_of_mass(*segments, fanPt);
    119     int count = segments->count();
    120 
    121     // Make the normals point towards the outside
    122     SkPoint::Side normSide;
    123     if (dir == SkPath::kCCW_Direction) {
    124         normSide = SkPoint::kRight_Side;
    125     } else {
    126         normSide = SkPoint::kLeft_Side;
    127     }
    128 
    129     *vCount = 0;
    130     *iCount = 0;
    131     // compute normals at all points
    132     for (int a = 0; a < count; ++a) {
    133         Segment& sega = (*segments)[a];
    134         int b = (a + 1) % count;
    135         Segment& segb = (*segments)[b];
    136 
    137         const SkPoint* prevPt = &sega.endPt();
    138         int n = segb.countPoints();
    139         for (int p = 0; p < n; ++p) {
    140             segb.fNorms[p] = segb.fPts[p] - *prevPt;
    141             segb.fNorms[p].normalize();
    142             segb.fNorms[p].setOrthog(segb.fNorms[p], normSide);
    143             prevPt = &segb.fPts[p];
    144         }
    145         if (Segment::kLine == segb.fType) {
    146             *vCount += 5;
    147             *iCount += 9;
    148         } else {
    149             *vCount += 6;
    150             *iCount += 12;
    151         }
    152     }
    153 
    154     // compute mid-vectors where segments meet. TODO: Detect shallow corners
    155     // and leave out the wedges and close gaps by stitching segments together.
    156     for (int a = 0; a < count; ++a) {
    157         const Segment& sega = (*segments)[a];
    158         int b = (a + 1) % count;
    159         Segment& segb = (*segments)[b];
    160         segb.fMid = segb.fNorms[0] + sega.endNorm();
    161         segb.fMid.normalize();
    162         // corner wedges
    163         *vCount += 4;
    164         *iCount += 6;
    165     }
    166 }
    167 
    168 struct DegenerateTestData {
    169     DegenerateTestData() { fStage = kInitial; }
    170     bool isDegenerate() const { return kNonDegenerate != fStage; }
    171     enum {
    172         kInitial,
    173         kPoint,
    174         kLine,
    175         kNonDegenerate
    176     }           fStage;
    177     SkPoint     fFirstPoint;
    178     SkVector    fLineNormal;
    179     SkScalar    fLineC;
    180 };
    181 
    182 static const SkScalar kClose = (SK_Scalar1 / 16);
    183 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
    184 
    185 static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) {
    186     switch (data->fStage) {
    187         case DegenerateTestData::kInitial:
    188             data->fFirstPoint = pt;
    189             data->fStage = DegenerateTestData::kPoint;
    190             break;
    191         case DegenerateTestData::kPoint:
    192             if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) {
    193                 data->fLineNormal = pt - data->fFirstPoint;
    194                 data->fLineNormal.normalize();
    195                 data->fLineNormal.setOrthog(data->fLineNormal);
    196                 data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
    197                 data->fStage = DegenerateTestData::kLine;
    198             }
    199             break;
    200         case DegenerateTestData::kLine:
    201             if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) {
    202                 data->fStage = DegenerateTestData::kNonDegenerate;
    203             }
    204         case DegenerateTestData::kNonDegenerate:
    205             break;
    206         default:
    207             SkFAIL("Unexpected degenerate test stage.");
    208     }
    209 }
    210 
    211 static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) {
    212     if (!path.cheapComputeDirection(dir)) {
    213         return false;
    214     }
    215     // check whether m reverses the orientation
    216     SkASSERT(!m.hasPerspective());
    217     SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) -
    218                       SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY));
    219     if (det2x2 < 0) {
    220         *dir = SkPath::OppositeDirection(*dir);
    221     }
    222     return true;
    223 }
    224 
    225 static inline void add_line_to_segment(const SkPoint& pt,
    226                                        SegmentArray* segments,
    227                                        SkRect* devBounds) {
    228     segments->push_back();
    229     segments->back().fType = Segment::kLine;
    230     segments->back().fPts[0] = pt;
    231     devBounds->growToInclude(pt.fX, pt.fY);
    232 }
    233 
    234 #ifdef SK_DEBUG
    235 static inline bool contains_inclusive(const SkRect& rect, const SkPoint& p) {
    236     return p.fX >= rect.fLeft && p.fX <= rect.fRight && p.fY >= rect.fTop && p.fY <= rect.fBottom;
    237 }
    238 #endif
    239 
    240 static inline void add_quad_segment(const SkPoint pts[3],
    241                                     SegmentArray* segments,
    242                                     SkRect* devBounds) {
    243     if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) {
    244         if (pts[0] != pts[2]) {
    245             add_line_to_segment(pts[2], segments, devBounds);
    246         }
    247     } else {
    248         segments->push_back();
    249         segments->back().fType = Segment::kQuad;
    250         segments->back().fPts[0] = pts[1];
    251         segments->back().fPts[1] = pts[2];
    252         SkASSERT(contains_inclusive(*devBounds, pts[0]));
    253         devBounds->growToInclude(pts + 1, 2);
    254     }
    255 }
    256 
    257 static inline void add_cubic_segments(const SkPoint pts[4],
    258                                       SkPath::Direction dir,
    259                                       SegmentArray* segments,
    260                                       SkRect* devBounds) {
    261     SkSTArray<15, SkPoint, true> quads;
    262     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
    263     int count = quads.count();
    264     for (int q = 0; q < count; q += 3) {
    265         add_quad_segment(&quads[q], segments, devBounds);
    266     }
    267 }
    268 
    269 static bool get_segments(const SkPath& path,
    270                          const SkMatrix& m,
    271                          SegmentArray* segments,
    272                          SkPoint* fanPt,
    273                          int* vCount,
    274                          int* iCount,
    275                          SkRect* devBounds) {
    276     SkPath::Iter iter(path, true);
    277     // This renderer over-emphasizes very thin path regions. We use the distance
    278     // to the path from the sample to compute coverage. Every pixel intersected
    279     // by the path will be hit and the maximum distance is sqrt(2)/2. We don't
    280     // notice that the sample may be close to a very thin area of the path and
    281     // thus should be very light. This is particularly egregious for degenerate
    282     // line paths. We detect paths that are very close to a line (zero area) and
    283     // draw nothing.
    284     DegenerateTestData degenerateData;
    285     SkPath::Direction dir;
    286     // get_direction can fail for some degenerate paths.
    287     if (!get_direction(path, m, &dir)) {
    288         return false;
    289     }
    290 
    291     for (;;) {
    292         SkPoint pts[4];
    293         SkPath::Verb verb = iter.next(pts);
    294         switch (verb) {
    295             case SkPath::kMove_Verb:
    296                 m.mapPoints(pts, 1);
    297                 update_degenerate_test(&degenerateData, pts[0]);
    298                 devBounds->set(pts->fX, pts->fY, pts->fX, pts->fY);
    299                 break;
    300             case SkPath::kLine_Verb: {
    301                 m.mapPoints(&pts[1], 1);
    302                 update_degenerate_test(&degenerateData, pts[1]);
    303                 add_line_to_segment(pts[1], segments, devBounds);
    304                 break;
    305             }
    306             case SkPath::kQuad_Verb:
    307                 m.mapPoints(pts, 3);
    308                 update_degenerate_test(&degenerateData, pts[1]);
    309                 update_degenerate_test(&degenerateData, pts[2]);
    310                 add_quad_segment(pts, segments, devBounds);
    311                 break;
    312             case SkPath::kCubic_Verb: {
    313                 m.mapPoints(pts, 4);
    314                 update_degenerate_test(&degenerateData, pts[1]);
    315                 update_degenerate_test(&degenerateData, pts[2]);
    316                 update_degenerate_test(&degenerateData, pts[3]);
    317                 add_cubic_segments(pts, dir, segments, devBounds);
    318                 break;
    319             };
    320             case SkPath::kDone_Verb:
    321                 if (degenerateData.isDegenerate()) {
    322                     return false;
    323                 } else {
    324                     compute_vectors(segments, fanPt, dir, vCount, iCount);
    325                     return true;
    326                 }
    327             default:
    328                 break;
    329         }
    330     }
    331 }
    332 
    333 struct QuadVertex {
    334     SkPoint  fPos;
    335     SkPoint  fUV;
    336     SkScalar fD0;
    337     SkScalar fD1;
    338 };
    339 
    340 struct Draw {
    341     Draw() : fVertexCnt(0), fIndexCnt(0) {}
    342     int fVertexCnt;
    343     int fIndexCnt;
    344 };
    345 
    346 typedef SkTArray<Draw, true> DrawArray;
    347 
    348 static void create_vertices(const SegmentArray&  segments,
    349                             const SkPoint& fanPt,
    350                             DrawArray*     draws,
    351                             QuadVertex*    verts,
    352                             uint16_t*      idxs) {
    353     Draw* draw = &draws->push_back();
    354     // alias just to make vert/index assignments easier to read.
    355     int* v = &draw->fVertexCnt;
    356     int* i = &draw->fIndexCnt;
    357 
    358     int count = segments.count();
    359     for (int a = 0; a < count; ++a) {
    360         const Segment& sega = segments[a];
    361         int b = (a + 1) % count;
    362         const Segment& segb = segments[b];
    363 
    364         // Check whether adding the verts for this segment to the current draw would cause index
    365         // values to overflow.
    366         int vCount = 4;
    367         if (Segment::kLine == segb.fType) {
    368             vCount += 5;
    369         } else {
    370             vCount += 6;
    371         }
    372         if (draw->fVertexCnt + vCount > (1 << 16)) {
    373             verts += *v;
    374             idxs += *i;
    375             draw = &draws->push_back();
    376             v = &draw->fVertexCnt;
    377             i = &draw->fIndexCnt;
    378         }
    379 
    380         // FIXME: These tris are inset in the 1 unit arc around the corner
    381         verts[*v + 0].fPos = sega.endPt();
    382         verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm();
    383         verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid;
    384         verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0];
    385         verts[*v + 0].fUV.set(0,0);
    386         verts[*v + 1].fUV.set(0,-SK_Scalar1);
    387         verts[*v + 2].fUV.set(0,-SK_Scalar1);
    388         verts[*v + 3].fUV.set(0,-SK_Scalar1);
    389         verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
    390         verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
    391         verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
    392         verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
    393 
    394         idxs[*i + 0] = *v + 0;
    395         idxs[*i + 1] = *v + 2;
    396         idxs[*i + 2] = *v + 1;
    397         idxs[*i + 3] = *v + 0;
    398         idxs[*i + 4] = *v + 3;
    399         idxs[*i + 5] = *v + 2;
    400 
    401         *v += 4;
    402         *i += 6;
    403 
    404         if (Segment::kLine == segb.fType) {
    405             verts[*v + 0].fPos = fanPt;
    406             verts[*v + 1].fPos = sega.endPt();
    407             verts[*v + 2].fPos = segb.fPts[0];
    408 
    409             verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0];
    410             verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0];
    411 
    412             // we draw the line edge as a degenerate quad (u is 0, v is the
    413             // signed distance to the edge)
    414             SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos,
    415                                                         verts[*v + 2].fPos);
    416             verts[*v + 0].fUV.set(0, dist);
    417             verts[*v + 1].fUV.set(0, 0);
    418             verts[*v + 2].fUV.set(0, 0);
    419             verts[*v + 3].fUV.set(0, -SK_Scalar1);
    420             verts[*v + 4].fUV.set(0, -SK_Scalar1);
    421 
    422             verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
    423             verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
    424             verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
    425             verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
    426             verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1;
    427 
    428             idxs[*i + 0] = *v + 0;
    429             idxs[*i + 1] = *v + 2;
    430             idxs[*i + 2] = *v + 1;
    431 
    432             idxs[*i + 3] = *v + 3;
    433             idxs[*i + 4] = *v + 1;
    434             idxs[*i + 5] = *v + 2;
    435 
    436             idxs[*i + 6] = *v + 4;
    437             idxs[*i + 7] = *v + 3;
    438             idxs[*i + 8] = *v + 2;
    439 
    440             *v += 5;
    441             *i += 9;
    442         } else {
    443             SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};
    444 
    445             SkVector midVec = segb.fNorms[0] + segb.fNorms[1];
    446             midVec.normalize();
    447 
    448             verts[*v + 0].fPos = fanPt;
    449             verts[*v + 1].fPos = qpts[0];
    450             verts[*v + 2].fPos = qpts[2];
    451             verts[*v + 3].fPos = qpts[0] + segb.fNorms[0];
    452             verts[*v + 4].fPos = qpts[2] + segb.fNorms[1];
    453             verts[*v + 5].fPos = qpts[1] + midVec;
    454 
    455             SkScalar c = segb.fNorms[0].dot(qpts[0]);
    456             verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c;
    457             verts[*v + 1].fD0 =  0.f;
    458             verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c;
    459             verts[*v + 3].fD0 = -SK_ScalarMax/100;
    460             verts[*v + 4].fD0 = -SK_ScalarMax/100;
    461             verts[*v + 5].fD0 = -SK_ScalarMax/100;
    462 
    463             c = segb.fNorms[1].dot(qpts[2]);
    464             verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c;
    465             verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c;
    466             verts[*v + 2].fD1 =  0.f;
    467             verts[*v + 3].fD1 = -SK_ScalarMax/100;
    468             verts[*v + 4].fD1 = -SK_ScalarMax/100;
    469             verts[*v + 5].fD1 = -SK_ScalarMax/100;
    470 
    471             GrPathUtils::QuadUVMatrix toUV(qpts);
    472             toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v);
    473 
    474             idxs[*i + 0] = *v + 3;
    475             idxs[*i + 1] = *v + 1;
    476             idxs[*i + 2] = *v + 2;
    477             idxs[*i + 3] = *v + 4;
    478             idxs[*i + 4] = *v + 3;
    479             idxs[*i + 5] = *v + 2;
    480 
    481             idxs[*i + 6] = *v + 5;
    482             idxs[*i + 7] = *v + 3;
    483             idxs[*i + 8] = *v + 4;
    484 
    485             idxs[*i +  9] = *v + 0;
    486             idxs[*i + 10] = *v + 2;
    487             idxs[*i + 11] = *v + 1;
    488 
    489             *v += 6;
    490             *i += 12;
    491         }
    492     }
    493 }
    494 
    495 ///////////////////////////////////////////////////////////////////////////////
    496 
    497 /*
    498  * Quadratic specified by 0=u^2-v canonical coords. u and v are the first
    499  * two components of the vertex attribute. Coverage is based on signed
    500  * distance with negative being inside, positive outside. The edge is specified in
    501  * window space (y-down). If either the third or fourth component of the interpolated
    502  * vertex coord is > 0 then the pixel is considered outside the edge. This is used to
    503  * attempt to trim to a portion of the infinite quad.
    504  * Requires shader derivative instruction support.
    505  */
    506 
    507 class QuadEdgeEffect : public GrGeometryProcessor {
    508 public:
    509 
    510     static GrGeometryProcessor* Create() {
    511         GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gQuadEdgeEffect, QuadEdgeEffect, ());
    512         gQuadEdgeEffect->ref();
    513         return gQuadEdgeEffect;
    514     }
    515 
    516     virtual ~QuadEdgeEffect() {}
    517 
    518     static const char* Name() { return "QuadEdge"; }
    519 
    520     virtual void getConstantColorComponents(GrColor* color,
    521                                             uint32_t* validFlags) const SK_OVERRIDE {
    522         *validFlags = 0;
    523     }
    524 
    525     const GrShaderVar& inQuadEdge() const { return fInQuadEdge; }
    526 
    527     virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE {
    528         return GrTBackendGeometryProcessorFactory<QuadEdgeEffect>::getInstance();
    529     }
    530 
    531     class GLProcessor : public GrGLGeometryProcessor {
    532     public:
    533         GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&)
    534             : INHERITED (factory) {}
    535 
    536         virtual void emitCode(GrGLFullProgramBuilder* builder,
    537                               const GrGeometryProcessor& geometryProcessor,
    538                               const GrProcessorKey& key,
    539                               const char* outputColor,
    540                               const char* inputColor,
    541                               const TransformedCoordsArray&,
    542                               const TextureSamplerArray& samplers) SK_OVERRIDE {
    543             const char *vsName, *fsName;
    544             builder->addVarying(kVec4f_GrSLType, "QuadEdge", &vsName, &fsName);
    545 
    546             GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
    547 
    548             SkAssertResult(fsBuilder->enableFeature(
    549                     GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
    550             fsBuilder->codeAppendf("\t\tfloat edgeAlpha;\n");
    551 
    552             // keep the derivative instructions outside the conditional
    553             fsBuilder->codeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
    554             fsBuilder->codeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
    555             fsBuilder->codeAppendf("\t\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
    556             // today we know z and w are in device space. We could use derivatives
    557             fsBuilder->codeAppendf("\t\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName,
    558                                     fsName);
    559             fsBuilder->codeAppendf ("\t\t} else {\n");
    560             fsBuilder->codeAppendf("\t\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
    561                                    "\t\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
    562                                    fsName, fsName);
    563             fsBuilder->codeAppendf("\t\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName,
    564                                     fsName);
    565             fsBuilder->codeAppendf("\t\t\tedgeAlpha = "
    566                                    "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n\t\t}\n");
    567 
    568 
    569             fsBuilder->codeAppendf("\t%s = %s;\n", outputColor,
    570                                    (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str());
    571 
    572             const GrShaderVar& inQuadEdge = geometryProcessor.cast<QuadEdgeEffect>().inQuadEdge();
    573             GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder();
    574             vsBuilder->codeAppendf("\t%s = %s;\n", vsName, inQuadEdge.c_str());
    575         }
    576 
    577         static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*) {}
    578 
    579         virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {}
    580 
    581     private:
    582         typedef GrGLGeometryProcessor INHERITED;
    583     };
    584 
    585 private:
    586     QuadEdgeEffect()
    587         : fInQuadEdge(this->addVertexAttrib(GrShaderVar("inQuadEdge",
    588                                                         kVec4f_GrSLType,
    589                                                         GrShaderVar::kAttribute_TypeModifier))) {
    590     }
    591 
    592     virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE {
    593         return true;
    594     }
    595 
    596     const GrShaderVar& fInQuadEdge;
    597 
    598     GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
    599 
    600     typedef GrFragmentProcessor INHERITED;
    601 };
    602 
    603 GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect);
    604 
    605 GrGeometryProcessor* QuadEdgeEffect::TestCreate(SkRandom* random,
    606                                                 GrContext*,
    607                                                 const GrDrawTargetCaps& caps,
    608                                                 GrTexture*[]) {
    609     // Doesn't work without derivative instructions.
    610     return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL;
    611 }
    612 
    613 ///////////////////////////////////////////////////////////////////////////////
    614 
    615 bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path,
    616                                          const SkStrokeRec& stroke,
    617                                          const GrDrawTarget* target,
    618                                          bool antiAlias) const {
    619     return (target->caps()->shaderDerivativeSupport() && antiAlias &&
    620             stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex());
    621 }
    622 
    623 namespace {
    624 
    625 // position + edge
    626 extern const GrVertexAttrib gPathAttribs[] = {
    627     {kVec2f_GrVertexAttribType, 0,               kPosition_GrVertexAttribBinding},
    628     {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}
    629 };
    630 
    631 };
    632 
    633 bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
    634                                         const SkStrokeRec&,
    635                                         GrDrawTarget* target,
    636                                         bool antiAlias) {
    637 
    638     const SkPath* path = &origPath;
    639     if (path->isEmpty()) {
    640         return true;
    641     }
    642 
    643     SkMatrix viewMatrix = target->getDrawState().getViewMatrix();
    644     GrDrawTarget::AutoStateRestore asr;
    645     if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
    646         return false;
    647     }
    648     GrDrawState* drawState = target->drawState();
    649 
    650     // We use the fact that SkPath::transform path does subdivision based on
    651     // perspective. Otherwise, we apply the view matrix when copying to the
    652     // segment representation.
    653     SkPath tmpPath;
    654     if (viewMatrix.hasPerspective()) {
    655         origPath.transform(viewMatrix, &tmpPath);
    656         path = &tmpPath;
    657         viewMatrix = SkMatrix::I();
    658     }
    659 
    660     QuadVertex *verts;
    661     uint16_t* idxs;
    662 
    663     int vCount;
    664     int iCount;
    665     enum {
    666         kPreallocSegmentCnt = 512 / sizeof(Segment),
    667         kPreallocDrawCnt = 4,
    668     };
    669     SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
    670     SkPoint fanPt;
    671 
    672     // We can't simply use the path bounds because we may degenerate cubics to quads which produces
    673     // new control points outside the original convex hull.
    674     SkRect devBounds;
    675     if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount, &devBounds)) {
    676         return false;
    677     }
    678 
    679     // Our computed verts should all be within one pixel of the segment control points.
    680     devBounds.outset(SK_Scalar1, SK_Scalar1);
    681 
    682     drawState->setVertexAttribs<gPathAttribs>(SK_ARRAY_COUNT(gPathAttribs), sizeof(QuadVertex));
    683 
    684     GrGeometryProcessor* quadProcessor = QuadEdgeEffect::Create();
    685     drawState->setGeometryProcessor(quadProcessor)->unref();
    686 
    687     GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount);
    688     if (!arg.succeeded()) {
    689         return false;
    690     }
    691     verts = reinterpret_cast<QuadVertex*>(arg.vertices());
    692     idxs = reinterpret_cast<uint16_t*>(arg.indices());
    693 
    694     SkSTArray<kPreallocDrawCnt, Draw, true> draws;
    695     create_vertices(segments, fanPt, &draws, verts, idxs);
    696 
    697     // Check devBounds
    698 #ifdef SK_DEBUG
    699     SkRect tolDevBounds = devBounds;
    700     tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000);
    701     SkRect actualBounds;
    702     actualBounds.set(verts[0].fPos, verts[1].fPos);
    703     for (int i = 2; i < vCount; ++i) {
    704         actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY);
    705     }
    706     SkASSERT(tolDevBounds.contains(actualBounds));
    707 #endif
    708 
    709     int vOffset = 0;
    710     for (int i = 0; i < draws.count(); ++i) {
    711         const Draw& draw = draws[i];
    712         target->drawIndexed(kTriangles_GrPrimitiveType,
    713                             vOffset,  // start vertex
    714                             0,        // start index
    715                             draw.fVertexCnt,
    716                             draw.fIndexCnt,
    717                             &devBounds);
    718         vOffset += draw.fVertexCnt;
    719     }
    720 
    721     return true;
    722 }
    723