1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 db = pParse->db; 131 if( db->mallocFailed ) return; 132 if( pParse->nested ) return; 133 if( pParse->nErr ) return; 134 135 /* Begin by generating some termination code at the end of the 136 ** vdbe program 137 */ 138 v = sqlite3GetVdbe(pParse); 139 assert( !pParse->isMultiWrite 140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 141 if( v ){ 142 sqlite3VdbeAddOp0(v, OP_Halt); 143 144 /* The cookie mask contains one bit for each database file open. 145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 146 ** set for each database that is used. Generate code to start a 147 ** transaction on each used database and to verify the schema cookie 148 ** on each used database. 149 */ 150 if( pParse->cookieGoto>0 ){ 151 yDbMask mask; 152 int iDb; 153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 155 if( (mask & pParse->cookieMask)==0 ) continue; 156 sqlite3VdbeUsesBtree(v, iDb); 157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 158 if( db->init.busy==0 ){ 159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 160 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 161 iDb, pParse->cookieValue[iDb], 162 db->aDb[iDb].pSchema->iGeneration); 163 } 164 } 165 #ifndef SQLITE_OMIT_VIRTUALTABLE 166 { 167 int i; 168 for(i=0; i<pParse->nVtabLock; i++){ 169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 171 } 172 pParse->nVtabLock = 0; 173 } 174 #endif 175 176 /* Once all the cookies have been verified and transactions opened, 177 ** obtain the required table-locks. This is a no-op unless the 178 ** shared-cache feature is enabled. 179 */ 180 codeTableLocks(pParse); 181 182 /* Initialize any AUTOINCREMENT data structures required. 183 */ 184 sqlite3AutoincrementBegin(pParse); 185 186 /* Finally, jump back to the beginning of the executable code. */ 187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 188 } 189 } 190 191 192 /* Get the VDBE program ready for execution 193 */ 194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 195 #ifdef SQLITE_DEBUG 196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 197 sqlite3VdbeTrace(v, trace); 198 #endif 199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 200 /* A minimum of one cursor is required if autoincrement is used 201 * See ticket [a696379c1f08866] */ 202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 203 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, 204 pParse->nTab, pParse->nMaxArg, pParse->explain, 205 pParse->isMultiWrite && pParse->mayAbort); 206 pParse->rc = SQLITE_DONE; 207 pParse->colNamesSet = 0; 208 }else{ 209 pParse->rc = SQLITE_ERROR; 210 } 211 pParse->nTab = 0; 212 pParse->nMem = 0; 213 pParse->nSet = 0; 214 pParse->nVar = 0; 215 pParse->cookieMask = 0; 216 pParse->cookieGoto = 0; 217 } 218 219 /* 220 ** Run the parser and code generator recursively in order to generate 221 ** code for the SQL statement given onto the end of the pParse context 222 ** currently under construction. When the parser is run recursively 223 ** this way, the final OP_Halt is not appended and other initialization 224 ** and finalization steps are omitted because those are handling by the 225 ** outermost parser. 226 ** 227 ** Not everything is nestable. This facility is designed to permit 228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 229 ** care if you decide to try to use this routine for some other purposes. 230 */ 231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 232 va_list ap; 233 char *zSql; 234 char *zErrMsg = 0; 235 sqlite3 *db = pParse->db; 236 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 237 char saveBuf[SAVE_SZ]; 238 239 if( pParse->nErr ) return; 240 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 241 va_start(ap, zFormat); 242 zSql = sqlite3VMPrintf(db, zFormat, ap); 243 va_end(ap); 244 if( zSql==0 ){ 245 return; /* A malloc must have failed */ 246 } 247 pParse->nested++; 248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 249 memset(&pParse->nVar, 0, SAVE_SZ); 250 sqlite3RunParser(pParse, zSql, &zErrMsg); 251 sqlite3DbFree(db, zErrMsg); 252 sqlite3DbFree(db, zSql); 253 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 254 pParse->nested--; 255 } 256 257 /* 258 ** Locate the in-memory structure that describes a particular database 259 ** table given the name of that table and (optionally) the name of the 260 ** database containing the table. Return NULL if not found. 261 ** 262 ** If zDatabase is 0, all databases are searched for the table and the 263 ** first matching table is returned. (No checking for duplicate table 264 ** names is done.) The search order is TEMP first, then MAIN, then any 265 ** auxiliary databases added using the ATTACH command. 266 ** 267 ** See also sqlite3LocateTable(). 268 */ 269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 270 Table *p = 0; 271 int i; 272 int nName; 273 assert( zName!=0 ); 274 nName = sqlite3Strlen30(zName); 275 /* All mutexes are required for schema access. Make sure we hold them. */ 276 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 277 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 280 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 281 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 282 if( p ) break; 283 } 284 return p; 285 } 286 287 /* 288 ** Locate the in-memory structure that describes a particular database 289 ** table given the name of that table and (optionally) the name of the 290 ** database containing the table. Return NULL if not found. Also leave an 291 ** error message in pParse->zErrMsg. 292 ** 293 ** The difference between this routine and sqlite3FindTable() is that this 294 ** routine leaves an error message in pParse->zErrMsg where 295 ** sqlite3FindTable() does not. 296 */ 297 Table *sqlite3LocateTable( 298 Parse *pParse, /* context in which to report errors */ 299 int isView, /* True if looking for a VIEW rather than a TABLE */ 300 const char *zName, /* Name of the table we are looking for */ 301 const char *zDbase /* Name of the database. Might be NULL */ 302 ){ 303 Table *p; 304 305 /* Read the database schema. If an error occurs, leave an error message 306 ** and code in pParse and return NULL. */ 307 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 308 return 0; 309 } 310 311 p = sqlite3FindTable(pParse->db, zName, zDbase); 312 if( p==0 ){ 313 const char *zMsg = isView ? "no such view" : "no such table"; 314 if( zDbase ){ 315 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 316 }else{ 317 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 318 } 319 pParse->checkSchema = 1; 320 } 321 return p; 322 } 323 324 /* 325 ** Locate the in-memory structure that describes 326 ** a particular index given the name of that index 327 ** and the name of the database that contains the index. 328 ** Return NULL if not found. 329 ** 330 ** If zDatabase is 0, all databases are searched for the 331 ** table and the first matching index is returned. (No checking 332 ** for duplicate index names is done.) The search order is 333 ** TEMP first, then MAIN, then any auxiliary databases added 334 ** using the ATTACH command. 335 */ 336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 337 Index *p = 0; 338 int i; 339 int nName = sqlite3Strlen30(zName); 340 /* All mutexes are required for schema access. Make sure we hold them. */ 341 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 342 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 343 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 344 Schema *pSchema = db->aDb[j].pSchema; 345 assert( pSchema ); 346 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 347 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 348 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 349 if( p ) break; 350 } 351 return p; 352 } 353 354 /* 355 ** Reclaim the memory used by an index 356 */ 357 static void freeIndex(sqlite3 *db, Index *p){ 358 #ifndef SQLITE_OMIT_ANALYZE 359 sqlite3DeleteIndexSamples(db, p); 360 #endif 361 sqlite3DbFree(db, p->zColAff); 362 sqlite3DbFree(db, p); 363 } 364 365 /* 366 ** For the index called zIdxName which is found in the database iDb, 367 ** unlike that index from its Table then remove the index from 368 ** the index hash table and free all memory structures associated 369 ** with the index. 370 */ 371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 372 Index *pIndex; 373 int len; 374 Hash *pHash; 375 376 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 377 pHash = &db->aDb[iDb].pSchema->idxHash; 378 len = sqlite3Strlen30(zIdxName); 379 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 380 if( ALWAYS(pIndex) ){ 381 if( pIndex->pTable->pIndex==pIndex ){ 382 pIndex->pTable->pIndex = pIndex->pNext; 383 }else{ 384 Index *p; 385 /* Justification of ALWAYS(); The index must be on the list of 386 ** indices. */ 387 p = pIndex->pTable->pIndex; 388 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 389 if( ALWAYS(p && p->pNext==pIndex) ){ 390 p->pNext = pIndex->pNext; 391 } 392 } 393 freeIndex(db, pIndex); 394 } 395 db->flags |= SQLITE_InternChanges; 396 } 397 398 /* 399 ** Erase all schema information from the in-memory hash tables of 400 ** a single database. This routine is called to reclaim memory 401 ** before the database closes. It is also called during a rollback 402 ** if there were schema changes during the transaction or if a 403 ** schema-cookie mismatch occurs. 404 ** 405 ** If iDb<0 then reset the internal schema tables for all database 406 ** files. If iDb>=0 then reset the internal schema for only the 407 ** single file indicated. 408 */ 409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 410 int i, j; 411 assert( iDb<db->nDb ); 412 413 if( iDb>=0 ){ 414 /* Case 1: Reset the single schema identified by iDb */ 415 Db *pDb = &db->aDb[iDb]; 416 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 417 assert( pDb->pSchema!=0 ); 418 sqlite3SchemaClear(pDb->pSchema); 419 420 /* If any database other than TEMP is reset, then also reset TEMP 421 ** since TEMP might be holding triggers that reference tables in the 422 ** other database. 423 */ 424 if( iDb!=1 ){ 425 pDb = &db->aDb[1]; 426 assert( pDb->pSchema!=0 ); 427 sqlite3SchemaClear(pDb->pSchema); 428 } 429 return; 430 } 431 /* Case 2 (from here to the end): Reset all schemas for all attached 432 ** databases. */ 433 assert( iDb<0 ); 434 sqlite3BtreeEnterAll(db); 435 for(i=0; i<db->nDb; i++){ 436 Db *pDb = &db->aDb[i]; 437 if( pDb->pSchema ){ 438 sqlite3SchemaClear(pDb->pSchema); 439 } 440 } 441 db->flags &= ~SQLITE_InternChanges; 442 sqlite3VtabUnlockList(db); 443 sqlite3BtreeLeaveAll(db); 444 445 /* If one or more of the auxiliary database files has been closed, 446 ** then remove them from the auxiliary database list. We take the 447 ** opportunity to do this here since we have just deleted all of the 448 ** schema hash tables and therefore do not have to make any changes 449 ** to any of those tables. 450 */ 451 for(i=j=2; i<db->nDb; i++){ 452 struct Db *pDb = &db->aDb[i]; 453 if( pDb->pBt==0 ){ 454 sqlite3DbFree(db, pDb->zName); 455 pDb->zName = 0; 456 continue; 457 } 458 if( j<i ){ 459 db->aDb[j] = db->aDb[i]; 460 } 461 j++; 462 } 463 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 464 db->nDb = j; 465 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 466 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 467 sqlite3DbFree(db, db->aDb); 468 db->aDb = db->aDbStatic; 469 } 470 } 471 472 /* 473 ** This routine is called when a commit occurs. 474 */ 475 void sqlite3CommitInternalChanges(sqlite3 *db){ 476 db->flags &= ~SQLITE_InternChanges; 477 } 478 479 /* 480 ** Delete memory allocated for the column names of a table or view (the 481 ** Table.aCol[] array). 482 */ 483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 484 int i; 485 Column *pCol; 486 assert( pTable!=0 ); 487 if( (pCol = pTable->aCol)!=0 ){ 488 for(i=0; i<pTable->nCol; i++, pCol++){ 489 sqlite3DbFree(db, pCol->zName); 490 sqlite3ExprDelete(db, pCol->pDflt); 491 sqlite3DbFree(db, pCol->zDflt); 492 sqlite3DbFree(db, pCol->zType); 493 sqlite3DbFree(db, pCol->zColl); 494 } 495 sqlite3DbFree(db, pTable->aCol); 496 } 497 } 498 499 /* 500 ** Remove the memory data structures associated with the given 501 ** Table. No changes are made to disk by this routine. 502 ** 503 ** This routine just deletes the data structure. It does not unlink 504 ** the table data structure from the hash table. But it does destroy 505 ** memory structures of the indices and foreign keys associated with 506 ** the table. 507 */ 508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 509 Index *pIndex, *pNext; 510 511 assert( !pTable || pTable->nRef>0 ); 512 513 /* Do not delete the table until the reference count reaches zero. */ 514 if( !pTable ) return; 515 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 516 517 /* Delete all indices associated with this table. */ 518 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 519 pNext = pIndex->pNext; 520 assert( pIndex->pSchema==pTable->pSchema ); 521 if( !db || db->pnBytesFreed==0 ){ 522 char *zName = pIndex->zName; 523 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 524 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 525 ); 526 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 527 assert( pOld==pIndex || pOld==0 ); 528 } 529 freeIndex(db, pIndex); 530 } 531 532 /* Delete any foreign keys attached to this table. */ 533 sqlite3FkDelete(db, pTable); 534 535 /* Delete the Table structure itself. 536 */ 537 sqliteDeleteColumnNames(db, pTable); 538 sqlite3DbFree(db, pTable->zName); 539 sqlite3DbFree(db, pTable->zColAff); 540 sqlite3SelectDelete(db, pTable->pSelect); 541 #ifndef SQLITE_OMIT_CHECK 542 sqlite3ExprDelete(db, pTable->pCheck); 543 #endif 544 #ifndef SQLITE_OMIT_VIRTUALTABLE 545 sqlite3VtabClear(db, pTable); 546 #endif 547 sqlite3DbFree(db, pTable); 548 } 549 550 /* 551 ** Unlink the given table from the hash tables and the delete the 552 ** table structure with all its indices and foreign keys. 553 */ 554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 555 Table *p; 556 Db *pDb; 557 558 assert( db!=0 ); 559 assert( iDb>=0 && iDb<db->nDb ); 560 assert( zTabName ); 561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 562 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 563 pDb = &db->aDb[iDb]; 564 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 565 sqlite3Strlen30(zTabName),0); 566 sqlite3DeleteTable(db, p); 567 db->flags |= SQLITE_InternChanges; 568 } 569 570 /* 571 ** Given a token, return a string that consists of the text of that 572 ** token. Space to hold the returned string 573 ** is obtained from sqliteMalloc() and must be freed by the calling 574 ** function. 575 ** 576 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 577 ** surround the body of the token are removed. 578 ** 579 ** Tokens are often just pointers into the original SQL text and so 580 ** are not \000 terminated and are not persistent. The returned string 581 ** is \000 terminated and is persistent. 582 */ 583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 584 char *zName; 585 if( pName ){ 586 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 587 sqlite3Dequote(zName); 588 }else{ 589 zName = 0; 590 } 591 return zName; 592 } 593 594 /* 595 ** Open the sqlite_master table stored in database number iDb for 596 ** writing. The table is opened using cursor 0. 597 */ 598 void sqlite3OpenMasterTable(Parse *p, int iDb){ 599 Vdbe *v = sqlite3GetVdbe(p); 600 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 601 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 602 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 603 if( p->nTab==0 ){ 604 p->nTab = 1; 605 } 606 } 607 608 /* 609 ** Parameter zName points to a nul-terminated buffer containing the name 610 ** of a database ("main", "temp" or the name of an attached db). This 611 ** function returns the index of the named database in db->aDb[], or 612 ** -1 if the named db cannot be found. 613 */ 614 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 615 int i = -1; /* Database number */ 616 if( zName ){ 617 Db *pDb; 618 int n = sqlite3Strlen30(zName); 619 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 620 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 621 0==sqlite3StrICmp(pDb->zName, zName) ){ 622 break; 623 } 624 } 625 } 626 return i; 627 } 628 629 /* 630 ** The token *pName contains the name of a database (either "main" or 631 ** "temp" or the name of an attached db). This routine returns the 632 ** index of the named database in db->aDb[], or -1 if the named db 633 ** does not exist. 634 */ 635 int sqlite3FindDb(sqlite3 *db, Token *pName){ 636 int i; /* Database number */ 637 char *zName; /* Name we are searching for */ 638 zName = sqlite3NameFromToken(db, pName); 639 i = sqlite3FindDbName(db, zName); 640 sqlite3DbFree(db, zName); 641 return i; 642 } 643 644 /* The table or view or trigger name is passed to this routine via tokens 645 ** pName1 and pName2. If the table name was fully qualified, for example: 646 ** 647 ** CREATE TABLE xxx.yyy (...); 648 ** 649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 650 ** the table name is not fully qualified, i.e.: 651 ** 652 ** CREATE TABLE yyy(...); 653 ** 654 ** Then pName1 is set to "yyy" and pName2 is "". 655 ** 656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 657 ** pName2) that stores the unqualified table name. The index of the 658 ** database "xxx" is returned. 659 */ 660 int sqlite3TwoPartName( 661 Parse *pParse, /* Parsing and code generating context */ 662 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 663 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 664 Token **pUnqual /* Write the unqualified object name here */ 665 ){ 666 int iDb; /* Database holding the object */ 667 sqlite3 *db = pParse->db; 668 669 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 670 if( db->init.busy ) { 671 sqlite3ErrorMsg(pParse, "corrupt database"); 672 pParse->nErr++; 673 return -1; 674 } 675 *pUnqual = pName2; 676 iDb = sqlite3FindDb(db, pName1); 677 if( iDb<0 ){ 678 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 679 pParse->nErr++; 680 return -1; 681 } 682 }else{ 683 assert( db->init.iDb==0 || db->init.busy ); 684 iDb = db->init.iDb; 685 *pUnqual = pName1; 686 } 687 return iDb; 688 } 689 690 /* 691 ** This routine is used to check if the UTF-8 string zName is a legal 692 ** unqualified name for a new schema object (table, index, view or 693 ** trigger). All names are legal except those that begin with the string 694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 695 ** is reserved for internal use. 696 */ 697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 698 if( !pParse->db->init.busy && pParse->nested==0 699 && (pParse->db->flags & SQLITE_WriteSchema)==0 700 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 701 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 702 return SQLITE_ERROR; 703 } 704 return SQLITE_OK; 705 } 706 707 /* 708 ** Begin constructing a new table representation in memory. This is 709 ** the first of several action routines that get called in response 710 ** to a CREATE TABLE statement. In particular, this routine is called 711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 712 ** flag is true if the table should be stored in the auxiliary database 713 ** file instead of in the main database file. This is normally the case 714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 715 ** CREATE and TABLE. 716 ** 717 ** The new table record is initialized and put in pParse->pNewTable. 718 ** As more of the CREATE TABLE statement is parsed, additional action 719 ** routines will be called to add more information to this record. 720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 721 ** is called to complete the construction of the new table record. 722 */ 723 void sqlite3StartTable( 724 Parse *pParse, /* Parser context */ 725 Token *pName1, /* First part of the name of the table or view */ 726 Token *pName2, /* Second part of the name of the table or view */ 727 int isTemp, /* True if this is a TEMP table */ 728 int isView, /* True if this is a VIEW */ 729 int isVirtual, /* True if this is a VIRTUAL table */ 730 int noErr /* Do nothing if table already exists */ 731 ){ 732 Table *pTable; 733 char *zName = 0; /* The name of the new table */ 734 sqlite3 *db = pParse->db; 735 Vdbe *v; 736 int iDb; /* Database number to create the table in */ 737 Token *pName; /* Unqualified name of the table to create */ 738 739 /* The table or view name to create is passed to this routine via tokens 740 ** pName1 and pName2. If the table name was fully qualified, for example: 741 ** 742 ** CREATE TABLE xxx.yyy (...); 743 ** 744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 745 ** the table name is not fully qualified, i.e.: 746 ** 747 ** CREATE TABLE yyy(...); 748 ** 749 ** Then pName1 is set to "yyy" and pName2 is "". 750 ** 751 ** The call below sets the pName pointer to point at the token (pName1 or 752 ** pName2) that stores the unqualified table name. The variable iDb is 753 ** set to the index of the database that the table or view is to be 754 ** created in. 755 */ 756 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 757 if( iDb<0 ) return; 758 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 759 /* If creating a temp table, the name may not be qualified. Unless 760 ** the database name is "temp" anyway. */ 761 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 762 return; 763 } 764 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 765 766 pParse->sNameToken = *pName; 767 zName = sqlite3NameFromToken(db, pName); 768 if( zName==0 ) return; 769 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 770 goto begin_table_error; 771 } 772 if( db->init.iDb==1 ) isTemp = 1; 773 #ifndef SQLITE_OMIT_AUTHORIZATION 774 assert( (isTemp & 1)==isTemp ); 775 { 776 int code; 777 char *zDb = db->aDb[iDb].zName; 778 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 779 goto begin_table_error; 780 } 781 if( isView ){ 782 if( !OMIT_TEMPDB && isTemp ){ 783 code = SQLITE_CREATE_TEMP_VIEW; 784 }else{ 785 code = SQLITE_CREATE_VIEW; 786 } 787 }else{ 788 if( !OMIT_TEMPDB && isTemp ){ 789 code = SQLITE_CREATE_TEMP_TABLE; 790 }else{ 791 code = SQLITE_CREATE_TABLE; 792 } 793 } 794 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 795 goto begin_table_error; 796 } 797 } 798 #endif 799 800 /* Make sure the new table name does not collide with an existing 801 ** index or table name in the same database. Issue an error message if 802 ** it does. The exception is if the statement being parsed was passed 803 ** to an sqlite3_declare_vtab() call. In that case only the column names 804 ** and types will be used, so there is no need to test for namespace 805 ** collisions. 806 */ 807 if( !IN_DECLARE_VTAB ){ 808 char *zDb = db->aDb[iDb].zName; 809 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 810 goto begin_table_error; 811 } 812 pTable = sqlite3FindTable(db, zName, zDb); 813 if( pTable ){ 814 if( !noErr ){ 815 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 816 }else{ 817 assert( !db->init.busy ); 818 sqlite3CodeVerifySchema(pParse, iDb); 819 } 820 goto begin_table_error; 821 } 822 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 823 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 824 goto begin_table_error; 825 } 826 } 827 828 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 829 if( pTable==0 ){ 830 db->mallocFailed = 1; 831 pParse->rc = SQLITE_NOMEM; 832 pParse->nErr++; 833 goto begin_table_error; 834 } 835 pTable->zName = zName; 836 pTable->iPKey = -1; 837 pTable->pSchema = db->aDb[iDb].pSchema; 838 pTable->nRef = 1; 839 pTable->nRowEst = 1000000; 840 assert( pParse->pNewTable==0 ); 841 pParse->pNewTable = pTable; 842 843 /* If this is the magic sqlite_sequence table used by autoincrement, 844 ** then record a pointer to this table in the main database structure 845 ** so that INSERT can find the table easily. 846 */ 847 #ifndef SQLITE_OMIT_AUTOINCREMENT 848 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 849 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 850 pTable->pSchema->pSeqTab = pTable; 851 } 852 #endif 853 854 /* Begin generating the code that will insert the table record into 855 ** the SQLITE_MASTER table. Note in particular that we must go ahead 856 ** and allocate the record number for the table entry now. Before any 857 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 858 ** indices to be created and the table record must come before the 859 ** indices. Hence, the record number for the table must be allocated 860 ** now. 861 */ 862 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 863 int j1; 864 int fileFormat; 865 int reg1, reg2, reg3; 866 sqlite3BeginWriteOperation(pParse, 0, iDb); 867 868 #ifndef SQLITE_OMIT_VIRTUALTABLE 869 if( isVirtual ){ 870 sqlite3VdbeAddOp0(v, OP_VBegin); 871 } 872 #endif 873 874 /* If the file format and encoding in the database have not been set, 875 ** set them now. 876 */ 877 reg1 = pParse->regRowid = ++pParse->nMem; 878 reg2 = pParse->regRoot = ++pParse->nMem; 879 reg3 = ++pParse->nMem; 880 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 881 sqlite3VdbeUsesBtree(v, iDb); 882 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 883 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 884 1 : SQLITE_MAX_FILE_FORMAT; 885 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 887 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 889 sqlite3VdbeJumpHere(v, j1); 890 891 /* This just creates a place-holder record in the sqlite_master table. 892 ** The record created does not contain anything yet. It will be replaced 893 ** by the real entry in code generated at sqlite3EndTable(). 894 ** 895 ** The rowid for the new entry is left in register pParse->regRowid. 896 ** The root page number of the new table is left in reg pParse->regRoot. 897 ** The rowid and root page number values are needed by the code that 898 ** sqlite3EndTable will generate. 899 */ 900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 901 if( isView || isVirtual ){ 902 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 903 }else 904 #endif 905 { 906 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 907 } 908 sqlite3OpenMasterTable(pParse, iDb); 909 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 910 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 911 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 912 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 913 sqlite3VdbeAddOp0(v, OP_Close); 914 } 915 916 /* Normal (non-error) return. */ 917 return; 918 919 /* If an error occurs, we jump here */ 920 begin_table_error: 921 sqlite3DbFree(db, zName); 922 return; 923 } 924 925 /* 926 ** This macro is used to compare two strings in a case-insensitive manner. 927 ** It is slightly faster than calling sqlite3StrICmp() directly, but 928 ** produces larger code. 929 ** 930 ** WARNING: This macro is not compatible with the strcmp() family. It 931 ** returns true if the two strings are equal, otherwise false. 932 */ 933 #define STRICMP(x, y) (\ 934 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 935 sqlite3UpperToLower[*(unsigned char *)(y)] \ 936 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 937 938 /* 939 ** Add a new column to the table currently being constructed. 940 ** 941 ** The parser calls this routine once for each column declaration 942 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 943 ** first to get things going. Then this routine is called for each 944 ** column. 945 */ 946 void sqlite3AddColumn(Parse *pParse, Token *pName){ 947 Table *p; 948 int i; 949 char *z; 950 Column *pCol; 951 sqlite3 *db = pParse->db; 952 if( (p = pParse->pNewTable)==0 ) return; 953 #if SQLITE_MAX_COLUMN 954 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 955 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 956 return; 957 } 958 #endif 959 z = sqlite3NameFromToken(db, pName); 960 if( z==0 ) return; 961 for(i=0; i<p->nCol; i++){ 962 if( STRICMP(z, p->aCol[i].zName) ){ 963 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 964 sqlite3DbFree(db, z); 965 return; 966 } 967 } 968 if( (p->nCol & 0x7)==0 ){ 969 Column *aNew; 970 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 971 if( aNew==0 ){ 972 sqlite3DbFree(db, z); 973 return; 974 } 975 p->aCol = aNew; 976 } 977 pCol = &p->aCol[p->nCol]; 978 memset(pCol, 0, sizeof(p->aCol[0])); 979 pCol->zName = z; 980 981 /* If there is no type specified, columns have the default affinity 982 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 983 ** be called next to set pCol->affinity correctly. 984 */ 985 pCol->affinity = SQLITE_AFF_NONE; 986 p->nCol++; 987 } 988 989 /* 990 ** This routine is called by the parser while in the middle of 991 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 992 ** been seen on a column. This routine sets the notNull flag on 993 ** the column currently under construction. 994 */ 995 void sqlite3AddNotNull(Parse *pParse, int onError){ 996 Table *p; 997 p = pParse->pNewTable; 998 if( p==0 || NEVER(p->nCol<1) ) return; 999 p->aCol[p->nCol-1].notNull = (u8)onError; 1000 } 1001 1002 /* 1003 ** Scan the column type name zType (length nType) and return the 1004 ** associated affinity type. 1005 ** 1006 ** This routine does a case-independent search of zType for the 1007 ** substrings in the following table. If one of the substrings is 1008 ** found, the corresponding affinity is returned. If zType contains 1009 ** more than one of the substrings, entries toward the top of 1010 ** the table take priority. For example, if zType is 'BLOBINT', 1011 ** SQLITE_AFF_INTEGER is returned. 1012 ** 1013 ** Substring | Affinity 1014 ** -------------------------------- 1015 ** 'INT' | SQLITE_AFF_INTEGER 1016 ** 'CHAR' | SQLITE_AFF_TEXT 1017 ** 'CLOB' | SQLITE_AFF_TEXT 1018 ** 'TEXT' | SQLITE_AFF_TEXT 1019 ** 'BLOB' | SQLITE_AFF_NONE 1020 ** 'REAL' | SQLITE_AFF_REAL 1021 ** 'FLOA' | SQLITE_AFF_REAL 1022 ** 'DOUB' | SQLITE_AFF_REAL 1023 ** 1024 ** If none of the substrings in the above table are found, 1025 ** SQLITE_AFF_NUMERIC is returned. 1026 */ 1027 char sqlite3AffinityType(const char *zIn){ 1028 u32 h = 0; 1029 char aff = SQLITE_AFF_NUMERIC; 1030 1031 if( zIn ) while( zIn[0] ){ 1032 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1033 zIn++; 1034 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1035 aff = SQLITE_AFF_TEXT; 1036 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1037 aff = SQLITE_AFF_TEXT; 1038 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1039 aff = SQLITE_AFF_TEXT; 1040 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1041 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1042 aff = SQLITE_AFF_NONE; 1043 #ifndef SQLITE_OMIT_FLOATING_POINT 1044 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1045 && aff==SQLITE_AFF_NUMERIC ){ 1046 aff = SQLITE_AFF_REAL; 1047 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1048 && aff==SQLITE_AFF_NUMERIC ){ 1049 aff = SQLITE_AFF_REAL; 1050 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1051 && aff==SQLITE_AFF_NUMERIC ){ 1052 aff = SQLITE_AFF_REAL; 1053 #endif 1054 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1055 aff = SQLITE_AFF_INTEGER; 1056 break; 1057 } 1058 } 1059 1060 return aff; 1061 } 1062 1063 /* 1064 ** This routine is called by the parser while in the middle of 1065 ** parsing a CREATE TABLE statement. The pFirst token is the first 1066 ** token in the sequence of tokens that describe the type of the 1067 ** column currently under construction. pLast is the last token 1068 ** in the sequence. Use this information to construct a string 1069 ** that contains the typename of the column and store that string 1070 ** in zType. 1071 */ 1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1073 Table *p; 1074 Column *pCol; 1075 1076 p = pParse->pNewTable; 1077 if( p==0 || NEVER(p->nCol<1) ) return; 1078 pCol = &p->aCol[p->nCol-1]; 1079 assert( pCol->zType==0 ); 1080 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1081 pCol->affinity = sqlite3AffinityType(pCol->zType); 1082 } 1083 1084 /* 1085 ** The expression is the default value for the most recently added column 1086 ** of the table currently under construction. 1087 ** 1088 ** Default value expressions must be constant. Raise an exception if this 1089 ** is not the case. 1090 ** 1091 ** This routine is called by the parser while in the middle of 1092 ** parsing a CREATE TABLE statement. 1093 */ 1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1095 Table *p; 1096 Column *pCol; 1097 sqlite3 *db = pParse->db; 1098 p = pParse->pNewTable; 1099 if( p!=0 ){ 1100 pCol = &(p->aCol[p->nCol-1]); 1101 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1102 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1103 pCol->zName); 1104 }else{ 1105 /* A copy of pExpr is used instead of the original, as pExpr contains 1106 ** tokens that point to volatile memory. The 'span' of the expression 1107 ** is required by pragma table_info. 1108 */ 1109 sqlite3ExprDelete(db, pCol->pDflt); 1110 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1111 sqlite3DbFree(db, pCol->zDflt); 1112 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1113 (int)(pSpan->zEnd - pSpan->zStart)); 1114 } 1115 } 1116 sqlite3ExprDelete(db, pSpan->pExpr); 1117 } 1118 1119 /* 1120 ** Designate the PRIMARY KEY for the table. pList is a list of names 1121 ** of columns that form the primary key. If pList is NULL, then the 1122 ** most recently added column of the table is the primary key. 1123 ** 1124 ** A table can have at most one primary key. If the table already has 1125 ** a primary key (and this is the second primary key) then create an 1126 ** error. 1127 ** 1128 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1129 ** then we will try to use that column as the rowid. Set the Table.iPKey 1130 ** field of the table under construction to be the index of the 1131 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1132 ** no INTEGER PRIMARY KEY. 1133 ** 1134 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1135 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1136 */ 1137 void sqlite3AddPrimaryKey( 1138 Parse *pParse, /* Parsing context */ 1139 ExprList *pList, /* List of field names to be indexed */ 1140 int onError, /* What to do with a uniqueness conflict */ 1141 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1142 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1143 ){ 1144 Table *pTab = pParse->pNewTable; 1145 char *zType = 0; 1146 int iCol = -1, i; 1147 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1148 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1149 sqlite3ErrorMsg(pParse, 1150 "table \"%s\" has more than one primary key", pTab->zName); 1151 goto primary_key_exit; 1152 } 1153 pTab->tabFlags |= TF_HasPrimaryKey; 1154 if( pList==0 ){ 1155 iCol = pTab->nCol - 1; 1156 pTab->aCol[iCol].isPrimKey = 1; 1157 }else{ 1158 for(i=0; i<pList->nExpr; i++){ 1159 for(iCol=0; iCol<pTab->nCol; iCol++){ 1160 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1161 break; 1162 } 1163 } 1164 if( iCol<pTab->nCol ){ 1165 pTab->aCol[iCol].isPrimKey = 1; 1166 } 1167 } 1168 if( pList->nExpr>1 ) iCol = -1; 1169 } 1170 if( iCol>=0 && iCol<pTab->nCol ){ 1171 zType = pTab->aCol[iCol].zType; 1172 } 1173 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1174 && sortOrder==SQLITE_SO_ASC ){ 1175 pTab->iPKey = iCol; 1176 pTab->keyConf = (u8)onError; 1177 assert( autoInc==0 || autoInc==1 ); 1178 pTab->tabFlags |= autoInc*TF_Autoincrement; 1179 }else if( autoInc ){ 1180 #ifndef SQLITE_OMIT_AUTOINCREMENT 1181 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1182 "INTEGER PRIMARY KEY"); 1183 #endif 1184 }else{ 1185 Index *p; 1186 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1187 if( p ){ 1188 p->autoIndex = 2; 1189 } 1190 pList = 0; 1191 } 1192 1193 primary_key_exit: 1194 sqlite3ExprListDelete(pParse->db, pList); 1195 return; 1196 } 1197 1198 /* 1199 ** Add a new CHECK constraint to the table currently under construction. 1200 */ 1201 void sqlite3AddCheckConstraint( 1202 Parse *pParse, /* Parsing context */ 1203 Expr *pCheckExpr /* The check expression */ 1204 ){ 1205 sqlite3 *db = pParse->db; 1206 #ifndef SQLITE_OMIT_CHECK 1207 Table *pTab = pParse->pNewTable; 1208 if( pTab && !IN_DECLARE_VTAB ){ 1209 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); 1210 }else 1211 #endif 1212 { 1213 sqlite3ExprDelete(db, pCheckExpr); 1214 } 1215 } 1216 1217 /* 1218 ** Set the collation function of the most recently parsed table column 1219 ** to the CollSeq given. 1220 */ 1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1222 Table *p; 1223 int i; 1224 char *zColl; /* Dequoted name of collation sequence */ 1225 sqlite3 *db; 1226 1227 if( (p = pParse->pNewTable)==0 ) return; 1228 i = p->nCol-1; 1229 db = pParse->db; 1230 zColl = sqlite3NameFromToken(db, pToken); 1231 if( !zColl ) return; 1232 1233 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1234 Index *pIdx; 1235 p->aCol[i].zColl = zColl; 1236 1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1238 ** then an index may have been created on this column before the 1239 ** collation type was added. Correct this if it is the case. 1240 */ 1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1242 assert( pIdx->nColumn==1 ); 1243 if( pIdx->aiColumn[0]==i ){ 1244 pIdx->azColl[0] = p->aCol[i].zColl; 1245 } 1246 } 1247 }else{ 1248 sqlite3DbFree(db, zColl); 1249 } 1250 } 1251 1252 /* 1253 ** This function returns the collation sequence for database native text 1254 ** encoding identified by the string zName, length nName. 1255 ** 1256 ** If the requested collation sequence is not available, or not available 1257 ** in the database native encoding, the collation factory is invoked to 1258 ** request it. If the collation factory does not supply such a sequence, 1259 ** and the sequence is available in another text encoding, then that is 1260 ** returned instead. 1261 ** 1262 ** If no versions of the requested collations sequence are available, or 1263 ** another error occurs, NULL is returned and an error message written into 1264 ** pParse. 1265 ** 1266 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1267 ** invokes the collation factory if the named collation cannot be found 1268 ** and generates an error message. 1269 ** 1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1271 */ 1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1273 sqlite3 *db = pParse->db; 1274 u8 enc = ENC(db); 1275 u8 initbusy = db->init.busy; 1276 CollSeq *pColl; 1277 1278 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1279 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1280 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); 1281 if( !pColl ){ 1282 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); 1283 } 1284 } 1285 1286 return pColl; 1287 } 1288 1289 1290 /* 1291 ** Generate code that will increment the schema cookie. 1292 ** 1293 ** The schema cookie is used to determine when the schema for the 1294 ** database changes. After each schema change, the cookie value 1295 ** changes. When a process first reads the schema it records the 1296 ** cookie. Thereafter, whenever it goes to access the database, 1297 ** it checks the cookie to make sure the schema has not changed 1298 ** since it was last read. 1299 ** 1300 ** This plan is not completely bullet-proof. It is possible for 1301 ** the schema to change multiple times and for the cookie to be 1302 ** set back to prior value. But schema changes are infrequent 1303 ** and the probability of hitting the same cookie value is only 1304 ** 1 chance in 2^32. So we're safe enough. 1305 */ 1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1307 int r1 = sqlite3GetTempReg(pParse); 1308 sqlite3 *db = pParse->db; 1309 Vdbe *v = pParse->pVdbe; 1310 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1311 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1312 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1313 sqlite3ReleaseTempReg(pParse, r1); 1314 } 1315 1316 /* 1317 ** Measure the number of characters needed to output the given 1318 ** identifier. The number returned includes any quotes used 1319 ** but does not include the null terminator. 1320 ** 1321 ** The estimate is conservative. It might be larger that what is 1322 ** really needed. 1323 */ 1324 static int identLength(const char *z){ 1325 int n; 1326 for(n=0; *z; n++, z++){ 1327 if( *z=='"' ){ n++; } 1328 } 1329 return n + 2; 1330 } 1331 1332 /* 1333 ** The first parameter is a pointer to an output buffer. The second 1334 ** parameter is a pointer to an integer that contains the offset at 1335 ** which to write into the output buffer. This function copies the 1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1337 ** to the specified offset in the buffer and updates *pIdx to refer 1338 ** to the first byte after the last byte written before returning. 1339 ** 1340 ** If the string zSignedIdent consists entirely of alpha-numeric 1341 ** characters, does not begin with a digit and is not an SQL keyword, 1342 ** then it is copied to the output buffer exactly as it is. Otherwise, 1343 ** it is quoted using double-quotes. 1344 */ 1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1346 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1347 int i, j, needQuote; 1348 i = *pIdx; 1349 1350 for(j=0; zIdent[j]; j++){ 1351 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1352 } 1353 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1354 if( !needQuote ){ 1355 needQuote = zIdent[j]; 1356 } 1357 1358 if( needQuote ) z[i++] = '"'; 1359 for(j=0; zIdent[j]; j++){ 1360 z[i++] = zIdent[j]; 1361 if( zIdent[j]=='"' ) z[i++] = '"'; 1362 } 1363 if( needQuote ) z[i++] = '"'; 1364 z[i] = 0; 1365 *pIdx = i; 1366 } 1367 1368 /* 1369 ** Generate a CREATE TABLE statement appropriate for the given 1370 ** table. Memory to hold the text of the statement is obtained 1371 ** from sqliteMalloc() and must be freed by the calling function. 1372 */ 1373 static char *createTableStmt(sqlite3 *db, Table *p){ 1374 int i, k, n; 1375 char *zStmt; 1376 char *zSep, *zSep2, *zEnd; 1377 Column *pCol; 1378 n = 0; 1379 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1380 n += identLength(pCol->zName) + 5; 1381 } 1382 n += identLength(p->zName); 1383 if( n<50 ){ 1384 zSep = ""; 1385 zSep2 = ","; 1386 zEnd = ")"; 1387 }else{ 1388 zSep = "\n "; 1389 zSep2 = ",\n "; 1390 zEnd = "\n)"; 1391 } 1392 n += 35 + 6*p->nCol; 1393 zStmt = sqlite3DbMallocRaw(0, n); 1394 if( zStmt==0 ){ 1395 db->mallocFailed = 1; 1396 return 0; 1397 } 1398 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1399 k = sqlite3Strlen30(zStmt); 1400 identPut(zStmt, &k, p->zName); 1401 zStmt[k++] = '('; 1402 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1403 static const char * const azType[] = { 1404 /* SQLITE_AFF_TEXT */ " TEXT", 1405 /* SQLITE_AFF_NONE */ "", 1406 /* SQLITE_AFF_NUMERIC */ " NUM", 1407 /* SQLITE_AFF_INTEGER */ " INT", 1408 /* SQLITE_AFF_REAL */ " REAL" 1409 }; 1410 int len; 1411 const char *zType; 1412 1413 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1414 k += sqlite3Strlen30(&zStmt[k]); 1415 zSep = zSep2; 1416 identPut(zStmt, &k, pCol->zName); 1417 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1418 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1419 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1420 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1421 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1422 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1423 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1424 1425 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1426 len = sqlite3Strlen30(zType); 1427 assert( pCol->affinity==SQLITE_AFF_NONE 1428 || pCol->affinity==sqlite3AffinityType(zType) ); 1429 memcpy(&zStmt[k], zType, len); 1430 k += len; 1431 assert( k<=n ); 1432 } 1433 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1434 return zStmt; 1435 } 1436 1437 /* 1438 ** This routine is called to report the final ")" that terminates 1439 ** a CREATE TABLE statement. 1440 ** 1441 ** The table structure that other action routines have been building 1442 ** is added to the internal hash tables, assuming no errors have 1443 ** occurred. 1444 ** 1445 ** An entry for the table is made in the master table on disk, unless 1446 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1447 ** it means we are reading the sqlite_master table because we just 1448 ** connected to the database or because the sqlite_master table has 1449 ** recently changed, so the entry for this table already exists in 1450 ** the sqlite_master table. We do not want to create it again. 1451 ** 1452 ** If the pSelect argument is not NULL, it means that this routine 1453 ** was called to create a table generated from a 1454 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1455 ** the new table will match the result set of the SELECT. 1456 */ 1457 void sqlite3EndTable( 1458 Parse *pParse, /* Parse context */ 1459 Token *pCons, /* The ',' token after the last column defn. */ 1460 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1461 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1462 ){ 1463 Table *p; 1464 sqlite3 *db = pParse->db; 1465 int iDb; 1466 1467 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1468 return; 1469 } 1470 p = pParse->pNewTable; 1471 if( p==0 ) return; 1472 1473 assert( !db->init.busy || !pSelect ); 1474 1475 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1476 1477 #ifndef SQLITE_OMIT_CHECK 1478 /* Resolve names in all CHECK constraint expressions. 1479 */ 1480 if( p->pCheck ){ 1481 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1482 NameContext sNC; /* Name context for pParse->pNewTable */ 1483 1484 memset(&sNC, 0, sizeof(sNC)); 1485 memset(&sSrc, 0, sizeof(sSrc)); 1486 sSrc.nSrc = 1; 1487 sSrc.a[0].zName = p->zName; 1488 sSrc.a[0].pTab = p; 1489 sSrc.a[0].iCursor = -1; 1490 sNC.pParse = pParse; 1491 sNC.pSrcList = &sSrc; 1492 sNC.isCheck = 1; 1493 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1494 return; 1495 } 1496 } 1497 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1498 1499 /* If the db->init.busy is 1 it means we are reading the SQL off the 1500 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1501 ** So do not write to the disk again. Extract the root page number 1502 ** for the table from the db->init.newTnum field. (The page number 1503 ** should have been put there by the sqliteOpenCb routine.) 1504 */ 1505 if( db->init.busy ){ 1506 p->tnum = db->init.newTnum; 1507 } 1508 1509 /* If not initializing, then create a record for the new table 1510 ** in the SQLITE_MASTER table of the database. 1511 ** 1512 ** If this is a TEMPORARY table, write the entry into the auxiliary 1513 ** file instead of into the main database file. 1514 */ 1515 if( !db->init.busy ){ 1516 int n; 1517 Vdbe *v; 1518 char *zType; /* "view" or "table" */ 1519 char *zType2; /* "VIEW" or "TABLE" */ 1520 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1521 1522 v = sqlite3GetVdbe(pParse); 1523 if( NEVER(v==0) ) return; 1524 1525 sqlite3VdbeAddOp1(v, OP_Close, 0); 1526 1527 /* 1528 ** Initialize zType for the new view or table. 1529 */ 1530 if( p->pSelect==0 ){ 1531 /* A regular table */ 1532 zType = "table"; 1533 zType2 = "TABLE"; 1534 #ifndef SQLITE_OMIT_VIEW 1535 }else{ 1536 /* A view */ 1537 zType = "view"; 1538 zType2 = "VIEW"; 1539 #endif 1540 } 1541 1542 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1543 ** statement to populate the new table. The root-page number for the 1544 ** new table is in register pParse->regRoot. 1545 ** 1546 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1547 ** suitable state to query for the column names and types to be used 1548 ** by the new table. 1549 ** 1550 ** A shared-cache write-lock is not required to write to the new table, 1551 ** as a schema-lock must have already been obtained to create it. Since 1552 ** a schema-lock excludes all other database users, the write-lock would 1553 ** be redundant. 1554 */ 1555 if( pSelect ){ 1556 SelectDest dest; 1557 Table *pSelTab; 1558 1559 assert(pParse->nTab==1); 1560 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1561 sqlite3VdbeChangeP5(v, 1); 1562 pParse->nTab = 2; 1563 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1564 sqlite3Select(pParse, pSelect, &dest); 1565 sqlite3VdbeAddOp1(v, OP_Close, 1); 1566 if( pParse->nErr==0 ){ 1567 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1568 if( pSelTab==0 ) return; 1569 assert( p->aCol==0 ); 1570 p->nCol = pSelTab->nCol; 1571 p->aCol = pSelTab->aCol; 1572 pSelTab->nCol = 0; 1573 pSelTab->aCol = 0; 1574 sqlite3DeleteTable(db, pSelTab); 1575 } 1576 } 1577 1578 /* Compute the complete text of the CREATE statement */ 1579 if( pSelect ){ 1580 zStmt = createTableStmt(db, p); 1581 }else{ 1582 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1583 zStmt = sqlite3MPrintf(db, 1584 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1585 ); 1586 } 1587 1588 /* A slot for the record has already been allocated in the 1589 ** SQLITE_MASTER table. We just need to update that slot with all 1590 ** the information we've collected. 1591 */ 1592 sqlite3NestedParse(pParse, 1593 "UPDATE %Q.%s " 1594 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1595 "WHERE rowid=#%d", 1596 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1597 zType, 1598 p->zName, 1599 p->zName, 1600 pParse->regRoot, 1601 zStmt, 1602 pParse->regRowid 1603 ); 1604 sqlite3DbFree(db, zStmt); 1605 sqlite3ChangeCookie(pParse, iDb); 1606 1607 #ifndef SQLITE_OMIT_AUTOINCREMENT 1608 /* Check to see if we need to create an sqlite_sequence table for 1609 ** keeping track of autoincrement keys. 1610 */ 1611 if( p->tabFlags & TF_Autoincrement ){ 1612 Db *pDb = &db->aDb[iDb]; 1613 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1614 if( pDb->pSchema->pSeqTab==0 ){ 1615 sqlite3NestedParse(pParse, 1616 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1617 pDb->zName 1618 ); 1619 } 1620 } 1621 #endif 1622 1623 /* Reparse everything to update our internal data structures */ 1624 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1625 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1626 } 1627 1628 1629 /* Add the table to the in-memory representation of the database. 1630 */ 1631 if( db->init.busy ){ 1632 Table *pOld; 1633 Schema *pSchema = p->pSchema; 1634 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1635 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1636 sqlite3Strlen30(p->zName),p); 1637 if( pOld ){ 1638 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1639 db->mallocFailed = 1; 1640 return; 1641 } 1642 pParse->pNewTable = 0; 1643 db->nTable++; 1644 db->flags |= SQLITE_InternChanges; 1645 1646 #ifndef SQLITE_OMIT_ALTERTABLE 1647 if( !p->pSelect ){ 1648 const char *zName = (const char *)pParse->sNameToken.z; 1649 int nName; 1650 assert( !pSelect && pCons && pEnd ); 1651 if( pCons->z==0 ){ 1652 pCons = pEnd; 1653 } 1654 nName = (int)((const char *)pCons->z - zName); 1655 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1656 } 1657 #endif 1658 } 1659 } 1660 1661 #ifndef SQLITE_OMIT_VIEW 1662 /* 1663 ** The parser calls this routine in order to create a new VIEW 1664 */ 1665 void sqlite3CreateView( 1666 Parse *pParse, /* The parsing context */ 1667 Token *pBegin, /* The CREATE token that begins the statement */ 1668 Token *pName1, /* The token that holds the name of the view */ 1669 Token *pName2, /* The token that holds the name of the view */ 1670 Select *pSelect, /* A SELECT statement that will become the new view */ 1671 int isTemp, /* TRUE for a TEMPORARY view */ 1672 int noErr /* Suppress error messages if VIEW already exists */ 1673 ){ 1674 Table *p; 1675 int n; 1676 const char *z; 1677 Token sEnd; 1678 DbFixer sFix; 1679 Token *pName; 1680 int iDb; 1681 sqlite3 *db = pParse->db; 1682 1683 if( pParse->nVar>0 ){ 1684 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1685 sqlite3SelectDelete(db, pSelect); 1686 return; 1687 } 1688 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1689 p = pParse->pNewTable; 1690 if( p==0 || pParse->nErr ){ 1691 sqlite3SelectDelete(db, pSelect); 1692 return; 1693 } 1694 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1695 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1696 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1697 && sqlite3FixSelect(&sFix, pSelect) 1698 ){ 1699 sqlite3SelectDelete(db, pSelect); 1700 return; 1701 } 1702 1703 /* Make a copy of the entire SELECT statement that defines the view. 1704 ** This will force all the Expr.token.z values to be dynamically 1705 ** allocated rather than point to the input string - which means that 1706 ** they will persist after the current sqlite3_exec() call returns. 1707 */ 1708 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1709 sqlite3SelectDelete(db, pSelect); 1710 if( db->mallocFailed ){ 1711 return; 1712 } 1713 if( !db->init.busy ){ 1714 sqlite3ViewGetColumnNames(pParse, p); 1715 } 1716 1717 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1718 ** the end. 1719 */ 1720 sEnd = pParse->sLastToken; 1721 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1722 sEnd.z += sEnd.n; 1723 } 1724 sEnd.n = 0; 1725 n = (int)(sEnd.z - pBegin->z); 1726 z = pBegin->z; 1727 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1728 sEnd.z = &z[n-1]; 1729 sEnd.n = 1; 1730 1731 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1732 sqlite3EndTable(pParse, 0, &sEnd, 0); 1733 return; 1734 } 1735 #endif /* SQLITE_OMIT_VIEW */ 1736 1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1738 /* 1739 ** The Table structure pTable is really a VIEW. Fill in the names of 1740 ** the columns of the view in the pTable structure. Return the number 1741 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1742 */ 1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1744 Table *pSelTab; /* A fake table from which we get the result set */ 1745 Select *pSel; /* Copy of the SELECT that implements the view */ 1746 int nErr = 0; /* Number of errors encountered */ 1747 int n; /* Temporarily holds the number of cursors assigned */ 1748 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1749 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1750 1751 assert( pTable ); 1752 1753 #ifndef SQLITE_OMIT_VIRTUALTABLE 1754 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1755 return SQLITE_ERROR; 1756 } 1757 if( IsVirtual(pTable) ) return 0; 1758 #endif 1759 1760 #ifndef SQLITE_OMIT_VIEW 1761 /* A positive nCol means the columns names for this view are 1762 ** already known. 1763 */ 1764 if( pTable->nCol>0 ) return 0; 1765 1766 /* A negative nCol is a special marker meaning that we are currently 1767 ** trying to compute the column names. If we enter this routine with 1768 ** a negative nCol, it means two or more views form a loop, like this: 1769 ** 1770 ** CREATE VIEW one AS SELECT * FROM two; 1771 ** CREATE VIEW two AS SELECT * FROM one; 1772 ** 1773 ** Actually, the error above is now caught prior to reaching this point. 1774 ** But the following test is still important as it does come up 1775 ** in the following: 1776 ** 1777 ** CREATE TABLE main.ex1(a); 1778 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1779 ** SELECT * FROM temp.ex1; 1780 */ 1781 if( pTable->nCol<0 ){ 1782 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1783 return 1; 1784 } 1785 assert( pTable->nCol>=0 ); 1786 1787 /* If we get this far, it means we need to compute the table names. 1788 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1789 ** "*" elements in the results set of the view and will assign cursors 1790 ** to the elements of the FROM clause. But we do not want these changes 1791 ** to be permanent. So the computation is done on a copy of the SELECT 1792 ** statement that defines the view. 1793 */ 1794 assert( pTable->pSelect ); 1795 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1796 if( pSel ){ 1797 u8 enableLookaside = db->lookaside.bEnabled; 1798 n = pParse->nTab; 1799 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1800 pTable->nCol = -1; 1801 db->lookaside.bEnabled = 0; 1802 #ifndef SQLITE_OMIT_AUTHORIZATION 1803 xAuth = db->xAuth; 1804 db->xAuth = 0; 1805 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1806 db->xAuth = xAuth; 1807 #else 1808 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1809 #endif 1810 db->lookaside.bEnabled = enableLookaside; 1811 pParse->nTab = n; 1812 if( pSelTab ){ 1813 assert( pTable->aCol==0 ); 1814 pTable->nCol = pSelTab->nCol; 1815 pTable->aCol = pSelTab->aCol; 1816 pSelTab->nCol = 0; 1817 pSelTab->aCol = 0; 1818 sqlite3DeleteTable(db, pSelTab); 1819 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 1820 pTable->pSchema->flags |= DB_UnresetViews; 1821 }else{ 1822 pTable->nCol = 0; 1823 nErr++; 1824 } 1825 sqlite3SelectDelete(db, pSel); 1826 } else { 1827 nErr++; 1828 } 1829 #endif /* SQLITE_OMIT_VIEW */ 1830 return nErr; 1831 } 1832 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1833 1834 #ifndef SQLITE_OMIT_VIEW 1835 /* 1836 ** Clear the column names from every VIEW in database idx. 1837 */ 1838 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1839 HashElem *i; 1840 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 1841 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1842 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1843 Table *pTab = sqliteHashData(i); 1844 if( pTab->pSelect ){ 1845 sqliteDeleteColumnNames(db, pTab); 1846 pTab->aCol = 0; 1847 pTab->nCol = 0; 1848 } 1849 } 1850 DbClearProperty(db, idx, DB_UnresetViews); 1851 } 1852 #else 1853 # define sqliteViewResetAll(A,B) 1854 #endif /* SQLITE_OMIT_VIEW */ 1855 1856 /* 1857 ** This function is called by the VDBE to adjust the internal schema 1858 ** used by SQLite when the btree layer moves a table root page. The 1859 ** root-page of a table or index in database iDb has changed from iFrom 1860 ** to iTo. 1861 ** 1862 ** Ticket #1728: The symbol table might still contain information 1863 ** on tables and/or indices that are the process of being deleted. 1864 ** If you are unlucky, one of those deleted indices or tables might 1865 ** have the same rootpage number as the real table or index that is 1866 ** being moved. So we cannot stop searching after the first match 1867 ** because the first match might be for one of the deleted indices 1868 ** or tables and not the table/index that is actually being moved. 1869 ** We must continue looping until all tables and indices with 1870 ** rootpage==iFrom have been converted to have a rootpage of iTo 1871 ** in order to be certain that we got the right one. 1872 */ 1873 #ifndef SQLITE_OMIT_AUTOVACUUM 1874 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 1875 HashElem *pElem; 1876 Hash *pHash; 1877 Db *pDb; 1878 1879 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1880 pDb = &db->aDb[iDb]; 1881 pHash = &pDb->pSchema->tblHash; 1882 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1883 Table *pTab = sqliteHashData(pElem); 1884 if( pTab->tnum==iFrom ){ 1885 pTab->tnum = iTo; 1886 } 1887 } 1888 pHash = &pDb->pSchema->idxHash; 1889 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1890 Index *pIdx = sqliteHashData(pElem); 1891 if( pIdx->tnum==iFrom ){ 1892 pIdx->tnum = iTo; 1893 } 1894 } 1895 } 1896 #endif 1897 1898 /* 1899 ** Write code to erase the table with root-page iTable from database iDb. 1900 ** Also write code to modify the sqlite_master table and internal schema 1901 ** if a root-page of another table is moved by the btree-layer whilst 1902 ** erasing iTable (this can happen with an auto-vacuum database). 1903 */ 1904 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1905 Vdbe *v = sqlite3GetVdbe(pParse); 1906 int r1 = sqlite3GetTempReg(pParse); 1907 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1908 sqlite3MayAbort(pParse); 1909 #ifndef SQLITE_OMIT_AUTOVACUUM 1910 /* OP_Destroy stores an in integer r1. If this integer 1911 ** is non-zero, then it is the root page number of a table moved to 1912 ** location iTable. The following code modifies the sqlite_master table to 1913 ** reflect this. 1914 ** 1915 ** The "#NNN" in the SQL is a special constant that means whatever value 1916 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1917 ** token for additional information. 1918 */ 1919 sqlite3NestedParse(pParse, 1920 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1921 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1922 #endif 1923 sqlite3ReleaseTempReg(pParse, r1); 1924 } 1925 1926 /* 1927 ** Write VDBE code to erase table pTab and all associated indices on disk. 1928 ** Code to update the sqlite_master tables and internal schema definitions 1929 ** in case a root-page belonging to another table is moved by the btree layer 1930 ** is also added (this can happen with an auto-vacuum database). 1931 */ 1932 static void destroyTable(Parse *pParse, Table *pTab){ 1933 #ifdef SQLITE_OMIT_AUTOVACUUM 1934 Index *pIdx; 1935 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1936 destroyRootPage(pParse, pTab->tnum, iDb); 1937 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1938 destroyRootPage(pParse, pIdx->tnum, iDb); 1939 } 1940 #else 1941 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1942 ** is not defined), then it is important to call OP_Destroy on the 1943 ** table and index root-pages in order, starting with the numerically 1944 ** largest root-page number. This guarantees that none of the root-pages 1945 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1946 ** following were coded: 1947 ** 1948 ** OP_Destroy 4 0 1949 ** ... 1950 ** OP_Destroy 5 0 1951 ** 1952 ** and root page 5 happened to be the largest root-page number in the 1953 ** database, then root page 5 would be moved to page 4 by the 1954 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1955 ** a free-list page. 1956 */ 1957 int iTab = pTab->tnum; 1958 int iDestroyed = 0; 1959 1960 while( 1 ){ 1961 Index *pIdx; 1962 int iLargest = 0; 1963 1964 if( iDestroyed==0 || iTab<iDestroyed ){ 1965 iLargest = iTab; 1966 } 1967 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1968 int iIdx = pIdx->tnum; 1969 assert( pIdx->pSchema==pTab->pSchema ); 1970 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1971 iLargest = iIdx; 1972 } 1973 } 1974 if( iLargest==0 ){ 1975 return; 1976 }else{ 1977 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1978 destroyRootPage(pParse, iLargest, iDb); 1979 iDestroyed = iLargest; 1980 } 1981 } 1982 #endif 1983 } 1984 1985 /* 1986 ** This routine is called to do the work of a DROP TABLE statement. 1987 ** pName is the name of the table to be dropped. 1988 */ 1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1990 Table *pTab; 1991 Vdbe *v; 1992 sqlite3 *db = pParse->db; 1993 int iDb; 1994 1995 if( db->mallocFailed ){ 1996 goto exit_drop_table; 1997 } 1998 assert( pParse->nErr==0 ); 1999 assert( pName->nSrc==1 ); 2000 if( noErr ) db->suppressErr++; 2001 pTab = sqlite3LocateTable(pParse, isView, 2002 pName->a[0].zName, pName->a[0].zDatabase); 2003 if( noErr ) db->suppressErr--; 2004 2005 if( pTab==0 ){ 2006 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2007 goto exit_drop_table; 2008 } 2009 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2010 assert( iDb>=0 && iDb<db->nDb ); 2011 2012 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2013 ** it is initialized. 2014 */ 2015 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2016 goto exit_drop_table; 2017 } 2018 #ifndef SQLITE_OMIT_AUTHORIZATION 2019 { 2020 int code; 2021 const char *zTab = SCHEMA_TABLE(iDb); 2022 const char *zDb = db->aDb[iDb].zName; 2023 const char *zArg2 = 0; 2024 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2025 goto exit_drop_table; 2026 } 2027 if( isView ){ 2028 if( !OMIT_TEMPDB && iDb==1 ){ 2029 code = SQLITE_DROP_TEMP_VIEW; 2030 }else{ 2031 code = SQLITE_DROP_VIEW; 2032 } 2033 #ifndef SQLITE_OMIT_VIRTUALTABLE 2034 }else if( IsVirtual(pTab) ){ 2035 code = SQLITE_DROP_VTABLE; 2036 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2037 #endif 2038 }else{ 2039 if( !OMIT_TEMPDB && iDb==1 ){ 2040 code = SQLITE_DROP_TEMP_TABLE; 2041 }else{ 2042 code = SQLITE_DROP_TABLE; 2043 } 2044 } 2045 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2046 goto exit_drop_table; 2047 } 2048 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2049 goto exit_drop_table; 2050 } 2051 } 2052 #endif 2053 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2054 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2055 goto exit_drop_table; 2056 } 2057 2058 #ifndef SQLITE_OMIT_VIEW 2059 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2060 ** on a table. 2061 */ 2062 if( isView && pTab->pSelect==0 ){ 2063 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2064 goto exit_drop_table; 2065 } 2066 if( !isView && pTab->pSelect ){ 2067 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2068 goto exit_drop_table; 2069 } 2070 #endif 2071 2072 /* Generate code to remove the table from the master table 2073 ** on disk. 2074 */ 2075 v = sqlite3GetVdbe(pParse); 2076 if( v ){ 2077 Trigger *pTrigger; 2078 Db *pDb = &db->aDb[iDb]; 2079 sqlite3BeginWriteOperation(pParse, 1, iDb); 2080 2081 #ifndef SQLITE_OMIT_VIRTUALTABLE 2082 if( IsVirtual(pTab) ){ 2083 sqlite3VdbeAddOp0(v, OP_VBegin); 2084 } 2085 #endif 2086 sqlite3FkDropTable(pParse, pName, pTab); 2087 2088 /* Drop all triggers associated with the table being dropped. Code 2089 ** is generated to remove entries from sqlite_master and/or 2090 ** sqlite_temp_master if required. 2091 */ 2092 pTrigger = sqlite3TriggerList(pParse, pTab); 2093 while( pTrigger ){ 2094 assert( pTrigger->pSchema==pTab->pSchema || 2095 pTrigger->pSchema==db->aDb[1].pSchema ); 2096 sqlite3DropTriggerPtr(pParse, pTrigger); 2097 pTrigger = pTrigger->pNext; 2098 } 2099 2100 #ifndef SQLITE_OMIT_AUTOINCREMENT 2101 /* Remove any entries of the sqlite_sequence table associated with 2102 ** the table being dropped. This is done before the table is dropped 2103 ** at the btree level, in case the sqlite_sequence table needs to 2104 ** move as a result of the drop (can happen in auto-vacuum mode). 2105 */ 2106 if( pTab->tabFlags & TF_Autoincrement ){ 2107 sqlite3NestedParse(pParse, 2108 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2109 pDb->zName, pTab->zName 2110 ); 2111 } 2112 #endif 2113 2114 /* Drop all SQLITE_MASTER table and index entries that refer to the 2115 ** table. The program name loops through the master table and deletes 2116 ** every row that refers to a table of the same name as the one being 2117 ** dropped. Triggers are handled seperately because a trigger can be 2118 ** created in the temp database that refers to a table in another 2119 ** database. 2120 */ 2121 sqlite3NestedParse(pParse, 2122 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2123 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2124 2125 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2126 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2127 sqlite3NestedParse(pParse, 2128 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2129 ); 2130 } 2131 2132 if( !isView && !IsVirtual(pTab) ){ 2133 destroyTable(pParse, pTab); 2134 } 2135 2136 /* Remove the table entry from SQLite's internal schema and modify 2137 ** the schema cookie. 2138 */ 2139 if( IsVirtual(pTab) ){ 2140 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2141 } 2142 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2143 sqlite3ChangeCookie(pParse, iDb); 2144 } 2145 sqliteViewResetAll(db, iDb); 2146 2147 exit_drop_table: 2148 sqlite3SrcListDelete(db, pName); 2149 } 2150 2151 /* 2152 ** This routine is called to create a new foreign key on the table 2153 ** currently under construction. pFromCol determines which columns 2154 ** in the current table point to the foreign key. If pFromCol==0 then 2155 ** connect the key to the last column inserted. pTo is the name of 2156 ** the table referred to. pToCol is a list of tables in the other 2157 ** pTo table that the foreign key points to. flags contains all 2158 ** information about the conflict resolution algorithms specified 2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2160 ** 2161 ** An FKey structure is created and added to the table currently 2162 ** under construction in the pParse->pNewTable field. 2163 ** 2164 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2166 */ 2167 void sqlite3CreateForeignKey( 2168 Parse *pParse, /* Parsing context */ 2169 ExprList *pFromCol, /* Columns in this table that point to other table */ 2170 Token *pTo, /* Name of the other table */ 2171 ExprList *pToCol, /* Columns in the other table */ 2172 int flags /* Conflict resolution algorithms. */ 2173 ){ 2174 sqlite3 *db = pParse->db; 2175 #ifndef SQLITE_OMIT_FOREIGN_KEY 2176 FKey *pFKey = 0; 2177 FKey *pNextTo; 2178 Table *p = pParse->pNewTable; 2179 int nByte; 2180 int i; 2181 int nCol; 2182 char *z; 2183 2184 assert( pTo!=0 ); 2185 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2186 if( pFromCol==0 ){ 2187 int iCol = p->nCol-1; 2188 if( NEVER(iCol<0) ) goto fk_end; 2189 if( pToCol && pToCol->nExpr!=1 ){ 2190 sqlite3ErrorMsg(pParse, "foreign key on %s" 2191 " should reference only one column of table %T", 2192 p->aCol[iCol].zName, pTo); 2193 goto fk_end; 2194 } 2195 nCol = 1; 2196 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2197 sqlite3ErrorMsg(pParse, 2198 "number of columns in foreign key does not match the number of " 2199 "columns in the referenced table"); 2200 goto fk_end; 2201 }else{ 2202 nCol = pFromCol->nExpr; 2203 } 2204 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2205 if( pToCol ){ 2206 for(i=0; i<pToCol->nExpr; i++){ 2207 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2208 } 2209 } 2210 pFKey = sqlite3DbMallocZero(db, nByte ); 2211 if( pFKey==0 ){ 2212 goto fk_end; 2213 } 2214 pFKey->pFrom = p; 2215 pFKey->pNextFrom = p->pFKey; 2216 z = (char*)&pFKey->aCol[nCol]; 2217 pFKey->zTo = z; 2218 memcpy(z, pTo->z, pTo->n); 2219 z[pTo->n] = 0; 2220 sqlite3Dequote(z); 2221 z += pTo->n+1; 2222 pFKey->nCol = nCol; 2223 if( pFromCol==0 ){ 2224 pFKey->aCol[0].iFrom = p->nCol-1; 2225 }else{ 2226 for(i=0; i<nCol; i++){ 2227 int j; 2228 for(j=0; j<p->nCol; j++){ 2229 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2230 pFKey->aCol[i].iFrom = j; 2231 break; 2232 } 2233 } 2234 if( j>=p->nCol ){ 2235 sqlite3ErrorMsg(pParse, 2236 "unknown column \"%s\" in foreign key definition", 2237 pFromCol->a[i].zName); 2238 goto fk_end; 2239 } 2240 } 2241 } 2242 if( pToCol ){ 2243 for(i=0; i<nCol; i++){ 2244 int n = sqlite3Strlen30(pToCol->a[i].zName); 2245 pFKey->aCol[i].zCol = z; 2246 memcpy(z, pToCol->a[i].zName, n); 2247 z[n] = 0; 2248 z += n+1; 2249 } 2250 } 2251 pFKey->isDeferred = 0; 2252 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2253 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2254 2255 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2256 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2257 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2258 ); 2259 if( pNextTo==pFKey ){ 2260 db->mallocFailed = 1; 2261 goto fk_end; 2262 } 2263 if( pNextTo ){ 2264 assert( pNextTo->pPrevTo==0 ); 2265 pFKey->pNextTo = pNextTo; 2266 pNextTo->pPrevTo = pFKey; 2267 } 2268 2269 /* Link the foreign key to the table as the last step. 2270 */ 2271 p->pFKey = pFKey; 2272 pFKey = 0; 2273 2274 fk_end: 2275 sqlite3DbFree(db, pFKey); 2276 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2277 sqlite3ExprListDelete(db, pFromCol); 2278 sqlite3ExprListDelete(db, pToCol); 2279 } 2280 2281 /* 2282 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2283 ** clause is seen as part of a foreign key definition. The isDeferred 2284 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2285 ** The behavior of the most recently created foreign key is adjusted 2286 ** accordingly. 2287 */ 2288 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2289 #ifndef SQLITE_OMIT_FOREIGN_KEY 2290 Table *pTab; 2291 FKey *pFKey; 2292 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2293 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2294 pFKey->isDeferred = (u8)isDeferred; 2295 #endif 2296 } 2297 2298 /* 2299 ** Generate code that will erase and refill index *pIdx. This is 2300 ** used to initialize a newly created index or to recompute the 2301 ** content of an index in response to a REINDEX command. 2302 ** 2303 ** if memRootPage is not negative, it means that the index is newly 2304 ** created. The register specified by memRootPage contains the 2305 ** root page number of the index. If memRootPage is negative, then 2306 ** the index already exists and must be cleared before being refilled and 2307 ** the root page number of the index is taken from pIndex->tnum. 2308 */ 2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2310 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2311 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2312 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2313 int addr1; /* Address of top of loop */ 2314 int tnum; /* Root page of index */ 2315 Vdbe *v; /* Generate code into this virtual machine */ 2316 KeyInfo *pKey; /* KeyInfo for index */ 2317 int regIdxKey; /* Registers containing the index key */ 2318 int regRecord; /* Register holding assemblied index record */ 2319 sqlite3 *db = pParse->db; /* The database connection */ 2320 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2321 2322 #ifndef SQLITE_OMIT_AUTHORIZATION 2323 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2324 db->aDb[iDb].zName ) ){ 2325 return; 2326 } 2327 #endif 2328 2329 /* Require a write-lock on the table to perform this operation */ 2330 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2331 2332 v = sqlite3GetVdbe(pParse); 2333 if( v==0 ) return; 2334 if( memRootPage>=0 ){ 2335 tnum = memRootPage; 2336 }else{ 2337 tnum = pIndex->tnum; 2338 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2339 } 2340 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2341 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2342 (char *)pKey, P4_KEYINFO_HANDOFF); 2343 if( memRootPage>=0 ){ 2344 sqlite3VdbeChangeP5(v, 1); 2345 } 2346 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2347 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2348 regRecord = sqlite3GetTempReg(pParse); 2349 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2350 if( pIndex->onError!=OE_None ){ 2351 const int regRowid = regIdxKey + pIndex->nColumn; 2352 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2353 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2354 2355 /* The registers accessed by the OP_IsUnique opcode were allocated 2356 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2357 ** call above. Just before that function was freed they were released 2358 ** (made available to the compiler for reuse) using 2359 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2360 ** opcode use the values stored within seems dangerous. However, since 2361 ** we can be sure that no other temp registers have been allocated 2362 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2363 */ 2364 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2365 sqlite3HaltConstraint( 2366 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); 2367 } 2368 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2369 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2370 sqlite3ReleaseTempReg(pParse, regRecord); 2371 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2372 sqlite3VdbeJumpHere(v, addr1); 2373 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2374 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2375 } 2376 2377 /* 2378 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2379 ** and pTblList is the name of the table that is to be indexed. Both will 2380 ** be NULL for a primary key or an index that is created to satisfy a 2381 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2382 ** as the table to be indexed. pParse->pNewTable is a table that is 2383 ** currently being constructed by a CREATE TABLE statement. 2384 ** 2385 ** pList is a list of columns to be indexed. pList will be NULL if this 2386 ** is a primary key or unique-constraint on the most recent column added 2387 ** to the table currently under construction. 2388 ** 2389 ** If the index is created successfully, return a pointer to the new Index 2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2391 ** as the tables primary key (Index.autoIndex==2). 2392 */ 2393 Index *sqlite3CreateIndex( 2394 Parse *pParse, /* All information about this parse */ 2395 Token *pName1, /* First part of index name. May be NULL */ 2396 Token *pName2, /* Second part of index name. May be NULL */ 2397 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2398 ExprList *pList, /* A list of columns to be indexed */ 2399 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2400 Token *pStart, /* The CREATE token that begins this statement */ 2401 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2402 int sortOrder, /* Sort order of primary key when pList==NULL */ 2403 int ifNotExist /* Omit error if index already exists */ 2404 ){ 2405 Index *pRet = 0; /* Pointer to return */ 2406 Table *pTab = 0; /* Table to be indexed */ 2407 Index *pIndex = 0; /* The index to be created */ 2408 char *zName = 0; /* Name of the index */ 2409 int nName; /* Number of characters in zName */ 2410 int i, j; 2411 Token nullId; /* Fake token for an empty ID list */ 2412 DbFixer sFix; /* For assigning database names to pTable */ 2413 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2414 sqlite3 *db = pParse->db; 2415 Db *pDb; /* The specific table containing the indexed database */ 2416 int iDb; /* Index of the database that is being written */ 2417 Token *pName = 0; /* Unqualified name of the index to create */ 2418 struct ExprList_item *pListItem; /* For looping over pList */ 2419 int nCol; 2420 int nExtra = 0; 2421 char *zExtra; 2422 2423 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2424 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2425 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2426 goto exit_create_index; 2427 } 2428 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2429 goto exit_create_index; 2430 } 2431 2432 /* 2433 ** Find the table that is to be indexed. Return early if not found. 2434 */ 2435 if( pTblName!=0 ){ 2436 2437 /* Use the two-part index name to determine the database 2438 ** to search for the table. 'Fix' the table name to this db 2439 ** before looking up the table. 2440 */ 2441 assert( pName1 && pName2 ); 2442 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2443 if( iDb<0 ) goto exit_create_index; 2444 2445 #ifndef SQLITE_OMIT_TEMPDB 2446 /* If the index name was unqualified, check if the the table 2447 ** is a temp table. If so, set the database to 1. Do not do this 2448 ** if initialising a database schema. 2449 */ 2450 if( !db->init.busy ){ 2451 pTab = sqlite3SrcListLookup(pParse, pTblName); 2452 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2453 iDb = 1; 2454 } 2455 } 2456 #endif 2457 2458 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2459 sqlite3FixSrcList(&sFix, pTblName) 2460 ){ 2461 /* Because the parser constructs pTblName from a single identifier, 2462 ** sqlite3FixSrcList can never fail. */ 2463 assert(0); 2464 } 2465 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2466 pTblName->a[0].zDatabase); 2467 if( !pTab || db->mallocFailed ) goto exit_create_index; 2468 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2469 }else{ 2470 assert( pName==0 ); 2471 pTab = pParse->pNewTable; 2472 if( !pTab ) goto exit_create_index; 2473 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2474 } 2475 pDb = &db->aDb[iDb]; 2476 2477 assert( pTab!=0 ); 2478 assert( pParse->nErr==0 ); 2479 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2480 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2481 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2482 goto exit_create_index; 2483 } 2484 #ifndef SQLITE_OMIT_VIEW 2485 if( pTab->pSelect ){ 2486 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2487 goto exit_create_index; 2488 } 2489 #endif 2490 #ifndef SQLITE_OMIT_VIRTUALTABLE 2491 if( IsVirtual(pTab) ){ 2492 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2493 goto exit_create_index; 2494 } 2495 #endif 2496 2497 /* 2498 ** Find the name of the index. Make sure there is not already another 2499 ** index or table with the same name. 2500 ** 2501 ** Exception: If we are reading the names of permanent indices from the 2502 ** sqlite_master table (because some other process changed the schema) and 2503 ** one of the index names collides with the name of a temporary table or 2504 ** index, then we will continue to process this index. 2505 ** 2506 ** If pName==0 it means that we are 2507 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2508 ** own name. 2509 */ 2510 if( pName ){ 2511 zName = sqlite3NameFromToken(db, pName); 2512 if( zName==0 ) goto exit_create_index; 2513 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2514 goto exit_create_index; 2515 } 2516 if( !db->init.busy ){ 2517 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2518 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2519 goto exit_create_index; 2520 } 2521 } 2522 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2523 if( !ifNotExist ){ 2524 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2525 }else{ 2526 assert( !db->init.busy ); 2527 sqlite3CodeVerifySchema(pParse, iDb); 2528 } 2529 goto exit_create_index; 2530 } 2531 }else{ 2532 int n; 2533 Index *pLoop; 2534 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2535 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2536 if( zName==0 ){ 2537 goto exit_create_index; 2538 } 2539 } 2540 2541 /* Check for authorization to create an index. 2542 */ 2543 #ifndef SQLITE_OMIT_AUTHORIZATION 2544 { 2545 const char *zDb = pDb->zName; 2546 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2547 goto exit_create_index; 2548 } 2549 i = SQLITE_CREATE_INDEX; 2550 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2551 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2552 goto exit_create_index; 2553 } 2554 } 2555 #endif 2556 2557 /* If pList==0, it means this routine was called to make a primary 2558 ** key out of the last column added to the table under construction. 2559 ** So create a fake list to simulate this. 2560 */ 2561 if( pList==0 ){ 2562 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2563 nullId.n = sqlite3Strlen30((char*)nullId.z); 2564 pList = sqlite3ExprListAppend(pParse, 0, 0); 2565 if( pList==0 ) goto exit_create_index; 2566 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2567 pList->a[0].sortOrder = (u8)sortOrder; 2568 } 2569 2570 /* Figure out how many bytes of space are required to store explicitly 2571 ** specified collation sequence names. 2572 */ 2573 for(i=0; i<pList->nExpr; i++){ 2574 Expr *pExpr = pList->a[i].pExpr; 2575 if( pExpr ){ 2576 CollSeq *pColl = pExpr->pColl; 2577 /* Either pColl!=0 or there was an OOM failure. But if an OOM 2578 ** failure we have quit before reaching this point. */ 2579 if( ALWAYS(pColl) ){ 2580 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2581 } 2582 } 2583 } 2584 2585 /* 2586 ** Allocate the index structure. 2587 */ 2588 nName = sqlite3Strlen30(zName); 2589 nCol = pList->nExpr; 2590 pIndex = sqlite3DbMallocZero(db, 2591 sizeof(Index) + /* Index structure */ 2592 sizeof(int)*nCol + /* Index.aiColumn */ 2593 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2594 sizeof(char *)*nCol + /* Index.azColl */ 2595 sizeof(u8)*nCol + /* Index.aSortOrder */ 2596 nName + 1 + /* Index.zName */ 2597 nExtra /* Collation sequence names */ 2598 ); 2599 if( db->mallocFailed ){ 2600 goto exit_create_index; 2601 } 2602 pIndex->azColl = (char**)(&pIndex[1]); 2603 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2604 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2605 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2606 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2607 zExtra = (char *)(&pIndex->zName[nName+1]); 2608 memcpy(pIndex->zName, zName, nName+1); 2609 pIndex->pTable = pTab; 2610 pIndex->nColumn = pList->nExpr; 2611 pIndex->onError = (u8)onError; 2612 pIndex->autoIndex = (u8)(pName==0); 2613 pIndex->pSchema = db->aDb[iDb].pSchema; 2614 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2615 2616 /* Check to see if we should honor DESC requests on index columns 2617 */ 2618 if( pDb->pSchema->file_format>=4 ){ 2619 sortOrderMask = -1; /* Honor DESC */ 2620 }else{ 2621 sortOrderMask = 0; /* Ignore DESC */ 2622 } 2623 2624 /* Scan the names of the columns of the table to be indexed and 2625 ** load the column indices into the Index structure. Report an error 2626 ** if any column is not found. 2627 ** 2628 ** TODO: Add a test to make sure that the same column is not named 2629 ** more than once within the same index. Only the first instance of 2630 ** the column will ever be used by the optimizer. Note that using the 2631 ** same column more than once cannot be an error because that would 2632 ** break backwards compatibility - it needs to be a warning. 2633 */ 2634 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2635 const char *zColName = pListItem->zName; 2636 Column *pTabCol; 2637 int requestedSortOrder; 2638 char *zColl; /* Collation sequence name */ 2639 2640 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2641 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2642 } 2643 if( j>=pTab->nCol ){ 2644 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2645 pTab->zName, zColName); 2646 pParse->checkSchema = 1; 2647 goto exit_create_index; 2648 } 2649 pIndex->aiColumn[i] = j; 2650 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of 2651 ** the way the "idxlist" non-terminal is constructed by the parser, 2652 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl 2653 ** must exist or else there must have been an OOM error. But if there 2654 ** was an OOM error, we would never reach this point. */ 2655 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ 2656 int nColl; 2657 zColl = pListItem->pExpr->pColl->zName; 2658 nColl = sqlite3Strlen30(zColl) + 1; 2659 assert( nExtra>=nColl ); 2660 memcpy(zExtra, zColl, nColl); 2661 zColl = zExtra; 2662 zExtra += nColl; 2663 nExtra -= nColl; 2664 }else{ 2665 zColl = pTab->aCol[j].zColl; 2666 if( !zColl ){ 2667 zColl = db->pDfltColl->zName; 2668 } 2669 } 2670 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2671 goto exit_create_index; 2672 } 2673 pIndex->azColl[i] = zColl; 2674 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2675 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2676 } 2677 sqlite3DefaultRowEst(pIndex); 2678 2679 if( pTab==pParse->pNewTable ){ 2680 /* This routine has been called to create an automatic index as a 2681 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2682 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2683 ** i.e. one of: 2684 ** 2685 ** CREATE TABLE t(x PRIMARY KEY, y); 2686 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2687 ** 2688 ** Either way, check to see if the table already has such an index. If 2689 ** so, don't bother creating this one. This only applies to 2690 ** automatically created indices. Users can do as they wish with 2691 ** explicit indices. 2692 ** 2693 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2694 ** (and thus suppressing the second one) even if they have different 2695 ** sort orders. 2696 ** 2697 ** If there are different collating sequences or if the columns of 2698 ** the constraint occur in different orders, then the constraints are 2699 ** considered distinct and both result in separate indices. 2700 */ 2701 Index *pIdx; 2702 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2703 int k; 2704 assert( pIdx->onError!=OE_None ); 2705 assert( pIdx->autoIndex ); 2706 assert( pIndex->onError!=OE_None ); 2707 2708 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2709 for(k=0; k<pIdx->nColumn; k++){ 2710 const char *z1; 2711 const char *z2; 2712 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2713 z1 = pIdx->azColl[k]; 2714 z2 = pIndex->azColl[k]; 2715 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2716 } 2717 if( k==pIdx->nColumn ){ 2718 if( pIdx->onError!=pIndex->onError ){ 2719 /* This constraint creates the same index as a previous 2720 ** constraint specified somewhere in the CREATE TABLE statement. 2721 ** However the ON CONFLICT clauses are different. If both this 2722 ** constraint and the previous equivalent constraint have explicit 2723 ** ON CONFLICT clauses this is an error. Otherwise, use the 2724 ** explicitly specified behaviour for the index. 2725 */ 2726 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2727 sqlite3ErrorMsg(pParse, 2728 "conflicting ON CONFLICT clauses specified", 0); 2729 } 2730 if( pIdx->onError==OE_Default ){ 2731 pIdx->onError = pIndex->onError; 2732 } 2733 } 2734 goto exit_create_index; 2735 } 2736 } 2737 } 2738 2739 /* Link the new Index structure to its table and to the other 2740 ** in-memory database structures. 2741 */ 2742 if( db->init.busy ){ 2743 Index *p; 2744 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 2745 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2746 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2747 pIndex); 2748 if( p ){ 2749 assert( p==pIndex ); /* Malloc must have failed */ 2750 db->mallocFailed = 1; 2751 goto exit_create_index; 2752 } 2753 db->flags |= SQLITE_InternChanges; 2754 if( pTblName!=0 ){ 2755 pIndex->tnum = db->init.newTnum; 2756 } 2757 } 2758 2759 /* If the db->init.busy is 0 then create the index on disk. This 2760 ** involves writing the index into the master table and filling in the 2761 ** index with the current table contents. 2762 ** 2763 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2764 ** command. db->init.busy is 1 when a database is opened and 2765 ** CREATE INDEX statements are read out of the master table. In 2766 ** the latter case the index already exists on disk, which is why 2767 ** we don't want to recreate it. 2768 ** 2769 ** If pTblName==0 it means this index is generated as a primary key 2770 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2771 ** has just been created, it contains no data and the index initialization 2772 ** step can be skipped. 2773 */ 2774 else{ /* if( db->init.busy==0 ) */ 2775 Vdbe *v; 2776 char *zStmt; 2777 int iMem = ++pParse->nMem; 2778 2779 v = sqlite3GetVdbe(pParse); 2780 if( v==0 ) goto exit_create_index; 2781 2782 2783 /* Create the rootpage for the index 2784 */ 2785 sqlite3BeginWriteOperation(pParse, 1, iDb); 2786 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2787 2788 /* Gather the complete text of the CREATE INDEX statement into 2789 ** the zStmt variable 2790 */ 2791 if( pStart ){ 2792 assert( pEnd!=0 ); 2793 /* A named index with an explicit CREATE INDEX statement */ 2794 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2795 onError==OE_None ? "" : " UNIQUE", 2796 pEnd->z - pName->z + 1, 2797 pName->z); 2798 }else{ 2799 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2800 /* zStmt = sqlite3MPrintf(""); */ 2801 zStmt = 0; 2802 } 2803 2804 /* Add an entry in sqlite_master for this index 2805 */ 2806 sqlite3NestedParse(pParse, 2807 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2808 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2809 pIndex->zName, 2810 pTab->zName, 2811 iMem, 2812 zStmt 2813 ); 2814 sqlite3DbFree(db, zStmt); 2815 2816 /* Fill the index with data and reparse the schema. Code an OP_Expire 2817 ** to invalidate all pre-compiled statements. 2818 */ 2819 if( pTblName ){ 2820 sqlite3RefillIndex(pParse, pIndex, iMem); 2821 sqlite3ChangeCookie(pParse, iDb); 2822 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2823 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 2824 P4_DYNAMIC); 2825 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2826 } 2827 } 2828 2829 /* When adding an index to the list of indices for a table, make 2830 ** sure all indices labeled OE_Replace come after all those labeled 2831 ** OE_Ignore. This is necessary for the correct constraint check 2832 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2833 ** UPDATE and INSERT statements. 2834 */ 2835 if( db->init.busy || pTblName==0 ){ 2836 if( onError!=OE_Replace || pTab->pIndex==0 2837 || pTab->pIndex->onError==OE_Replace){ 2838 pIndex->pNext = pTab->pIndex; 2839 pTab->pIndex = pIndex; 2840 }else{ 2841 Index *pOther = pTab->pIndex; 2842 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2843 pOther = pOther->pNext; 2844 } 2845 pIndex->pNext = pOther->pNext; 2846 pOther->pNext = pIndex; 2847 } 2848 pRet = pIndex; 2849 pIndex = 0; 2850 } 2851 2852 /* Clean up before exiting */ 2853 exit_create_index: 2854 if( pIndex ){ 2855 sqlite3DbFree(db, pIndex->zColAff); 2856 sqlite3DbFree(db, pIndex); 2857 } 2858 sqlite3ExprListDelete(db, pList); 2859 sqlite3SrcListDelete(db, pTblName); 2860 sqlite3DbFree(db, zName); 2861 return pRet; 2862 } 2863 2864 /* 2865 ** Fill the Index.aiRowEst[] array with default information - information 2866 ** to be used when we have not run the ANALYZE command. 2867 ** 2868 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2869 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2870 ** number of rows in the table that match any particular value of the 2871 ** first column of the index. aiRowEst[2] is an estimate of the number 2872 ** of rows that match any particular combiniation of the first 2 columns 2873 ** of the index. And so forth. It must always be the case that 2874 * 2875 ** aiRowEst[N]<=aiRowEst[N-1] 2876 ** aiRowEst[N]>=1 2877 ** 2878 ** Apart from that, we have little to go on besides intuition as to 2879 ** how aiRowEst[] should be initialized. The numbers generated here 2880 ** are based on typical values found in actual indices. 2881 */ 2882 void sqlite3DefaultRowEst(Index *pIdx){ 2883 unsigned *a = pIdx->aiRowEst; 2884 int i; 2885 unsigned n; 2886 assert( a!=0 ); 2887 a[0] = pIdx->pTable->nRowEst; 2888 if( a[0]<10 ) a[0] = 10; 2889 n = 10; 2890 for(i=1; i<=pIdx->nColumn; i++){ 2891 a[i] = n; 2892 if( n>5 ) n--; 2893 } 2894 if( pIdx->onError!=OE_None ){ 2895 a[pIdx->nColumn] = 1; 2896 } 2897 } 2898 2899 /* 2900 ** This routine will drop an existing named index. This routine 2901 ** implements the DROP INDEX statement. 2902 */ 2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2904 Index *pIndex; 2905 Vdbe *v; 2906 sqlite3 *db = pParse->db; 2907 int iDb; 2908 2909 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2910 if( db->mallocFailed ){ 2911 goto exit_drop_index; 2912 } 2913 assert( pName->nSrc==1 ); 2914 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2915 goto exit_drop_index; 2916 } 2917 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2918 if( pIndex==0 ){ 2919 if( !ifExists ){ 2920 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2921 }else{ 2922 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2923 } 2924 pParse->checkSchema = 1; 2925 goto exit_drop_index; 2926 } 2927 if( pIndex->autoIndex ){ 2928 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2929 "or PRIMARY KEY constraint cannot be dropped", 0); 2930 goto exit_drop_index; 2931 } 2932 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2933 #ifndef SQLITE_OMIT_AUTHORIZATION 2934 { 2935 int code = SQLITE_DROP_INDEX; 2936 Table *pTab = pIndex->pTable; 2937 const char *zDb = db->aDb[iDb].zName; 2938 const char *zTab = SCHEMA_TABLE(iDb); 2939 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2940 goto exit_drop_index; 2941 } 2942 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2943 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2944 goto exit_drop_index; 2945 } 2946 } 2947 #endif 2948 2949 /* Generate code to remove the index and from the master table */ 2950 v = sqlite3GetVdbe(pParse); 2951 if( v ){ 2952 sqlite3BeginWriteOperation(pParse, 1, iDb); 2953 sqlite3NestedParse(pParse, 2954 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 2955 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2956 pIndex->zName 2957 ); 2958 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2959 sqlite3NestedParse(pParse, 2960 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2961 db->aDb[iDb].zName, pIndex->zName 2962 ); 2963 } 2964 sqlite3ChangeCookie(pParse, iDb); 2965 destroyRootPage(pParse, pIndex->tnum, iDb); 2966 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2967 } 2968 2969 exit_drop_index: 2970 sqlite3SrcListDelete(db, pName); 2971 } 2972 2973 /* 2974 ** pArray is a pointer to an array of objects. Each object in the 2975 ** array is szEntry bytes in size. This routine allocates a new 2976 ** object on the end of the array. 2977 ** 2978 ** *pnEntry is the number of entries already in use. *pnAlloc is 2979 ** the previously allocated size of the array. initSize is the 2980 ** suggested initial array size allocation. 2981 ** 2982 ** The index of the new entry is returned in *pIdx. 2983 ** 2984 ** This routine returns a pointer to the array of objects. This 2985 ** might be the same as the pArray parameter or it might be a different 2986 ** pointer if the array was resized. 2987 */ 2988 void *sqlite3ArrayAllocate( 2989 sqlite3 *db, /* Connection to notify of malloc failures */ 2990 void *pArray, /* Array of objects. Might be reallocated */ 2991 int szEntry, /* Size of each object in the array */ 2992 int initSize, /* Suggested initial allocation, in elements */ 2993 int *pnEntry, /* Number of objects currently in use */ 2994 int *pnAlloc, /* Current size of the allocation, in elements */ 2995 int *pIdx /* Write the index of a new slot here */ 2996 ){ 2997 char *z; 2998 if( *pnEntry >= *pnAlloc ){ 2999 void *pNew; 3000 int newSize; 3001 newSize = (*pnAlloc)*2 + initSize; 3002 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 3003 if( pNew==0 ){ 3004 *pIdx = -1; 3005 return pArray; 3006 } 3007 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 3008 pArray = pNew; 3009 } 3010 z = (char*)pArray; 3011 memset(&z[*pnEntry * szEntry], 0, szEntry); 3012 *pIdx = *pnEntry; 3013 ++*pnEntry; 3014 return pArray; 3015 } 3016 3017 /* 3018 ** Append a new element to the given IdList. Create a new IdList if 3019 ** need be. 3020 ** 3021 ** A new IdList is returned, or NULL if malloc() fails. 3022 */ 3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3024 int i; 3025 if( pList==0 ){ 3026 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3027 if( pList==0 ) return 0; 3028 pList->nAlloc = 0; 3029 } 3030 pList->a = sqlite3ArrayAllocate( 3031 db, 3032 pList->a, 3033 sizeof(pList->a[0]), 3034 5, 3035 &pList->nId, 3036 &pList->nAlloc, 3037 &i 3038 ); 3039 if( i<0 ){ 3040 sqlite3IdListDelete(db, pList); 3041 return 0; 3042 } 3043 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3044 return pList; 3045 } 3046 3047 /* 3048 ** Delete an IdList. 3049 */ 3050 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3051 int i; 3052 if( pList==0 ) return; 3053 for(i=0; i<pList->nId; i++){ 3054 sqlite3DbFree(db, pList->a[i].zName); 3055 } 3056 sqlite3DbFree(db, pList->a); 3057 sqlite3DbFree(db, pList); 3058 } 3059 3060 /* 3061 ** Return the index in pList of the identifier named zId. Return -1 3062 ** if not found. 3063 */ 3064 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3065 int i; 3066 if( pList==0 ) return -1; 3067 for(i=0; i<pList->nId; i++){ 3068 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3069 } 3070 return -1; 3071 } 3072 3073 /* 3074 ** Expand the space allocated for the given SrcList object by 3075 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3076 ** New slots are zeroed. 3077 ** 3078 ** For example, suppose a SrcList initially contains two entries: A,B. 3079 ** To append 3 new entries onto the end, do this: 3080 ** 3081 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3082 ** 3083 ** After the call above it would contain: A, B, nil, nil, nil. 3084 ** If the iStart argument had been 1 instead of 2, then the result 3085 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3086 ** the iStart value would be 0. The result then would 3087 ** be: nil, nil, nil, A, B. 3088 ** 3089 ** If a memory allocation fails the SrcList is unchanged. The 3090 ** db->mallocFailed flag will be set to true. 3091 */ 3092 SrcList *sqlite3SrcListEnlarge( 3093 sqlite3 *db, /* Database connection to notify of OOM errors */ 3094 SrcList *pSrc, /* The SrcList to be enlarged */ 3095 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3096 int iStart /* Index in pSrc->a[] of first new slot */ 3097 ){ 3098 int i; 3099 3100 /* Sanity checking on calling parameters */ 3101 assert( iStart>=0 ); 3102 assert( nExtra>=1 ); 3103 assert( pSrc!=0 ); 3104 assert( iStart<=pSrc->nSrc ); 3105 3106 /* Allocate additional space if needed */ 3107 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3108 SrcList *pNew; 3109 int nAlloc = pSrc->nSrc+nExtra; 3110 int nGot; 3111 pNew = sqlite3DbRealloc(db, pSrc, 3112 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3113 if( pNew==0 ){ 3114 assert( db->mallocFailed ); 3115 return pSrc; 3116 } 3117 pSrc = pNew; 3118 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3119 pSrc->nAlloc = (u16)nGot; 3120 } 3121 3122 /* Move existing slots that come after the newly inserted slots 3123 ** out of the way */ 3124 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3125 pSrc->a[i+nExtra] = pSrc->a[i]; 3126 } 3127 pSrc->nSrc += (i16)nExtra; 3128 3129 /* Zero the newly allocated slots */ 3130 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3131 for(i=iStart; i<iStart+nExtra; i++){ 3132 pSrc->a[i].iCursor = -1; 3133 } 3134 3135 /* Return a pointer to the enlarged SrcList */ 3136 return pSrc; 3137 } 3138 3139 3140 /* 3141 ** Append a new table name to the given SrcList. Create a new SrcList if 3142 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3143 ** 3144 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3145 ** SrcList might be the same as the SrcList that was input or it might be 3146 ** a new one. If an OOM error does occurs, then the prior value of pList 3147 ** that is input to this routine is automatically freed. 3148 ** 3149 ** If pDatabase is not null, it means that the table has an optional 3150 ** database name prefix. Like this: "database.table". The pDatabase 3151 ** points to the table name and the pTable points to the database name. 3152 ** The SrcList.a[].zName field is filled with the table name which might 3153 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3154 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3155 ** or with NULL if no database is specified. 3156 ** 3157 ** In other words, if call like this: 3158 ** 3159 ** sqlite3SrcListAppend(D,A,B,0); 3160 ** 3161 ** Then B is a table name and the database name is unspecified. If called 3162 ** like this: 3163 ** 3164 ** sqlite3SrcListAppend(D,A,B,C); 3165 ** 3166 ** Then C is the table name and B is the database name. If C is defined 3167 ** then so is B. In other words, we never have a case where: 3168 ** 3169 ** sqlite3SrcListAppend(D,A,0,C); 3170 ** 3171 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3172 ** before being added to the SrcList. 3173 */ 3174 SrcList *sqlite3SrcListAppend( 3175 sqlite3 *db, /* Connection to notify of malloc failures */ 3176 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3177 Token *pTable, /* Table to append */ 3178 Token *pDatabase /* Database of the table */ 3179 ){ 3180 struct SrcList_item *pItem; 3181 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3182 if( pList==0 ){ 3183 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3184 if( pList==0 ) return 0; 3185 pList->nAlloc = 1; 3186 } 3187 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3188 if( db->mallocFailed ){ 3189 sqlite3SrcListDelete(db, pList); 3190 return 0; 3191 } 3192 pItem = &pList->a[pList->nSrc-1]; 3193 if( pDatabase && pDatabase->z==0 ){ 3194 pDatabase = 0; 3195 } 3196 if( pDatabase ){ 3197 Token *pTemp = pDatabase; 3198 pDatabase = pTable; 3199 pTable = pTemp; 3200 } 3201 pItem->zName = sqlite3NameFromToken(db, pTable); 3202 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3203 return pList; 3204 } 3205 3206 /* 3207 ** Assign VdbeCursor index numbers to all tables in a SrcList 3208 */ 3209 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3210 int i; 3211 struct SrcList_item *pItem; 3212 assert(pList || pParse->db->mallocFailed ); 3213 if( pList ){ 3214 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3215 if( pItem->iCursor>=0 ) break; 3216 pItem->iCursor = pParse->nTab++; 3217 if( pItem->pSelect ){ 3218 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3219 } 3220 } 3221 } 3222 } 3223 3224 /* 3225 ** Delete an entire SrcList including all its substructure. 3226 */ 3227 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3228 int i; 3229 struct SrcList_item *pItem; 3230 if( pList==0 ) return; 3231 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3232 sqlite3DbFree(db, pItem->zDatabase); 3233 sqlite3DbFree(db, pItem->zName); 3234 sqlite3DbFree(db, pItem->zAlias); 3235 sqlite3DbFree(db, pItem->zIndex); 3236 sqlite3DeleteTable(db, pItem->pTab); 3237 sqlite3SelectDelete(db, pItem->pSelect); 3238 sqlite3ExprDelete(db, pItem->pOn); 3239 sqlite3IdListDelete(db, pItem->pUsing); 3240 } 3241 sqlite3DbFree(db, pList); 3242 } 3243 3244 /* 3245 ** This routine is called by the parser to add a new term to the 3246 ** end of a growing FROM clause. The "p" parameter is the part of 3247 ** the FROM clause that has already been constructed. "p" is NULL 3248 ** if this is the first term of the FROM clause. pTable and pDatabase 3249 ** are the name of the table and database named in the FROM clause term. 3250 ** pDatabase is NULL if the database name qualifier is missing - the 3251 ** usual case. If the term has a alias, then pAlias points to the 3252 ** alias token. If the term is a subquery, then pSubquery is the 3253 ** SELECT statement that the subquery encodes. The pTable and 3254 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3255 ** parameters are the content of the ON and USING clauses. 3256 ** 3257 ** Return a new SrcList which encodes is the FROM with the new 3258 ** term added. 3259 */ 3260 SrcList *sqlite3SrcListAppendFromTerm( 3261 Parse *pParse, /* Parsing context */ 3262 SrcList *p, /* The left part of the FROM clause already seen */ 3263 Token *pTable, /* Name of the table to add to the FROM clause */ 3264 Token *pDatabase, /* Name of the database containing pTable */ 3265 Token *pAlias, /* The right-hand side of the AS subexpression */ 3266 Select *pSubquery, /* A subquery used in place of a table name */ 3267 Expr *pOn, /* The ON clause of a join */ 3268 IdList *pUsing /* The USING clause of a join */ 3269 ){ 3270 struct SrcList_item *pItem; 3271 sqlite3 *db = pParse->db; 3272 if( !p && (pOn || pUsing) ){ 3273 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3274 (pOn ? "ON" : "USING") 3275 ); 3276 goto append_from_error; 3277 } 3278 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3279 if( p==0 || NEVER(p->nSrc==0) ){ 3280 goto append_from_error; 3281 } 3282 pItem = &p->a[p->nSrc-1]; 3283 assert( pAlias!=0 ); 3284 if( pAlias->n ){ 3285 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3286 } 3287 pItem->pSelect = pSubquery; 3288 pItem->pOn = pOn; 3289 pItem->pUsing = pUsing; 3290 return p; 3291 3292 append_from_error: 3293 assert( p==0 ); 3294 sqlite3ExprDelete(db, pOn); 3295 sqlite3IdListDelete(db, pUsing); 3296 sqlite3SelectDelete(db, pSubquery); 3297 return 0; 3298 } 3299 3300 /* 3301 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3302 ** element of the source-list passed as the second argument. 3303 */ 3304 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3305 assert( pIndexedBy!=0 ); 3306 if( p && ALWAYS(p->nSrc>0) ){ 3307 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3308 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3309 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3310 /* A "NOT INDEXED" clause was supplied. See parse.y 3311 ** construct "indexed_opt" for details. */ 3312 pItem->notIndexed = 1; 3313 }else{ 3314 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3315 } 3316 } 3317 } 3318 3319 /* 3320 ** When building up a FROM clause in the parser, the join operator 3321 ** is initially attached to the left operand. But the code generator 3322 ** expects the join operator to be on the right operand. This routine 3323 ** Shifts all join operators from left to right for an entire FROM 3324 ** clause. 3325 ** 3326 ** Example: Suppose the join is like this: 3327 ** 3328 ** A natural cross join B 3329 ** 3330 ** The operator is "natural cross join". The A and B operands are stored 3331 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3332 ** operator with A. This routine shifts that operator over to B. 3333 */ 3334 void sqlite3SrcListShiftJoinType(SrcList *p){ 3335 if( p && p->a ){ 3336 int i; 3337 for(i=p->nSrc-1; i>0; i--){ 3338 p->a[i].jointype = p->a[i-1].jointype; 3339 } 3340 p->a[0].jointype = 0; 3341 } 3342 } 3343 3344 /* 3345 ** Begin a transaction 3346 */ 3347 void sqlite3BeginTransaction(Parse *pParse, int type){ 3348 sqlite3 *db; 3349 Vdbe *v; 3350 int i; 3351 3352 assert( pParse!=0 ); 3353 db = pParse->db; 3354 assert( db!=0 ); 3355 /* if( db->aDb[0].pBt==0 ) return; */ 3356 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3357 return; 3358 } 3359 v = sqlite3GetVdbe(pParse); 3360 if( !v ) return; 3361 if( type!=TK_DEFERRED ){ 3362 for(i=0; i<db->nDb; i++){ 3363 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3364 sqlite3VdbeUsesBtree(v, i); 3365 } 3366 } 3367 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3368 } 3369 3370 /* 3371 ** Commit a transaction 3372 */ 3373 void sqlite3CommitTransaction(Parse *pParse){ 3374 sqlite3 *db; 3375 Vdbe *v; 3376 3377 assert( pParse!=0 ); 3378 db = pParse->db; 3379 assert( db!=0 ); 3380 /* if( db->aDb[0].pBt==0 ) return; */ 3381 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3382 return; 3383 } 3384 v = sqlite3GetVdbe(pParse); 3385 if( v ){ 3386 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3387 } 3388 } 3389 3390 /* 3391 ** Rollback a transaction 3392 */ 3393 void sqlite3RollbackTransaction(Parse *pParse){ 3394 sqlite3 *db; 3395 Vdbe *v; 3396 3397 assert( pParse!=0 ); 3398 db = pParse->db; 3399 assert( db!=0 ); 3400 /* if( db->aDb[0].pBt==0 ) return; */ 3401 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3402 return; 3403 } 3404 v = sqlite3GetVdbe(pParse); 3405 if( v ){ 3406 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3407 } 3408 } 3409 3410 /* 3411 ** This function is called by the parser when it parses a command to create, 3412 ** release or rollback an SQL savepoint. 3413 */ 3414 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3415 char *zName = sqlite3NameFromToken(pParse->db, pName); 3416 if( zName ){ 3417 Vdbe *v = sqlite3GetVdbe(pParse); 3418 #ifndef SQLITE_OMIT_AUTHORIZATION 3419 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3420 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3421 #endif 3422 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3423 sqlite3DbFree(pParse->db, zName); 3424 return; 3425 } 3426 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3427 } 3428 } 3429 3430 /* 3431 ** Make sure the TEMP database is open and available for use. Return 3432 ** the number of errors. Leave any error messages in the pParse structure. 3433 */ 3434 int sqlite3OpenTempDatabase(Parse *pParse){ 3435 sqlite3 *db = pParse->db; 3436 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3437 int rc; 3438 Btree *pBt; 3439 static const int flags = 3440 SQLITE_OPEN_READWRITE | 3441 SQLITE_OPEN_CREATE | 3442 SQLITE_OPEN_EXCLUSIVE | 3443 SQLITE_OPEN_DELETEONCLOSE | 3444 SQLITE_OPEN_TEMP_DB; 3445 3446 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); 3447 if( rc!=SQLITE_OK ){ 3448 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3449 "file for storing temporary tables"); 3450 pParse->rc = rc; 3451 return 1; 3452 } 3453 db->aDb[1].pBt = pBt; 3454 assert( db->aDb[1].pSchema ); 3455 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3456 db->mallocFailed = 1; 3457 return 1; 3458 } 3459 } 3460 return 0; 3461 } 3462 3463 /* 3464 ** Generate VDBE code that will verify the schema cookie and start 3465 ** a read-transaction for all named database files. 3466 ** 3467 ** It is important that all schema cookies be verified and all 3468 ** read transactions be started before anything else happens in 3469 ** the VDBE program. But this routine can be called after much other 3470 ** code has been generated. So here is what we do: 3471 ** 3472 ** The first time this routine is called, we code an OP_Goto that 3473 ** will jump to a subroutine at the end of the program. Then we 3474 ** record every database that needs its schema verified in the 3475 ** pParse->cookieMask field. Later, after all other code has been 3476 ** generated, the subroutine that does the cookie verifications and 3477 ** starts the transactions will be coded and the OP_Goto P2 value 3478 ** will be made to point to that subroutine. The generation of the 3479 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3480 ** 3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3482 ** schema on any databases. This can be used to position the OP_Goto 3483 ** early in the code, before we know if any database tables will be used. 3484 */ 3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3486 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3487 3488 if( pToplevel->cookieGoto==0 ){ 3489 Vdbe *v = sqlite3GetVdbe(pToplevel); 3490 if( v==0 ) return; /* This only happens if there was a prior error */ 3491 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3492 } 3493 if( iDb>=0 ){ 3494 sqlite3 *db = pToplevel->db; 3495 yDbMask mask; 3496 3497 assert( iDb<db->nDb ); 3498 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3499 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3500 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3501 mask = ((yDbMask)1)<<iDb; 3502 if( (pToplevel->cookieMask & mask)==0 ){ 3503 pToplevel->cookieMask |= mask; 3504 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3505 if( !OMIT_TEMPDB && iDb==1 ){ 3506 sqlite3OpenTempDatabase(pToplevel); 3507 } 3508 } 3509 } 3510 } 3511 3512 /* 3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3514 ** attached database. Otherwise, invoke it for the database named zDb only. 3515 */ 3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3517 sqlite3 *db = pParse->db; 3518 int i; 3519 for(i=0; i<db->nDb; i++){ 3520 Db *pDb = &db->aDb[i]; 3521 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3522 sqlite3CodeVerifySchema(pParse, i); 3523 } 3524 } 3525 } 3526 3527 /* 3528 ** Generate VDBE code that prepares for doing an operation that 3529 ** might change the database. 3530 ** 3531 ** This routine starts a new transaction if we are not already within 3532 ** a transaction. If we are already within a transaction, then a checkpoint 3533 ** is set if the setStatement parameter is true. A checkpoint should 3534 ** be set for operations that might fail (due to a constraint) part of 3535 ** the way through and which will need to undo some writes without having to 3536 ** rollback the whole transaction. For operations where all constraints 3537 ** can be checked before any changes are made to the database, it is never 3538 ** necessary to undo a write and the checkpoint should not be set. 3539 */ 3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3541 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3542 sqlite3CodeVerifySchema(pParse, iDb); 3543 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3544 pToplevel->isMultiWrite |= setStatement; 3545 } 3546 3547 /* 3548 ** Indicate that the statement currently under construction might write 3549 ** more than one entry (example: deleting one row then inserting another, 3550 ** inserting multiple rows in a table, or inserting a row and index entries.) 3551 ** If an abort occurs after some of these writes have completed, then it will 3552 ** be necessary to undo the completed writes. 3553 */ 3554 void sqlite3MultiWrite(Parse *pParse){ 3555 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3556 pToplevel->isMultiWrite = 1; 3557 } 3558 3559 /* 3560 ** The code generator calls this routine if is discovers that it is 3561 ** possible to abort a statement prior to completion. In order to 3562 ** perform this abort without corrupting the database, we need to make 3563 ** sure that the statement is protected by a statement transaction. 3564 ** 3565 ** Technically, we only need to set the mayAbort flag if the 3566 ** isMultiWrite flag was previously set. There is a time dependency 3567 ** such that the abort must occur after the multiwrite. This makes 3568 ** some statements involving the REPLACE conflict resolution algorithm 3569 ** go a little faster. But taking advantage of this time dependency 3570 ** makes it more difficult to prove that the code is correct (in 3571 ** particular, it prevents us from writing an effective 3572 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3573 ** to take the safe route and skip the optimization. 3574 */ 3575 void sqlite3MayAbort(Parse *pParse){ 3576 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3577 pToplevel->mayAbort = 1; 3578 } 3579 3580 /* 3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3582 ** error. The onError parameter determines which (if any) of the statement 3583 ** and/or current transaction is rolled back. 3584 */ 3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ 3586 Vdbe *v = sqlite3GetVdbe(pParse); 3587 if( onError==OE_Abort ){ 3588 sqlite3MayAbort(pParse); 3589 } 3590 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); 3591 } 3592 3593 /* 3594 ** Check to see if pIndex uses the collating sequence pColl. Return 3595 ** true if it does and false if it does not. 3596 */ 3597 #ifndef SQLITE_OMIT_REINDEX 3598 static int collationMatch(const char *zColl, Index *pIndex){ 3599 int i; 3600 assert( zColl!=0 ); 3601 for(i=0; i<pIndex->nColumn; i++){ 3602 const char *z = pIndex->azColl[i]; 3603 assert( z!=0 ); 3604 if( 0==sqlite3StrICmp(z, zColl) ){ 3605 return 1; 3606 } 3607 } 3608 return 0; 3609 } 3610 #endif 3611 3612 /* 3613 ** Recompute all indices of pTab that use the collating sequence pColl. 3614 ** If pColl==0 then recompute all indices of pTab. 3615 */ 3616 #ifndef SQLITE_OMIT_REINDEX 3617 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3618 Index *pIndex; /* An index associated with pTab */ 3619 3620 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3621 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3622 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3623 sqlite3BeginWriteOperation(pParse, 0, iDb); 3624 sqlite3RefillIndex(pParse, pIndex, -1); 3625 } 3626 } 3627 } 3628 #endif 3629 3630 /* 3631 ** Recompute all indices of all tables in all databases where the 3632 ** indices use the collating sequence pColl. If pColl==0 then recompute 3633 ** all indices everywhere. 3634 */ 3635 #ifndef SQLITE_OMIT_REINDEX 3636 static void reindexDatabases(Parse *pParse, char const *zColl){ 3637 Db *pDb; /* A single database */ 3638 int iDb; /* The database index number */ 3639 sqlite3 *db = pParse->db; /* The database connection */ 3640 HashElem *k; /* For looping over tables in pDb */ 3641 Table *pTab; /* A table in the database */ 3642 3643 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 3644 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3645 assert( pDb!=0 ); 3646 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3647 pTab = (Table*)sqliteHashData(k); 3648 reindexTable(pParse, pTab, zColl); 3649 } 3650 } 3651 } 3652 #endif 3653 3654 /* 3655 ** Generate code for the REINDEX command. 3656 ** 3657 ** REINDEX -- 1 3658 ** REINDEX <collation> -- 2 3659 ** REINDEX ?<database>.?<tablename> -- 3 3660 ** REINDEX ?<database>.?<indexname> -- 4 3661 ** 3662 ** Form 1 causes all indices in all attached databases to be rebuilt. 3663 ** Form 2 rebuilds all indices in all databases that use the named 3664 ** collating function. Forms 3 and 4 rebuild the named index or all 3665 ** indices associated with the named table. 3666 */ 3667 #ifndef SQLITE_OMIT_REINDEX 3668 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3669 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3670 char *z; /* Name of a table or index */ 3671 const char *zDb; /* Name of the database */ 3672 Table *pTab; /* A table in the database */ 3673 Index *pIndex; /* An index associated with pTab */ 3674 int iDb; /* The database index number */ 3675 sqlite3 *db = pParse->db; /* The database connection */ 3676 Token *pObjName; /* Name of the table or index to be reindexed */ 3677 3678 /* Read the database schema. If an error occurs, leave an error message 3679 ** and code in pParse and return NULL. */ 3680 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3681 return; 3682 } 3683 3684 if( pName1==0 ){ 3685 reindexDatabases(pParse, 0); 3686 return; 3687 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3688 char *zColl; 3689 assert( pName1->z ); 3690 zColl = sqlite3NameFromToken(pParse->db, pName1); 3691 if( !zColl ) return; 3692 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3693 if( pColl ){ 3694 reindexDatabases(pParse, zColl); 3695 sqlite3DbFree(db, zColl); 3696 return; 3697 } 3698 sqlite3DbFree(db, zColl); 3699 } 3700 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3701 if( iDb<0 ) return; 3702 z = sqlite3NameFromToken(db, pObjName); 3703 if( z==0 ) return; 3704 zDb = db->aDb[iDb].zName; 3705 pTab = sqlite3FindTable(db, z, zDb); 3706 if( pTab ){ 3707 reindexTable(pParse, pTab, 0); 3708 sqlite3DbFree(db, z); 3709 return; 3710 } 3711 pIndex = sqlite3FindIndex(db, z, zDb); 3712 sqlite3DbFree(db, z); 3713 if( pIndex ){ 3714 sqlite3BeginWriteOperation(pParse, 0, iDb); 3715 sqlite3RefillIndex(pParse, pIndex, -1); 3716 return; 3717 } 3718 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3719 } 3720 #endif 3721 3722 /* 3723 ** Return a dynamicly allocated KeyInfo structure that can be used 3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3725 ** 3726 ** If successful, a pointer to the new structure is returned. In this case 3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3728 ** pointer. If an error occurs (out of memory or missing collation 3729 ** sequence), NULL is returned and the state of pParse updated to reflect 3730 ** the error. 3731 */ 3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3733 int i; 3734 int nCol = pIdx->nColumn; 3735 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3736 sqlite3 *db = pParse->db; 3737 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3738 3739 if( pKey ){ 3740 pKey->db = pParse->db; 3741 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3742 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3743 for(i=0; i<nCol; i++){ 3744 char *zColl = pIdx->azColl[i]; 3745 assert( zColl ); 3746 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3747 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3748 } 3749 pKey->nField = (u16)nCol; 3750 } 3751 3752 if( pParse->nErr ){ 3753 sqlite3DbFree(db, pKey); 3754 pKey = 0; 3755 } 3756 return pKey; 3757 } 3758