Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/ConstantFolding.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/Dominators.h"
     29 #include "llvm/IR/GetElementPtrTypeIterator.h"
     30 #include "llvm/IR/GlobalAlias.h"
     31 #include "llvm/IR/Operator.h"
     32 #include "llvm/IR/PatternMatch.h"
     33 #include "llvm/IR/ValueHandle.h"
     34 using namespace llvm;
     35 using namespace llvm::PatternMatch;
     36 
     37 #define DEBUG_TYPE "instsimplify"
     38 
     39 enum { RecursionLimit = 3 };
     40 
     41 STATISTIC(NumExpand,  "Number of expansions");
     42 STATISTIC(NumReassoc, "Number of reassociations");
     43 
     44 struct Query {
     45   const DataLayout *DL;
     46   const TargetLibraryInfo *TLI;
     47   const DominatorTree *DT;
     48 
     49   Query(const DataLayout *DL, const TargetLibraryInfo *tli,
     50         const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
     51 };
     52 
     53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
     54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
     55                             unsigned);
     56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
     57                               unsigned);
     58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
     59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
     60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
     61 
     62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
     63 /// a vector with every element false, as appropriate for the type.
     64 static Constant *getFalse(Type *Ty) {
     65   assert(Ty->getScalarType()->isIntegerTy(1) &&
     66          "Expected i1 type or a vector of i1!");
     67   return Constant::getNullValue(Ty);
     68 }
     69 
     70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
     71 /// a vector with every element true, as appropriate for the type.
     72 static Constant *getTrue(Type *Ty) {
     73   assert(Ty->getScalarType()->isIntegerTy(1) &&
     74          "Expected i1 type or a vector of i1!");
     75   return Constant::getAllOnesValue(Ty);
     76 }
     77 
     78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
     79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
     80                           Value *RHS) {
     81   CmpInst *Cmp = dyn_cast<CmpInst>(V);
     82   if (!Cmp)
     83     return false;
     84   CmpInst::Predicate CPred = Cmp->getPredicate();
     85   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
     86   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
     87     return true;
     88   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
     89     CRHS == LHS;
     90 }
     91 
     92 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
     93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
     94   Instruction *I = dyn_cast<Instruction>(V);
     95   if (!I)
     96     // Arguments and constants dominate all instructions.
     97     return true;
     98 
     99   // If we are processing instructions (and/or basic blocks) that have not been
    100   // fully added to a function, the parent nodes may still be null. Simply
    101   // return the conservative answer in these cases.
    102   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
    103     return false;
    104 
    105   // If we have a DominatorTree then do a precise test.
    106   if (DT) {
    107     if (!DT->isReachableFromEntry(P->getParent()))
    108       return true;
    109     if (!DT->isReachableFromEntry(I->getParent()))
    110       return false;
    111     return DT->dominates(I, P);
    112   }
    113 
    114   // Otherwise, if the instruction is in the entry block, and is not an invoke,
    115   // then it obviously dominates all phi nodes.
    116   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
    117       !isa<InvokeInst>(I))
    118     return true;
    119 
    120   return false;
    121 }
    122 
    123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
    124 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
    125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
    126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
    127 /// Returns the simplified value, or null if no simplification was performed.
    128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    129                           unsigned OpcToExpand, const Query &Q,
    130                           unsigned MaxRecurse) {
    131   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
    132   // Recursion is always used, so bail out at once if we already hit the limit.
    133   if (!MaxRecurse--)
    134     return nullptr;
    135 
    136   // Check whether the expression has the form "(A op' B) op C".
    137   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    138     if (Op0->getOpcode() == OpcodeToExpand) {
    139       // It does!  Try turning it into "(A op C) op' (B op C)".
    140       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    141       // Do "A op C" and "B op C" both simplify?
    142       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
    143         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    144           // They do! Return "L op' R" if it simplifies or is already available.
    145           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    146           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    147                                      && L == B && R == A)) {
    148             ++NumExpand;
    149             return LHS;
    150           }
    151           // Otherwise return "L op' R" if it simplifies.
    152           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    153             ++NumExpand;
    154             return V;
    155           }
    156         }
    157     }
    158 
    159   // Check whether the expression has the form "A op (B op' C)".
    160   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    161     if (Op1->getOpcode() == OpcodeToExpand) {
    162       // It does!  Try turning it into "(A op B) op' (A op C)".
    163       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    164       // Do "A op B" and "A op C" both simplify?
    165       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
    166         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
    167           // They do! Return "L op' R" if it simplifies or is already available.
    168           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    169           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    170                                      && L == C && R == B)) {
    171             ++NumExpand;
    172             return RHS;
    173           }
    174           // Otherwise return "L op' R" if it simplifies.
    175           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    176             ++NumExpand;
    177             return V;
    178           }
    179         }
    180     }
    181 
    182   return nullptr;
    183 }
    184 
    185 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
    186 /// operations.  Returns the simpler value, or null if none was found.
    187 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
    188                                        const Query &Q, unsigned MaxRecurse) {
    189   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
    190   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    191 
    192   // Recursion is always used, so bail out at once if we already hit the limit.
    193   if (!MaxRecurse--)
    194     return nullptr;
    195 
    196   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    197   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    198 
    199   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    200   if (Op0 && Op0->getOpcode() == Opcode) {
    201     Value *A = Op0->getOperand(0);
    202     Value *B = Op0->getOperand(1);
    203     Value *C = RHS;
    204 
    205     // Does "B op C" simplify?
    206     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    207       // It does!  Return "A op V" if it simplifies or is already available.
    208       // If V equals B then "A op V" is just the LHS.
    209       if (V == B) return LHS;
    210       // Otherwise return "A op V" if it simplifies.
    211       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
    212         ++NumReassoc;
    213         return W;
    214       }
    215     }
    216   }
    217 
    218   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    219   if (Op1 && Op1->getOpcode() == Opcode) {
    220     Value *A = LHS;
    221     Value *B = Op1->getOperand(0);
    222     Value *C = Op1->getOperand(1);
    223 
    224     // Does "A op B" simplify?
    225     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
    226       // It does!  Return "V op C" if it simplifies or is already available.
    227       // If V equals B then "V op C" is just the RHS.
    228       if (V == B) return RHS;
    229       // Otherwise return "V op C" if it simplifies.
    230       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
    231         ++NumReassoc;
    232         return W;
    233       }
    234     }
    235   }
    236 
    237   // The remaining transforms require commutativity as well as associativity.
    238   if (!Instruction::isCommutative(Opcode))
    239     return nullptr;
    240 
    241   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    242   if (Op0 && Op0->getOpcode() == Opcode) {
    243     Value *A = Op0->getOperand(0);
    244     Value *B = Op0->getOperand(1);
    245     Value *C = RHS;
    246 
    247     // Does "C op A" simplify?
    248     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    249       // It does!  Return "V op B" if it simplifies or is already available.
    250       // If V equals A then "V op B" is just the LHS.
    251       if (V == A) return LHS;
    252       // Otherwise return "V op B" if it simplifies.
    253       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
    254         ++NumReassoc;
    255         return W;
    256       }
    257     }
    258   }
    259 
    260   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    261   if (Op1 && Op1->getOpcode() == Opcode) {
    262     Value *A = LHS;
    263     Value *B = Op1->getOperand(0);
    264     Value *C = Op1->getOperand(1);
    265 
    266     // Does "C op A" simplify?
    267     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    268       // It does!  Return "B op V" if it simplifies or is already available.
    269       // If V equals C then "B op V" is just the RHS.
    270       if (V == C) return RHS;
    271       // Otherwise return "B op V" if it simplifies.
    272       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
    273         ++NumReassoc;
    274         return W;
    275       }
    276     }
    277   }
    278 
    279   return nullptr;
    280 }
    281 
    282 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
    283 /// instruction as an operand, try to simplify the binop by seeing whether
    284 /// evaluating it on both branches of the select results in the same value.
    285 /// Returns the common value if so, otherwise returns null.
    286 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
    287                                     const Query &Q, unsigned MaxRecurse) {
    288   // Recursion is always used, so bail out at once if we already hit the limit.
    289   if (!MaxRecurse--)
    290     return nullptr;
    291 
    292   SelectInst *SI;
    293   if (isa<SelectInst>(LHS)) {
    294     SI = cast<SelectInst>(LHS);
    295   } else {
    296     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    297     SI = cast<SelectInst>(RHS);
    298   }
    299 
    300   // Evaluate the BinOp on the true and false branches of the select.
    301   Value *TV;
    302   Value *FV;
    303   if (SI == LHS) {
    304     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
    305     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
    306   } else {
    307     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
    308     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
    309   }
    310 
    311   // If they simplified to the same value, then return the common value.
    312   // If they both failed to simplify then return null.
    313   if (TV == FV)
    314     return TV;
    315 
    316   // If one branch simplified to undef, return the other one.
    317   if (TV && isa<UndefValue>(TV))
    318     return FV;
    319   if (FV && isa<UndefValue>(FV))
    320     return TV;
    321 
    322   // If applying the operation did not change the true and false select values,
    323   // then the result of the binop is the select itself.
    324   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    325     return SI;
    326 
    327   // If one branch simplified and the other did not, and the simplified
    328   // value is equal to the unsimplified one, return the simplified value.
    329   // For example, select (cond, X, X & Z) & Z -> X & Z.
    330   if ((FV && !TV) || (TV && !FV)) {
    331     // Check that the simplified value has the form "X op Y" where "op" is the
    332     // same as the original operation.
    333     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    334     if (Simplified && Simplified->getOpcode() == Opcode) {
    335       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    336       // We already know that "op" is the same as for the simplified value.  See
    337       // if the operands match too.  If so, return the simplified value.
    338       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    339       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    340       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    341       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    342           Simplified->getOperand(1) == UnsimplifiedRHS)
    343         return Simplified;
    344       if (Simplified->isCommutative() &&
    345           Simplified->getOperand(1) == UnsimplifiedLHS &&
    346           Simplified->getOperand(0) == UnsimplifiedRHS)
    347         return Simplified;
    348     }
    349   }
    350 
    351   return nullptr;
    352 }
    353 
    354 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
    355 /// try to simplify the comparison by seeing whether both branches of the select
    356 /// result in the same value.  Returns the common value if so, otherwise returns
    357 /// null.
    358 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    359                                   Value *RHS, const Query &Q,
    360                                   unsigned MaxRecurse) {
    361   // Recursion is always used, so bail out at once if we already hit the limit.
    362   if (!MaxRecurse--)
    363     return nullptr;
    364 
    365   // Make sure the select is on the LHS.
    366   if (!isa<SelectInst>(LHS)) {
    367     std::swap(LHS, RHS);
    368     Pred = CmpInst::getSwappedPredicate(Pred);
    369   }
    370   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    371   SelectInst *SI = cast<SelectInst>(LHS);
    372   Value *Cond = SI->getCondition();
    373   Value *TV = SI->getTrueValue();
    374   Value *FV = SI->getFalseValue();
    375 
    376   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    377   // Does "cmp TV, RHS" simplify?
    378   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
    379   if (TCmp == Cond) {
    380     // It not only simplified, it simplified to the select condition.  Replace
    381     // it with 'true'.
    382     TCmp = getTrue(Cond->getType());
    383   } else if (!TCmp) {
    384     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
    385     // condition then we can replace it with 'true'.  Otherwise give up.
    386     if (!isSameCompare(Cond, Pred, TV, RHS))
    387       return nullptr;
    388     TCmp = getTrue(Cond->getType());
    389   }
    390 
    391   // Does "cmp FV, RHS" simplify?
    392   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
    393   if (FCmp == Cond) {
    394     // It not only simplified, it simplified to the select condition.  Replace
    395     // it with 'false'.
    396     FCmp = getFalse(Cond->getType());
    397   } else if (!FCmp) {
    398     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
    399     // condition then we can replace it with 'false'.  Otherwise give up.
    400     if (!isSameCompare(Cond, Pred, FV, RHS))
    401       return nullptr;
    402     FCmp = getFalse(Cond->getType());
    403   }
    404 
    405   // If both sides simplified to the same value, then use it as the result of
    406   // the original comparison.
    407   if (TCmp == FCmp)
    408     return TCmp;
    409 
    410   // The remaining cases only make sense if the select condition has the same
    411   // type as the result of the comparison, so bail out if this is not so.
    412   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
    413     return nullptr;
    414   // If the false value simplified to false, then the result of the compare
    415   // is equal to "Cond && TCmp".  This also catches the case when the false
    416   // value simplified to false and the true value to true, returning "Cond".
    417   if (match(FCmp, m_Zero()))
    418     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
    419       return V;
    420   // If the true value simplified to true, then the result of the compare
    421   // is equal to "Cond || FCmp".
    422   if (match(TCmp, m_One()))
    423     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
    424       return V;
    425   // Finally, if the false value simplified to true and the true value to
    426   // false, then the result of the compare is equal to "!Cond".
    427   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    428     if (Value *V =
    429         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    430                         Q, MaxRecurse))
    431       return V;
    432 
    433   return nullptr;
    434 }
    435 
    436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
    437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
    438 /// it on the incoming phi values yields the same result for every value.  If so
    439 /// returns the common value, otherwise returns null.
    440 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
    441                                  const Query &Q, unsigned MaxRecurse) {
    442   // Recursion is always used, so bail out at once if we already hit the limit.
    443   if (!MaxRecurse--)
    444     return nullptr;
    445 
    446   PHINode *PI;
    447   if (isa<PHINode>(LHS)) {
    448     PI = cast<PHINode>(LHS);
    449     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    450     if (!ValueDominatesPHI(RHS, PI, Q.DT))
    451       return nullptr;
    452   } else {
    453     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    454     PI = cast<PHINode>(RHS);
    455     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    456     if (!ValueDominatesPHI(LHS, PI, Q.DT))
    457       return nullptr;
    458   }
    459 
    460   // Evaluate the BinOp on the incoming phi values.
    461   Value *CommonValue = nullptr;
    462   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    463     Value *Incoming = PI->getIncomingValue(i);
    464     // If the incoming value is the phi node itself, it can safely be skipped.
    465     if (Incoming == PI) continue;
    466     Value *V = PI == LHS ?
    467       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
    468       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
    469     // If the operation failed to simplify, or simplified to a different value
    470     // to previously, then give up.
    471     if (!V || (CommonValue && V != CommonValue))
    472       return nullptr;
    473     CommonValue = V;
    474   }
    475 
    476   return CommonValue;
    477 }
    478 
    479 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
    480 /// try to simplify the comparison by seeing whether comparing with all of the
    481 /// incoming phi values yields the same result every time.  If so returns the
    482 /// common result, otherwise returns null.
    483 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    484                                const Query &Q, unsigned MaxRecurse) {
    485   // Recursion is always used, so bail out at once if we already hit the limit.
    486   if (!MaxRecurse--)
    487     return nullptr;
    488 
    489   // Make sure the phi is on the LHS.
    490   if (!isa<PHINode>(LHS)) {
    491     std::swap(LHS, RHS);
    492     Pred = CmpInst::getSwappedPredicate(Pred);
    493   }
    494   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    495   PHINode *PI = cast<PHINode>(LHS);
    496 
    497   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    498   if (!ValueDominatesPHI(RHS, PI, Q.DT))
    499     return nullptr;
    500 
    501   // Evaluate the BinOp on the incoming phi values.
    502   Value *CommonValue = nullptr;
    503   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    504     Value *Incoming = PI->getIncomingValue(i);
    505     // If the incoming value is the phi node itself, it can safely be skipped.
    506     if (Incoming == PI) continue;
    507     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
    508     // If the operation failed to simplify, or simplified to a different value
    509     // to previously, then give up.
    510     if (!V || (CommonValue && V != CommonValue))
    511       return nullptr;
    512     CommonValue = V;
    513   }
    514 
    515   return CommonValue;
    516 }
    517 
    518 /// SimplifyAddInst - Given operands for an Add, see if we can
    519 /// fold the result.  If not, this returns null.
    520 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    521                               const Query &Q, unsigned MaxRecurse) {
    522   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    523     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    524       Constant *Ops[] = { CLHS, CRHS };
    525       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
    526                                       Q.DL, Q.TLI);
    527     }
    528 
    529     // Canonicalize the constant to the RHS.
    530     std::swap(Op0, Op1);
    531   }
    532 
    533   // X + undef -> undef
    534   if (match(Op1, m_Undef()))
    535     return Op1;
    536 
    537   // X + 0 -> X
    538   if (match(Op1, m_Zero()))
    539     return Op0;
    540 
    541   // X + (Y - X) -> Y
    542   // (Y - X) + X -> Y
    543   // Eg: X + -X -> 0
    544   Value *Y = nullptr;
    545   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    546       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    547     return Y;
    548 
    549   // X + ~X -> -1   since   ~X = -X-1
    550   if (match(Op0, m_Not(m_Specific(Op1))) ||
    551       match(Op1, m_Not(m_Specific(Op0))))
    552     return Constant::getAllOnesValue(Op0->getType());
    553 
    554   /// i1 add -> xor.
    555   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    556     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    557       return V;
    558 
    559   // Try some generic simplifications for associative operations.
    560   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
    561                                           MaxRecurse))
    562     return V;
    563 
    564   // Threading Add over selects and phi nodes is pointless, so don't bother.
    565   // Threading over the select in "A + select(cond, B, C)" means evaluating
    566   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    567   // only if B and C are equal.  If B and C are equal then (since we assume
    568   // that operands have already been simplified) "select(cond, B, C)" should
    569   // have been simplified to the common value of B and C already.  Analysing
    570   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    571   // for threading over phi nodes.
    572 
    573   return nullptr;
    574 }
    575 
    576 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    577                              const DataLayout *DL, const TargetLibraryInfo *TLI,
    578                              const DominatorTree *DT) {
    579   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
    580                            RecursionLimit);
    581 }
    582 
    583 /// \brief Compute the base pointer and cumulative constant offsets for V.
    584 ///
    585 /// This strips all constant offsets off of V, leaving it the base pointer, and
    586 /// accumulates the total constant offset applied in the returned constant. It
    587 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    588 /// no constant offsets applied.
    589 ///
    590 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
    591 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
    592 /// folding.
    593 static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
    594                                                 Value *&V,
    595                                                 bool AllowNonInbounds = false) {
    596   assert(V->getType()->getScalarType()->isPointerTy());
    597 
    598   // Without DataLayout, just be conservative for now. Theoretically, more could
    599   // be done in this case.
    600   if (!DL)
    601     return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
    602 
    603   Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
    604   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
    605 
    606   // Even though we don't look through PHI nodes, we could be called on an
    607   // instruction in an unreachable block, which may be on a cycle.
    608   SmallPtrSet<Value *, 4> Visited;
    609   Visited.insert(V);
    610   do {
    611     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    612       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
    613           !GEP->accumulateConstantOffset(*DL, Offset))
    614         break;
    615       V = GEP->getPointerOperand();
    616     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    617       V = cast<Operator>(V)->getOperand(0);
    618     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    619       if (GA->mayBeOverridden())
    620         break;
    621       V = GA->getAliasee();
    622     } else {
    623       break;
    624     }
    625     assert(V->getType()->getScalarType()->isPointerTy() &&
    626            "Unexpected operand type!");
    627   } while (Visited.insert(V));
    628 
    629   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
    630   if (V->getType()->isVectorTy())
    631     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
    632                                     OffsetIntPtr);
    633   return OffsetIntPtr;
    634 }
    635 
    636 /// \brief Compute the constant difference between two pointer values.
    637 /// If the difference is not a constant, returns zero.
    638 static Constant *computePointerDifference(const DataLayout *DL,
    639                                           Value *LHS, Value *RHS) {
    640   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
    641   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
    642 
    643   // If LHS and RHS are not related via constant offsets to the same base
    644   // value, there is nothing we can do here.
    645   if (LHS != RHS)
    646     return nullptr;
    647 
    648   // Otherwise, the difference of LHS - RHS can be computed as:
    649   //    LHS - RHS
    650   //  = (LHSOffset + Base) - (RHSOffset + Base)
    651   //  = LHSOffset - RHSOffset
    652   return ConstantExpr::getSub(LHSOffset, RHSOffset);
    653 }
    654 
    655 /// SimplifySubInst - Given operands for a Sub, see if we can
    656 /// fold the result.  If not, this returns null.
    657 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    658                               const Query &Q, unsigned MaxRecurse) {
    659   if (Constant *CLHS = dyn_cast<Constant>(Op0))
    660     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    661       Constant *Ops[] = { CLHS, CRHS };
    662       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
    663                                       Ops, Q.DL, Q.TLI);
    664     }
    665 
    666   // X - undef -> undef
    667   // undef - X -> undef
    668   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    669     return UndefValue::get(Op0->getType());
    670 
    671   // X - 0 -> X
    672   if (match(Op1, m_Zero()))
    673     return Op0;
    674 
    675   // X - X -> 0
    676   if (Op0 == Op1)
    677     return Constant::getNullValue(Op0->getType());
    678 
    679   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    680   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    681   Value *X = nullptr, *Y = nullptr, *Z = Op1;
    682   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    683     // See if "V === Y - Z" simplifies.
    684     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
    685       // It does!  Now see if "X + V" simplifies.
    686       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
    687         // It does, we successfully reassociated!
    688         ++NumReassoc;
    689         return W;
    690       }
    691     // See if "V === X - Z" simplifies.
    692     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    693       // It does!  Now see if "Y + V" simplifies.
    694       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
    695         // It does, we successfully reassociated!
    696         ++NumReassoc;
    697         return W;
    698       }
    699   }
    700 
    701   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    702   // For example, X - (X + 1) -> -1
    703   X = Op0;
    704   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    705     // See if "V === X - Y" simplifies.
    706     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    707       // It does!  Now see if "V - Z" simplifies.
    708       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
    709         // It does, we successfully reassociated!
    710         ++NumReassoc;
    711         return W;
    712       }
    713     // See if "V === X - Z" simplifies.
    714     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    715       // It does!  Now see if "V - Y" simplifies.
    716       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
    717         // It does, we successfully reassociated!
    718         ++NumReassoc;
    719         return W;
    720       }
    721   }
    722 
    723   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    724   // For example, X - (X - Y) -> Y.
    725   Z = Op0;
    726   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    727     // See if "V === Z - X" simplifies.
    728     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
    729       // It does!  Now see if "V + Y" simplifies.
    730       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
    731         // It does, we successfully reassociated!
    732         ++NumReassoc;
    733         return W;
    734       }
    735 
    736   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
    737   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
    738       match(Op1, m_Trunc(m_Value(Y))))
    739     if (X->getType() == Y->getType())
    740       // See if "V === X - Y" simplifies.
    741       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    742         // It does!  Now see if "trunc V" simplifies.
    743         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
    744           // It does, return the simplified "trunc V".
    745           return W;
    746 
    747   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
    748   if (match(Op0, m_PtrToInt(m_Value(X))) &&
    749       match(Op1, m_PtrToInt(m_Value(Y))))
    750     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
    751       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
    752 
    753   // i1 sub -> xor.
    754   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    755     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    756       return V;
    757 
    758   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    759   // Threading over the select in "A - select(cond, B, C)" means evaluating
    760   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    761   // only if B and C are equal.  If B and C are equal then (since we assume
    762   // that operands have already been simplified) "select(cond, B, C)" should
    763   // have been simplified to the common value of B and C already.  Analysing
    764   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    765   // for threading over phi nodes.
    766 
    767   return nullptr;
    768 }
    769 
    770 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    771                              const DataLayout *DL, const TargetLibraryInfo *TLI,
    772                              const DominatorTree *DT) {
    773   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
    774                            RecursionLimit);
    775 }
    776 
    777 /// Given operands for an FAdd, see if we can fold the result.  If not, this
    778 /// returns null.
    779 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    780                               const Query &Q, unsigned MaxRecurse) {
    781   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    782     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    783       Constant *Ops[] = { CLHS, CRHS };
    784       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
    785                                       Ops, Q.DL, Q.TLI);
    786     }
    787 
    788     // Canonicalize the constant to the RHS.
    789     std::swap(Op0, Op1);
    790   }
    791 
    792   // fadd X, -0 ==> X
    793   if (match(Op1, m_NegZero()))
    794     return Op0;
    795 
    796   // fadd X, 0 ==> X, when we know X is not -0
    797   if (match(Op1, m_Zero()) &&
    798       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
    799     return Op0;
    800 
    801   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
    802   //   where nnan and ninf have to occur at least once somewhere in this
    803   //   expression
    804   Value *SubOp = nullptr;
    805   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
    806     SubOp = Op1;
    807   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
    808     SubOp = Op0;
    809   if (SubOp) {
    810     Instruction *FSub = cast<Instruction>(SubOp);
    811     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
    812         (FMF.noInfs() || FSub->hasNoInfs()))
    813       return Constant::getNullValue(Op0->getType());
    814   }
    815 
    816   return nullptr;
    817 }
    818 
    819 /// Given operands for an FSub, see if we can fold the result.  If not, this
    820 /// returns null.
    821 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    822                               const Query &Q, unsigned MaxRecurse) {
    823   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    824     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    825       Constant *Ops[] = { CLHS, CRHS };
    826       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
    827                                       Ops, Q.DL, Q.TLI);
    828     }
    829   }
    830 
    831   // fsub X, 0 ==> X
    832   if (match(Op1, m_Zero()))
    833     return Op0;
    834 
    835   // fsub X, -0 ==> X, when we know X is not -0
    836   if (match(Op1, m_NegZero()) &&
    837       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
    838     return Op0;
    839 
    840   // fsub 0, (fsub -0.0, X) ==> X
    841   Value *X;
    842   if (match(Op0, m_AnyZero())) {
    843     if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
    844       return X;
    845     if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
    846       return X;
    847   }
    848 
    849   // fsub nnan ninf x, x ==> 0.0
    850   if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
    851     return Constant::getNullValue(Op0->getType());
    852 
    853   return nullptr;
    854 }
    855 
    856 /// Given the operands for an FMul, see if we can fold the result
    857 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
    858                                FastMathFlags FMF,
    859                                const Query &Q,
    860                                unsigned MaxRecurse) {
    861  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    862     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    863       Constant *Ops[] = { CLHS, CRHS };
    864       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
    865                                       Ops, Q.DL, Q.TLI);
    866     }
    867 
    868     // Canonicalize the constant to the RHS.
    869     std::swap(Op0, Op1);
    870  }
    871 
    872  // fmul X, 1.0 ==> X
    873  if (match(Op1, m_FPOne()))
    874    return Op0;
    875 
    876  // fmul nnan nsz X, 0 ==> 0
    877  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
    878    return Op1;
    879 
    880  return nullptr;
    881 }
    882 
    883 /// SimplifyMulInst - Given operands for a Mul, see if we can
    884 /// fold the result.  If not, this returns null.
    885 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
    886                               unsigned MaxRecurse) {
    887   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    888     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    889       Constant *Ops[] = { CLHS, CRHS };
    890       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
    891                                       Ops, Q.DL, Q.TLI);
    892     }
    893 
    894     // Canonicalize the constant to the RHS.
    895     std::swap(Op0, Op1);
    896   }
    897 
    898   // X * undef -> 0
    899   if (match(Op1, m_Undef()))
    900     return Constant::getNullValue(Op0->getType());
    901 
    902   // X * 0 -> 0
    903   if (match(Op1, m_Zero()))
    904     return Op1;
    905 
    906   // X * 1 -> X
    907   if (match(Op1, m_One()))
    908     return Op0;
    909 
    910   // (X / Y) * Y -> X if the division is exact.
    911   Value *X = nullptr;
    912   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
    913       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
    914     return X;
    915 
    916   // i1 mul -> and.
    917   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    918     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
    919       return V;
    920 
    921   // Try some generic simplifications for associative operations.
    922   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
    923                                           MaxRecurse))
    924     return V;
    925 
    926   // Mul distributes over Add.  Try some generic simplifications based on this.
    927   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    928                              Q, MaxRecurse))
    929     return V;
    930 
    931   // If the operation is with the result of a select instruction, check whether
    932   // operating on either branch of the select always yields the same value.
    933   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    934     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
    935                                          MaxRecurse))
    936       return V;
    937 
    938   // If the operation is with the result of a phi instruction, check whether
    939   // operating on all incoming values of the phi always yields the same value.
    940   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    941     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
    942                                       MaxRecurse))
    943       return V;
    944 
    945   return nullptr;
    946 }
    947 
    948 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    949                              const DataLayout *DL, const TargetLibraryInfo *TLI,
    950                              const DominatorTree *DT) {
    951   return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
    952 }
    953 
    954 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    955                              const DataLayout *DL, const TargetLibraryInfo *TLI,
    956                              const DominatorTree *DT) {
    957   return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
    958 }
    959 
    960 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
    961                               FastMathFlags FMF,
    962                               const DataLayout *DL,
    963                               const TargetLibraryInfo *TLI,
    964                               const DominatorTree *DT) {
    965   return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
    966 }
    967 
    968 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
    969                              const TargetLibraryInfo *TLI,
    970                              const DominatorTree *DT) {
    971   return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
    972 }
    973 
    974 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
    975 /// fold the result.  If not, this returns null.
    976 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    977                           const Query &Q, unsigned MaxRecurse) {
    978   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    979     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
    980       Constant *Ops[] = { C0, C1 };
    981       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
    982     }
    983   }
    984 
    985   bool isSigned = Opcode == Instruction::SDiv;
    986 
    987   // X / undef -> undef
    988   if (match(Op1, m_Undef()))
    989     return Op1;
    990 
    991   // undef / X -> 0
    992   if (match(Op0, m_Undef()))
    993     return Constant::getNullValue(Op0->getType());
    994 
    995   // 0 / X -> 0, we don't need to preserve faults!
    996   if (match(Op0, m_Zero()))
    997     return Op0;
    998 
    999   // X / 1 -> X
   1000   if (match(Op1, m_One()))
   1001     return Op0;
   1002 
   1003   if (Op0->getType()->isIntegerTy(1))
   1004     // It can't be division by zero, hence it must be division by one.
   1005     return Op0;
   1006 
   1007   // X / X -> 1
   1008   if (Op0 == Op1)
   1009     return ConstantInt::get(Op0->getType(), 1);
   1010 
   1011   // (X * Y) / Y -> X if the multiplication does not overflow.
   1012   Value *X = nullptr, *Y = nullptr;
   1013   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
   1014     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
   1015     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
   1016     // If the Mul knows it does not overflow, then we are good to go.
   1017     if ((isSigned && Mul->hasNoSignedWrap()) ||
   1018         (!isSigned && Mul->hasNoUnsignedWrap()))
   1019       return X;
   1020     // If X has the form X = A / Y then X * Y cannot overflow.
   1021     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
   1022       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
   1023         return X;
   1024   }
   1025 
   1026   // (X rem Y) / Y -> 0
   1027   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1028       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1029     return Constant::getNullValue(Op0->getType());
   1030 
   1031   // If the operation is with the result of a select instruction, check whether
   1032   // operating on either branch of the select always yields the same value.
   1033   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1034     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1035       return V;
   1036 
   1037   // If the operation is with the result of a phi instruction, check whether
   1038   // operating on all incoming values of the phi always yields the same value.
   1039   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1040     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1041       return V;
   1042 
   1043   return nullptr;
   1044 }
   1045 
   1046 /// SimplifySDivInst - Given operands for an SDiv, see if we can
   1047 /// fold the result.  If not, this returns null.
   1048 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
   1049                                unsigned MaxRecurse) {
   1050   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
   1051     return V;
   1052 
   1053   return nullptr;
   1054 }
   1055 
   1056 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1057                               const TargetLibraryInfo *TLI,
   1058                               const DominatorTree *DT) {
   1059   return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1060 }
   1061 
   1062 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
   1063 /// fold the result.  If not, this returns null.
   1064 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
   1065                                unsigned MaxRecurse) {
   1066   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
   1067     return V;
   1068 
   1069   return nullptr;
   1070 }
   1071 
   1072 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1073                               const TargetLibraryInfo *TLI,
   1074                               const DominatorTree *DT) {
   1075   return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1076 }
   1077 
   1078 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
   1079                                unsigned) {
   1080   // undef / X -> undef    (the undef could be a snan).
   1081   if (match(Op0, m_Undef()))
   1082     return Op0;
   1083 
   1084   // X / undef -> undef
   1085   if (match(Op1, m_Undef()))
   1086     return Op1;
   1087 
   1088   return nullptr;
   1089 }
   1090 
   1091 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1092                               const TargetLibraryInfo *TLI,
   1093                               const DominatorTree *DT) {
   1094   return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1095 }
   1096 
   1097 /// SimplifyRem - Given operands for an SRem or URem, see if we can
   1098 /// fold the result.  If not, this returns null.
   1099 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1100                           const Query &Q, unsigned MaxRecurse) {
   1101   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1102     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1103       Constant *Ops[] = { C0, C1 };
   1104       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
   1105     }
   1106   }
   1107 
   1108   // X % undef -> undef
   1109   if (match(Op1, m_Undef()))
   1110     return Op1;
   1111 
   1112   // undef % X -> 0
   1113   if (match(Op0, m_Undef()))
   1114     return Constant::getNullValue(Op0->getType());
   1115 
   1116   // 0 % X -> 0, we don't need to preserve faults!
   1117   if (match(Op0, m_Zero()))
   1118     return Op0;
   1119 
   1120   // X % 0 -> undef, we don't need to preserve faults!
   1121   if (match(Op1, m_Zero()))
   1122     return UndefValue::get(Op0->getType());
   1123 
   1124   // X % 1 -> 0
   1125   if (match(Op1, m_One()))
   1126     return Constant::getNullValue(Op0->getType());
   1127 
   1128   if (Op0->getType()->isIntegerTy(1))
   1129     // It can't be remainder by zero, hence it must be remainder by one.
   1130     return Constant::getNullValue(Op0->getType());
   1131 
   1132   // X % X -> 0
   1133   if (Op0 == Op1)
   1134     return Constant::getNullValue(Op0->getType());
   1135 
   1136   // If the operation is with the result of a select instruction, check whether
   1137   // operating on either branch of the select always yields the same value.
   1138   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1139     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1140       return V;
   1141 
   1142   // If the operation is with the result of a phi instruction, check whether
   1143   // operating on all incoming values of the phi always yields the same value.
   1144   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1145     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1146       return V;
   1147 
   1148   return nullptr;
   1149 }
   1150 
   1151 /// SimplifySRemInst - Given operands for an SRem, see if we can
   1152 /// fold the result.  If not, this returns null.
   1153 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
   1154                                unsigned MaxRecurse) {
   1155   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
   1156     return V;
   1157 
   1158   return nullptr;
   1159 }
   1160 
   1161 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1162                               const TargetLibraryInfo *TLI,
   1163                               const DominatorTree *DT) {
   1164   return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1165 }
   1166 
   1167 /// SimplifyURemInst - Given operands for a URem, see if we can
   1168 /// fold the result.  If not, this returns null.
   1169 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
   1170                                unsigned MaxRecurse) {
   1171   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
   1172     return V;
   1173 
   1174   return nullptr;
   1175 }
   1176 
   1177 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1178                               const TargetLibraryInfo *TLI,
   1179                               const DominatorTree *DT) {
   1180   return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1181 }
   1182 
   1183 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
   1184                                unsigned) {
   1185   // undef % X -> undef    (the undef could be a snan).
   1186   if (match(Op0, m_Undef()))
   1187     return Op0;
   1188 
   1189   // X % undef -> undef
   1190   if (match(Op1, m_Undef()))
   1191     return Op1;
   1192 
   1193   return nullptr;
   1194 }
   1195 
   1196 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1197                               const TargetLibraryInfo *TLI,
   1198                               const DominatorTree *DT) {
   1199   return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1200 }
   1201 
   1202 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
   1203 static bool isUndefShift(Value *Amount) {
   1204   Constant *C = dyn_cast<Constant>(Amount);
   1205   if (!C)
   1206     return false;
   1207 
   1208   // X shift by undef -> undef because it may shift by the bitwidth.
   1209   if (isa<UndefValue>(C))
   1210     return true;
   1211 
   1212   // Shifting by the bitwidth or more is undefined.
   1213   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1214     if (CI->getValue().getLimitedValue() >=
   1215         CI->getType()->getScalarSizeInBits())
   1216       return true;
   1217 
   1218   // If all lanes of a vector shift are undefined the whole shift is.
   1219   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
   1220     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
   1221       if (!isUndefShift(C->getAggregateElement(I)))
   1222         return false;
   1223     return true;
   1224   }
   1225 
   1226   return false;
   1227 }
   1228 
   1229 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
   1230 /// fold the result.  If not, this returns null.
   1231 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   1232                             const Query &Q, unsigned MaxRecurse) {
   1233   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1234     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1235       Constant *Ops[] = { C0, C1 };
   1236       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
   1237     }
   1238   }
   1239 
   1240   // 0 shift by X -> 0
   1241   if (match(Op0, m_Zero()))
   1242     return Op0;
   1243 
   1244   // X shift by 0 -> X
   1245   if (match(Op1, m_Zero()))
   1246     return Op0;
   1247 
   1248   // Fold undefined shifts.
   1249   if (isUndefShift(Op1))
   1250     return UndefValue::get(Op0->getType());
   1251 
   1252   // If the operation is with the result of a select instruction, check whether
   1253   // operating on either branch of the select always yields the same value.
   1254   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1255     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1256       return V;
   1257 
   1258   // If the operation is with the result of a phi instruction, check whether
   1259   // operating on all incoming values of the phi always yields the same value.
   1260   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1261     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1262       return V;
   1263 
   1264   return nullptr;
   1265 }
   1266 
   1267 /// SimplifyShlInst - Given operands for an Shl, see if we can
   1268 /// fold the result.  If not, this returns null.
   1269 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1270                               const Query &Q, unsigned MaxRecurse) {
   1271   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
   1272     return V;
   1273 
   1274   // undef << X -> 0
   1275   if (match(Op0, m_Undef()))
   1276     return Constant::getNullValue(Op0->getType());
   1277 
   1278   // (X >> A) << A -> X
   1279   Value *X;
   1280   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
   1281     return X;
   1282   return nullptr;
   1283 }
   1284 
   1285 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1286                              const DataLayout *DL, const TargetLibraryInfo *TLI,
   1287                              const DominatorTree *DT) {
   1288   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
   1289                            RecursionLimit);
   1290 }
   1291 
   1292 /// SimplifyLShrInst - Given operands for an LShr, see if we can
   1293 /// fold the result.  If not, this returns null.
   1294 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1295                                const Query &Q, unsigned MaxRecurse) {
   1296   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
   1297     return V;
   1298 
   1299   // X >> X -> 0
   1300   if (Op0 == Op1)
   1301     return Constant::getNullValue(Op0->getType());
   1302 
   1303   // undef >>l X -> 0
   1304   if (match(Op0, m_Undef()))
   1305     return Constant::getNullValue(Op0->getType());
   1306 
   1307   // (X << A) >> A -> X
   1308   Value *X;
   1309   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1310       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
   1311     return X;
   1312 
   1313   return nullptr;
   1314 }
   1315 
   1316 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1317                               const DataLayout *DL,
   1318                               const TargetLibraryInfo *TLI,
   1319                               const DominatorTree *DT) {
   1320   return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
   1321                             RecursionLimit);
   1322 }
   1323 
   1324 /// SimplifyAShrInst - Given operands for an AShr, see if we can
   1325 /// fold the result.  If not, this returns null.
   1326 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1327                                const Query &Q, unsigned MaxRecurse) {
   1328   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
   1329     return V;
   1330 
   1331   // X >> X -> 0
   1332   if (Op0 == Op1)
   1333     return Constant::getNullValue(Op0->getType());
   1334 
   1335   // all ones >>a X -> all ones
   1336   if (match(Op0, m_AllOnes()))
   1337     return Op0;
   1338 
   1339   // undef >>a X -> all ones
   1340   if (match(Op0, m_Undef()))
   1341     return Constant::getAllOnesValue(Op0->getType());
   1342 
   1343   // (X << A) >> A -> X
   1344   Value *X;
   1345   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1346       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
   1347     return X;
   1348 
   1349   return nullptr;
   1350 }
   1351 
   1352 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1353                               const DataLayout *DL,
   1354                               const TargetLibraryInfo *TLI,
   1355                               const DominatorTree *DT) {
   1356   return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
   1357                             RecursionLimit);
   1358 }
   1359 
   1360 /// SimplifyAndInst - Given operands for an And, see if we can
   1361 /// fold the result.  If not, this returns null.
   1362 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
   1363                               unsigned MaxRecurse) {
   1364   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1365     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1366       Constant *Ops[] = { CLHS, CRHS };
   1367       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
   1368                                       Ops, Q.DL, Q.TLI);
   1369     }
   1370 
   1371     // Canonicalize the constant to the RHS.
   1372     std::swap(Op0, Op1);
   1373   }
   1374 
   1375   // X & undef -> 0
   1376   if (match(Op1, m_Undef()))
   1377     return Constant::getNullValue(Op0->getType());
   1378 
   1379   // X & X = X
   1380   if (Op0 == Op1)
   1381     return Op0;
   1382 
   1383   // X & 0 = 0
   1384   if (match(Op1, m_Zero()))
   1385     return Op1;
   1386 
   1387   // X & -1 = X
   1388   if (match(Op1, m_AllOnes()))
   1389     return Op0;
   1390 
   1391   // A & ~A  =  ~A & A  =  0
   1392   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1393       match(Op1, m_Not(m_Specific(Op0))))
   1394     return Constant::getNullValue(Op0->getType());
   1395 
   1396   // (A | ?) & A = A
   1397   Value *A = nullptr, *B = nullptr;
   1398   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1399       (A == Op1 || B == Op1))
   1400     return Op1;
   1401 
   1402   // A & (A | ?) = A
   1403   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1404       (A == Op0 || B == Op0))
   1405     return Op0;
   1406 
   1407   // A & (-A) = A if A is a power of two or zero.
   1408   if (match(Op0, m_Neg(m_Specific(Op1))) ||
   1409       match(Op1, m_Neg(m_Specific(Op0)))) {
   1410     if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
   1411       return Op0;
   1412     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
   1413       return Op1;
   1414   }
   1415 
   1416   // Try some generic simplifications for associative operations.
   1417   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
   1418                                           MaxRecurse))
   1419     return V;
   1420 
   1421   // And distributes over Or.  Try some generic simplifications based on this.
   1422   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1423                              Q, MaxRecurse))
   1424     return V;
   1425 
   1426   // And distributes over Xor.  Try some generic simplifications based on this.
   1427   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1428                              Q, MaxRecurse))
   1429     return V;
   1430 
   1431   // If the operation is with the result of a select instruction, check whether
   1432   // operating on either branch of the select always yields the same value.
   1433   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1434     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
   1435                                          MaxRecurse))
   1436       return V;
   1437 
   1438   // If the operation is with the result of a phi instruction, check whether
   1439   // operating on all incoming values of the phi always yields the same value.
   1440   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1441     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
   1442                                       MaxRecurse))
   1443       return V;
   1444 
   1445   return nullptr;
   1446 }
   1447 
   1448 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1449                              const TargetLibraryInfo *TLI,
   1450                              const DominatorTree *DT) {
   1451   return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1452 }
   1453 
   1454 /// SimplifyOrInst - Given operands for an Or, see if we can
   1455 /// fold the result.  If not, this returns null.
   1456 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
   1457                              unsigned MaxRecurse) {
   1458   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1459     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1460       Constant *Ops[] = { CLHS, CRHS };
   1461       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
   1462                                       Ops, Q.DL, Q.TLI);
   1463     }
   1464 
   1465     // Canonicalize the constant to the RHS.
   1466     std::swap(Op0, Op1);
   1467   }
   1468 
   1469   // X | undef -> -1
   1470   if (match(Op1, m_Undef()))
   1471     return Constant::getAllOnesValue(Op0->getType());
   1472 
   1473   // X | X = X
   1474   if (Op0 == Op1)
   1475     return Op0;
   1476 
   1477   // X | 0 = X
   1478   if (match(Op1, m_Zero()))
   1479     return Op0;
   1480 
   1481   // X | -1 = -1
   1482   if (match(Op1, m_AllOnes()))
   1483     return Op1;
   1484 
   1485   // A | ~A  =  ~A | A  =  -1
   1486   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1487       match(Op1, m_Not(m_Specific(Op0))))
   1488     return Constant::getAllOnesValue(Op0->getType());
   1489 
   1490   // (A & ?) | A = A
   1491   Value *A = nullptr, *B = nullptr;
   1492   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1493       (A == Op1 || B == Op1))
   1494     return Op1;
   1495 
   1496   // A | (A & ?) = A
   1497   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1498       (A == Op0 || B == Op0))
   1499     return Op0;
   1500 
   1501   // ~(A & ?) | A = -1
   1502   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1503       (A == Op1 || B == Op1))
   1504     return Constant::getAllOnesValue(Op1->getType());
   1505 
   1506   // A | ~(A & ?) = -1
   1507   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1508       (A == Op0 || B == Op0))
   1509     return Constant::getAllOnesValue(Op0->getType());
   1510 
   1511   // Try some generic simplifications for associative operations.
   1512   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
   1513                                           MaxRecurse))
   1514     return V;
   1515 
   1516   // Or distributes over And.  Try some generic simplifications based on this.
   1517   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
   1518                              MaxRecurse))
   1519     return V;
   1520 
   1521   // If the operation is with the result of a select instruction, check whether
   1522   // operating on either branch of the select always yields the same value.
   1523   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1524     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
   1525                                          MaxRecurse))
   1526       return V;
   1527 
   1528   // (A & C)|(B & D)
   1529   Value *C = nullptr, *D = nullptr;
   1530   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1531       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1532     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
   1533     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
   1534     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
   1535       // (A & C1)|(B & C2)
   1536       // If we have: ((V + N) & C1) | (V & C2)
   1537       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1538       // replace with V+N.
   1539       Value *V1, *V2;
   1540       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
   1541           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1542         // Add commutes, try both ways.
   1543         if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1544           return A;
   1545         if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1546           return A;
   1547       }
   1548       // Or commutes, try both ways.
   1549       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
   1550           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1551         // Add commutes, try both ways.
   1552         if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1553           return B;
   1554         if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1555           return B;
   1556       }
   1557     }
   1558   }
   1559 
   1560   // If the operation is with the result of a phi instruction, check whether
   1561   // operating on all incoming values of the phi always yields the same value.
   1562   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1563     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
   1564       return V;
   1565 
   1566   return nullptr;
   1567 }
   1568 
   1569 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1570                             const TargetLibraryInfo *TLI,
   1571                             const DominatorTree *DT) {
   1572   return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1573 }
   1574 
   1575 /// SimplifyXorInst - Given operands for a Xor, see if we can
   1576 /// fold the result.  If not, this returns null.
   1577 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
   1578                               unsigned MaxRecurse) {
   1579   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1580     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1581       Constant *Ops[] = { CLHS, CRHS };
   1582       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
   1583                                       Ops, Q.DL, Q.TLI);
   1584     }
   1585 
   1586     // Canonicalize the constant to the RHS.
   1587     std::swap(Op0, Op1);
   1588   }
   1589 
   1590   // A ^ undef -> undef
   1591   if (match(Op1, m_Undef()))
   1592     return Op1;
   1593 
   1594   // A ^ 0 = A
   1595   if (match(Op1, m_Zero()))
   1596     return Op0;
   1597 
   1598   // A ^ A = 0
   1599   if (Op0 == Op1)
   1600     return Constant::getNullValue(Op0->getType());
   1601 
   1602   // A ^ ~A  =  ~A ^ A  =  -1
   1603   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1604       match(Op1, m_Not(m_Specific(Op0))))
   1605     return Constant::getAllOnesValue(Op0->getType());
   1606 
   1607   // Try some generic simplifications for associative operations.
   1608   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
   1609                                           MaxRecurse))
   1610     return V;
   1611 
   1612   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   1613   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   1614   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   1615   // only if B and C are equal.  If B and C are equal then (since we assume
   1616   // that operands have already been simplified) "select(cond, B, C)" should
   1617   // have been simplified to the common value of B and C already.  Analysing
   1618   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   1619   // for threading over phi nodes.
   1620 
   1621   return nullptr;
   1622 }
   1623 
   1624 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
   1625                              const TargetLibraryInfo *TLI,
   1626                              const DominatorTree *DT) {
   1627   return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
   1628 }
   1629 
   1630 static Type *GetCompareTy(Value *Op) {
   1631   return CmpInst::makeCmpResultType(Op->getType());
   1632 }
   1633 
   1634 /// ExtractEquivalentCondition - Rummage around inside V looking for something
   1635 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
   1636 /// otherwise return null.  Helper function for analyzing max/min idioms.
   1637 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   1638                                          Value *LHS, Value *RHS) {
   1639   SelectInst *SI = dyn_cast<SelectInst>(V);
   1640   if (!SI)
   1641     return nullptr;
   1642   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1643   if (!Cmp)
   1644     return nullptr;
   1645   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   1646   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   1647     return Cmp;
   1648   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   1649       LHS == CmpRHS && RHS == CmpLHS)
   1650     return Cmp;
   1651   return nullptr;
   1652 }
   1653 
   1654 // A significant optimization not implemented here is assuming that alloca
   1655 // addresses are not equal to incoming argument values. They don't *alias*,
   1656 // as we say, but that doesn't mean they aren't equal, so we take a
   1657 // conservative approach.
   1658 //
   1659 // This is inspired in part by C++11 5.10p1:
   1660 //   "Two pointers of the same type compare equal if and only if they are both
   1661 //    null, both point to the same function, or both represent the same
   1662 //    address."
   1663 //
   1664 // This is pretty permissive.
   1665 //
   1666 // It's also partly due to C11 6.5.9p6:
   1667 //   "Two pointers compare equal if and only if both are null pointers, both are
   1668 //    pointers to the same object (including a pointer to an object and a
   1669 //    subobject at its beginning) or function, both are pointers to one past the
   1670 //    last element of the same array object, or one is a pointer to one past the
   1671 //    end of one array object and the other is a pointer to the start of a
   1672 //    different array object that happens to immediately follow the first array
   1673 //    object in the address space.)
   1674 //
   1675 // C11's version is more restrictive, however there's no reason why an argument
   1676 // couldn't be a one-past-the-end value for a stack object in the caller and be
   1677 // equal to the beginning of a stack object in the callee.
   1678 //
   1679 // If the C and C++ standards are ever made sufficiently restrictive in this
   1680 // area, it may be possible to update LLVM's semantics accordingly and reinstate
   1681 // this optimization.
   1682 static Constant *computePointerICmp(const DataLayout *DL,
   1683                                     const TargetLibraryInfo *TLI,
   1684                                     CmpInst::Predicate Pred,
   1685                                     Value *LHS, Value *RHS) {
   1686   // First, skip past any trivial no-ops.
   1687   LHS = LHS->stripPointerCasts();
   1688   RHS = RHS->stripPointerCasts();
   1689 
   1690   // A non-null pointer is not equal to a null pointer.
   1691   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
   1692       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
   1693     return ConstantInt::get(GetCompareTy(LHS),
   1694                             !CmpInst::isTrueWhenEqual(Pred));
   1695 
   1696   // We can only fold certain predicates on pointer comparisons.
   1697   switch (Pred) {
   1698   default:
   1699     return nullptr;
   1700 
   1701     // Equality comaprisons are easy to fold.
   1702   case CmpInst::ICMP_EQ:
   1703   case CmpInst::ICMP_NE:
   1704     break;
   1705 
   1706     // We can only handle unsigned relational comparisons because 'inbounds' on
   1707     // a GEP only protects against unsigned wrapping.
   1708   case CmpInst::ICMP_UGT:
   1709   case CmpInst::ICMP_UGE:
   1710   case CmpInst::ICMP_ULT:
   1711   case CmpInst::ICMP_ULE:
   1712     // However, we have to switch them to their signed variants to handle
   1713     // negative indices from the base pointer.
   1714     Pred = ICmpInst::getSignedPredicate(Pred);
   1715     break;
   1716   }
   1717 
   1718   // Strip off any constant offsets so that we can reason about them.
   1719   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
   1720   // here and compare base addresses like AliasAnalysis does, however there are
   1721   // numerous hazards. AliasAnalysis and its utilities rely on special rules
   1722   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
   1723   // doesn't need to guarantee pointer inequality when it says NoAlias.
   1724   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
   1725   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
   1726 
   1727   // If LHS and RHS are related via constant offsets to the same base
   1728   // value, we can replace it with an icmp which just compares the offsets.
   1729   if (LHS == RHS)
   1730     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
   1731 
   1732   // Various optimizations for (in)equality comparisons.
   1733   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
   1734     // Different non-empty allocations that exist at the same time have
   1735     // different addresses (if the program can tell). Global variables always
   1736     // exist, so they always exist during the lifetime of each other and all
   1737     // allocas. Two different allocas usually have different addresses...
   1738     //
   1739     // However, if there's an @llvm.stackrestore dynamically in between two
   1740     // allocas, they may have the same address. It's tempting to reduce the
   1741     // scope of the problem by only looking at *static* allocas here. That would
   1742     // cover the majority of allocas while significantly reducing the likelihood
   1743     // of having an @llvm.stackrestore pop up in the middle. However, it's not
   1744     // actually impossible for an @llvm.stackrestore to pop up in the middle of
   1745     // an entry block. Also, if we have a block that's not attached to a
   1746     // function, we can't tell if it's "static" under the current definition.
   1747     // Theoretically, this problem could be fixed by creating a new kind of
   1748     // instruction kind specifically for static allocas. Such a new instruction
   1749     // could be required to be at the top of the entry block, thus preventing it
   1750     // from being subject to a @llvm.stackrestore. Instcombine could even
   1751     // convert regular allocas into these special allocas. It'd be nifty.
   1752     // However, until then, this problem remains open.
   1753     //
   1754     // So, we'll assume that two non-empty allocas have different addresses
   1755     // for now.
   1756     //
   1757     // With all that, if the offsets are within the bounds of their allocations
   1758     // (and not one-past-the-end! so we can't use inbounds!), and their
   1759     // allocations aren't the same, the pointers are not equal.
   1760     //
   1761     // Note that it's not necessary to check for LHS being a global variable
   1762     // address, due to canonicalization and constant folding.
   1763     if (isa<AllocaInst>(LHS) &&
   1764         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
   1765       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
   1766       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
   1767       uint64_t LHSSize, RHSSize;
   1768       if (LHSOffsetCI && RHSOffsetCI &&
   1769           getObjectSize(LHS, LHSSize, DL, TLI) &&
   1770           getObjectSize(RHS, RHSSize, DL, TLI)) {
   1771         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
   1772         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
   1773         if (!LHSOffsetValue.isNegative() &&
   1774             !RHSOffsetValue.isNegative() &&
   1775             LHSOffsetValue.ult(LHSSize) &&
   1776             RHSOffsetValue.ult(RHSSize)) {
   1777           return ConstantInt::get(GetCompareTy(LHS),
   1778                                   !CmpInst::isTrueWhenEqual(Pred));
   1779         }
   1780       }
   1781 
   1782       // Repeat the above check but this time without depending on DataLayout
   1783       // or being able to compute a precise size.
   1784       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
   1785           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
   1786           LHSOffset->isNullValue() &&
   1787           RHSOffset->isNullValue())
   1788         return ConstantInt::get(GetCompareTy(LHS),
   1789                                 !CmpInst::isTrueWhenEqual(Pred));
   1790     }
   1791 
   1792     // Even if an non-inbounds GEP occurs along the path we can still optimize
   1793     // equality comparisons concerning the result. We avoid walking the whole
   1794     // chain again by starting where the last calls to
   1795     // stripAndComputeConstantOffsets left off and accumulate the offsets.
   1796     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
   1797     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
   1798     if (LHS == RHS)
   1799       return ConstantExpr::getICmp(Pred,
   1800                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
   1801                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
   1802   }
   1803 
   1804   // Otherwise, fail.
   1805   return nullptr;
   1806 }
   1807 
   1808 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
   1809 /// fold the result.  If not, this returns null.
   1810 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   1811                                const Query &Q, unsigned MaxRecurse) {
   1812   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   1813   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   1814 
   1815   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   1816     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   1817       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   1818 
   1819     // If we have a constant, make sure it is on the RHS.
   1820     std::swap(LHS, RHS);
   1821     Pred = CmpInst::getSwappedPredicate(Pred);
   1822   }
   1823 
   1824   Type *ITy = GetCompareTy(LHS); // The return type.
   1825   Type *OpTy = LHS->getType();   // The operand type.
   1826 
   1827   // icmp X, X -> true/false
   1828   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
   1829   // because X could be 0.
   1830   if (LHS == RHS || isa<UndefValue>(RHS))
   1831     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   1832 
   1833   // Special case logic when the operands have i1 type.
   1834   if (OpTy->getScalarType()->isIntegerTy(1)) {
   1835     switch (Pred) {
   1836     default: break;
   1837     case ICmpInst::ICMP_EQ:
   1838       // X == 1 -> X
   1839       if (match(RHS, m_One()))
   1840         return LHS;
   1841       break;
   1842     case ICmpInst::ICMP_NE:
   1843       // X != 0 -> X
   1844       if (match(RHS, m_Zero()))
   1845         return LHS;
   1846       break;
   1847     case ICmpInst::ICMP_UGT:
   1848       // X >u 0 -> X
   1849       if (match(RHS, m_Zero()))
   1850         return LHS;
   1851       break;
   1852     case ICmpInst::ICMP_UGE:
   1853       // X >=u 1 -> X
   1854       if (match(RHS, m_One()))
   1855         return LHS;
   1856       break;
   1857     case ICmpInst::ICMP_SLT:
   1858       // X <s 0 -> X
   1859       if (match(RHS, m_Zero()))
   1860         return LHS;
   1861       break;
   1862     case ICmpInst::ICMP_SLE:
   1863       // X <=s -1 -> X
   1864       if (match(RHS, m_One()))
   1865         return LHS;
   1866       break;
   1867     }
   1868   }
   1869 
   1870   // If we are comparing with zero then try hard since this is a common case.
   1871   if (match(RHS, m_Zero())) {
   1872     bool LHSKnownNonNegative, LHSKnownNegative;
   1873     switch (Pred) {
   1874     default: llvm_unreachable("Unknown ICmp predicate!");
   1875     case ICmpInst::ICMP_ULT:
   1876       return getFalse(ITy);
   1877     case ICmpInst::ICMP_UGE:
   1878       return getTrue(ITy);
   1879     case ICmpInst::ICMP_EQ:
   1880     case ICmpInst::ICMP_ULE:
   1881       if (isKnownNonZero(LHS, Q.DL))
   1882         return getFalse(ITy);
   1883       break;
   1884     case ICmpInst::ICMP_NE:
   1885     case ICmpInst::ICMP_UGT:
   1886       if (isKnownNonZero(LHS, Q.DL))
   1887         return getTrue(ITy);
   1888       break;
   1889     case ICmpInst::ICMP_SLT:
   1890       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
   1891       if (LHSKnownNegative)
   1892         return getTrue(ITy);
   1893       if (LHSKnownNonNegative)
   1894         return getFalse(ITy);
   1895       break;
   1896     case ICmpInst::ICMP_SLE:
   1897       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
   1898       if (LHSKnownNegative)
   1899         return getTrue(ITy);
   1900       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
   1901         return getFalse(ITy);
   1902       break;
   1903     case ICmpInst::ICMP_SGE:
   1904       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
   1905       if (LHSKnownNegative)
   1906         return getFalse(ITy);
   1907       if (LHSKnownNonNegative)
   1908         return getTrue(ITy);
   1909       break;
   1910     case ICmpInst::ICMP_SGT:
   1911       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
   1912       if (LHSKnownNegative)
   1913         return getFalse(ITy);
   1914       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
   1915         return getTrue(ITy);
   1916       break;
   1917     }
   1918   }
   1919 
   1920   // See if we are doing a comparison with a constant integer.
   1921   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1922     // Rule out tautological comparisons (eg., ult 0 or uge 0).
   1923     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
   1924     if (RHS_CR.isEmptySet())
   1925       return ConstantInt::getFalse(CI->getContext());
   1926     if (RHS_CR.isFullSet())
   1927       return ConstantInt::getTrue(CI->getContext());
   1928 
   1929     // Many binary operators with constant RHS have easy to compute constant
   1930     // range.  Use them to check whether the comparison is a tautology.
   1931     unsigned Width = CI->getBitWidth();
   1932     APInt Lower = APInt(Width, 0);
   1933     APInt Upper = APInt(Width, 0);
   1934     ConstantInt *CI2;
   1935     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
   1936       // 'urem x, CI2' produces [0, CI2).
   1937       Upper = CI2->getValue();
   1938     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
   1939       // 'srem x, CI2' produces (-|CI2|, |CI2|).
   1940       Upper = CI2->getValue().abs();
   1941       Lower = (-Upper) + 1;
   1942     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
   1943       // 'udiv CI2, x' produces [0, CI2].
   1944       Upper = CI2->getValue() + 1;
   1945     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
   1946       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
   1947       APInt NegOne = APInt::getAllOnesValue(Width);
   1948       if (!CI2->isZero())
   1949         Upper = NegOne.udiv(CI2->getValue()) + 1;
   1950     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
   1951       if (CI2->isMinSignedValue()) {
   1952         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
   1953         Lower = CI2->getValue();
   1954         Upper = Lower.lshr(1) + 1;
   1955       } else {
   1956         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
   1957         Upper = CI2->getValue().abs() + 1;
   1958         Lower = (-Upper) + 1;
   1959       }
   1960     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
   1961       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
   1962       APInt IntMin = APInt::getSignedMinValue(Width);
   1963       APInt IntMax = APInt::getSignedMaxValue(Width);
   1964       APInt Val = CI2->getValue().abs();
   1965       if (!Val.isMinValue()) {
   1966         Lower = IntMin.sdiv(Val);
   1967         Upper = IntMax.sdiv(Val) + 1;
   1968       }
   1969     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
   1970       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
   1971       APInt NegOne = APInt::getAllOnesValue(Width);
   1972       if (CI2->getValue().ult(Width))
   1973         Upper = NegOne.lshr(CI2->getValue()) + 1;
   1974     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
   1975       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
   1976       unsigned ShiftAmount = Width - 1;
   1977       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   1978         ShiftAmount = CI2->getValue().countTrailingZeros();
   1979       Lower = CI2->getValue().lshr(ShiftAmount);
   1980       Upper = CI2->getValue() + 1;
   1981     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
   1982       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
   1983       APInt IntMin = APInt::getSignedMinValue(Width);
   1984       APInt IntMax = APInt::getSignedMaxValue(Width);
   1985       if (CI2->getValue().ult(Width)) {
   1986         Lower = IntMin.ashr(CI2->getValue());
   1987         Upper = IntMax.ashr(CI2->getValue()) + 1;
   1988       }
   1989     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
   1990       unsigned ShiftAmount = Width - 1;
   1991       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   1992         ShiftAmount = CI2->getValue().countTrailingZeros();
   1993       if (CI2->isNegative()) {
   1994         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
   1995         Lower = CI2->getValue();
   1996         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
   1997       } else {
   1998         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
   1999         Lower = CI2->getValue().ashr(ShiftAmount);
   2000         Upper = CI2->getValue() + 1;
   2001       }
   2002     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
   2003       // 'or x, CI2' produces [CI2, UINT_MAX].
   2004       Lower = CI2->getValue();
   2005     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
   2006       // 'and x, CI2' produces [0, CI2].
   2007       Upper = CI2->getValue() + 1;
   2008     }
   2009     if (Lower != Upper) {
   2010       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
   2011       if (RHS_CR.contains(LHS_CR))
   2012         return ConstantInt::getTrue(RHS->getContext());
   2013       if (RHS_CR.inverse().contains(LHS_CR))
   2014         return ConstantInt::getFalse(RHS->getContext());
   2015     }
   2016   }
   2017 
   2018   // Compare of cast, for example (zext X) != 0 -> X != 0
   2019   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   2020     Instruction *LI = cast<CastInst>(LHS);
   2021     Value *SrcOp = LI->getOperand(0);
   2022     Type *SrcTy = SrcOp->getType();
   2023     Type *DstTy = LI->getType();
   2024 
   2025     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   2026     // if the integer type is the same size as the pointer type.
   2027     if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
   2028         Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
   2029       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2030         // Transfer the cast to the constant.
   2031         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   2032                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   2033                                         Q, MaxRecurse-1))
   2034           return V;
   2035       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   2036         if (RI->getOperand(0)->getType() == SrcTy)
   2037           // Compare without the cast.
   2038           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2039                                           Q, MaxRecurse-1))
   2040             return V;
   2041       }
   2042     }
   2043 
   2044     if (isa<ZExtInst>(LHS)) {
   2045       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   2046       // same type.
   2047       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   2048         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2049           // Compare X and Y.  Note that signed predicates become unsigned.
   2050           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2051                                           SrcOp, RI->getOperand(0), Q,
   2052                                           MaxRecurse-1))
   2053             return V;
   2054       }
   2055       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   2056       // too.  If not, then try to deduce the result of the comparison.
   2057       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2058         // Compute the constant that would happen if we truncated to SrcTy then
   2059         // reextended to DstTy.
   2060         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2061         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   2062 
   2063         // If the re-extended constant didn't change then this is effectively
   2064         // also a case of comparing two zero-extended values.
   2065         if (RExt == CI && MaxRecurse)
   2066           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2067                                         SrcOp, Trunc, Q, MaxRecurse-1))
   2068             return V;
   2069 
   2070         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   2071         // there.  Use this to work out the result of the comparison.
   2072         if (RExt != CI) {
   2073           switch (Pred) {
   2074           default: llvm_unreachable("Unknown ICmp predicate!");
   2075           // LHS <u RHS.
   2076           case ICmpInst::ICMP_EQ:
   2077           case ICmpInst::ICMP_UGT:
   2078           case ICmpInst::ICMP_UGE:
   2079             return ConstantInt::getFalse(CI->getContext());
   2080 
   2081           case ICmpInst::ICMP_NE:
   2082           case ICmpInst::ICMP_ULT:
   2083           case ICmpInst::ICMP_ULE:
   2084             return ConstantInt::getTrue(CI->getContext());
   2085 
   2086           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   2087           // is non-negative then LHS <s RHS.
   2088           case ICmpInst::ICMP_SGT:
   2089           case ICmpInst::ICMP_SGE:
   2090             return CI->getValue().isNegative() ?
   2091               ConstantInt::getTrue(CI->getContext()) :
   2092               ConstantInt::getFalse(CI->getContext());
   2093 
   2094           case ICmpInst::ICMP_SLT:
   2095           case ICmpInst::ICMP_SLE:
   2096             return CI->getValue().isNegative() ?
   2097               ConstantInt::getFalse(CI->getContext()) :
   2098               ConstantInt::getTrue(CI->getContext());
   2099           }
   2100         }
   2101       }
   2102     }
   2103 
   2104     if (isa<SExtInst>(LHS)) {
   2105       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   2106       // same type.
   2107       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   2108         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2109           // Compare X and Y.  Note that the predicate does not change.
   2110           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2111                                           Q, MaxRecurse-1))
   2112             return V;
   2113       }
   2114       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   2115       // too.  If not, then try to deduce the result of the comparison.
   2116       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2117         // Compute the constant that would happen if we truncated to SrcTy then
   2118         // reextended to DstTy.
   2119         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2120         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   2121 
   2122         // If the re-extended constant didn't change then this is effectively
   2123         // also a case of comparing two sign-extended values.
   2124         if (RExt == CI && MaxRecurse)
   2125           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
   2126             return V;
   2127 
   2128         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   2129         // bits there.  Use this to work out the result of the comparison.
   2130         if (RExt != CI) {
   2131           switch (Pred) {
   2132           default: llvm_unreachable("Unknown ICmp predicate!");
   2133           case ICmpInst::ICMP_EQ:
   2134             return ConstantInt::getFalse(CI->getContext());
   2135           case ICmpInst::ICMP_NE:
   2136             return ConstantInt::getTrue(CI->getContext());
   2137 
   2138           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   2139           // LHS >s RHS.
   2140           case ICmpInst::ICMP_SGT:
   2141           case ICmpInst::ICMP_SGE:
   2142             return CI->getValue().isNegative() ?
   2143               ConstantInt::getTrue(CI->getContext()) :
   2144               ConstantInt::getFalse(CI->getContext());
   2145           case ICmpInst::ICMP_SLT:
   2146           case ICmpInst::ICMP_SLE:
   2147             return CI->getValue().isNegative() ?
   2148               ConstantInt::getFalse(CI->getContext()) :
   2149               ConstantInt::getTrue(CI->getContext());
   2150 
   2151           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   2152           // LHS >u RHS.
   2153           case ICmpInst::ICMP_UGT:
   2154           case ICmpInst::ICMP_UGE:
   2155             // Comparison is true iff the LHS <s 0.
   2156             if (MaxRecurse)
   2157               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   2158                                               Constant::getNullValue(SrcTy),
   2159                                               Q, MaxRecurse-1))
   2160                 return V;
   2161             break;
   2162           case ICmpInst::ICMP_ULT:
   2163           case ICmpInst::ICMP_ULE:
   2164             // Comparison is true iff the LHS >=s 0.
   2165             if (MaxRecurse)
   2166               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   2167                                               Constant::getNullValue(SrcTy),
   2168                                               Q, MaxRecurse-1))
   2169                 return V;
   2170             break;
   2171           }
   2172         }
   2173       }
   2174     }
   2175   }
   2176 
   2177   // If a bit is known to be zero for A and known to be one for B,
   2178   // then A and B cannot be equal.
   2179   if (ICmpInst::isEquality(Pred)) {
   2180     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2181       uint32_t BitWidth = CI->getBitWidth();
   2182       APInt LHSKnownZero(BitWidth, 0);
   2183       APInt LHSKnownOne(BitWidth, 0);
   2184       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
   2185       APInt RHSKnownZero(BitWidth, 0);
   2186       APInt RHSKnownOne(BitWidth, 0);
   2187       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
   2188       if (((LHSKnownOne & RHSKnownZero) != 0) ||
   2189           ((LHSKnownZero & RHSKnownOne) != 0))
   2190         return (Pred == ICmpInst::ICMP_EQ)
   2191                    ? ConstantInt::getFalse(CI->getContext())
   2192                    : ConstantInt::getTrue(CI->getContext());
   2193     }
   2194   }
   2195 
   2196   // Special logic for binary operators.
   2197   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   2198   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   2199   if (MaxRecurse && (LBO || RBO)) {
   2200     // Analyze the case when either LHS or RHS is an add instruction.
   2201     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   2202     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   2203     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   2204     if (LBO && LBO->getOpcode() == Instruction::Add) {
   2205       A = LBO->getOperand(0); B = LBO->getOperand(1);
   2206       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2207         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   2208         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   2209     }
   2210     if (RBO && RBO->getOpcode() == Instruction::Add) {
   2211       C = RBO->getOperand(0); D = RBO->getOperand(1);
   2212       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2213         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   2214         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   2215     }
   2216 
   2217     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2218     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   2219       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   2220                                       Constant::getNullValue(RHS->getType()),
   2221                                       Q, MaxRecurse-1))
   2222         return V;
   2223 
   2224     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2225     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   2226       if (Value *V = SimplifyICmpInst(Pred,
   2227                                       Constant::getNullValue(LHS->getType()),
   2228                                       C == LHS ? D : C, Q, MaxRecurse-1))
   2229         return V;
   2230 
   2231     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   2232     if (A && C && (A == C || A == D || B == C || B == D) &&
   2233         NoLHSWrapProblem && NoRHSWrapProblem) {
   2234       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2235       Value *Y, *Z;
   2236       if (A == C) {
   2237         // C + B == C + D  ->  B == D
   2238         Y = B;
   2239         Z = D;
   2240       } else if (A == D) {
   2241         // D + B == C + D  ->  B == C
   2242         Y = B;
   2243         Z = C;
   2244       } else if (B == C) {
   2245         // A + C == C + D  ->  A == D
   2246         Y = A;
   2247         Z = D;
   2248       } else {
   2249         assert(B == D);
   2250         // A + D == C + D  ->  A == C
   2251         Y = A;
   2252         Z = C;
   2253       }
   2254       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
   2255         return V;
   2256     }
   2257   }
   2258 
   2259   // 0 - (zext X) pred C
   2260   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
   2261     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   2262       if (RHSC->getValue().isStrictlyPositive()) {
   2263         if (Pred == ICmpInst::ICMP_SLT)
   2264           return ConstantInt::getTrue(RHSC->getContext());
   2265         if (Pred == ICmpInst::ICMP_SGE)
   2266           return ConstantInt::getFalse(RHSC->getContext());
   2267         if (Pred == ICmpInst::ICMP_EQ)
   2268           return ConstantInt::getFalse(RHSC->getContext());
   2269         if (Pred == ICmpInst::ICMP_NE)
   2270           return ConstantInt::getTrue(RHSC->getContext());
   2271       }
   2272       if (RHSC->getValue().isNonNegative()) {
   2273         if (Pred == ICmpInst::ICMP_SLE)
   2274           return ConstantInt::getTrue(RHSC->getContext());
   2275         if (Pred == ICmpInst::ICMP_SGT)
   2276           return ConstantInt::getFalse(RHSC->getContext());
   2277       }
   2278     }
   2279   }
   2280 
   2281   // icmp pred (urem X, Y), Y
   2282   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   2283     bool KnownNonNegative, KnownNegative;
   2284     switch (Pred) {
   2285     default:
   2286       break;
   2287     case ICmpInst::ICMP_SGT:
   2288     case ICmpInst::ICMP_SGE:
   2289       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
   2290       if (!KnownNonNegative)
   2291         break;
   2292       // fall-through
   2293     case ICmpInst::ICMP_EQ:
   2294     case ICmpInst::ICMP_UGT:
   2295     case ICmpInst::ICMP_UGE:
   2296       return getFalse(ITy);
   2297     case ICmpInst::ICMP_SLT:
   2298     case ICmpInst::ICMP_SLE:
   2299       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
   2300       if (!KnownNonNegative)
   2301         break;
   2302       // fall-through
   2303     case ICmpInst::ICMP_NE:
   2304     case ICmpInst::ICMP_ULT:
   2305     case ICmpInst::ICMP_ULE:
   2306       return getTrue(ITy);
   2307     }
   2308   }
   2309 
   2310   // icmp pred X, (urem Y, X)
   2311   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   2312     bool KnownNonNegative, KnownNegative;
   2313     switch (Pred) {
   2314     default:
   2315       break;
   2316     case ICmpInst::ICMP_SGT:
   2317     case ICmpInst::ICMP_SGE:
   2318       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
   2319       if (!KnownNonNegative)
   2320         break;
   2321       // fall-through
   2322     case ICmpInst::ICMP_NE:
   2323     case ICmpInst::ICMP_UGT:
   2324     case ICmpInst::ICMP_UGE:
   2325       return getTrue(ITy);
   2326     case ICmpInst::ICMP_SLT:
   2327     case ICmpInst::ICMP_SLE:
   2328       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
   2329       if (!KnownNonNegative)
   2330         break;
   2331       // fall-through
   2332     case ICmpInst::ICMP_EQ:
   2333     case ICmpInst::ICMP_ULT:
   2334     case ICmpInst::ICMP_ULE:
   2335       return getFalse(ITy);
   2336     }
   2337   }
   2338 
   2339   // x udiv y <=u x.
   2340   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
   2341     // icmp pred (X /u Y), X
   2342     if (Pred == ICmpInst::ICMP_UGT)
   2343       return getFalse(ITy);
   2344     if (Pred == ICmpInst::ICMP_ULE)
   2345       return getTrue(ITy);
   2346   }
   2347 
   2348   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   2349       LBO->getOperand(1) == RBO->getOperand(1)) {
   2350     switch (LBO->getOpcode()) {
   2351     default: break;
   2352     case Instruction::UDiv:
   2353     case Instruction::LShr:
   2354       if (ICmpInst::isSigned(Pred))
   2355         break;
   2356       // fall-through
   2357     case Instruction::SDiv:
   2358     case Instruction::AShr:
   2359       if (!LBO->isExact() || !RBO->isExact())
   2360         break;
   2361       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2362                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2363         return V;
   2364       break;
   2365     case Instruction::Shl: {
   2366       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   2367       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   2368       if (!NUW && !NSW)
   2369         break;
   2370       if (!NSW && ICmpInst::isSigned(Pred))
   2371         break;
   2372       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2373                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2374         return V;
   2375       break;
   2376     }
   2377     }
   2378   }
   2379 
   2380   // Simplify comparisons involving max/min.
   2381   Value *A, *B;
   2382   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   2383   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   2384 
   2385   // Signed variants on "max(a,b)>=a -> true".
   2386   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2387     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
   2388     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2389     // We analyze this as smax(A, B) pred A.
   2390     P = Pred;
   2391   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   2392              (A == LHS || B == LHS)) {
   2393     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
   2394     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2395     // We analyze this as smax(A, B) swapped-pred A.
   2396     P = CmpInst::getSwappedPredicate(Pred);
   2397   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2398              (A == RHS || B == RHS)) {
   2399     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
   2400     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2401     // We analyze this as smax(-A, -B) swapped-pred -A.
   2402     // Note that we do not need to actually form -A or -B thanks to EqP.
   2403     P = CmpInst::getSwappedPredicate(Pred);
   2404   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   2405              (A == LHS || B == LHS)) {
   2406     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
   2407     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2408     // We analyze this as smax(-A, -B) pred -A.
   2409     // Note that we do not need to actually form -A or -B thanks to EqP.
   2410     P = Pred;
   2411   }
   2412   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2413     // Cases correspond to "max(A, B) p A".
   2414     switch (P) {
   2415     default:
   2416       break;
   2417     case CmpInst::ICMP_EQ:
   2418     case CmpInst::ICMP_SLE:
   2419       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2420       // in the max/min; if so, we can just return that.
   2421       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2422         return V;
   2423       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2424         return V;
   2425       // Otherwise, see if "A EqP B" simplifies.
   2426       if (MaxRecurse)
   2427         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2428           return V;
   2429       break;
   2430     case CmpInst::ICMP_NE:
   2431     case CmpInst::ICMP_SGT: {
   2432       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2433       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2434       // tested in the max/min; if so, we can just return that.
   2435       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2436         return V;
   2437       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2438         return V;
   2439       // Otherwise, see if "A InvEqP B" simplifies.
   2440       if (MaxRecurse)
   2441         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2442           return V;
   2443       break;
   2444     }
   2445     case CmpInst::ICMP_SGE:
   2446       // Always true.
   2447       return getTrue(ITy);
   2448     case CmpInst::ICMP_SLT:
   2449       // Always false.
   2450       return getFalse(ITy);
   2451     }
   2452   }
   2453 
   2454   // Unsigned variants on "max(a,b)>=a -> true".
   2455   P = CmpInst::BAD_ICMP_PREDICATE;
   2456   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2457     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
   2458     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2459     // We analyze this as umax(A, B) pred A.
   2460     P = Pred;
   2461   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   2462              (A == LHS || B == LHS)) {
   2463     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
   2464     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2465     // We analyze this as umax(A, B) swapped-pred A.
   2466     P = CmpInst::getSwappedPredicate(Pred);
   2467   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2468              (A == RHS || B == RHS)) {
   2469     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
   2470     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2471     // We analyze this as umax(-A, -B) swapped-pred -A.
   2472     // Note that we do not need to actually form -A or -B thanks to EqP.
   2473     P = CmpInst::getSwappedPredicate(Pred);
   2474   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   2475              (A == LHS || B == LHS)) {
   2476     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
   2477     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2478     // We analyze this as umax(-A, -B) pred -A.
   2479     // Note that we do not need to actually form -A or -B thanks to EqP.
   2480     P = Pred;
   2481   }
   2482   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2483     // Cases correspond to "max(A, B) p A".
   2484     switch (P) {
   2485     default:
   2486       break;
   2487     case CmpInst::ICMP_EQ:
   2488     case CmpInst::ICMP_ULE:
   2489       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2490       // in the max/min; if so, we can just return that.
   2491       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2492         return V;
   2493       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2494         return V;
   2495       // Otherwise, see if "A EqP B" simplifies.
   2496       if (MaxRecurse)
   2497         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2498           return V;
   2499       break;
   2500     case CmpInst::ICMP_NE:
   2501     case CmpInst::ICMP_UGT: {
   2502       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2503       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2504       // tested in the max/min; if so, we can just return that.
   2505       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2506         return V;
   2507       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2508         return V;
   2509       // Otherwise, see if "A InvEqP B" simplifies.
   2510       if (MaxRecurse)
   2511         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2512           return V;
   2513       break;
   2514     }
   2515     case CmpInst::ICMP_UGE:
   2516       // Always true.
   2517       return getTrue(ITy);
   2518     case CmpInst::ICMP_ULT:
   2519       // Always false.
   2520       return getFalse(ITy);
   2521     }
   2522   }
   2523 
   2524   // Variants on "max(x,y) >= min(x,z)".
   2525   Value *C, *D;
   2526   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   2527       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   2528       (A == C || A == D || B == C || B == D)) {
   2529     // max(x, ?) pred min(x, ?).
   2530     if (Pred == CmpInst::ICMP_SGE)
   2531       // Always true.
   2532       return getTrue(ITy);
   2533     if (Pred == CmpInst::ICMP_SLT)
   2534       // Always false.
   2535       return getFalse(ITy);
   2536   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2537              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   2538              (A == C || A == D || B == C || B == D)) {
   2539     // min(x, ?) pred max(x, ?).
   2540     if (Pred == CmpInst::ICMP_SLE)
   2541       // Always true.
   2542       return getTrue(ITy);
   2543     if (Pred == CmpInst::ICMP_SGT)
   2544       // Always false.
   2545       return getFalse(ITy);
   2546   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   2547              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   2548              (A == C || A == D || B == C || B == D)) {
   2549     // max(x, ?) pred min(x, ?).
   2550     if (Pred == CmpInst::ICMP_UGE)
   2551       // Always true.
   2552       return getTrue(ITy);
   2553     if (Pred == CmpInst::ICMP_ULT)
   2554       // Always false.
   2555       return getFalse(ITy);
   2556   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2557              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   2558              (A == C || A == D || B == C || B == D)) {
   2559     // min(x, ?) pred max(x, ?).
   2560     if (Pred == CmpInst::ICMP_ULE)
   2561       // Always true.
   2562       return getTrue(ITy);
   2563     if (Pred == CmpInst::ICMP_UGT)
   2564       // Always false.
   2565       return getFalse(ITy);
   2566   }
   2567 
   2568   // Simplify comparisons of related pointers using a powerful, recursive
   2569   // GEP-walk when we have target data available..
   2570   if (LHS->getType()->isPointerTy())
   2571     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
   2572       return C;
   2573 
   2574   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
   2575     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
   2576       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
   2577           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
   2578           (ICmpInst::isEquality(Pred) ||
   2579            (GLHS->isInBounds() && GRHS->isInBounds() &&
   2580             Pred == ICmpInst::getSignedPredicate(Pred)))) {
   2581         // The bases are equal and the indices are constant.  Build a constant
   2582         // expression GEP with the same indices and a null base pointer to see
   2583         // what constant folding can make out of it.
   2584         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
   2585         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
   2586         Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
   2587 
   2588         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
   2589         Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
   2590         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
   2591       }
   2592     }
   2593   }
   2594 
   2595   // If the comparison is with the result of a select instruction, check whether
   2596   // comparing with either branch of the select always yields the same value.
   2597   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2598     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   2599       return V;
   2600 
   2601   // If the comparison is with the result of a phi instruction, check whether
   2602   // doing the compare with each incoming phi value yields a common result.
   2603   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2604     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   2605       return V;
   2606 
   2607   return nullptr;
   2608 }
   2609 
   2610 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2611                               const DataLayout *DL,
   2612                               const TargetLibraryInfo *TLI,
   2613                               const DominatorTree *DT) {
   2614   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
   2615                             RecursionLimit);
   2616 }
   2617 
   2618 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
   2619 /// fold the result.  If not, this returns null.
   2620 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2621                                const Query &Q, unsigned MaxRecurse) {
   2622   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   2623   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   2624 
   2625   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   2626     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   2627       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   2628 
   2629     // If we have a constant, make sure it is on the RHS.
   2630     std::swap(LHS, RHS);
   2631     Pred = CmpInst::getSwappedPredicate(Pred);
   2632   }
   2633 
   2634   // Fold trivial predicates.
   2635   if (Pred == FCmpInst::FCMP_FALSE)
   2636     return ConstantInt::get(GetCompareTy(LHS), 0);
   2637   if (Pred == FCmpInst::FCMP_TRUE)
   2638     return ConstantInt::get(GetCompareTy(LHS), 1);
   2639 
   2640   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
   2641     return UndefValue::get(GetCompareTy(LHS));
   2642 
   2643   // fcmp x,x -> true/false.  Not all compares are foldable.
   2644   if (LHS == RHS) {
   2645     if (CmpInst::isTrueWhenEqual(Pred))
   2646       return ConstantInt::get(GetCompareTy(LHS), 1);
   2647     if (CmpInst::isFalseWhenEqual(Pred))
   2648       return ConstantInt::get(GetCompareTy(LHS), 0);
   2649   }
   2650 
   2651   // Handle fcmp with constant RHS
   2652   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2653     // If the constant is a nan, see if we can fold the comparison based on it.
   2654     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
   2655       if (CFP->getValueAPF().isNaN()) {
   2656         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
   2657           return ConstantInt::getFalse(CFP->getContext());
   2658         assert(FCmpInst::isUnordered(Pred) &&
   2659                "Comparison must be either ordered or unordered!");
   2660         // True if unordered.
   2661         return ConstantInt::getTrue(CFP->getContext());
   2662       }
   2663       // Check whether the constant is an infinity.
   2664       if (CFP->getValueAPF().isInfinity()) {
   2665         if (CFP->getValueAPF().isNegative()) {
   2666           switch (Pred) {
   2667           case FCmpInst::FCMP_OLT:
   2668             // No value is ordered and less than negative infinity.
   2669             return ConstantInt::getFalse(CFP->getContext());
   2670           case FCmpInst::FCMP_UGE:
   2671             // All values are unordered with or at least negative infinity.
   2672             return ConstantInt::getTrue(CFP->getContext());
   2673           default:
   2674             break;
   2675           }
   2676         } else {
   2677           switch (Pred) {
   2678           case FCmpInst::FCMP_OGT:
   2679             // No value is ordered and greater than infinity.
   2680             return ConstantInt::getFalse(CFP->getContext());
   2681           case FCmpInst::FCMP_ULE:
   2682             // All values are unordered with and at most infinity.
   2683             return ConstantInt::getTrue(CFP->getContext());
   2684           default:
   2685             break;
   2686           }
   2687         }
   2688       }
   2689     }
   2690   }
   2691 
   2692   // If the comparison is with the result of a select instruction, check whether
   2693   // comparing with either branch of the select always yields the same value.
   2694   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2695     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   2696       return V;
   2697 
   2698   // If the comparison is with the result of a phi instruction, check whether
   2699   // doing the compare with each incoming phi value yields a common result.
   2700   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2701     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   2702       return V;
   2703 
   2704   return nullptr;
   2705 }
   2706 
   2707 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2708                               const DataLayout *DL,
   2709                               const TargetLibraryInfo *TLI,
   2710                               const DominatorTree *DT) {
   2711   return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
   2712                             RecursionLimit);
   2713 }
   2714 
   2715 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
   2716 /// the result.  If not, this returns null.
   2717 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
   2718                                  Value *FalseVal, const Query &Q,
   2719                                  unsigned MaxRecurse) {
   2720   // select true, X, Y  -> X
   2721   // select false, X, Y -> Y
   2722   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
   2723     if (CB->isAllOnesValue())
   2724       return TrueVal;
   2725     if (CB->isNullValue())
   2726       return FalseVal;
   2727   }
   2728 
   2729   // select C, X, X -> X
   2730   if (TrueVal == FalseVal)
   2731     return TrueVal;
   2732 
   2733   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
   2734     if (isa<Constant>(TrueVal))
   2735       return TrueVal;
   2736     return FalseVal;
   2737   }
   2738   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
   2739     return FalseVal;
   2740   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
   2741     return TrueVal;
   2742 
   2743   return nullptr;
   2744 }
   2745 
   2746 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   2747                                 const DataLayout *DL,
   2748                                 const TargetLibraryInfo *TLI,
   2749                                 const DominatorTree *DT) {
   2750   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
   2751                               RecursionLimit);
   2752 }
   2753 
   2754 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
   2755 /// fold the result.  If not, this returns null.
   2756 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
   2757   // The type of the GEP pointer operand.
   2758   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
   2759 
   2760   // getelementptr P -> P.
   2761   if (Ops.size() == 1)
   2762     return Ops[0];
   2763 
   2764   if (isa<UndefValue>(Ops[0])) {
   2765     // Compute the (pointer) type returned by the GEP instruction.
   2766     Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
   2767     Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
   2768     if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
   2769       GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   2770     return UndefValue::get(GEPTy);
   2771   }
   2772 
   2773   if (Ops.size() == 2) {
   2774     // getelementptr P, 0 -> P.
   2775     if (match(Ops[1], m_Zero()))
   2776       return Ops[0];
   2777     // getelementptr P, N -> P if P points to a type of zero size.
   2778     if (Q.DL) {
   2779       Type *Ty = PtrTy->getElementType();
   2780       if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
   2781         return Ops[0];
   2782     }
   2783   }
   2784 
   2785   // Check to see if this is constant foldable.
   2786   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2787     if (!isa<Constant>(Ops[i]))
   2788       return nullptr;
   2789 
   2790   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
   2791 }
   2792 
   2793 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
   2794                              const TargetLibraryInfo *TLI,
   2795                              const DominatorTree *DT) {
   2796   return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
   2797 }
   2798 
   2799 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
   2800 /// can fold the result.  If not, this returns null.
   2801 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
   2802                                       ArrayRef<unsigned> Idxs, const Query &Q,
   2803                                       unsigned) {
   2804   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   2805     if (Constant *CVal = dyn_cast<Constant>(Val))
   2806       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   2807 
   2808   // insertvalue x, undef, n -> x
   2809   if (match(Val, m_Undef()))
   2810     return Agg;
   2811 
   2812   // insertvalue x, (extractvalue y, n), n
   2813   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   2814     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   2815         EV->getIndices() == Idxs) {
   2816       // insertvalue undef, (extractvalue y, n), n -> y
   2817       if (match(Agg, m_Undef()))
   2818         return EV->getAggregateOperand();
   2819 
   2820       // insertvalue y, (extractvalue y, n), n -> y
   2821       if (Agg == EV->getAggregateOperand())
   2822         return Agg;
   2823     }
   2824 
   2825   return nullptr;
   2826 }
   2827 
   2828 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
   2829                                      ArrayRef<unsigned> Idxs,
   2830                                      const DataLayout *DL,
   2831                                      const TargetLibraryInfo *TLI,
   2832                                      const DominatorTree *DT) {
   2833   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
   2834                                    RecursionLimit);
   2835 }
   2836 
   2837 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
   2838 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
   2839   // If all of the PHI's incoming values are the same then replace the PHI node
   2840   // with the common value.
   2841   Value *CommonValue = nullptr;
   2842   bool HasUndefInput = false;
   2843   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2844     Value *Incoming = PN->getIncomingValue(i);
   2845     // If the incoming value is the phi node itself, it can safely be skipped.
   2846     if (Incoming == PN) continue;
   2847     if (isa<UndefValue>(Incoming)) {
   2848       // Remember that we saw an undef value, but otherwise ignore them.
   2849       HasUndefInput = true;
   2850       continue;
   2851     }
   2852     if (CommonValue && Incoming != CommonValue)
   2853       return nullptr;  // Not the same, bail out.
   2854     CommonValue = Incoming;
   2855   }
   2856 
   2857   // If CommonValue is null then all of the incoming values were either undef or
   2858   // equal to the phi node itself.
   2859   if (!CommonValue)
   2860     return UndefValue::get(PN->getType());
   2861 
   2862   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   2863   // instruction, we cannot return X as the result of the PHI node unless it
   2864   // dominates the PHI block.
   2865   if (HasUndefInput)
   2866     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
   2867 
   2868   return CommonValue;
   2869 }
   2870 
   2871 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
   2872   if (Constant *C = dyn_cast<Constant>(Op))
   2873     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
   2874 
   2875   return nullptr;
   2876 }
   2877 
   2878 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
   2879                                const TargetLibraryInfo *TLI,
   2880                                const DominatorTree *DT) {
   2881   return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
   2882 }
   2883 
   2884 //=== Helper functions for higher up the class hierarchy.
   2885 
   2886 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
   2887 /// fold the result.  If not, this returns null.
   2888 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2889                             const Query &Q, unsigned MaxRecurse) {
   2890   switch (Opcode) {
   2891   case Instruction::Add:
   2892     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2893                            Q, MaxRecurse);
   2894   case Instruction::FAdd:
   2895     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   2896 
   2897   case Instruction::Sub:
   2898     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2899                            Q, MaxRecurse);
   2900   case Instruction::FSub:
   2901     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   2902 
   2903   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
   2904   case Instruction::FMul:
   2905     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   2906   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
   2907   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
   2908   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
   2909   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
   2910   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
   2911   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
   2912   case Instruction::Shl:
   2913     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2914                            Q, MaxRecurse);
   2915   case Instruction::LShr:
   2916     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   2917   case Instruction::AShr:
   2918     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   2919   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
   2920   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
   2921   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
   2922   default:
   2923     if (Constant *CLHS = dyn_cast<Constant>(LHS))
   2924       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   2925         Constant *COps[] = {CLHS, CRHS};
   2926         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
   2927                                         Q.TLI);
   2928       }
   2929 
   2930     // If the operation is associative, try some generic simplifications.
   2931     if (Instruction::isAssociative(Opcode))
   2932       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
   2933         return V;
   2934 
   2935     // If the operation is with the result of a select instruction check whether
   2936     // operating on either branch of the select always yields the same value.
   2937     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2938       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
   2939         return V;
   2940 
   2941     // If the operation is with the result of a phi instruction, check whether
   2942     // operating on all incoming values of the phi always yields the same value.
   2943     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2944       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
   2945         return V;
   2946 
   2947     return nullptr;
   2948   }
   2949 }
   2950 
   2951 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2952                            const DataLayout *DL, const TargetLibraryInfo *TLI,
   2953                            const DominatorTree *DT) {
   2954   return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
   2955 }
   2956 
   2957 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
   2958 /// fold the result.
   2959 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2960                               const Query &Q, unsigned MaxRecurse) {
   2961   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   2962     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   2963   return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   2964 }
   2965 
   2966 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2967                              const DataLayout *DL, const TargetLibraryInfo *TLI,
   2968                              const DominatorTree *DT) {
   2969   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
   2970                            RecursionLimit);
   2971 }
   2972 
   2973 static bool IsIdempotent(Intrinsic::ID ID) {
   2974   switch (ID) {
   2975   default: return false;
   2976 
   2977   // Unary idempotent: f(f(x)) = f(x)
   2978   case Intrinsic::fabs:
   2979   case Intrinsic::floor:
   2980   case Intrinsic::ceil:
   2981   case Intrinsic::trunc:
   2982   case Intrinsic::rint:
   2983   case Intrinsic::nearbyint:
   2984   case Intrinsic::round:
   2985     return true;
   2986   }
   2987 }
   2988 
   2989 template <typename IterTy>
   2990 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
   2991                                 const Query &Q, unsigned MaxRecurse) {
   2992   // Perform idempotent optimizations
   2993   if (!IsIdempotent(IID))
   2994     return nullptr;
   2995 
   2996   // Unary Ops
   2997   if (std::distance(ArgBegin, ArgEnd) == 1)
   2998     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
   2999       if (II->getIntrinsicID() == IID)
   3000         return II;
   3001 
   3002   return nullptr;
   3003 }
   3004 
   3005 template <typename IterTy>
   3006 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
   3007                            const Query &Q, unsigned MaxRecurse) {
   3008   Type *Ty = V->getType();
   3009   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   3010     Ty = PTy->getElementType();
   3011   FunctionType *FTy = cast<FunctionType>(Ty);
   3012 
   3013   // call undef -> undef
   3014   if (isa<UndefValue>(V))
   3015     return UndefValue::get(FTy->getReturnType());
   3016 
   3017   Function *F = dyn_cast<Function>(V);
   3018   if (!F)
   3019     return nullptr;
   3020 
   3021   if (unsigned IID = F->getIntrinsicID())
   3022     if (Value *Ret =
   3023         SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
   3024       return Ret;
   3025 
   3026   if (!canConstantFoldCallTo(F))
   3027     return nullptr;
   3028 
   3029   SmallVector<Constant *, 4> ConstantArgs;
   3030   ConstantArgs.reserve(ArgEnd - ArgBegin);
   3031   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
   3032     Constant *C = dyn_cast<Constant>(*I);
   3033     if (!C)
   3034       return nullptr;
   3035     ConstantArgs.push_back(C);
   3036   }
   3037 
   3038   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
   3039 }
   3040 
   3041 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
   3042                           User::op_iterator ArgEnd, const DataLayout *DL,
   3043                           const TargetLibraryInfo *TLI,
   3044                           const DominatorTree *DT) {
   3045   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
   3046                         RecursionLimit);
   3047 }
   3048 
   3049 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
   3050                           const DataLayout *DL, const TargetLibraryInfo *TLI,
   3051                           const DominatorTree *DT) {
   3052   return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
   3053                         RecursionLimit);
   3054 }
   3055 
   3056 /// SimplifyInstruction - See if we can compute a simplified version of this
   3057 /// instruction.  If not, this returns null.
   3058 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
   3059                                  const TargetLibraryInfo *TLI,
   3060                                  const DominatorTree *DT) {
   3061   Value *Result;
   3062 
   3063   switch (I->getOpcode()) {
   3064   default:
   3065     Result = ConstantFoldInstruction(I, DL, TLI);
   3066     break;
   3067   case Instruction::FAdd:
   3068     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
   3069                               I->getFastMathFlags(), DL, TLI, DT);
   3070     break;
   3071   case Instruction::Add:
   3072     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   3073                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   3074                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   3075                              DL, TLI, DT);
   3076     break;
   3077   case Instruction::FSub:
   3078     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
   3079                               I->getFastMathFlags(), DL, TLI, DT);
   3080     break;
   3081   case Instruction::Sub:
   3082     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   3083                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   3084                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   3085                              DL, TLI, DT);
   3086     break;
   3087   case Instruction::FMul:
   3088     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
   3089                               I->getFastMathFlags(), DL, TLI, DT);
   3090     break;
   3091   case Instruction::Mul:
   3092     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3093     break;
   3094   case Instruction::SDiv:
   3095     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3096     break;
   3097   case Instruction::UDiv:
   3098     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3099     break;
   3100   case Instruction::FDiv:
   3101     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3102     break;
   3103   case Instruction::SRem:
   3104     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3105     break;
   3106   case Instruction::URem:
   3107     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3108     break;
   3109   case Instruction::FRem:
   3110     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3111     break;
   3112   case Instruction::Shl:
   3113     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   3114                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   3115                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   3116                              DL, TLI, DT);
   3117     break;
   3118   case Instruction::LShr:
   3119     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   3120                               cast<BinaryOperator>(I)->isExact(),
   3121                               DL, TLI, DT);
   3122     break;
   3123   case Instruction::AShr:
   3124     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   3125                               cast<BinaryOperator>(I)->isExact(),
   3126                               DL, TLI, DT);
   3127     break;
   3128   case Instruction::And:
   3129     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3130     break;
   3131   case Instruction::Or:
   3132     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3133     break;
   3134   case Instruction::Xor:
   3135     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3136     break;
   3137   case Instruction::ICmp:
   3138     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
   3139                               I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3140     break;
   3141   case Instruction::FCmp:
   3142     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
   3143                               I->getOperand(0), I->getOperand(1), DL, TLI, DT);
   3144     break;
   3145   case Instruction::Select:
   3146     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   3147                                 I->getOperand(2), DL, TLI, DT);
   3148     break;
   3149   case Instruction::GetElementPtr: {
   3150     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   3151     Result = SimplifyGEPInst(Ops, DL, TLI, DT);
   3152     break;
   3153   }
   3154   case Instruction::InsertValue: {
   3155     InsertValueInst *IV = cast<InsertValueInst>(I);
   3156     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   3157                                      IV->getInsertedValueOperand(),
   3158                                      IV->getIndices(), DL, TLI, DT);
   3159     break;
   3160   }
   3161   case Instruction::PHI:
   3162     Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
   3163     break;
   3164   case Instruction::Call: {
   3165     CallSite CS(cast<CallInst>(I));
   3166     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
   3167                           DL, TLI, DT);
   3168     break;
   3169   }
   3170   case Instruction::Trunc:
   3171     Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
   3172     break;
   3173   }
   3174 
   3175   /// If called on unreachable code, the above logic may report that the
   3176   /// instruction simplified to itself.  Make life easier for users by
   3177   /// detecting that case here, returning a safe value instead.
   3178   return Result == I ? UndefValue::get(I->getType()) : Result;
   3179 }
   3180 
   3181 /// \brief Implementation of recursive simplification through an instructions
   3182 /// uses.
   3183 ///
   3184 /// This is the common implementation of the recursive simplification routines.
   3185 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
   3186 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
   3187 /// instructions to process and attempt to simplify it using
   3188 /// InstructionSimplify.
   3189 ///
   3190 /// This routine returns 'true' only when *it* simplifies something. The passed
   3191 /// in simplified value does not count toward this.
   3192 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
   3193                                               const DataLayout *DL,
   3194                                               const TargetLibraryInfo *TLI,
   3195                                               const DominatorTree *DT) {
   3196   bool Simplified = false;
   3197   SmallSetVector<Instruction *, 8> Worklist;
   3198 
   3199   // If we have an explicit value to collapse to, do that round of the
   3200   // simplification loop by hand initially.
   3201   if (SimpleV) {
   3202     for (User *U : I->users())
   3203       if (U != I)
   3204         Worklist.insert(cast<Instruction>(U));
   3205 
   3206     // Replace the instruction with its simplified value.
   3207     I->replaceAllUsesWith(SimpleV);
   3208 
   3209     // Gracefully handle edge cases where the instruction is not wired into any
   3210     // parent block.
   3211     if (I->getParent())
   3212       I->eraseFromParent();
   3213   } else {
   3214     Worklist.insert(I);
   3215   }
   3216 
   3217   // Note that we must test the size on each iteration, the worklist can grow.
   3218   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
   3219     I = Worklist[Idx];
   3220 
   3221     // See if this instruction simplifies.
   3222     SimpleV = SimplifyInstruction(I, DL, TLI, DT);
   3223     if (!SimpleV)
   3224       continue;
   3225 
   3226     Simplified = true;
   3227 
   3228     // Stash away all the uses of the old instruction so we can check them for
   3229     // recursive simplifications after a RAUW. This is cheaper than checking all
   3230     // uses of To on the recursive step in most cases.
   3231     for (User *U : I->users())
   3232       Worklist.insert(cast<Instruction>(U));
   3233 
   3234     // Replace the instruction with its simplified value.
   3235     I->replaceAllUsesWith(SimpleV);
   3236 
   3237     // Gracefully handle edge cases where the instruction is not wired into any
   3238     // parent block.
   3239     if (I->getParent())
   3240       I->eraseFromParent();
   3241   }
   3242   return Simplified;
   3243 }
   3244 
   3245 bool llvm::recursivelySimplifyInstruction(Instruction *I,
   3246                                           const DataLayout *DL,
   3247                                           const TargetLibraryInfo *TLI,
   3248                                           const DominatorTree *DT) {
   3249   return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT);
   3250 }
   3251 
   3252 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
   3253                                          const DataLayout *DL,
   3254                                          const TargetLibraryInfo *TLI,
   3255                                          const DominatorTree *DT) {
   3256   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   3257   assert(SimpleV && "Must provide a simplified value.");
   3258   return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
   3259 }
   3260