Home | History | Annotate | Download | only in Scalar
      1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into simpler forms suitable for subsequent
     12 // analysis and transformation.
     13 //
     14 // If the trip count of a loop is computable, this pass also makes the following
     15 // changes:
     16 //   1. The exit condition for the loop is canonicalized to compare the
     17 //      induction value against the exit value.  This turns loops like:
     18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
     19 //   2. Any use outside of the loop of an expression derived from the indvar
     20 //      is changed to compute the derived value outside of the loop, eliminating
     21 //      the dependence on the exit value of the induction variable.  If the only
     22 //      purpose of the loop is to compute the exit value of some derived
     23 //      expression, this transformation will make the loop dead.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Transforms/Scalar.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/LoopPass.h"
     33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     34 #include "llvm/IR/BasicBlock.h"
     35 #include "llvm/IR/CFG.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/DataLayout.h"
     38 #include "llvm/IR/Dominators.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/IntrinsicInst.h"
     41 #include "llvm/IR/LLVMContext.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Target/TargetLibraryInfo.h"
     47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     48 #include "llvm/Transforms/Utils/Local.h"
     49 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     50 using namespace llvm;
     51 
     52 #define DEBUG_TYPE "indvars"
     53 
     54 STATISTIC(NumWidened     , "Number of indvars widened");
     55 STATISTIC(NumReplaced    , "Number of exit values replaced");
     56 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
     57 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
     58 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
     59 
     60 // Trip count verification can be enabled by default under NDEBUG if we
     61 // implement a strong expression equivalence checker in SCEV. Until then, we
     62 // use the verify-indvars flag, which may assert in some cases.
     63 static cl::opt<bool> VerifyIndvars(
     64   "verify-indvars", cl::Hidden,
     65   cl::desc("Verify the ScalarEvolution result after running indvars"));
     66 
     67 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
     68   cl::desc("Reduce live induction variables."));
     69 
     70 namespace {
     71   class IndVarSimplify : public LoopPass {
     72     LoopInfo        *LI;
     73     ScalarEvolution *SE;
     74     DominatorTree   *DT;
     75     const DataLayout *DL;
     76     TargetLibraryInfo *TLI;
     77 
     78     SmallVector<WeakVH, 16> DeadInsts;
     79     bool Changed;
     80   public:
     81 
     82     static char ID; // Pass identification, replacement for typeid
     83     IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
     84                        DL(nullptr), Changed(false) {
     85       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     86     }
     87 
     88     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
     89 
     90     void getAnalysisUsage(AnalysisUsage &AU) const override {
     91       AU.addRequired<DominatorTreeWrapperPass>();
     92       AU.addRequired<LoopInfo>();
     93       AU.addRequired<ScalarEvolution>();
     94       AU.addRequiredID(LoopSimplifyID);
     95       AU.addRequiredID(LCSSAID);
     96       AU.addPreserved<ScalarEvolution>();
     97       AU.addPreservedID(LoopSimplifyID);
     98       AU.addPreservedID(LCSSAID);
     99       AU.setPreservesCFG();
    100     }
    101 
    102   private:
    103     void releaseMemory() override {
    104       DeadInsts.clear();
    105     }
    106 
    107     bool isValidRewrite(Value *FromVal, Value *ToVal);
    108 
    109     void HandleFloatingPointIV(Loop *L, PHINode *PH);
    110     void RewriteNonIntegerIVs(Loop *L);
    111 
    112     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
    113 
    114     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
    115 
    116     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
    117                                      PHINode *IndVar, SCEVExpander &Rewriter);
    118 
    119     void SinkUnusedInvariants(Loop *L);
    120   };
    121 }
    122 
    123 char IndVarSimplify::ID = 0;
    124 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
    125                 "Induction Variable Simplification", false, false)
    126 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    127 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    128 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    129 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    130 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    131 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
    132                 "Induction Variable Simplification", false, false)
    133 
    134 Pass *llvm::createIndVarSimplifyPass() {
    135   return new IndVarSimplify();
    136 }
    137 
    138 /// isValidRewrite - Return true if the SCEV expansion generated by the
    139 /// rewriter can replace the original value. SCEV guarantees that it
    140 /// produces the same value, but the way it is produced may be illegal IR.
    141 /// Ideally, this function will only be called for verification.
    142 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
    143   // If an SCEV expression subsumed multiple pointers, its expansion could
    144   // reassociate the GEP changing the base pointer. This is illegal because the
    145   // final address produced by a GEP chain must be inbounds relative to its
    146   // underlying object. Otherwise basic alias analysis, among other things,
    147   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
    148   // producing an expression involving multiple pointers. Until then, we must
    149   // bail out here.
    150   //
    151   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
    152   // because it understands lcssa phis while SCEV does not.
    153   Value *FromPtr = FromVal;
    154   Value *ToPtr = ToVal;
    155   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    156     FromPtr = GEP->getPointerOperand();
    157   }
    158   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    159     ToPtr = GEP->getPointerOperand();
    160   }
    161   if (FromPtr != FromVal || ToPtr != ToVal) {
    162     // Quickly check the common case
    163     if (FromPtr == ToPtr)
    164       return true;
    165 
    166     // SCEV may have rewritten an expression that produces the GEP's pointer
    167     // operand. That's ok as long as the pointer operand has the same base
    168     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    169     // base of a recurrence. This handles the case in which SCEV expansion
    170     // converts a pointer type recurrence into a nonrecurrent pointer base
    171     // indexed by an integer recurrence.
    172 
    173     // If the GEP base pointer is a vector of pointers, abort.
    174     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
    175       return false;
    176 
    177     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    178     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    179     if (FromBase == ToBase)
    180       return true;
    181 
    182     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
    183           << *FromBase << " != " << *ToBase << "\n");
    184 
    185     return false;
    186   }
    187   return true;
    188 }
    189 
    190 /// Determine the insertion point for this user. By default, insert immediately
    191 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
    192 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
    193 /// common dominator for the incoming blocks.
    194 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
    195                                           DominatorTree *DT) {
    196   PHINode *PHI = dyn_cast<PHINode>(User);
    197   if (!PHI)
    198     return User;
    199 
    200   Instruction *InsertPt = nullptr;
    201   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    202     if (PHI->getIncomingValue(i) != Def)
    203       continue;
    204 
    205     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    206     if (!InsertPt) {
    207       InsertPt = InsertBB->getTerminator();
    208       continue;
    209     }
    210     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    211     InsertPt = InsertBB->getTerminator();
    212   }
    213   assert(InsertPt && "Missing phi operand");
    214   assert((!isa<Instruction>(Def) ||
    215           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
    216          "def does not dominate all uses");
    217   return InsertPt;
    218 }
    219 
    220 //===----------------------------------------------------------------------===//
    221 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
    222 //===----------------------------------------------------------------------===//
    223 
    224 /// ConvertToSInt - Convert APF to an integer, if possible.
    225 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
    226   bool isExact = false;
    227   // See if we can convert this to an int64_t
    228   uint64_t UIntVal;
    229   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
    230                            &isExact) != APFloat::opOK || !isExact)
    231     return false;
    232   IntVal = UIntVal;
    233   return true;
    234 }
    235 
    236 /// HandleFloatingPointIV - If the loop has floating induction variable
    237 /// then insert corresponding integer induction variable if possible.
    238 /// For example,
    239 /// for(double i = 0; i < 10000; ++i)
    240 ///   bar(i)
    241 /// is converted into
    242 /// for(int i = 0; i < 10000; ++i)
    243 ///   bar((double)i);
    244 ///
    245 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
    246   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
    247   unsigned BackEdge     = IncomingEdge^1;
    248 
    249   // Check incoming value.
    250   ConstantFP *InitValueVal =
    251     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
    252 
    253   int64_t InitValue;
    254   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    255     return;
    256 
    257   // Check IV increment. Reject this PN if increment operation is not
    258   // an add or increment value can not be represented by an integer.
    259   BinaryOperator *Incr =
    260     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
    261   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
    262 
    263   // If this is not an add of the PHI with a constantfp, or if the constant fp
    264   // is not an integer, bail out.
    265   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
    266   int64_t IncValue;
    267   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
    268       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    269     return;
    270 
    271   // Check Incr uses. One user is PN and the other user is an exit condition
    272   // used by the conditional terminator.
    273   Value::user_iterator IncrUse = Incr->user_begin();
    274   Instruction *U1 = cast<Instruction>(*IncrUse++);
    275   if (IncrUse == Incr->user_end()) return;
    276   Instruction *U2 = cast<Instruction>(*IncrUse++);
    277   if (IncrUse != Incr->user_end()) return;
    278 
    279   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
    280   // only used by a branch, we can't transform it.
    281   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
    282   if (!Compare)
    283     Compare = dyn_cast<FCmpInst>(U2);
    284   if (!Compare || !Compare->hasOneUse() ||
    285       !isa<BranchInst>(Compare->user_back()))
    286     return;
    287 
    288   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
    289 
    290   // We need to verify that the branch actually controls the iteration count
    291   // of the loop.  If not, the new IV can overflow and no one will notice.
    292   // The branch block must be in the loop and one of the successors must be out
    293   // of the loop.
    294   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
    295   if (!L->contains(TheBr->getParent()) ||
    296       (L->contains(TheBr->getSuccessor(0)) &&
    297        L->contains(TheBr->getSuccessor(1))))
    298     return;
    299 
    300 
    301   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
    302   // transform it.
    303   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
    304   int64_t ExitValue;
    305   if (ExitValueVal == nullptr ||
    306       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    307     return;
    308 
    309   // Find new predicate for integer comparison.
    310   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
    311   switch (Compare->getPredicate()) {
    312   default: return;  // Unknown comparison.
    313   case CmpInst::FCMP_OEQ:
    314   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
    315   case CmpInst::FCMP_ONE:
    316   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
    317   case CmpInst::FCMP_OGT:
    318   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
    319   case CmpInst::FCMP_OGE:
    320   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
    321   case CmpInst::FCMP_OLT:
    322   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
    323   case CmpInst::FCMP_OLE:
    324   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
    325   }
    326 
    327   // We convert the floating point induction variable to a signed i32 value if
    328   // we can.  This is only safe if the comparison will not overflow in a way
    329   // that won't be trapped by the integer equivalent operations.  Check for this
    330   // now.
    331   // TODO: We could use i64 if it is native and the range requires it.
    332 
    333   // The start/stride/exit values must all fit in signed i32.
    334   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    335     return;
    336 
    337   // If not actually striding (add x, 0.0), avoid touching the code.
    338   if (IncValue == 0)
    339     return;
    340 
    341   // Positive and negative strides have different safety conditions.
    342   if (IncValue > 0) {
    343     // If we have a positive stride, we require the init to be less than the
    344     // exit value.
    345     if (InitValue >= ExitValue)
    346       return;
    347 
    348     uint32_t Range = uint32_t(ExitValue-InitValue);
    349     // Check for infinite loop, either:
    350     // while (i <= Exit) or until (i > Exit)
    351     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
    352       if (++Range == 0) return;  // Range overflows.
    353     }
    354 
    355     unsigned Leftover = Range % uint32_t(IncValue);
    356 
    357     // If this is an equality comparison, we require that the strided value
    358     // exactly land on the exit value, otherwise the IV condition will wrap
    359     // around and do things the fp IV wouldn't.
    360     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    361         Leftover != 0)
    362       return;
    363 
    364     // If the stride would wrap around the i32 before exiting, we can't
    365     // transform the IV.
    366     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
    367       return;
    368 
    369   } else {
    370     // If we have a negative stride, we require the init to be greater than the
    371     // exit value.
    372     if (InitValue <= ExitValue)
    373       return;
    374 
    375     uint32_t Range = uint32_t(InitValue-ExitValue);
    376     // Check for infinite loop, either:
    377     // while (i >= Exit) or until (i < Exit)
    378     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
    379       if (++Range == 0) return;  // Range overflows.
    380     }
    381 
    382     unsigned Leftover = Range % uint32_t(-IncValue);
    383 
    384     // If this is an equality comparison, we require that the strided value
    385     // exactly land on the exit value, otherwise the IV condition will wrap
    386     // around and do things the fp IV wouldn't.
    387     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    388         Leftover != 0)
    389       return;
    390 
    391     // If the stride would wrap around the i32 before exiting, we can't
    392     // transform the IV.
    393     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
    394       return;
    395   }
    396 
    397   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
    398 
    399   // Insert new integer induction variable.
    400   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
    401   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
    402                       PN->getIncomingBlock(IncomingEdge));
    403 
    404   Value *NewAdd =
    405     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
    406                               Incr->getName()+".int", Incr);
    407   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
    408 
    409   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
    410                                       ConstantInt::get(Int32Ty, ExitValue),
    411                                       Compare->getName());
    412 
    413   // In the following deletions, PN may become dead and may be deleted.
    414   // Use a WeakVH to observe whether this happens.
    415   WeakVH WeakPH = PN;
    416 
    417   // Delete the old floating point exit comparison.  The branch starts using the
    418   // new comparison.
    419   NewCompare->takeName(Compare);
    420   Compare->replaceAllUsesWith(NewCompare);
    421   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
    422 
    423   // Delete the old floating point increment.
    424   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
    425   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
    426 
    427   // If the FP induction variable still has uses, this is because something else
    428   // in the loop uses its value.  In order to canonicalize the induction
    429   // variable, we chose to eliminate the IV and rewrite it in terms of an
    430   // int->fp cast.
    431   //
    432   // We give preference to sitofp over uitofp because it is faster on most
    433   // platforms.
    434   if (WeakPH) {
    435     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
    436                                  PN->getParent()->getFirstInsertionPt());
    437     PN->replaceAllUsesWith(Conv);
    438     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
    439   }
    440   Changed = true;
    441 }
    442 
    443 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
    444   // First step.  Check to see if there are any floating-point recurrences.
    445   // If there are, change them into integer recurrences, permitting analysis by
    446   // the SCEV routines.
    447   //
    448   BasicBlock *Header = L->getHeader();
    449 
    450   SmallVector<WeakVH, 8> PHIs;
    451   for (BasicBlock::iterator I = Header->begin();
    452        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    453     PHIs.push_back(PN);
    454 
    455   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    456     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
    457       HandleFloatingPointIV(L, PN);
    458 
    459   // If the loop previously had floating-point IV, ScalarEvolution
    460   // may not have been able to compute a trip count. Now that we've done some
    461   // re-writing, the trip count may be computable.
    462   if (Changed)
    463     SE->forgetLoop(L);
    464 }
    465 
    466 //===----------------------------------------------------------------------===//
    467 // RewriteLoopExitValues - Optimize IV users outside the loop.
    468 // As a side effect, reduces the amount of IV processing within the loop.
    469 //===----------------------------------------------------------------------===//
    470 
    471 /// RewriteLoopExitValues - Check to see if this loop has a computable
    472 /// loop-invariant execution count.  If so, this means that we can compute the
    473 /// final value of any expressions that are recurrent in the loop, and
    474 /// substitute the exit values from the loop into any instructions outside of
    475 /// the loop that use the final values of the current expressions.
    476 ///
    477 /// This is mostly redundant with the regular IndVarSimplify activities that
    478 /// happen later, except that it's more powerful in some cases, because it's
    479 /// able to brute-force evaluate arbitrary instructions as long as they have
    480 /// constant operands at the beginning of the loop.
    481 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
    482   // Verify the input to the pass in already in LCSSA form.
    483   assert(L->isLCSSAForm(*DT));
    484 
    485   SmallVector<BasicBlock*, 8> ExitBlocks;
    486   L->getUniqueExitBlocks(ExitBlocks);
    487 
    488   // Find all values that are computed inside the loop, but used outside of it.
    489   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
    490   // the exit blocks of the loop to find them.
    491   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    492     BasicBlock *ExitBB = ExitBlocks[i];
    493 
    494     // If there are no PHI nodes in this exit block, then no values defined
    495     // inside the loop are used on this path, skip it.
    496     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    497     if (!PN) continue;
    498 
    499     unsigned NumPreds = PN->getNumIncomingValues();
    500 
    501     // We would like to be able to RAUW single-incoming value PHI nodes. We
    502     // have to be certain this is safe even when this is an LCSSA PHI node.
    503     // While the computed exit value is no longer varying in *this* loop, the
    504     // exit block may be an exit block for an outer containing loop as well,
    505     // the exit value may be varying in the outer loop, and thus it may still
    506     // require an LCSSA PHI node. The safe case is when this is
    507     // single-predecessor PHI node (LCSSA) and the exit block containing it is
    508     // part of the enclosing loop, or this is the outer most loop of the nest.
    509     // In either case the exit value could (at most) be varying in the same
    510     // loop body as the phi node itself. Thus if it is in turn used outside of
    511     // an enclosing loop it will only be via a separate LCSSA node.
    512     bool LCSSASafePhiForRAUW =
    513         NumPreds == 1 &&
    514         (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
    515 
    516     // Iterate over all of the PHI nodes.
    517     BasicBlock::iterator BBI = ExitBB->begin();
    518     while ((PN = dyn_cast<PHINode>(BBI++))) {
    519       if (PN->use_empty())
    520         continue; // dead use, don't replace it
    521 
    522       // SCEV only supports integer expressions for now.
    523       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
    524         continue;
    525 
    526       // It's necessary to tell ScalarEvolution about this explicitly so that
    527       // it can walk the def-use list and forget all SCEVs, as it may not be
    528       // watching the PHI itself. Once the new exit value is in place, there
    529       // may not be a def-use connection between the loop and every instruction
    530       // which got a SCEVAddRecExpr for that loop.
    531       SE->forgetValue(PN);
    532 
    533       // Iterate over all of the values in all the PHI nodes.
    534       for (unsigned i = 0; i != NumPreds; ++i) {
    535         // If the value being merged in is not integer or is not defined
    536         // in the loop, skip it.
    537         Value *InVal = PN->getIncomingValue(i);
    538         if (!isa<Instruction>(InVal))
    539           continue;
    540 
    541         // If this pred is for a subloop, not L itself, skip it.
    542         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
    543           continue; // The Block is in a subloop, skip it.
    544 
    545         // Check that InVal is defined in the loop.
    546         Instruction *Inst = cast<Instruction>(InVal);
    547         if (!L->contains(Inst))
    548           continue;
    549 
    550         // Okay, this instruction has a user outside of the current loop
    551         // and varies predictably *inside* the loop.  Evaluate the value it
    552         // contains when the loop exits, if possible.
    553         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
    554         if (!SE->isLoopInvariant(ExitValue, L) ||
    555             !isSafeToExpand(ExitValue, *SE))
    556           continue;
    557 
    558         // Computing the value outside of the loop brings no benefit if :
    559         //  - it is definitely used inside the loop in a way which can not be
    560         //    optimized away.
    561         //  - no use outside of the loop can take advantage of hoisting the
    562         //    computation out of the loop
    563         if (ExitValue->getSCEVType()>=scMulExpr) {
    564           unsigned NumHardInternalUses = 0;
    565           unsigned NumSoftExternalUses = 0;
    566           unsigned NumUses = 0;
    567           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
    568                IB != IE && NumUses <= 6; ++IB) {
    569             Instruction *UseInstr = cast<Instruction>(*IB);
    570             unsigned Opc = UseInstr->getOpcode();
    571             NumUses++;
    572             if (L->contains(UseInstr)) {
    573               if (Opc == Instruction::Call || Opc == Instruction::Ret)
    574                 NumHardInternalUses++;
    575             } else {
    576               if (Opc == Instruction::PHI) {
    577                 // Do not count the Phi as a use. LCSSA may have inserted
    578                 // plenty of trivial ones.
    579                 NumUses--;
    580                 for (auto PB = UseInstr->user_begin(),
    581                           PE = UseInstr->user_end();
    582                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
    583                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
    584                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
    585                     NumSoftExternalUses++;
    586                 }
    587                 continue;
    588               }
    589               if (Opc != Instruction::Call && Opc != Instruction::Ret)
    590                 NumSoftExternalUses++;
    591             }
    592           }
    593           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
    594             continue;
    595         }
    596 
    597         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
    598 
    599         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
    600                      << "  LoopVal = " << *Inst << "\n");
    601 
    602         if (!isValidRewrite(Inst, ExitVal)) {
    603           DeadInsts.push_back(ExitVal);
    604           continue;
    605         }
    606         Changed = true;
    607         ++NumReplaced;
    608 
    609         PN->setIncomingValue(i, ExitVal);
    610 
    611         // If this instruction is dead now, delete it. Don't do it now to avoid
    612         // invalidating iterators.
    613         if (isInstructionTriviallyDead(Inst, TLI))
    614           DeadInsts.push_back(Inst);
    615 
    616         // If we determined that this PHI is safe to replace even if an LCSSA
    617         // PHI, do so.
    618         if (LCSSASafePhiForRAUW) {
    619           PN->replaceAllUsesWith(ExitVal);
    620           PN->eraseFromParent();
    621         }
    622       }
    623 
    624       // If we were unable to completely replace the PHI node, clone the PHI
    625       // and delete the original one. This lets IVUsers and any other maps
    626       // purge the original user from their records.
    627       if (!LCSSASafePhiForRAUW) {
    628         PHINode *NewPN = cast<PHINode>(PN->clone());
    629         NewPN->takeName(PN);
    630         NewPN->insertBefore(PN);
    631         PN->replaceAllUsesWith(NewPN);
    632         PN->eraseFromParent();
    633       }
    634     }
    635   }
    636 
    637   // The insertion point instruction may have been deleted; clear it out
    638   // so that the rewriter doesn't trip over it later.
    639   Rewriter.clearInsertPoint();
    640 }
    641 
    642 //===----------------------------------------------------------------------===//
    643 //  IV Widening - Extend the width of an IV to cover its widest uses.
    644 //===----------------------------------------------------------------------===//
    645 
    646 namespace {
    647   // Collect information about induction variables that are used by sign/zero
    648   // extend operations. This information is recorded by CollectExtend and
    649   // provides the input to WidenIV.
    650   struct WideIVInfo {
    651     PHINode *NarrowIV;
    652     Type *WidestNativeType; // Widest integer type created [sz]ext
    653     bool IsSigned;          // Was an sext user seen before a zext?
    654 
    655     WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
    656                    IsSigned(false) {}
    657   };
    658 }
    659 
    660 /// visitCast - Update information about the induction variable that is
    661 /// extended by this sign or zero extend operation. This is used to determine
    662 /// the final width of the IV before actually widening it.
    663 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
    664                         const DataLayout *DL) {
    665   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
    666   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    667     return;
    668 
    669   Type *Ty = Cast->getType();
    670   uint64_t Width = SE->getTypeSizeInBits(Ty);
    671   if (DL && !DL->isLegalInteger(Width))
    672     return;
    673 
    674   if (!WI.WidestNativeType) {
    675     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    676     WI.IsSigned = IsSigned;
    677     return;
    678   }
    679 
    680   // We extend the IV to satisfy the sign of its first user, arbitrarily.
    681   if (WI.IsSigned != IsSigned)
    682     return;
    683 
    684   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    685     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    686 }
    687 
    688 namespace {
    689 
    690 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
    691 /// WideIV that computes the same value as the Narrow IV def.  This avoids
    692 /// caching Use* pointers.
    693 struct NarrowIVDefUse {
    694   Instruction *NarrowDef;
    695   Instruction *NarrowUse;
    696   Instruction *WideDef;
    697 
    698   NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
    699 
    700   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    701     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
    702 };
    703 
    704 /// WidenIV - The goal of this transform is to remove sign and zero extends
    705 /// without creating any new induction variables. To do this, it creates a new
    706 /// phi of the wider type and redirects all users, either removing extends or
    707 /// inserting truncs whenever we stop propagating the type.
    708 ///
    709 class WidenIV {
    710   // Parameters
    711   PHINode *OrigPhi;
    712   Type *WideType;
    713   bool IsSigned;
    714 
    715   // Context
    716   LoopInfo        *LI;
    717   Loop            *L;
    718   ScalarEvolution *SE;
    719   DominatorTree   *DT;
    720 
    721   // Result
    722   PHINode *WidePhi;
    723   Instruction *WideInc;
    724   const SCEV *WideIncExpr;
    725   SmallVectorImpl<WeakVH> &DeadInsts;
    726 
    727   SmallPtrSet<Instruction*,16> Widened;
    728   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
    729 
    730 public:
    731   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
    732           ScalarEvolution *SEv, DominatorTree *DTree,
    733           SmallVectorImpl<WeakVH> &DI) :
    734     OrigPhi(WI.NarrowIV),
    735     WideType(WI.WidestNativeType),
    736     IsSigned(WI.IsSigned),
    737     LI(LInfo),
    738     L(LI->getLoopFor(OrigPhi->getParent())),
    739     SE(SEv),
    740     DT(DTree),
    741     WidePhi(nullptr),
    742     WideInc(nullptr),
    743     WideIncExpr(nullptr),
    744     DeadInsts(DI) {
    745     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    746   }
    747 
    748   PHINode *CreateWideIV(SCEVExpander &Rewriter);
    749 
    750 protected:
    751   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    752                    Instruction *Use);
    753 
    754   Instruction *CloneIVUser(NarrowIVDefUse DU);
    755 
    756   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
    757 
    758   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
    759 
    760   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
    761 
    762   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
    763 };
    764 } // anonymous namespace
    765 
    766 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
    767 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
    768 /// gratuitous for this purpose.
    769 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
    770   Instruction *Inst = dyn_cast<Instruction>(V);
    771   if (!Inst)
    772     return true;
    773 
    774   return DT->properlyDominates(Inst->getParent(), L->getHeader());
    775 }
    776 
    777 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    778                           Instruction *Use) {
    779   // Set the debug location and conservative insertion point.
    780   IRBuilder<> Builder(Use);
    781   // Hoist the insertion point into loop preheaders as far as possible.
    782   for (const Loop *L = LI->getLoopFor(Use->getParent());
    783        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
    784        L = L->getParentLoop())
    785     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
    786 
    787   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
    788                     Builder.CreateZExt(NarrowOper, WideType);
    789 }
    790 
    791 /// CloneIVUser - Instantiate a wide operation to replace a narrow
    792 /// operation. This only needs to handle operations that can evaluation to
    793 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
    794 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
    795   unsigned Opcode = DU.NarrowUse->getOpcode();
    796   switch (Opcode) {
    797   default:
    798     return nullptr;
    799   case Instruction::Add:
    800   case Instruction::Mul:
    801   case Instruction::UDiv:
    802   case Instruction::Sub:
    803   case Instruction::And:
    804   case Instruction::Or:
    805   case Instruction::Xor:
    806   case Instruction::Shl:
    807   case Instruction::LShr:
    808   case Instruction::AShr:
    809     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
    810 
    811     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    812     // anything about the narrow operand yet so must insert a [sz]ext. It is
    813     // probably loop invariant and will be folded or hoisted. If it actually
    814     // comes from a widened IV, it should be removed during a future call to
    815     // WidenIVUse.
    816     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
    817       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    818     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
    819       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
    820 
    821     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    822     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
    823                                                     LHS, RHS,
    824                                                     NarrowBO->getName());
    825     IRBuilder<> Builder(DU.NarrowUse);
    826     Builder.Insert(WideBO);
    827     if (const OverflowingBinaryOperator *OBO =
    828         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
    829       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
    830       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    831     }
    832     return WideBO;
    833   }
    834 }
    835 
    836 /// No-wrap operations can transfer sign extension of their result to their
    837 /// operands. Generate the SCEV value for the widened operation without
    838 /// actually modifying the IR yet. If the expression after extending the
    839 /// operands is an AddRec for this loop, return it.
    840 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
    841   // Handle the common case of add<nsw/nuw>
    842   if (DU.NarrowUse->getOpcode() != Instruction::Add)
    843     return nullptr;
    844 
    845   // One operand (NarrowDef) has already been extended to WideDef. Now determine
    846   // if extending the other will lead to a recurrence.
    847   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
    848   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
    849 
    850   const SCEV *ExtendOperExpr = nullptr;
    851   const OverflowingBinaryOperator *OBO =
    852     cast<OverflowingBinaryOperator>(DU.NarrowUse);
    853   if (IsSigned && OBO->hasNoSignedWrap())
    854     ExtendOperExpr = SE->getSignExtendExpr(
    855       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    856   else if(!IsSigned && OBO->hasNoUnsignedWrap())
    857     ExtendOperExpr = SE->getZeroExtendExpr(
    858       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    859   else
    860     return nullptr;
    861 
    862   // When creating this AddExpr, don't apply the current operations NSW or NUW
    863   // flags. This instruction may be guarded by control flow that the no-wrap
    864   // behavior depends on. Non-control-equivalent instructions can be mapped to
    865   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
    866   // semantics to those operations.
    867   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
    868     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
    869 
    870   if (!AddRec || AddRec->getLoop() != L)
    871     return nullptr;
    872   return AddRec;
    873 }
    874 
    875 /// GetWideRecurrence - Is this instruction potentially interesting from
    876 /// IVUsers' perspective after widening it's type? In other words, can the
    877 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
    878 /// recurrence on the same loop. If so, return the sign or zero extended
    879 /// recurrence. Otherwise return NULL.
    880 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
    881   if (!SE->isSCEVable(NarrowUse->getType()))
    882     return nullptr;
    883 
    884   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
    885   if (SE->getTypeSizeInBits(NarrowExpr->getType())
    886       >= SE->getTypeSizeInBits(WideType)) {
    887     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    888     // index. So don't follow this use.
    889     return nullptr;
    890   }
    891 
    892   const SCEV *WideExpr = IsSigned ?
    893     SE->getSignExtendExpr(NarrowExpr, WideType) :
    894     SE->getZeroExtendExpr(NarrowExpr, WideType);
    895   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
    896   if (!AddRec || AddRec->getLoop() != L)
    897     return nullptr;
    898   return AddRec;
    899 }
    900 
    901 /// This IV user cannot be widen. Replace this use of the original narrow IV
    902 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
    903 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
    904   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
    905         << " for user " << *DU.NarrowUse << "\n");
    906   IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    907   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    908   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    909 }
    910 
    911 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
    912 /// widened. If so, return the wide clone of the user.
    913 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
    914 
    915   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
    916   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
    917     if (LI->getLoopFor(UsePhi->getParent()) != L) {
    918       // For LCSSA phis, sink the truncate outside the loop.
    919       // After SimplifyCFG most loop exit targets have a single predecessor.
    920       // Otherwise fall back to a truncate within the loop.
    921       if (UsePhi->getNumOperands() != 1)
    922         truncateIVUse(DU, DT);
    923       else {
    924         PHINode *WidePhi =
    925           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
    926                           UsePhi);
    927         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
    928         IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
    929         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
    930         UsePhi->replaceAllUsesWith(Trunc);
    931         DeadInsts.push_back(UsePhi);
    932         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
    933               << " to " << *WidePhi << "\n");
    934       }
    935       return nullptr;
    936     }
    937   }
    938   // Our raison d'etre! Eliminate sign and zero extension.
    939   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
    940     Value *NewDef = DU.WideDef;
    941     if (DU.NarrowUse->getType() != WideType) {
    942       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
    943       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
    944       if (CastWidth < IVWidth) {
    945         // The cast isn't as wide as the IV, so insert a Trunc.
    946         IRBuilder<> Builder(DU.NarrowUse);
    947         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
    948       }
    949       else {
    950         // A wider extend was hidden behind a narrower one. This may induce
    951         // another round of IV widening in which the intermediate IV becomes
    952         // dead. It should be very rare.
    953         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
    954               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
    955         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
    956         NewDef = DU.NarrowUse;
    957       }
    958     }
    959     if (NewDef != DU.NarrowUse) {
    960       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
    961             << " replaced by " << *DU.WideDef << "\n");
    962       ++NumElimExt;
    963       DU.NarrowUse->replaceAllUsesWith(NewDef);
    964       DeadInsts.push_back(DU.NarrowUse);
    965     }
    966     // Now that the extend is gone, we want to expose it's uses for potential
    967     // further simplification. We don't need to directly inform SimplifyIVUsers
    968     // of the new users, because their parent IV will be processed later as a
    969     // new loop phi. If we preserved IVUsers analysis, we would also want to
    970     // push the uses of WideDef here.
    971 
    972     // No further widening is needed. The deceased [sz]ext had done it for us.
    973     return nullptr;
    974   }
    975 
    976   // Does this user itself evaluate to a recurrence after widening?
    977   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
    978   if (!WideAddRec) {
    979       WideAddRec = GetExtendedOperandRecurrence(DU);
    980   }
    981   if (!WideAddRec) {
    982     // This user does not evaluate to a recurence after widening, so don't
    983     // follow it. Instead insert a Trunc to kill off the original use,
    984     // eventually isolating the original narrow IV so it can be removed.
    985     truncateIVUse(DU, DT);
    986     return nullptr;
    987   }
    988   // Assume block terminators cannot evaluate to a recurrence. We can't to
    989   // insert a Trunc after a terminator if there happens to be a critical edge.
    990   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
    991          "SCEV is not expected to evaluate a block terminator");
    992 
    993   // Reuse the IV increment that SCEVExpander created as long as it dominates
    994   // NarrowUse.
    995   Instruction *WideUse = nullptr;
    996   if (WideAddRec == WideIncExpr
    997       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
    998     WideUse = WideInc;
    999   else {
   1000     WideUse = CloneIVUser(DU);
   1001     if (!WideUse)
   1002       return nullptr;
   1003   }
   1004   // Evaluation of WideAddRec ensured that the narrow expression could be
   1005   // extended outside the loop without overflow. This suggests that the wide use
   1006   // evaluates to the same expression as the extended narrow use, but doesn't
   1007   // absolutely guarantee it. Hence the following failsafe check. In rare cases
   1008   // where it fails, we simply throw away the newly created wide use.
   1009   if (WideAddRec != SE->getSCEV(WideUse)) {
   1010     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
   1011           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
   1012     DeadInsts.push_back(WideUse);
   1013     return nullptr;
   1014   }
   1015 
   1016   // Returning WideUse pushes it on the worklist.
   1017   return WideUse;
   1018 }
   1019 
   1020 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
   1021 ///
   1022 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
   1023   for (User *U : NarrowDef->users()) {
   1024     Instruction *NarrowUser = cast<Instruction>(U);
   1025 
   1026     // Handle data flow merges and bizarre phi cycles.
   1027     if (!Widened.insert(NarrowUser))
   1028       continue;
   1029 
   1030     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
   1031   }
   1032 }
   1033 
   1034 /// CreateWideIV - Process a single induction variable. First use the
   1035 /// SCEVExpander to create a wide induction variable that evaluates to the same
   1036 /// recurrence as the original narrow IV. Then use a worklist to forward
   1037 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
   1038 /// interesting IV users, the narrow IV will be isolated for removal by
   1039 /// DeleteDeadPHIs.
   1040 ///
   1041 /// It would be simpler to delete uses as they are processed, but we must avoid
   1042 /// invalidating SCEV expressions.
   1043 ///
   1044 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
   1045   // Is this phi an induction variable?
   1046   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
   1047   if (!AddRec)
   1048     return nullptr;
   1049 
   1050   // Widen the induction variable expression.
   1051   const SCEV *WideIVExpr = IsSigned ?
   1052     SE->getSignExtendExpr(AddRec, WideType) :
   1053     SE->getZeroExtendExpr(AddRec, WideType);
   1054 
   1055   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
   1056          "Expect the new IV expression to preserve its type");
   1057 
   1058   // Can the IV be extended outside the loop without overflow?
   1059   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
   1060   if (!AddRec || AddRec->getLoop() != L)
   1061     return nullptr;
   1062 
   1063   // An AddRec must have loop-invariant operands. Since this AddRec is
   1064   // materialized by a loop header phi, the expression cannot have any post-loop
   1065   // operands, so they must dominate the loop header.
   1066   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
   1067          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
   1068          && "Loop header phi recurrence inputs do not dominate the loop");
   1069 
   1070   // The rewriter provides a value for the desired IV expression. This may
   1071   // either find an existing phi or materialize a new one. Either way, we
   1072   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
   1073   // of the phi-SCC dominates the loop entry.
   1074   Instruction *InsertPt = L->getHeader()->begin();
   1075   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
   1076 
   1077   // Remembering the WideIV increment generated by SCEVExpander allows
   1078   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
   1079   // employ a general reuse mechanism because the call above is the only call to
   1080   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
   1081   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1082     WideInc =
   1083       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
   1084     WideIncExpr = SE->getSCEV(WideInc);
   1085   }
   1086 
   1087   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
   1088   ++NumWidened;
   1089 
   1090   // Traverse the def-use chain using a worklist starting at the original IV.
   1091   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
   1092 
   1093   Widened.insert(OrigPhi);
   1094   pushNarrowIVUsers(OrigPhi, WidePhi);
   1095 
   1096   while (!NarrowIVUsers.empty()) {
   1097     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
   1098 
   1099     // Process a def-use edge. This may replace the use, so don't hold a
   1100     // use_iterator across it.
   1101     Instruction *WideUse = WidenIVUse(DU, Rewriter);
   1102 
   1103     // Follow all def-use edges from the previous narrow use.
   1104     if (WideUse)
   1105       pushNarrowIVUsers(DU.NarrowUse, WideUse);
   1106 
   1107     // WidenIVUse may have removed the def-use edge.
   1108     if (DU.NarrowDef->use_empty())
   1109       DeadInsts.push_back(DU.NarrowDef);
   1110   }
   1111   return WidePhi;
   1112 }
   1113 
   1114 //===----------------------------------------------------------------------===//
   1115 //  Live IV Reduction - Minimize IVs live across the loop.
   1116 //===----------------------------------------------------------------------===//
   1117 
   1118 
   1119 //===----------------------------------------------------------------------===//
   1120 //  Simplification of IV users based on SCEV evaluation.
   1121 //===----------------------------------------------------------------------===//
   1122 
   1123 namespace {
   1124   class IndVarSimplifyVisitor : public IVVisitor {
   1125     ScalarEvolution *SE;
   1126     const DataLayout *DL;
   1127     PHINode *IVPhi;
   1128 
   1129   public:
   1130     WideIVInfo WI;
   1131 
   1132     IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
   1133                           const DataLayout *DL, const DominatorTree *DTree):
   1134       SE(SCEV), DL(DL), IVPhi(IV) {
   1135       DT = DTree;
   1136       WI.NarrowIV = IVPhi;
   1137       if (ReduceLiveIVs)
   1138         setSplitOverflowIntrinsics();
   1139     }
   1140 
   1141     // Implement the interface used by simplifyUsersOfIV.
   1142     void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); }
   1143   };
   1144 }
   1145 
   1146 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
   1147 /// users. Each successive simplification may push more users which may
   1148 /// themselves be candidates for simplification.
   1149 ///
   1150 /// Sign/Zero extend elimination is interleaved with IV simplification.
   1151 ///
   1152 void IndVarSimplify::SimplifyAndExtend(Loop *L,
   1153                                        SCEVExpander &Rewriter,
   1154                                        LPPassManager &LPM) {
   1155   SmallVector<WideIVInfo, 8> WideIVs;
   1156 
   1157   SmallVector<PHINode*, 8> LoopPhis;
   1158   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1159     LoopPhis.push_back(cast<PHINode>(I));
   1160   }
   1161   // Each round of simplification iterates through the SimplifyIVUsers worklist
   1162   // for all current phis, then determines whether any IVs can be
   1163   // widened. Widening adds new phis to LoopPhis, inducing another round of
   1164   // simplification on the wide IVs.
   1165   while (!LoopPhis.empty()) {
   1166     // Evaluate as many IV expressions as possible before widening any IVs. This
   1167     // forces SCEV to set no-wrap flags before evaluating sign/zero
   1168     // extension. The first time SCEV attempts to normalize sign/zero extension,
   1169     // the result becomes final. So for the most predictable results, we delay
   1170     // evaluation of sign/zero extend evaluation until needed, and avoid running
   1171     // other SCEV based analysis prior to SimplifyAndExtend.
   1172     do {
   1173       PHINode *CurrIV = LoopPhis.pop_back_val();
   1174 
   1175       // Information about sign/zero extensions of CurrIV.
   1176       IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
   1177 
   1178       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
   1179 
   1180       if (Visitor.WI.WidestNativeType) {
   1181         WideIVs.push_back(Visitor.WI);
   1182       }
   1183     } while(!LoopPhis.empty());
   1184 
   1185     for (; !WideIVs.empty(); WideIVs.pop_back()) {
   1186       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
   1187       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
   1188         Changed = true;
   1189         LoopPhis.push_back(WidePhi);
   1190       }
   1191     }
   1192   }
   1193 }
   1194 
   1195 //===----------------------------------------------------------------------===//
   1196 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
   1197 //===----------------------------------------------------------------------===//
   1198 
   1199 /// Check for expressions that ScalarEvolution generates to compute
   1200 /// BackedgeTakenInfo. If these expressions have not been reduced, then
   1201 /// expanding them may incur additional cost (albeit in the loop preheader).
   1202 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
   1203                                 SmallPtrSet<const SCEV*, 8> &Processed,
   1204                                 ScalarEvolution *SE) {
   1205   if (!Processed.insert(S))
   1206     return false;
   1207 
   1208   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
   1209   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
   1210   // precise expression, rather than a UDiv from the user's code. If we can't
   1211   // find a UDiv in the code with some simple searching, assume the former and
   1212   // forego rewriting the loop.
   1213   if (isa<SCEVUDivExpr>(S)) {
   1214     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
   1215     if (!OrigCond) return true;
   1216     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
   1217     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
   1218     if (R != S) {
   1219       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
   1220       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
   1221       if (L != S)
   1222         return true;
   1223     }
   1224   }
   1225 
   1226   // Recurse past add expressions, which commonly occur in the
   1227   // BackedgeTakenCount. They may already exist in program code, and if not,
   1228   // they are not too expensive rematerialize.
   1229   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   1230     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   1231          I != E; ++I) {
   1232       if (isHighCostExpansion(*I, BI, Processed, SE))
   1233         return true;
   1234     }
   1235     return false;
   1236   }
   1237 
   1238   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
   1239   // the exit condition.
   1240   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
   1241     return true;
   1242 
   1243   // If we haven't recognized an expensive SCEV pattern, assume it's an
   1244   // expression produced by program code.
   1245   return false;
   1246 }
   1247 
   1248 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
   1249 /// count expression can be safely and cheaply expanded into an instruction
   1250 /// sequence that can be used by LinearFunctionTestReplace.
   1251 ///
   1252 /// TODO: This fails for pointer-type loop counters with greater than one byte
   1253 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
   1254 /// we could skip this check in the case that the LFTR loop counter (chosen by
   1255 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
   1256 /// the loop test to an inequality test by checking the target data's alignment
   1257 /// of element types (given that the initial pointer value originates from or is
   1258 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
   1259 /// However, we don't yet have a strong motivation for converting loop tests
   1260 /// into inequality tests.
   1261 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
   1262   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1263   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
   1264       BackedgeTakenCount->isZero())
   1265     return false;
   1266 
   1267   if (!L->getExitingBlock())
   1268     return false;
   1269 
   1270   // Can't rewrite non-branch yet.
   1271   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1272   if (!BI)
   1273     return false;
   1274 
   1275   SmallPtrSet<const SCEV*, 8> Processed;
   1276   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
   1277     return false;
   1278 
   1279   return true;
   1280 }
   1281 
   1282 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
   1283 /// invariant value to the phi.
   1284 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
   1285   Instruction *IncI = dyn_cast<Instruction>(IncV);
   1286   if (!IncI)
   1287     return nullptr;
   1288 
   1289   switch (IncI->getOpcode()) {
   1290   case Instruction::Add:
   1291   case Instruction::Sub:
   1292     break;
   1293   case Instruction::GetElementPtr:
   1294     // An IV counter must preserve its type.
   1295     if (IncI->getNumOperands() == 2)
   1296       break;
   1297   default:
   1298     return nullptr;
   1299   }
   1300 
   1301   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
   1302   if (Phi && Phi->getParent() == L->getHeader()) {
   1303     if (isLoopInvariant(IncI->getOperand(1), L, DT))
   1304       return Phi;
   1305     return nullptr;
   1306   }
   1307   if (IncI->getOpcode() == Instruction::GetElementPtr)
   1308     return nullptr;
   1309 
   1310   // Allow add/sub to be commuted.
   1311   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
   1312   if (Phi && Phi->getParent() == L->getHeader()) {
   1313     if (isLoopInvariant(IncI->getOperand(0), L, DT))
   1314       return Phi;
   1315   }
   1316   return nullptr;
   1317 }
   1318 
   1319 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
   1320 static ICmpInst *getLoopTest(Loop *L) {
   1321   assert(L->getExitingBlock() && "expected loop exit");
   1322 
   1323   BasicBlock *LatchBlock = L->getLoopLatch();
   1324   // Don't bother with LFTR if the loop is not properly simplified.
   1325   if (!LatchBlock)
   1326     return nullptr;
   1327 
   1328   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1329   assert(BI && "expected exit branch");
   1330 
   1331   return dyn_cast<ICmpInst>(BI->getCondition());
   1332 }
   1333 
   1334 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
   1335 /// that the current exit test is already sufficiently canonical.
   1336 static bool needsLFTR(Loop *L, DominatorTree *DT) {
   1337   // Do LFTR to simplify the exit condition to an ICMP.
   1338   ICmpInst *Cond = getLoopTest(L);
   1339   if (!Cond)
   1340     return true;
   1341 
   1342   // Do LFTR to simplify the exit ICMP to EQ/NE
   1343   ICmpInst::Predicate Pred = Cond->getPredicate();
   1344   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
   1345     return true;
   1346 
   1347   // Look for a loop invariant RHS
   1348   Value *LHS = Cond->getOperand(0);
   1349   Value *RHS = Cond->getOperand(1);
   1350   if (!isLoopInvariant(RHS, L, DT)) {
   1351     if (!isLoopInvariant(LHS, L, DT))
   1352       return true;
   1353     std::swap(LHS, RHS);
   1354   }
   1355   // Look for a simple IV counter LHS
   1356   PHINode *Phi = dyn_cast<PHINode>(LHS);
   1357   if (!Phi)
   1358     Phi = getLoopPhiForCounter(LHS, L, DT);
   1359 
   1360   if (!Phi)
   1361     return true;
   1362 
   1363   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
   1364   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
   1365   if (Idx < 0)
   1366     return true;
   1367 
   1368   // Do LFTR if the exit condition's IV is *not* a simple counter.
   1369   Value *IncV = Phi->getIncomingValue(Idx);
   1370   return Phi != getLoopPhiForCounter(IncV, L, DT);
   1371 }
   1372 
   1373 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
   1374 /// down to checking that all operands are constant and listing instructions
   1375 /// that may hide undef.
   1376 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
   1377                                unsigned Depth) {
   1378   if (isa<Constant>(V))
   1379     return !isa<UndefValue>(V);
   1380 
   1381   if (Depth >= 6)
   1382     return false;
   1383 
   1384   // Conservatively handle non-constant non-instructions. For example, Arguments
   1385   // may be undef.
   1386   Instruction *I = dyn_cast<Instruction>(V);
   1387   if (!I)
   1388     return false;
   1389 
   1390   // Load and return values may be undef.
   1391   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
   1392     return false;
   1393 
   1394   // Optimistically handle other instructions.
   1395   for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
   1396     if (!Visited.insert(*OI))
   1397       continue;
   1398     if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
   1399       return false;
   1400   }
   1401   return true;
   1402 }
   1403 
   1404 /// Return true if the given value is concrete. We must prove that undef can
   1405 /// never reach it.
   1406 ///
   1407 /// TODO: If we decide that this is a good approach to checking for undef, we
   1408 /// may factor it into a common location.
   1409 static bool hasConcreteDef(Value *V) {
   1410   SmallPtrSet<Value*, 8> Visited;
   1411   Visited.insert(V);
   1412   return hasConcreteDefImpl(V, Visited, 0);
   1413 }
   1414 
   1415 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
   1416 /// be rewritten) loop exit test.
   1417 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
   1418   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1419   Value *IncV = Phi->getIncomingValue(LatchIdx);
   1420 
   1421   for (User *U : Phi->users())
   1422     if (U != Cond && U != IncV) return false;
   1423 
   1424   for (User *U : IncV->users())
   1425     if (U != Cond && U != Phi) return false;
   1426   return true;
   1427 }
   1428 
   1429 /// FindLoopCounter - Find an affine IV in canonical form.
   1430 ///
   1431 /// BECount may be an i8* pointer type. The pointer difference is already
   1432 /// valid count without scaling the address stride, so it remains a pointer
   1433 /// expression as far as SCEV is concerned.
   1434 ///
   1435 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
   1436 ///
   1437 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
   1438 ///
   1439 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
   1440 /// This is difficult in general for SCEV because of potential overflow. But we
   1441 /// could at least handle constant BECounts.
   1442 static PHINode *
   1443 FindLoopCounter(Loop *L, const SCEV *BECount,
   1444                 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
   1445   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
   1446 
   1447   Value *Cond =
   1448     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
   1449 
   1450   // Loop over all of the PHI nodes, looking for a simple counter.
   1451   PHINode *BestPhi = nullptr;
   1452   const SCEV *BestInit = nullptr;
   1453   BasicBlock *LatchBlock = L->getLoopLatch();
   1454   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
   1455 
   1456   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1457     PHINode *Phi = cast<PHINode>(I);
   1458     if (!SE->isSCEVable(Phi->getType()))
   1459       continue;
   1460 
   1461     // Avoid comparing an integer IV against a pointer Limit.
   1462     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
   1463       continue;
   1464 
   1465     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
   1466     if (!AR || AR->getLoop() != L || !AR->isAffine())
   1467       continue;
   1468 
   1469     // AR may be a pointer type, while BECount is an integer type.
   1470     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
   1471     // AR may not be a narrower type, or we may never exit.
   1472     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
   1473     if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
   1474       continue;
   1475 
   1476     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
   1477     if (!Step || !Step->isOne())
   1478       continue;
   1479 
   1480     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1481     Value *IncV = Phi->getIncomingValue(LatchIdx);
   1482     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
   1483       continue;
   1484 
   1485     // Avoid reusing a potentially undef value to compute other values that may
   1486     // have originally had a concrete definition.
   1487     if (!hasConcreteDef(Phi)) {
   1488       // We explicitly allow unknown phis as long as they are already used by
   1489       // the loop test. In this case we assume that performing LFTR could not
   1490       // increase the number of undef users.
   1491       if (ICmpInst *Cond = getLoopTest(L)) {
   1492         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
   1493             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
   1494           continue;
   1495         }
   1496       }
   1497     }
   1498     const SCEV *Init = AR->getStart();
   1499 
   1500     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
   1501       // Don't force a live loop counter if another IV can be used.
   1502       if (AlmostDeadIV(Phi, LatchBlock, Cond))
   1503         continue;
   1504 
   1505       // Prefer to count-from-zero. This is a more "canonical" counter form. It
   1506       // also prefers integer to pointer IVs.
   1507       if (BestInit->isZero() != Init->isZero()) {
   1508         if (BestInit->isZero())
   1509           continue;
   1510       }
   1511       // If two IVs both count from zero or both count from nonzero then the
   1512       // narrower is likely a dead phi that has been widened. Use the wider phi
   1513       // to allow the other to be eliminated.
   1514       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
   1515         continue;
   1516     }
   1517     BestPhi = Phi;
   1518     BestInit = Init;
   1519   }
   1520   return BestPhi;
   1521 }
   1522 
   1523 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
   1524 /// holds the RHS of the new loop test.
   1525 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
   1526                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
   1527   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1528   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
   1529   const SCEV *IVInit = AR->getStart();
   1530 
   1531   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
   1532   // finds a valid pointer IV. Sign extend BECount in order to materialize a
   1533   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
   1534   // the existing GEPs whenever possible.
   1535   if (IndVar->getType()->isPointerTy()
   1536       && !IVCount->getType()->isPointerTy()) {
   1537 
   1538     // IVOffset will be the new GEP offset that is interpreted by GEP as a
   1539     // signed value. IVCount on the other hand represents the loop trip count,
   1540     // which is an unsigned value. FindLoopCounter only allows induction
   1541     // variables that have a positive unit stride of one. This means we don't
   1542     // have to handle the case of negative offsets (yet) and just need to zero
   1543     // extend IVCount.
   1544     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
   1545     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
   1546 
   1547     // Expand the code for the iteration count.
   1548     assert(SE->isLoopInvariant(IVOffset, L) &&
   1549            "Computed iteration count is not loop invariant!");
   1550     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1551     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
   1552 
   1553     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
   1554     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
   1555     // We could handle pointer IVs other than i8*, but we need to compensate for
   1556     // gep index scaling. See canExpandBackedgeTakenCount comments.
   1557     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
   1558              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
   1559            && "unit stride pointer IV must be i8*");
   1560 
   1561     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
   1562     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
   1563   }
   1564   else {
   1565     // In any other case, convert both IVInit and IVCount to integers before
   1566     // comparing. This may result in SCEV expension of pointers, but in practice
   1567     // SCEV will fold the pointer arithmetic away as such:
   1568     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
   1569     //
   1570     // Valid Cases: (1) both integers is most common; (2) both may be pointers
   1571     // for simple memset-style loops.
   1572     //
   1573     // IVInit integer and IVCount pointer would only occur if a canonical IV
   1574     // were generated on top of case #2, which is not expected.
   1575 
   1576     const SCEV *IVLimit = nullptr;
   1577     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
   1578     // For non-zero Start, compute IVCount here.
   1579     if (AR->getStart()->isZero())
   1580       IVLimit = IVCount;
   1581     else {
   1582       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
   1583       const SCEV *IVInit = AR->getStart();
   1584 
   1585       // For integer IVs, truncate the IV before computing IVInit + BECount.
   1586       if (SE->getTypeSizeInBits(IVInit->getType())
   1587           > SE->getTypeSizeInBits(IVCount->getType()))
   1588         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
   1589 
   1590       IVLimit = SE->getAddExpr(IVInit, IVCount);
   1591     }
   1592     // Expand the code for the iteration count.
   1593     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1594     IRBuilder<> Builder(BI);
   1595     assert(SE->isLoopInvariant(IVLimit, L) &&
   1596            "Computed iteration count is not loop invariant!");
   1597     // Ensure that we generate the same type as IndVar, or a smaller integer
   1598     // type. In the presence of null pointer values, we have an integer type
   1599     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
   1600     Type *LimitTy = IVCount->getType()->isPointerTy() ?
   1601       IndVar->getType() : IVCount->getType();
   1602     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
   1603   }
   1604 }
   1605 
   1606 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
   1607 /// loop to be a canonical != comparison against the incremented loop induction
   1608 /// variable.  This pass is able to rewrite the exit tests of any loop where the
   1609 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
   1610 /// is actually a much broader range than just linear tests.
   1611 Value *IndVarSimplify::
   1612 LinearFunctionTestReplace(Loop *L,
   1613                           const SCEV *BackedgeTakenCount,
   1614                           PHINode *IndVar,
   1615                           SCEVExpander &Rewriter) {
   1616   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
   1617 
   1618   // Initialize CmpIndVar and IVCount to their preincremented values.
   1619   Value *CmpIndVar = IndVar;
   1620   const SCEV *IVCount = BackedgeTakenCount;
   1621 
   1622   // If the exiting block is the same as the backedge block, we prefer to
   1623   // compare against the post-incremented value, otherwise we must compare
   1624   // against the preincremented value.
   1625   if (L->getExitingBlock() == L->getLoopLatch()) {
   1626     // Add one to the "backedge-taken" count to get the trip count.
   1627     // This addition may overflow, which is valid as long as the comparison is
   1628     // truncated to BackedgeTakenCount->getType().
   1629     IVCount = SE->getAddExpr(BackedgeTakenCount,
   1630                              SE->getConstant(BackedgeTakenCount->getType(), 1));
   1631     // The BackedgeTaken expression contains the number of times that the
   1632     // backedge branches to the loop header.  This is one less than the
   1633     // number of times the loop executes, so use the incremented indvar.
   1634     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
   1635   }
   1636 
   1637   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
   1638   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
   1639          && "genLoopLimit missed a cast");
   1640 
   1641   // Insert a new icmp_ne or icmp_eq instruction before the branch.
   1642   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1643   ICmpInst::Predicate P;
   1644   if (L->contains(BI->getSuccessor(0)))
   1645     P = ICmpInst::ICMP_NE;
   1646   else
   1647     P = ICmpInst::ICMP_EQ;
   1648 
   1649   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
   1650                << "      LHS:" << *CmpIndVar << '\n'
   1651                << "       op:\t"
   1652                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
   1653                << "      RHS:\t" << *ExitCnt << "\n"
   1654                << "  IVCount:\t" << *IVCount << "\n");
   1655 
   1656   IRBuilder<> Builder(BI);
   1657 
   1658   // LFTR can ignore IV overflow and truncate to the width of
   1659   // BECount. This avoids materializing the add(zext(add)) expression.
   1660   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
   1661   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
   1662   if (CmpIndVarSize > ExitCntSize) {
   1663     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1664     const SCEV *ARStart = AR->getStart();
   1665     const SCEV *ARStep = AR->getStepRecurrence(*SE);
   1666     // For constant IVCount, avoid truncation.
   1667     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
   1668       const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
   1669       APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
   1670       // Note that the post-inc value of BackedgeTakenCount may have overflowed
   1671       // above such that IVCount is now zero.
   1672       if (IVCount != BackedgeTakenCount && Count == 0) {
   1673         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
   1674         ++Count;
   1675       }
   1676       else
   1677         Count = Count.zext(CmpIndVarSize);
   1678       APInt NewLimit;
   1679       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
   1680         NewLimit = Start - Count;
   1681       else
   1682         NewLimit = Start + Count;
   1683       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
   1684 
   1685       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
   1686     } else {
   1687       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
   1688                                       "lftr.wideiv");
   1689     }
   1690   }
   1691   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
   1692   Value *OrigCond = BI->getCondition();
   1693   // It's tempting to use replaceAllUsesWith here to fully replace the old
   1694   // comparison, but that's not immediately safe, since users of the old
   1695   // comparison may not be dominated by the new comparison. Instead, just
   1696   // update the branch to use the new comparison; in the common case this
   1697   // will make old comparison dead.
   1698   BI->setCondition(Cond);
   1699   DeadInsts.push_back(OrigCond);
   1700 
   1701   ++NumLFTR;
   1702   Changed = true;
   1703   return Cond;
   1704 }
   1705 
   1706 //===----------------------------------------------------------------------===//
   1707 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
   1708 //===----------------------------------------------------------------------===//
   1709 
   1710 /// If there's a single exit block, sink any loop-invariant values that
   1711 /// were defined in the preheader but not used inside the loop into the
   1712 /// exit block to reduce register pressure in the loop.
   1713 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
   1714   BasicBlock *ExitBlock = L->getExitBlock();
   1715   if (!ExitBlock) return;
   1716 
   1717   BasicBlock *Preheader = L->getLoopPreheader();
   1718   if (!Preheader) return;
   1719 
   1720   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
   1721   BasicBlock::iterator I = Preheader->getTerminator();
   1722   while (I != Preheader->begin()) {
   1723     --I;
   1724     // New instructions were inserted at the end of the preheader.
   1725     if (isa<PHINode>(I))
   1726       break;
   1727 
   1728     // Don't move instructions which might have side effects, since the side
   1729     // effects need to complete before instructions inside the loop.  Also don't
   1730     // move instructions which might read memory, since the loop may modify
   1731     // memory. Note that it's okay if the instruction might have undefined
   1732     // behavior: LoopSimplify guarantees that the preheader dominates the exit
   1733     // block.
   1734     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
   1735       continue;
   1736 
   1737     // Skip debug info intrinsics.
   1738     if (isa<DbgInfoIntrinsic>(I))
   1739       continue;
   1740 
   1741     // Skip landingpad instructions.
   1742     if (isa<LandingPadInst>(I))
   1743       continue;
   1744 
   1745     // Don't sink alloca: we never want to sink static alloca's out of the
   1746     // entry block, and correctly sinking dynamic alloca's requires
   1747     // checks for stacksave/stackrestore intrinsics.
   1748     // FIXME: Refactor this check somehow?
   1749     if (isa<AllocaInst>(I))
   1750       continue;
   1751 
   1752     // Determine if there is a use in or before the loop (direct or
   1753     // otherwise).
   1754     bool UsedInLoop = false;
   1755     for (Use &U : I->uses()) {
   1756       Instruction *User = cast<Instruction>(U.getUser());
   1757       BasicBlock *UseBB = User->getParent();
   1758       if (PHINode *P = dyn_cast<PHINode>(User)) {
   1759         unsigned i =
   1760           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
   1761         UseBB = P->getIncomingBlock(i);
   1762       }
   1763       if (UseBB == Preheader || L->contains(UseBB)) {
   1764         UsedInLoop = true;
   1765         break;
   1766       }
   1767     }
   1768 
   1769     // If there is, the def must remain in the preheader.
   1770     if (UsedInLoop)
   1771       continue;
   1772 
   1773     // Otherwise, sink it to the exit block.
   1774     Instruction *ToMove = I;
   1775     bool Done = false;
   1776 
   1777     if (I != Preheader->begin()) {
   1778       // Skip debug info intrinsics.
   1779       do {
   1780         --I;
   1781       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
   1782 
   1783       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
   1784         Done = true;
   1785     } else {
   1786       Done = true;
   1787     }
   1788 
   1789     ToMove->moveBefore(InsertPt);
   1790     if (Done) break;
   1791     InsertPt = ToMove;
   1792   }
   1793 }
   1794 
   1795 //===----------------------------------------------------------------------===//
   1796 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
   1797 //===----------------------------------------------------------------------===//
   1798 
   1799 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
   1800   if (skipOptnoneFunction(L))
   1801     return false;
   1802 
   1803   // If LoopSimplify form is not available, stay out of trouble. Some notes:
   1804   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
   1805   //    canonicalization can be a pessimization without LSR to "clean up"
   1806   //    afterwards.
   1807   //  - We depend on having a preheader; in particular,
   1808   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
   1809   //    and we're in trouble if we can't find the induction variable even when
   1810   //    we've manually inserted one.
   1811   if (!L->isLoopSimplifyForm())
   1812     return false;
   1813 
   1814   LI = &getAnalysis<LoopInfo>();
   1815   SE = &getAnalysis<ScalarEvolution>();
   1816   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1817   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1818   DL = DLP ? &DLP->getDataLayout() : nullptr;
   1819   TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
   1820 
   1821   DeadInsts.clear();
   1822   Changed = false;
   1823 
   1824   // If there are any floating-point recurrences, attempt to
   1825   // transform them to use integer recurrences.
   1826   RewriteNonIntegerIVs(L);
   1827 
   1828   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1829 
   1830   // Create a rewriter object which we'll use to transform the code with.
   1831   SCEVExpander Rewriter(*SE, "indvars");
   1832 #ifndef NDEBUG
   1833   Rewriter.setDebugType(DEBUG_TYPE);
   1834 #endif
   1835 
   1836   // Eliminate redundant IV users.
   1837   //
   1838   // Simplification works best when run before other consumers of SCEV. We
   1839   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
   1840   // other expressions involving loop IVs have been evaluated. This helps SCEV
   1841   // set no-wrap flags before normalizing sign/zero extension.
   1842   Rewriter.disableCanonicalMode();
   1843   SimplifyAndExtend(L, Rewriter, LPM);
   1844 
   1845   // Check to see if this loop has a computable loop-invariant execution count.
   1846   // If so, this means that we can compute the final value of any expressions
   1847   // that are recurrent in the loop, and substitute the exit values from the
   1848   // loop into any instructions outside of the loop that use the final values of
   1849   // the current expressions.
   1850   //
   1851   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1852     RewriteLoopExitValues(L, Rewriter);
   1853 
   1854   // Eliminate redundant IV cycles.
   1855   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
   1856 
   1857   // If we have a trip count expression, rewrite the loop's exit condition
   1858   // using it.  We can currently only handle loops with a single exit.
   1859   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
   1860     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
   1861     if (IndVar) {
   1862       // Check preconditions for proper SCEVExpander operation. SCEV does not
   1863       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
   1864       // pass that uses the SCEVExpander must do it. This does not work well for
   1865       // loop passes because SCEVExpander makes assumptions about all loops,
   1866       // while LoopPassManager only forces the current loop to be simplified.
   1867       //
   1868       // FIXME: SCEV expansion has no way to bail out, so the caller must
   1869       // explicitly check any assumptions made by SCEV. Brittle.
   1870       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
   1871       if (!AR || AR->getLoop()->getLoopPreheader())
   1872         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
   1873                                         Rewriter);
   1874     }
   1875   }
   1876   // Clear the rewriter cache, because values that are in the rewriter's cache
   1877   // can be deleted in the loop below, causing the AssertingVH in the cache to
   1878   // trigger.
   1879   Rewriter.clear();
   1880 
   1881   // Now that we're done iterating through lists, clean up any instructions
   1882   // which are now dead.
   1883   while (!DeadInsts.empty())
   1884     if (Instruction *Inst =
   1885           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
   1886       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
   1887 
   1888   // The Rewriter may not be used from this point on.
   1889 
   1890   // Loop-invariant instructions in the preheader that aren't used in the
   1891   // loop may be sunk below the loop to reduce register pressure.
   1892   SinkUnusedInvariants(L);
   1893 
   1894   // Clean up dead instructions.
   1895   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
   1896   // Check a post-condition.
   1897   assert(L->isLCSSAForm(*DT) &&
   1898          "Indvars did not leave the loop in lcssa form!");
   1899 
   1900   // Verify that LFTR, and any other change have not interfered with SCEV's
   1901   // ability to compute trip count.
   1902 #ifndef NDEBUG
   1903   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
   1904     SE->forgetLoop(L);
   1905     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
   1906     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
   1907         SE->getTypeSizeInBits(NewBECount->getType()))
   1908       NewBECount = SE->getTruncateOrNoop(NewBECount,
   1909                                          BackedgeTakenCount->getType());
   1910     else
   1911       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
   1912                                                  NewBECount->getType());
   1913     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
   1914   }
   1915 #endif
   1916 
   1917   return Changed;
   1918 }
   1919