1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ValueHandle.h" 34 using namespace llvm; 35 using namespace llvm::PatternMatch; 36 37 #define DEBUG_TYPE "instsimplify" 38 39 enum { RecursionLimit = 3 }; 40 41 STATISTIC(NumExpand, "Number of expansions"); 42 STATISTIC(NumReassoc, "Number of reassociations"); 43 44 struct Query { 45 const DataLayout *DL; 46 const TargetLibraryInfo *TLI; 47 const DominatorTree *DT; 48 49 Query(const DataLayout *DL, const TargetLibraryInfo *tli, 50 const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {} 51 }; 52 53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 55 unsigned); 56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 57 unsigned); 58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 61 62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or 63 /// a vector with every element false, as appropriate for the type. 64 static Constant *getFalse(Type *Ty) { 65 assert(Ty->getScalarType()->isIntegerTy(1) && 66 "Expected i1 type or a vector of i1!"); 67 return Constant::getNullValue(Ty); 68 } 69 70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or 71 /// a vector with every element true, as appropriate for the type. 72 static Constant *getTrue(Type *Ty) { 73 assert(Ty->getScalarType()->isIntegerTy(1) && 74 "Expected i1 type or a vector of i1!"); 75 return Constant::getAllOnesValue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// ValueDominatesPHI - Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) { 107 if (!DT->isReachableFromEntry(P->getParent())) 108 return true; 109 if (!DT->isReachableFromEntry(I->getParent())) 110 return false; 111 return DT->dominates(I, P); 112 } 113 114 // Otherwise, if the instruction is in the entry block, and is not an invoke, 115 // then it obviously dominates all phi nodes. 116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 117 !isa<InvokeInst>(I)) 118 return true; 119 120 return false; 121 } 122 123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning 124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 127 /// Returns the simplified value, or null if no simplification was performed. 128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 129 unsigned OpcToExpand, const Query &Q, 130 unsigned MaxRecurse) { 131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 132 // Recursion is always used, so bail out at once if we already hit the limit. 133 if (!MaxRecurse--) 134 return nullptr; 135 136 // Check whether the expression has the form "(A op' B) op C". 137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 138 if (Op0->getOpcode() == OpcodeToExpand) { 139 // It does! Try turning it into "(A op C) op' (B op C)". 140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 141 // Do "A op C" and "B op C" both simplify? 142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 144 // They do! Return "L op' R" if it simplifies or is already available. 145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 147 && L == B && R == A)) { 148 ++NumExpand; 149 return LHS; 150 } 151 // Otherwise return "L op' R" if it simplifies. 152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 153 ++NumExpand; 154 return V; 155 } 156 } 157 } 158 159 // Check whether the expression has the form "A op (B op' C)". 160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 161 if (Op1->getOpcode() == OpcodeToExpand) { 162 // It does! Try turning it into "(A op B) op' (A op C)". 163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 164 // Do "A op B" and "A op C" both simplify? 165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 167 // They do! Return "L op' R" if it simplifies or is already available. 168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 170 && L == C && R == B)) { 171 ++NumExpand; 172 return RHS; 173 } 174 // Otherwise return "L op' R" if it simplifies. 175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 176 ++NumExpand; 177 return V; 178 } 179 } 180 } 181 182 return nullptr; 183 } 184 185 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary 186 /// operations. Returns the simpler value, or null if none was found. 187 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 188 const Query &Q, unsigned MaxRecurse) { 189 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 190 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 191 192 // Recursion is always used, so bail out at once if we already hit the limit. 193 if (!MaxRecurse--) 194 return nullptr; 195 196 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 197 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 198 199 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 200 if (Op0 && Op0->getOpcode() == Opcode) { 201 Value *A = Op0->getOperand(0); 202 Value *B = Op0->getOperand(1); 203 Value *C = RHS; 204 205 // Does "B op C" simplify? 206 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 207 // It does! Return "A op V" if it simplifies or is already available. 208 // If V equals B then "A op V" is just the LHS. 209 if (V == B) return LHS; 210 // Otherwise return "A op V" if it simplifies. 211 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 212 ++NumReassoc; 213 return W; 214 } 215 } 216 } 217 218 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 219 if (Op1 && Op1->getOpcode() == Opcode) { 220 Value *A = LHS; 221 Value *B = Op1->getOperand(0); 222 Value *C = Op1->getOperand(1); 223 224 // Does "A op B" simplify? 225 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 226 // It does! Return "V op C" if it simplifies or is already available. 227 // If V equals B then "V op C" is just the RHS. 228 if (V == B) return RHS; 229 // Otherwise return "V op C" if it simplifies. 230 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 231 ++NumReassoc; 232 return W; 233 } 234 } 235 } 236 237 // The remaining transforms require commutativity as well as associativity. 238 if (!Instruction::isCommutative(Opcode)) 239 return nullptr; 240 241 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 242 if (Op0 && Op0->getOpcode() == Opcode) { 243 Value *A = Op0->getOperand(0); 244 Value *B = Op0->getOperand(1); 245 Value *C = RHS; 246 247 // Does "C op A" simplify? 248 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 249 // It does! Return "V op B" if it simplifies or is already available. 250 // If V equals A then "V op B" is just the LHS. 251 if (V == A) return LHS; 252 // Otherwise return "V op B" if it simplifies. 253 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 254 ++NumReassoc; 255 return W; 256 } 257 } 258 } 259 260 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 261 if (Op1 && Op1->getOpcode() == Opcode) { 262 Value *A = LHS; 263 Value *B = Op1->getOperand(0); 264 Value *C = Op1->getOperand(1); 265 266 // Does "C op A" simplify? 267 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 268 // It does! Return "B op V" if it simplifies or is already available. 269 // If V equals C then "B op V" is just the RHS. 270 if (V == C) return RHS; 271 // Otherwise return "B op V" if it simplifies. 272 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 273 ++NumReassoc; 274 return W; 275 } 276 } 277 } 278 279 return nullptr; 280 } 281 282 /// ThreadBinOpOverSelect - In the case of a binary operation with a select 283 /// instruction as an operand, try to simplify the binop by seeing whether 284 /// evaluating it on both branches of the select results in the same value. 285 /// Returns the common value if so, otherwise returns null. 286 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 287 const Query &Q, unsigned MaxRecurse) { 288 // Recursion is always used, so bail out at once if we already hit the limit. 289 if (!MaxRecurse--) 290 return nullptr; 291 292 SelectInst *SI; 293 if (isa<SelectInst>(LHS)) { 294 SI = cast<SelectInst>(LHS); 295 } else { 296 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 297 SI = cast<SelectInst>(RHS); 298 } 299 300 // Evaluate the BinOp on the true and false branches of the select. 301 Value *TV; 302 Value *FV; 303 if (SI == LHS) { 304 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 305 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 306 } else { 307 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 308 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 309 } 310 311 // If they simplified to the same value, then return the common value. 312 // If they both failed to simplify then return null. 313 if (TV == FV) 314 return TV; 315 316 // If one branch simplified to undef, return the other one. 317 if (TV && isa<UndefValue>(TV)) 318 return FV; 319 if (FV && isa<UndefValue>(FV)) 320 return TV; 321 322 // If applying the operation did not change the true and false select values, 323 // then the result of the binop is the select itself. 324 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 325 return SI; 326 327 // If one branch simplified and the other did not, and the simplified 328 // value is equal to the unsimplified one, return the simplified value. 329 // For example, select (cond, X, X & Z) & Z -> X & Z. 330 if ((FV && !TV) || (TV && !FV)) { 331 // Check that the simplified value has the form "X op Y" where "op" is the 332 // same as the original operation. 333 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 334 if (Simplified && Simplified->getOpcode() == Opcode) { 335 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 336 // We already know that "op" is the same as for the simplified value. See 337 // if the operands match too. If so, return the simplified value. 338 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 339 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 340 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 341 if (Simplified->getOperand(0) == UnsimplifiedLHS && 342 Simplified->getOperand(1) == UnsimplifiedRHS) 343 return Simplified; 344 if (Simplified->isCommutative() && 345 Simplified->getOperand(1) == UnsimplifiedLHS && 346 Simplified->getOperand(0) == UnsimplifiedRHS) 347 return Simplified; 348 } 349 } 350 351 return nullptr; 352 } 353 354 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, 355 /// try to simplify the comparison by seeing whether both branches of the select 356 /// result in the same value. Returns the common value if so, otherwise returns 357 /// null. 358 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 359 Value *RHS, const Query &Q, 360 unsigned MaxRecurse) { 361 // Recursion is always used, so bail out at once if we already hit the limit. 362 if (!MaxRecurse--) 363 return nullptr; 364 365 // Make sure the select is on the LHS. 366 if (!isa<SelectInst>(LHS)) { 367 std::swap(LHS, RHS); 368 Pred = CmpInst::getSwappedPredicate(Pred); 369 } 370 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 371 SelectInst *SI = cast<SelectInst>(LHS); 372 Value *Cond = SI->getCondition(); 373 Value *TV = SI->getTrueValue(); 374 Value *FV = SI->getFalseValue(); 375 376 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 377 // Does "cmp TV, RHS" simplify? 378 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 379 if (TCmp == Cond) { 380 // It not only simplified, it simplified to the select condition. Replace 381 // it with 'true'. 382 TCmp = getTrue(Cond->getType()); 383 } else if (!TCmp) { 384 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 385 // condition then we can replace it with 'true'. Otherwise give up. 386 if (!isSameCompare(Cond, Pred, TV, RHS)) 387 return nullptr; 388 TCmp = getTrue(Cond->getType()); 389 } 390 391 // Does "cmp FV, RHS" simplify? 392 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 393 if (FCmp == Cond) { 394 // It not only simplified, it simplified to the select condition. Replace 395 // it with 'false'. 396 FCmp = getFalse(Cond->getType()); 397 } else if (!FCmp) { 398 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 399 // condition then we can replace it with 'false'. Otherwise give up. 400 if (!isSameCompare(Cond, Pred, FV, RHS)) 401 return nullptr; 402 FCmp = getFalse(Cond->getType()); 403 } 404 405 // If both sides simplified to the same value, then use it as the result of 406 // the original comparison. 407 if (TCmp == FCmp) 408 return TCmp; 409 410 // The remaining cases only make sense if the select condition has the same 411 // type as the result of the comparison, so bail out if this is not so. 412 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 413 return nullptr; 414 // If the false value simplified to false, then the result of the compare 415 // is equal to "Cond && TCmp". This also catches the case when the false 416 // value simplified to false and the true value to true, returning "Cond". 417 if (match(FCmp, m_Zero())) 418 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 419 return V; 420 // If the true value simplified to true, then the result of the compare 421 // is equal to "Cond || FCmp". 422 if (match(TCmp, m_One())) 423 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 424 return V; 425 // Finally, if the false value simplified to true and the true value to 426 // false, then the result of the compare is equal to "!Cond". 427 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 428 if (Value *V = 429 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 430 Q, MaxRecurse)) 431 return V; 432 433 return nullptr; 434 } 435 436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that 437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating 438 /// it on the incoming phi values yields the same result for every value. If so 439 /// returns the common value, otherwise returns null. 440 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 441 const Query &Q, unsigned MaxRecurse) { 442 // Recursion is always used, so bail out at once if we already hit the limit. 443 if (!MaxRecurse--) 444 return nullptr; 445 446 PHINode *PI; 447 if (isa<PHINode>(LHS)) { 448 PI = cast<PHINode>(LHS); 449 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 450 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 451 return nullptr; 452 } else { 453 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 454 PI = cast<PHINode>(RHS); 455 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 456 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 457 return nullptr; 458 } 459 460 // Evaluate the BinOp on the incoming phi values. 461 Value *CommonValue = nullptr; 462 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 463 Value *Incoming = PI->getIncomingValue(i); 464 // If the incoming value is the phi node itself, it can safely be skipped. 465 if (Incoming == PI) continue; 466 Value *V = PI == LHS ? 467 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 468 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 469 // If the operation failed to simplify, or simplified to a different value 470 // to previously, then give up. 471 if (!V || (CommonValue && V != CommonValue)) 472 return nullptr; 473 CommonValue = V; 474 } 475 476 return CommonValue; 477 } 478 479 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try 480 /// try to simplify the comparison by seeing whether comparing with all of the 481 /// incoming phi values yields the same result every time. If so returns the 482 /// common result, otherwise returns null. 483 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 484 const Query &Q, unsigned MaxRecurse) { 485 // Recursion is always used, so bail out at once if we already hit the limit. 486 if (!MaxRecurse--) 487 return nullptr; 488 489 // Make sure the phi is on the LHS. 490 if (!isa<PHINode>(LHS)) { 491 std::swap(LHS, RHS); 492 Pred = CmpInst::getSwappedPredicate(Pred); 493 } 494 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 495 PHINode *PI = cast<PHINode>(LHS); 496 497 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 498 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 499 return nullptr; 500 501 // Evaluate the BinOp on the incoming phi values. 502 Value *CommonValue = nullptr; 503 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 504 Value *Incoming = PI->getIncomingValue(i); 505 // If the incoming value is the phi node itself, it can safely be skipped. 506 if (Incoming == PI) continue; 507 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 508 // If the operation failed to simplify, or simplified to a different value 509 // to previously, then give up. 510 if (!V || (CommonValue && V != CommonValue)) 511 return nullptr; 512 CommonValue = V; 513 } 514 515 return CommonValue; 516 } 517 518 /// SimplifyAddInst - Given operands for an Add, see if we can 519 /// fold the result. If not, this returns null. 520 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 521 const Query &Q, unsigned MaxRecurse) { 522 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 523 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 524 Constant *Ops[] = { CLHS, CRHS }; 525 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops, 526 Q.DL, Q.TLI); 527 } 528 529 // Canonicalize the constant to the RHS. 530 std::swap(Op0, Op1); 531 } 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 if (match(Op0, m_Not(m_Specific(Op1))) || 551 match(Op1, m_Not(m_Specific(Op0)))) 552 return Constant::getAllOnesValue(Op0->getType()); 553 554 /// i1 add -> xor. 555 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 556 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 557 return V; 558 559 // Try some generic simplifications for associative operations. 560 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 561 MaxRecurse)) 562 return V; 563 564 // Threading Add over selects and phi nodes is pointless, so don't bother. 565 // Threading over the select in "A + select(cond, B, C)" means evaluating 566 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 567 // only if B and C are equal. If B and C are equal then (since we assume 568 // that operands have already been simplified) "select(cond, B, C)" should 569 // have been simplified to the common value of B and C already. Analysing 570 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 571 // for threading over phi nodes. 572 573 return nullptr; 574 } 575 576 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 577 const DataLayout *DL, const TargetLibraryInfo *TLI, 578 const DominatorTree *DT) { 579 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 580 RecursionLimit); 581 } 582 583 /// \brief Compute the base pointer and cumulative constant offsets for V. 584 /// 585 /// This strips all constant offsets off of V, leaving it the base pointer, and 586 /// accumulates the total constant offset applied in the returned constant. It 587 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 588 /// no constant offsets applied. 589 /// 590 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 591 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 592 /// folding. 593 static Constant *stripAndComputeConstantOffsets(const DataLayout *DL, 594 Value *&V, 595 bool AllowNonInbounds = false) { 596 assert(V->getType()->getScalarType()->isPointerTy()); 597 598 // Without DataLayout, just be conservative for now. Theoretically, more could 599 // be done in this case. 600 if (!DL) 601 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0); 602 603 Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(*DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->mayBeOverridden()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 break; 624 } 625 assert(V->getType()->getScalarType()->isPointerTy() && 626 "Unexpected operand type!"); 627 } while (Visited.insert(V)); 628 629 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 630 if (V->getType()->isVectorTy()) 631 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 632 OffsetIntPtr); 633 return OffsetIntPtr; 634 } 635 636 /// \brief Compute the constant difference between two pointer values. 637 /// If the difference is not a constant, returns zero. 638 static Constant *computePointerDifference(const DataLayout *DL, 639 Value *LHS, Value *RHS) { 640 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 641 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 642 643 // If LHS and RHS are not related via constant offsets to the same base 644 // value, there is nothing we can do here. 645 if (LHS != RHS) 646 return nullptr; 647 648 // Otherwise, the difference of LHS - RHS can be computed as: 649 // LHS - RHS 650 // = (LHSOffset + Base) - (RHSOffset + Base) 651 // = LHSOffset - RHSOffset 652 return ConstantExpr::getSub(LHSOffset, RHSOffset); 653 } 654 655 /// SimplifySubInst - Given operands for a Sub, see if we can 656 /// fold the result. If not, this returns null. 657 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 658 const Query &Q, unsigned MaxRecurse) { 659 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 660 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 661 Constant *Ops[] = { CLHS, CRHS }; 662 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), 663 Ops, Q.DL, Q.TLI); 664 } 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 680 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 681 Value *X = nullptr, *Y = nullptr, *Z = Op1; 682 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 683 // See if "V === Y - Z" simplifies. 684 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 685 // It does! Now see if "X + V" simplifies. 686 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 687 // It does, we successfully reassociated! 688 ++NumReassoc; 689 return W; 690 } 691 // See if "V === X - Z" simplifies. 692 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 693 // It does! Now see if "Y + V" simplifies. 694 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 695 // It does, we successfully reassociated! 696 ++NumReassoc; 697 return W; 698 } 699 } 700 701 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 702 // For example, X - (X + 1) -> -1 703 X = Op0; 704 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 705 // See if "V === X - Y" simplifies. 706 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 707 // It does! Now see if "V - Z" simplifies. 708 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 709 // It does, we successfully reassociated! 710 ++NumReassoc; 711 return W; 712 } 713 // See if "V === X - Z" simplifies. 714 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 715 // It does! Now see if "V - Y" simplifies. 716 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 717 // It does, we successfully reassociated! 718 ++NumReassoc; 719 return W; 720 } 721 } 722 723 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 724 // For example, X - (X - Y) -> Y. 725 Z = Op0; 726 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 727 // See if "V === Z - X" simplifies. 728 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 729 // It does! Now see if "V + Y" simplifies. 730 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 731 // It does, we successfully reassociated! 732 ++NumReassoc; 733 return W; 734 } 735 736 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 737 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 738 match(Op1, m_Trunc(m_Value(Y)))) 739 if (X->getType() == Y->getType()) 740 // See if "V === X - Y" simplifies. 741 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 742 // It does! Now see if "trunc V" simplifies. 743 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 744 // It does, return the simplified "trunc V". 745 return W; 746 747 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 748 if (match(Op0, m_PtrToInt(m_Value(X))) && 749 match(Op1, m_PtrToInt(m_Value(Y)))) 750 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 751 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 752 753 // i1 sub -> xor. 754 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 755 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 756 return V; 757 758 // Threading Sub over selects and phi nodes is pointless, so don't bother. 759 // Threading over the select in "A - select(cond, B, C)" means evaluating 760 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 761 // only if B and C are equal. If B and C are equal then (since we assume 762 // that operands have already been simplified) "select(cond, B, C)" should 763 // have been simplified to the common value of B and C already. Analysing 764 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 765 // for threading over phi nodes. 766 767 return nullptr; 768 } 769 770 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 771 const DataLayout *DL, const TargetLibraryInfo *TLI, 772 const DominatorTree *DT) { 773 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 774 RecursionLimit); 775 } 776 777 /// Given operands for an FAdd, see if we can fold the result. If not, this 778 /// returns null. 779 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 780 const Query &Q, unsigned MaxRecurse) { 781 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 782 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 783 Constant *Ops[] = { CLHS, CRHS }; 784 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(), 785 Ops, Q.DL, Q.TLI); 786 } 787 788 // Canonicalize the constant to the RHS. 789 std::swap(Op0, Op1); 790 } 791 792 // fadd X, -0 ==> X 793 if (match(Op1, m_NegZero())) 794 return Op0; 795 796 // fadd X, 0 ==> X, when we know X is not -0 797 if (match(Op1, m_Zero()) && 798 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 799 return Op0; 800 801 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 802 // where nnan and ninf have to occur at least once somewhere in this 803 // expression 804 Value *SubOp = nullptr; 805 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 806 SubOp = Op1; 807 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 808 SubOp = Op0; 809 if (SubOp) { 810 Instruction *FSub = cast<Instruction>(SubOp); 811 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 812 (FMF.noInfs() || FSub->hasNoInfs())) 813 return Constant::getNullValue(Op0->getType()); 814 } 815 816 return nullptr; 817 } 818 819 /// Given operands for an FSub, see if we can fold the result. If not, this 820 /// returns null. 821 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 822 const Query &Q, unsigned MaxRecurse) { 823 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 824 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 825 Constant *Ops[] = { CLHS, CRHS }; 826 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(), 827 Ops, Q.DL, Q.TLI); 828 } 829 } 830 831 // fsub X, 0 ==> X 832 if (match(Op1, m_Zero())) 833 return Op0; 834 835 // fsub X, -0 ==> X, when we know X is not -0 836 if (match(Op1, m_NegZero()) && 837 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 838 return Op0; 839 840 // fsub 0, (fsub -0.0, X) ==> X 841 Value *X; 842 if (match(Op0, m_AnyZero())) { 843 if (match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 844 return X; 845 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 846 return X; 847 } 848 849 // fsub nnan ninf x, x ==> 0.0 850 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1) 851 return Constant::getNullValue(Op0->getType()); 852 853 return nullptr; 854 } 855 856 /// Given the operands for an FMul, see if we can fold the result 857 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 858 FastMathFlags FMF, 859 const Query &Q, 860 unsigned MaxRecurse) { 861 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 862 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 863 Constant *Ops[] = { CLHS, CRHS }; 864 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(), 865 Ops, Q.DL, Q.TLI); 866 } 867 868 // Canonicalize the constant to the RHS. 869 std::swap(Op0, Op1); 870 } 871 872 // fmul X, 1.0 ==> X 873 if (match(Op1, m_FPOne())) 874 return Op0; 875 876 // fmul nnan nsz X, 0 ==> 0 877 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 878 return Op1; 879 880 return nullptr; 881 } 882 883 /// SimplifyMulInst - Given operands for a Mul, see if we can 884 /// fold the result. If not, this returns null. 885 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 886 unsigned MaxRecurse) { 887 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 888 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 889 Constant *Ops[] = { CLHS, CRHS }; 890 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), 891 Ops, Q.DL, Q.TLI); 892 } 893 894 // Canonicalize the constant to the RHS. 895 std::swap(Op0, Op1); 896 } 897 898 // X * undef -> 0 899 if (match(Op1, m_Undef())) 900 return Constant::getNullValue(Op0->getType()); 901 902 // X * 0 -> 0 903 if (match(Op1, m_Zero())) 904 return Op1; 905 906 // X * 1 -> X 907 if (match(Op1, m_One())) 908 return Op0; 909 910 // (X / Y) * Y -> X if the division is exact. 911 Value *X = nullptr; 912 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 913 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 914 return X; 915 916 // i1 mul -> and. 917 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 918 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 919 return V; 920 921 // Try some generic simplifications for associative operations. 922 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 923 MaxRecurse)) 924 return V; 925 926 // Mul distributes over Add. Try some generic simplifications based on this. 927 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 928 Q, MaxRecurse)) 929 return V; 930 931 // If the operation is with the result of a select instruction, check whether 932 // operating on either branch of the select always yields the same value. 933 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 934 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 935 MaxRecurse)) 936 return V; 937 938 // If the operation is with the result of a phi instruction, check whether 939 // operating on all incoming values of the phi always yields the same value. 940 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 941 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 942 MaxRecurse)) 943 return V; 944 945 return nullptr; 946 } 947 948 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 949 const DataLayout *DL, const TargetLibraryInfo *TLI, 950 const DominatorTree *DT) { 951 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 952 } 953 954 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 955 const DataLayout *DL, const TargetLibraryInfo *TLI, 956 const DominatorTree *DT) { 957 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 958 } 959 960 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, 961 FastMathFlags FMF, 962 const DataLayout *DL, 963 const TargetLibraryInfo *TLI, 964 const DominatorTree *DT) { 965 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); 966 } 967 968 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL, 969 const TargetLibraryInfo *TLI, 970 const DominatorTree *DT) { 971 return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 972 } 973 974 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can 975 /// fold the result. If not, this returns null. 976 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 977 const Query &Q, unsigned MaxRecurse) { 978 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 979 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 980 Constant *Ops[] = { C0, C1 }; 981 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 982 } 983 } 984 985 bool isSigned = Opcode == Instruction::SDiv; 986 987 // X / undef -> undef 988 if (match(Op1, m_Undef())) 989 return Op1; 990 991 // undef / X -> 0 992 if (match(Op0, m_Undef())) 993 return Constant::getNullValue(Op0->getType()); 994 995 // 0 / X -> 0, we don't need to preserve faults! 996 if (match(Op0, m_Zero())) 997 return Op0; 998 999 // X / 1 -> X 1000 if (match(Op1, m_One())) 1001 return Op0; 1002 1003 if (Op0->getType()->isIntegerTy(1)) 1004 // It can't be division by zero, hence it must be division by one. 1005 return Op0; 1006 1007 // X / X -> 1 1008 if (Op0 == Op1) 1009 return ConstantInt::get(Op0->getType(), 1); 1010 1011 // (X * Y) / Y -> X if the multiplication does not overflow. 1012 Value *X = nullptr, *Y = nullptr; 1013 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1014 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1015 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1016 // If the Mul knows it does not overflow, then we are good to go. 1017 if ((isSigned && Mul->hasNoSignedWrap()) || 1018 (!isSigned && Mul->hasNoUnsignedWrap())) 1019 return X; 1020 // If X has the form X = A / Y then X * Y cannot overflow. 1021 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1022 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1023 return X; 1024 } 1025 1026 // (X rem Y) / Y -> 0 1027 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1028 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1029 return Constant::getNullValue(Op0->getType()); 1030 1031 // If the operation is with the result of a select instruction, check whether 1032 // operating on either branch of the select always yields the same value. 1033 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1034 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1035 return V; 1036 1037 // If the operation is with the result of a phi instruction, check whether 1038 // operating on all incoming values of the phi always yields the same value. 1039 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1040 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1041 return V; 1042 1043 return nullptr; 1044 } 1045 1046 /// SimplifySDivInst - Given operands for an SDiv, see if we can 1047 /// fold the result. If not, this returns null. 1048 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1049 unsigned MaxRecurse) { 1050 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1051 return V; 1052 1053 return nullptr; 1054 } 1055 1056 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1057 const TargetLibraryInfo *TLI, 1058 const DominatorTree *DT) { 1059 return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1060 } 1061 1062 /// SimplifyUDivInst - Given operands for a UDiv, see if we can 1063 /// fold the result. If not, this returns null. 1064 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1065 unsigned MaxRecurse) { 1066 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1067 return V; 1068 1069 return nullptr; 1070 } 1071 1072 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1073 const TargetLibraryInfo *TLI, 1074 const DominatorTree *DT) { 1075 return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1076 } 1077 1078 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, 1079 unsigned) { 1080 // undef / X -> undef (the undef could be a snan). 1081 if (match(Op0, m_Undef())) 1082 return Op0; 1083 1084 // X / undef -> undef 1085 if (match(Op1, m_Undef())) 1086 return Op1; 1087 1088 return nullptr; 1089 } 1090 1091 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL, 1092 const TargetLibraryInfo *TLI, 1093 const DominatorTree *DT) { 1094 return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1095 } 1096 1097 /// SimplifyRem - Given operands for an SRem or URem, see if we can 1098 /// fold the result. If not, this returns null. 1099 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1100 const Query &Q, unsigned MaxRecurse) { 1101 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1102 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1103 Constant *Ops[] = { C0, C1 }; 1104 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 1105 } 1106 } 1107 1108 // X % undef -> undef 1109 if (match(Op1, m_Undef())) 1110 return Op1; 1111 1112 // undef % X -> 0 1113 if (match(Op0, m_Undef())) 1114 return Constant::getNullValue(Op0->getType()); 1115 1116 // 0 % X -> 0, we don't need to preserve faults! 1117 if (match(Op0, m_Zero())) 1118 return Op0; 1119 1120 // X % 0 -> undef, we don't need to preserve faults! 1121 if (match(Op1, m_Zero())) 1122 return UndefValue::get(Op0->getType()); 1123 1124 // X % 1 -> 0 1125 if (match(Op1, m_One())) 1126 return Constant::getNullValue(Op0->getType()); 1127 1128 if (Op0->getType()->isIntegerTy(1)) 1129 // It can't be remainder by zero, hence it must be remainder by one. 1130 return Constant::getNullValue(Op0->getType()); 1131 1132 // X % X -> 0 1133 if (Op0 == Op1) 1134 return Constant::getNullValue(Op0->getType()); 1135 1136 // If the operation is with the result of a select instruction, check whether 1137 // operating on either branch of the select always yields the same value. 1138 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1139 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1140 return V; 1141 1142 // If the operation is with the result of a phi instruction, check whether 1143 // operating on all incoming values of the phi always yields the same value. 1144 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1145 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1146 return V; 1147 1148 return nullptr; 1149 } 1150 1151 /// SimplifySRemInst - Given operands for an SRem, see if we can 1152 /// fold the result. If not, this returns null. 1153 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1154 unsigned MaxRecurse) { 1155 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1156 return V; 1157 1158 return nullptr; 1159 } 1160 1161 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1162 const TargetLibraryInfo *TLI, 1163 const DominatorTree *DT) { 1164 return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1165 } 1166 1167 /// SimplifyURemInst - Given operands for a URem, see if we can 1168 /// fold the result. If not, this returns null. 1169 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1170 unsigned MaxRecurse) { 1171 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1172 return V; 1173 1174 return nullptr; 1175 } 1176 1177 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1178 const TargetLibraryInfo *TLI, 1179 const DominatorTree *DT) { 1180 return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1181 } 1182 1183 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, 1184 unsigned) { 1185 // undef % X -> undef (the undef could be a snan). 1186 if (match(Op0, m_Undef())) 1187 return Op0; 1188 1189 // X % undef -> undef 1190 if (match(Op1, m_Undef())) 1191 return Op1; 1192 1193 return nullptr; 1194 } 1195 1196 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL, 1197 const TargetLibraryInfo *TLI, 1198 const DominatorTree *DT) { 1199 return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1200 } 1201 1202 /// isUndefShift - Returns true if a shift by \c Amount always yields undef. 1203 static bool isUndefShift(Value *Amount) { 1204 Constant *C = dyn_cast<Constant>(Amount); 1205 if (!C) 1206 return false; 1207 1208 // X shift by undef -> undef because it may shift by the bitwidth. 1209 if (isa<UndefValue>(C)) 1210 return true; 1211 1212 // Shifting by the bitwidth or more is undefined. 1213 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1214 if (CI->getValue().getLimitedValue() >= 1215 CI->getType()->getScalarSizeInBits()) 1216 return true; 1217 1218 // If all lanes of a vector shift are undefined the whole shift is. 1219 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1220 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1221 if (!isUndefShift(C->getAggregateElement(I))) 1222 return false; 1223 return true; 1224 } 1225 1226 return false; 1227 } 1228 1229 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can 1230 /// fold the result. If not, this returns null. 1231 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1232 const Query &Q, unsigned MaxRecurse) { 1233 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1234 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1235 Constant *Ops[] = { C0, C1 }; 1236 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI); 1237 } 1238 } 1239 1240 // 0 shift by X -> 0 1241 if (match(Op0, m_Zero())) 1242 return Op0; 1243 1244 // X shift by 0 -> X 1245 if (match(Op1, m_Zero())) 1246 return Op0; 1247 1248 // Fold undefined shifts. 1249 if (isUndefShift(Op1)) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If the operation is with the result of a select instruction, check whether 1253 // operating on either branch of the select always yields the same value. 1254 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1255 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1256 return V; 1257 1258 // If the operation is with the result of a phi instruction, check whether 1259 // operating on all incoming values of the phi always yields the same value. 1260 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1261 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1262 return V; 1263 1264 return nullptr; 1265 } 1266 1267 /// SimplifyShlInst - Given operands for an Shl, see if we can 1268 /// fold the result. If not, this returns null. 1269 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1270 const Query &Q, unsigned MaxRecurse) { 1271 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1272 return V; 1273 1274 // undef << X -> 0 1275 if (match(Op0, m_Undef())) 1276 return Constant::getNullValue(Op0->getType()); 1277 1278 // (X >> A) << A -> X 1279 Value *X; 1280 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1281 return X; 1282 return nullptr; 1283 } 1284 1285 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1286 const DataLayout *DL, const TargetLibraryInfo *TLI, 1287 const DominatorTree *DT) { 1288 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), 1289 RecursionLimit); 1290 } 1291 1292 /// SimplifyLShrInst - Given operands for an LShr, see if we can 1293 /// fold the result. If not, this returns null. 1294 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1295 const Query &Q, unsigned MaxRecurse) { 1296 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse)) 1297 return V; 1298 1299 // X >> X -> 0 1300 if (Op0 == Op1) 1301 return Constant::getNullValue(Op0->getType()); 1302 1303 // undef >>l X -> 0 1304 if (match(Op0, m_Undef())) 1305 return Constant::getNullValue(Op0->getType()); 1306 1307 // (X << A) >> A -> X 1308 Value *X; 1309 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1310 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()) 1311 return X; 1312 1313 return nullptr; 1314 } 1315 1316 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1317 const DataLayout *DL, 1318 const TargetLibraryInfo *TLI, 1319 const DominatorTree *DT) { 1320 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), 1321 RecursionLimit); 1322 } 1323 1324 /// SimplifyAShrInst - Given operands for an AShr, see if we can 1325 /// fold the result. If not, this returns null. 1326 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1327 const Query &Q, unsigned MaxRecurse) { 1328 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse)) 1329 return V; 1330 1331 // X >> X -> 0 1332 if (Op0 == Op1) 1333 return Constant::getNullValue(Op0->getType()); 1334 1335 // all ones >>a X -> all ones 1336 if (match(Op0, m_AllOnes())) 1337 return Op0; 1338 1339 // undef >>a X -> all ones 1340 if (match(Op0, m_Undef())) 1341 return Constant::getAllOnesValue(Op0->getType()); 1342 1343 // (X << A) >> A -> X 1344 Value *X; 1345 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1346 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) 1347 return X; 1348 1349 return nullptr; 1350 } 1351 1352 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1353 const DataLayout *DL, 1354 const TargetLibraryInfo *TLI, 1355 const DominatorTree *DT) { 1356 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), 1357 RecursionLimit); 1358 } 1359 1360 /// SimplifyAndInst - Given operands for an And, see if we can 1361 /// fold the result. If not, this returns null. 1362 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1363 unsigned MaxRecurse) { 1364 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1365 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1366 Constant *Ops[] = { CLHS, CRHS }; 1367 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 1368 Ops, Q.DL, Q.TLI); 1369 } 1370 1371 // Canonicalize the constant to the RHS. 1372 std::swap(Op0, Op1); 1373 } 1374 1375 // X & undef -> 0 1376 if (match(Op1, m_Undef())) 1377 return Constant::getNullValue(Op0->getType()); 1378 1379 // X & X = X 1380 if (Op0 == Op1) 1381 return Op0; 1382 1383 // X & 0 = 0 1384 if (match(Op1, m_Zero())) 1385 return Op1; 1386 1387 // X & -1 = X 1388 if (match(Op1, m_AllOnes())) 1389 return Op0; 1390 1391 // A & ~A = ~A & A = 0 1392 if (match(Op0, m_Not(m_Specific(Op1))) || 1393 match(Op1, m_Not(m_Specific(Op0)))) 1394 return Constant::getNullValue(Op0->getType()); 1395 1396 // (A | ?) & A = A 1397 Value *A = nullptr, *B = nullptr; 1398 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1399 (A == Op1 || B == Op1)) 1400 return Op1; 1401 1402 // A & (A | ?) = A 1403 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1404 (A == Op0 || B == Op0)) 1405 return Op0; 1406 1407 // A & (-A) = A if A is a power of two or zero. 1408 if (match(Op0, m_Neg(m_Specific(Op1))) || 1409 match(Op1, m_Neg(m_Specific(Op0)))) { 1410 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true)) 1411 return Op0; 1412 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) 1413 return Op1; 1414 } 1415 1416 // Try some generic simplifications for associative operations. 1417 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1418 MaxRecurse)) 1419 return V; 1420 1421 // And distributes over Or. Try some generic simplifications based on this. 1422 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1423 Q, MaxRecurse)) 1424 return V; 1425 1426 // And distributes over Xor. Try some generic simplifications based on this. 1427 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1428 Q, MaxRecurse)) 1429 return V; 1430 1431 // If the operation is with the result of a select instruction, check whether 1432 // operating on either branch of the select always yields the same value. 1433 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1434 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1435 MaxRecurse)) 1436 return V; 1437 1438 // If the operation is with the result of a phi instruction, check whether 1439 // operating on all incoming values of the phi always yields the same value. 1440 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1441 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1442 MaxRecurse)) 1443 return V; 1444 1445 return nullptr; 1446 } 1447 1448 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL, 1449 const TargetLibraryInfo *TLI, 1450 const DominatorTree *DT) { 1451 return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1452 } 1453 1454 /// SimplifyOrInst - Given operands for an Or, see if we can 1455 /// fold the result. If not, this returns null. 1456 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1457 unsigned MaxRecurse) { 1458 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1459 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1460 Constant *Ops[] = { CLHS, CRHS }; 1461 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 1462 Ops, Q.DL, Q.TLI); 1463 } 1464 1465 // Canonicalize the constant to the RHS. 1466 std::swap(Op0, Op1); 1467 } 1468 1469 // X | undef -> -1 1470 if (match(Op1, m_Undef())) 1471 return Constant::getAllOnesValue(Op0->getType()); 1472 1473 // X | X = X 1474 if (Op0 == Op1) 1475 return Op0; 1476 1477 // X | 0 = X 1478 if (match(Op1, m_Zero())) 1479 return Op0; 1480 1481 // X | -1 = -1 1482 if (match(Op1, m_AllOnes())) 1483 return Op1; 1484 1485 // A | ~A = ~A | A = -1 1486 if (match(Op0, m_Not(m_Specific(Op1))) || 1487 match(Op1, m_Not(m_Specific(Op0)))) 1488 return Constant::getAllOnesValue(Op0->getType()); 1489 1490 // (A & ?) | A = A 1491 Value *A = nullptr, *B = nullptr; 1492 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1493 (A == Op1 || B == Op1)) 1494 return Op1; 1495 1496 // A | (A & ?) = A 1497 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1498 (A == Op0 || B == Op0)) 1499 return Op0; 1500 1501 // ~(A & ?) | A = -1 1502 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1503 (A == Op1 || B == Op1)) 1504 return Constant::getAllOnesValue(Op1->getType()); 1505 1506 // A | ~(A & ?) = -1 1507 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1508 (A == Op0 || B == Op0)) 1509 return Constant::getAllOnesValue(Op0->getType()); 1510 1511 // Try some generic simplifications for associative operations. 1512 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1513 MaxRecurse)) 1514 return V; 1515 1516 // Or distributes over And. Try some generic simplifications based on this. 1517 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1518 MaxRecurse)) 1519 return V; 1520 1521 // If the operation is with the result of a select instruction, check whether 1522 // operating on either branch of the select always yields the same value. 1523 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1524 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1525 MaxRecurse)) 1526 return V; 1527 1528 // (A & C)|(B & D) 1529 Value *C = nullptr, *D = nullptr; 1530 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1531 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1532 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1533 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1534 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1535 // (A & C1)|(B & C2) 1536 // If we have: ((V + N) & C1) | (V & C2) 1537 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1538 // replace with V+N. 1539 Value *V1, *V2; 1540 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1541 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1542 // Add commutes, try both ways. 1543 if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) 1544 return A; 1545 if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) 1546 return A; 1547 } 1548 // Or commutes, try both ways. 1549 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1550 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1551 // Add commutes, try both ways. 1552 if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) 1553 return B; 1554 if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) 1555 return B; 1556 } 1557 } 1558 } 1559 1560 // If the operation is with the result of a phi instruction, check whether 1561 // operating on all incoming values of the phi always yields the same value. 1562 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1563 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1564 return V; 1565 1566 return nullptr; 1567 } 1568 1569 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL, 1570 const TargetLibraryInfo *TLI, 1571 const DominatorTree *DT) { 1572 return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1573 } 1574 1575 /// SimplifyXorInst - Given operands for a Xor, see if we can 1576 /// fold the result. If not, this returns null. 1577 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1578 unsigned MaxRecurse) { 1579 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1580 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1581 Constant *Ops[] = { CLHS, CRHS }; 1582 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), 1583 Ops, Q.DL, Q.TLI); 1584 } 1585 1586 // Canonicalize the constant to the RHS. 1587 std::swap(Op0, Op1); 1588 } 1589 1590 // A ^ undef -> undef 1591 if (match(Op1, m_Undef())) 1592 return Op1; 1593 1594 // A ^ 0 = A 1595 if (match(Op1, m_Zero())) 1596 return Op0; 1597 1598 // A ^ A = 0 1599 if (Op0 == Op1) 1600 return Constant::getNullValue(Op0->getType()); 1601 1602 // A ^ ~A = ~A ^ A = -1 1603 if (match(Op0, m_Not(m_Specific(Op1))) || 1604 match(Op1, m_Not(m_Specific(Op0)))) 1605 return Constant::getAllOnesValue(Op0->getType()); 1606 1607 // Try some generic simplifications for associative operations. 1608 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1609 MaxRecurse)) 1610 return V; 1611 1612 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1613 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1614 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1615 // only if B and C are equal. If B and C are equal then (since we assume 1616 // that operands have already been simplified) "select(cond, B, C)" should 1617 // have been simplified to the common value of B and C already. Analysing 1618 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1619 // for threading over phi nodes. 1620 1621 return nullptr; 1622 } 1623 1624 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL, 1625 const TargetLibraryInfo *TLI, 1626 const DominatorTree *DT) { 1627 return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); 1628 } 1629 1630 static Type *GetCompareTy(Value *Op) { 1631 return CmpInst::makeCmpResultType(Op->getType()); 1632 } 1633 1634 /// ExtractEquivalentCondition - Rummage around inside V looking for something 1635 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found, 1636 /// otherwise return null. Helper function for analyzing max/min idioms. 1637 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1638 Value *LHS, Value *RHS) { 1639 SelectInst *SI = dyn_cast<SelectInst>(V); 1640 if (!SI) 1641 return nullptr; 1642 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1643 if (!Cmp) 1644 return nullptr; 1645 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1646 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1647 return Cmp; 1648 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1649 LHS == CmpRHS && RHS == CmpLHS) 1650 return Cmp; 1651 return nullptr; 1652 } 1653 1654 // A significant optimization not implemented here is assuming that alloca 1655 // addresses are not equal to incoming argument values. They don't *alias*, 1656 // as we say, but that doesn't mean they aren't equal, so we take a 1657 // conservative approach. 1658 // 1659 // This is inspired in part by C++11 5.10p1: 1660 // "Two pointers of the same type compare equal if and only if they are both 1661 // null, both point to the same function, or both represent the same 1662 // address." 1663 // 1664 // This is pretty permissive. 1665 // 1666 // It's also partly due to C11 6.5.9p6: 1667 // "Two pointers compare equal if and only if both are null pointers, both are 1668 // pointers to the same object (including a pointer to an object and a 1669 // subobject at its beginning) or function, both are pointers to one past the 1670 // last element of the same array object, or one is a pointer to one past the 1671 // end of one array object and the other is a pointer to the start of a 1672 // different array object that happens to immediately follow the first array 1673 // object in the address space.) 1674 // 1675 // C11's version is more restrictive, however there's no reason why an argument 1676 // couldn't be a one-past-the-end value for a stack object in the caller and be 1677 // equal to the beginning of a stack object in the callee. 1678 // 1679 // If the C and C++ standards are ever made sufficiently restrictive in this 1680 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1681 // this optimization. 1682 static Constant *computePointerICmp(const DataLayout *DL, 1683 const TargetLibraryInfo *TLI, 1684 CmpInst::Predicate Pred, 1685 Value *LHS, Value *RHS) { 1686 // First, skip past any trivial no-ops. 1687 LHS = LHS->stripPointerCasts(); 1688 RHS = RHS->stripPointerCasts(); 1689 1690 // A non-null pointer is not equal to a null pointer. 1691 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1692 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1693 return ConstantInt::get(GetCompareTy(LHS), 1694 !CmpInst::isTrueWhenEqual(Pred)); 1695 1696 // We can only fold certain predicates on pointer comparisons. 1697 switch (Pred) { 1698 default: 1699 return nullptr; 1700 1701 // Equality comaprisons are easy to fold. 1702 case CmpInst::ICMP_EQ: 1703 case CmpInst::ICMP_NE: 1704 break; 1705 1706 // We can only handle unsigned relational comparisons because 'inbounds' on 1707 // a GEP only protects against unsigned wrapping. 1708 case CmpInst::ICMP_UGT: 1709 case CmpInst::ICMP_UGE: 1710 case CmpInst::ICMP_ULT: 1711 case CmpInst::ICMP_ULE: 1712 // However, we have to switch them to their signed variants to handle 1713 // negative indices from the base pointer. 1714 Pred = ICmpInst::getSignedPredicate(Pred); 1715 break; 1716 } 1717 1718 // Strip off any constant offsets so that we can reason about them. 1719 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1720 // here and compare base addresses like AliasAnalysis does, however there are 1721 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1722 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1723 // doesn't need to guarantee pointer inequality when it says NoAlias. 1724 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1725 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1726 1727 // If LHS and RHS are related via constant offsets to the same base 1728 // value, we can replace it with an icmp which just compares the offsets. 1729 if (LHS == RHS) 1730 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1731 1732 // Various optimizations for (in)equality comparisons. 1733 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1734 // Different non-empty allocations that exist at the same time have 1735 // different addresses (if the program can tell). Global variables always 1736 // exist, so they always exist during the lifetime of each other and all 1737 // allocas. Two different allocas usually have different addresses... 1738 // 1739 // However, if there's an @llvm.stackrestore dynamically in between two 1740 // allocas, they may have the same address. It's tempting to reduce the 1741 // scope of the problem by only looking at *static* allocas here. That would 1742 // cover the majority of allocas while significantly reducing the likelihood 1743 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1744 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1745 // an entry block. Also, if we have a block that's not attached to a 1746 // function, we can't tell if it's "static" under the current definition. 1747 // Theoretically, this problem could be fixed by creating a new kind of 1748 // instruction kind specifically for static allocas. Such a new instruction 1749 // could be required to be at the top of the entry block, thus preventing it 1750 // from being subject to a @llvm.stackrestore. Instcombine could even 1751 // convert regular allocas into these special allocas. It'd be nifty. 1752 // However, until then, this problem remains open. 1753 // 1754 // So, we'll assume that two non-empty allocas have different addresses 1755 // for now. 1756 // 1757 // With all that, if the offsets are within the bounds of their allocations 1758 // (and not one-past-the-end! so we can't use inbounds!), and their 1759 // allocations aren't the same, the pointers are not equal. 1760 // 1761 // Note that it's not necessary to check for LHS being a global variable 1762 // address, due to canonicalization and constant folding. 1763 if (isa<AllocaInst>(LHS) && 1764 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 1765 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 1766 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 1767 uint64_t LHSSize, RHSSize; 1768 if (LHSOffsetCI && RHSOffsetCI && 1769 getObjectSize(LHS, LHSSize, DL, TLI) && 1770 getObjectSize(RHS, RHSSize, DL, TLI)) { 1771 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 1772 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 1773 if (!LHSOffsetValue.isNegative() && 1774 !RHSOffsetValue.isNegative() && 1775 LHSOffsetValue.ult(LHSSize) && 1776 RHSOffsetValue.ult(RHSSize)) { 1777 return ConstantInt::get(GetCompareTy(LHS), 1778 !CmpInst::isTrueWhenEqual(Pred)); 1779 } 1780 } 1781 1782 // Repeat the above check but this time without depending on DataLayout 1783 // or being able to compute a precise size. 1784 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 1785 !cast<PointerType>(RHS->getType())->isEmptyTy() && 1786 LHSOffset->isNullValue() && 1787 RHSOffset->isNullValue()) 1788 return ConstantInt::get(GetCompareTy(LHS), 1789 !CmpInst::isTrueWhenEqual(Pred)); 1790 } 1791 1792 // Even if an non-inbounds GEP occurs along the path we can still optimize 1793 // equality comparisons concerning the result. We avoid walking the whole 1794 // chain again by starting where the last calls to 1795 // stripAndComputeConstantOffsets left off and accumulate the offsets. 1796 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 1797 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 1798 if (LHS == RHS) 1799 return ConstantExpr::getICmp(Pred, 1800 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 1801 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 1802 } 1803 1804 // Otherwise, fail. 1805 return nullptr; 1806 } 1807 1808 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 1809 /// fold the result. If not, this returns null. 1810 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1811 const Query &Q, unsigned MaxRecurse) { 1812 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1813 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 1814 1815 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1816 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1817 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 1818 1819 // If we have a constant, make sure it is on the RHS. 1820 std::swap(LHS, RHS); 1821 Pred = CmpInst::getSwappedPredicate(Pred); 1822 } 1823 1824 Type *ITy = GetCompareTy(LHS); // The return type. 1825 Type *OpTy = LHS->getType(); // The operand type. 1826 1827 // icmp X, X -> true/false 1828 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 1829 // because X could be 0. 1830 if (LHS == RHS || isa<UndefValue>(RHS)) 1831 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1832 1833 // Special case logic when the operands have i1 type. 1834 if (OpTy->getScalarType()->isIntegerTy(1)) { 1835 switch (Pred) { 1836 default: break; 1837 case ICmpInst::ICMP_EQ: 1838 // X == 1 -> X 1839 if (match(RHS, m_One())) 1840 return LHS; 1841 break; 1842 case ICmpInst::ICMP_NE: 1843 // X != 0 -> X 1844 if (match(RHS, m_Zero())) 1845 return LHS; 1846 break; 1847 case ICmpInst::ICMP_UGT: 1848 // X >u 0 -> X 1849 if (match(RHS, m_Zero())) 1850 return LHS; 1851 break; 1852 case ICmpInst::ICMP_UGE: 1853 // X >=u 1 -> X 1854 if (match(RHS, m_One())) 1855 return LHS; 1856 break; 1857 case ICmpInst::ICMP_SLT: 1858 // X <s 0 -> X 1859 if (match(RHS, m_Zero())) 1860 return LHS; 1861 break; 1862 case ICmpInst::ICMP_SLE: 1863 // X <=s -1 -> X 1864 if (match(RHS, m_One())) 1865 return LHS; 1866 break; 1867 } 1868 } 1869 1870 // If we are comparing with zero then try hard since this is a common case. 1871 if (match(RHS, m_Zero())) { 1872 bool LHSKnownNonNegative, LHSKnownNegative; 1873 switch (Pred) { 1874 default: llvm_unreachable("Unknown ICmp predicate!"); 1875 case ICmpInst::ICMP_ULT: 1876 return getFalse(ITy); 1877 case ICmpInst::ICMP_UGE: 1878 return getTrue(ITy); 1879 case ICmpInst::ICMP_EQ: 1880 case ICmpInst::ICMP_ULE: 1881 if (isKnownNonZero(LHS, Q.DL)) 1882 return getFalse(ITy); 1883 break; 1884 case ICmpInst::ICMP_NE: 1885 case ICmpInst::ICMP_UGT: 1886 if (isKnownNonZero(LHS, Q.DL)) 1887 return getTrue(ITy); 1888 break; 1889 case ICmpInst::ICMP_SLT: 1890 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1891 if (LHSKnownNegative) 1892 return getTrue(ITy); 1893 if (LHSKnownNonNegative) 1894 return getFalse(ITy); 1895 break; 1896 case ICmpInst::ICMP_SLE: 1897 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1898 if (LHSKnownNegative) 1899 return getTrue(ITy); 1900 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) 1901 return getFalse(ITy); 1902 break; 1903 case ICmpInst::ICMP_SGE: 1904 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1905 if (LHSKnownNegative) 1906 return getFalse(ITy); 1907 if (LHSKnownNonNegative) 1908 return getTrue(ITy); 1909 break; 1910 case ICmpInst::ICMP_SGT: 1911 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); 1912 if (LHSKnownNegative) 1913 return getFalse(ITy); 1914 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) 1915 return getTrue(ITy); 1916 break; 1917 } 1918 } 1919 1920 // See if we are doing a comparison with a constant integer. 1921 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1922 // Rule out tautological comparisons (eg., ult 0 or uge 0). 1923 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 1924 if (RHS_CR.isEmptySet()) 1925 return ConstantInt::getFalse(CI->getContext()); 1926 if (RHS_CR.isFullSet()) 1927 return ConstantInt::getTrue(CI->getContext()); 1928 1929 // Many binary operators with constant RHS have easy to compute constant 1930 // range. Use them to check whether the comparison is a tautology. 1931 unsigned Width = CI->getBitWidth(); 1932 APInt Lower = APInt(Width, 0); 1933 APInt Upper = APInt(Width, 0); 1934 ConstantInt *CI2; 1935 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 1936 // 'urem x, CI2' produces [0, CI2). 1937 Upper = CI2->getValue(); 1938 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 1939 // 'srem x, CI2' produces (-|CI2|, |CI2|). 1940 Upper = CI2->getValue().abs(); 1941 Lower = (-Upper) + 1; 1942 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 1943 // 'udiv CI2, x' produces [0, CI2]. 1944 Upper = CI2->getValue() + 1; 1945 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 1946 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 1947 APInt NegOne = APInt::getAllOnesValue(Width); 1948 if (!CI2->isZero()) 1949 Upper = NegOne.udiv(CI2->getValue()) + 1; 1950 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 1951 if (CI2->isMinSignedValue()) { 1952 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 1953 Lower = CI2->getValue(); 1954 Upper = Lower.lshr(1) + 1; 1955 } else { 1956 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 1957 Upper = CI2->getValue().abs() + 1; 1958 Lower = (-Upper) + 1; 1959 } 1960 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 1961 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. 1962 APInt IntMin = APInt::getSignedMinValue(Width); 1963 APInt IntMax = APInt::getSignedMaxValue(Width); 1964 APInt Val = CI2->getValue().abs(); 1965 if (!Val.isMinValue()) { 1966 Lower = IntMin.sdiv(Val); 1967 Upper = IntMax.sdiv(Val) + 1; 1968 } 1969 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 1970 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 1971 APInt NegOne = APInt::getAllOnesValue(Width); 1972 if (CI2->getValue().ult(Width)) 1973 Upper = NegOne.lshr(CI2->getValue()) + 1; 1974 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 1975 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 1976 unsigned ShiftAmount = Width - 1; 1977 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 1978 ShiftAmount = CI2->getValue().countTrailingZeros(); 1979 Lower = CI2->getValue().lshr(ShiftAmount); 1980 Upper = CI2->getValue() + 1; 1981 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 1982 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 1983 APInt IntMin = APInt::getSignedMinValue(Width); 1984 APInt IntMax = APInt::getSignedMaxValue(Width); 1985 if (CI2->getValue().ult(Width)) { 1986 Lower = IntMin.ashr(CI2->getValue()); 1987 Upper = IntMax.ashr(CI2->getValue()) + 1; 1988 } 1989 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 1990 unsigned ShiftAmount = Width - 1; 1991 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 1992 ShiftAmount = CI2->getValue().countTrailingZeros(); 1993 if (CI2->isNegative()) { 1994 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 1995 Lower = CI2->getValue(); 1996 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 1997 } else { 1998 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 1999 Lower = CI2->getValue().ashr(ShiftAmount); 2000 Upper = CI2->getValue() + 1; 2001 } 2002 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2003 // 'or x, CI2' produces [CI2, UINT_MAX]. 2004 Lower = CI2->getValue(); 2005 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2006 // 'and x, CI2' produces [0, CI2]. 2007 Upper = CI2->getValue() + 1; 2008 } 2009 if (Lower != Upper) { 2010 ConstantRange LHS_CR = ConstantRange(Lower, Upper); 2011 if (RHS_CR.contains(LHS_CR)) 2012 return ConstantInt::getTrue(RHS->getContext()); 2013 if (RHS_CR.inverse().contains(LHS_CR)) 2014 return ConstantInt::getFalse(RHS->getContext()); 2015 } 2016 } 2017 2018 // Compare of cast, for example (zext X) != 0 -> X != 0 2019 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2020 Instruction *LI = cast<CastInst>(LHS); 2021 Value *SrcOp = LI->getOperand(0); 2022 Type *SrcTy = SrcOp->getType(); 2023 Type *DstTy = LI->getType(); 2024 2025 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2026 // if the integer type is the same size as the pointer type. 2027 if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) && 2028 Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2029 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2030 // Transfer the cast to the constant. 2031 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2032 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2033 Q, MaxRecurse-1)) 2034 return V; 2035 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2036 if (RI->getOperand(0)->getType() == SrcTy) 2037 // Compare without the cast. 2038 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2039 Q, MaxRecurse-1)) 2040 return V; 2041 } 2042 } 2043 2044 if (isa<ZExtInst>(LHS)) { 2045 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2046 // same type. 2047 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2048 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2049 // Compare X and Y. Note that signed predicates become unsigned. 2050 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2051 SrcOp, RI->getOperand(0), Q, 2052 MaxRecurse-1)) 2053 return V; 2054 } 2055 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2056 // too. If not, then try to deduce the result of the comparison. 2057 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2058 // Compute the constant that would happen if we truncated to SrcTy then 2059 // reextended to DstTy. 2060 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2061 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2062 2063 // If the re-extended constant didn't change then this is effectively 2064 // also a case of comparing two zero-extended values. 2065 if (RExt == CI && MaxRecurse) 2066 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2067 SrcOp, Trunc, Q, MaxRecurse-1)) 2068 return V; 2069 2070 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2071 // there. Use this to work out the result of the comparison. 2072 if (RExt != CI) { 2073 switch (Pred) { 2074 default: llvm_unreachable("Unknown ICmp predicate!"); 2075 // LHS <u RHS. 2076 case ICmpInst::ICMP_EQ: 2077 case ICmpInst::ICMP_UGT: 2078 case ICmpInst::ICMP_UGE: 2079 return ConstantInt::getFalse(CI->getContext()); 2080 2081 case ICmpInst::ICMP_NE: 2082 case ICmpInst::ICMP_ULT: 2083 case ICmpInst::ICMP_ULE: 2084 return ConstantInt::getTrue(CI->getContext()); 2085 2086 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2087 // is non-negative then LHS <s RHS. 2088 case ICmpInst::ICMP_SGT: 2089 case ICmpInst::ICMP_SGE: 2090 return CI->getValue().isNegative() ? 2091 ConstantInt::getTrue(CI->getContext()) : 2092 ConstantInt::getFalse(CI->getContext()); 2093 2094 case ICmpInst::ICMP_SLT: 2095 case ICmpInst::ICMP_SLE: 2096 return CI->getValue().isNegative() ? 2097 ConstantInt::getFalse(CI->getContext()) : 2098 ConstantInt::getTrue(CI->getContext()); 2099 } 2100 } 2101 } 2102 } 2103 2104 if (isa<SExtInst>(LHS)) { 2105 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2106 // same type. 2107 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2108 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2109 // Compare X and Y. Note that the predicate does not change. 2110 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2111 Q, MaxRecurse-1)) 2112 return V; 2113 } 2114 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2115 // too. If not, then try to deduce the result of the comparison. 2116 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2117 // Compute the constant that would happen if we truncated to SrcTy then 2118 // reextended to DstTy. 2119 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2120 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2121 2122 // If the re-extended constant didn't change then this is effectively 2123 // also a case of comparing two sign-extended values. 2124 if (RExt == CI && MaxRecurse) 2125 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2126 return V; 2127 2128 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2129 // bits there. Use this to work out the result of the comparison. 2130 if (RExt != CI) { 2131 switch (Pred) { 2132 default: llvm_unreachable("Unknown ICmp predicate!"); 2133 case ICmpInst::ICMP_EQ: 2134 return ConstantInt::getFalse(CI->getContext()); 2135 case ICmpInst::ICMP_NE: 2136 return ConstantInt::getTrue(CI->getContext()); 2137 2138 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2139 // LHS >s RHS. 2140 case ICmpInst::ICMP_SGT: 2141 case ICmpInst::ICMP_SGE: 2142 return CI->getValue().isNegative() ? 2143 ConstantInt::getTrue(CI->getContext()) : 2144 ConstantInt::getFalse(CI->getContext()); 2145 case ICmpInst::ICMP_SLT: 2146 case ICmpInst::ICMP_SLE: 2147 return CI->getValue().isNegative() ? 2148 ConstantInt::getFalse(CI->getContext()) : 2149 ConstantInt::getTrue(CI->getContext()); 2150 2151 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2152 // LHS >u RHS. 2153 case ICmpInst::ICMP_UGT: 2154 case ICmpInst::ICMP_UGE: 2155 // Comparison is true iff the LHS <s 0. 2156 if (MaxRecurse) 2157 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2158 Constant::getNullValue(SrcTy), 2159 Q, MaxRecurse-1)) 2160 return V; 2161 break; 2162 case ICmpInst::ICMP_ULT: 2163 case ICmpInst::ICMP_ULE: 2164 // Comparison is true iff the LHS >=s 0. 2165 if (MaxRecurse) 2166 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2167 Constant::getNullValue(SrcTy), 2168 Q, MaxRecurse-1)) 2169 return V; 2170 break; 2171 } 2172 } 2173 } 2174 } 2175 } 2176 2177 // If a bit is known to be zero for A and known to be one for B, 2178 // then A and B cannot be equal. 2179 if (ICmpInst::isEquality(Pred)) { 2180 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2181 uint32_t BitWidth = CI->getBitWidth(); 2182 APInt LHSKnownZero(BitWidth, 0); 2183 APInt LHSKnownOne(BitWidth, 0); 2184 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne); 2185 APInt RHSKnownZero(BitWidth, 0); 2186 APInt RHSKnownOne(BitWidth, 0); 2187 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne); 2188 if (((LHSKnownOne & RHSKnownZero) != 0) || 2189 ((LHSKnownZero & RHSKnownOne) != 0)) 2190 return (Pred == ICmpInst::ICMP_EQ) 2191 ? ConstantInt::getFalse(CI->getContext()) 2192 : ConstantInt::getTrue(CI->getContext()); 2193 } 2194 } 2195 2196 // Special logic for binary operators. 2197 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2198 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2199 if (MaxRecurse && (LBO || RBO)) { 2200 // Analyze the case when either LHS or RHS is an add instruction. 2201 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2202 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2203 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2204 if (LBO && LBO->getOpcode() == Instruction::Add) { 2205 A = LBO->getOperand(0); B = LBO->getOperand(1); 2206 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2207 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2208 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2209 } 2210 if (RBO && RBO->getOpcode() == Instruction::Add) { 2211 C = RBO->getOperand(0); D = RBO->getOperand(1); 2212 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2213 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2214 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2215 } 2216 2217 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2218 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2219 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2220 Constant::getNullValue(RHS->getType()), 2221 Q, MaxRecurse-1)) 2222 return V; 2223 2224 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2225 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2226 if (Value *V = SimplifyICmpInst(Pred, 2227 Constant::getNullValue(LHS->getType()), 2228 C == LHS ? D : C, Q, MaxRecurse-1)) 2229 return V; 2230 2231 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2232 if (A && C && (A == C || A == D || B == C || B == D) && 2233 NoLHSWrapProblem && NoRHSWrapProblem) { 2234 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2235 Value *Y, *Z; 2236 if (A == C) { 2237 // C + B == C + D -> B == D 2238 Y = B; 2239 Z = D; 2240 } else if (A == D) { 2241 // D + B == C + D -> B == C 2242 Y = B; 2243 Z = C; 2244 } else if (B == C) { 2245 // A + C == C + D -> A == D 2246 Y = A; 2247 Z = D; 2248 } else { 2249 assert(B == D); 2250 // A + D == C + D -> A == C 2251 Y = A; 2252 Z = C; 2253 } 2254 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2255 return V; 2256 } 2257 } 2258 2259 // 0 - (zext X) pred C 2260 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2261 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2262 if (RHSC->getValue().isStrictlyPositive()) { 2263 if (Pred == ICmpInst::ICMP_SLT) 2264 return ConstantInt::getTrue(RHSC->getContext()); 2265 if (Pred == ICmpInst::ICMP_SGE) 2266 return ConstantInt::getFalse(RHSC->getContext()); 2267 if (Pred == ICmpInst::ICMP_EQ) 2268 return ConstantInt::getFalse(RHSC->getContext()); 2269 if (Pred == ICmpInst::ICMP_NE) 2270 return ConstantInt::getTrue(RHSC->getContext()); 2271 } 2272 if (RHSC->getValue().isNonNegative()) { 2273 if (Pred == ICmpInst::ICMP_SLE) 2274 return ConstantInt::getTrue(RHSC->getContext()); 2275 if (Pred == ICmpInst::ICMP_SGT) 2276 return ConstantInt::getFalse(RHSC->getContext()); 2277 } 2278 } 2279 } 2280 2281 // icmp pred (urem X, Y), Y 2282 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2283 bool KnownNonNegative, KnownNegative; 2284 switch (Pred) { 2285 default: 2286 break; 2287 case ICmpInst::ICMP_SGT: 2288 case ICmpInst::ICMP_SGE: 2289 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); 2290 if (!KnownNonNegative) 2291 break; 2292 // fall-through 2293 case ICmpInst::ICMP_EQ: 2294 case ICmpInst::ICMP_UGT: 2295 case ICmpInst::ICMP_UGE: 2296 return getFalse(ITy); 2297 case ICmpInst::ICMP_SLT: 2298 case ICmpInst::ICMP_SLE: 2299 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); 2300 if (!KnownNonNegative) 2301 break; 2302 // fall-through 2303 case ICmpInst::ICMP_NE: 2304 case ICmpInst::ICMP_ULT: 2305 case ICmpInst::ICMP_ULE: 2306 return getTrue(ITy); 2307 } 2308 } 2309 2310 // icmp pred X, (urem Y, X) 2311 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2312 bool KnownNonNegative, KnownNegative; 2313 switch (Pred) { 2314 default: 2315 break; 2316 case ICmpInst::ICMP_SGT: 2317 case ICmpInst::ICMP_SGE: 2318 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); 2319 if (!KnownNonNegative) 2320 break; 2321 // fall-through 2322 case ICmpInst::ICMP_NE: 2323 case ICmpInst::ICMP_UGT: 2324 case ICmpInst::ICMP_UGE: 2325 return getTrue(ITy); 2326 case ICmpInst::ICMP_SLT: 2327 case ICmpInst::ICMP_SLE: 2328 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); 2329 if (!KnownNonNegative) 2330 break; 2331 // fall-through 2332 case ICmpInst::ICMP_EQ: 2333 case ICmpInst::ICMP_ULT: 2334 case ICmpInst::ICMP_ULE: 2335 return getFalse(ITy); 2336 } 2337 } 2338 2339 // x udiv y <=u x. 2340 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2341 // icmp pred (X /u Y), X 2342 if (Pred == ICmpInst::ICMP_UGT) 2343 return getFalse(ITy); 2344 if (Pred == ICmpInst::ICMP_ULE) 2345 return getTrue(ITy); 2346 } 2347 2348 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2349 LBO->getOperand(1) == RBO->getOperand(1)) { 2350 switch (LBO->getOpcode()) { 2351 default: break; 2352 case Instruction::UDiv: 2353 case Instruction::LShr: 2354 if (ICmpInst::isSigned(Pred)) 2355 break; 2356 // fall-through 2357 case Instruction::SDiv: 2358 case Instruction::AShr: 2359 if (!LBO->isExact() || !RBO->isExact()) 2360 break; 2361 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2362 RBO->getOperand(0), Q, MaxRecurse-1)) 2363 return V; 2364 break; 2365 case Instruction::Shl: { 2366 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2367 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2368 if (!NUW && !NSW) 2369 break; 2370 if (!NSW && ICmpInst::isSigned(Pred)) 2371 break; 2372 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2373 RBO->getOperand(0), Q, MaxRecurse-1)) 2374 return V; 2375 break; 2376 } 2377 } 2378 } 2379 2380 // Simplify comparisons involving max/min. 2381 Value *A, *B; 2382 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2383 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2384 2385 // Signed variants on "max(a,b)>=a -> true". 2386 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2387 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2388 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2389 // We analyze this as smax(A, B) pred A. 2390 P = Pred; 2391 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2392 (A == LHS || B == LHS)) { 2393 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2394 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2395 // We analyze this as smax(A, B) swapped-pred A. 2396 P = CmpInst::getSwappedPredicate(Pred); 2397 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2398 (A == RHS || B == RHS)) { 2399 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2400 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2401 // We analyze this as smax(-A, -B) swapped-pred -A. 2402 // Note that we do not need to actually form -A or -B thanks to EqP. 2403 P = CmpInst::getSwappedPredicate(Pred); 2404 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2405 (A == LHS || B == LHS)) { 2406 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2407 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2408 // We analyze this as smax(-A, -B) pred -A. 2409 // Note that we do not need to actually form -A or -B thanks to EqP. 2410 P = Pred; 2411 } 2412 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2413 // Cases correspond to "max(A, B) p A". 2414 switch (P) { 2415 default: 2416 break; 2417 case CmpInst::ICMP_EQ: 2418 case CmpInst::ICMP_SLE: 2419 // Equivalent to "A EqP B". This may be the same as the condition tested 2420 // in the max/min; if so, we can just return that. 2421 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2422 return V; 2423 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2424 return V; 2425 // Otherwise, see if "A EqP B" simplifies. 2426 if (MaxRecurse) 2427 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2428 return V; 2429 break; 2430 case CmpInst::ICMP_NE: 2431 case CmpInst::ICMP_SGT: { 2432 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2433 // Equivalent to "A InvEqP B". This may be the same as the condition 2434 // tested in the max/min; if so, we can just return that. 2435 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2436 return V; 2437 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2438 return V; 2439 // Otherwise, see if "A InvEqP B" simplifies. 2440 if (MaxRecurse) 2441 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2442 return V; 2443 break; 2444 } 2445 case CmpInst::ICMP_SGE: 2446 // Always true. 2447 return getTrue(ITy); 2448 case CmpInst::ICMP_SLT: 2449 // Always false. 2450 return getFalse(ITy); 2451 } 2452 } 2453 2454 // Unsigned variants on "max(a,b)>=a -> true". 2455 P = CmpInst::BAD_ICMP_PREDICATE; 2456 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2457 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2458 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2459 // We analyze this as umax(A, B) pred A. 2460 P = Pred; 2461 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2462 (A == LHS || B == LHS)) { 2463 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2464 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2465 // We analyze this as umax(A, B) swapped-pred A. 2466 P = CmpInst::getSwappedPredicate(Pred); 2467 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2468 (A == RHS || B == RHS)) { 2469 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2470 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2471 // We analyze this as umax(-A, -B) swapped-pred -A. 2472 // Note that we do not need to actually form -A or -B thanks to EqP. 2473 P = CmpInst::getSwappedPredicate(Pred); 2474 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2475 (A == LHS || B == LHS)) { 2476 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2477 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2478 // We analyze this as umax(-A, -B) pred -A. 2479 // Note that we do not need to actually form -A or -B thanks to EqP. 2480 P = Pred; 2481 } 2482 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2483 // Cases correspond to "max(A, B) p A". 2484 switch (P) { 2485 default: 2486 break; 2487 case CmpInst::ICMP_EQ: 2488 case CmpInst::ICMP_ULE: 2489 // Equivalent to "A EqP B". This may be the same as the condition tested 2490 // in the max/min; if so, we can just return that. 2491 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2492 return V; 2493 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2494 return V; 2495 // Otherwise, see if "A EqP B" simplifies. 2496 if (MaxRecurse) 2497 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2498 return V; 2499 break; 2500 case CmpInst::ICMP_NE: 2501 case CmpInst::ICMP_UGT: { 2502 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2503 // Equivalent to "A InvEqP B". This may be the same as the condition 2504 // tested in the max/min; if so, we can just return that. 2505 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2506 return V; 2507 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2508 return V; 2509 // Otherwise, see if "A InvEqP B" simplifies. 2510 if (MaxRecurse) 2511 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2512 return V; 2513 break; 2514 } 2515 case CmpInst::ICMP_UGE: 2516 // Always true. 2517 return getTrue(ITy); 2518 case CmpInst::ICMP_ULT: 2519 // Always false. 2520 return getFalse(ITy); 2521 } 2522 } 2523 2524 // Variants on "max(x,y) >= min(x,z)". 2525 Value *C, *D; 2526 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2527 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2528 (A == C || A == D || B == C || B == D)) { 2529 // max(x, ?) pred min(x, ?). 2530 if (Pred == CmpInst::ICMP_SGE) 2531 // Always true. 2532 return getTrue(ITy); 2533 if (Pred == CmpInst::ICMP_SLT) 2534 // Always false. 2535 return getFalse(ITy); 2536 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2537 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2538 (A == C || A == D || B == C || B == D)) { 2539 // min(x, ?) pred max(x, ?). 2540 if (Pred == CmpInst::ICMP_SLE) 2541 // Always true. 2542 return getTrue(ITy); 2543 if (Pred == CmpInst::ICMP_SGT) 2544 // Always false. 2545 return getFalse(ITy); 2546 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2547 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2548 (A == C || A == D || B == C || B == D)) { 2549 // max(x, ?) pred min(x, ?). 2550 if (Pred == CmpInst::ICMP_UGE) 2551 // Always true. 2552 return getTrue(ITy); 2553 if (Pred == CmpInst::ICMP_ULT) 2554 // Always false. 2555 return getFalse(ITy); 2556 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2557 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2558 (A == C || A == D || B == C || B == D)) { 2559 // min(x, ?) pred max(x, ?). 2560 if (Pred == CmpInst::ICMP_ULE) 2561 // Always true. 2562 return getTrue(ITy); 2563 if (Pred == CmpInst::ICMP_UGT) 2564 // Always false. 2565 return getFalse(ITy); 2566 } 2567 2568 // Simplify comparisons of related pointers using a powerful, recursive 2569 // GEP-walk when we have target data available.. 2570 if (LHS->getType()->isPointerTy()) 2571 if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS)) 2572 return C; 2573 2574 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 2575 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 2576 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 2577 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 2578 (ICmpInst::isEquality(Pred) || 2579 (GLHS->isInBounds() && GRHS->isInBounds() && 2580 Pred == ICmpInst::getSignedPredicate(Pred)))) { 2581 // The bases are equal and the indices are constant. Build a constant 2582 // expression GEP with the same indices and a null base pointer to see 2583 // what constant folding can make out of it. 2584 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 2585 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 2586 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS); 2587 2588 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 2589 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS); 2590 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 2591 } 2592 } 2593 } 2594 2595 // If the comparison is with the result of a select instruction, check whether 2596 // comparing with either branch of the select always yields the same value. 2597 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2598 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2599 return V; 2600 2601 // If the comparison is with the result of a phi instruction, check whether 2602 // doing the compare with each incoming phi value yields a common result. 2603 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2604 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2605 return V; 2606 2607 return nullptr; 2608 } 2609 2610 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2611 const DataLayout *DL, 2612 const TargetLibraryInfo *TLI, 2613 const DominatorTree *DT) { 2614 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2615 RecursionLimit); 2616 } 2617 2618 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 2619 /// fold the result. If not, this returns null. 2620 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2621 const Query &Q, unsigned MaxRecurse) { 2622 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2623 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 2624 2625 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2626 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2627 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2628 2629 // If we have a constant, make sure it is on the RHS. 2630 std::swap(LHS, RHS); 2631 Pred = CmpInst::getSwappedPredicate(Pred); 2632 } 2633 2634 // Fold trivial predicates. 2635 if (Pred == FCmpInst::FCMP_FALSE) 2636 return ConstantInt::get(GetCompareTy(LHS), 0); 2637 if (Pred == FCmpInst::FCMP_TRUE) 2638 return ConstantInt::get(GetCompareTy(LHS), 1); 2639 2640 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 2641 return UndefValue::get(GetCompareTy(LHS)); 2642 2643 // fcmp x,x -> true/false. Not all compares are foldable. 2644 if (LHS == RHS) { 2645 if (CmpInst::isTrueWhenEqual(Pred)) 2646 return ConstantInt::get(GetCompareTy(LHS), 1); 2647 if (CmpInst::isFalseWhenEqual(Pred)) 2648 return ConstantInt::get(GetCompareTy(LHS), 0); 2649 } 2650 2651 // Handle fcmp with constant RHS 2652 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2653 // If the constant is a nan, see if we can fold the comparison based on it. 2654 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 2655 if (CFP->getValueAPF().isNaN()) { 2656 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 2657 return ConstantInt::getFalse(CFP->getContext()); 2658 assert(FCmpInst::isUnordered(Pred) && 2659 "Comparison must be either ordered or unordered!"); 2660 // True if unordered. 2661 return ConstantInt::getTrue(CFP->getContext()); 2662 } 2663 // Check whether the constant is an infinity. 2664 if (CFP->getValueAPF().isInfinity()) { 2665 if (CFP->getValueAPF().isNegative()) { 2666 switch (Pred) { 2667 case FCmpInst::FCMP_OLT: 2668 // No value is ordered and less than negative infinity. 2669 return ConstantInt::getFalse(CFP->getContext()); 2670 case FCmpInst::FCMP_UGE: 2671 // All values are unordered with or at least negative infinity. 2672 return ConstantInt::getTrue(CFP->getContext()); 2673 default: 2674 break; 2675 } 2676 } else { 2677 switch (Pred) { 2678 case FCmpInst::FCMP_OGT: 2679 // No value is ordered and greater than infinity. 2680 return ConstantInt::getFalse(CFP->getContext()); 2681 case FCmpInst::FCMP_ULE: 2682 // All values are unordered with and at most infinity. 2683 return ConstantInt::getTrue(CFP->getContext()); 2684 default: 2685 break; 2686 } 2687 } 2688 } 2689 } 2690 } 2691 2692 // If the comparison is with the result of a select instruction, check whether 2693 // comparing with either branch of the select always yields the same value. 2694 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2695 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2696 return V; 2697 2698 // If the comparison is with the result of a phi instruction, check whether 2699 // doing the compare with each incoming phi value yields a common result. 2700 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2701 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2702 return V; 2703 2704 return nullptr; 2705 } 2706 2707 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2708 const DataLayout *DL, 2709 const TargetLibraryInfo *TLI, 2710 const DominatorTree *DT) { 2711 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2712 RecursionLimit); 2713 } 2714 2715 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 2716 /// the result. If not, this returns null. 2717 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 2718 Value *FalseVal, const Query &Q, 2719 unsigned MaxRecurse) { 2720 // select true, X, Y -> X 2721 // select false, X, Y -> Y 2722 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 2723 if (CB->isAllOnesValue()) 2724 return TrueVal; 2725 if (CB->isNullValue()) 2726 return FalseVal; 2727 } 2728 2729 // select C, X, X -> X 2730 if (TrueVal == FalseVal) 2731 return TrueVal; 2732 2733 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 2734 if (isa<Constant>(TrueVal)) 2735 return TrueVal; 2736 return FalseVal; 2737 } 2738 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 2739 return FalseVal; 2740 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 2741 return TrueVal; 2742 2743 return nullptr; 2744 } 2745 2746 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 2747 const DataLayout *DL, 2748 const TargetLibraryInfo *TLI, 2749 const DominatorTree *DT) { 2750 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT), 2751 RecursionLimit); 2752 } 2753 2754 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 2755 /// fold the result. If not, this returns null. 2756 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) { 2757 // The type of the GEP pointer operand. 2758 PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType()); 2759 2760 // getelementptr P -> P. 2761 if (Ops.size() == 1) 2762 return Ops[0]; 2763 2764 if (isa<UndefValue>(Ops[0])) { 2765 // Compute the (pointer) type returned by the GEP instruction. 2766 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); 2767 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); 2768 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 2769 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 2770 return UndefValue::get(GEPTy); 2771 } 2772 2773 if (Ops.size() == 2) { 2774 // getelementptr P, 0 -> P. 2775 if (match(Ops[1], m_Zero())) 2776 return Ops[0]; 2777 // getelementptr P, N -> P if P points to a type of zero size. 2778 if (Q.DL) { 2779 Type *Ty = PtrTy->getElementType(); 2780 if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0) 2781 return Ops[0]; 2782 } 2783 } 2784 2785 // Check to see if this is constant foldable. 2786 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2787 if (!isa<Constant>(Ops[i])) 2788 return nullptr; 2789 2790 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1)); 2791 } 2792 2793 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL, 2794 const TargetLibraryInfo *TLI, 2795 const DominatorTree *DT) { 2796 return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit); 2797 } 2798 2799 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we 2800 /// can fold the result. If not, this returns null. 2801 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 2802 ArrayRef<unsigned> Idxs, const Query &Q, 2803 unsigned) { 2804 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 2805 if (Constant *CVal = dyn_cast<Constant>(Val)) 2806 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 2807 2808 // insertvalue x, undef, n -> x 2809 if (match(Val, m_Undef())) 2810 return Agg; 2811 2812 // insertvalue x, (extractvalue y, n), n 2813 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 2814 if (EV->getAggregateOperand()->getType() == Agg->getType() && 2815 EV->getIndices() == Idxs) { 2816 // insertvalue undef, (extractvalue y, n), n -> y 2817 if (match(Agg, m_Undef())) 2818 return EV->getAggregateOperand(); 2819 2820 // insertvalue y, (extractvalue y, n), n -> y 2821 if (Agg == EV->getAggregateOperand()) 2822 return Agg; 2823 } 2824 2825 return nullptr; 2826 } 2827 2828 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 2829 ArrayRef<unsigned> Idxs, 2830 const DataLayout *DL, 2831 const TargetLibraryInfo *TLI, 2832 const DominatorTree *DT) { 2833 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT), 2834 RecursionLimit); 2835 } 2836 2837 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. 2838 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 2839 // If all of the PHI's incoming values are the same then replace the PHI node 2840 // with the common value. 2841 Value *CommonValue = nullptr; 2842 bool HasUndefInput = false; 2843 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2844 Value *Incoming = PN->getIncomingValue(i); 2845 // If the incoming value is the phi node itself, it can safely be skipped. 2846 if (Incoming == PN) continue; 2847 if (isa<UndefValue>(Incoming)) { 2848 // Remember that we saw an undef value, but otherwise ignore them. 2849 HasUndefInput = true; 2850 continue; 2851 } 2852 if (CommonValue && Incoming != CommonValue) 2853 return nullptr; // Not the same, bail out. 2854 CommonValue = Incoming; 2855 } 2856 2857 // If CommonValue is null then all of the incoming values were either undef or 2858 // equal to the phi node itself. 2859 if (!CommonValue) 2860 return UndefValue::get(PN->getType()); 2861 2862 // If we have a PHI node like phi(X, undef, X), where X is defined by some 2863 // instruction, we cannot return X as the result of the PHI node unless it 2864 // dominates the PHI block. 2865 if (HasUndefInput) 2866 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 2867 2868 return CommonValue; 2869 } 2870 2871 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 2872 if (Constant *C = dyn_cast<Constant>(Op)) 2873 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI); 2874 2875 return nullptr; 2876 } 2877 2878 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL, 2879 const TargetLibraryInfo *TLI, 2880 const DominatorTree *DT) { 2881 return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit); 2882 } 2883 2884 //=== Helper functions for higher up the class hierarchy. 2885 2886 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 2887 /// fold the result. If not, this returns null. 2888 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2889 const Query &Q, unsigned MaxRecurse) { 2890 switch (Opcode) { 2891 case Instruction::Add: 2892 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2893 Q, MaxRecurse); 2894 case Instruction::FAdd: 2895 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2896 2897 case Instruction::Sub: 2898 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2899 Q, MaxRecurse); 2900 case Instruction::FSub: 2901 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2902 2903 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 2904 case Instruction::FMul: 2905 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2906 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 2907 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 2908 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse); 2909 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 2910 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 2911 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse); 2912 case Instruction::Shl: 2913 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2914 Q, MaxRecurse); 2915 case Instruction::LShr: 2916 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2917 case Instruction::AShr: 2918 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2919 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 2920 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 2921 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 2922 default: 2923 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2924 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 2925 Constant *COps[] = {CLHS, CRHS}; 2926 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL, 2927 Q.TLI); 2928 } 2929 2930 // If the operation is associative, try some generic simplifications. 2931 if (Instruction::isAssociative(Opcode)) 2932 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 2933 return V; 2934 2935 // If the operation is with the result of a select instruction check whether 2936 // operating on either branch of the select always yields the same value. 2937 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2938 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 2939 return V; 2940 2941 // If the operation is with the result of a phi instruction, check whether 2942 // operating on all incoming values of the phi always yields the same value. 2943 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2944 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 2945 return V; 2946 2947 return nullptr; 2948 } 2949 } 2950 2951 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2952 const DataLayout *DL, const TargetLibraryInfo *TLI, 2953 const DominatorTree *DT) { 2954 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit); 2955 } 2956 2957 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 2958 /// fold the result. 2959 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2960 const Query &Q, unsigned MaxRecurse) { 2961 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 2962 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2963 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2964 } 2965 2966 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2967 const DataLayout *DL, const TargetLibraryInfo *TLI, 2968 const DominatorTree *DT) { 2969 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), 2970 RecursionLimit); 2971 } 2972 2973 static bool IsIdempotent(Intrinsic::ID ID) { 2974 switch (ID) { 2975 default: return false; 2976 2977 // Unary idempotent: f(f(x)) = f(x) 2978 case Intrinsic::fabs: 2979 case Intrinsic::floor: 2980 case Intrinsic::ceil: 2981 case Intrinsic::trunc: 2982 case Intrinsic::rint: 2983 case Intrinsic::nearbyint: 2984 case Intrinsic::round: 2985 return true; 2986 } 2987 } 2988 2989 template <typename IterTy> 2990 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd, 2991 const Query &Q, unsigned MaxRecurse) { 2992 // Perform idempotent optimizations 2993 if (!IsIdempotent(IID)) 2994 return nullptr; 2995 2996 // Unary Ops 2997 if (std::distance(ArgBegin, ArgEnd) == 1) 2998 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 2999 if (II->getIntrinsicID() == IID) 3000 return II; 3001 3002 return nullptr; 3003 } 3004 3005 template <typename IterTy> 3006 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 3007 const Query &Q, unsigned MaxRecurse) { 3008 Type *Ty = V->getType(); 3009 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 3010 Ty = PTy->getElementType(); 3011 FunctionType *FTy = cast<FunctionType>(Ty); 3012 3013 // call undef -> undef 3014 if (isa<UndefValue>(V)) 3015 return UndefValue::get(FTy->getReturnType()); 3016 3017 Function *F = dyn_cast<Function>(V); 3018 if (!F) 3019 return nullptr; 3020 3021 if (unsigned IID = F->getIntrinsicID()) 3022 if (Value *Ret = 3023 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse)) 3024 return Ret; 3025 3026 if (!canConstantFoldCallTo(F)) 3027 return nullptr; 3028 3029 SmallVector<Constant *, 4> ConstantArgs; 3030 ConstantArgs.reserve(ArgEnd - ArgBegin); 3031 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 3032 Constant *C = dyn_cast<Constant>(*I); 3033 if (!C) 3034 return nullptr; 3035 ConstantArgs.push_back(C); 3036 } 3037 3038 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 3039 } 3040 3041 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 3042 User::op_iterator ArgEnd, const DataLayout *DL, 3043 const TargetLibraryInfo *TLI, 3044 const DominatorTree *DT) { 3045 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT), 3046 RecursionLimit); 3047 } 3048 3049 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 3050 const DataLayout *DL, const TargetLibraryInfo *TLI, 3051 const DominatorTree *DT) { 3052 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT), 3053 RecursionLimit); 3054 } 3055 3056 /// SimplifyInstruction - See if we can compute a simplified version of this 3057 /// instruction. If not, this returns null. 3058 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL, 3059 const TargetLibraryInfo *TLI, 3060 const DominatorTree *DT) { 3061 Value *Result; 3062 3063 switch (I->getOpcode()) { 3064 default: 3065 Result = ConstantFoldInstruction(I, DL, TLI); 3066 break; 3067 case Instruction::FAdd: 3068 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 3069 I->getFastMathFlags(), DL, TLI, DT); 3070 break; 3071 case Instruction::Add: 3072 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 3073 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3074 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3075 DL, TLI, DT); 3076 break; 3077 case Instruction::FSub: 3078 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 3079 I->getFastMathFlags(), DL, TLI, DT); 3080 break; 3081 case Instruction::Sub: 3082 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 3083 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3084 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3085 DL, TLI, DT); 3086 break; 3087 case Instruction::FMul: 3088 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 3089 I->getFastMathFlags(), DL, TLI, DT); 3090 break; 3091 case Instruction::Mul: 3092 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3093 break; 3094 case Instruction::SDiv: 3095 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3096 break; 3097 case Instruction::UDiv: 3098 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3099 break; 3100 case Instruction::FDiv: 3101 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3102 break; 3103 case Instruction::SRem: 3104 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3105 break; 3106 case Instruction::URem: 3107 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3108 break; 3109 case Instruction::FRem: 3110 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3111 break; 3112 case Instruction::Shl: 3113 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 3114 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3115 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3116 DL, TLI, DT); 3117 break; 3118 case Instruction::LShr: 3119 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 3120 cast<BinaryOperator>(I)->isExact(), 3121 DL, TLI, DT); 3122 break; 3123 case Instruction::AShr: 3124 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 3125 cast<BinaryOperator>(I)->isExact(), 3126 DL, TLI, DT); 3127 break; 3128 case Instruction::And: 3129 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3130 break; 3131 case Instruction::Or: 3132 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3133 break; 3134 case Instruction::Xor: 3135 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3136 break; 3137 case Instruction::ICmp: 3138 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 3139 I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3140 break; 3141 case Instruction::FCmp: 3142 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 3143 I->getOperand(0), I->getOperand(1), DL, TLI, DT); 3144 break; 3145 case Instruction::Select: 3146 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 3147 I->getOperand(2), DL, TLI, DT); 3148 break; 3149 case Instruction::GetElementPtr: { 3150 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 3151 Result = SimplifyGEPInst(Ops, DL, TLI, DT); 3152 break; 3153 } 3154 case Instruction::InsertValue: { 3155 InsertValueInst *IV = cast<InsertValueInst>(I); 3156 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 3157 IV->getInsertedValueOperand(), 3158 IV->getIndices(), DL, TLI, DT); 3159 break; 3160 } 3161 case Instruction::PHI: 3162 Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT)); 3163 break; 3164 case Instruction::Call: { 3165 CallSite CS(cast<CallInst>(I)); 3166 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 3167 DL, TLI, DT); 3168 break; 3169 } 3170 case Instruction::Trunc: 3171 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT); 3172 break; 3173 } 3174 3175 /// If called on unreachable code, the above logic may report that the 3176 /// instruction simplified to itself. Make life easier for users by 3177 /// detecting that case here, returning a safe value instead. 3178 return Result == I ? UndefValue::get(I->getType()) : Result; 3179 } 3180 3181 /// \brief Implementation of recursive simplification through an instructions 3182 /// uses. 3183 /// 3184 /// This is the common implementation of the recursive simplification routines. 3185 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 3186 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 3187 /// instructions to process and attempt to simplify it using 3188 /// InstructionSimplify. 3189 /// 3190 /// This routine returns 'true' only when *it* simplifies something. The passed 3191 /// in simplified value does not count toward this. 3192 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 3193 const DataLayout *DL, 3194 const TargetLibraryInfo *TLI, 3195 const DominatorTree *DT) { 3196 bool Simplified = false; 3197 SmallSetVector<Instruction *, 8> Worklist; 3198 3199 // If we have an explicit value to collapse to, do that round of the 3200 // simplification loop by hand initially. 3201 if (SimpleV) { 3202 for (User *U : I->users()) 3203 if (U != I) 3204 Worklist.insert(cast<Instruction>(U)); 3205 3206 // Replace the instruction with its simplified value. 3207 I->replaceAllUsesWith(SimpleV); 3208 3209 // Gracefully handle edge cases where the instruction is not wired into any 3210 // parent block. 3211 if (I->getParent()) 3212 I->eraseFromParent(); 3213 } else { 3214 Worklist.insert(I); 3215 } 3216 3217 // Note that we must test the size on each iteration, the worklist can grow. 3218 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 3219 I = Worklist[Idx]; 3220 3221 // See if this instruction simplifies. 3222 SimpleV = SimplifyInstruction(I, DL, TLI, DT); 3223 if (!SimpleV) 3224 continue; 3225 3226 Simplified = true; 3227 3228 // Stash away all the uses of the old instruction so we can check them for 3229 // recursive simplifications after a RAUW. This is cheaper than checking all 3230 // uses of To on the recursive step in most cases. 3231 for (User *U : I->users()) 3232 Worklist.insert(cast<Instruction>(U)); 3233 3234 // Replace the instruction with its simplified value. 3235 I->replaceAllUsesWith(SimpleV); 3236 3237 // Gracefully handle edge cases where the instruction is not wired into any 3238 // parent block. 3239 if (I->getParent()) 3240 I->eraseFromParent(); 3241 } 3242 return Simplified; 3243 } 3244 3245 bool llvm::recursivelySimplifyInstruction(Instruction *I, 3246 const DataLayout *DL, 3247 const TargetLibraryInfo *TLI, 3248 const DominatorTree *DT) { 3249 return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT); 3250 } 3251 3252 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 3253 const DataLayout *DL, 3254 const TargetLibraryInfo *TLI, 3255 const DominatorTree *DT) { 3256 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 3257 assert(SimpleV && "Must provide a simplified value."); 3258 return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT); 3259 } 3260