Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2001 September 15
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains C code routines that are called by the SQLite parser
     13 ** when syntax rules are reduced.  The routines in this file handle the
     14 ** following kinds of SQL syntax:
     15 **
     16 **     CREATE TABLE
     17 **     DROP TABLE
     18 **     CREATE INDEX
     19 **     DROP INDEX
     20 **     creating ID lists
     21 **     BEGIN TRANSACTION
     22 **     COMMIT
     23 **     ROLLBACK
     24 */
     25 #include "sqliteInt.h"
     26 
     27 /*
     28 ** This routine is called when a new SQL statement is beginning to
     29 ** be parsed.  Initialize the pParse structure as needed.
     30 */
     31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
     32   pParse->explain = (u8)explainFlag;
     33   pParse->nVar = 0;
     34 }
     35 
     36 #ifndef SQLITE_OMIT_SHARED_CACHE
     37 /*
     38 ** The TableLock structure is only used by the sqlite3TableLock() and
     39 ** codeTableLocks() functions.
     40 */
     41 struct TableLock {
     42   int iDb;             /* The database containing the table to be locked */
     43   int iTab;            /* The root page of the table to be locked */
     44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
     45   const char *zName;   /* Name of the table */
     46 };
     47 
     48 /*
     49 ** Record the fact that we want to lock a table at run-time.
     50 **
     51 ** The table to be locked has root page iTab and is found in database iDb.
     52 ** A read or a write lock can be taken depending on isWritelock.
     53 **
     54 ** This routine just records the fact that the lock is desired.  The
     55 ** code to make the lock occur is generated by a later call to
     56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
     57 */
     58 void sqlite3TableLock(
     59   Parse *pParse,     /* Parsing context */
     60   int iDb,           /* Index of the database containing the table to lock */
     61   int iTab,          /* Root page number of the table to be locked */
     62   u8 isWriteLock,    /* True for a write lock */
     63   const char *zName  /* Name of the table to be locked */
     64 ){
     65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
     66   int i;
     67   int nBytes;
     68   TableLock *p;
     69   assert( iDb>=0 );
     70 
     71   for(i=0; i<pToplevel->nTableLock; i++){
     72     p = &pToplevel->aTableLock[i];
     73     if( p->iDb==iDb && p->iTab==iTab ){
     74       p->isWriteLock = (p->isWriteLock || isWriteLock);
     75       return;
     76     }
     77   }
     78 
     79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
     80   pToplevel->aTableLock =
     81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
     82   if( pToplevel->aTableLock ){
     83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
     84     p->iDb = iDb;
     85     p->iTab = iTab;
     86     p->isWriteLock = isWriteLock;
     87     p->zName = zName;
     88   }else{
     89     pToplevel->nTableLock = 0;
     90     pToplevel->db->mallocFailed = 1;
     91   }
     92 }
     93 
     94 /*
     95 ** Code an OP_TableLock instruction for each table locked by the
     96 ** statement (configured by calls to sqlite3TableLock()).
     97 */
     98 static void codeTableLocks(Parse *pParse){
     99   int i;
    100   Vdbe *pVdbe;
    101 
    102   pVdbe = sqlite3GetVdbe(pParse);
    103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
    104 
    105   for(i=0; i<pParse->nTableLock; i++){
    106     TableLock *p = &pParse->aTableLock[i];
    107     int p1 = p->iDb;
    108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
    109                       p->zName, P4_STATIC);
    110   }
    111 }
    112 #else
    113   #define codeTableLocks(x)
    114 #endif
    115 
    116 /*
    117 ** This routine is called after a single SQL statement has been
    118 ** parsed and a VDBE program to execute that statement has been
    119 ** prepared.  This routine puts the finishing touches on the
    120 ** VDBE program and resets the pParse structure for the next
    121 ** parse.
    122 **
    123 ** Note that if an error occurred, it might be the case that
    124 ** no VDBE code was generated.
    125 */
    126 void sqlite3FinishCoding(Parse *pParse){
    127   sqlite3 *db;
    128   Vdbe *v;
    129 
    130   db = pParse->db;
    131   if( db->mallocFailed ) return;
    132   if( pParse->nested ) return;
    133   if( pParse->nErr ) return;
    134 
    135   /* Begin by generating some termination code at the end of the
    136   ** vdbe program
    137   */
    138   v = sqlite3GetVdbe(pParse);
    139   assert( !pParse->isMultiWrite
    140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
    141   if( v ){
    142     sqlite3VdbeAddOp0(v, OP_Halt);
    143 
    144     /* The cookie mask contains one bit for each database file open.
    145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    146     ** set for each database that is used.  Generate code to start a
    147     ** transaction on each used database and to verify the schema cookie
    148     ** on each used database.
    149     */
    150     if( pParse->cookieGoto>0 ){
    151       yDbMask mask;
    152       int iDb;
    153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
    154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
    155         if( (mask & pParse->cookieMask)==0 ) continue;
    156         sqlite3VdbeUsesBtree(v, iDb);
    157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
    158         if( db->init.busy==0 ){
    159           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    160           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
    161                             iDb, pParse->cookieValue[iDb],
    162                             db->aDb[iDb].pSchema->iGeneration);
    163         }
    164       }
    165 #ifndef SQLITE_OMIT_VIRTUALTABLE
    166       {
    167         int i;
    168         for(i=0; i<pParse->nVtabLock; i++){
    169           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
    170           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
    171         }
    172         pParse->nVtabLock = 0;
    173       }
    174 #endif
    175 
    176       /* Once all the cookies have been verified and transactions opened,
    177       ** obtain the required table-locks. This is a no-op unless the
    178       ** shared-cache feature is enabled.
    179       */
    180       codeTableLocks(pParse);
    181 
    182       /* Initialize any AUTOINCREMENT data structures required.
    183       */
    184       sqlite3AutoincrementBegin(pParse);
    185 
    186       /* Finally, jump back to the beginning of the executable code. */
    187       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
    188     }
    189   }
    190 
    191 
    192   /* Get the VDBE program ready for execution
    193   */
    194   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
    195 #ifdef SQLITE_DEBUG
    196     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    197     sqlite3VdbeTrace(v, trace);
    198 #endif
    199     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    200     /* A minimum of one cursor is required if autoincrement is used
    201     *  See ticket [a696379c1f08866] */
    202     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    203     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
    204                          pParse->nTab, pParse->nMaxArg, pParse->explain,
    205                          pParse->isMultiWrite && pParse->mayAbort);
    206     pParse->rc = SQLITE_DONE;
    207     pParse->colNamesSet = 0;
    208   }else{
    209     pParse->rc = SQLITE_ERROR;
    210   }
    211   pParse->nTab = 0;
    212   pParse->nMem = 0;
    213   pParse->nSet = 0;
    214   pParse->nVar = 0;
    215   pParse->cookieMask = 0;
    216   pParse->cookieGoto = 0;
    217 }
    218 
    219 /*
    220 ** Run the parser and code generator recursively in order to generate
    221 ** code for the SQL statement given onto the end of the pParse context
    222 ** currently under construction.  When the parser is run recursively
    223 ** this way, the final OP_Halt is not appended and other initialization
    224 ** and finalization steps are omitted because those are handling by the
    225 ** outermost parser.
    226 **
    227 ** Not everything is nestable.  This facility is designed to permit
    228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
    229 ** care if you decide to try to use this routine for some other purposes.
    230 */
    231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
    232   va_list ap;
    233   char *zSql;
    234   char *zErrMsg = 0;
    235   sqlite3 *db = pParse->db;
    236 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
    237   char saveBuf[SAVE_SZ];
    238 
    239   if( pParse->nErr ) return;
    240   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
    241   va_start(ap, zFormat);
    242   zSql = sqlite3VMPrintf(db, zFormat, ap);
    243   va_end(ap);
    244   if( zSql==0 ){
    245     return;   /* A malloc must have failed */
    246   }
    247   pParse->nested++;
    248   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
    249   memset(&pParse->nVar, 0, SAVE_SZ);
    250   sqlite3RunParser(pParse, zSql, &zErrMsg);
    251   sqlite3DbFree(db, zErrMsg);
    252   sqlite3DbFree(db, zSql);
    253   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
    254   pParse->nested--;
    255 }
    256 
    257 /*
    258 ** Locate the in-memory structure that describes a particular database
    259 ** table given the name of that table and (optionally) the name of the
    260 ** database containing the table.  Return NULL if not found.
    261 **
    262 ** If zDatabase is 0, all databases are searched for the table and the
    263 ** first matching table is returned.  (No checking for duplicate table
    264 ** names is done.)  The search order is TEMP first, then MAIN, then any
    265 ** auxiliary databases added using the ATTACH command.
    266 **
    267 ** See also sqlite3LocateTable().
    268 */
    269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
    270   Table *p = 0;
    271   int i;
    272   int nName;
    273   assert( zName!=0 );
    274   nName = sqlite3Strlen30(zName);
    275   /* All mutexes are required for schema access.  Make sure we hold them. */
    276   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
    277   for(i=OMIT_TEMPDB; i<db->nDb; i++){
    278     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    279     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    280     assert( sqlite3SchemaMutexHeld(db, j, 0) );
    281     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
    282     if( p ) break;
    283   }
    284   return p;
    285 }
    286 
    287 /*
    288 ** Locate the in-memory structure that describes a particular database
    289 ** table given the name of that table and (optionally) the name of the
    290 ** database containing the table.  Return NULL if not found.  Also leave an
    291 ** error message in pParse->zErrMsg.
    292 **
    293 ** The difference between this routine and sqlite3FindTable() is that this
    294 ** routine leaves an error message in pParse->zErrMsg where
    295 ** sqlite3FindTable() does not.
    296 */
    297 Table *sqlite3LocateTable(
    298   Parse *pParse,         /* context in which to report errors */
    299   int isView,            /* True if looking for a VIEW rather than a TABLE */
    300   const char *zName,     /* Name of the table we are looking for */
    301   const char *zDbase     /* Name of the database.  Might be NULL */
    302 ){
    303   Table *p;
    304 
    305   /* Read the database schema. If an error occurs, leave an error message
    306   ** and code in pParse and return NULL. */
    307   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    308     return 0;
    309   }
    310 
    311   p = sqlite3FindTable(pParse->db, zName, zDbase);
    312   if( p==0 ){
    313     const char *zMsg = isView ? "no such view" : "no such table";
    314     if( zDbase ){
    315       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    316     }else{
    317       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    318     }
    319     pParse->checkSchema = 1;
    320   }
    321   return p;
    322 }
    323 
    324 /*
    325 ** Locate the in-memory structure that describes
    326 ** a particular index given the name of that index
    327 ** and the name of the database that contains the index.
    328 ** Return NULL if not found.
    329 **
    330 ** If zDatabase is 0, all databases are searched for the
    331 ** table and the first matching index is returned.  (No checking
    332 ** for duplicate index names is done.)  The search order is
    333 ** TEMP first, then MAIN, then any auxiliary databases added
    334 ** using the ATTACH command.
    335 */
    336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
    337   Index *p = 0;
    338   int i;
    339   int nName = sqlite3Strlen30(zName);
    340   /* All mutexes are required for schema access.  Make sure we hold them. */
    341   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
    342   for(i=OMIT_TEMPDB; i<db->nDb; i++){
    343     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    344     Schema *pSchema = db->aDb[j].pSchema;
    345     assert( pSchema );
    346     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
    347     assert( sqlite3SchemaMutexHeld(db, j, 0) );
    348     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
    349     if( p ) break;
    350   }
    351   return p;
    352 }
    353 
    354 /*
    355 ** Reclaim the memory used by an index
    356 */
    357 static void freeIndex(sqlite3 *db, Index *p){
    358 #ifndef SQLITE_OMIT_ANALYZE
    359   sqlite3DeleteIndexSamples(db, p);
    360 #endif
    361   sqlite3DbFree(db, p->zColAff);
    362   sqlite3DbFree(db, p);
    363 }
    364 
    365 /*
    366 ** For the index called zIdxName which is found in the database iDb,
    367 ** unlike that index from its Table then remove the index from
    368 ** the index hash table and free all memory structures associated
    369 ** with the index.
    370 */
    371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
    372   Index *pIndex;
    373   int len;
    374   Hash *pHash;
    375 
    376   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    377   pHash = &db->aDb[iDb].pSchema->idxHash;
    378   len = sqlite3Strlen30(zIdxName);
    379   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
    380   if( ALWAYS(pIndex) ){
    381     if( pIndex->pTable->pIndex==pIndex ){
    382       pIndex->pTable->pIndex = pIndex->pNext;
    383     }else{
    384       Index *p;
    385       /* Justification of ALWAYS();  The index must be on the list of
    386       ** indices. */
    387       p = pIndex->pTable->pIndex;
    388       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
    389       if( ALWAYS(p && p->pNext==pIndex) ){
    390         p->pNext = pIndex->pNext;
    391       }
    392     }
    393     freeIndex(db, pIndex);
    394   }
    395   db->flags |= SQLITE_InternChanges;
    396 }
    397 
    398 /*
    399 ** Erase all schema information from the in-memory hash tables of
    400 ** a single database.  This routine is called to reclaim memory
    401 ** before the database closes.  It is also called during a rollback
    402 ** if there were schema changes during the transaction or if a
    403 ** schema-cookie mismatch occurs.
    404 **
    405 ** If iDb<0 then reset the internal schema tables for all database
    406 ** files.  If iDb>=0 then reset the internal schema for only the
    407 ** single file indicated.
    408 */
    409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
    410   int i, j;
    411   assert( iDb<db->nDb );
    412 
    413   if( iDb>=0 ){
    414     /* Case 1:  Reset the single schema identified by iDb */
    415     Db *pDb = &db->aDb[iDb];
    416     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    417     assert( pDb->pSchema!=0 );
    418     sqlite3SchemaClear(pDb->pSchema);
    419 
    420     /* If any database other than TEMP is reset, then also reset TEMP
    421     ** since TEMP might be holding triggers that reference tables in the
    422     ** other database.
    423     */
    424     if( iDb!=1 ){
    425       pDb = &db->aDb[1];
    426       assert( pDb->pSchema!=0 );
    427       sqlite3SchemaClear(pDb->pSchema);
    428     }
    429     return;
    430   }
    431   /* Case 2 (from here to the end): Reset all schemas for all attached
    432   ** databases. */
    433   assert( iDb<0 );
    434   sqlite3BtreeEnterAll(db);
    435   for(i=0; i<db->nDb; i++){
    436     Db *pDb = &db->aDb[i];
    437     if( pDb->pSchema ){
    438       sqlite3SchemaClear(pDb->pSchema);
    439     }
    440   }
    441   db->flags &= ~SQLITE_InternChanges;
    442   sqlite3VtabUnlockList(db);
    443   sqlite3BtreeLeaveAll(db);
    444 
    445   /* If one or more of the auxiliary database files has been closed,
    446   ** then remove them from the auxiliary database list.  We take the
    447   ** opportunity to do this here since we have just deleted all of the
    448   ** schema hash tables and therefore do not have to make any changes
    449   ** to any of those tables.
    450   */
    451   for(i=j=2; i<db->nDb; i++){
    452     struct Db *pDb = &db->aDb[i];
    453     if( pDb->pBt==0 ){
    454       sqlite3DbFree(db, pDb->zName);
    455       pDb->zName = 0;
    456       continue;
    457     }
    458     if( j<i ){
    459       db->aDb[j] = db->aDb[i];
    460     }
    461     j++;
    462   }
    463   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
    464   db->nDb = j;
    465   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    466     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    467     sqlite3DbFree(db, db->aDb);
    468     db->aDb = db->aDbStatic;
    469   }
    470 }
    471 
    472 /*
    473 ** This routine is called when a commit occurs.
    474 */
    475 void sqlite3CommitInternalChanges(sqlite3 *db){
    476   db->flags &= ~SQLITE_InternChanges;
    477 }
    478 
    479 /*
    480 ** Delete memory allocated for the column names of a table or view (the
    481 ** Table.aCol[] array).
    482 */
    483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
    484   int i;
    485   Column *pCol;
    486   assert( pTable!=0 );
    487   if( (pCol = pTable->aCol)!=0 ){
    488     for(i=0; i<pTable->nCol; i++, pCol++){
    489       sqlite3DbFree(db, pCol->zName);
    490       sqlite3ExprDelete(db, pCol->pDflt);
    491       sqlite3DbFree(db, pCol->zDflt);
    492       sqlite3DbFree(db, pCol->zType);
    493       sqlite3DbFree(db, pCol->zColl);
    494     }
    495     sqlite3DbFree(db, pTable->aCol);
    496   }
    497 }
    498 
    499 /*
    500 ** Remove the memory data structures associated with the given
    501 ** Table.  No changes are made to disk by this routine.
    502 **
    503 ** This routine just deletes the data structure.  It does not unlink
    504 ** the table data structure from the hash table.  But it does destroy
    505 ** memory structures of the indices and foreign keys associated with
    506 ** the table.
    507 */
    508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
    509   Index *pIndex, *pNext;
    510 
    511   assert( !pTable || pTable->nRef>0 );
    512 
    513   /* Do not delete the table until the reference count reaches zero. */
    514   if( !pTable ) return;
    515   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
    516 
    517   /* Delete all indices associated with this table. */
    518   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    519     pNext = pIndex->pNext;
    520     assert( pIndex->pSchema==pTable->pSchema );
    521     if( !db || db->pnBytesFreed==0 ){
    522       char *zName = pIndex->zName;
    523       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
    524 	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
    525       );
    526       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
    527       assert( pOld==pIndex || pOld==0 );
    528     }
    529     freeIndex(db, pIndex);
    530   }
    531 
    532   /* Delete any foreign keys attached to this table. */
    533   sqlite3FkDelete(db, pTable);
    534 
    535   /* Delete the Table structure itself.
    536   */
    537   sqliteDeleteColumnNames(db, pTable);
    538   sqlite3DbFree(db, pTable->zName);
    539   sqlite3DbFree(db, pTable->zColAff);
    540   sqlite3SelectDelete(db, pTable->pSelect);
    541 #ifndef SQLITE_OMIT_CHECK
    542   sqlite3ExprDelete(db, pTable->pCheck);
    543 #endif
    544 #ifndef SQLITE_OMIT_VIRTUALTABLE
    545   sqlite3VtabClear(db, pTable);
    546 #endif
    547   sqlite3DbFree(db, pTable);
    548 }
    549 
    550 /*
    551 ** Unlink the given table from the hash tables and the delete the
    552 ** table structure with all its indices and foreign keys.
    553 */
    554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
    555   Table *p;
    556   Db *pDb;
    557 
    558   assert( db!=0 );
    559   assert( iDb>=0 && iDb<db->nDb );
    560   assert( zTabName );
    561   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    562   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
    563   pDb = &db->aDb[iDb];
    564   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
    565                         sqlite3Strlen30(zTabName),0);
    566   sqlite3DeleteTable(db, p);
    567   db->flags |= SQLITE_InternChanges;
    568 }
    569 
    570 /*
    571 ** Given a token, return a string that consists of the text of that
    572 ** token.  Space to hold the returned string
    573 ** is obtained from sqliteMalloc() and must be freed by the calling
    574 ** function.
    575 **
    576 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
    577 ** surround the body of the token are removed.
    578 **
    579 ** Tokens are often just pointers into the original SQL text and so
    580 ** are not \000 terminated and are not persistent.  The returned string
    581 ** is \000 terminated and is persistent.
    582 */
    583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
    584   char *zName;
    585   if( pName ){
    586     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
    587     sqlite3Dequote(zName);
    588   }else{
    589     zName = 0;
    590   }
    591   return zName;
    592 }
    593 
    594 /*
    595 ** Open the sqlite_master table stored in database number iDb for
    596 ** writing. The table is opened using cursor 0.
    597 */
    598 void sqlite3OpenMasterTable(Parse *p, int iDb){
    599   Vdbe *v = sqlite3GetVdbe(p);
    600   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
    601   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
    602   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
    603   if( p->nTab==0 ){
    604     p->nTab = 1;
    605   }
    606 }
    607 
    608 /*
    609 ** Parameter zName points to a nul-terminated buffer containing the name
    610 ** of a database ("main", "temp" or the name of an attached db). This
    611 ** function returns the index of the named database in db->aDb[], or
    612 ** -1 if the named db cannot be found.
    613 */
    614 int sqlite3FindDbName(sqlite3 *db, const char *zName){
    615   int i = -1;         /* Database number */
    616   if( zName ){
    617     Db *pDb;
    618     int n = sqlite3Strlen30(zName);
    619     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
    620       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
    621           0==sqlite3StrICmp(pDb->zName, zName) ){
    622         break;
    623       }
    624     }
    625   }
    626   return i;
    627 }
    628 
    629 /*
    630 ** The token *pName contains the name of a database (either "main" or
    631 ** "temp" or the name of an attached db). This routine returns the
    632 ** index of the named database in db->aDb[], or -1 if the named db
    633 ** does not exist.
    634 */
    635 int sqlite3FindDb(sqlite3 *db, Token *pName){
    636   int i;                               /* Database number */
    637   char *zName;                         /* Name we are searching for */
    638   zName = sqlite3NameFromToken(db, pName);
    639   i = sqlite3FindDbName(db, zName);
    640   sqlite3DbFree(db, zName);
    641   return i;
    642 }
    643 
    644 /* The table or view or trigger name is passed to this routine via tokens
    645 ** pName1 and pName2. If the table name was fully qualified, for example:
    646 **
    647 ** CREATE TABLE xxx.yyy (...);
    648 **
    649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
    650 ** the table name is not fully qualified, i.e.:
    651 **
    652 ** CREATE TABLE yyy(...);
    653 **
    654 ** Then pName1 is set to "yyy" and pName2 is "".
    655 **
    656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
    657 ** pName2) that stores the unqualified table name.  The index of the
    658 ** database "xxx" is returned.
    659 */
    660 int sqlite3TwoPartName(
    661   Parse *pParse,      /* Parsing and code generating context */
    662   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
    663   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
    664   Token **pUnqual     /* Write the unqualified object name here */
    665 ){
    666   int iDb;                    /* Database holding the object */
    667   sqlite3 *db = pParse->db;
    668 
    669   if( ALWAYS(pName2!=0) && pName2->n>0 ){
    670     if( db->init.busy ) {
    671       sqlite3ErrorMsg(pParse, "corrupt database");
    672       pParse->nErr++;
    673       return -1;
    674     }
    675     *pUnqual = pName2;
    676     iDb = sqlite3FindDb(db, pName1);
    677     if( iDb<0 ){
    678       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
    679       pParse->nErr++;
    680       return -1;
    681     }
    682   }else{
    683     assert( db->init.iDb==0 || db->init.busy );
    684     iDb = db->init.iDb;
    685     *pUnqual = pName1;
    686   }
    687   return iDb;
    688 }
    689 
    690 /*
    691 ** This routine is used to check if the UTF-8 string zName is a legal
    692 ** unqualified name for a new schema object (table, index, view or
    693 ** trigger). All names are legal except those that begin with the string
    694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
    695 ** is reserved for internal use.
    696 */
    697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
    698   if( !pParse->db->init.busy && pParse->nested==0
    699           && (pParse->db->flags & SQLITE_WriteSchema)==0
    700           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
    701     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
    702     return SQLITE_ERROR;
    703   }
    704   return SQLITE_OK;
    705 }
    706 
    707 /*
    708 ** Begin constructing a new table representation in memory.  This is
    709 ** the first of several action routines that get called in response
    710 ** to a CREATE TABLE statement.  In particular, this routine is called
    711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
    712 ** flag is true if the table should be stored in the auxiliary database
    713 ** file instead of in the main database file.  This is normally the case
    714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
    715 ** CREATE and TABLE.
    716 **
    717 ** The new table record is initialized and put in pParse->pNewTable.
    718 ** As more of the CREATE TABLE statement is parsed, additional action
    719 ** routines will be called to add more information to this record.
    720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
    721 ** is called to complete the construction of the new table record.
    722 */
    723 void sqlite3StartTable(
    724   Parse *pParse,   /* Parser context */
    725   Token *pName1,   /* First part of the name of the table or view */
    726   Token *pName2,   /* Second part of the name of the table or view */
    727   int isTemp,      /* True if this is a TEMP table */
    728   int isView,      /* True if this is a VIEW */
    729   int isVirtual,   /* True if this is a VIRTUAL table */
    730   int noErr        /* Do nothing if table already exists */
    731 ){
    732   Table *pTable;
    733   char *zName = 0; /* The name of the new table */
    734   sqlite3 *db = pParse->db;
    735   Vdbe *v;
    736   int iDb;         /* Database number to create the table in */
    737   Token *pName;    /* Unqualified name of the table to create */
    738 
    739   /* The table or view name to create is passed to this routine via tokens
    740   ** pName1 and pName2. If the table name was fully qualified, for example:
    741   **
    742   ** CREATE TABLE xxx.yyy (...);
    743   **
    744   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
    745   ** the table name is not fully qualified, i.e.:
    746   **
    747   ** CREATE TABLE yyy(...);
    748   **
    749   ** Then pName1 is set to "yyy" and pName2 is "".
    750   **
    751   ** The call below sets the pName pointer to point at the token (pName1 or
    752   ** pName2) that stores the unqualified table name. The variable iDb is
    753   ** set to the index of the database that the table or view is to be
    754   ** created in.
    755   */
    756   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    757   if( iDb<0 ) return;
    758   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
    759     /* If creating a temp table, the name may not be qualified. Unless
    760     ** the database name is "temp" anyway.  */
    761     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
    762     return;
    763   }
    764   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
    765 
    766   pParse->sNameToken = *pName;
    767   zName = sqlite3NameFromToken(db, pName);
    768   if( zName==0 ) return;
    769   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    770     goto begin_table_error;
    771   }
    772   if( db->init.iDb==1 ) isTemp = 1;
    773 #ifndef SQLITE_OMIT_AUTHORIZATION
    774   assert( (isTemp & 1)==isTemp );
    775   {
    776     int code;
    777     char *zDb = db->aDb[iDb].zName;
    778     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
    779       goto begin_table_error;
    780     }
    781     if( isView ){
    782       if( !OMIT_TEMPDB && isTemp ){
    783         code = SQLITE_CREATE_TEMP_VIEW;
    784       }else{
    785         code = SQLITE_CREATE_VIEW;
    786       }
    787     }else{
    788       if( !OMIT_TEMPDB && isTemp ){
    789         code = SQLITE_CREATE_TEMP_TABLE;
    790       }else{
    791         code = SQLITE_CREATE_TABLE;
    792       }
    793     }
    794     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
    795       goto begin_table_error;
    796     }
    797   }
    798 #endif
    799 
    800   /* Make sure the new table name does not collide with an existing
    801   ** index or table name in the same database.  Issue an error message if
    802   ** it does. The exception is if the statement being parsed was passed
    803   ** to an sqlite3_declare_vtab() call. In that case only the column names
    804   ** and types will be used, so there is no need to test for namespace
    805   ** collisions.
    806   */
    807   if( !IN_DECLARE_VTAB ){
    808     char *zDb = db->aDb[iDb].zName;
    809     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    810       goto begin_table_error;
    811     }
    812     pTable = sqlite3FindTable(db, zName, zDb);
    813     if( pTable ){
    814       if( !noErr ){
    815         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
    816       }else{
    817         assert( !db->init.busy );
    818         sqlite3CodeVerifySchema(pParse, iDb);
    819       }
    820       goto begin_table_error;
    821     }
    822     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
    823       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
    824       goto begin_table_error;
    825     }
    826   }
    827 
    828   pTable = sqlite3DbMallocZero(db, sizeof(Table));
    829   if( pTable==0 ){
    830     db->mallocFailed = 1;
    831     pParse->rc = SQLITE_NOMEM;
    832     pParse->nErr++;
    833     goto begin_table_error;
    834   }
    835   pTable->zName = zName;
    836   pTable->iPKey = -1;
    837   pTable->pSchema = db->aDb[iDb].pSchema;
    838   pTable->nRef = 1;
    839   pTable->nRowEst = 1000000;
    840   assert( pParse->pNewTable==0 );
    841   pParse->pNewTable = pTable;
    842 
    843   /* If this is the magic sqlite_sequence table used by autoincrement,
    844   ** then record a pointer to this table in the main database structure
    845   ** so that INSERT can find the table easily.
    846   */
    847 #ifndef SQLITE_OMIT_AUTOINCREMENT
    848   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
    849     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    850     pTable->pSchema->pSeqTab = pTable;
    851   }
    852 #endif
    853 
    854   /* Begin generating the code that will insert the table record into
    855   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
    856   ** and allocate the record number for the table entry now.  Before any
    857   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
    858   ** indices to be created and the table record must come before the
    859   ** indices.  Hence, the record number for the table must be allocated
    860   ** now.
    861   */
    862   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    863     int j1;
    864     int fileFormat;
    865     int reg1, reg2, reg3;
    866     sqlite3BeginWriteOperation(pParse, 0, iDb);
    867 
    868 #ifndef SQLITE_OMIT_VIRTUALTABLE
    869     if( isVirtual ){
    870       sqlite3VdbeAddOp0(v, OP_VBegin);
    871     }
    872 #endif
    873 
    874     /* If the file format and encoding in the database have not been set,
    875     ** set them now.
    876     */
    877     reg1 = pParse->regRowid = ++pParse->nMem;
    878     reg2 = pParse->regRoot = ++pParse->nMem;
    879     reg3 = ++pParse->nMem;
    880     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
    881     sqlite3VdbeUsesBtree(v, iDb);
    882     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
    883     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
    884                   1 : SQLITE_MAX_FILE_FORMAT;
    885     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
    886     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
    887     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
    888     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
    889     sqlite3VdbeJumpHere(v, j1);
    890 
    891     /* This just creates a place-holder record in the sqlite_master table.
    892     ** The record created does not contain anything yet.  It will be replaced
    893     ** by the real entry in code generated at sqlite3EndTable().
    894     **
    895     ** The rowid for the new entry is left in register pParse->regRowid.
    896     ** The root page number of the new table is left in reg pParse->regRoot.
    897     ** The rowid and root page number values are needed by the code that
    898     ** sqlite3EndTable will generate.
    899     */
    900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    901     if( isView || isVirtual ){
    902       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
    903     }else
    904 #endif
    905     {
    906       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    907     }
    908     sqlite3OpenMasterTable(pParse, iDb);
    909     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    910     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
    911     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    912     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    913     sqlite3VdbeAddOp0(v, OP_Close);
    914   }
    915 
    916   /* Normal (non-error) return. */
    917   return;
    918 
    919   /* If an error occurs, we jump here */
    920 begin_table_error:
    921   sqlite3DbFree(db, zName);
    922   return;
    923 }
    924 
    925 /*
    926 ** This macro is used to compare two strings in a case-insensitive manner.
    927 ** It is slightly faster than calling sqlite3StrICmp() directly, but
    928 ** produces larger code.
    929 **
    930 ** WARNING: This macro is not compatible with the strcmp() family. It
    931 ** returns true if the two strings are equal, otherwise false.
    932 */
    933 #define STRICMP(x, y) (\
    934 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
    935 sqlite3UpperToLower[*(unsigned char *)(y)]     \
    936 && sqlite3StrICmp((x)+1,(y)+1)==0 )
    937 
    938 /*
    939 ** Add a new column to the table currently being constructed.
    940 **
    941 ** The parser calls this routine once for each column declaration
    942 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
    943 ** first to get things going.  Then this routine is called for each
    944 ** column.
    945 */
    946 void sqlite3AddColumn(Parse *pParse, Token *pName){
    947   Table *p;
    948   int i;
    949   char *z;
    950   Column *pCol;
    951   sqlite3 *db = pParse->db;
    952   if( (p = pParse->pNewTable)==0 ) return;
    953 #if SQLITE_MAX_COLUMN
    954   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    955     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
    956     return;
    957   }
    958 #endif
    959   z = sqlite3NameFromToken(db, pName);
    960   if( z==0 ) return;
    961   for(i=0; i<p->nCol; i++){
    962     if( STRICMP(z, p->aCol[i].zName) ){
    963       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
    964       sqlite3DbFree(db, z);
    965       return;
    966     }
    967   }
    968   if( (p->nCol & 0x7)==0 ){
    969     Column *aNew;
    970     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
    971     if( aNew==0 ){
    972       sqlite3DbFree(db, z);
    973       return;
    974     }
    975     p->aCol = aNew;
    976   }
    977   pCol = &p->aCol[p->nCol];
    978   memset(pCol, 0, sizeof(p->aCol[0]));
    979   pCol->zName = z;
    980 
    981   /* If there is no type specified, columns have the default affinity
    982   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
    983   ** be called next to set pCol->affinity correctly.
    984   */
    985   pCol->affinity = SQLITE_AFF_NONE;
    986   p->nCol++;
    987 }
    988 
    989 /*
    990 ** This routine is called by the parser while in the middle of
    991 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
    992 ** been seen on a column.  This routine sets the notNull flag on
    993 ** the column currently under construction.
    994 */
    995 void sqlite3AddNotNull(Parse *pParse, int onError){
    996   Table *p;
    997   p = pParse->pNewTable;
    998   if( p==0 || NEVER(p->nCol<1) ) return;
    999   p->aCol[p->nCol-1].notNull = (u8)onError;
   1000 }
   1001 
   1002 /*
   1003 ** Scan the column type name zType (length nType) and return the
   1004 ** associated affinity type.
   1005 **
   1006 ** This routine does a case-independent search of zType for the
   1007 ** substrings in the following table. If one of the substrings is
   1008 ** found, the corresponding affinity is returned. If zType contains
   1009 ** more than one of the substrings, entries toward the top of
   1010 ** the table take priority. For example, if zType is 'BLOBINT',
   1011 ** SQLITE_AFF_INTEGER is returned.
   1012 **
   1013 ** Substring     | Affinity
   1014 ** --------------------------------
   1015 ** 'INT'         | SQLITE_AFF_INTEGER
   1016 ** 'CHAR'        | SQLITE_AFF_TEXT
   1017 ** 'CLOB'        | SQLITE_AFF_TEXT
   1018 ** 'TEXT'        | SQLITE_AFF_TEXT
   1019 ** 'BLOB'        | SQLITE_AFF_NONE
   1020 ** 'REAL'        | SQLITE_AFF_REAL
   1021 ** 'FLOA'        | SQLITE_AFF_REAL
   1022 ** 'DOUB'        | SQLITE_AFF_REAL
   1023 **
   1024 ** If none of the substrings in the above table are found,
   1025 ** SQLITE_AFF_NUMERIC is returned.
   1026 */
   1027 char sqlite3AffinityType(const char *zIn){
   1028   u32 h = 0;
   1029   char aff = SQLITE_AFF_NUMERIC;
   1030 
   1031   if( zIn ) while( zIn[0] ){
   1032     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
   1033     zIn++;
   1034     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
   1035       aff = SQLITE_AFF_TEXT;
   1036     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
   1037       aff = SQLITE_AFF_TEXT;
   1038     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
   1039       aff = SQLITE_AFF_TEXT;
   1040     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
   1041         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
   1042       aff = SQLITE_AFF_NONE;
   1043 #ifndef SQLITE_OMIT_FLOATING_POINT
   1044     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
   1045         && aff==SQLITE_AFF_NUMERIC ){
   1046       aff = SQLITE_AFF_REAL;
   1047     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
   1048         && aff==SQLITE_AFF_NUMERIC ){
   1049       aff = SQLITE_AFF_REAL;
   1050     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
   1051         && aff==SQLITE_AFF_NUMERIC ){
   1052       aff = SQLITE_AFF_REAL;
   1053 #endif
   1054     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
   1055       aff = SQLITE_AFF_INTEGER;
   1056       break;
   1057     }
   1058   }
   1059 
   1060   return aff;
   1061 }
   1062 
   1063 /*
   1064 ** This routine is called by the parser while in the middle of
   1065 ** parsing a CREATE TABLE statement.  The pFirst token is the first
   1066 ** token in the sequence of tokens that describe the type of the
   1067 ** column currently under construction.   pLast is the last token
   1068 ** in the sequence.  Use this information to construct a string
   1069 ** that contains the typename of the column and store that string
   1070 ** in zType.
   1071 */
   1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){
   1073   Table *p;
   1074   Column *pCol;
   1075 
   1076   p = pParse->pNewTable;
   1077   if( p==0 || NEVER(p->nCol<1) ) return;
   1078   pCol = &p->aCol[p->nCol-1];
   1079   assert( pCol->zType==0 );
   1080   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
   1081   pCol->affinity = sqlite3AffinityType(pCol->zType);
   1082 }
   1083 
   1084 /*
   1085 ** The expression is the default value for the most recently added column
   1086 ** of the table currently under construction.
   1087 **
   1088 ** Default value expressions must be constant.  Raise an exception if this
   1089 ** is not the case.
   1090 **
   1091 ** This routine is called by the parser while in the middle of
   1092 ** parsing a CREATE TABLE statement.
   1093 */
   1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
   1095   Table *p;
   1096   Column *pCol;
   1097   sqlite3 *db = pParse->db;
   1098   p = pParse->pNewTable;
   1099   if( p!=0 ){
   1100     pCol = &(p->aCol[p->nCol-1]);
   1101     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
   1102       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
   1103           pCol->zName);
   1104     }else{
   1105       /* A copy of pExpr is used instead of the original, as pExpr contains
   1106       ** tokens that point to volatile memory. The 'span' of the expression
   1107       ** is required by pragma table_info.
   1108       */
   1109       sqlite3ExprDelete(db, pCol->pDflt);
   1110       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
   1111       sqlite3DbFree(db, pCol->zDflt);
   1112       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
   1113                                      (int)(pSpan->zEnd - pSpan->zStart));
   1114     }
   1115   }
   1116   sqlite3ExprDelete(db, pSpan->pExpr);
   1117 }
   1118 
   1119 /*
   1120 ** Designate the PRIMARY KEY for the table.  pList is a list of names
   1121 ** of columns that form the primary key.  If pList is NULL, then the
   1122 ** most recently added column of the table is the primary key.
   1123 **
   1124 ** A table can have at most one primary key.  If the table already has
   1125 ** a primary key (and this is the second primary key) then create an
   1126 ** error.
   1127 **
   1128 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
   1129 ** then we will try to use that column as the rowid.  Set the Table.iPKey
   1130 ** field of the table under construction to be the index of the
   1131 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
   1132 ** no INTEGER PRIMARY KEY.
   1133 **
   1134 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
   1135 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
   1136 */
   1137 void sqlite3AddPrimaryKey(
   1138   Parse *pParse,    /* Parsing context */
   1139   ExprList *pList,  /* List of field names to be indexed */
   1140   int onError,      /* What to do with a uniqueness conflict */
   1141   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
   1142   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
   1143 ){
   1144   Table *pTab = pParse->pNewTable;
   1145   char *zType = 0;
   1146   int iCol = -1, i;
   1147   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
   1148   if( pTab->tabFlags & TF_HasPrimaryKey ){
   1149     sqlite3ErrorMsg(pParse,
   1150       "table \"%s\" has more than one primary key", pTab->zName);
   1151     goto primary_key_exit;
   1152   }
   1153   pTab->tabFlags |= TF_HasPrimaryKey;
   1154   if( pList==0 ){
   1155     iCol = pTab->nCol - 1;
   1156     pTab->aCol[iCol].isPrimKey = 1;
   1157   }else{
   1158     for(i=0; i<pList->nExpr; i++){
   1159       for(iCol=0; iCol<pTab->nCol; iCol++){
   1160         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
   1161           break;
   1162         }
   1163       }
   1164       if( iCol<pTab->nCol ){
   1165         pTab->aCol[iCol].isPrimKey = 1;
   1166       }
   1167     }
   1168     if( pList->nExpr>1 ) iCol = -1;
   1169   }
   1170   if( iCol>=0 && iCol<pTab->nCol ){
   1171     zType = pTab->aCol[iCol].zType;
   1172   }
   1173   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
   1174         && sortOrder==SQLITE_SO_ASC ){
   1175     pTab->iPKey = iCol;
   1176     pTab->keyConf = (u8)onError;
   1177     assert( autoInc==0 || autoInc==1 );
   1178     pTab->tabFlags |= autoInc*TF_Autoincrement;
   1179   }else if( autoInc ){
   1180 #ifndef SQLITE_OMIT_AUTOINCREMENT
   1181     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
   1182        "INTEGER PRIMARY KEY");
   1183 #endif
   1184   }else{
   1185     Index *p;
   1186     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
   1187     if( p ){
   1188       p->autoIndex = 2;
   1189     }
   1190     pList = 0;
   1191   }
   1192 
   1193 primary_key_exit:
   1194   sqlite3ExprListDelete(pParse->db, pList);
   1195   return;
   1196 }
   1197 
   1198 /*
   1199 ** Add a new CHECK constraint to the table currently under construction.
   1200 */
   1201 void sqlite3AddCheckConstraint(
   1202   Parse *pParse,    /* Parsing context */
   1203   Expr *pCheckExpr  /* The check expression */
   1204 ){
   1205   sqlite3 *db = pParse->db;
   1206 #ifndef SQLITE_OMIT_CHECK
   1207   Table *pTab = pParse->pNewTable;
   1208   if( pTab && !IN_DECLARE_VTAB ){
   1209     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
   1210   }else
   1211 #endif
   1212   {
   1213     sqlite3ExprDelete(db, pCheckExpr);
   1214   }
   1215 }
   1216 
   1217 /*
   1218 ** Set the collation function of the most recently parsed table column
   1219 ** to the CollSeq given.
   1220 */
   1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
   1222   Table *p;
   1223   int i;
   1224   char *zColl;              /* Dequoted name of collation sequence */
   1225   sqlite3 *db;
   1226 
   1227   if( (p = pParse->pNewTable)==0 ) return;
   1228   i = p->nCol-1;
   1229   db = pParse->db;
   1230   zColl = sqlite3NameFromToken(db, pToken);
   1231   if( !zColl ) return;
   1232 
   1233   if( sqlite3LocateCollSeq(pParse, zColl) ){
   1234     Index *pIdx;
   1235     p->aCol[i].zColl = zColl;
   1236 
   1237     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
   1238     ** then an index may have been created on this column before the
   1239     ** collation type was added. Correct this if it is the case.
   1240     */
   1241     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
   1242       assert( pIdx->nColumn==1 );
   1243       if( pIdx->aiColumn[0]==i ){
   1244         pIdx->azColl[0] = p->aCol[i].zColl;
   1245       }
   1246     }
   1247   }else{
   1248     sqlite3DbFree(db, zColl);
   1249   }
   1250 }
   1251 
   1252 /*
   1253 ** This function returns the collation sequence for database native text
   1254 ** encoding identified by the string zName, length nName.
   1255 **
   1256 ** If the requested collation sequence is not available, or not available
   1257 ** in the database native encoding, the collation factory is invoked to
   1258 ** request it. If the collation factory does not supply such a sequence,
   1259 ** and the sequence is available in another text encoding, then that is
   1260 ** returned instead.
   1261 **
   1262 ** If no versions of the requested collations sequence are available, or
   1263 ** another error occurs, NULL is returned and an error message written into
   1264 ** pParse.
   1265 **
   1266 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
   1267 ** invokes the collation factory if the named collation cannot be found
   1268 ** and generates an error message.
   1269 **
   1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
   1271 */
   1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
   1273   sqlite3 *db = pParse->db;
   1274   u8 enc = ENC(db);
   1275   u8 initbusy = db->init.busy;
   1276   CollSeq *pColl;
   1277 
   1278   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
   1279   if( !initbusy && (!pColl || !pColl->xCmp) ){
   1280     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
   1281     if( !pColl ){
   1282       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
   1283     }
   1284   }
   1285 
   1286   return pColl;
   1287 }
   1288 
   1289 
   1290 /*
   1291 ** Generate code that will increment the schema cookie.
   1292 **
   1293 ** The schema cookie is used to determine when the schema for the
   1294 ** database changes.  After each schema change, the cookie value
   1295 ** changes.  When a process first reads the schema it records the
   1296 ** cookie.  Thereafter, whenever it goes to access the database,
   1297 ** it checks the cookie to make sure the schema has not changed
   1298 ** since it was last read.
   1299 **
   1300 ** This plan is not completely bullet-proof.  It is possible for
   1301 ** the schema to change multiple times and for the cookie to be
   1302 ** set back to prior value.  But schema changes are infrequent
   1303 ** and the probability of hitting the same cookie value is only
   1304 ** 1 chance in 2^32.  So we're safe enough.
   1305 */
   1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){
   1307   int r1 = sqlite3GetTempReg(pParse);
   1308   sqlite3 *db = pParse->db;
   1309   Vdbe *v = pParse->pVdbe;
   1310   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1311   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
   1312   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
   1313   sqlite3ReleaseTempReg(pParse, r1);
   1314 }
   1315 
   1316 /*
   1317 ** Measure the number of characters needed to output the given
   1318 ** identifier.  The number returned includes any quotes used
   1319 ** but does not include the null terminator.
   1320 **
   1321 ** The estimate is conservative.  It might be larger that what is
   1322 ** really needed.
   1323 */
   1324 static int identLength(const char *z){
   1325   int n;
   1326   for(n=0; *z; n++, z++){
   1327     if( *z=='"' ){ n++; }
   1328   }
   1329   return n + 2;
   1330 }
   1331 
   1332 /*
   1333 ** The first parameter is a pointer to an output buffer. The second
   1334 ** parameter is a pointer to an integer that contains the offset at
   1335 ** which to write into the output buffer. This function copies the
   1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
   1337 ** to the specified offset in the buffer and updates *pIdx to refer
   1338 ** to the first byte after the last byte written before returning.
   1339 **
   1340 ** If the string zSignedIdent consists entirely of alpha-numeric
   1341 ** characters, does not begin with a digit and is not an SQL keyword,
   1342 ** then it is copied to the output buffer exactly as it is. Otherwise,
   1343 ** it is quoted using double-quotes.
   1344 */
   1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){
   1346   unsigned char *zIdent = (unsigned char*)zSignedIdent;
   1347   int i, j, needQuote;
   1348   i = *pIdx;
   1349 
   1350   for(j=0; zIdent[j]; j++){
   1351     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
   1352   }
   1353   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
   1354   if( !needQuote ){
   1355     needQuote = zIdent[j];
   1356   }
   1357 
   1358   if( needQuote ) z[i++] = '"';
   1359   for(j=0; zIdent[j]; j++){
   1360     z[i++] = zIdent[j];
   1361     if( zIdent[j]=='"' ) z[i++] = '"';
   1362   }
   1363   if( needQuote ) z[i++] = '"';
   1364   z[i] = 0;
   1365   *pIdx = i;
   1366 }
   1367 
   1368 /*
   1369 ** Generate a CREATE TABLE statement appropriate for the given
   1370 ** table.  Memory to hold the text of the statement is obtained
   1371 ** from sqliteMalloc() and must be freed by the calling function.
   1372 */
   1373 static char *createTableStmt(sqlite3 *db, Table *p){
   1374   int i, k, n;
   1375   char *zStmt;
   1376   char *zSep, *zSep2, *zEnd;
   1377   Column *pCol;
   1378   n = 0;
   1379   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
   1380     n += identLength(pCol->zName) + 5;
   1381   }
   1382   n += identLength(p->zName);
   1383   if( n<50 ){
   1384     zSep = "";
   1385     zSep2 = ",";
   1386     zEnd = ")";
   1387   }else{
   1388     zSep = "\n  ";
   1389     zSep2 = ",\n  ";
   1390     zEnd = "\n)";
   1391   }
   1392   n += 35 + 6*p->nCol;
   1393   zStmt = sqlite3DbMallocRaw(0, n);
   1394   if( zStmt==0 ){
   1395     db->mallocFailed = 1;
   1396     return 0;
   1397   }
   1398   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
   1399   k = sqlite3Strlen30(zStmt);
   1400   identPut(zStmt, &k, p->zName);
   1401   zStmt[k++] = '(';
   1402   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
   1403     static const char * const azType[] = {
   1404         /* SQLITE_AFF_TEXT    */ " TEXT",
   1405         /* SQLITE_AFF_NONE    */ "",
   1406         /* SQLITE_AFF_NUMERIC */ " NUM",
   1407         /* SQLITE_AFF_INTEGER */ " INT",
   1408         /* SQLITE_AFF_REAL    */ " REAL"
   1409     };
   1410     int len;
   1411     const char *zType;
   1412 
   1413     sqlite3_snprintf(n-k, &zStmt[k], zSep);
   1414     k += sqlite3Strlen30(&zStmt[k]);
   1415     zSep = zSep2;
   1416     identPut(zStmt, &k, pCol->zName);
   1417     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
   1418     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
   1419     testcase( pCol->affinity==SQLITE_AFF_TEXT );
   1420     testcase( pCol->affinity==SQLITE_AFF_NONE );
   1421     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
   1422     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
   1423     testcase( pCol->affinity==SQLITE_AFF_REAL );
   1424 
   1425     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
   1426     len = sqlite3Strlen30(zType);
   1427     assert( pCol->affinity==SQLITE_AFF_NONE
   1428             || pCol->affinity==sqlite3AffinityType(zType) );
   1429     memcpy(&zStmt[k], zType, len);
   1430     k += len;
   1431     assert( k<=n );
   1432   }
   1433   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
   1434   return zStmt;
   1435 }
   1436 
   1437 /*
   1438 ** This routine is called to report the final ")" that terminates
   1439 ** a CREATE TABLE statement.
   1440 **
   1441 ** The table structure that other action routines have been building
   1442 ** is added to the internal hash tables, assuming no errors have
   1443 ** occurred.
   1444 **
   1445 ** An entry for the table is made in the master table on disk, unless
   1446 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
   1447 ** it means we are reading the sqlite_master table because we just
   1448 ** connected to the database or because the sqlite_master table has
   1449 ** recently changed, so the entry for this table already exists in
   1450 ** the sqlite_master table.  We do not want to create it again.
   1451 **
   1452 ** If the pSelect argument is not NULL, it means that this routine
   1453 ** was called to create a table generated from a
   1454 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
   1455 ** the new table will match the result set of the SELECT.
   1456 */
   1457 void sqlite3EndTable(
   1458   Parse *pParse,          /* Parse context */
   1459   Token *pCons,           /* The ',' token after the last column defn. */
   1460   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
   1461   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
   1462 ){
   1463   Table *p;
   1464   sqlite3 *db = pParse->db;
   1465   int iDb;
   1466 
   1467   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
   1468     return;
   1469   }
   1470   p = pParse->pNewTable;
   1471   if( p==0 ) return;
   1472 
   1473   assert( !db->init.busy || !pSelect );
   1474 
   1475   iDb = sqlite3SchemaToIndex(db, p->pSchema);
   1476 
   1477 #ifndef SQLITE_OMIT_CHECK
   1478   /* Resolve names in all CHECK constraint expressions.
   1479   */
   1480   if( p->pCheck ){
   1481     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
   1482     NameContext sNC;                /* Name context for pParse->pNewTable */
   1483 
   1484     memset(&sNC, 0, sizeof(sNC));
   1485     memset(&sSrc, 0, sizeof(sSrc));
   1486     sSrc.nSrc = 1;
   1487     sSrc.a[0].zName = p->zName;
   1488     sSrc.a[0].pTab = p;
   1489     sSrc.a[0].iCursor = -1;
   1490     sNC.pParse = pParse;
   1491     sNC.pSrcList = &sSrc;
   1492     sNC.isCheck = 1;
   1493     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
   1494       return;
   1495     }
   1496   }
   1497 #endif /* !defined(SQLITE_OMIT_CHECK) */
   1498 
   1499   /* If the db->init.busy is 1 it means we are reading the SQL off the
   1500   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
   1501   ** So do not write to the disk again.  Extract the root page number
   1502   ** for the table from the db->init.newTnum field.  (The page number
   1503   ** should have been put there by the sqliteOpenCb routine.)
   1504   */
   1505   if( db->init.busy ){
   1506     p->tnum = db->init.newTnum;
   1507   }
   1508 
   1509   /* If not initializing, then create a record for the new table
   1510   ** in the SQLITE_MASTER table of the database.
   1511   **
   1512   ** If this is a TEMPORARY table, write the entry into the auxiliary
   1513   ** file instead of into the main database file.
   1514   */
   1515   if( !db->init.busy ){
   1516     int n;
   1517     Vdbe *v;
   1518     char *zType;    /* "view" or "table" */
   1519     char *zType2;   /* "VIEW" or "TABLE" */
   1520     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
   1521 
   1522     v = sqlite3GetVdbe(pParse);
   1523     if( NEVER(v==0) ) return;
   1524 
   1525     sqlite3VdbeAddOp1(v, OP_Close, 0);
   1526 
   1527     /*
   1528     ** Initialize zType for the new view or table.
   1529     */
   1530     if( p->pSelect==0 ){
   1531       /* A regular table */
   1532       zType = "table";
   1533       zType2 = "TABLE";
   1534 #ifndef SQLITE_OMIT_VIEW
   1535     }else{
   1536       /* A view */
   1537       zType = "view";
   1538       zType2 = "VIEW";
   1539 #endif
   1540     }
   1541 
   1542     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
   1543     ** statement to populate the new table. The root-page number for the
   1544     ** new table is in register pParse->regRoot.
   1545     **
   1546     ** Once the SELECT has been coded by sqlite3Select(), it is in a
   1547     ** suitable state to query for the column names and types to be used
   1548     ** by the new table.
   1549     **
   1550     ** A shared-cache write-lock is not required to write to the new table,
   1551     ** as a schema-lock must have already been obtained to create it. Since
   1552     ** a schema-lock excludes all other database users, the write-lock would
   1553     ** be redundant.
   1554     */
   1555     if( pSelect ){
   1556       SelectDest dest;
   1557       Table *pSelTab;
   1558 
   1559       assert(pParse->nTab==1);
   1560       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
   1561       sqlite3VdbeChangeP5(v, 1);
   1562       pParse->nTab = 2;
   1563       sqlite3SelectDestInit(&dest, SRT_Table, 1);
   1564       sqlite3Select(pParse, pSelect, &dest);
   1565       sqlite3VdbeAddOp1(v, OP_Close, 1);
   1566       if( pParse->nErr==0 ){
   1567         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
   1568         if( pSelTab==0 ) return;
   1569         assert( p->aCol==0 );
   1570         p->nCol = pSelTab->nCol;
   1571         p->aCol = pSelTab->aCol;
   1572         pSelTab->nCol = 0;
   1573         pSelTab->aCol = 0;
   1574         sqlite3DeleteTable(db, pSelTab);
   1575       }
   1576     }
   1577 
   1578     /* Compute the complete text of the CREATE statement */
   1579     if( pSelect ){
   1580       zStmt = createTableStmt(db, p);
   1581     }else{
   1582       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
   1583       zStmt = sqlite3MPrintf(db,
   1584           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
   1585       );
   1586     }
   1587 
   1588     /* A slot for the record has already been allocated in the
   1589     ** SQLITE_MASTER table.  We just need to update that slot with all
   1590     ** the information we've collected.
   1591     */
   1592     sqlite3NestedParse(pParse,
   1593       "UPDATE %Q.%s "
   1594          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
   1595        "WHERE rowid=#%d",
   1596       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   1597       zType,
   1598       p->zName,
   1599       p->zName,
   1600       pParse->regRoot,
   1601       zStmt,
   1602       pParse->regRowid
   1603     );
   1604     sqlite3DbFree(db, zStmt);
   1605     sqlite3ChangeCookie(pParse, iDb);
   1606 
   1607 #ifndef SQLITE_OMIT_AUTOINCREMENT
   1608     /* Check to see if we need to create an sqlite_sequence table for
   1609     ** keeping track of autoincrement keys.
   1610     */
   1611     if( p->tabFlags & TF_Autoincrement ){
   1612       Db *pDb = &db->aDb[iDb];
   1613       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1614       if( pDb->pSchema->pSeqTab==0 ){
   1615         sqlite3NestedParse(pParse,
   1616           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
   1617           pDb->zName
   1618         );
   1619       }
   1620     }
   1621 #endif
   1622 
   1623     /* Reparse everything to update our internal data structures */
   1624     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
   1625         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
   1626   }
   1627 
   1628 
   1629   /* Add the table to the in-memory representation of the database.
   1630   */
   1631   if( db->init.busy ){
   1632     Table *pOld;
   1633     Schema *pSchema = p->pSchema;
   1634     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1635     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
   1636                              sqlite3Strlen30(p->zName),p);
   1637     if( pOld ){
   1638       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
   1639       db->mallocFailed = 1;
   1640       return;
   1641     }
   1642     pParse->pNewTable = 0;
   1643     db->nTable++;
   1644     db->flags |= SQLITE_InternChanges;
   1645 
   1646 #ifndef SQLITE_OMIT_ALTERTABLE
   1647     if( !p->pSelect ){
   1648       const char *zName = (const char *)pParse->sNameToken.z;
   1649       int nName;
   1650       assert( !pSelect && pCons && pEnd );
   1651       if( pCons->z==0 ){
   1652         pCons = pEnd;
   1653       }
   1654       nName = (int)((const char *)pCons->z - zName);
   1655       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
   1656     }
   1657 #endif
   1658   }
   1659 }
   1660 
   1661 #ifndef SQLITE_OMIT_VIEW
   1662 /*
   1663 ** The parser calls this routine in order to create a new VIEW
   1664 */
   1665 void sqlite3CreateView(
   1666   Parse *pParse,     /* The parsing context */
   1667   Token *pBegin,     /* The CREATE token that begins the statement */
   1668   Token *pName1,     /* The token that holds the name of the view */
   1669   Token *pName2,     /* The token that holds the name of the view */
   1670   Select *pSelect,   /* A SELECT statement that will become the new view */
   1671   int isTemp,        /* TRUE for a TEMPORARY view */
   1672   int noErr          /* Suppress error messages if VIEW already exists */
   1673 ){
   1674   Table *p;
   1675   int n;
   1676   const char *z;
   1677   Token sEnd;
   1678   DbFixer sFix;
   1679   Token *pName;
   1680   int iDb;
   1681   sqlite3 *db = pParse->db;
   1682 
   1683   if( pParse->nVar>0 ){
   1684     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
   1685     sqlite3SelectDelete(db, pSelect);
   1686     return;
   1687   }
   1688   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
   1689   p = pParse->pNewTable;
   1690   if( p==0 || pParse->nErr ){
   1691     sqlite3SelectDelete(db, pSelect);
   1692     return;
   1693   }
   1694   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
   1695   iDb = sqlite3SchemaToIndex(db, p->pSchema);
   1696   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
   1697     && sqlite3FixSelect(&sFix, pSelect)
   1698   ){
   1699     sqlite3SelectDelete(db, pSelect);
   1700     return;
   1701   }
   1702 
   1703   /* Make a copy of the entire SELECT statement that defines the view.
   1704   ** This will force all the Expr.token.z values to be dynamically
   1705   ** allocated rather than point to the input string - which means that
   1706   ** they will persist after the current sqlite3_exec() call returns.
   1707   */
   1708   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
   1709   sqlite3SelectDelete(db, pSelect);
   1710   if( db->mallocFailed ){
   1711     return;
   1712   }
   1713   if( !db->init.busy ){
   1714     sqlite3ViewGetColumnNames(pParse, p);
   1715   }
   1716 
   1717   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
   1718   ** the end.
   1719   */
   1720   sEnd = pParse->sLastToken;
   1721   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
   1722     sEnd.z += sEnd.n;
   1723   }
   1724   sEnd.n = 0;
   1725   n = (int)(sEnd.z - pBegin->z);
   1726   z = pBegin->z;
   1727   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
   1728   sEnd.z = &z[n-1];
   1729   sEnd.n = 1;
   1730 
   1731   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
   1732   sqlite3EndTable(pParse, 0, &sEnd, 0);
   1733   return;
   1734 }
   1735 #endif /* SQLITE_OMIT_VIEW */
   1736 
   1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
   1738 /*
   1739 ** The Table structure pTable is really a VIEW.  Fill in the names of
   1740 ** the columns of the view in the pTable structure.  Return the number
   1741 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
   1742 */
   1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
   1744   Table *pSelTab;   /* A fake table from which we get the result set */
   1745   Select *pSel;     /* Copy of the SELECT that implements the view */
   1746   int nErr = 0;     /* Number of errors encountered */
   1747   int n;            /* Temporarily holds the number of cursors assigned */
   1748   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
   1749   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
   1750 
   1751   assert( pTable );
   1752 
   1753 #ifndef SQLITE_OMIT_VIRTUALTABLE
   1754   if( sqlite3VtabCallConnect(pParse, pTable) ){
   1755     return SQLITE_ERROR;
   1756   }
   1757   if( IsVirtual(pTable) ) return 0;
   1758 #endif
   1759 
   1760 #ifndef SQLITE_OMIT_VIEW
   1761   /* A positive nCol means the columns names for this view are
   1762   ** already known.
   1763   */
   1764   if( pTable->nCol>0 ) return 0;
   1765 
   1766   /* A negative nCol is a special marker meaning that we are currently
   1767   ** trying to compute the column names.  If we enter this routine with
   1768   ** a negative nCol, it means two or more views form a loop, like this:
   1769   **
   1770   **     CREATE VIEW one AS SELECT * FROM two;
   1771   **     CREATE VIEW two AS SELECT * FROM one;
   1772   **
   1773   ** Actually, the error above is now caught prior to reaching this point.
   1774   ** But the following test is still important as it does come up
   1775   ** in the following:
   1776   **
   1777   **     CREATE TABLE main.ex1(a);
   1778   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
   1779   **     SELECT * FROM temp.ex1;
   1780   */
   1781   if( pTable->nCol<0 ){
   1782     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
   1783     return 1;
   1784   }
   1785   assert( pTable->nCol>=0 );
   1786 
   1787   /* If we get this far, it means we need to compute the table names.
   1788   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
   1789   ** "*" elements in the results set of the view and will assign cursors
   1790   ** to the elements of the FROM clause.  But we do not want these changes
   1791   ** to be permanent.  So the computation is done on a copy of the SELECT
   1792   ** statement that defines the view.
   1793   */
   1794   assert( pTable->pSelect );
   1795   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
   1796   if( pSel ){
   1797     u8 enableLookaside = db->lookaside.bEnabled;
   1798     n = pParse->nTab;
   1799     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
   1800     pTable->nCol = -1;
   1801     db->lookaside.bEnabled = 0;
   1802 #ifndef SQLITE_OMIT_AUTHORIZATION
   1803     xAuth = db->xAuth;
   1804     db->xAuth = 0;
   1805     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
   1806     db->xAuth = xAuth;
   1807 #else
   1808     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
   1809 #endif
   1810     db->lookaside.bEnabled = enableLookaside;
   1811     pParse->nTab = n;
   1812     if( pSelTab ){
   1813       assert( pTable->aCol==0 );
   1814       pTable->nCol = pSelTab->nCol;
   1815       pTable->aCol = pSelTab->aCol;
   1816       pSelTab->nCol = 0;
   1817       pSelTab->aCol = 0;
   1818       sqlite3DeleteTable(db, pSelTab);
   1819       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
   1820       pTable->pSchema->flags |= DB_UnresetViews;
   1821     }else{
   1822       pTable->nCol = 0;
   1823       nErr++;
   1824     }
   1825     sqlite3SelectDelete(db, pSel);
   1826   } else {
   1827     nErr++;
   1828   }
   1829 #endif /* SQLITE_OMIT_VIEW */
   1830   return nErr;
   1831 }
   1832 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
   1833 
   1834 #ifndef SQLITE_OMIT_VIEW
   1835 /*
   1836 ** Clear the column names from every VIEW in database idx.
   1837 */
   1838 static void sqliteViewResetAll(sqlite3 *db, int idx){
   1839   HashElem *i;
   1840   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
   1841   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
   1842   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
   1843     Table *pTab = sqliteHashData(i);
   1844     if( pTab->pSelect ){
   1845       sqliteDeleteColumnNames(db, pTab);
   1846       pTab->aCol = 0;
   1847       pTab->nCol = 0;
   1848     }
   1849   }
   1850   DbClearProperty(db, idx, DB_UnresetViews);
   1851 }
   1852 #else
   1853 # define sqliteViewResetAll(A,B)
   1854 #endif /* SQLITE_OMIT_VIEW */
   1855 
   1856 /*
   1857 ** This function is called by the VDBE to adjust the internal schema
   1858 ** used by SQLite when the btree layer moves a table root page. The
   1859 ** root-page of a table or index in database iDb has changed from iFrom
   1860 ** to iTo.
   1861 **
   1862 ** Ticket #1728:  The symbol table might still contain information
   1863 ** on tables and/or indices that are the process of being deleted.
   1864 ** If you are unlucky, one of those deleted indices or tables might
   1865 ** have the same rootpage number as the real table or index that is
   1866 ** being moved.  So we cannot stop searching after the first match
   1867 ** because the first match might be for one of the deleted indices
   1868 ** or tables and not the table/index that is actually being moved.
   1869 ** We must continue looping until all tables and indices with
   1870 ** rootpage==iFrom have been converted to have a rootpage of iTo
   1871 ** in order to be certain that we got the right one.
   1872 */
   1873 #ifndef SQLITE_OMIT_AUTOVACUUM
   1874 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
   1875   HashElem *pElem;
   1876   Hash *pHash;
   1877   Db *pDb;
   1878 
   1879   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1880   pDb = &db->aDb[iDb];
   1881   pHash = &pDb->pSchema->tblHash;
   1882   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
   1883     Table *pTab = sqliteHashData(pElem);
   1884     if( pTab->tnum==iFrom ){
   1885       pTab->tnum = iTo;
   1886     }
   1887   }
   1888   pHash = &pDb->pSchema->idxHash;
   1889   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
   1890     Index *pIdx = sqliteHashData(pElem);
   1891     if( pIdx->tnum==iFrom ){
   1892       pIdx->tnum = iTo;
   1893     }
   1894   }
   1895 }
   1896 #endif
   1897 
   1898 /*
   1899 ** Write code to erase the table with root-page iTable from database iDb.
   1900 ** Also write code to modify the sqlite_master table and internal schema
   1901 ** if a root-page of another table is moved by the btree-layer whilst
   1902 ** erasing iTable (this can happen with an auto-vacuum database).
   1903 */
   1904 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
   1905   Vdbe *v = sqlite3GetVdbe(pParse);
   1906   int r1 = sqlite3GetTempReg(pParse);
   1907   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
   1908   sqlite3MayAbort(pParse);
   1909 #ifndef SQLITE_OMIT_AUTOVACUUM
   1910   /* OP_Destroy stores an in integer r1. If this integer
   1911   ** is non-zero, then it is the root page number of a table moved to
   1912   ** location iTable. The following code modifies the sqlite_master table to
   1913   ** reflect this.
   1914   **
   1915   ** The "#NNN" in the SQL is a special constant that means whatever value
   1916   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
   1917   ** token for additional information.
   1918   */
   1919   sqlite3NestedParse(pParse,
   1920      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
   1921      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
   1922 #endif
   1923   sqlite3ReleaseTempReg(pParse, r1);
   1924 }
   1925 
   1926 /*
   1927 ** Write VDBE code to erase table pTab and all associated indices on disk.
   1928 ** Code to update the sqlite_master tables and internal schema definitions
   1929 ** in case a root-page belonging to another table is moved by the btree layer
   1930 ** is also added (this can happen with an auto-vacuum database).
   1931 */
   1932 static void destroyTable(Parse *pParse, Table *pTab){
   1933 #ifdef SQLITE_OMIT_AUTOVACUUM
   1934   Index *pIdx;
   1935   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   1936   destroyRootPage(pParse, pTab->tnum, iDb);
   1937   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   1938     destroyRootPage(pParse, pIdx->tnum, iDb);
   1939   }
   1940 #else
   1941   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
   1942   ** is not defined), then it is important to call OP_Destroy on the
   1943   ** table and index root-pages in order, starting with the numerically
   1944   ** largest root-page number. This guarantees that none of the root-pages
   1945   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
   1946   ** following were coded:
   1947   **
   1948   ** OP_Destroy 4 0
   1949   ** ...
   1950   ** OP_Destroy 5 0
   1951   **
   1952   ** and root page 5 happened to be the largest root-page number in the
   1953   ** database, then root page 5 would be moved to page 4 by the
   1954   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
   1955   ** a free-list page.
   1956   */
   1957   int iTab = pTab->tnum;
   1958   int iDestroyed = 0;
   1959 
   1960   while( 1 ){
   1961     Index *pIdx;
   1962     int iLargest = 0;
   1963 
   1964     if( iDestroyed==0 || iTab<iDestroyed ){
   1965       iLargest = iTab;
   1966     }
   1967     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   1968       int iIdx = pIdx->tnum;
   1969       assert( pIdx->pSchema==pTab->pSchema );
   1970       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
   1971         iLargest = iIdx;
   1972       }
   1973     }
   1974     if( iLargest==0 ){
   1975       return;
   1976     }else{
   1977       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   1978       destroyRootPage(pParse, iLargest, iDb);
   1979       iDestroyed = iLargest;
   1980     }
   1981   }
   1982 #endif
   1983 }
   1984 
   1985 /*
   1986 ** This routine is called to do the work of a DROP TABLE statement.
   1987 ** pName is the name of the table to be dropped.
   1988 */
   1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
   1990   Table *pTab;
   1991   Vdbe *v;
   1992   sqlite3 *db = pParse->db;
   1993   int iDb;
   1994 
   1995   if( db->mallocFailed ){
   1996     goto exit_drop_table;
   1997   }
   1998   assert( pParse->nErr==0 );
   1999   assert( pName->nSrc==1 );
   2000   if( noErr ) db->suppressErr++;
   2001   pTab = sqlite3LocateTable(pParse, isView,
   2002                             pName->a[0].zName, pName->a[0].zDatabase);
   2003   if( noErr ) db->suppressErr--;
   2004 
   2005   if( pTab==0 ){
   2006     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
   2007     goto exit_drop_table;
   2008   }
   2009   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
   2010   assert( iDb>=0 && iDb<db->nDb );
   2011 
   2012   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
   2013   ** it is initialized.
   2014   */
   2015   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
   2016     goto exit_drop_table;
   2017   }
   2018 #ifndef SQLITE_OMIT_AUTHORIZATION
   2019   {
   2020     int code;
   2021     const char *zTab = SCHEMA_TABLE(iDb);
   2022     const char *zDb = db->aDb[iDb].zName;
   2023     const char *zArg2 = 0;
   2024     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
   2025       goto exit_drop_table;
   2026     }
   2027     if( isView ){
   2028       if( !OMIT_TEMPDB && iDb==1 ){
   2029         code = SQLITE_DROP_TEMP_VIEW;
   2030       }else{
   2031         code = SQLITE_DROP_VIEW;
   2032       }
   2033 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2034     }else if( IsVirtual(pTab) ){
   2035       code = SQLITE_DROP_VTABLE;
   2036       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
   2037 #endif
   2038     }else{
   2039       if( !OMIT_TEMPDB && iDb==1 ){
   2040         code = SQLITE_DROP_TEMP_TABLE;
   2041       }else{
   2042         code = SQLITE_DROP_TABLE;
   2043       }
   2044     }
   2045     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
   2046       goto exit_drop_table;
   2047     }
   2048     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
   2049       goto exit_drop_table;
   2050     }
   2051   }
   2052 #endif
   2053   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
   2054     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
   2055     goto exit_drop_table;
   2056   }
   2057 
   2058 #ifndef SQLITE_OMIT_VIEW
   2059   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
   2060   ** on a table.
   2061   */
   2062   if( isView && pTab->pSelect==0 ){
   2063     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
   2064     goto exit_drop_table;
   2065   }
   2066   if( !isView && pTab->pSelect ){
   2067     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
   2068     goto exit_drop_table;
   2069   }
   2070 #endif
   2071 
   2072   /* Generate code to remove the table from the master table
   2073   ** on disk.
   2074   */
   2075   v = sqlite3GetVdbe(pParse);
   2076   if( v ){
   2077     Trigger *pTrigger;
   2078     Db *pDb = &db->aDb[iDb];
   2079     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2080 
   2081 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2082     if( IsVirtual(pTab) ){
   2083       sqlite3VdbeAddOp0(v, OP_VBegin);
   2084     }
   2085 #endif
   2086     sqlite3FkDropTable(pParse, pName, pTab);
   2087 
   2088     /* Drop all triggers associated with the table being dropped. Code
   2089     ** is generated to remove entries from sqlite_master and/or
   2090     ** sqlite_temp_master if required.
   2091     */
   2092     pTrigger = sqlite3TriggerList(pParse, pTab);
   2093     while( pTrigger ){
   2094       assert( pTrigger->pSchema==pTab->pSchema ||
   2095           pTrigger->pSchema==db->aDb[1].pSchema );
   2096       sqlite3DropTriggerPtr(pParse, pTrigger);
   2097       pTrigger = pTrigger->pNext;
   2098     }
   2099 
   2100 #ifndef SQLITE_OMIT_AUTOINCREMENT
   2101     /* Remove any entries of the sqlite_sequence table associated with
   2102     ** the table being dropped. This is done before the table is dropped
   2103     ** at the btree level, in case the sqlite_sequence table needs to
   2104     ** move as a result of the drop (can happen in auto-vacuum mode).
   2105     */
   2106     if( pTab->tabFlags & TF_Autoincrement ){
   2107       sqlite3NestedParse(pParse,
   2108         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
   2109         pDb->zName, pTab->zName
   2110       );
   2111     }
   2112 #endif
   2113 
   2114     /* Drop all SQLITE_MASTER table and index entries that refer to the
   2115     ** table. The program name loops through the master table and deletes
   2116     ** every row that refers to a table of the same name as the one being
   2117     ** dropped. Triggers are handled seperately because a trigger can be
   2118     ** created in the temp database that refers to a table in another
   2119     ** database.
   2120     */
   2121     sqlite3NestedParse(pParse,
   2122         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
   2123         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
   2124 
   2125     /* Drop any statistics from the sqlite_stat1 table, if it exists */
   2126     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
   2127       sqlite3NestedParse(pParse,
   2128         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
   2129       );
   2130     }
   2131 
   2132     if( !isView && !IsVirtual(pTab) ){
   2133       destroyTable(pParse, pTab);
   2134     }
   2135 
   2136     /* Remove the table entry from SQLite's internal schema and modify
   2137     ** the schema cookie.
   2138     */
   2139     if( IsVirtual(pTab) ){
   2140       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
   2141     }
   2142     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
   2143     sqlite3ChangeCookie(pParse, iDb);
   2144   }
   2145   sqliteViewResetAll(db, iDb);
   2146 
   2147 exit_drop_table:
   2148   sqlite3SrcListDelete(db, pName);
   2149 }
   2150 
   2151 /*
   2152 ** This routine is called to create a new foreign key on the table
   2153 ** currently under construction.  pFromCol determines which columns
   2154 ** in the current table point to the foreign key.  If pFromCol==0 then
   2155 ** connect the key to the last column inserted.  pTo is the name of
   2156 ** the table referred to.  pToCol is a list of tables in the other
   2157 ** pTo table that the foreign key points to.  flags contains all
   2158 ** information about the conflict resolution algorithms specified
   2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
   2160 **
   2161 ** An FKey structure is created and added to the table currently
   2162 ** under construction in the pParse->pNewTable field.
   2163 **
   2164 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
   2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
   2166 */
   2167 void sqlite3CreateForeignKey(
   2168   Parse *pParse,       /* Parsing context */
   2169   ExprList *pFromCol,  /* Columns in this table that point to other table */
   2170   Token *pTo,          /* Name of the other table */
   2171   ExprList *pToCol,    /* Columns in the other table */
   2172   int flags            /* Conflict resolution algorithms. */
   2173 ){
   2174   sqlite3 *db = pParse->db;
   2175 #ifndef SQLITE_OMIT_FOREIGN_KEY
   2176   FKey *pFKey = 0;
   2177   FKey *pNextTo;
   2178   Table *p = pParse->pNewTable;
   2179   int nByte;
   2180   int i;
   2181   int nCol;
   2182   char *z;
   2183 
   2184   assert( pTo!=0 );
   2185   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
   2186   if( pFromCol==0 ){
   2187     int iCol = p->nCol-1;
   2188     if( NEVER(iCol<0) ) goto fk_end;
   2189     if( pToCol && pToCol->nExpr!=1 ){
   2190       sqlite3ErrorMsg(pParse, "foreign key on %s"
   2191          " should reference only one column of table %T",
   2192          p->aCol[iCol].zName, pTo);
   2193       goto fk_end;
   2194     }
   2195     nCol = 1;
   2196   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
   2197     sqlite3ErrorMsg(pParse,
   2198         "number of columns in foreign key does not match the number of "
   2199         "columns in the referenced table");
   2200     goto fk_end;
   2201   }else{
   2202     nCol = pFromCol->nExpr;
   2203   }
   2204   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
   2205   if( pToCol ){
   2206     for(i=0; i<pToCol->nExpr; i++){
   2207       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
   2208     }
   2209   }
   2210   pFKey = sqlite3DbMallocZero(db, nByte );
   2211   if( pFKey==0 ){
   2212     goto fk_end;
   2213   }
   2214   pFKey->pFrom = p;
   2215   pFKey->pNextFrom = p->pFKey;
   2216   z = (char*)&pFKey->aCol[nCol];
   2217   pFKey->zTo = z;
   2218   memcpy(z, pTo->z, pTo->n);
   2219   z[pTo->n] = 0;
   2220   sqlite3Dequote(z);
   2221   z += pTo->n+1;
   2222   pFKey->nCol = nCol;
   2223   if( pFromCol==0 ){
   2224     pFKey->aCol[0].iFrom = p->nCol-1;
   2225   }else{
   2226     for(i=0; i<nCol; i++){
   2227       int j;
   2228       for(j=0; j<p->nCol; j++){
   2229         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
   2230           pFKey->aCol[i].iFrom = j;
   2231           break;
   2232         }
   2233       }
   2234       if( j>=p->nCol ){
   2235         sqlite3ErrorMsg(pParse,
   2236           "unknown column \"%s\" in foreign key definition",
   2237           pFromCol->a[i].zName);
   2238         goto fk_end;
   2239       }
   2240     }
   2241   }
   2242   if( pToCol ){
   2243     for(i=0; i<nCol; i++){
   2244       int n = sqlite3Strlen30(pToCol->a[i].zName);
   2245       pFKey->aCol[i].zCol = z;
   2246       memcpy(z, pToCol->a[i].zName, n);
   2247       z[n] = 0;
   2248       z += n+1;
   2249     }
   2250   }
   2251   pFKey->isDeferred = 0;
   2252   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
   2253   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
   2254 
   2255   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
   2256   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
   2257       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
   2258   );
   2259   if( pNextTo==pFKey ){
   2260     db->mallocFailed = 1;
   2261     goto fk_end;
   2262   }
   2263   if( pNextTo ){
   2264     assert( pNextTo->pPrevTo==0 );
   2265     pFKey->pNextTo = pNextTo;
   2266     pNextTo->pPrevTo = pFKey;
   2267   }
   2268 
   2269   /* Link the foreign key to the table as the last step.
   2270   */
   2271   p->pFKey = pFKey;
   2272   pFKey = 0;
   2273 
   2274 fk_end:
   2275   sqlite3DbFree(db, pFKey);
   2276 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
   2277   sqlite3ExprListDelete(db, pFromCol);
   2278   sqlite3ExprListDelete(db, pToCol);
   2279 }
   2280 
   2281 /*
   2282 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
   2283 ** clause is seen as part of a foreign key definition.  The isDeferred
   2284 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
   2285 ** The behavior of the most recently created foreign key is adjusted
   2286 ** accordingly.
   2287 */
   2288 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
   2289 #ifndef SQLITE_OMIT_FOREIGN_KEY
   2290   Table *pTab;
   2291   FKey *pFKey;
   2292   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
   2293   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
   2294   pFKey->isDeferred = (u8)isDeferred;
   2295 #endif
   2296 }
   2297 
   2298 /*
   2299 ** Generate code that will erase and refill index *pIdx.  This is
   2300 ** used to initialize a newly created index or to recompute the
   2301 ** content of an index in response to a REINDEX command.
   2302 **
   2303 ** if memRootPage is not negative, it means that the index is newly
   2304 ** created.  The register specified by memRootPage contains the
   2305 ** root page number of the index.  If memRootPage is negative, then
   2306 ** the index already exists and must be cleared before being refilled and
   2307 ** the root page number of the index is taken from pIndex->tnum.
   2308 */
   2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
   2310   Table *pTab = pIndex->pTable;  /* The table that is indexed */
   2311   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
   2312   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
   2313   int addr1;                     /* Address of top of loop */
   2314   int tnum;                      /* Root page of index */
   2315   Vdbe *v;                       /* Generate code into this virtual machine */
   2316   KeyInfo *pKey;                 /* KeyInfo for index */
   2317   int regIdxKey;                 /* Registers containing the index key */
   2318   int regRecord;                 /* Register holding assemblied index record */
   2319   sqlite3 *db = pParse->db;      /* The database connection */
   2320   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
   2321 
   2322 #ifndef SQLITE_OMIT_AUTHORIZATION
   2323   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
   2324       db->aDb[iDb].zName ) ){
   2325     return;
   2326   }
   2327 #endif
   2328 
   2329   /* Require a write-lock on the table to perform this operation */
   2330   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
   2331 
   2332   v = sqlite3GetVdbe(pParse);
   2333   if( v==0 ) return;
   2334   if( memRootPage>=0 ){
   2335     tnum = memRootPage;
   2336   }else{
   2337     tnum = pIndex->tnum;
   2338     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
   2339   }
   2340   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
   2341   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
   2342                     (char *)pKey, P4_KEYINFO_HANDOFF);
   2343   if( memRootPage>=0 ){
   2344     sqlite3VdbeChangeP5(v, 1);
   2345   }
   2346   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
   2347   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
   2348   regRecord = sqlite3GetTempReg(pParse);
   2349   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
   2350   if( pIndex->onError!=OE_None ){
   2351     const int regRowid = regIdxKey + pIndex->nColumn;
   2352     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
   2353     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
   2354 
   2355     /* The registers accessed by the OP_IsUnique opcode were allocated
   2356     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
   2357     ** call above. Just before that function was freed they were released
   2358     ** (made available to the compiler for reuse) using
   2359     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
   2360     ** opcode use the values stored within seems dangerous. However, since
   2361     ** we can be sure that no other temp registers have been allocated
   2362     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
   2363     */
   2364     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
   2365     sqlite3HaltConstraint(
   2366         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
   2367   }
   2368   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
   2369   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
   2370   sqlite3ReleaseTempReg(pParse, regRecord);
   2371   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
   2372   sqlite3VdbeJumpHere(v, addr1);
   2373   sqlite3VdbeAddOp1(v, OP_Close, iTab);
   2374   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
   2375 }
   2376 
   2377 /*
   2378 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
   2379 ** and pTblList is the name of the table that is to be indexed.  Both will
   2380 ** be NULL for a primary key or an index that is created to satisfy a
   2381 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
   2382 ** as the table to be indexed.  pParse->pNewTable is a table that is
   2383 ** currently being constructed by a CREATE TABLE statement.
   2384 **
   2385 ** pList is a list of columns to be indexed.  pList will be NULL if this
   2386 ** is a primary key or unique-constraint on the most recent column added
   2387 ** to the table currently under construction.
   2388 **
   2389 ** If the index is created successfully, return a pointer to the new Index
   2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
   2391 ** as the tables primary key (Index.autoIndex==2).
   2392 */
   2393 Index *sqlite3CreateIndex(
   2394   Parse *pParse,     /* All information about this parse */
   2395   Token *pName1,     /* First part of index name. May be NULL */
   2396   Token *pName2,     /* Second part of index name. May be NULL */
   2397   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
   2398   ExprList *pList,   /* A list of columns to be indexed */
   2399   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
   2400   Token *pStart,     /* The CREATE token that begins this statement */
   2401   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
   2402   int sortOrder,     /* Sort order of primary key when pList==NULL */
   2403   int ifNotExist     /* Omit error if index already exists */
   2404 ){
   2405   Index *pRet = 0;     /* Pointer to return */
   2406   Table *pTab = 0;     /* Table to be indexed */
   2407   Index *pIndex = 0;   /* The index to be created */
   2408   char *zName = 0;     /* Name of the index */
   2409   int nName;           /* Number of characters in zName */
   2410   int i, j;
   2411   Token nullId;        /* Fake token for an empty ID list */
   2412   DbFixer sFix;        /* For assigning database names to pTable */
   2413   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
   2414   sqlite3 *db = pParse->db;
   2415   Db *pDb;             /* The specific table containing the indexed database */
   2416   int iDb;             /* Index of the database that is being written */
   2417   Token *pName = 0;    /* Unqualified name of the index to create */
   2418   struct ExprList_item *pListItem; /* For looping over pList */
   2419   int nCol;
   2420   int nExtra = 0;
   2421   char *zExtra;
   2422 
   2423   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
   2424   assert( pParse->nErr==0 );      /* Never called with prior errors */
   2425   if( db->mallocFailed || IN_DECLARE_VTAB ){
   2426     goto exit_create_index;
   2427   }
   2428   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   2429     goto exit_create_index;
   2430   }
   2431 
   2432   /*
   2433   ** Find the table that is to be indexed.  Return early if not found.
   2434   */
   2435   if( pTblName!=0 ){
   2436 
   2437     /* Use the two-part index name to determine the database
   2438     ** to search for the table. 'Fix' the table name to this db
   2439     ** before looking up the table.
   2440     */
   2441     assert( pName1 && pName2 );
   2442     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
   2443     if( iDb<0 ) goto exit_create_index;
   2444 
   2445 #ifndef SQLITE_OMIT_TEMPDB
   2446     /* If the index name was unqualified, check if the the table
   2447     ** is a temp table. If so, set the database to 1. Do not do this
   2448     ** if initialising a database schema.
   2449     */
   2450     if( !db->init.busy ){
   2451       pTab = sqlite3SrcListLookup(pParse, pTblName);
   2452       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
   2453         iDb = 1;
   2454       }
   2455     }
   2456 #endif
   2457 
   2458     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
   2459         sqlite3FixSrcList(&sFix, pTblName)
   2460     ){
   2461       /* Because the parser constructs pTblName from a single identifier,
   2462       ** sqlite3FixSrcList can never fail. */
   2463       assert(0);
   2464     }
   2465     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
   2466         pTblName->a[0].zDatabase);
   2467     if( !pTab || db->mallocFailed ) goto exit_create_index;
   2468     assert( db->aDb[iDb].pSchema==pTab->pSchema );
   2469   }else{
   2470     assert( pName==0 );
   2471     pTab = pParse->pNewTable;
   2472     if( !pTab ) goto exit_create_index;
   2473     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
   2474   }
   2475   pDb = &db->aDb[iDb];
   2476 
   2477   assert( pTab!=0 );
   2478   assert( pParse->nErr==0 );
   2479   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
   2480        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
   2481     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
   2482     goto exit_create_index;
   2483   }
   2484 #ifndef SQLITE_OMIT_VIEW
   2485   if( pTab->pSelect ){
   2486     sqlite3ErrorMsg(pParse, "views may not be indexed");
   2487     goto exit_create_index;
   2488   }
   2489 #endif
   2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2491   if( IsVirtual(pTab) ){
   2492     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
   2493     goto exit_create_index;
   2494   }
   2495 #endif
   2496 
   2497   /*
   2498   ** Find the name of the index.  Make sure there is not already another
   2499   ** index or table with the same name.
   2500   **
   2501   ** Exception:  If we are reading the names of permanent indices from the
   2502   ** sqlite_master table (because some other process changed the schema) and
   2503   ** one of the index names collides with the name of a temporary table or
   2504   ** index, then we will continue to process this index.
   2505   **
   2506   ** If pName==0 it means that we are
   2507   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
   2508   ** own name.
   2509   */
   2510   if( pName ){
   2511     zName = sqlite3NameFromToken(db, pName);
   2512     if( zName==0 ) goto exit_create_index;
   2513     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
   2514       goto exit_create_index;
   2515     }
   2516     if( !db->init.busy ){
   2517       if( sqlite3FindTable(db, zName, 0)!=0 ){
   2518         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
   2519         goto exit_create_index;
   2520       }
   2521     }
   2522     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
   2523       if( !ifNotExist ){
   2524         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
   2525       }else{
   2526         assert( !db->init.busy );
   2527         sqlite3CodeVerifySchema(pParse, iDb);
   2528       }
   2529       goto exit_create_index;
   2530     }
   2531   }else{
   2532     int n;
   2533     Index *pLoop;
   2534     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
   2535     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
   2536     if( zName==0 ){
   2537       goto exit_create_index;
   2538     }
   2539   }
   2540 
   2541   /* Check for authorization to create an index.
   2542   */
   2543 #ifndef SQLITE_OMIT_AUTHORIZATION
   2544   {
   2545     const char *zDb = pDb->zName;
   2546     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
   2547       goto exit_create_index;
   2548     }
   2549     i = SQLITE_CREATE_INDEX;
   2550     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
   2551     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
   2552       goto exit_create_index;
   2553     }
   2554   }
   2555 #endif
   2556 
   2557   /* If pList==0, it means this routine was called to make a primary
   2558   ** key out of the last column added to the table under construction.
   2559   ** So create a fake list to simulate this.
   2560   */
   2561   if( pList==0 ){
   2562     nullId.z = pTab->aCol[pTab->nCol-1].zName;
   2563     nullId.n = sqlite3Strlen30((char*)nullId.z);
   2564     pList = sqlite3ExprListAppend(pParse, 0, 0);
   2565     if( pList==0 ) goto exit_create_index;
   2566     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
   2567     pList->a[0].sortOrder = (u8)sortOrder;
   2568   }
   2569 
   2570   /* Figure out how many bytes of space are required to store explicitly
   2571   ** specified collation sequence names.
   2572   */
   2573   for(i=0; i<pList->nExpr; i++){
   2574     Expr *pExpr = pList->a[i].pExpr;
   2575     if( pExpr ){
   2576       CollSeq *pColl = pExpr->pColl;
   2577       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
   2578       ** failure we have quit before reaching this point. */
   2579       if( ALWAYS(pColl) ){
   2580         nExtra += (1 + sqlite3Strlen30(pColl->zName));
   2581       }
   2582     }
   2583   }
   2584 
   2585   /*
   2586   ** Allocate the index structure.
   2587   */
   2588   nName = sqlite3Strlen30(zName);
   2589   nCol = pList->nExpr;
   2590   pIndex = sqlite3DbMallocZero(db,
   2591       sizeof(Index) +              /* Index structure  */
   2592       sizeof(int)*nCol +           /* Index.aiColumn   */
   2593       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
   2594       sizeof(char *)*nCol +        /* Index.azColl     */
   2595       sizeof(u8)*nCol +            /* Index.aSortOrder */
   2596       nName + 1 +                  /* Index.zName      */
   2597       nExtra                       /* Collation sequence names */
   2598   );
   2599   if( db->mallocFailed ){
   2600     goto exit_create_index;
   2601   }
   2602   pIndex->azColl = (char**)(&pIndex[1]);
   2603   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
   2604   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
   2605   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
   2606   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
   2607   zExtra = (char *)(&pIndex->zName[nName+1]);
   2608   memcpy(pIndex->zName, zName, nName+1);
   2609   pIndex->pTable = pTab;
   2610   pIndex->nColumn = pList->nExpr;
   2611   pIndex->onError = (u8)onError;
   2612   pIndex->autoIndex = (u8)(pName==0);
   2613   pIndex->pSchema = db->aDb[iDb].pSchema;
   2614   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   2615 
   2616   /* Check to see if we should honor DESC requests on index columns
   2617   */
   2618   if( pDb->pSchema->file_format>=4 ){
   2619     sortOrderMask = -1;   /* Honor DESC */
   2620   }else{
   2621     sortOrderMask = 0;    /* Ignore DESC */
   2622   }
   2623 
   2624   /* Scan the names of the columns of the table to be indexed and
   2625   ** load the column indices into the Index structure.  Report an error
   2626   ** if any column is not found.
   2627   **
   2628   ** TODO:  Add a test to make sure that the same column is not named
   2629   ** more than once within the same index.  Only the first instance of
   2630   ** the column will ever be used by the optimizer.  Note that using the
   2631   ** same column more than once cannot be an error because that would
   2632   ** break backwards compatibility - it needs to be a warning.
   2633   */
   2634   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
   2635     const char *zColName = pListItem->zName;
   2636     Column *pTabCol;
   2637     int requestedSortOrder;
   2638     char *zColl;                   /* Collation sequence name */
   2639 
   2640     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
   2641       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
   2642     }
   2643     if( j>=pTab->nCol ){
   2644       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
   2645         pTab->zName, zColName);
   2646       pParse->checkSchema = 1;
   2647       goto exit_create_index;
   2648     }
   2649     pIndex->aiColumn[i] = j;
   2650     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
   2651     ** the way the "idxlist" non-terminal is constructed by the parser,
   2652     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
   2653     ** must exist or else there must have been an OOM error.  But if there
   2654     ** was an OOM error, we would never reach this point. */
   2655     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
   2656       int nColl;
   2657       zColl = pListItem->pExpr->pColl->zName;
   2658       nColl = sqlite3Strlen30(zColl) + 1;
   2659       assert( nExtra>=nColl );
   2660       memcpy(zExtra, zColl, nColl);
   2661       zColl = zExtra;
   2662       zExtra += nColl;
   2663       nExtra -= nColl;
   2664     }else{
   2665       zColl = pTab->aCol[j].zColl;
   2666       if( !zColl ){
   2667         zColl = db->pDfltColl->zName;
   2668       }
   2669     }
   2670     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
   2671       goto exit_create_index;
   2672     }
   2673     pIndex->azColl[i] = zColl;
   2674     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
   2675     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
   2676   }
   2677   sqlite3DefaultRowEst(pIndex);
   2678 
   2679   if( pTab==pParse->pNewTable ){
   2680     /* This routine has been called to create an automatic index as a
   2681     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
   2682     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
   2683     ** i.e. one of:
   2684     **
   2685     ** CREATE TABLE t(x PRIMARY KEY, y);
   2686     ** CREATE TABLE t(x, y, UNIQUE(x, y));
   2687     **
   2688     ** Either way, check to see if the table already has such an index. If
   2689     ** so, don't bother creating this one. This only applies to
   2690     ** automatically created indices. Users can do as they wish with
   2691     ** explicit indices.
   2692     **
   2693     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
   2694     ** (and thus suppressing the second one) even if they have different
   2695     ** sort orders.
   2696     **
   2697     ** If there are different collating sequences or if the columns of
   2698     ** the constraint occur in different orders, then the constraints are
   2699     ** considered distinct and both result in separate indices.
   2700     */
   2701     Index *pIdx;
   2702     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   2703       int k;
   2704       assert( pIdx->onError!=OE_None );
   2705       assert( pIdx->autoIndex );
   2706       assert( pIndex->onError!=OE_None );
   2707 
   2708       if( pIdx->nColumn!=pIndex->nColumn ) continue;
   2709       for(k=0; k<pIdx->nColumn; k++){
   2710         const char *z1;
   2711         const char *z2;
   2712         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
   2713         z1 = pIdx->azColl[k];
   2714         z2 = pIndex->azColl[k];
   2715         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
   2716       }
   2717       if( k==pIdx->nColumn ){
   2718         if( pIdx->onError!=pIndex->onError ){
   2719           /* This constraint creates the same index as a previous
   2720           ** constraint specified somewhere in the CREATE TABLE statement.
   2721           ** However the ON CONFLICT clauses are different. If both this
   2722           ** constraint and the previous equivalent constraint have explicit
   2723           ** ON CONFLICT clauses this is an error. Otherwise, use the
   2724           ** explicitly specified behaviour for the index.
   2725           */
   2726           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
   2727             sqlite3ErrorMsg(pParse,
   2728                 "conflicting ON CONFLICT clauses specified", 0);
   2729           }
   2730           if( pIdx->onError==OE_Default ){
   2731             pIdx->onError = pIndex->onError;
   2732           }
   2733         }
   2734         goto exit_create_index;
   2735       }
   2736     }
   2737   }
   2738 
   2739   /* Link the new Index structure to its table and to the other
   2740   ** in-memory database structures.
   2741   */
   2742   if( db->init.busy ){
   2743     Index *p;
   2744     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
   2745     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
   2746                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
   2747                           pIndex);
   2748     if( p ){
   2749       assert( p==pIndex );  /* Malloc must have failed */
   2750       db->mallocFailed = 1;
   2751       goto exit_create_index;
   2752     }
   2753     db->flags |= SQLITE_InternChanges;
   2754     if( pTblName!=0 ){
   2755       pIndex->tnum = db->init.newTnum;
   2756     }
   2757   }
   2758 
   2759   /* If the db->init.busy is 0 then create the index on disk.  This
   2760   ** involves writing the index into the master table and filling in the
   2761   ** index with the current table contents.
   2762   **
   2763   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
   2764   ** command.  db->init.busy is 1 when a database is opened and
   2765   ** CREATE INDEX statements are read out of the master table.  In
   2766   ** the latter case the index already exists on disk, which is why
   2767   ** we don't want to recreate it.
   2768   **
   2769   ** If pTblName==0 it means this index is generated as a primary key
   2770   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
   2771   ** has just been created, it contains no data and the index initialization
   2772   ** step can be skipped.
   2773   */
   2774   else{ /* if( db->init.busy==0 ) */
   2775     Vdbe *v;
   2776     char *zStmt;
   2777     int iMem = ++pParse->nMem;
   2778 
   2779     v = sqlite3GetVdbe(pParse);
   2780     if( v==0 ) goto exit_create_index;
   2781 
   2782 
   2783     /* Create the rootpage for the index
   2784     */
   2785     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2786     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
   2787 
   2788     /* Gather the complete text of the CREATE INDEX statement into
   2789     ** the zStmt variable
   2790     */
   2791     if( pStart ){
   2792       assert( pEnd!=0 );
   2793       /* A named index with an explicit CREATE INDEX statement */
   2794       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
   2795         onError==OE_None ? "" : " UNIQUE",
   2796         pEnd->z - pName->z + 1,
   2797         pName->z);
   2798     }else{
   2799       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
   2800       /* zStmt = sqlite3MPrintf(""); */
   2801       zStmt = 0;
   2802     }
   2803 
   2804     /* Add an entry in sqlite_master for this index
   2805     */
   2806     sqlite3NestedParse(pParse,
   2807         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
   2808         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   2809         pIndex->zName,
   2810         pTab->zName,
   2811         iMem,
   2812         zStmt
   2813     );
   2814     sqlite3DbFree(db, zStmt);
   2815 
   2816     /* Fill the index with data and reparse the schema. Code an OP_Expire
   2817     ** to invalidate all pre-compiled statements.
   2818     */
   2819     if( pTblName ){
   2820       sqlite3RefillIndex(pParse, pIndex, iMem);
   2821       sqlite3ChangeCookie(pParse, iDb);
   2822       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
   2823          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
   2824          P4_DYNAMIC);
   2825       sqlite3VdbeAddOp1(v, OP_Expire, 0);
   2826     }
   2827   }
   2828 
   2829   /* When adding an index to the list of indices for a table, make
   2830   ** sure all indices labeled OE_Replace come after all those labeled
   2831   ** OE_Ignore.  This is necessary for the correct constraint check
   2832   ** processing (in sqlite3GenerateConstraintChecks()) as part of
   2833   ** UPDATE and INSERT statements.
   2834   */
   2835   if( db->init.busy || pTblName==0 ){
   2836     if( onError!=OE_Replace || pTab->pIndex==0
   2837          || pTab->pIndex->onError==OE_Replace){
   2838       pIndex->pNext = pTab->pIndex;
   2839       pTab->pIndex = pIndex;
   2840     }else{
   2841       Index *pOther = pTab->pIndex;
   2842       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
   2843         pOther = pOther->pNext;
   2844       }
   2845       pIndex->pNext = pOther->pNext;
   2846       pOther->pNext = pIndex;
   2847     }
   2848     pRet = pIndex;
   2849     pIndex = 0;
   2850   }
   2851 
   2852   /* Clean up before exiting */
   2853 exit_create_index:
   2854   if( pIndex ){
   2855     sqlite3DbFree(db, pIndex->zColAff);
   2856     sqlite3DbFree(db, pIndex);
   2857   }
   2858   sqlite3ExprListDelete(db, pList);
   2859   sqlite3SrcListDelete(db, pTblName);
   2860   sqlite3DbFree(db, zName);
   2861   return pRet;
   2862 }
   2863 
   2864 /*
   2865 ** Fill the Index.aiRowEst[] array with default information - information
   2866 ** to be used when we have not run the ANALYZE command.
   2867 **
   2868 ** aiRowEst[0] is suppose to contain the number of elements in the index.
   2869 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
   2870 ** number of rows in the table that match any particular value of the
   2871 ** first column of the index.  aiRowEst[2] is an estimate of the number
   2872 ** of rows that match any particular combiniation of the first 2 columns
   2873 ** of the index.  And so forth.  It must always be the case that
   2874 *
   2875 **           aiRowEst[N]<=aiRowEst[N-1]
   2876 **           aiRowEst[N]>=1
   2877 **
   2878 ** Apart from that, we have little to go on besides intuition as to
   2879 ** how aiRowEst[] should be initialized.  The numbers generated here
   2880 ** are based on typical values found in actual indices.
   2881 */
   2882 void sqlite3DefaultRowEst(Index *pIdx){
   2883   unsigned *a = pIdx->aiRowEst;
   2884   int i;
   2885   unsigned n;
   2886   assert( a!=0 );
   2887   a[0] = pIdx->pTable->nRowEst;
   2888   if( a[0]<10 ) a[0] = 10;
   2889   n = 10;
   2890   for(i=1; i<=pIdx->nColumn; i++){
   2891     a[i] = n;
   2892     if( n>5 ) n--;
   2893   }
   2894   if( pIdx->onError!=OE_None ){
   2895     a[pIdx->nColumn] = 1;
   2896   }
   2897 }
   2898 
   2899 /*
   2900 ** This routine will drop an existing named index.  This routine
   2901 ** implements the DROP INDEX statement.
   2902 */
   2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
   2904   Index *pIndex;
   2905   Vdbe *v;
   2906   sqlite3 *db = pParse->db;
   2907   int iDb;
   2908 
   2909   assert( pParse->nErr==0 );   /* Never called with prior errors */
   2910   if( db->mallocFailed ){
   2911     goto exit_drop_index;
   2912   }
   2913   assert( pName->nSrc==1 );
   2914   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   2915     goto exit_drop_index;
   2916   }
   2917   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
   2918   if( pIndex==0 ){
   2919     if( !ifExists ){
   2920       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
   2921     }else{
   2922       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
   2923     }
   2924     pParse->checkSchema = 1;
   2925     goto exit_drop_index;
   2926   }
   2927   if( pIndex->autoIndex ){
   2928     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
   2929       "or PRIMARY KEY constraint cannot be dropped", 0);
   2930     goto exit_drop_index;
   2931   }
   2932   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
   2933 #ifndef SQLITE_OMIT_AUTHORIZATION
   2934   {
   2935     int code = SQLITE_DROP_INDEX;
   2936     Table *pTab = pIndex->pTable;
   2937     const char *zDb = db->aDb[iDb].zName;
   2938     const char *zTab = SCHEMA_TABLE(iDb);
   2939     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
   2940       goto exit_drop_index;
   2941     }
   2942     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
   2943     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
   2944       goto exit_drop_index;
   2945     }
   2946   }
   2947 #endif
   2948 
   2949   /* Generate code to remove the index and from the master table */
   2950   v = sqlite3GetVdbe(pParse);
   2951   if( v ){
   2952     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2953     sqlite3NestedParse(pParse,
   2954        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
   2955        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   2956        pIndex->zName
   2957     );
   2958     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
   2959       sqlite3NestedParse(pParse,
   2960         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
   2961         db->aDb[iDb].zName, pIndex->zName
   2962       );
   2963     }
   2964     sqlite3ChangeCookie(pParse, iDb);
   2965     destroyRootPage(pParse, pIndex->tnum, iDb);
   2966     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
   2967   }
   2968 
   2969 exit_drop_index:
   2970   sqlite3SrcListDelete(db, pName);
   2971 }
   2972 
   2973 /*
   2974 ** pArray is a pointer to an array of objects.  Each object in the
   2975 ** array is szEntry bytes in size.  This routine allocates a new
   2976 ** object on the end of the array.
   2977 **
   2978 ** *pnEntry is the number of entries already in use.  *pnAlloc is
   2979 ** the previously allocated size of the array.  initSize is the
   2980 ** suggested initial array size allocation.
   2981 **
   2982 ** The index of the new entry is returned in *pIdx.
   2983 **
   2984 ** This routine returns a pointer to the array of objects.  This
   2985 ** might be the same as the pArray parameter or it might be a different
   2986 ** pointer if the array was resized.
   2987 */
   2988 void *sqlite3ArrayAllocate(
   2989   sqlite3 *db,      /* Connection to notify of malloc failures */
   2990   void *pArray,     /* Array of objects.  Might be reallocated */
   2991   int szEntry,      /* Size of each object in the array */
   2992   int initSize,     /* Suggested initial allocation, in elements */
   2993   int *pnEntry,     /* Number of objects currently in use */
   2994   int *pnAlloc,     /* Current size of the allocation, in elements */
   2995   int *pIdx         /* Write the index of a new slot here */
   2996 ){
   2997   char *z;
   2998   if( *pnEntry >= *pnAlloc ){
   2999     void *pNew;
   3000     int newSize;
   3001     newSize = (*pnAlloc)*2 + initSize;
   3002     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
   3003     if( pNew==0 ){
   3004       *pIdx = -1;
   3005       return pArray;
   3006     }
   3007     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
   3008     pArray = pNew;
   3009   }
   3010   z = (char*)pArray;
   3011   memset(&z[*pnEntry * szEntry], 0, szEntry);
   3012   *pIdx = *pnEntry;
   3013   ++*pnEntry;
   3014   return pArray;
   3015 }
   3016 
   3017 /*
   3018 ** Append a new element to the given IdList.  Create a new IdList if
   3019 ** need be.
   3020 **
   3021 ** A new IdList is returned, or NULL if malloc() fails.
   3022 */
   3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
   3024   int i;
   3025   if( pList==0 ){
   3026     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
   3027     if( pList==0 ) return 0;
   3028     pList->nAlloc = 0;
   3029   }
   3030   pList->a = sqlite3ArrayAllocate(
   3031       db,
   3032       pList->a,
   3033       sizeof(pList->a[0]),
   3034       5,
   3035       &pList->nId,
   3036       &pList->nAlloc,
   3037       &i
   3038   );
   3039   if( i<0 ){
   3040     sqlite3IdListDelete(db, pList);
   3041     return 0;
   3042   }
   3043   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
   3044   return pList;
   3045 }
   3046 
   3047 /*
   3048 ** Delete an IdList.
   3049 */
   3050 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
   3051   int i;
   3052   if( pList==0 ) return;
   3053   for(i=0; i<pList->nId; i++){
   3054     sqlite3DbFree(db, pList->a[i].zName);
   3055   }
   3056   sqlite3DbFree(db, pList->a);
   3057   sqlite3DbFree(db, pList);
   3058 }
   3059 
   3060 /*
   3061 ** Return the index in pList of the identifier named zId.  Return -1
   3062 ** if not found.
   3063 */
   3064 int sqlite3IdListIndex(IdList *pList, const char *zName){
   3065   int i;
   3066   if( pList==0 ) return -1;
   3067   for(i=0; i<pList->nId; i++){
   3068     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
   3069   }
   3070   return -1;
   3071 }
   3072 
   3073 /*
   3074 ** Expand the space allocated for the given SrcList object by
   3075 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
   3076 ** New slots are zeroed.
   3077 **
   3078 ** For example, suppose a SrcList initially contains two entries: A,B.
   3079 ** To append 3 new entries onto the end, do this:
   3080 **
   3081 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
   3082 **
   3083 ** After the call above it would contain:  A, B, nil, nil, nil.
   3084 ** If the iStart argument had been 1 instead of 2, then the result
   3085 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
   3086 ** the iStart value would be 0.  The result then would
   3087 ** be: nil, nil, nil, A, B.
   3088 **
   3089 ** If a memory allocation fails the SrcList is unchanged.  The
   3090 ** db->mallocFailed flag will be set to true.
   3091 */
   3092 SrcList *sqlite3SrcListEnlarge(
   3093   sqlite3 *db,       /* Database connection to notify of OOM errors */
   3094   SrcList *pSrc,     /* The SrcList to be enlarged */
   3095   int nExtra,        /* Number of new slots to add to pSrc->a[] */
   3096   int iStart         /* Index in pSrc->a[] of first new slot */
   3097 ){
   3098   int i;
   3099 
   3100   /* Sanity checking on calling parameters */
   3101   assert( iStart>=0 );
   3102   assert( nExtra>=1 );
   3103   assert( pSrc!=0 );
   3104   assert( iStart<=pSrc->nSrc );
   3105 
   3106   /* Allocate additional space if needed */
   3107   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
   3108     SrcList *pNew;
   3109     int nAlloc = pSrc->nSrc+nExtra;
   3110     int nGot;
   3111     pNew = sqlite3DbRealloc(db, pSrc,
   3112                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
   3113     if( pNew==0 ){
   3114       assert( db->mallocFailed );
   3115       return pSrc;
   3116     }
   3117     pSrc = pNew;
   3118     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
   3119     pSrc->nAlloc = (u16)nGot;
   3120   }
   3121 
   3122   /* Move existing slots that come after the newly inserted slots
   3123   ** out of the way */
   3124   for(i=pSrc->nSrc-1; i>=iStart; i--){
   3125     pSrc->a[i+nExtra] = pSrc->a[i];
   3126   }
   3127   pSrc->nSrc += (i16)nExtra;
   3128 
   3129   /* Zero the newly allocated slots */
   3130   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
   3131   for(i=iStart; i<iStart+nExtra; i++){
   3132     pSrc->a[i].iCursor = -1;
   3133   }
   3134 
   3135   /* Return a pointer to the enlarged SrcList */
   3136   return pSrc;
   3137 }
   3138 
   3139 
   3140 /*
   3141 ** Append a new table name to the given SrcList.  Create a new SrcList if
   3142 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
   3143 **
   3144 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
   3145 ** SrcList might be the same as the SrcList that was input or it might be
   3146 ** a new one.  If an OOM error does occurs, then the prior value of pList
   3147 ** that is input to this routine is automatically freed.
   3148 **
   3149 ** If pDatabase is not null, it means that the table has an optional
   3150 ** database name prefix.  Like this:  "database.table".  The pDatabase
   3151 ** points to the table name and the pTable points to the database name.
   3152 ** The SrcList.a[].zName field is filled with the table name which might
   3153 ** come from pTable (if pDatabase is NULL) or from pDatabase.
   3154 ** SrcList.a[].zDatabase is filled with the database name from pTable,
   3155 ** or with NULL if no database is specified.
   3156 **
   3157 ** In other words, if call like this:
   3158 **
   3159 **         sqlite3SrcListAppend(D,A,B,0);
   3160 **
   3161 ** Then B is a table name and the database name is unspecified.  If called
   3162 ** like this:
   3163 **
   3164 **         sqlite3SrcListAppend(D,A,B,C);
   3165 **
   3166 ** Then C is the table name and B is the database name.  If C is defined
   3167 ** then so is B.  In other words, we never have a case where:
   3168 **
   3169 **         sqlite3SrcListAppend(D,A,0,C);
   3170 **
   3171 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
   3172 ** before being added to the SrcList.
   3173 */
   3174 SrcList *sqlite3SrcListAppend(
   3175   sqlite3 *db,        /* Connection to notify of malloc failures */
   3176   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
   3177   Token *pTable,      /* Table to append */
   3178   Token *pDatabase    /* Database of the table */
   3179 ){
   3180   struct SrcList_item *pItem;
   3181   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
   3182   if( pList==0 ){
   3183     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
   3184     if( pList==0 ) return 0;
   3185     pList->nAlloc = 1;
   3186   }
   3187   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
   3188   if( db->mallocFailed ){
   3189     sqlite3SrcListDelete(db, pList);
   3190     return 0;
   3191   }
   3192   pItem = &pList->a[pList->nSrc-1];
   3193   if( pDatabase && pDatabase->z==0 ){
   3194     pDatabase = 0;
   3195   }
   3196   if( pDatabase ){
   3197     Token *pTemp = pDatabase;
   3198     pDatabase = pTable;
   3199     pTable = pTemp;
   3200   }
   3201   pItem->zName = sqlite3NameFromToken(db, pTable);
   3202   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
   3203   return pList;
   3204 }
   3205 
   3206 /*
   3207 ** Assign VdbeCursor index numbers to all tables in a SrcList
   3208 */
   3209 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
   3210   int i;
   3211   struct SrcList_item *pItem;
   3212   assert(pList || pParse->db->mallocFailed );
   3213   if( pList ){
   3214     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
   3215       if( pItem->iCursor>=0 ) break;
   3216       pItem->iCursor = pParse->nTab++;
   3217       if( pItem->pSelect ){
   3218         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
   3219       }
   3220     }
   3221   }
   3222 }
   3223 
   3224 /*
   3225 ** Delete an entire SrcList including all its substructure.
   3226 */
   3227 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
   3228   int i;
   3229   struct SrcList_item *pItem;
   3230   if( pList==0 ) return;
   3231   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
   3232     sqlite3DbFree(db, pItem->zDatabase);
   3233     sqlite3DbFree(db, pItem->zName);
   3234     sqlite3DbFree(db, pItem->zAlias);
   3235     sqlite3DbFree(db, pItem->zIndex);
   3236     sqlite3DeleteTable(db, pItem->pTab);
   3237     sqlite3SelectDelete(db, pItem->pSelect);
   3238     sqlite3ExprDelete(db, pItem->pOn);
   3239     sqlite3IdListDelete(db, pItem->pUsing);
   3240   }
   3241   sqlite3DbFree(db, pList);
   3242 }
   3243 
   3244 /*
   3245 ** This routine is called by the parser to add a new term to the
   3246 ** end of a growing FROM clause.  The "p" parameter is the part of
   3247 ** the FROM clause that has already been constructed.  "p" is NULL
   3248 ** if this is the first term of the FROM clause.  pTable and pDatabase
   3249 ** are the name of the table and database named in the FROM clause term.
   3250 ** pDatabase is NULL if the database name qualifier is missing - the
   3251 ** usual case.  If the term has a alias, then pAlias points to the
   3252 ** alias token.  If the term is a subquery, then pSubquery is the
   3253 ** SELECT statement that the subquery encodes.  The pTable and
   3254 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
   3255 ** parameters are the content of the ON and USING clauses.
   3256 **
   3257 ** Return a new SrcList which encodes is the FROM with the new
   3258 ** term added.
   3259 */
   3260 SrcList *sqlite3SrcListAppendFromTerm(
   3261   Parse *pParse,          /* Parsing context */
   3262   SrcList *p,             /* The left part of the FROM clause already seen */
   3263   Token *pTable,          /* Name of the table to add to the FROM clause */
   3264   Token *pDatabase,       /* Name of the database containing pTable */
   3265   Token *pAlias,          /* The right-hand side of the AS subexpression */
   3266   Select *pSubquery,      /* A subquery used in place of a table name */
   3267   Expr *pOn,              /* The ON clause of a join */
   3268   IdList *pUsing          /* The USING clause of a join */
   3269 ){
   3270   struct SrcList_item *pItem;
   3271   sqlite3 *db = pParse->db;
   3272   if( !p && (pOn || pUsing) ){
   3273     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
   3274       (pOn ? "ON" : "USING")
   3275     );
   3276     goto append_from_error;
   3277   }
   3278   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
   3279   if( p==0 || NEVER(p->nSrc==0) ){
   3280     goto append_from_error;
   3281   }
   3282   pItem = &p->a[p->nSrc-1];
   3283   assert( pAlias!=0 );
   3284   if( pAlias->n ){
   3285     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
   3286   }
   3287   pItem->pSelect = pSubquery;
   3288   pItem->pOn = pOn;
   3289   pItem->pUsing = pUsing;
   3290   return p;
   3291 
   3292  append_from_error:
   3293   assert( p==0 );
   3294   sqlite3ExprDelete(db, pOn);
   3295   sqlite3IdListDelete(db, pUsing);
   3296   sqlite3SelectDelete(db, pSubquery);
   3297   return 0;
   3298 }
   3299 
   3300 /*
   3301 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
   3302 ** element of the source-list passed as the second argument.
   3303 */
   3304 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
   3305   assert( pIndexedBy!=0 );
   3306   if( p && ALWAYS(p->nSrc>0) ){
   3307     struct SrcList_item *pItem = &p->a[p->nSrc-1];
   3308     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
   3309     if( pIndexedBy->n==1 && !pIndexedBy->z ){
   3310       /* A "NOT INDEXED" clause was supplied. See parse.y
   3311       ** construct "indexed_opt" for details. */
   3312       pItem->notIndexed = 1;
   3313     }else{
   3314       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
   3315     }
   3316   }
   3317 }
   3318 
   3319 /*
   3320 ** When building up a FROM clause in the parser, the join operator
   3321 ** is initially attached to the left operand.  But the code generator
   3322 ** expects the join operator to be on the right operand.  This routine
   3323 ** Shifts all join operators from left to right for an entire FROM
   3324 ** clause.
   3325 **
   3326 ** Example: Suppose the join is like this:
   3327 **
   3328 **           A natural cross join B
   3329 **
   3330 ** The operator is "natural cross join".  The A and B operands are stored
   3331 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
   3332 ** operator with A.  This routine shifts that operator over to B.
   3333 */
   3334 void sqlite3SrcListShiftJoinType(SrcList *p){
   3335   if( p && p->a ){
   3336     int i;
   3337     for(i=p->nSrc-1; i>0; i--){
   3338       p->a[i].jointype = p->a[i-1].jointype;
   3339     }
   3340     p->a[0].jointype = 0;
   3341   }
   3342 }
   3343 
   3344 /*
   3345 ** Begin a transaction
   3346 */
   3347 void sqlite3BeginTransaction(Parse *pParse, int type){
   3348   sqlite3 *db;
   3349   Vdbe *v;
   3350   int i;
   3351 
   3352   assert( pParse!=0 );
   3353   db = pParse->db;
   3354   assert( db!=0 );
   3355 /*  if( db->aDb[0].pBt==0 ) return; */
   3356   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
   3357     return;
   3358   }
   3359   v = sqlite3GetVdbe(pParse);
   3360   if( !v ) return;
   3361   if( type!=TK_DEFERRED ){
   3362     for(i=0; i<db->nDb; i++){
   3363       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
   3364       sqlite3VdbeUsesBtree(v, i);
   3365     }
   3366   }
   3367   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
   3368 }
   3369 
   3370 /*
   3371 ** Commit a transaction
   3372 */
   3373 void sqlite3CommitTransaction(Parse *pParse){
   3374   sqlite3 *db;
   3375   Vdbe *v;
   3376 
   3377   assert( pParse!=0 );
   3378   db = pParse->db;
   3379   assert( db!=0 );
   3380 /*  if( db->aDb[0].pBt==0 ) return; */
   3381   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
   3382     return;
   3383   }
   3384   v = sqlite3GetVdbe(pParse);
   3385   if( v ){
   3386     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
   3387   }
   3388 }
   3389 
   3390 /*
   3391 ** Rollback a transaction
   3392 */
   3393 void sqlite3RollbackTransaction(Parse *pParse){
   3394   sqlite3 *db;
   3395   Vdbe *v;
   3396 
   3397   assert( pParse!=0 );
   3398   db = pParse->db;
   3399   assert( db!=0 );
   3400 /*  if( db->aDb[0].pBt==0 ) return; */
   3401   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
   3402     return;
   3403   }
   3404   v = sqlite3GetVdbe(pParse);
   3405   if( v ){
   3406     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
   3407   }
   3408 }
   3409 
   3410 /*
   3411 ** This function is called by the parser when it parses a command to create,
   3412 ** release or rollback an SQL savepoint.
   3413 */
   3414 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
   3415   char *zName = sqlite3NameFromToken(pParse->db, pName);
   3416   if( zName ){
   3417     Vdbe *v = sqlite3GetVdbe(pParse);
   3418 #ifndef SQLITE_OMIT_AUTHORIZATION
   3419     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
   3420     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
   3421 #endif
   3422     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
   3423       sqlite3DbFree(pParse->db, zName);
   3424       return;
   3425     }
   3426     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
   3427   }
   3428 }
   3429 
   3430 /*
   3431 ** Make sure the TEMP database is open and available for use.  Return
   3432 ** the number of errors.  Leave any error messages in the pParse structure.
   3433 */
   3434 int sqlite3OpenTempDatabase(Parse *pParse){
   3435   sqlite3 *db = pParse->db;
   3436   if( db->aDb[1].pBt==0 && !pParse->explain ){
   3437     int rc;
   3438     Btree *pBt;
   3439     static const int flags =
   3440           SQLITE_OPEN_READWRITE |
   3441           SQLITE_OPEN_CREATE |
   3442           SQLITE_OPEN_EXCLUSIVE |
   3443           SQLITE_OPEN_DELETEONCLOSE |
   3444           SQLITE_OPEN_TEMP_DB;
   3445 
   3446     rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
   3447     if( rc!=SQLITE_OK ){
   3448       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
   3449         "file for storing temporary tables");
   3450       pParse->rc = rc;
   3451       return 1;
   3452     }
   3453     db->aDb[1].pBt = pBt;
   3454     assert( db->aDb[1].pSchema );
   3455     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
   3456       db->mallocFailed = 1;
   3457       return 1;
   3458     }
   3459   }
   3460   return 0;
   3461 }
   3462 
   3463 /*
   3464 ** Generate VDBE code that will verify the schema cookie and start
   3465 ** a read-transaction for all named database files.
   3466 **
   3467 ** It is important that all schema cookies be verified and all
   3468 ** read transactions be started before anything else happens in
   3469 ** the VDBE program.  But this routine can be called after much other
   3470 ** code has been generated.  So here is what we do:
   3471 **
   3472 ** The first time this routine is called, we code an OP_Goto that
   3473 ** will jump to a subroutine at the end of the program.  Then we
   3474 ** record every database that needs its schema verified in the
   3475 ** pParse->cookieMask field.  Later, after all other code has been
   3476 ** generated, the subroutine that does the cookie verifications and
   3477 ** starts the transactions will be coded and the OP_Goto P2 value
   3478 ** will be made to point to that subroutine.  The generation of the
   3479 ** cookie verification subroutine code happens in sqlite3FinishCoding().
   3480 **
   3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
   3482 ** schema on any databases.  This can be used to position the OP_Goto
   3483 ** early in the code, before we know if any database tables will be used.
   3484 */
   3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
   3486   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3487 
   3488   if( pToplevel->cookieGoto==0 ){
   3489     Vdbe *v = sqlite3GetVdbe(pToplevel);
   3490     if( v==0 ) return;  /* This only happens if there was a prior error */
   3491     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
   3492   }
   3493   if( iDb>=0 ){
   3494     sqlite3 *db = pToplevel->db;
   3495     yDbMask mask;
   3496 
   3497     assert( iDb<db->nDb );
   3498     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
   3499     assert( iDb<SQLITE_MAX_ATTACHED+2 );
   3500     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   3501     mask = ((yDbMask)1)<<iDb;
   3502     if( (pToplevel->cookieMask & mask)==0 ){
   3503       pToplevel->cookieMask |= mask;
   3504       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
   3505       if( !OMIT_TEMPDB && iDb==1 ){
   3506         sqlite3OpenTempDatabase(pToplevel);
   3507       }
   3508     }
   3509   }
   3510 }
   3511 
   3512 /*
   3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
   3514 ** attached database. Otherwise, invoke it for the database named zDb only.
   3515 */
   3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
   3517   sqlite3 *db = pParse->db;
   3518   int i;
   3519   for(i=0; i<db->nDb; i++){
   3520     Db *pDb = &db->aDb[i];
   3521     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
   3522       sqlite3CodeVerifySchema(pParse, i);
   3523     }
   3524   }
   3525 }
   3526 
   3527 /*
   3528 ** Generate VDBE code that prepares for doing an operation that
   3529 ** might change the database.
   3530 **
   3531 ** This routine starts a new transaction if we are not already within
   3532 ** a transaction.  If we are already within a transaction, then a checkpoint
   3533 ** is set if the setStatement parameter is true.  A checkpoint should
   3534 ** be set for operations that might fail (due to a constraint) part of
   3535 ** the way through and which will need to undo some writes without having to
   3536 ** rollback the whole transaction.  For operations where all constraints
   3537 ** can be checked before any changes are made to the database, it is never
   3538 ** necessary to undo a write and the checkpoint should not be set.
   3539 */
   3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
   3541   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3542   sqlite3CodeVerifySchema(pParse, iDb);
   3543   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
   3544   pToplevel->isMultiWrite |= setStatement;
   3545 }
   3546 
   3547 /*
   3548 ** Indicate that the statement currently under construction might write
   3549 ** more than one entry (example: deleting one row then inserting another,
   3550 ** inserting multiple rows in a table, or inserting a row and index entries.)
   3551 ** If an abort occurs after some of these writes have completed, then it will
   3552 ** be necessary to undo the completed writes.
   3553 */
   3554 void sqlite3MultiWrite(Parse *pParse){
   3555   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3556   pToplevel->isMultiWrite = 1;
   3557 }
   3558 
   3559 /*
   3560 ** The code generator calls this routine if is discovers that it is
   3561 ** possible to abort a statement prior to completion.  In order to
   3562 ** perform this abort without corrupting the database, we need to make
   3563 ** sure that the statement is protected by a statement transaction.
   3564 **
   3565 ** Technically, we only need to set the mayAbort flag if the
   3566 ** isMultiWrite flag was previously set.  There is a time dependency
   3567 ** such that the abort must occur after the multiwrite.  This makes
   3568 ** some statements involving the REPLACE conflict resolution algorithm
   3569 ** go a little faster.  But taking advantage of this time dependency
   3570 ** makes it more difficult to prove that the code is correct (in
   3571 ** particular, it prevents us from writing an effective
   3572 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
   3573 ** to take the safe route and skip the optimization.
   3574 */
   3575 void sqlite3MayAbort(Parse *pParse){
   3576   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3577   pToplevel->mayAbort = 1;
   3578 }
   3579 
   3580 /*
   3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
   3582 ** error. The onError parameter determines which (if any) of the statement
   3583 ** and/or current transaction is rolled back.
   3584 */
   3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
   3586   Vdbe *v = sqlite3GetVdbe(pParse);
   3587   if( onError==OE_Abort ){
   3588     sqlite3MayAbort(pParse);
   3589   }
   3590   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
   3591 }
   3592 
   3593 /*
   3594 ** Check to see if pIndex uses the collating sequence pColl.  Return
   3595 ** true if it does and false if it does not.
   3596 */
   3597 #ifndef SQLITE_OMIT_REINDEX
   3598 static int collationMatch(const char *zColl, Index *pIndex){
   3599   int i;
   3600   assert( zColl!=0 );
   3601   for(i=0; i<pIndex->nColumn; i++){
   3602     const char *z = pIndex->azColl[i];
   3603     assert( z!=0 );
   3604     if( 0==sqlite3StrICmp(z, zColl) ){
   3605       return 1;
   3606     }
   3607   }
   3608   return 0;
   3609 }
   3610 #endif
   3611 
   3612 /*
   3613 ** Recompute all indices of pTab that use the collating sequence pColl.
   3614 ** If pColl==0 then recompute all indices of pTab.
   3615 */
   3616 #ifndef SQLITE_OMIT_REINDEX
   3617 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
   3618   Index *pIndex;              /* An index associated with pTab */
   3619 
   3620   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
   3621     if( zColl==0 || collationMatch(zColl, pIndex) ){
   3622       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   3623       sqlite3BeginWriteOperation(pParse, 0, iDb);
   3624       sqlite3RefillIndex(pParse, pIndex, -1);
   3625     }
   3626   }
   3627 }
   3628 #endif
   3629 
   3630 /*
   3631 ** Recompute all indices of all tables in all databases where the
   3632 ** indices use the collating sequence pColl.  If pColl==0 then recompute
   3633 ** all indices everywhere.
   3634 */
   3635 #ifndef SQLITE_OMIT_REINDEX
   3636 static void reindexDatabases(Parse *pParse, char const *zColl){
   3637   Db *pDb;                    /* A single database */
   3638   int iDb;                    /* The database index number */
   3639   sqlite3 *db = pParse->db;   /* The database connection */
   3640   HashElem *k;                /* For looping over tables in pDb */
   3641   Table *pTab;                /* A table in the database */
   3642 
   3643   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
   3644   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
   3645     assert( pDb!=0 );
   3646     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
   3647       pTab = (Table*)sqliteHashData(k);
   3648       reindexTable(pParse, pTab, zColl);
   3649     }
   3650   }
   3651 }
   3652 #endif
   3653 
   3654 /*
   3655 ** Generate code for the REINDEX command.
   3656 **
   3657 **        REINDEX                            -- 1
   3658 **        REINDEX  <collation>               -- 2
   3659 **        REINDEX  ?<database>.?<tablename>  -- 3
   3660 **        REINDEX  ?<database>.?<indexname>  -- 4
   3661 **
   3662 ** Form 1 causes all indices in all attached databases to be rebuilt.
   3663 ** Form 2 rebuilds all indices in all databases that use the named
   3664 ** collating function.  Forms 3 and 4 rebuild the named index or all
   3665 ** indices associated with the named table.
   3666 */
   3667 #ifndef SQLITE_OMIT_REINDEX
   3668 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
   3669   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
   3670   char *z;                    /* Name of a table or index */
   3671   const char *zDb;            /* Name of the database */
   3672   Table *pTab;                /* A table in the database */
   3673   Index *pIndex;              /* An index associated with pTab */
   3674   int iDb;                    /* The database index number */
   3675   sqlite3 *db = pParse->db;   /* The database connection */
   3676   Token *pObjName;            /* Name of the table or index to be reindexed */
   3677 
   3678   /* Read the database schema. If an error occurs, leave an error message
   3679   ** and code in pParse and return NULL. */
   3680   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   3681     return;
   3682   }
   3683 
   3684   if( pName1==0 ){
   3685     reindexDatabases(pParse, 0);
   3686     return;
   3687   }else if( NEVER(pName2==0) || pName2->z==0 ){
   3688     char *zColl;
   3689     assert( pName1->z );
   3690     zColl = sqlite3NameFromToken(pParse->db, pName1);
   3691     if( !zColl ) return;
   3692     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
   3693     if( pColl ){
   3694       reindexDatabases(pParse, zColl);
   3695       sqlite3DbFree(db, zColl);
   3696       return;
   3697     }
   3698     sqlite3DbFree(db, zColl);
   3699   }
   3700   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
   3701   if( iDb<0 ) return;
   3702   z = sqlite3NameFromToken(db, pObjName);
   3703   if( z==0 ) return;
   3704   zDb = db->aDb[iDb].zName;
   3705   pTab = sqlite3FindTable(db, z, zDb);
   3706   if( pTab ){
   3707     reindexTable(pParse, pTab, 0);
   3708     sqlite3DbFree(db, z);
   3709     return;
   3710   }
   3711   pIndex = sqlite3FindIndex(db, z, zDb);
   3712   sqlite3DbFree(db, z);
   3713   if( pIndex ){
   3714     sqlite3BeginWriteOperation(pParse, 0, iDb);
   3715     sqlite3RefillIndex(pParse, pIndex, -1);
   3716     return;
   3717   }
   3718   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
   3719 }
   3720 #endif
   3721 
   3722 /*
   3723 ** Return a dynamicly allocated KeyInfo structure that can be used
   3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
   3725 **
   3726 ** If successful, a pointer to the new structure is returned. In this case
   3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
   3728 ** pointer. If an error occurs (out of memory or missing collation
   3729 ** sequence), NULL is returned and the state of pParse updated to reflect
   3730 ** the error.
   3731 */
   3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
   3733   int i;
   3734   int nCol = pIdx->nColumn;
   3735   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
   3736   sqlite3 *db = pParse->db;
   3737   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
   3738 
   3739   if( pKey ){
   3740     pKey->db = pParse->db;
   3741     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
   3742     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
   3743     for(i=0; i<nCol; i++){
   3744       char *zColl = pIdx->azColl[i];
   3745       assert( zColl );
   3746       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
   3747       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
   3748     }
   3749     pKey->nField = (u16)nCol;
   3750   }
   3751 
   3752   if( pParse->nErr ){
   3753     sqlite3DbFree(db, pKey);
   3754     pKey = 0;
   3755   }
   3756   return pKey;
   3757 }
   3758