Home | History | Annotate | Download | only in Vectorize
      1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
     11 // and generates target-independent LLVM-IR.
     12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
     13 // of instructions in order to estimate the profitability of vectorization.
     14 //
     15 // The loop vectorizer combines consecutive loop iterations into a single
     16 // 'wide' iteration. After this transformation the index is incremented
     17 // by the SIMD vector width, and not by one.
     18 //
     19 // This pass has three parts:
     20 // 1. The main loop pass that drives the different parts.
     21 // 2. LoopVectorizationLegality - A unit that checks for the legality
     22 //    of the vectorization.
     23 // 3. InnerLoopVectorizer - A unit that performs the actual
     24 //    widening of instructions.
     25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
     26 //    of vectorization. It decides on the optimal vector width, which
     27 //    can be one, if vectorization is not profitable.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 //
     31 // The reduction-variable vectorization is based on the paper:
     32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
     33 //
     34 // Variable uniformity checks are inspired by:
     35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
     36 //
     37 // Other ideas/concepts are from:
     38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
     39 //
     40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
     41 //  Vectorizing Compilers.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #include "llvm/Transforms/Vectorize.h"
     46 #include "llvm/ADT/DenseMap.h"
     47 #include "llvm/ADT/EquivalenceClasses.h"
     48 #include "llvm/ADT/Hashing.h"
     49 #include "llvm/ADT/MapVector.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallSet.h"
     53 #include "llvm/ADT/SmallVector.h"
     54 #include "llvm/ADT/Statistic.h"
     55 #include "llvm/ADT/StringExtras.h"
     56 #include "llvm/Analysis/AliasAnalysis.h"
     57 #include "llvm/Analysis/BlockFrequencyInfo.h"
     58 #include "llvm/Analysis/LoopInfo.h"
     59 #include "llvm/Analysis/LoopIterator.h"
     60 #include "llvm/Analysis/LoopPass.h"
     61 #include "llvm/Analysis/ScalarEvolution.h"
     62 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     64 #include "llvm/Analysis/TargetTransformInfo.h"
     65 #include "llvm/Analysis/ValueTracking.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DataLayout.h"
     68 #include "llvm/IR/DebugInfo.h"
     69 #include "llvm/IR/DerivedTypes.h"
     70 #include "llvm/IR/DiagnosticInfo.h"
     71 #include "llvm/IR/Dominators.h"
     72 #include "llvm/IR/Function.h"
     73 #include "llvm/IR/IRBuilder.h"
     74 #include "llvm/IR/Instructions.h"
     75 #include "llvm/IR/IntrinsicInst.h"
     76 #include "llvm/IR/LLVMContext.h"
     77 #include "llvm/IR/Module.h"
     78 #include "llvm/IR/PatternMatch.h"
     79 #include "llvm/IR/Type.h"
     80 #include "llvm/IR/Value.h"
     81 #include "llvm/IR/ValueHandle.h"
     82 #include "llvm/IR/Verifier.h"
     83 #include "llvm/Pass.h"
     84 #include "llvm/Support/BranchProbability.h"
     85 #include "llvm/Support/CommandLine.h"
     86 #include "llvm/Support/Debug.h"
     87 #include "llvm/Support/raw_ostream.h"
     88 #include "llvm/Transforms/Scalar.h"
     89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     90 #include "llvm/Transforms/Utils/Local.h"
     91 #include "llvm/Transforms/Utils/VectorUtils.h"
     92 #include <algorithm>
     93 #include <map>
     94 #include <tuple>
     95 
     96 using namespace llvm;
     97 using namespace llvm::PatternMatch;
     98 
     99 #define LV_NAME "loop-vectorize"
    100 #define DEBUG_TYPE LV_NAME
    101 
    102 STATISTIC(LoopsVectorized, "Number of loops vectorized");
    103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
    104 
    105 static cl::opt<unsigned>
    106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
    107                     cl::desc("Sets the SIMD width. Zero is autoselect."));
    108 
    109 static cl::opt<unsigned>
    110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
    111                     cl::desc("Sets the vectorization unroll count. "
    112                              "Zero is autoselect."));
    113 
    114 static cl::opt<bool>
    115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
    116                    cl::desc("Enable if-conversion during vectorization."));
    117 
    118 /// We don't vectorize loops with a known constant trip count below this number.
    119 static cl::opt<unsigned>
    120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
    121                              cl::Hidden,
    122                              cl::desc("Don't vectorize loops with a constant "
    123                                       "trip count that is smaller than this "
    124                                       "value."));
    125 
    126 /// This enables versioning on the strides of symbolically striding memory
    127 /// accesses in code like the following.
    128 ///   for (i = 0; i < N; ++i)
    129 ///     A[i * Stride1] += B[i * Stride2] ...
    130 ///
    131 /// Will be roughly translated to
    132 ///    if (Stride1 == 1 && Stride2 == 1) {
    133 ///      for (i = 0; i < N; i+=4)
    134 ///       A[i:i+3] += ...
    135 ///    } else
    136 ///      ...
    137 static cl::opt<bool> EnableMemAccessVersioning(
    138     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    139     cl::desc("Enable symblic stride memory access versioning"));
    140 
    141 /// We don't unroll loops with a known constant trip count below this number.
    142 static const unsigned TinyTripCountUnrollThreshold = 128;
    143 
    144 /// When performing memory disambiguation checks at runtime do not make more
    145 /// than this number of comparisons.
    146 static const unsigned RuntimeMemoryCheckThreshold = 8;
    147 
    148 /// Maximum simd width.
    149 static const unsigned MaxVectorWidth = 64;
    150 
    151 static cl::opt<unsigned> ForceTargetNumScalarRegs(
    152     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
    153     cl::desc("A flag that overrides the target's number of scalar registers."));
    154 
    155 static cl::opt<unsigned> ForceTargetNumVectorRegs(
    156     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
    157     cl::desc("A flag that overrides the target's number of vector registers."));
    158 
    159 /// Maximum vectorization unroll count.
    160 static const unsigned MaxUnrollFactor = 16;
    161 
    162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
    163     "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
    164     cl::desc("A flag that overrides the target's max unroll factor for scalar "
    165              "loops."));
    166 
    167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
    168     "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
    169     cl::desc("A flag that overrides the target's max unroll factor for "
    170              "vectorized loops."));
    171 
    172 static cl::opt<unsigned> ForceTargetInstructionCost(
    173     "force-target-instruction-cost", cl::init(0), cl::Hidden,
    174     cl::desc("A flag that overrides the target's expected cost for "
    175              "an instruction to a single constant value. Mostly "
    176              "useful for getting consistent testing."));
    177 
    178 static cl::opt<unsigned> SmallLoopCost(
    179     "small-loop-cost", cl::init(20), cl::Hidden,
    180     cl::desc("The cost of a loop that is considered 'small' by the unroller."));
    181 
    182 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
    183     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
    184     cl::desc("Enable the use of the block frequency analysis to access PGO "
    185              "heuristics minimizing code growth in cold regions and being more "
    186              "aggressive in hot regions."));
    187 
    188 // Runtime unroll loops for load/store throughput.
    189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
    190     "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
    191     cl::desc("Enable runtime unrolling until load/store ports are saturated"));
    192 
    193 /// The number of stores in a loop that are allowed to need predication.
    194 static cl::opt<unsigned> NumberOfStoresToPredicate(
    195     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
    196     cl::desc("Max number of stores to be predicated behind an if."));
    197 
    198 static cl::opt<bool> EnableIndVarRegisterHeur(
    199     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
    200     cl::desc("Count the induction variable only once when unrolling"));
    201 
    202 static cl::opt<bool> EnableCondStoresVectorization(
    203     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
    204     cl::desc("Enable if predication of stores during vectorization."));
    205 
    206 namespace {
    207 
    208 // Forward declarations.
    209 class LoopVectorizationLegality;
    210 class LoopVectorizationCostModel;
    211 
    212 /// Optimization analysis message produced during vectorization. Messages inform
    213 /// the user why vectorization did not occur.
    214 class Report {
    215   std::string Message;
    216   raw_string_ostream Out;
    217   Instruction *Instr;
    218 
    219 public:
    220   Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
    221     Out << "loop not vectorized: ";
    222   }
    223 
    224   template <typename A> Report &operator<<(const A &Value) {
    225     Out << Value;
    226     return *this;
    227   }
    228 
    229   Instruction *getInstr() { return Instr; }
    230 
    231   std::string &str() { return Out.str(); }
    232   operator Twine() { return Out.str(); }
    233 };
    234 
    235 /// InnerLoopVectorizer vectorizes loops which contain only one basic
    236 /// block to a specified vectorization factor (VF).
    237 /// This class performs the widening of scalars into vectors, or multiple
    238 /// scalars. This class also implements the following features:
    239 /// * It inserts an epilogue loop for handling loops that don't have iteration
    240 ///   counts that are known to be a multiple of the vectorization factor.
    241 /// * It handles the code generation for reduction variables.
    242 /// * Scalarization (implementation using scalars) of un-vectorizable
    243 ///   instructions.
    244 /// InnerLoopVectorizer does not perform any vectorization-legality
    245 /// checks, and relies on the caller to check for the different legality
    246 /// aspects. The InnerLoopVectorizer relies on the
    247 /// LoopVectorizationLegality class to provide information about the induction
    248 /// and reduction variables that were found to a given vectorization factor.
    249 class InnerLoopVectorizer {
    250 public:
    251   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
    252                       DominatorTree *DT, const DataLayout *DL,
    253                       const TargetLibraryInfo *TLI, unsigned VecWidth,
    254                       unsigned UnrollFactor)
    255       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
    256         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
    257         Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
    258         Legal(nullptr) {}
    259 
    260   // Perform the actual loop widening (vectorization).
    261   void vectorize(LoopVectorizationLegality *L) {
    262     Legal = L;
    263     // Create a new empty loop. Unlink the old loop and connect the new one.
    264     createEmptyLoop();
    265     // Widen each instruction in the old loop to a new one in the new loop.
    266     // Use the Legality module to find the induction and reduction variables.
    267     vectorizeLoop();
    268     // Register the new loop and update the analysis passes.
    269     updateAnalysis();
    270   }
    271 
    272   virtual ~InnerLoopVectorizer() {}
    273 
    274 protected:
    275   /// A small list of PHINodes.
    276   typedef SmallVector<PHINode*, 4> PhiVector;
    277   /// When we unroll loops we have multiple vector values for each scalar.
    278   /// This data structure holds the unrolled and vectorized values that
    279   /// originated from one scalar instruction.
    280   typedef SmallVector<Value*, 2> VectorParts;
    281 
    282   // When we if-convert we need create edge masks. We have to cache values so
    283   // that we don't end up with exponential recursion/IR.
    284   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
    285                    VectorParts> EdgeMaskCache;
    286 
    287   /// \brief Add code that checks at runtime if the accessed arrays overlap.
    288   ///
    289   /// Returns a pair of instructions where the first element is the first
    290   /// instruction generated in possibly a sequence of instructions and the
    291   /// second value is the final comparator value or NULL if no check is needed.
    292   std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
    293 
    294   /// \brief Add checks for strides that where assumed to be 1.
    295   ///
    296   /// Returns the last check instruction and the first check instruction in the
    297   /// pair as (first, last).
    298   std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
    299 
    300   /// Create an empty loop, based on the loop ranges of the old loop.
    301   void createEmptyLoop();
    302   /// Copy and widen the instructions from the old loop.
    303   virtual void vectorizeLoop();
    304 
    305   /// \brief The Loop exit block may have single value PHI nodes where the
    306   /// incoming value is 'Undef'. While vectorizing we only handled real values
    307   /// that were defined inside the loop. Here we fix the 'undef case'.
    308   /// See PR14725.
    309   void fixLCSSAPHIs();
    310 
    311   /// A helper function that computes the predicate of the block BB, assuming
    312   /// that the header block of the loop is set to True. It returns the *entry*
    313   /// mask for the block BB.
    314   VectorParts createBlockInMask(BasicBlock *BB);
    315   /// A helper function that computes the predicate of the edge between SRC
    316   /// and DST.
    317   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
    318 
    319   /// A helper function to vectorize a single BB within the innermost loop.
    320   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
    321 
    322   /// Vectorize a single PHINode in a block. This method handles the induction
    323   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
    324   /// arbitrary length vectors.
    325   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
    326                            unsigned UF, unsigned VF, PhiVector *PV);
    327 
    328   /// Insert the new loop to the loop hierarchy and pass manager
    329   /// and update the analysis passes.
    330   void updateAnalysis();
    331 
    332   /// This instruction is un-vectorizable. Implement it as a sequence
    333   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
    334   /// scalarized instruction behind an if block predicated on the control
    335   /// dependence of the instruction.
    336   virtual void scalarizeInstruction(Instruction *Instr,
    337                                     bool IfPredicateStore=false);
    338 
    339   /// Vectorize Load and Store instructions,
    340   virtual void vectorizeMemoryInstruction(Instruction *Instr);
    341 
    342   /// Create a broadcast instruction. This method generates a broadcast
    343   /// instruction (shuffle) for loop invariant values and for the induction
    344   /// value. If this is the induction variable then we extend it to N, N+1, ...
    345   /// this is needed because each iteration in the loop corresponds to a SIMD
    346   /// element.
    347   virtual Value *getBroadcastInstrs(Value *V);
    348 
    349   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
    350   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
    351   /// The sequence starts at StartIndex.
    352   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
    353 
    354   /// When we go over instructions in the basic block we rely on previous
    355   /// values within the current basic block or on loop invariant values.
    356   /// When we widen (vectorize) values we place them in the map. If the values
    357   /// are not within the map, they have to be loop invariant, so we simply
    358   /// broadcast them into a vector.
    359   VectorParts &getVectorValue(Value *V);
    360 
    361   /// Generate a shuffle sequence that will reverse the vector Vec.
    362   virtual Value *reverseVector(Value *Vec);
    363 
    364   /// This is a helper class that holds the vectorizer state. It maps scalar
    365   /// instructions to vector instructions. When the code is 'unrolled' then
    366   /// then a single scalar value is mapped to multiple vector parts. The parts
    367   /// are stored in the VectorPart type.
    368   struct ValueMap {
    369     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
    370     /// are mapped.
    371     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
    372 
    373     /// \return True if 'Key' is saved in the Value Map.
    374     bool has(Value *Key) const { return MapStorage.count(Key); }
    375 
    376     /// Initializes a new entry in the map. Sets all of the vector parts to the
    377     /// save value in 'Val'.
    378     /// \return A reference to a vector with splat values.
    379     VectorParts &splat(Value *Key, Value *Val) {
    380       VectorParts &Entry = MapStorage[Key];
    381       Entry.assign(UF, Val);
    382       return Entry;
    383     }
    384 
    385     ///\return A reference to the value that is stored at 'Key'.
    386     VectorParts &get(Value *Key) {
    387       VectorParts &Entry = MapStorage[Key];
    388       if (Entry.empty())
    389         Entry.resize(UF);
    390       assert(Entry.size() == UF);
    391       return Entry;
    392     }
    393 
    394   private:
    395     /// The unroll factor. Each entry in the map stores this number of vector
    396     /// elements.
    397     unsigned UF;
    398 
    399     /// Map storage. We use std::map and not DenseMap because insertions to a
    400     /// dense map invalidates its iterators.
    401     std::map<Value *, VectorParts> MapStorage;
    402   };
    403 
    404   /// The original loop.
    405   Loop *OrigLoop;
    406   /// Scev analysis to use.
    407   ScalarEvolution *SE;
    408   /// Loop Info.
    409   LoopInfo *LI;
    410   /// Dominator Tree.
    411   DominatorTree *DT;
    412   /// Data Layout.
    413   const DataLayout *DL;
    414   /// Target Library Info.
    415   const TargetLibraryInfo *TLI;
    416 
    417   /// The vectorization SIMD factor to use. Each vector will have this many
    418   /// vector elements.
    419   unsigned VF;
    420 
    421 protected:
    422   /// The vectorization unroll factor to use. Each scalar is vectorized to this
    423   /// many different vector instructions.
    424   unsigned UF;
    425 
    426   /// The builder that we use
    427   IRBuilder<> Builder;
    428 
    429   // --- Vectorization state ---
    430 
    431   /// The vector-loop preheader.
    432   BasicBlock *LoopVectorPreHeader;
    433   /// The scalar-loop preheader.
    434   BasicBlock *LoopScalarPreHeader;
    435   /// Middle Block between the vector and the scalar.
    436   BasicBlock *LoopMiddleBlock;
    437   ///The ExitBlock of the scalar loop.
    438   BasicBlock *LoopExitBlock;
    439   ///The vector loop body.
    440   SmallVector<BasicBlock *, 4> LoopVectorBody;
    441   ///The scalar loop body.
    442   BasicBlock *LoopScalarBody;
    443   /// A list of all bypass blocks. The first block is the entry of the loop.
    444   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
    445 
    446   /// The new Induction variable which was added to the new block.
    447   PHINode *Induction;
    448   /// The induction variable of the old basic block.
    449   PHINode *OldInduction;
    450   /// Holds the extended (to the widest induction type) start index.
    451   Value *ExtendedIdx;
    452   /// Maps scalars to widened vectors.
    453   ValueMap WidenMap;
    454   EdgeMaskCache MaskCache;
    455 
    456   LoopVectorizationLegality *Legal;
    457 };
    458 
    459 class InnerLoopUnroller : public InnerLoopVectorizer {
    460 public:
    461   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
    462                     DominatorTree *DT, const DataLayout *DL,
    463                     const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
    464     InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
    465 
    466 private:
    467   void scalarizeInstruction(Instruction *Instr,
    468                             bool IfPredicateStore = false) override;
    469   void vectorizeMemoryInstruction(Instruction *Instr) override;
    470   Value *getBroadcastInstrs(Value *V) override;
    471   Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
    472   Value *reverseVector(Value *Vec) override;
    473 };
    474 
    475 /// \brief Look for a meaningful debug location on the instruction or it's
    476 /// operands.
    477 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
    478   if (!I)
    479     return I;
    480 
    481   DebugLoc Empty;
    482   if (I->getDebugLoc() != Empty)
    483     return I;
    484 
    485   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
    486     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
    487       if (OpInst->getDebugLoc() != Empty)
    488         return OpInst;
    489   }
    490 
    491   return I;
    492 }
    493 
    494 /// \brief Set the debug location in the builder using the debug location in the
    495 /// instruction.
    496 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
    497   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
    498     B.SetCurrentDebugLocation(Inst->getDebugLoc());
    499   else
    500     B.SetCurrentDebugLocation(DebugLoc());
    501 }
    502 
    503 #ifndef NDEBUG
    504 /// \return string containing a file name and a line # for the given loop.
    505 static std::string getDebugLocString(const Loop *L) {
    506   std::string Result;
    507   if (L) {
    508     raw_string_ostream OS(Result);
    509     const DebugLoc LoopDbgLoc = L->getStartLoc();
    510     if (!LoopDbgLoc.isUnknown())
    511       LoopDbgLoc.print(L->getHeader()->getContext(), OS);
    512     else
    513       // Just print the module name.
    514       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
    515     OS.flush();
    516   }
    517   return Result;
    518 }
    519 #endif
    520 
    521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
    522 /// to what vectorization factor.
    523 /// This class does not look at the profitability of vectorization, only the
    524 /// legality. This class has two main kinds of checks:
    525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
    526 ///   will change the order of memory accesses in a way that will change the
    527 ///   correctness of the program.
    528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
    529 /// checks for a number of different conditions, such as the availability of a
    530 /// single induction variable, that all types are supported and vectorize-able,
    531 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
    532 /// This class is also used by InnerLoopVectorizer for identifying
    533 /// induction variable and the different reduction variables.
    534 class LoopVectorizationLegality {
    535 public:
    536   unsigned NumLoads;
    537   unsigned NumStores;
    538   unsigned NumPredStores;
    539 
    540   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
    541                             DominatorTree *DT, TargetLibraryInfo *TLI,
    542                             Function *F)
    543       : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
    544         DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr),
    545         WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
    546   }
    547 
    548   /// This enum represents the kinds of reductions that we support.
    549   enum ReductionKind {
    550     RK_NoReduction, ///< Not a reduction.
    551     RK_IntegerAdd,  ///< Sum of integers.
    552     RK_IntegerMult, ///< Product of integers.
    553     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
    554     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
    555     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
    556     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
    557     RK_FloatAdd,    ///< Sum of floats.
    558     RK_FloatMult,   ///< Product of floats.
    559     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
    560   };
    561 
    562   /// This enum represents the kinds of inductions that we support.
    563   enum InductionKind {
    564     IK_NoInduction,         ///< Not an induction variable.
    565     IK_IntInduction,        ///< Integer induction variable. Step = 1.
    566     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
    567     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
    568     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
    569   };
    570 
    571   // This enum represents the kind of minmax reduction.
    572   enum MinMaxReductionKind {
    573     MRK_Invalid,
    574     MRK_UIntMin,
    575     MRK_UIntMax,
    576     MRK_SIntMin,
    577     MRK_SIntMax,
    578     MRK_FloatMin,
    579     MRK_FloatMax
    580   };
    581 
    582   /// This struct holds information about reduction variables.
    583   struct ReductionDescriptor {
    584     ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
    585       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
    586 
    587     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
    588                         MinMaxReductionKind MK)
    589         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
    590 
    591     // The starting value of the reduction.
    592     // It does not have to be zero!
    593     TrackingVH<Value> StartValue;
    594     // The instruction who's value is used outside the loop.
    595     Instruction *LoopExitInstr;
    596     // The kind of the reduction.
    597     ReductionKind Kind;
    598     // If this a min/max reduction the kind of reduction.
    599     MinMaxReductionKind MinMaxKind;
    600   };
    601 
    602   /// This POD struct holds information about a potential reduction operation.
    603   struct ReductionInstDesc {
    604     ReductionInstDesc(bool IsRedux, Instruction *I) :
    605       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
    606 
    607     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
    608       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
    609 
    610     // Is this instruction a reduction candidate.
    611     bool IsReduction;
    612     // The last instruction in a min/max pattern (select of the select(icmp())
    613     // pattern), or the current reduction instruction otherwise.
    614     Instruction *PatternLastInst;
    615     // If this is a min/max pattern the comparison predicate.
    616     MinMaxReductionKind MinMaxKind;
    617   };
    618 
    619   /// This struct holds information about the memory runtime legality
    620   /// check that a group of pointers do not overlap.
    621   struct RuntimePointerCheck {
    622     RuntimePointerCheck() : Need(false) {}
    623 
    624     /// Reset the state of the pointer runtime information.
    625     void reset() {
    626       Need = false;
    627       Pointers.clear();
    628       Starts.clear();
    629       Ends.clear();
    630       IsWritePtr.clear();
    631       DependencySetId.clear();
    632     }
    633 
    634     /// Insert a pointer and calculate the start and end SCEVs.
    635     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
    636                 unsigned DepSetId, ValueToValueMap &Strides);
    637 
    638     /// This flag indicates if we need to add the runtime check.
    639     bool Need;
    640     /// Holds the pointers that we need to check.
    641     SmallVector<TrackingVH<Value>, 2> Pointers;
    642     /// Holds the pointer value at the beginning of the loop.
    643     SmallVector<const SCEV*, 2> Starts;
    644     /// Holds the pointer value at the end of the loop.
    645     SmallVector<const SCEV*, 2> Ends;
    646     /// Holds the information if this pointer is used for writing to memory.
    647     SmallVector<bool, 2> IsWritePtr;
    648     /// Holds the id of the set of pointers that could be dependent because of a
    649     /// shared underlying object.
    650     SmallVector<unsigned, 2> DependencySetId;
    651   };
    652 
    653   /// A struct for saving information about induction variables.
    654   struct InductionInfo {
    655     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
    656     InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
    657     /// Start value.
    658     TrackingVH<Value> StartValue;
    659     /// Induction kind.
    660     InductionKind IK;
    661   };
    662 
    663   /// ReductionList contains the reduction descriptors for all
    664   /// of the reductions that were found in the loop.
    665   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
    666 
    667   /// InductionList saves induction variables and maps them to the
    668   /// induction descriptor.
    669   typedef MapVector<PHINode*, InductionInfo> InductionList;
    670 
    671   /// Returns true if it is legal to vectorize this loop.
    672   /// This does not mean that it is profitable to vectorize this
    673   /// loop, only that it is legal to do so.
    674   bool canVectorize();
    675 
    676   /// Returns the Induction variable.
    677   PHINode *getInduction() { return Induction; }
    678 
    679   /// Returns the reduction variables found in the loop.
    680   ReductionList *getReductionVars() { return &Reductions; }
    681 
    682   /// Returns the induction variables found in the loop.
    683   InductionList *getInductionVars() { return &Inductions; }
    684 
    685   /// Returns the widest induction type.
    686   Type *getWidestInductionType() { return WidestIndTy; }
    687 
    688   /// Returns True if V is an induction variable in this loop.
    689   bool isInductionVariable(const Value *V);
    690 
    691   /// Return true if the block BB needs to be predicated in order for the loop
    692   /// to be vectorized.
    693   bool blockNeedsPredication(BasicBlock *BB);
    694 
    695   /// Check if this  pointer is consecutive when vectorizing. This happens
    696   /// when the last index of the GEP is the induction variable, or that the
    697   /// pointer itself is an induction variable.
    698   /// This check allows us to vectorize A[idx] into a wide load/store.
    699   /// Returns:
    700   /// 0 - Stride is unknown or non-consecutive.
    701   /// 1 - Address is consecutive.
    702   /// -1 - Address is consecutive, and decreasing.
    703   int isConsecutivePtr(Value *Ptr);
    704 
    705   /// Returns true if the value V is uniform within the loop.
    706   bool isUniform(Value *V);
    707 
    708   /// Returns true if this instruction will remain scalar after vectorization.
    709   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
    710 
    711   /// Returns the information that we collected about runtime memory check.
    712   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
    713 
    714   /// This function returns the identity element (or neutral element) for
    715   /// the operation K.
    716   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
    717 
    718   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    719 
    720   bool hasStride(Value *V) { return StrideSet.count(V); }
    721   bool mustCheckStrides() { return !StrideSet.empty(); }
    722   SmallPtrSet<Value *, 8>::iterator strides_begin() {
    723     return StrideSet.begin();
    724   }
    725   SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
    726 
    727 private:
    728   /// Check if a single basic block loop is vectorizable.
    729   /// At this point we know that this is a loop with a constant trip count
    730   /// and we only need to check individual instructions.
    731   bool canVectorizeInstrs();
    732 
    733   /// When we vectorize loops we may change the order in which
    734   /// we read and write from memory. This method checks if it is
    735   /// legal to vectorize the code, considering only memory constrains.
    736   /// Returns true if the loop is vectorizable
    737   bool canVectorizeMemory();
    738 
    739   /// Return true if we can vectorize this loop using the IF-conversion
    740   /// transformation.
    741   bool canVectorizeWithIfConvert();
    742 
    743   /// Collect the variables that need to stay uniform after vectorization.
    744   void collectLoopUniforms();
    745 
    746   /// Return true if all of the instructions in the block can be speculatively
    747   /// executed. \p SafePtrs is a list of addresses that are known to be legal
    748   /// and we know that we can read from them without segfault.
    749   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
    750 
    751   /// Returns True, if 'Phi' is the kind of reduction variable for type
    752   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
    753   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
    754   /// Returns a struct describing if the instruction 'I' can be a reduction
    755   /// variable of type 'Kind'. If the reduction is a min/max pattern of
    756   /// select(icmp()) this function advances the instruction pointer 'I' from the
    757   /// compare instruction to the select instruction and stores this pointer in
    758   /// 'PatternLastInst' member of the returned struct.
    759   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
    760                                      ReductionInstDesc &Desc);
    761   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
    762   /// pattern corresponding to a min(X, Y) or max(X, Y).
    763   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
    764                                                     ReductionInstDesc &Prev);
    765   /// Returns the induction kind of Phi. This function may return NoInduction
    766   /// if the PHI is not an induction variable.
    767   InductionKind isInductionVariable(PHINode *Phi);
    768 
    769   /// \brief Collect memory access with loop invariant strides.
    770   ///
    771   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
    772   /// invariant.
    773   void collectStridedAcccess(Value *LoadOrStoreInst);
    774 
    775   /// Report an analysis message to assist the user in diagnosing loops that are
    776   /// not vectorized.
    777   void emitAnalysis(Report &Message) {
    778     DebugLoc DL = TheLoop->getStartLoc();
    779     if (Instruction *I = Message.getInstr())
    780       DL = I->getDebugLoc();
    781     emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
    782                                    *TheFunction, DL, Message.str());
    783   }
    784 
    785   /// The loop that we evaluate.
    786   Loop *TheLoop;
    787   /// Scev analysis.
    788   ScalarEvolution *SE;
    789   /// DataLayout analysis.
    790   const DataLayout *DL;
    791   /// Dominators.
    792   DominatorTree *DT;
    793   /// Target Library Info.
    794   TargetLibraryInfo *TLI;
    795   /// Parent function
    796   Function *TheFunction;
    797 
    798   //  ---  vectorization state --- //
    799 
    800   /// Holds the integer induction variable. This is the counter of the
    801   /// loop.
    802   PHINode *Induction;
    803   /// Holds the reduction variables.
    804   ReductionList Reductions;
    805   /// Holds all of the induction variables that we found in the loop.
    806   /// Notice that inductions don't need to start at zero and that induction
    807   /// variables can be pointers.
    808   InductionList Inductions;
    809   /// Holds the widest induction type encountered.
    810   Type *WidestIndTy;
    811 
    812   /// Allowed outside users. This holds the reduction
    813   /// vars which can be accessed from outside the loop.
    814   SmallPtrSet<Value*, 4> AllowedExit;
    815   /// This set holds the variables which are known to be uniform after
    816   /// vectorization.
    817   SmallPtrSet<Instruction*, 4> Uniforms;
    818   /// We need to check that all of the pointers in this list are disjoint
    819   /// at runtime.
    820   RuntimePointerCheck PtrRtCheck;
    821   /// Can we assume the absence of NaNs.
    822   bool HasFunNoNaNAttr;
    823 
    824   unsigned MaxSafeDepDistBytes;
    825 
    826   ValueToValueMap Strides;
    827   SmallPtrSet<Value *, 8> StrideSet;
    828 };
    829 
    830 /// LoopVectorizationCostModel - estimates the expected speedups due to
    831 /// vectorization.
    832 /// In many cases vectorization is not profitable. This can happen because of
    833 /// a number of reasons. In this class we mainly attempt to predict the
    834 /// expected speedup/slowdowns due to the supported instruction set. We use the
    835 /// TargetTransformInfo to query the different backends for the cost of
    836 /// different operations.
    837 class LoopVectorizationCostModel {
    838 public:
    839   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
    840                              LoopVectorizationLegality *Legal,
    841                              const TargetTransformInfo &TTI,
    842                              const DataLayout *DL, const TargetLibraryInfo *TLI)
    843       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
    844 
    845   /// Information about vectorization costs
    846   struct VectorizationFactor {
    847     unsigned Width; // Vector width with best cost
    848     unsigned Cost; // Cost of the loop with that width
    849   };
    850   /// \return The most profitable vectorization factor and the cost of that VF.
    851   /// This method checks every power of two up to VF. If UserVF is not ZERO
    852   /// then this vectorization factor will be selected if vectorization is
    853   /// possible.
    854   VectorizationFactor selectVectorizationFactor(bool OptForSize,
    855                                                 unsigned UserVF,
    856                                                 bool ForceVectorization);
    857 
    858   /// \return The size (in bits) of the widest type in the code that
    859   /// needs to be vectorized. We ignore values that remain scalar such as
    860   /// 64 bit loop indices.
    861   unsigned getWidestType();
    862 
    863   /// \return The most profitable unroll factor.
    864   /// If UserUF is non-zero then this method finds the best unroll-factor
    865   /// based on register pressure and other parameters.
    866   /// VF and LoopCost are the selected vectorization factor and the cost of the
    867   /// selected VF.
    868   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
    869                               unsigned LoopCost);
    870 
    871   /// \brief A struct that represents some properties of the register usage
    872   /// of a loop.
    873   struct RegisterUsage {
    874     /// Holds the number of loop invariant values that are used in the loop.
    875     unsigned LoopInvariantRegs;
    876     /// Holds the maximum number of concurrent live intervals in the loop.
    877     unsigned MaxLocalUsers;
    878     /// Holds the number of instructions in the loop.
    879     unsigned NumInstructions;
    880   };
    881 
    882   /// \return  information about the register usage of the loop.
    883   RegisterUsage calculateRegisterUsage();
    884 
    885 private:
    886   /// Returns the expected execution cost. The unit of the cost does
    887   /// not matter because we use the 'cost' units to compare different
    888   /// vector widths. The cost that is returned is *not* normalized by
    889   /// the factor width.
    890   unsigned expectedCost(unsigned VF);
    891 
    892   /// Returns the execution time cost of an instruction for a given vector
    893   /// width. Vector width of one means scalar.
    894   unsigned getInstructionCost(Instruction *I, unsigned VF);
    895 
    896   /// A helper function for converting Scalar types to vector types.
    897   /// If the incoming type is void, we return void. If the VF is 1, we return
    898   /// the scalar type.
    899   static Type* ToVectorTy(Type *Scalar, unsigned VF);
    900 
    901   /// Returns whether the instruction is a load or store and will be a emitted
    902   /// as a vector operation.
    903   bool isConsecutiveLoadOrStore(Instruction *I);
    904 
    905   /// The loop that we evaluate.
    906   Loop *TheLoop;
    907   /// Scev analysis.
    908   ScalarEvolution *SE;
    909   /// Loop Info analysis.
    910   LoopInfo *LI;
    911   /// Vectorization legality.
    912   LoopVectorizationLegality *Legal;
    913   /// Vector target information.
    914   const TargetTransformInfo &TTI;
    915   /// Target data layout information.
    916   const DataLayout *DL;
    917   /// Target Library Info.
    918   const TargetLibraryInfo *TLI;
    919 };
    920 
    921 /// Utility class for getting and setting loop vectorizer hints in the form
    922 /// of loop metadata.
    923 class LoopVectorizeHints {
    924 public:
    925   enum ForceKind {
    926     FK_Undefined = -1, ///< Not selected.
    927     FK_Disabled = 0,   ///< Forcing disabled.
    928     FK_Enabled = 1,    ///< Forcing enabled.
    929   };
    930 
    931   LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
    932       : Width(VectorizationFactor),
    933         Unroll(DisableUnrolling),
    934         Force(FK_Undefined),
    935         LoopID(L->getLoopID()) {
    936     getHints(L);
    937     // force-vector-unroll overrides DisableUnrolling.
    938     if (VectorizationUnroll.getNumOccurrences() > 0)
    939       Unroll = VectorizationUnroll;
    940 
    941     DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
    942           << "LV: Unrolling disabled by the pass manager\n");
    943   }
    944 
    945   /// Return the loop vectorizer metadata prefix.
    946   static StringRef Prefix() { return "llvm.loop.vectorize."; }
    947 
    948   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
    949     SmallVector<Value*, 2> Vals;
    950     Vals.push_back(MDString::get(Context, Name));
    951     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
    952     return MDNode::get(Context, Vals);
    953   }
    954 
    955   /// Mark the loop L as already vectorized by setting the width to 1.
    956   void setAlreadyVectorized(Loop *L) {
    957     LLVMContext &Context = L->getHeader()->getContext();
    958 
    959     Width = 1;
    960 
    961     // Create a new loop id with one more operand for the already_vectorized
    962     // hint. If the loop already has a loop id then copy the existing operands.
    963     SmallVector<Value*, 4> Vals(1);
    964     if (LoopID)
    965       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
    966         Vals.push_back(LoopID->getOperand(i));
    967 
    968     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
    969     Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
    970 
    971     MDNode *NewLoopID = MDNode::get(Context, Vals);
    972     // Set operand 0 to refer to the loop id itself.
    973     NewLoopID->replaceOperandWith(0, NewLoopID);
    974 
    975     L->setLoopID(NewLoopID);
    976     if (LoopID)
    977       LoopID->replaceAllUsesWith(NewLoopID);
    978 
    979     LoopID = NewLoopID;
    980   }
    981 
    982   std::string emitRemark() const {
    983     Report R;
    984     R << "vectorization ";
    985     switch (Force) {
    986     case LoopVectorizeHints::FK_Disabled:
    987       R << "is explicitly disabled";
    988       break;
    989     case LoopVectorizeHints::FK_Enabled:
    990       R << "is explicitly enabled";
    991       if (Width != 0 && Unroll != 0)
    992         R << " with width " << Width << " and interleave count " << Unroll;
    993       else if (Width != 0)
    994         R << " with width " << Width;
    995       else if (Unroll != 0)
    996         R << " with interleave count " << Unroll;
    997       break;
    998     case LoopVectorizeHints::FK_Undefined:
    999       R << "was not specified";
   1000       break;
   1001     }
   1002     return R.str();
   1003   }
   1004 
   1005   unsigned getWidth() const { return Width; }
   1006   unsigned getUnroll() const { return Unroll; }
   1007   enum ForceKind getForce() const { return Force; }
   1008   MDNode *getLoopID() const { return LoopID; }
   1009 
   1010 private:
   1011   /// Find hints specified in the loop metadata.
   1012   void getHints(const Loop *L) {
   1013     if (!LoopID)
   1014       return;
   1015 
   1016     // First operand should refer to the loop id itself.
   1017     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
   1018     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
   1019 
   1020     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
   1021       const MDString *S = nullptr;
   1022       SmallVector<Value*, 4> Args;
   1023 
   1024       // The expected hint is either a MDString or a MDNode with the first
   1025       // operand a MDString.
   1026       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
   1027         if (!MD || MD->getNumOperands() == 0)
   1028           continue;
   1029         S = dyn_cast<MDString>(MD->getOperand(0));
   1030         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
   1031           Args.push_back(MD->getOperand(i));
   1032       } else {
   1033         S = dyn_cast<MDString>(LoopID->getOperand(i));
   1034         assert(Args.size() == 0 && "too many arguments for MDString");
   1035       }
   1036 
   1037       if (!S)
   1038         continue;
   1039 
   1040       // Check if the hint starts with the vectorizer prefix.
   1041       StringRef Hint = S->getString();
   1042       if (!Hint.startswith(Prefix()))
   1043         continue;
   1044       // Remove the prefix.
   1045       Hint = Hint.substr(Prefix().size(), StringRef::npos);
   1046 
   1047       if (Args.size() == 1)
   1048         getHint(Hint, Args[0]);
   1049     }
   1050   }
   1051 
   1052   // Check string hint with one operand.
   1053   void getHint(StringRef Hint, Value *Arg) {
   1054     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
   1055     if (!C) return;
   1056     unsigned Val = C->getZExtValue();
   1057 
   1058     if (Hint == "width") {
   1059       if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
   1060         Width = Val;
   1061       else
   1062         DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
   1063     } else if (Hint == "unroll") {
   1064       if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
   1065         Unroll = Val;
   1066       else
   1067         DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
   1068     } else if (Hint == "enable") {
   1069       if (C->getBitWidth() == 1)
   1070         Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
   1071                          : LoopVectorizeHints::FK_Disabled;
   1072       else
   1073         DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
   1074     } else {
   1075       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
   1076     }
   1077   }
   1078 
   1079   /// Vectorization width.
   1080   unsigned Width;
   1081   /// Vectorization unroll factor.
   1082   unsigned Unroll;
   1083   /// Vectorization forced
   1084   enum ForceKind Force;
   1085 
   1086   MDNode *LoopID;
   1087 };
   1088 
   1089 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
   1090   if (L.empty())
   1091     return V.push_back(&L);
   1092 
   1093   for (Loop *InnerL : L)
   1094     addInnerLoop(*InnerL, V);
   1095 }
   1096 
   1097 /// The LoopVectorize Pass.
   1098 struct LoopVectorize : public FunctionPass {
   1099   /// Pass identification, replacement for typeid
   1100   static char ID;
   1101 
   1102   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
   1103     : FunctionPass(ID),
   1104       DisableUnrolling(NoUnrolling),
   1105       AlwaysVectorize(AlwaysVectorize) {
   1106     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
   1107   }
   1108 
   1109   ScalarEvolution *SE;
   1110   const DataLayout *DL;
   1111   LoopInfo *LI;
   1112   TargetTransformInfo *TTI;
   1113   DominatorTree *DT;
   1114   BlockFrequencyInfo *BFI;
   1115   TargetLibraryInfo *TLI;
   1116   bool DisableUnrolling;
   1117   bool AlwaysVectorize;
   1118 
   1119   BlockFrequency ColdEntryFreq;
   1120 
   1121   bool runOnFunction(Function &F) override {
   1122     SE = &getAnalysis<ScalarEvolution>();
   1123     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1124     DL = DLP ? &DLP->getDataLayout() : nullptr;
   1125     LI = &getAnalysis<LoopInfo>();
   1126     TTI = &getAnalysis<TargetTransformInfo>();
   1127     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1128     BFI = &getAnalysis<BlockFrequencyInfo>();
   1129     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
   1130 
   1131     // Compute some weights outside of the loop over the loops. Compute this
   1132     // using a BranchProbability to re-use its scaling math.
   1133     const BranchProbability ColdProb(1, 5); // 20%
   1134     ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
   1135 
   1136     // If the target claims to have no vector registers don't attempt
   1137     // vectorization.
   1138     if (!TTI->getNumberOfRegisters(true))
   1139       return false;
   1140 
   1141     if (!DL) {
   1142       DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
   1143                    << ": Missing data layout\n");
   1144       return false;
   1145     }
   1146 
   1147     // Build up a worklist of inner-loops to vectorize. This is necessary as
   1148     // the act of vectorizing or partially unrolling a loop creates new loops
   1149     // and can invalidate iterators across the loops.
   1150     SmallVector<Loop *, 8> Worklist;
   1151 
   1152     for (Loop *L : *LI)
   1153       addInnerLoop(*L, Worklist);
   1154 
   1155     LoopsAnalyzed += Worklist.size();
   1156 
   1157     // Now walk the identified inner loops.
   1158     bool Changed = false;
   1159     while (!Worklist.empty())
   1160       Changed |= processLoop(Worklist.pop_back_val());
   1161 
   1162     // Process each loop nest in the function.
   1163     return Changed;
   1164   }
   1165 
   1166   bool processLoop(Loop *L) {
   1167     assert(L->empty() && "Only process inner loops.");
   1168 
   1169 #ifndef NDEBUG
   1170     const std::string DebugLocStr = getDebugLocString(L);
   1171 #endif /* NDEBUG */
   1172 
   1173     DEBUG(dbgs() << "\nLV: Checking a loop in \""
   1174                  << L->getHeader()->getParent()->getName() << "\" from "
   1175                  << DebugLocStr << "\n");
   1176 
   1177     LoopVectorizeHints Hints(L, DisableUnrolling);
   1178 
   1179     DEBUG(dbgs() << "LV: Loop hints:"
   1180                  << " force="
   1181                  << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
   1182                          ? "disabled"
   1183                          : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
   1184                                 ? "enabled"
   1185                                 : "?")) << " width=" << Hints.getWidth()
   1186                  << " unroll=" << Hints.getUnroll() << "\n");
   1187 
   1188     // Function containing loop
   1189     Function *F = L->getHeader()->getParent();
   1190 
   1191     // Looking at the diagnostic output is the only way to determine if a loop
   1192     // was vectorized (other than looking at the IR or machine code), so it
   1193     // is important to generate an optimization remark for each loop. Most of
   1194     // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
   1195     // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
   1196     // less verbose reporting vectorized loops and unvectorized loops that may
   1197     // benefit from vectorization, respectively.
   1198 
   1199     if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
   1200       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
   1201       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
   1202                                      L->getStartLoc(), Hints.emitRemark());
   1203       return false;
   1204     }
   1205 
   1206     if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
   1207       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
   1208       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
   1209                                      L->getStartLoc(), Hints.emitRemark());
   1210       return false;
   1211     }
   1212 
   1213     if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
   1214       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
   1215       emitOptimizationRemarkAnalysis(
   1216           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1217           "loop not vectorized: vector width and interleave count are "
   1218           "explicitly set to 1");
   1219       return false;
   1220     }
   1221 
   1222     // Check the loop for a trip count threshold:
   1223     // do not vectorize loops with a tiny trip count.
   1224     BasicBlock *Latch = L->getLoopLatch();
   1225     const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
   1226     if (TC > 0u && TC < TinyTripCountVectorThreshold) {
   1227       DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
   1228                    << "This loop is not worth vectorizing.");
   1229       if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
   1230         DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
   1231       else {
   1232         DEBUG(dbgs() << "\n");
   1233         emitOptimizationRemarkAnalysis(
   1234             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1235             "vectorization is not beneficial and is not explicitly forced");
   1236         return false;
   1237       }
   1238     }
   1239 
   1240     // Check if it is legal to vectorize the loop.
   1241     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F);
   1242     if (!LVL.canVectorize()) {
   1243       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
   1244       emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
   1245                                    L->getStartLoc(), Hints.emitRemark());
   1246       return false;
   1247     }
   1248 
   1249     // Use the cost model.
   1250     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
   1251 
   1252     // Check the function attributes to find out if this function should be
   1253     // optimized for size.
   1254     bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
   1255                       F->hasFnAttribute(Attribute::OptimizeForSize);
   1256 
   1257     // Compute the weighted frequency of this loop being executed and see if it
   1258     // is less than 20% of the function entry baseline frequency. Note that we
   1259     // always have a canonical loop here because we think we *can* vectoriez.
   1260     // FIXME: This is hidden behind a flag due to pervasive problems with
   1261     // exactly what block frequency models.
   1262     if (LoopVectorizeWithBlockFrequency) {
   1263       BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
   1264       if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
   1265           LoopEntryFreq < ColdEntryFreq)
   1266         OptForSize = true;
   1267     }
   1268 
   1269     // Check the function attributes to see if implicit floats are allowed.a
   1270     // FIXME: This check doesn't seem possibly correct -- what if the loop is
   1271     // an integer loop and the vector instructions selected are purely integer
   1272     // vector instructions?
   1273     if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   1274       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
   1275             "attribute is used.\n");
   1276       emitOptimizationRemarkAnalysis(
   1277           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1278           "loop not vectorized due to NoImplicitFloat attribute");
   1279       emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
   1280                                    L->getStartLoc(), Hints.emitRemark());
   1281       return false;
   1282     }
   1283 
   1284     // Select the optimal vectorization factor.
   1285     const LoopVectorizationCostModel::VectorizationFactor VF =
   1286         CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
   1287                                      Hints.getForce() ==
   1288                                          LoopVectorizeHints::FK_Enabled);
   1289 
   1290     // Select the unroll factor.
   1291     const unsigned UF =
   1292         CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
   1293 
   1294     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
   1295                  << DebugLocStr << '\n');
   1296     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
   1297 
   1298     if (VF.Width == 1) {
   1299       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
   1300 
   1301       if (UF == 1) {
   1302         emitOptimizationRemarkAnalysis(
   1303             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1304             "not beneficial to vectorize and user disabled interleaving");
   1305         return false;
   1306       }
   1307       DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
   1308 
   1309       // Report the unrolling decision.
   1310       emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1311                              Twine("unrolled with interleaving factor " +
   1312                                    Twine(UF) +
   1313                                    " (vectorization not beneficial)"));
   1314 
   1315       // We decided not to vectorize, but we may want to unroll.
   1316 
   1317       InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
   1318       Unroller.vectorize(&LVL);
   1319     } else {
   1320       // If we decided that it is *legal* to vectorize the loop then do it.
   1321       InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
   1322       LB.vectorize(&LVL);
   1323       ++LoopsVectorized;
   1324 
   1325       // Report the vectorization decision.
   1326       emitOptimizationRemark(
   1327           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1328           Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
   1329               ", unrolling interleave factor: " + Twine(UF) + ")");
   1330     }
   1331 
   1332     // Mark the loop as already vectorized to avoid vectorizing again.
   1333     Hints.setAlreadyVectorized(L);
   1334 
   1335     DEBUG(verifyFunction(*L->getHeader()->getParent()));
   1336     return true;
   1337   }
   1338 
   1339   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1340     AU.addRequiredID(LoopSimplifyID);
   1341     AU.addRequiredID(LCSSAID);
   1342     AU.addRequired<BlockFrequencyInfo>();
   1343     AU.addRequired<DominatorTreeWrapperPass>();
   1344     AU.addRequired<LoopInfo>();
   1345     AU.addRequired<ScalarEvolution>();
   1346     AU.addRequired<TargetTransformInfo>();
   1347     AU.addPreserved<LoopInfo>();
   1348     AU.addPreserved<DominatorTreeWrapperPass>();
   1349   }
   1350 
   1351 };
   1352 
   1353 } // end anonymous namespace
   1354 
   1355 //===----------------------------------------------------------------------===//
   1356 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
   1357 // LoopVectorizationCostModel.
   1358 //===----------------------------------------------------------------------===//
   1359 
   1360 static Value *stripIntegerCast(Value *V) {
   1361   if (CastInst *CI = dyn_cast<CastInst>(V))
   1362     if (CI->getOperand(0)->getType()->isIntegerTy())
   1363       return CI->getOperand(0);
   1364   return V;
   1365 }
   1366 
   1367 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
   1368 ///
   1369 /// If \p OrigPtr is not null, use it to look up the stride value instead of
   1370 /// \p Ptr.
   1371 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
   1372                                              ValueToValueMap &PtrToStride,
   1373                                              Value *Ptr, Value *OrigPtr = nullptr) {
   1374 
   1375   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
   1376 
   1377   // If there is an entry in the map return the SCEV of the pointer with the
   1378   // symbolic stride replaced by one.
   1379   ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
   1380   if (SI != PtrToStride.end()) {
   1381     Value *StrideVal = SI->second;
   1382 
   1383     // Strip casts.
   1384     StrideVal = stripIntegerCast(StrideVal);
   1385 
   1386     // Replace symbolic stride by one.
   1387     Value *One = ConstantInt::get(StrideVal->getType(), 1);
   1388     ValueToValueMap RewriteMap;
   1389     RewriteMap[StrideVal] = One;
   1390 
   1391     const SCEV *ByOne =
   1392         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
   1393     DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
   1394                  << "\n");
   1395     return ByOne;
   1396   }
   1397 
   1398   // Otherwise, just return the SCEV of the original pointer.
   1399   return SE->getSCEV(Ptr);
   1400 }
   1401 
   1402 void LoopVectorizationLegality::RuntimePointerCheck::insert(
   1403     ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
   1404     ValueToValueMap &Strides) {
   1405   // Get the stride replaced scev.
   1406   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
   1407   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
   1408   assert(AR && "Invalid addrec expression");
   1409   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
   1410   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
   1411   Pointers.push_back(Ptr);
   1412   Starts.push_back(AR->getStart());
   1413   Ends.push_back(ScEnd);
   1414   IsWritePtr.push_back(WritePtr);
   1415   DependencySetId.push_back(DepSetId);
   1416 }
   1417 
   1418 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
   1419   // We need to place the broadcast of invariant variables outside the loop.
   1420   Instruction *Instr = dyn_cast<Instruction>(V);
   1421   bool NewInstr =
   1422       (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
   1423                           Instr->getParent()) != LoopVectorBody.end());
   1424   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
   1425 
   1426   // Place the code for broadcasting invariant variables in the new preheader.
   1427   IRBuilder<>::InsertPointGuard Guard(Builder);
   1428   if (Invariant)
   1429     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
   1430 
   1431   // Broadcast the scalar into all locations in the vector.
   1432   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
   1433 
   1434   return Shuf;
   1435 }
   1436 
   1437 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
   1438                                                  bool Negate) {
   1439   assert(Val->getType()->isVectorTy() && "Must be a vector");
   1440   assert(Val->getType()->getScalarType()->isIntegerTy() &&
   1441          "Elem must be an integer");
   1442   // Create the types.
   1443   Type *ITy = Val->getType()->getScalarType();
   1444   VectorType *Ty = cast<VectorType>(Val->getType());
   1445   int VLen = Ty->getNumElements();
   1446   SmallVector<Constant*, 8> Indices;
   1447 
   1448   // Create a vector of consecutive numbers from zero to VF.
   1449   for (int i = 0; i < VLen; ++i) {
   1450     int64_t Idx = Negate ? (-i) : i;
   1451     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
   1452   }
   1453 
   1454   // Add the consecutive indices to the vector value.
   1455   Constant *Cv = ConstantVector::get(Indices);
   1456   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
   1457   return Builder.CreateAdd(Val, Cv, "induction");
   1458 }
   1459 
   1460 /// \brief Find the operand of the GEP that should be checked for consecutive
   1461 /// stores. This ignores trailing indices that have no effect on the final
   1462 /// pointer.
   1463 static unsigned getGEPInductionOperand(const DataLayout *DL,
   1464                                        const GetElementPtrInst *Gep) {
   1465   unsigned LastOperand = Gep->getNumOperands() - 1;
   1466   unsigned GEPAllocSize = DL->getTypeAllocSize(
   1467       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
   1468 
   1469   // Walk backwards and try to peel off zeros.
   1470   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
   1471     // Find the type we're currently indexing into.
   1472     gep_type_iterator GEPTI = gep_type_begin(Gep);
   1473     std::advance(GEPTI, LastOperand - 1);
   1474 
   1475     // If it's a type with the same allocation size as the result of the GEP we
   1476     // can peel off the zero index.
   1477     if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
   1478       break;
   1479     --LastOperand;
   1480   }
   1481 
   1482   return LastOperand;
   1483 }
   1484 
   1485 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
   1486   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
   1487   // Make sure that the pointer does not point to structs.
   1488   if (Ptr->getType()->getPointerElementType()->isAggregateType())
   1489     return 0;
   1490 
   1491   // If this value is a pointer induction variable we know it is consecutive.
   1492   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
   1493   if (Phi && Inductions.count(Phi)) {
   1494     InductionInfo II = Inductions[Phi];
   1495     if (IK_PtrInduction == II.IK)
   1496       return 1;
   1497     else if (IK_ReversePtrInduction == II.IK)
   1498       return -1;
   1499   }
   1500 
   1501   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
   1502   if (!Gep)
   1503     return 0;
   1504 
   1505   unsigned NumOperands = Gep->getNumOperands();
   1506   Value *GpPtr = Gep->getPointerOperand();
   1507   // If this GEP value is a consecutive pointer induction variable and all of
   1508   // the indices are constant then we know it is consecutive. We can
   1509   Phi = dyn_cast<PHINode>(GpPtr);
   1510   if (Phi && Inductions.count(Phi)) {
   1511 
   1512     // Make sure that the pointer does not point to structs.
   1513     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
   1514     if (GepPtrType->getElementType()->isAggregateType())
   1515       return 0;
   1516 
   1517     // Make sure that all of the index operands are loop invariant.
   1518     for (unsigned i = 1; i < NumOperands; ++i)
   1519       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1520         return 0;
   1521 
   1522     InductionInfo II = Inductions[Phi];
   1523     if (IK_PtrInduction == II.IK)
   1524       return 1;
   1525     else if (IK_ReversePtrInduction == II.IK)
   1526       return -1;
   1527   }
   1528 
   1529   unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
   1530 
   1531   // Check that all of the gep indices are uniform except for our induction
   1532   // operand.
   1533   for (unsigned i = 0; i != NumOperands; ++i)
   1534     if (i != InductionOperand &&
   1535         !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1536       return 0;
   1537 
   1538   // We can emit wide load/stores only if the last non-zero index is the
   1539   // induction variable.
   1540   const SCEV *Last = nullptr;
   1541   if (!Strides.count(Gep))
   1542     Last = SE->getSCEV(Gep->getOperand(InductionOperand));
   1543   else {
   1544     // Because of the multiplication by a stride we can have a s/zext cast.
   1545     // We are going to replace this stride by 1 so the cast is safe to ignore.
   1546     //
   1547     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
   1548     //  %0 = trunc i64 %indvars.iv to i32
   1549     //  %mul = mul i32 %0, %Stride1
   1550     //  %idxprom = zext i32 %mul to i64  << Safe cast.
   1551     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
   1552     //
   1553     Last = replaceSymbolicStrideSCEV(SE, Strides,
   1554                                      Gep->getOperand(InductionOperand), Gep);
   1555     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
   1556       Last =
   1557           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
   1558               ? C->getOperand()
   1559               : Last;
   1560   }
   1561   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
   1562     const SCEV *Step = AR->getStepRecurrence(*SE);
   1563 
   1564     // The memory is consecutive because the last index is consecutive
   1565     // and all other indices are loop invariant.
   1566     if (Step->isOne())
   1567       return 1;
   1568     if (Step->isAllOnesValue())
   1569       return -1;
   1570   }
   1571 
   1572   return 0;
   1573 }
   1574 
   1575 bool LoopVectorizationLegality::isUniform(Value *V) {
   1576   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
   1577 }
   1578 
   1579 InnerLoopVectorizer::VectorParts&
   1580 InnerLoopVectorizer::getVectorValue(Value *V) {
   1581   assert(V != Induction && "The new induction variable should not be used.");
   1582   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
   1583 
   1584   // If we have a stride that is replaced by one, do it here.
   1585   if (Legal->hasStride(V))
   1586     V = ConstantInt::get(V->getType(), 1);
   1587 
   1588   // If we have this scalar in the map, return it.
   1589   if (WidenMap.has(V))
   1590     return WidenMap.get(V);
   1591 
   1592   // If this scalar is unknown, assume that it is a constant or that it is
   1593   // loop invariant. Broadcast V and save the value for future uses.
   1594   Value *B = getBroadcastInstrs(V);
   1595   return WidenMap.splat(V, B);
   1596 }
   1597 
   1598 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
   1599   assert(Vec->getType()->isVectorTy() && "Invalid type");
   1600   SmallVector<Constant*, 8> ShuffleMask;
   1601   for (unsigned i = 0; i < VF; ++i)
   1602     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
   1603 
   1604   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
   1605                                      ConstantVector::get(ShuffleMask),
   1606                                      "reverse");
   1607 }
   1608 
   1609 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
   1610   // Attempt to issue a wide load.
   1611   LoadInst *LI = dyn_cast<LoadInst>(Instr);
   1612   StoreInst *SI = dyn_cast<StoreInst>(Instr);
   1613 
   1614   assert((LI || SI) && "Invalid Load/Store instruction");
   1615 
   1616   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
   1617   Type *DataTy = VectorType::get(ScalarDataTy, VF);
   1618   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
   1619   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
   1620   // An alignment of 0 means target abi alignment. We need to use the scalar's
   1621   // target abi alignment in such a case.
   1622   if (!Alignment)
   1623     Alignment = DL->getABITypeAlignment(ScalarDataTy);
   1624   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
   1625   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
   1626   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
   1627 
   1628   if (SI && Legal->blockNeedsPredication(SI->getParent()))
   1629     return scalarizeInstruction(Instr, true);
   1630 
   1631   if (ScalarAllocatedSize != VectorElementSize)
   1632     return scalarizeInstruction(Instr);
   1633 
   1634   // If the pointer is loop invariant or if it is non-consecutive,
   1635   // scalarize the load.
   1636   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   1637   bool Reverse = ConsecutiveStride < 0;
   1638   bool UniformLoad = LI && Legal->isUniform(Ptr);
   1639   if (!ConsecutiveStride || UniformLoad)
   1640     return scalarizeInstruction(Instr);
   1641 
   1642   Constant *Zero = Builder.getInt32(0);
   1643   VectorParts &Entry = WidenMap.get(Instr);
   1644 
   1645   // Handle consecutive loads/stores.
   1646   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   1647   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
   1648     setDebugLocFromInst(Builder, Gep);
   1649     Value *PtrOperand = Gep->getPointerOperand();
   1650     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
   1651     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
   1652 
   1653     // Create the new GEP with the new induction variable.
   1654     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1655     Gep2->setOperand(0, FirstBasePtr);
   1656     Gep2->setName("gep.indvar.base");
   1657     Ptr = Builder.Insert(Gep2);
   1658   } else if (Gep) {
   1659     setDebugLocFromInst(Builder, Gep);
   1660     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
   1661                                OrigLoop) && "Base ptr must be invariant");
   1662 
   1663     // The last index does not have to be the induction. It can be
   1664     // consecutive and be a function of the index. For example A[I+1];
   1665     unsigned NumOperands = Gep->getNumOperands();
   1666     unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
   1667     // Create the new GEP with the new induction variable.
   1668     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1669 
   1670     for (unsigned i = 0; i < NumOperands; ++i) {
   1671       Value *GepOperand = Gep->getOperand(i);
   1672       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
   1673 
   1674       // Update last index or loop invariant instruction anchored in loop.
   1675       if (i == InductionOperand ||
   1676           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
   1677         assert((i == InductionOperand ||
   1678                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
   1679                "Must be last index or loop invariant");
   1680 
   1681         VectorParts &GEPParts = getVectorValue(GepOperand);
   1682         Value *Index = GEPParts[0];
   1683         Index = Builder.CreateExtractElement(Index, Zero);
   1684         Gep2->setOperand(i, Index);
   1685         Gep2->setName("gep.indvar.idx");
   1686       }
   1687     }
   1688     Ptr = Builder.Insert(Gep2);
   1689   } else {
   1690     // Use the induction element ptr.
   1691     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
   1692     setDebugLocFromInst(Builder, Ptr);
   1693     VectorParts &PtrVal = getVectorValue(Ptr);
   1694     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
   1695   }
   1696 
   1697   // Handle Stores:
   1698   if (SI) {
   1699     assert(!Legal->isUniform(SI->getPointerOperand()) &&
   1700            "We do not allow storing to uniform addresses");
   1701     setDebugLocFromInst(Builder, SI);
   1702     // We don't want to update the value in the map as it might be used in
   1703     // another expression. So don't use a reference type for "StoredVal".
   1704     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
   1705 
   1706     for (unsigned Part = 0; Part < UF; ++Part) {
   1707       // Calculate the pointer for the specific unroll-part.
   1708       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
   1709 
   1710       if (Reverse) {
   1711         // If we store to reverse consecutive memory locations then we need
   1712         // to reverse the order of elements in the stored value.
   1713         StoredVal[Part] = reverseVector(StoredVal[Part]);
   1714         // If the address is consecutive but reversed, then the
   1715         // wide store needs to start at the last vector element.
   1716         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
   1717         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
   1718       }
   1719 
   1720       Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1721                                             DataTy->getPointerTo(AddressSpace));
   1722       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
   1723     }
   1724     return;
   1725   }
   1726 
   1727   // Handle loads.
   1728   assert(LI && "Must have a load instruction");
   1729   setDebugLocFromInst(Builder, LI);
   1730   for (unsigned Part = 0; Part < UF; ++Part) {
   1731     // Calculate the pointer for the specific unroll-part.
   1732     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
   1733 
   1734     if (Reverse) {
   1735       // If the address is consecutive but reversed, then the
   1736       // wide store needs to start at the last vector element.
   1737       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
   1738       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
   1739     }
   1740 
   1741     Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1742                                           DataTy->getPointerTo(AddressSpace));
   1743     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
   1744     cast<LoadInst>(LI)->setAlignment(Alignment);
   1745     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
   1746   }
   1747 }
   1748 
   1749 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
   1750   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
   1751   // Holds vector parameters or scalars, in case of uniform vals.
   1752   SmallVector<VectorParts, 4> Params;
   1753 
   1754   setDebugLocFromInst(Builder, Instr);
   1755 
   1756   // Find all of the vectorized parameters.
   1757   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1758     Value *SrcOp = Instr->getOperand(op);
   1759 
   1760     // If we are accessing the old induction variable, use the new one.
   1761     if (SrcOp == OldInduction) {
   1762       Params.push_back(getVectorValue(SrcOp));
   1763       continue;
   1764     }
   1765 
   1766     // Try using previously calculated values.
   1767     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
   1768 
   1769     // If the src is an instruction that appeared earlier in the basic block
   1770     // then it should already be vectorized.
   1771     if (SrcInst && OrigLoop->contains(SrcInst)) {
   1772       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
   1773       // The parameter is a vector value from earlier.
   1774       Params.push_back(WidenMap.get(SrcInst));
   1775     } else {
   1776       // The parameter is a scalar from outside the loop. Maybe even a constant.
   1777       VectorParts Scalars;
   1778       Scalars.append(UF, SrcOp);
   1779       Params.push_back(Scalars);
   1780     }
   1781   }
   1782 
   1783   assert(Params.size() == Instr->getNumOperands() &&
   1784          "Invalid number of operands");
   1785 
   1786   // Does this instruction return a value ?
   1787   bool IsVoidRetTy = Instr->getType()->isVoidTy();
   1788 
   1789   Value *UndefVec = IsVoidRetTy ? nullptr :
   1790     UndefValue::get(VectorType::get(Instr->getType(), VF));
   1791   // Create a new entry in the WidenMap and initialize it to Undef or Null.
   1792   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
   1793 
   1794   Instruction *InsertPt = Builder.GetInsertPoint();
   1795   BasicBlock *IfBlock = Builder.GetInsertBlock();
   1796   BasicBlock *CondBlock = nullptr;
   1797 
   1798   VectorParts Cond;
   1799   Loop *VectorLp = nullptr;
   1800   if (IfPredicateStore) {
   1801     assert(Instr->getParent()->getSinglePredecessor() &&
   1802            "Only support single predecessor blocks");
   1803     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
   1804                           Instr->getParent());
   1805     VectorLp = LI->getLoopFor(IfBlock);
   1806     assert(VectorLp && "Must have a loop for this block");
   1807   }
   1808 
   1809   // For each vector unroll 'part':
   1810   for (unsigned Part = 0; Part < UF; ++Part) {
   1811     // For each scalar that we create:
   1812     for (unsigned Width = 0; Width < VF; ++Width) {
   1813 
   1814       // Start if-block.
   1815       Value *Cmp = nullptr;
   1816       if (IfPredicateStore) {
   1817         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
   1818         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
   1819         CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
   1820         LoopVectorBody.push_back(CondBlock);
   1821         VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
   1822         // Update Builder with newly created basic block.
   1823         Builder.SetInsertPoint(InsertPt);
   1824       }
   1825 
   1826       Instruction *Cloned = Instr->clone();
   1827       if (!IsVoidRetTy)
   1828         Cloned->setName(Instr->getName() + ".cloned");
   1829       // Replace the operands of the cloned instructions with extracted scalars.
   1830       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1831         Value *Op = Params[op][Part];
   1832         // Param is a vector. Need to extract the right lane.
   1833         if (Op->getType()->isVectorTy())
   1834           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
   1835         Cloned->setOperand(op, Op);
   1836       }
   1837 
   1838       // Place the cloned scalar in the new loop.
   1839       Builder.Insert(Cloned);
   1840 
   1841       // If the original scalar returns a value we need to place it in a vector
   1842       // so that future users will be able to use it.
   1843       if (!IsVoidRetTy)
   1844         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
   1845                                                        Builder.getInt32(Width));
   1846       // End if-block.
   1847       if (IfPredicateStore) {
   1848          BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   1849          LoopVectorBody.push_back(NewIfBlock);
   1850          VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
   1851          Builder.SetInsertPoint(InsertPt);
   1852          Instruction *OldBr = IfBlock->getTerminator();
   1853          BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   1854          OldBr->eraseFromParent();
   1855          IfBlock = NewIfBlock;
   1856       }
   1857     }
   1858   }
   1859 }
   1860 
   1861 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
   1862                                  Instruction *Loc) {
   1863   if (FirstInst)
   1864     return FirstInst;
   1865   if (Instruction *I = dyn_cast<Instruction>(V))
   1866     return I->getParent() == Loc->getParent() ? I : nullptr;
   1867   return nullptr;
   1868 }
   1869 
   1870 std::pair<Instruction *, Instruction *>
   1871 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
   1872   Instruction *tnullptr = nullptr;
   1873   if (!Legal->mustCheckStrides())
   1874     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
   1875 
   1876   IRBuilder<> ChkBuilder(Loc);
   1877 
   1878   // Emit checks.
   1879   Value *Check = nullptr;
   1880   Instruction *FirstInst = nullptr;
   1881   for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
   1882                                          SE = Legal->strides_end();
   1883        SI != SE; ++SI) {
   1884     Value *Ptr = stripIntegerCast(*SI);
   1885     Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
   1886                                        "stride.chk");
   1887     // Store the first instruction we create.
   1888     FirstInst = getFirstInst(FirstInst, C, Loc);
   1889     if (Check)
   1890       Check = ChkBuilder.CreateOr(Check, C);
   1891     else
   1892       Check = C;
   1893   }
   1894 
   1895   // We have to do this trickery because the IRBuilder might fold the check to a
   1896   // constant expression in which case there is no Instruction anchored in a
   1897   // the block.
   1898   LLVMContext &Ctx = Loc->getContext();
   1899   Instruction *TheCheck =
   1900       BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
   1901   ChkBuilder.Insert(TheCheck, "stride.not.one");
   1902   FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
   1903 
   1904   return std::make_pair(FirstInst, TheCheck);
   1905 }
   1906 
   1907 std::pair<Instruction *, Instruction *>
   1908 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
   1909   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
   1910   Legal->getRuntimePointerCheck();
   1911 
   1912   Instruction *tnullptr = nullptr;
   1913   if (!PtrRtCheck->Need)
   1914     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
   1915 
   1916   unsigned NumPointers = PtrRtCheck->Pointers.size();
   1917   SmallVector<TrackingVH<Value> , 2> Starts;
   1918   SmallVector<TrackingVH<Value> , 2> Ends;
   1919 
   1920   LLVMContext &Ctx = Loc->getContext();
   1921   SCEVExpander Exp(*SE, "induction");
   1922   Instruction *FirstInst = nullptr;
   1923 
   1924   for (unsigned i = 0; i < NumPointers; ++i) {
   1925     Value *Ptr = PtrRtCheck->Pointers[i];
   1926     const SCEV *Sc = SE->getSCEV(Ptr);
   1927 
   1928     if (SE->isLoopInvariant(Sc, OrigLoop)) {
   1929       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
   1930             *Ptr <<"\n");
   1931       Starts.push_back(Ptr);
   1932       Ends.push_back(Ptr);
   1933     } else {
   1934       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
   1935       unsigned AS = Ptr->getType()->getPointerAddressSpace();
   1936 
   1937       // Use this type for pointer arithmetic.
   1938       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
   1939 
   1940       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
   1941       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
   1942       Starts.push_back(Start);
   1943       Ends.push_back(End);
   1944     }
   1945   }
   1946 
   1947   IRBuilder<> ChkBuilder(Loc);
   1948   // Our instructions might fold to a constant.
   1949   Value *MemoryRuntimeCheck = nullptr;
   1950   for (unsigned i = 0; i < NumPointers; ++i) {
   1951     for (unsigned j = i+1; j < NumPointers; ++j) {
   1952       // No need to check if two readonly pointers intersect.
   1953       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
   1954         continue;
   1955 
   1956       // Only need to check pointers between two different dependency sets.
   1957       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
   1958        continue;
   1959 
   1960       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
   1961       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
   1962 
   1963       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
   1964              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
   1965              "Trying to bounds check pointers with different address spaces");
   1966 
   1967       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
   1968       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
   1969 
   1970       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
   1971       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
   1972       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
   1973       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
   1974 
   1975       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
   1976       FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
   1977       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
   1978       FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
   1979       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
   1980       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
   1981       if (MemoryRuntimeCheck) {
   1982         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
   1983                                          "conflict.rdx");
   1984         FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
   1985       }
   1986       MemoryRuntimeCheck = IsConflict;
   1987     }
   1988   }
   1989 
   1990   // We have to do this trickery because the IRBuilder might fold the check to a
   1991   // constant expression in which case there is no Instruction anchored in a
   1992   // the block.
   1993   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
   1994                                                  ConstantInt::getTrue(Ctx));
   1995   ChkBuilder.Insert(Check, "memcheck.conflict");
   1996   FirstInst = getFirstInst(FirstInst, Check, Loc);
   1997   return std::make_pair(FirstInst, Check);
   1998 }
   1999 
   2000 void InnerLoopVectorizer::createEmptyLoop() {
   2001   /*
   2002    In this function we generate a new loop. The new loop will contain
   2003    the vectorized instructions while the old loop will continue to run the
   2004    scalar remainder.
   2005 
   2006        [ ] <-- Back-edge taken count overflow check.
   2007     /   |
   2008    /    v
   2009   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
   2010   |  /  |
   2011   | /   v
   2012   ||   [ ]     <-- vector pre header.
   2013   ||    |
   2014   ||    v
   2015   ||   [  ] \
   2016   ||   [  ]_|   <-- vector loop.
   2017   ||    |
   2018   | \   v
   2019   |   >[ ]   <--- middle-block.
   2020   |  /  |
   2021   | /   v
   2022   -|- >[ ]     <--- new preheader.
   2023    |    |
   2024    |    v
   2025    |   [ ] \
   2026    |   [ ]_|   <-- old scalar loop to handle remainder.
   2027     \   |
   2028      \  v
   2029       >[ ]     <-- exit block.
   2030    ...
   2031    */
   2032 
   2033   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
   2034   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
   2035   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
   2036   assert(BypassBlock && "Invalid loop structure");
   2037   assert(ExitBlock && "Must have an exit block");
   2038 
   2039   // Some loops have a single integer induction variable, while other loops
   2040   // don't. One example is c++ iterators that often have multiple pointer
   2041   // induction variables. In the code below we also support a case where we
   2042   // don't have a single induction variable.
   2043   OldInduction = Legal->getInduction();
   2044   Type *IdxTy = Legal->getWidestInductionType();
   2045 
   2046   // Find the loop boundaries.
   2047   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
   2048   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
   2049 
   2050   // The exit count might have the type of i64 while the phi is i32. This can
   2051   // happen if we have an induction variable that is sign extended before the
   2052   // compare. The only way that we get a backedge taken count is that the
   2053   // induction variable was signed and as such will not overflow. In such a case
   2054   // truncation is legal.
   2055   if (ExitCount->getType()->getPrimitiveSizeInBits() >
   2056       IdxTy->getPrimitiveSizeInBits())
   2057     ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
   2058 
   2059   const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
   2060   // Get the total trip count from the count by adding 1.
   2061   ExitCount = SE->getAddExpr(BackedgeTakeCount,
   2062                              SE->getConstant(BackedgeTakeCount->getType(), 1));
   2063 
   2064   // Expand the trip count and place the new instructions in the preheader.
   2065   // Notice that the pre-header does not change, only the loop body.
   2066   SCEVExpander Exp(*SE, "induction");
   2067 
   2068   // We need to test whether the backedge-taken count is uint##_max. Adding one
   2069   // to it will cause overflow and an incorrect loop trip count in the vector
   2070   // body. In case of overflow we want to directly jump to the scalar remainder
   2071   // loop.
   2072   Value *BackedgeCount =
   2073       Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
   2074                         BypassBlock->getTerminator());
   2075   if (BackedgeCount->getType()->isPointerTy())
   2076     BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
   2077                                                 "backedge.ptrcnt.to.int",
   2078                                                 BypassBlock->getTerminator());
   2079   Instruction *CheckBCOverflow =
   2080       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
   2081                       Constant::getAllOnesValue(BackedgeCount->getType()),
   2082                       "backedge.overflow", BypassBlock->getTerminator());
   2083 
   2084   // The loop index does not have to start at Zero. Find the original start
   2085   // value from the induction PHI node. If we don't have an induction variable
   2086   // then we know that it starts at zero.
   2087   Builder.SetInsertPoint(BypassBlock->getTerminator());
   2088   Value *StartIdx = ExtendedIdx = OldInduction ?
   2089     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
   2090                        IdxTy):
   2091     ConstantInt::get(IdxTy, 0);
   2092 
   2093   // We need an instruction to anchor the overflow check on. StartIdx needs to
   2094   // be defined before the overflow check branch. Because the scalar preheader
   2095   // is going to merge the start index and so the overflow branch block needs to
   2096   // contain a definition of the start index.
   2097   Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
   2098       StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
   2099       BypassBlock->getTerminator());
   2100 
   2101   // Count holds the overall loop count (N).
   2102   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
   2103                                    BypassBlock->getTerminator());
   2104 
   2105   LoopBypassBlocks.push_back(BypassBlock);
   2106 
   2107   // Split the single block loop into the two loop structure described above.
   2108   BasicBlock *VectorPH =
   2109   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
   2110   BasicBlock *VecBody =
   2111   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
   2112   BasicBlock *MiddleBlock =
   2113   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
   2114   BasicBlock *ScalarPH =
   2115   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
   2116 
   2117   // Create and register the new vector loop.
   2118   Loop* Lp = new Loop();
   2119   Loop *ParentLoop = OrigLoop->getParentLoop();
   2120 
   2121   // Insert the new loop into the loop nest and register the new basic blocks
   2122   // before calling any utilities such as SCEV that require valid LoopInfo.
   2123   if (ParentLoop) {
   2124     ParentLoop->addChildLoop(Lp);
   2125     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
   2126     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
   2127     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
   2128   } else {
   2129     LI->addTopLevelLoop(Lp);
   2130   }
   2131   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
   2132 
   2133   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
   2134   // inside the loop.
   2135   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
   2136 
   2137   // Generate the induction variable.
   2138   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
   2139   Induction = Builder.CreatePHI(IdxTy, 2, "index");
   2140   // The loop step is equal to the vectorization factor (num of SIMD elements)
   2141   // times the unroll factor (num of SIMD instructions).
   2142   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
   2143 
   2144   // This is the IR builder that we use to add all of the logic for bypassing
   2145   // the new vector loop.
   2146   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
   2147   setDebugLocFromInst(BypassBuilder,
   2148                       getDebugLocFromInstOrOperands(OldInduction));
   2149 
   2150   // We may need to extend the index in case there is a type mismatch.
   2151   // We know that the count starts at zero and does not overflow.
   2152   if (Count->getType() != IdxTy) {
   2153     // The exit count can be of pointer type. Convert it to the correct
   2154     // integer type.
   2155     if (ExitCount->getType()->isPointerTy())
   2156       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
   2157     else
   2158       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
   2159   }
   2160 
   2161   // Add the start index to the loop count to get the new end index.
   2162   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
   2163 
   2164   // Now we need to generate the expression for N - (N % VF), which is
   2165   // the part that the vectorized body will execute.
   2166   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
   2167   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
   2168   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
   2169                                                      "end.idx.rnd.down");
   2170 
   2171   // Now, compare the new count to zero. If it is zero skip the vector loop and
   2172   // jump to the scalar loop.
   2173   Value *Cmp =
   2174       BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
   2175 
   2176   BasicBlock *LastBypassBlock = BypassBlock;
   2177 
   2178   // Generate code to check that the loops trip count that we computed by adding
   2179   // one to the backedge-taken count will not overflow.
   2180   {
   2181     auto PastOverflowCheck =
   2182         std::next(BasicBlock::iterator(OverflowCheckAnchor));
   2183     BasicBlock *CheckBlock =
   2184       LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
   2185     if (ParentLoop)
   2186       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
   2187     LoopBypassBlocks.push_back(CheckBlock);
   2188     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2189     BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
   2190     OldTerm->eraseFromParent();
   2191     LastBypassBlock = CheckBlock;
   2192   }
   2193 
   2194   // Generate the code to check that the strides we assumed to be one are really
   2195   // one. We want the new basic block to start at the first instruction in a
   2196   // sequence of instructions that form a check.
   2197   Instruction *StrideCheck;
   2198   Instruction *FirstCheckInst;
   2199   std::tie(FirstCheckInst, StrideCheck) =
   2200       addStrideCheck(LastBypassBlock->getTerminator());
   2201   if (StrideCheck) {
   2202     // Create a new block containing the stride check.
   2203     BasicBlock *CheckBlock =
   2204         LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
   2205     if (ParentLoop)
   2206       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
   2207     LoopBypassBlocks.push_back(CheckBlock);
   2208 
   2209     // Replace the branch into the memory check block with a conditional branch
   2210     // for the "few elements case".
   2211     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2212     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
   2213     OldTerm->eraseFromParent();
   2214 
   2215     Cmp = StrideCheck;
   2216     LastBypassBlock = CheckBlock;
   2217   }
   2218 
   2219   // Generate the code that checks in runtime if arrays overlap. We put the
   2220   // checks into a separate block to make the more common case of few elements
   2221   // faster.
   2222   Instruction *MemRuntimeCheck;
   2223   std::tie(FirstCheckInst, MemRuntimeCheck) =
   2224       addRuntimeCheck(LastBypassBlock->getTerminator());
   2225   if (MemRuntimeCheck) {
   2226     // Create a new block containing the memory check.
   2227     BasicBlock *CheckBlock =
   2228         LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
   2229     if (ParentLoop)
   2230       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
   2231     LoopBypassBlocks.push_back(CheckBlock);
   2232 
   2233     // Replace the branch into the memory check block with a conditional branch
   2234     // for the "few elements case".
   2235     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2236     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
   2237     OldTerm->eraseFromParent();
   2238 
   2239     Cmp = MemRuntimeCheck;
   2240     LastBypassBlock = CheckBlock;
   2241   }
   2242 
   2243   LastBypassBlock->getTerminator()->eraseFromParent();
   2244   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
   2245                      LastBypassBlock);
   2246 
   2247   // We are going to resume the execution of the scalar loop.
   2248   // Go over all of the induction variables that we found and fix the
   2249   // PHIs that are left in the scalar version of the loop.
   2250   // The starting values of PHI nodes depend on the counter of the last
   2251   // iteration in the vectorized loop.
   2252   // If we come from a bypass edge then we need to start from the original
   2253   // start value.
   2254 
   2255   // This variable saves the new starting index for the scalar loop.
   2256   PHINode *ResumeIndex = nullptr;
   2257   LoopVectorizationLegality::InductionList::iterator I, E;
   2258   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
   2259   // Set builder to point to last bypass block.
   2260   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
   2261   for (I = List->begin(), E = List->end(); I != E; ++I) {
   2262     PHINode *OrigPhi = I->first;
   2263     LoopVectorizationLegality::InductionInfo II = I->second;
   2264 
   2265     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
   2266     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
   2267                                          MiddleBlock->getTerminator());
   2268     // We might have extended the type of the induction variable but we need a
   2269     // truncated version for the scalar loop.
   2270     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
   2271       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
   2272                       MiddleBlock->getTerminator()) : nullptr;
   2273 
   2274     // Create phi nodes to merge from the  backedge-taken check block.
   2275     PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
   2276                                            ScalarPH->getTerminator());
   2277     BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
   2278 
   2279     PHINode *BCTruncResumeVal = nullptr;
   2280     if (OrigPhi == OldInduction) {
   2281       BCTruncResumeVal =
   2282           PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
   2283                           ScalarPH->getTerminator());
   2284       BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
   2285     }
   2286 
   2287     Value *EndValue = nullptr;
   2288     switch (II.IK) {
   2289     case LoopVectorizationLegality::IK_NoInduction:
   2290       llvm_unreachable("Unknown induction");
   2291     case LoopVectorizationLegality::IK_IntInduction: {
   2292       // Handle the integer induction counter.
   2293       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
   2294 
   2295       // We have the canonical induction variable.
   2296       if (OrigPhi == OldInduction) {
   2297         // Create a truncated version of the resume value for the scalar loop,
   2298         // we might have promoted the type to a larger width.
   2299         EndValue =
   2300           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
   2301         // The new PHI merges the original incoming value, in case of a bypass,
   2302         // or the value at the end of the vectorized loop.
   2303         for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2304           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   2305         TruncResumeVal->addIncoming(EndValue, VecBody);
   2306 
   2307         BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
   2308 
   2309         // We know what the end value is.
   2310         EndValue = IdxEndRoundDown;
   2311         // We also know which PHI node holds it.
   2312         ResumeIndex = ResumeVal;
   2313         break;
   2314       }
   2315 
   2316       // Not the canonical induction variable - add the vector loop count to the
   2317       // start value.
   2318       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
   2319                                                    II.StartValue->getType(),
   2320                                                    "cast.crd");
   2321       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
   2322       break;
   2323     }
   2324     case LoopVectorizationLegality::IK_ReverseIntInduction: {
   2325       // Convert the CountRoundDown variable to the PHI size.
   2326       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
   2327                                                    II.StartValue->getType(),
   2328                                                    "cast.crd");
   2329       // Handle reverse integer induction counter.
   2330       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
   2331       break;
   2332     }
   2333     case LoopVectorizationLegality::IK_PtrInduction: {
   2334       // For pointer induction variables, calculate the offset using
   2335       // the end index.
   2336       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
   2337                                          "ptr.ind.end");
   2338       break;
   2339     }
   2340     case LoopVectorizationLegality::IK_ReversePtrInduction: {
   2341       // The value at the end of the loop for the reverse pointer is calculated
   2342       // by creating a GEP with a negative index starting from the start value.
   2343       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
   2344       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
   2345                                               "rev.ind.end");
   2346       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
   2347                                          "rev.ptr.ind.end");
   2348       break;
   2349     }
   2350     }// end of case
   2351 
   2352     // The new PHI merges the original incoming value, in case of a bypass,
   2353     // or the value at the end of the vectorized loop.
   2354     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
   2355       if (OrigPhi == OldInduction)
   2356         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
   2357       else
   2358         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   2359     }
   2360     ResumeVal->addIncoming(EndValue, VecBody);
   2361 
   2362     // Fix the scalar body counter (PHI node).
   2363     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
   2364 
   2365     // The old induction's phi node in the scalar body needs the truncated
   2366     // value.
   2367     if (OrigPhi == OldInduction) {
   2368       BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
   2369       OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
   2370     } else {
   2371       BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
   2372       OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
   2373     }
   2374   }
   2375 
   2376   // If we are generating a new induction variable then we also need to
   2377   // generate the code that calculates the exit value. This value is not
   2378   // simply the end of the counter because we may skip the vectorized body
   2379   // in case of a runtime check.
   2380   if (!OldInduction){
   2381     assert(!ResumeIndex && "Unexpected resume value found");
   2382     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
   2383                                   MiddleBlock->getTerminator());
   2384     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2385       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
   2386     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
   2387   }
   2388 
   2389   // Make sure that we found the index where scalar loop needs to continue.
   2390   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
   2391          "Invalid resume Index");
   2392 
   2393   // Add a check in the middle block to see if we have completed
   2394   // all of the iterations in the first vector loop.
   2395   // If (N - N%VF) == N, then we *don't* need to run the remainder.
   2396   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
   2397                                 ResumeIndex, "cmp.n",
   2398                                 MiddleBlock->getTerminator());
   2399 
   2400   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
   2401   // Remove the old terminator.
   2402   MiddleBlock->getTerminator()->eraseFromParent();
   2403 
   2404   // Create i+1 and fill the PHINode.
   2405   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
   2406   Induction->addIncoming(StartIdx, VectorPH);
   2407   Induction->addIncoming(NextIdx, VecBody);
   2408   // Create the compare.
   2409   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
   2410   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
   2411 
   2412   // Now we have two terminators. Remove the old one from the block.
   2413   VecBody->getTerminator()->eraseFromParent();
   2414 
   2415   // Get ready to start creating new instructions into the vectorized body.
   2416   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
   2417 
   2418   // Save the state.
   2419   LoopVectorPreHeader = VectorPH;
   2420   LoopScalarPreHeader = ScalarPH;
   2421   LoopMiddleBlock = MiddleBlock;
   2422   LoopExitBlock = ExitBlock;
   2423   LoopVectorBody.push_back(VecBody);
   2424   LoopScalarBody = OldBasicBlock;
   2425 
   2426   LoopVectorizeHints Hints(Lp, true);
   2427   Hints.setAlreadyVectorized(Lp);
   2428 }
   2429 
   2430 /// This function returns the identity element (or neutral element) for
   2431 /// the operation K.
   2432 Constant*
   2433 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
   2434   switch (K) {
   2435   case RK_IntegerXor:
   2436   case RK_IntegerAdd:
   2437   case RK_IntegerOr:
   2438     // Adding, Xoring, Oring zero to a number does not change it.
   2439     return ConstantInt::get(Tp, 0);
   2440   case RK_IntegerMult:
   2441     // Multiplying a number by 1 does not change it.
   2442     return ConstantInt::get(Tp, 1);
   2443   case RK_IntegerAnd:
   2444     // AND-ing a number with an all-1 value does not change it.
   2445     return ConstantInt::get(Tp, -1, true);
   2446   case  RK_FloatMult:
   2447     // Multiplying a number by 1 does not change it.
   2448     return ConstantFP::get(Tp, 1.0L);
   2449   case  RK_FloatAdd:
   2450     // Adding zero to a number does not change it.
   2451     return ConstantFP::get(Tp, 0.0L);
   2452   default:
   2453     llvm_unreachable("Unknown reduction kind");
   2454   }
   2455 }
   2456 
   2457 /// This function translates the reduction kind to an LLVM binary operator.
   2458 static unsigned
   2459 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
   2460   switch (Kind) {
   2461     case LoopVectorizationLegality::RK_IntegerAdd:
   2462       return Instruction::Add;
   2463     case LoopVectorizationLegality::RK_IntegerMult:
   2464       return Instruction::Mul;
   2465     case LoopVectorizationLegality::RK_IntegerOr:
   2466       return Instruction::Or;
   2467     case LoopVectorizationLegality::RK_IntegerAnd:
   2468       return Instruction::And;
   2469     case LoopVectorizationLegality::RK_IntegerXor:
   2470       return Instruction::Xor;
   2471     case LoopVectorizationLegality::RK_FloatMult:
   2472       return Instruction::FMul;
   2473     case LoopVectorizationLegality::RK_FloatAdd:
   2474       return Instruction::FAdd;
   2475     case LoopVectorizationLegality::RK_IntegerMinMax:
   2476       return Instruction::ICmp;
   2477     case LoopVectorizationLegality::RK_FloatMinMax:
   2478       return Instruction::FCmp;
   2479     default:
   2480       llvm_unreachable("Unknown reduction operation");
   2481   }
   2482 }
   2483 
   2484 Value *createMinMaxOp(IRBuilder<> &Builder,
   2485                       LoopVectorizationLegality::MinMaxReductionKind RK,
   2486                       Value *Left,
   2487                       Value *Right) {
   2488   CmpInst::Predicate P = CmpInst::ICMP_NE;
   2489   switch (RK) {
   2490   default:
   2491     llvm_unreachable("Unknown min/max reduction kind");
   2492   case LoopVectorizationLegality::MRK_UIntMin:
   2493     P = CmpInst::ICMP_ULT;
   2494     break;
   2495   case LoopVectorizationLegality::MRK_UIntMax:
   2496     P = CmpInst::ICMP_UGT;
   2497     break;
   2498   case LoopVectorizationLegality::MRK_SIntMin:
   2499     P = CmpInst::ICMP_SLT;
   2500     break;
   2501   case LoopVectorizationLegality::MRK_SIntMax:
   2502     P = CmpInst::ICMP_SGT;
   2503     break;
   2504   case LoopVectorizationLegality::MRK_FloatMin:
   2505     P = CmpInst::FCMP_OLT;
   2506     break;
   2507   case LoopVectorizationLegality::MRK_FloatMax:
   2508     P = CmpInst::FCMP_OGT;
   2509     break;
   2510   }
   2511 
   2512   Value *Cmp;
   2513   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
   2514       RK == LoopVectorizationLegality::MRK_FloatMax)
   2515     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
   2516   else
   2517     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
   2518 
   2519   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
   2520   return Select;
   2521 }
   2522 
   2523 namespace {
   2524 struct CSEDenseMapInfo {
   2525   static bool canHandle(Instruction *I) {
   2526     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
   2527            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
   2528   }
   2529   static inline Instruction *getEmptyKey() {
   2530     return DenseMapInfo<Instruction *>::getEmptyKey();
   2531   }
   2532   static inline Instruction *getTombstoneKey() {
   2533     return DenseMapInfo<Instruction *>::getTombstoneKey();
   2534   }
   2535   static unsigned getHashValue(Instruction *I) {
   2536     assert(canHandle(I) && "Unknown instruction!");
   2537     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
   2538                                                            I->value_op_end()));
   2539   }
   2540   static bool isEqual(Instruction *LHS, Instruction *RHS) {
   2541     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
   2542         LHS == getTombstoneKey() || RHS == getTombstoneKey())
   2543       return LHS == RHS;
   2544     return LHS->isIdenticalTo(RHS);
   2545   }
   2546 };
   2547 }
   2548 
   2549 /// \brief Check whether this block is a predicated block.
   2550 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
   2551 /// = ...;  " blocks. We start with one vectorized basic block. For every
   2552 /// conditional block we split this vectorized block. Therefore, every second
   2553 /// block will be a predicated one.
   2554 static bool isPredicatedBlock(unsigned BlockNum) {
   2555   return BlockNum % 2;
   2556 }
   2557 
   2558 ///\brief Perform cse of induction variable instructions.
   2559 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
   2560   // Perform simple cse.
   2561   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
   2562   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
   2563     BasicBlock *BB = BBs[i];
   2564     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
   2565       Instruction *In = I++;
   2566 
   2567       if (!CSEDenseMapInfo::canHandle(In))
   2568         continue;
   2569 
   2570       // Check if we can replace this instruction with any of the
   2571       // visited instructions.
   2572       if (Instruction *V = CSEMap.lookup(In)) {
   2573         In->replaceAllUsesWith(V);
   2574         In->eraseFromParent();
   2575         continue;
   2576       }
   2577       // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
   2578       // ...;" blocks for predicated stores. Every second block is a predicated
   2579       // block.
   2580       if (isPredicatedBlock(i))
   2581         continue;
   2582 
   2583       CSEMap[In] = In;
   2584     }
   2585   }
   2586 }
   2587 
   2588 /// \brief Adds a 'fast' flag to floating point operations.
   2589 static Value *addFastMathFlag(Value *V) {
   2590   if (isa<FPMathOperator>(V)){
   2591     FastMathFlags Flags;
   2592     Flags.setUnsafeAlgebra();
   2593     cast<Instruction>(V)->setFastMathFlags(Flags);
   2594   }
   2595   return V;
   2596 }
   2597 
   2598 void InnerLoopVectorizer::vectorizeLoop() {
   2599   //===------------------------------------------------===//
   2600   //
   2601   // Notice: any optimization or new instruction that go
   2602   // into the code below should be also be implemented in
   2603   // the cost-model.
   2604   //
   2605   //===------------------------------------------------===//
   2606   Constant *Zero = Builder.getInt32(0);
   2607 
   2608   // In order to support reduction variables we need to be able to vectorize
   2609   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
   2610   // stages. First, we create a new vector PHI node with no incoming edges.
   2611   // We use this value when we vectorize all of the instructions that use the
   2612   // PHI. Next, after all of the instructions in the block are complete we
   2613   // add the new incoming edges to the PHI. At this point all of the
   2614   // instructions in the basic block are vectorized, so we can use them to
   2615   // construct the PHI.
   2616   PhiVector RdxPHIsToFix;
   2617 
   2618   // Scan the loop in a topological order to ensure that defs are vectorized
   2619   // before users.
   2620   LoopBlocksDFS DFS(OrigLoop);
   2621   DFS.perform(LI);
   2622 
   2623   // Vectorize all of the blocks in the original loop.
   2624   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   2625        be = DFS.endRPO(); bb != be; ++bb)
   2626     vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
   2627 
   2628   // At this point every instruction in the original loop is widened to
   2629   // a vector form. We are almost done. Now, we need to fix the PHI nodes
   2630   // that we vectorized. The PHI nodes are currently empty because we did
   2631   // not want to introduce cycles. Notice that the remaining PHI nodes
   2632   // that we need to fix are reduction variables.
   2633 
   2634   // Create the 'reduced' values for each of the induction vars.
   2635   // The reduced values are the vector values that we scalarize and combine
   2636   // after the loop is finished.
   2637   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
   2638        it != e; ++it) {
   2639     PHINode *RdxPhi = *it;
   2640     assert(RdxPhi && "Unable to recover vectorized PHI");
   2641 
   2642     // Find the reduction variable descriptor.
   2643     assert(Legal->getReductionVars()->count(RdxPhi) &&
   2644            "Unable to find the reduction variable");
   2645     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
   2646     (*Legal->getReductionVars())[RdxPhi];
   2647 
   2648     setDebugLocFromInst(Builder, RdxDesc.StartValue);
   2649 
   2650     // We need to generate a reduction vector from the incoming scalar.
   2651     // To do so, we need to generate the 'identity' vector and override
   2652     // one of the elements with the incoming scalar reduction. We need
   2653     // to do it in the vector-loop preheader.
   2654     Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
   2655 
   2656     // This is the vector-clone of the value that leaves the loop.
   2657     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
   2658     Type *VecTy = VectorExit[0]->getType();
   2659 
   2660     // Find the reduction identity variable. Zero for addition, or, xor,
   2661     // one for multiplication, -1 for And.
   2662     Value *Identity;
   2663     Value *VectorStart;
   2664     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
   2665         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
   2666       // MinMax reduction have the start value as their identify.
   2667       if (VF == 1) {
   2668         VectorStart = Identity = RdxDesc.StartValue;
   2669       } else {
   2670         VectorStart = Identity = Builder.CreateVectorSplat(VF,
   2671                                                            RdxDesc.StartValue,
   2672                                                            "minmax.ident");
   2673       }
   2674     } else {
   2675       // Handle other reduction kinds:
   2676       Constant *Iden =
   2677       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
   2678                                                       VecTy->getScalarType());
   2679       if (VF == 1) {
   2680         Identity = Iden;
   2681         // This vector is the Identity vector where the first element is the
   2682         // incoming scalar reduction.
   2683         VectorStart = RdxDesc.StartValue;
   2684       } else {
   2685         Identity = ConstantVector::getSplat(VF, Iden);
   2686 
   2687         // This vector is the Identity vector where the first element is the
   2688         // incoming scalar reduction.
   2689         VectorStart = Builder.CreateInsertElement(Identity,
   2690                                                   RdxDesc.StartValue, Zero);
   2691       }
   2692     }
   2693 
   2694     // Fix the vector-loop phi.
   2695     // We created the induction variable so we know that the
   2696     // preheader is the first entry.
   2697     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
   2698 
   2699     // Reductions do not have to start at zero. They can start with
   2700     // any loop invariant values.
   2701     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
   2702     BasicBlock *Latch = OrigLoop->getLoopLatch();
   2703     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
   2704     VectorParts &Val = getVectorValue(LoopVal);
   2705     for (unsigned part = 0; part < UF; ++part) {
   2706       // Make sure to add the reduction stat value only to the
   2707       // first unroll part.
   2708       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2709       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
   2710       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
   2711                                                   LoopVectorBody.back());
   2712     }
   2713 
   2714     // Before each round, move the insertion point right between
   2715     // the PHIs and the values we are going to write.
   2716     // This allows us to write both PHINodes and the extractelement
   2717     // instructions.
   2718     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
   2719 
   2720     VectorParts RdxParts;
   2721     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
   2722     for (unsigned part = 0; part < UF; ++part) {
   2723       // This PHINode contains the vectorized reduction variable, or
   2724       // the initial value vector, if we bypass the vector loop.
   2725       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
   2726       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
   2727       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2728       for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2729         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
   2730       NewPhi->addIncoming(RdxExitVal[part],
   2731                           LoopVectorBody.back());
   2732       RdxParts.push_back(NewPhi);
   2733     }
   2734 
   2735     // Reduce all of the unrolled parts into a single vector.
   2736     Value *ReducedPartRdx = RdxParts[0];
   2737     unsigned Op = getReductionBinOp(RdxDesc.Kind);
   2738     setDebugLocFromInst(Builder, ReducedPartRdx);
   2739     for (unsigned part = 1; part < UF; ++part) {
   2740       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2741         // Floating point operations had to be 'fast' to enable the reduction.
   2742         ReducedPartRdx = addFastMathFlag(
   2743             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
   2744                                 ReducedPartRdx, "bin.rdx"));
   2745       else
   2746         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
   2747                                         ReducedPartRdx, RdxParts[part]);
   2748     }
   2749 
   2750     if (VF > 1) {
   2751       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
   2752       // and vector ops, reducing the set of values being computed by half each
   2753       // round.
   2754       assert(isPowerOf2_32(VF) &&
   2755              "Reduction emission only supported for pow2 vectors!");
   2756       Value *TmpVec = ReducedPartRdx;
   2757       SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
   2758       for (unsigned i = VF; i != 1; i >>= 1) {
   2759         // Move the upper half of the vector to the lower half.
   2760         for (unsigned j = 0; j != i/2; ++j)
   2761           ShuffleMask[j] = Builder.getInt32(i/2 + j);
   2762 
   2763         // Fill the rest of the mask with undef.
   2764         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
   2765                   UndefValue::get(Builder.getInt32Ty()));
   2766 
   2767         Value *Shuf =
   2768         Builder.CreateShuffleVector(TmpVec,
   2769                                     UndefValue::get(TmpVec->getType()),
   2770                                     ConstantVector::get(ShuffleMask),
   2771                                     "rdx.shuf");
   2772 
   2773         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2774           // Floating point operations had to be 'fast' to enable the reduction.
   2775           TmpVec = addFastMathFlag(Builder.CreateBinOp(
   2776               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
   2777         else
   2778           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
   2779       }
   2780 
   2781       // The result is in the first element of the vector.
   2782       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
   2783                                                     Builder.getInt32(0));
   2784     }
   2785 
   2786     // Create a phi node that merges control-flow from the backedge-taken check
   2787     // block and the middle block.
   2788     PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
   2789                                           LoopScalarPreHeader->getTerminator());
   2790     BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
   2791     BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
   2792 
   2793     // Now, we need to fix the users of the reduction variable
   2794     // inside and outside of the scalar remainder loop.
   2795     // We know that the loop is in LCSSA form. We need to update the
   2796     // PHI nodes in the exit blocks.
   2797     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2798          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2799       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2800       if (!LCSSAPhi) break;
   2801 
   2802       // All PHINodes need to have a single entry edge, or two if
   2803       // we already fixed them.
   2804       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
   2805 
   2806       // We found our reduction value exit-PHI. Update it with the
   2807       // incoming bypass edge.
   2808       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
   2809         // Add an edge coming from the bypass.
   2810         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
   2811         break;
   2812       }
   2813     }// end of the LCSSA phi scan.
   2814 
   2815     // Fix the scalar loop reduction variable with the incoming reduction sum
   2816     // from the vector body and from the backedge value.
   2817     int IncomingEdgeBlockIdx =
   2818     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
   2819     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
   2820     // Pick the other block.
   2821     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
   2822     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
   2823     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
   2824   }// end of for each redux variable.
   2825 
   2826   fixLCSSAPHIs();
   2827 
   2828   // Remove redundant induction instructions.
   2829   cse(LoopVectorBody);
   2830 }
   2831 
   2832 void InnerLoopVectorizer::fixLCSSAPHIs() {
   2833   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2834        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2835     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2836     if (!LCSSAPhi) break;
   2837     if (LCSSAPhi->getNumIncomingValues() == 1)
   2838       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
   2839                             LoopMiddleBlock);
   2840   }
   2841 }
   2842 
   2843 InnerLoopVectorizer::VectorParts
   2844 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
   2845   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
   2846          "Invalid edge");
   2847 
   2848   // Look for cached value.
   2849   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
   2850   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
   2851   if (ECEntryIt != MaskCache.end())
   2852     return ECEntryIt->second;
   2853 
   2854   VectorParts SrcMask = createBlockInMask(Src);
   2855 
   2856   // The terminator has to be a branch inst!
   2857   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
   2858   assert(BI && "Unexpected terminator found");
   2859 
   2860   if (BI->isConditional()) {
   2861     VectorParts EdgeMask = getVectorValue(BI->getCondition());
   2862 
   2863     if (BI->getSuccessor(0) != Dst)
   2864       for (unsigned part = 0; part < UF; ++part)
   2865         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
   2866 
   2867     for (unsigned part = 0; part < UF; ++part)
   2868       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
   2869 
   2870     MaskCache[Edge] = EdgeMask;
   2871     return EdgeMask;
   2872   }
   2873 
   2874   MaskCache[Edge] = SrcMask;
   2875   return SrcMask;
   2876 }
   2877 
   2878 InnerLoopVectorizer::VectorParts
   2879 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
   2880   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
   2881 
   2882   // Loop incoming mask is all-one.
   2883   if (OrigLoop->getHeader() == BB) {
   2884     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
   2885     return getVectorValue(C);
   2886   }
   2887 
   2888   // This is the block mask. We OR all incoming edges, and with zero.
   2889   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
   2890   VectorParts BlockMask = getVectorValue(Zero);
   2891 
   2892   // For each pred:
   2893   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
   2894     VectorParts EM = createEdgeMask(*it, BB);
   2895     for (unsigned part = 0; part < UF; ++part)
   2896       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
   2897   }
   2898 
   2899   return BlockMask;
   2900 }
   2901 
   2902 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
   2903                                               InnerLoopVectorizer::VectorParts &Entry,
   2904                                               unsigned UF, unsigned VF, PhiVector *PV) {
   2905   PHINode* P = cast<PHINode>(PN);
   2906   // Handle reduction variables:
   2907   if (Legal->getReductionVars()->count(P)) {
   2908     for (unsigned part = 0; part < UF; ++part) {
   2909       // This is phase one of vectorizing PHIs.
   2910       Type *VecTy = (VF == 1) ? PN->getType() :
   2911       VectorType::get(PN->getType(), VF);
   2912       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
   2913                                     LoopVectorBody.back()-> getFirstInsertionPt());
   2914     }
   2915     PV->push_back(P);
   2916     return;
   2917   }
   2918 
   2919   setDebugLocFromInst(Builder, P);
   2920   // Check for PHI nodes that are lowered to vector selects.
   2921   if (P->getParent() != OrigLoop->getHeader()) {
   2922     // We know that all PHIs in non-header blocks are converted into
   2923     // selects, so we don't have to worry about the insertion order and we
   2924     // can just use the builder.
   2925     // At this point we generate the predication tree. There may be
   2926     // duplications since this is a simple recursive scan, but future
   2927     // optimizations will clean it up.
   2928 
   2929     unsigned NumIncoming = P->getNumIncomingValues();
   2930 
   2931     // Generate a sequence of selects of the form:
   2932     // SELECT(Mask3, In3,
   2933     //      SELECT(Mask2, In2,
   2934     //                   ( ...)))
   2935     for (unsigned In = 0; In < NumIncoming; In++) {
   2936       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
   2937                                         P->getParent());
   2938       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
   2939 
   2940       for (unsigned part = 0; part < UF; ++part) {
   2941         // We might have single edge PHIs (blocks) - use an identity
   2942         // 'select' for the first PHI operand.
   2943         if (In == 0)
   2944           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   2945                                              In0[part]);
   2946         else
   2947           // Select between the current value and the previous incoming edge
   2948           // based on the incoming mask.
   2949           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   2950                                              Entry[part], "predphi");
   2951       }
   2952     }
   2953     return;
   2954   }
   2955 
   2956   // This PHINode must be an induction variable.
   2957   // Make sure that we know about it.
   2958   assert(Legal->getInductionVars()->count(P) &&
   2959          "Not an induction variable");
   2960 
   2961   LoopVectorizationLegality::InductionInfo II =
   2962   Legal->getInductionVars()->lookup(P);
   2963 
   2964   switch (II.IK) {
   2965     case LoopVectorizationLegality::IK_NoInduction:
   2966       llvm_unreachable("Unknown induction");
   2967     case LoopVectorizationLegality::IK_IntInduction: {
   2968       assert(P->getType() == II.StartValue->getType() && "Types must match");
   2969       Type *PhiTy = P->getType();
   2970       Value *Broadcasted;
   2971       if (P == OldInduction) {
   2972         // Handle the canonical induction variable. We might have had to
   2973         // extend the type.
   2974         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
   2975       } else {
   2976         // Handle other induction variables that are now based on the
   2977         // canonical one.
   2978         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
   2979                                                  "normalized.idx");
   2980         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
   2981         Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
   2982                                         "offset.idx");
   2983       }
   2984       Broadcasted = getBroadcastInstrs(Broadcasted);
   2985       // After broadcasting the induction variable we need to make the vector
   2986       // consecutive by adding 0, 1, 2, etc.
   2987       for (unsigned part = 0; part < UF; ++part)
   2988         Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
   2989       return;
   2990     }
   2991     case LoopVectorizationLegality::IK_ReverseIntInduction:
   2992     case LoopVectorizationLegality::IK_PtrInduction:
   2993     case LoopVectorizationLegality::IK_ReversePtrInduction:
   2994       // Handle reverse integer and pointer inductions.
   2995       Value *StartIdx = ExtendedIdx;
   2996       // This is the normalized GEP that starts counting at zero.
   2997       Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
   2998                                                "normalized.idx");
   2999 
   3000       // Handle the reverse integer induction variable case.
   3001       if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
   3002         IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
   3003         Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
   3004                                                "resize.norm.idx");
   3005         Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
   3006                                                "reverse.idx");
   3007 
   3008         // This is a new value so do not hoist it out.
   3009         Value *Broadcasted = getBroadcastInstrs(ReverseInd);
   3010         // After broadcasting the induction variable we need to make the
   3011         // vector consecutive by adding  ... -3, -2, -1, 0.
   3012         for (unsigned part = 0; part < UF; ++part)
   3013           Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
   3014                                              true);
   3015         return;
   3016       }
   3017 
   3018       // Handle the pointer induction variable case.
   3019       assert(P->getType()->isPointerTy() && "Unexpected type.");
   3020 
   3021       // Is this a reverse induction ptr or a consecutive induction ptr.
   3022       bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
   3023                       II.IK);
   3024 
   3025       // This is the vector of results. Notice that we don't generate
   3026       // vector geps because scalar geps result in better code.
   3027       for (unsigned part = 0; part < UF; ++part) {
   3028         if (VF == 1) {
   3029           int EltIndex = (part) * (Reverse ? -1 : 1);
   3030           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
   3031           Value *GlobalIdx;
   3032           if (Reverse)
   3033             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
   3034           else
   3035             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
   3036 
   3037           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
   3038                                              "next.gep");
   3039           Entry[part] = SclrGep;
   3040           continue;
   3041         }
   3042 
   3043         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
   3044         for (unsigned int i = 0; i < VF; ++i) {
   3045           int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
   3046           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
   3047           Value *GlobalIdx;
   3048           if (!Reverse)
   3049             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
   3050           else
   3051             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
   3052 
   3053           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
   3054                                              "next.gep");
   3055           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
   3056                                                Builder.getInt32(i),
   3057                                                "insert.gep");
   3058         }
   3059         Entry[part] = VecVal;
   3060       }
   3061       return;
   3062   }
   3063 }
   3064 
   3065 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
   3066   // For each instruction in the old loop.
   3067   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   3068     VectorParts &Entry = WidenMap.get(it);
   3069     switch (it->getOpcode()) {
   3070     case Instruction::Br:
   3071       // Nothing to do for PHIs and BR, since we already took care of the
   3072       // loop control flow instructions.
   3073       continue;
   3074     case Instruction::PHI:{
   3075       // Vectorize PHINodes.
   3076       widenPHIInstruction(it, Entry, UF, VF, PV);
   3077       continue;
   3078     }// End of PHI.
   3079 
   3080     case Instruction::Add:
   3081     case Instruction::FAdd:
   3082     case Instruction::Sub:
   3083     case Instruction::FSub:
   3084     case Instruction::Mul:
   3085     case Instruction::FMul:
   3086     case Instruction::UDiv:
   3087     case Instruction::SDiv:
   3088     case Instruction::FDiv:
   3089     case Instruction::URem:
   3090     case Instruction::SRem:
   3091     case Instruction::FRem:
   3092     case Instruction::Shl:
   3093     case Instruction::LShr:
   3094     case Instruction::AShr:
   3095     case Instruction::And:
   3096     case Instruction::Or:
   3097     case Instruction::Xor: {
   3098       // Just widen binops.
   3099       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
   3100       setDebugLocFromInst(Builder, BinOp);
   3101       VectorParts &A = getVectorValue(it->getOperand(0));
   3102       VectorParts &B = getVectorValue(it->getOperand(1));
   3103 
   3104       // Use this vector value for all users of the original instruction.
   3105       for (unsigned Part = 0; Part < UF; ++Part) {
   3106         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
   3107 
   3108         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
   3109         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
   3110         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
   3111           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
   3112           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
   3113         }
   3114         if (VecOp && isa<PossiblyExactOperator>(VecOp))
   3115           VecOp->setIsExact(BinOp->isExact());
   3116 
   3117         // Copy the fast-math flags.
   3118         if (VecOp && isa<FPMathOperator>(V))
   3119           VecOp->setFastMathFlags(it->getFastMathFlags());
   3120 
   3121         Entry[Part] = V;
   3122       }
   3123       break;
   3124     }
   3125     case Instruction::Select: {
   3126       // Widen selects.
   3127       // If the selector is loop invariant we can create a select
   3128       // instruction with a scalar condition. Otherwise, use vector-select.
   3129       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
   3130                                                OrigLoop);
   3131       setDebugLocFromInst(Builder, it);
   3132 
   3133       // The condition can be loop invariant  but still defined inside the
   3134       // loop. This means that we can't just use the original 'cond' value.
   3135       // We have to take the 'vectorized' value and pick the first lane.
   3136       // Instcombine will make this a no-op.
   3137       VectorParts &Cond = getVectorValue(it->getOperand(0));
   3138       VectorParts &Op0  = getVectorValue(it->getOperand(1));
   3139       VectorParts &Op1  = getVectorValue(it->getOperand(2));
   3140 
   3141       Value *ScalarCond = (VF == 1) ? Cond[0] :
   3142         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
   3143 
   3144       for (unsigned Part = 0; Part < UF; ++Part) {
   3145         Entry[Part] = Builder.CreateSelect(
   3146           InvariantCond ? ScalarCond : Cond[Part],
   3147           Op0[Part],
   3148           Op1[Part]);
   3149       }
   3150       break;
   3151     }
   3152 
   3153     case Instruction::ICmp:
   3154     case Instruction::FCmp: {
   3155       // Widen compares. Generate vector compares.
   3156       bool FCmp = (it->getOpcode() == Instruction::FCmp);
   3157       CmpInst *Cmp = dyn_cast<CmpInst>(it);
   3158       setDebugLocFromInst(Builder, it);
   3159       VectorParts &A = getVectorValue(it->getOperand(0));
   3160       VectorParts &B = getVectorValue(it->getOperand(1));
   3161       for (unsigned Part = 0; Part < UF; ++Part) {
   3162         Value *C = nullptr;
   3163         if (FCmp)
   3164           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
   3165         else
   3166           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
   3167         Entry[Part] = C;
   3168       }
   3169       break;
   3170     }
   3171 
   3172     case Instruction::Store:
   3173     case Instruction::Load:
   3174       vectorizeMemoryInstruction(it);
   3175         break;
   3176     case Instruction::ZExt:
   3177     case Instruction::SExt:
   3178     case Instruction::FPToUI:
   3179     case Instruction::FPToSI:
   3180     case Instruction::FPExt:
   3181     case Instruction::PtrToInt:
   3182     case Instruction::IntToPtr:
   3183     case Instruction::SIToFP:
   3184     case Instruction::UIToFP:
   3185     case Instruction::Trunc:
   3186     case Instruction::FPTrunc:
   3187     case Instruction::BitCast: {
   3188       CastInst *CI = dyn_cast<CastInst>(it);
   3189       setDebugLocFromInst(Builder, it);
   3190       /// Optimize the special case where the source is the induction
   3191       /// variable. Notice that we can only optimize the 'trunc' case
   3192       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
   3193       /// c. other casts depend on pointer size.
   3194       if (CI->getOperand(0) == OldInduction &&
   3195           it->getOpcode() == Instruction::Trunc) {
   3196         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
   3197                                                CI->getType());
   3198         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
   3199         for (unsigned Part = 0; Part < UF; ++Part)
   3200           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
   3201         break;
   3202       }
   3203       /// Vectorize casts.
   3204       Type *DestTy = (VF == 1) ? CI->getType() :
   3205                                  VectorType::get(CI->getType(), VF);
   3206 
   3207       VectorParts &A = getVectorValue(it->getOperand(0));
   3208       for (unsigned Part = 0; Part < UF; ++Part)
   3209         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
   3210       break;
   3211     }
   3212 
   3213     case Instruction::Call: {
   3214       // Ignore dbg intrinsics.
   3215       if (isa<DbgInfoIntrinsic>(it))
   3216         break;
   3217       setDebugLocFromInst(Builder, it);
   3218 
   3219       Module *M = BB->getParent()->getParent();
   3220       CallInst *CI = cast<CallInst>(it);
   3221       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   3222       assert(ID && "Not an intrinsic call!");
   3223       switch (ID) {
   3224       case Intrinsic::lifetime_end:
   3225       case Intrinsic::lifetime_start:
   3226         scalarizeInstruction(it);
   3227         break;
   3228       default:
   3229         bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
   3230         for (unsigned Part = 0; Part < UF; ++Part) {
   3231           SmallVector<Value *, 4> Args;
   3232           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
   3233             if (HasScalarOpd && i == 1) {
   3234               Args.push_back(CI->getArgOperand(i));
   3235               continue;
   3236             }
   3237             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
   3238             Args.push_back(Arg[Part]);
   3239           }
   3240           Type *Tys[] = {CI->getType()};
   3241           if (VF > 1)
   3242             Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
   3243 
   3244           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
   3245           Entry[Part] = Builder.CreateCall(F, Args);
   3246         }
   3247         break;
   3248       }
   3249       break;
   3250     }
   3251 
   3252     default:
   3253       // All other instructions are unsupported. Scalarize them.
   3254       scalarizeInstruction(it);
   3255       break;
   3256     }// end of switch.
   3257   }// end of for_each instr.
   3258 }
   3259 
   3260 void InnerLoopVectorizer::updateAnalysis() {
   3261   // Forget the original basic block.
   3262   SE->forgetLoop(OrigLoop);
   3263 
   3264   // Update the dominator tree information.
   3265   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
   3266          "Entry does not dominate exit.");
   3267 
   3268   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   3269     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
   3270   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
   3271 
   3272   // Due to if predication of stores we might create a sequence of "if(pred)
   3273   // a[i] = ...;  " blocks.
   3274   for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
   3275     if (i == 0)
   3276       DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
   3277     else if (isPredicatedBlock(i)) {
   3278       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
   3279     } else {
   3280       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
   3281     }
   3282   }
   3283 
   3284   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
   3285   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
   3286   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
   3287   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
   3288 
   3289   DEBUG(DT->verifyDomTree());
   3290 }
   3291 
   3292 /// \brief Check whether it is safe to if-convert this phi node.
   3293 ///
   3294 /// Phi nodes with constant expressions that can trap are not safe to if
   3295 /// convert.
   3296 static bool canIfConvertPHINodes(BasicBlock *BB) {
   3297   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   3298     PHINode *Phi = dyn_cast<PHINode>(I);
   3299     if (!Phi)
   3300       return true;
   3301     for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
   3302       if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
   3303         if (C->canTrap())
   3304           return false;
   3305   }
   3306   return true;
   3307 }
   3308 
   3309 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
   3310   if (!EnableIfConversion) {
   3311     emitAnalysis(Report() << "if-conversion is disabled");
   3312     return false;
   3313   }
   3314 
   3315   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
   3316 
   3317   // A list of pointers that we can safely read and write to.
   3318   SmallPtrSet<Value *, 8> SafePointes;
   3319 
   3320   // Collect safe addresses.
   3321   for (Loop::block_iterator BI = TheLoop->block_begin(),
   3322          BE = TheLoop->block_end(); BI != BE; ++BI) {
   3323     BasicBlock *BB = *BI;
   3324 
   3325     if (blockNeedsPredication(BB))
   3326       continue;
   3327 
   3328     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   3329       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   3330         SafePointes.insert(LI->getPointerOperand());
   3331       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
   3332         SafePointes.insert(SI->getPointerOperand());
   3333     }
   3334   }
   3335 
   3336   // Collect the blocks that need predication.
   3337   BasicBlock *Header = TheLoop->getHeader();
   3338   for (Loop::block_iterator BI = TheLoop->block_begin(),
   3339          BE = TheLoop->block_end(); BI != BE; ++BI) {
   3340     BasicBlock *BB = *BI;
   3341 
   3342     // We don't support switch statements inside loops.
   3343     if (!isa<BranchInst>(BB->getTerminator())) {
   3344       emitAnalysis(Report(BB->getTerminator())
   3345                    << "loop contains a switch statement");
   3346       return false;
   3347     }
   3348 
   3349     // We must be able to predicate all blocks that need to be predicated.
   3350     if (blockNeedsPredication(BB)) {
   3351       if (!blockCanBePredicated(BB, SafePointes)) {
   3352         emitAnalysis(Report(BB->getTerminator())
   3353                      << "control flow cannot be substituted for a select");
   3354         return false;
   3355       }
   3356     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
   3357       emitAnalysis(Report(BB->getTerminator())
   3358                    << "control flow cannot be substituted for a select");
   3359       return false;
   3360     }
   3361   }
   3362 
   3363   // We can if-convert this loop.
   3364   return true;
   3365 }
   3366 
   3367 bool LoopVectorizationLegality::canVectorize() {
   3368   // We must have a loop in canonical form. Loops with indirectbr in them cannot
   3369   // be canonicalized.
   3370   if (!TheLoop->getLoopPreheader()) {
   3371     emitAnalysis(
   3372         Report() << "loop control flow is not understood by vectorizer");
   3373     return false;
   3374   }
   3375 
   3376   // We can only vectorize innermost loops.
   3377   if (TheLoop->getSubLoopsVector().size()) {
   3378     emitAnalysis(Report() << "loop is not the innermost loop");
   3379     return false;
   3380   }
   3381 
   3382   // We must have a single backedge.
   3383   if (TheLoop->getNumBackEdges() != 1) {
   3384     emitAnalysis(
   3385         Report() << "loop control flow is not understood by vectorizer");
   3386     return false;
   3387   }
   3388 
   3389   // We must have a single exiting block.
   3390   if (!TheLoop->getExitingBlock()) {
   3391     emitAnalysis(
   3392         Report() << "loop control flow is not understood by vectorizer");
   3393     return false;
   3394   }
   3395 
   3396   // We need to have a loop header.
   3397   DEBUG(dbgs() << "LV: Found a loop: " <<
   3398         TheLoop->getHeader()->getName() << '\n');
   3399 
   3400   // Check if we can if-convert non-single-bb loops.
   3401   unsigned NumBlocks = TheLoop->getNumBlocks();
   3402   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
   3403     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
   3404     return false;
   3405   }
   3406 
   3407   // ScalarEvolution needs to be able to find the exit count.
   3408   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
   3409   if (ExitCount == SE->getCouldNotCompute()) {
   3410     emitAnalysis(Report() << "could not determine number of loop iterations");
   3411     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
   3412     return false;
   3413   }
   3414 
   3415   // Check if we can vectorize the instructions and CFG in this loop.
   3416   if (!canVectorizeInstrs()) {
   3417     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
   3418     return false;
   3419   }
   3420 
   3421   // Go over each instruction and look at memory deps.
   3422   if (!canVectorizeMemory()) {
   3423     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
   3424     return false;
   3425   }
   3426 
   3427   // Collect all of the variables that remain uniform after vectorization.
   3428   collectLoopUniforms();
   3429 
   3430   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
   3431         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
   3432         <<"!\n");
   3433 
   3434   // Okay! We can vectorize. At this point we don't have any other mem analysis
   3435   // which may limit our maximum vectorization factor, so just return true with
   3436   // no restrictions.
   3437   return true;
   3438 }
   3439 
   3440 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
   3441   if (Ty->isPointerTy())
   3442     return DL.getIntPtrType(Ty);
   3443 
   3444   // It is possible that char's or short's overflow when we ask for the loop's
   3445   // trip count, work around this by changing the type size.
   3446   if (Ty->getScalarSizeInBits() < 32)
   3447     return Type::getInt32Ty(Ty->getContext());
   3448 
   3449   return Ty;
   3450 }
   3451 
   3452 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
   3453   Ty0 = convertPointerToIntegerType(DL, Ty0);
   3454   Ty1 = convertPointerToIntegerType(DL, Ty1);
   3455   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
   3456     return Ty0;
   3457   return Ty1;
   3458 }
   3459 
   3460 /// \brief Check that the instruction has outside loop users and is not an
   3461 /// identified reduction variable.
   3462 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
   3463                                SmallPtrSet<Value *, 4> &Reductions) {
   3464   // Reduction instructions are allowed to have exit users. All other
   3465   // instructions must not have external users.
   3466   if (!Reductions.count(Inst))
   3467     //Check that all of the users of the loop are inside the BB.
   3468     for (User *U : Inst->users()) {
   3469       Instruction *UI = cast<Instruction>(U);
   3470       // This user may be a reduction exit value.
   3471       if (!TheLoop->contains(UI)) {
   3472         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
   3473         return true;
   3474       }
   3475     }
   3476   return false;
   3477 }
   3478 
   3479 bool LoopVectorizationLegality::canVectorizeInstrs() {
   3480   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
   3481   BasicBlock *Header = TheLoop->getHeader();
   3482 
   3483   // Look for the attribute signaling the absence of NaNs.
   3484   Function &F = *Header->getParent();
   3485   if (F.hasFnAttribute("no-nans-fp-math"))
   3486     HasFunNoNaNAttr = F.getAttributes().getAttribute(
   3487       AttributeSet::FunctionIndex,
   3488       "no-nans-fp-math").getValueAsString() == "true";
   3489 
   3490   // For each block in the loop.
   3491   for (Loop::block_iterator bb = TheLoop->block_begin(),
   3492        be = TheLoop->block_end(); bb != be; ++bb) {
   3493 
   3494     // Scan the instructions in the block and look for hazards.
   3495     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   3496          ++it) {
   3497 
   3498       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
   3499         Type *PhiTy = Phi->getType();
   3500         // Check that this PHI type is allowed.
   3501         if (!PhiTy->isIntegerTy() &&
   3502             !PhiTy->isFloatingPointTy() &&
   3503             !PhiTy->isPointerTy()) {
   3504           emitAnalysis(Report(it)
   3505                        << "loop control flow is not understood by vectorizer");
   3506           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
   3507           return false;
   3508         }
   3509 
   3510         // If this PHINode is not in the header block, then we know that we
   3511         // can convert it to select during if-conversion. No need to check if
   3512         // the PHIs in this block are induction or reduction variables.
   3513         if (*bb != Header) {
   3514           // Check that this instruction has no outside users or is an
   3515           // identified reduction value with an outside user.
   3516           if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
   3517             continue;
   3518           emitAnalysis(Report(it) << "value that could not be identified as "
   3519                                      "reduction is used outside the loop");
   3520           return false;
   3521         }
   3522 
   3523         // We only allow if-converted PHIs with more than two incoming values.
   3524         if (Phi->getNumIncomingValues() != 2) {
   3525           emitAnalysis(Report(it)
   3526                        << "control flow not understood by vectorizer");
   3527           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
   3528           return false;
   3529         }
   3530 
   3531         // This is the value coming from the preheader.
   3532         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
   3533         // Check if this is an induction variable.
   3534         InductionKind IK = isInductionVariable(Phi);
   3535 
   3536         if (IK_NoInduction != IK) {
   3537           // Get the widest type.
   3538           if (!WidestIndTy)
   3539             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
   3540           else
   3541             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
   3542 
   3543           // Int inductions are special because we only allow one IV.
   3544           if (IK == IK_IntInduction) {
   3545             // Use the phi node with the widest type as induction. Use the last
   3546             // one if there are multiple (no good reason for doing this other
   3547             // than it is expedient).
   3548             if (!Induction || PhiTy == WidestIndTy)
   3549               Induction = Phi;
   3550           }
   3551 
   3552           DEBUG(dbgs() << "LV: Found an induction variable.\n");
   3553           Inductions[Phi] = InductionInfo(StartValue, IK);
   3554 
   3555           // Until we explicitly handle the case of an induction variable with
   3556           // an outside loop user we have to give up vectorizing this loop.
   3557           if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
   3558             emitAnalysis(Report(it) << "use of induction value outside of the "
   3559                                        "loop is not handled by vectorizer");
   3560             return false;
   3561           }
   3562 
   3563           continue;
   3564         }
   3565 
   3566         if (AddReductionVar(Phi, RK_IntegerAdd)) {
   3567           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
   3568           continue;
   3569         }
   3570         if (AddReductionVar(Phi, RK_IntegerMult)) {
   3571           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
   3572           continue;
   3573         }
   3574         if (AddReductionVar(Phi, RK_IntegerOr)) {
   3575           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
   3576           continue;
   3577         }
   3578         if (AddReductionVar(Phi, RK_IntegerAnd)) {
   3579           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
   3580           continue;
   3581         }
   3582         if (AddReductionVar(Phi, RK_IntegerXor)) {
   3583           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
   3584           continue;
   3585         }
   3586         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
   3587           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
   3588           continue;
   3589         }
   3590         if (AddReductionVar(Phi, RK_FloatMult)) {
   3591           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
   3592           continue;
   3593         }
   3594         if (AddReductionVar(Phi, RK_FloatAdd)) {
   3595           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
   3596           continue;
   3597         }
   3598         if (AddReductionVar(Phi, RK_FloatMinMax)) {
   3599           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
   3600                 "\n");
   3601           continue;
   3602         }
   3603 
   3604         emitAnalysis(Report(it) << "unvectorizable operation");
   3605         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
   3606         return false;
   3607       }// end of PHI handling
   3608 
   3609       // We still don't handle functions. However, we can ignore dbg intrinsic
   3610       // calls and we do handle certain intrinsic and libm functions.
   3611       CallInst *CI = dyn_cast<CallInst>(it);
   3612       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
   3613         emitAnalysis(Report(it) << "call instruction cannot be vectorized");
   3614         DEBUG(dbgs() << "LV: Found a call site.\n");
   3615         return false;
   3616       }
   3617 
   3618       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
   3619       // second argument is the same (i.e. loop invariant)
   3620       if (CI &&
   3621           hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
   3622         if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
   3623           emitAnalysis(Report(it)
   3624                        << "intrinsic instruction cannot be vectorized");
   3625           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
   3626           return false;
   3627         }
   3628       }
   3629 
   3630       // Check that the instruction return type is vectorizable.
   3631       // Also, we can't vectorize extractelement instructions.
   3632       if ((!VectorType::isValidElementType(it->getType()) &&
   3633            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
   3634         emitAnalysis(Report(it)
   3635                      << "instruction return type cannot be vectorized");
   3636         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
   3637         return false;
   3638       }
   3639 
   3640       // Check that the stored type is vectorizable.
   3641       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
   3642         Type *T = ST->getValueOperand()->getType();
   3643         if (!VectorType::isValidElementType(T)) {
   3644           emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
   3645           return false;
   3646         }
   3647         if (EnableMemAccessVersioning)
   3648           collectStridedAcccess(ST);
   3649       }
   3650 
   3651       if (EnableMemAccessVersioning)
   3652         if (LoadInst *LI = dyn_cast<LoadInst>(it))
   3653           collectStridedAcccess(LI);
   3654 
   3655       // Reduction instructions are allowed to have exit users.
   3656       // All other instructions must not have external users.
   3657       if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
   3658         emitAnalysis(Report(it) << "value cannot be used outside the loop");
   3659         return false;
   3660       }
   3661 
   3662     } // next instr.
   3663 
   3664   }
   3665 
   3666   if (!Induction) {
   3667     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
   3668     if (Inductions.empty()) {
   3669       emitAnalysis(Report()
   3670                    << "loop induction variable could not be identified");
   3671       return false;
   3672     }
   3673   }
   3674 
   3675   return true;
   3676 }
   3677 
   3678 ///\brief Remove GEPs whose indices but the last one are loop invariant and
   3679 /// return the induction operand of the gep pointer.
   3680 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
   3681                                  const DataLayout *DL, Loop *Lp) {
   3682   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
   3683   if (!GEP)
   3684     return Ptr;
   3685 
   3686   unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
   3687 
   3688   // Check that all of the gep indices are uniform except for our induction
   3689   // operand.
   3690   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
   3691     if (i != InductionOperand &&
   3692         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
   3693       return Ptr;
   3694   return GEP->getOperand(InductionOperand);
   3695 }
   3696 
   3697 ///\brief Look for a cast use of the passed value.
   3698 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
   3699   Value *UniqueCast = nullptr;
   3700   for (User *U : Ptr->users()) {
   3701     CastInst *CI = dyn_cast<CastInst>(U);
   3702     if (CI && CI->getType() == Ty) {
   3703       if (!UniqueCast)
   3704         UniqueCast = CI;
   3705       else
   3706         return nullptr;
   3707     }
   3708   }
   3709   return UniqueCast;
   3710 }
   3711 
   3712 ///\brief Get the stride of a pointer access in a loop.
   3713 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
   3714 /// pointer to the Value, or null otherwise.
   3715 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
   3716                                    const DataLayout *DL, Loop *Lp) {
   3717   const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
   3718   if (!PtrTy || PtrTy->isAggregateType())
   3719     return nullptr;
   3720 
   3721   // Try to remove a gep instruction to make the pointer (actually index at this
   3722   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
   3723   // pointer, otherwise, we are analyzing the index.
   3724   Value *OrigPtr = Ptr;
   3725 
   3726   // The size of the pointer access.
   3727   int64_t PtrAccessSize = 1;
   3728 
   3729   Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
   3730   const SCEV *V = SE->getSCEV(Ptr);
   3731 
   3732   if (Ptr != OrigPtr)
   3733     // Strip off casts.
   3734     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
   3735       V = C->getOperand();
   3736 
   3737   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
   3738   if (!S)
   3739     return nullptr;
   3740 
   3741   V = S->getStepRecurrence(*SE);
   3742   if (!V)
   3743     return nullptr;
   3744 
   3745   // Strip off the size of access multiplication if we are still analyzing the
   3746   // pointer.
   3747   if (OrigPtr == Ptr) {
   3748     DL->getTypeAllocSize(PtrTy->getElementType());
   3749     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
   3750       if (M->getOperand(0)->getSCEVType() != scConstant)
   3751         return nullptr;
   3752 
   3753       const APInt &APStepVal =
   3754           cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
   3755 
   3756       // Huge step value - give up.
   3757       if (APStepVal.getBitWidth() > 64)
   3758         return nullptr;
   3759 
   3760       int64_t StepVal = APStepVal.getSExtValue();
   3761       if (PtrAccessSize != StepVal)
   3762         return nullptr;
   3763       V = M->getOperand(1);
   3764     }
   3765   }
   3766 
   3767   // Strip off casts.
   3768   Type *StripedOffRecurrenceCast = nullptr;
   3769   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
   3770     StripedOffRecurrenceCast = C->getType();
   3771     V = C->getOperand();
   3772   }
   3773 
   3774   // Look for the loop invariant symbolic value.
   3775   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
   3776   if (!U)
   3777     return nullptr;
   3778 
   3779   Value *Stride = U->getValue();
   3780   if (!Lp->isLoopInvariant(Stride))
   3781     return nullptr;
   3782 
   3783   // If we have stripped off the recurrence cast we have to make sure that we
   3784   // return the value that is used in this loop so that we can replace it later.
   3785   if (StripedOffRecurrenceCast)
   3786     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
   3787 
   3788   return Stride;
   3789 }
   3790 
   3791 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
   3792   Value *Ptr = nullptr;
   3793   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
   3794     Ptr = LI->getPointerOperand();
   3795   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
   3796     Ptr = SI->getPointerOperand();
   3797   else
   3798     return;
   3799 
   3800   Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
   3801   if (!Stride)
   3802     return;
   3803 
   3804   DEBUG(dbgs() << "LV: Found a strided access that we can version");
   3805   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
   3806   Strides[Ptr] = Stride;
   3807   StrideSet.insert(Stride);
   3808 }
   3809 
   3810 void LoopVectorizationLegality::collectLoopUniforms() {
   3811   // We now know that the loop is vectorizable!
   3812   // Collect variables that will remain uniform after vectorization.
   3813   std::vector<Value*> Worklist;
   3814   BasicBlock *Latch = TheLoop->getLoopLatch();
   3815 
   3816   // Start with the conditional branch and walk up the block.
   3817   Worklist.push_back(Latch->getTerminator()->getOperand(0));
   3818 
   3819   // Also add all consecutive pointer values; these values will be uniform
   3820   // after vectorization (and subsequent cleanup) and, until revectorization is
   3821   // supported, all dependencies must also be uniform.
   3822   for (Loop::block_iterator B = TheLoop->block_begin(),
   3823        BE = TheLoop->block_end(); B != BE; ++B)
   3824     for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
   3825          I != IE; ++I)
   3826       if (I->getType()->isPointerTy() && isConsecutivePtr(I))
   3827         Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
   3828 
   3829   while (Worklist.size()) {
   3830     Instruction *I = dyn_cast<Instruction>(Worklist.back());
   3831     Worklist.pop_back();
   3832 
   3833     // Look at instructions inside this loop.
   3834     // Stop when reaching PHI nodes.
   3835     // TODO: we need to follow values all over the loop, not only in this block.
   3836     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
   3837       continue;
   3838 
   3839     // This is a known uniform.
   3840     Uniforms.insert(I);
   3841 
   3842     // Insert all operands.
   3843     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
   3844   }
   3845 }
   3846 
   3847 namespace {
   3848 /// \brief Analyses memory accesses in a loop.
   3849 ///
   3850 /// Checks whether run time pointer checks are needed and builds sets for data
   3851 /// dependence checking.
   3852 class AccessAnalysis {
   3853 public:
   3854   /// \brief Read or write access location.
   3855   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   3856   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
   3857 
   3858   /// \brief Set of potential dependent memory accesses.
   3859   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
   3860 
   3861   AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) :
   3862     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
   3863     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
   3864 
   3865   /// \brief Register a load  and whether it is only read from.
   3866   void addLoad(Value *Ptr, bool IsReadOnly) {
   3867     Accesses.insert(MemAccessInfo(Ptr, false));
   3868     if (IsReadOnly)
   3869       ReadOnlyPtr.insert(Ptr);
   3870   }
   3871 
   3872   /// \brief Register a store.
   3873   void addStore(Value *Ptr) {
   3874     Accesses.insert(MemAccessInfo(Ptr, true));
   3875   }
   3876 
   3877   /// \brief Check whether we can check the pointers at runtime for
   3878   /// non-intersection.
   3879   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
   3880                        unsigned &NumComparisons, ScalarEvolution *SE,
   3881                        Loop *TheLoop, ValueToValueMap &Strides,
   3882                        bool ShouldCheckStride = false);
   3883 
   3884   /// \brief Goes over all memory accesses, checks whether a RT check is needed
   3885   /// and builds sets of dependent accesses.
   3886   void buildDependenceSets() {
   3887     // Process read-write pointers first.
   3888     processMemAccesses(false);
   3889     // Next, process read pointers.
   3890     processMemAccesses(true);
   3891   }
   3892 
   3893   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
   3894 
   3895   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
   3896   void resetDepChecks() { CheckDeps.clear(); }
   3897 
   3898   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
   3899 
   3900 private:
   3901   typedef SetVector<MemAccessInfo> PtrAccessSet;
   3902   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
   3903 
   3904   /// \brief Go over all memory access or only the deferred ones if
   3905   /// \p UseDeferred is true and check whether runtime pointer checks are needed
   3906   /// and build sets of dependency check candidates.
   3907   void processMemAccesses(bool UseDeferred);
   3908 
   3909   /// Set of all accesses.
   3910   PtrAccessSet Accesses;
   3911 
   3912   /// Set of access to check after all writes have been processed.
   3913   PtrAccessSet DeferredAccesses;
   3914 
   3915   /// Map of pointers to last access encountered.
   3916   UnderlyingObjToAccessMap ObjToLastAccess;
   3917 
   3918   /// Set of accesses that need a further dependence check.
   3919   MemAccessInfoSet CheckDeps;
   3920 
   3921   /// Set of pointers that are read only.
   3922   SmallPtrSet<Value*, 16> ReadOnlyPtr;
   3923 
   3924   /// Set of underlying objects already written to.
   3925   SmallPtrSet<Value*, 16> WriteObjects;
   3926 
   3927   const DataLayout *DL;
   3928 
   3929   /// Sets of potentially dependent accesses - members of one set share an
   3930   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
   3931   /// dependence check.
   3932   DepCandidates &DepCands;
   3933 
   3934   bool AreAllWritesIdentified;
   3935   bool AreAllReadsIdentified;
   3936   bool IsRTCheckNeeded;
   3937 };
   3938 
   3939 } // end anonymous namespace
   3940 
   3941 /// \brief Check whether a pointer can participate in a runtime bounds check.
   3942 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
   3943                                 Value *Ptr) {
   3944   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
   3945   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   3946   if (!AR)
   3947     return false;
   3948 
   3949   return AR->isAffine();
   3950 }
   3951 
   3952 /// \brief Check the stride of the pointer and ensure that it does not wrap in
   3953 /// the address space.
   3954 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
   3955                         const Loop *Lp, ValueToValueMap &StridesMap);
   3956 
   3957 bool AccessAnalysis::canCheckPtrAtRT(
   3958     LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
   3959     unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
   3960     ValueToValueMap &StridesMap, bool ShouldCheckStride) {
   3961   // Find pointers with computable bounds. We are going to use this information
   3962   // to place a runtime bound check.
   3963   unsigned NumReadPtrChecks = 0;
   3964   unsigned NumWritePtrChecks = 0;
   3965   bool CanDoRT = true;
   3966 
   3967   bool IsDepCheckNeeded = isDependencyCheckNeeded();
   3968   // We assign consecutive id to access from different dependence sets.
   3969   // Accesses within the same set don't need a runtime check.
   3970   unsigned RunningDepId = 1;
   3971   DenseMap<Value *, unsigned> DepSetId;
   3972 
   3973   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
   3974        AI != AE; ++AI) {
   3975     const MemAccessInfo &Access = *AI;
   3976     Value *Ptr = Access.getPointer();
   3977     bool IsWrite = Access.getInt();
   3978 
   3979     // Just add write checks if we have both.
   3980     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
   3981       continue;
   3982 
   3983     if (IsWrite)
   3984       ++NumWritePtrChecks;
   3985     else
   3986       ++NumReadPtrChecks;
   3987 
   3988     if (hasComputableBounds(SE, StridesMap, Ptr) &&
   3989         // When we run after a failing dependency check we have to make sure we
   3990         // don't have wrapping pointers.
   3991         (!ShouldCheckStride ||
   3992          isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
   3993       // The id of the dependence set.
   3994       unsigned DepId;
   3995 
   3996       if (IsDepCheckNeeded) {
   3997         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
   3998         unsigned &LeaderId = DepSetId[Leader];
   3999         if (!LeaderId)
   4000           LeaderId = RunningDepId++;
   4001         DepId = LeaderId;
   4002       } else
   4003         // Each access has its own dependence set.
   4004         DepId = RunningDepId++;
   4005 
   4006       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap);
   4007 
   4008       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
   4009     } else {
   4010       CanDoRT = false;
   4011     }
   4012   }
   4013 
   4014   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
   4015     NumComparisons = 0; // Only one dependence set.
   4016   else {
   4017     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
   4018                                            NumWritePtrChecks - 1));
   4019   }
   4020 
   4021   // If the pointers that we would use for the bounds comparison have different
   4022   // address spaces, assume the values aren't directly comparable, so we can't
   4023   // use them for the runtime check. We also have to assume they could
   4024   // overlap. In the future there should be metadata for whether address spaces
   4025   // are disjoint.
   4026   unsigned NumPointers = RtCheck.Pointers.size();
   4027   for (unsigned i = 0; i < NumPointers; ++i) {
   4028     for (unsigned j = i + 1; j < NumPointers; ++j) {
   4029       // Only need to check pointers between two different dependency sets.
   4030       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
   4031        continue;
   4032 
   4033       Value *PtrI = RtCheck.Pointers[i];
   4034       Value *PtrJ = RtCheck.Pointers[j];
   4035 
   4036       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
   4037       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
   4038       if (ASi != ASj) {
   4039         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
   4040                        " different address spaces\n");
   4041         return false;
   4042       }
   4043     }
   4044   }
   4045 
   4046   return CanDoRT;
   4047 }
   4048 
   4049 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
   4050   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
   4051 }
   4052 
   4053 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
   4054   // We process the set twice: first we process read-write pointers, last we
   4055   // process read-only pointers. This allows us to skip dependence tests for
   4056   // read-only pointers.
   4057 
   4058   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
   4059   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
   4060     const MemAccessInfo &Access = *AI;
   4061     Value *Ptr = Access.getPointer();
   4062     bool IsWrite = Access.getInt();
   4063 
   4064     DepCands.insert(Access);
   4065 
   4066     // Memorize read-only pointers for later processing and skip them in the
   4067     // first round (they need to be checked after we have seen all write
   4068     // pointers). Note: we also mark pointer that are not consecutive as
   4069     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
   4070     // second check for "!IsWrite".
   4071     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
   4072     if (!UseDeferred && IsReadOnlyPtr) {
   4073       DeferredAccesses.insert(Access);
   4074       continue;
   4075     }
   4076 
   4077     bool NeedDepCheck = false;
   4078     // Check whether there is the possibility of dependency because of
   4079     // underlying objects being the same.
   4080     typedef SmallVector<Value*, 16> ValueVector;
   4081     ValueVector TempObjects;
   4082     GetUnderlyingObjects(Ptr, TempObjects, DL);
   4083     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
   4084          UI != UE; ++UI) {
   4085       Value *UnderlyingObj = *UI;
   4086 
   4087       // If this is a write then it needs to be an identified object.  If this a
   4088       // read and all writes (so far) are identified function scope objects we
   4089       // don't need an identified underlying object but only an Argument (the
   4090       // next write is going to invalidate this assumption if it is
   4091       // unidentified).
   4092       // This is a micro-optimization for the case where all writes are
   4093       // identified and we have one argument pointer.
   4094       // Otherwise, we do need a runtime check.
   4095       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
   4096           (!IsWrite && (!AreAllWritesIdentified ||
   4097                         !isa<Argument>(UnderlyingObj)) &&
   4098            !isIdentifiedObject(UnderlyingObj))) {
   4099         DEBUG(dbgs() << "LV: Found an unidentified " <<
   4100               (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
   4101               "\n");
   4102         IsRTCheckNeeded = (IsRTCheckNeeded ||
   4103                            !isIdentifiedObject(UnderlyingObj) ||
   4104                            !AreAllReadsIdentified);
   4105 
   4106         if (IsWrite)
   4107           AreAllWritesIdentified = false;
   4108         if (!IsWrite)
   4109           AreAllReadsIdentified = false;
   4110       }
   4111 
   4112       // If this is a write - check other reads and writes for conflicts.  If
   4113       // this is a read only check other writes for conflicts (but only if there
   4114       // is no other write to the ptr - this is an optimization to catch "a[i] =
   4115       // a[i] + " without having to do a dependence check).
   4116       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
   4117         NeedDepCheck = true;
   4118 
   4119       if (IsWrite)
   4120         WriteObjects.insert(UnderlyingObj);
   4121 
   4122       // Create sets of pointers connected by shared underlying objects.
   4123       UnderlyingObjToAccessMap::iterator Prev =
   4124         ObjToLastAccess.find(UnderlyingObj);
   4125       if (Prev != ObjToLastAccess.end())
   4126         DepCands.unionSets(Access, Prev->second);
   4127 
   4128       ObjToLastAccess[UnderlyingObj] = Access;
   4129     }
   4130 
   4131     if (NeedDepCheck)
   4132       CheckDeps.insert(Access);
   4133   }
   4134 }
   4135 
   4136 namespace {
   4137 /// \brief Checks memory dependences among accesses to the same underlying
   4138 /// object to determine whether there vectorization is legal or not (and at
   4139 /// which vectorization factor).
   4140 ///
   4141 /// This class works under the assumption that we already checked that memory
   4142 /// locations with different underlying pointers are "must-not alias".
   4143 /// We use the ScalarEvolution framework to symbolically evalutate access
   4144 /// functions pairs. Since we currently don't restructure the loop we can rely
   4145 /// on the program order of memory accesses to determine their safety.
   4146 /// At the moment we will only deem accesses as safe for:
   4147 ///  * A negative constant distance assuming program order.
   4148 ///
   4149 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
   4150 ///            a[i] = tmp;                y = a[i];
   4151 ///
   4152 ///   The latter case is safe because later checks guarantuee that there can't
   4153 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
   4154 ///   the same variable: a header phi can only be an induction or a reduction, a
   4155 ///   reduction can't have a memory sink, an induction can't have a memory
   4156 ///   source). This is important and must not be violated (or we have to
   4157 ///   resort to checking for cycles through memory).
   4158 ///
   4159 ///  * A positive constant distance assuming program order that is bigger
   4160 ///    than the biggest memory access.
   4161 ///
   4162 ///     tmp = a[i]        OR              b[i] = x
   4163 ///     a[i+2] = tmp                      y = b[i+2];
   4164 ///
   4165 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
   4166 ///
   4167 ///  * Zero distances and all accesses have the same size.
   4168 ///
   4169 class MemoryDepChecker {
   4170 public:
   4171   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   4172   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
   4173 
   4174   MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
   4175       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
   4176         ShouldRetryWithRuntimeCheck(false) {}
   4177 
   4178   /// \brief Register the location (instructions are given increasing numbers)
   4179   /// of a write access.
   4180   void addAccess(StoreInst *SI) {
   4181     Value *Ptr = SI->getPointerOperand();
   4182     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
   4183     InstMap.push_back(SI);
   4184     ++AccessIdx;
   4185   }
   4186 
   4187   /// \brief Register the location (instructions are given increasing numbers)
   4188   /// of a write access.
   4189   void addAccess(LoadInst *LI) {
   4190     Value *Ptr = LI->getPointerOperand();
   4191     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
   4192     InstMap.push_back(LI);
   4193     ++AccessIdx;
   4194   }
   4195 
   4196   /// \brief Check whether the dependencies between the accesses are safe.
   4197   ///
   4198   /// Only checks sets with elements in \p CheckDeps.
   4199   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
   4200                    MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
   4201 
   4202   /// \brief The maximum number of bytes of a vector register we can vectorize
   4203   /// the accesses safely with.
   4204   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
   4205 
   4206   /// \brief In same cases when the dependency check fails we can still
   4207   /// vectorize the loop with a dynamic array access check.
   4208   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
   4209 
   4210 private:
   4211   ScalarEvolution *SE;
   4212   const DataLayout *DL;
   4213   const Loop *InnermostLoop;
   4214 
   4215   /// \brief Maps access locations (ptr, read/write) to program order.
   4216   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
   4217 
   4218   /// \brief Memory access instructions in program order.
   4219   SmallVector<Instruction *, 16> InstMap;
   4220 
   4221   /// \brief The program order index to be used for the next instruction.
   4222   unsigned AccessIdx;
   4223 
   4224   // We can access this many bytes in parallel safely.
   4225   unsigned MaxSafeDepDistBytes;
   4226 
   4227   /// \brief If we see a non-constant dependence distance we can still try to
   4228   /// vectorize this loop with runtime checks.
   4229   bool ShouldRetryWithRuntimeCheck;
   4230 
   4231   /// \brief Check whether there is a plausible dependence between the two
   4232   /// accesses.
   4233   ///
   4234   /// Access \p A must happen before \p B in program order. The two indices
   4235   /// identify the index into the program order map.
   4236   ///
   4237   /// This function checks  whether there is a plausible dependence (or the
   4238   /// absence of such can't be proved) between the two accesses. If there is a
   4239   /// plausible dependence but the dependence distance is bigger than one
   4240   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
   4241   /// distance is smaller than any other distance encountered so far).
   4242   /// Otherwise, this function returns true signaling a possible dependence.
   4243   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
   4244                    const MemAccessInfo &B, unsigned BIdx,
   4245                    ValueToValueMap &Strides);
   4246 
   4247   /// \brief Check whether the data dependence could prevent store-load
   4248   /// forwarding.
   4249   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
   4250 };
   4251 
   4252 } // end anonymous namespace
   4253 
   4254 static bool isInBoundsGep(Value *Ptr) {
   4255   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
   4256     return GEP->isInBounds();
   4257   return false;
   4258 }
   4259 
   4260 /// \brief Check whether the access through \p Ptr has a constant stride.
   4261 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
   4262                         const Loop *Lp, ValueToValueMap &StridesMap) {
   4263   const Type *Ty = Ptr->getType();
   4264   assert(Ty->isPointerTy() && "Unexpected non-ptr");
   4265 
   4266   // Make sure that the pointer does not point to aggregate types.
   4267   const PointerType *PtrTy = cast<PointerType>(Ty);
   4268   if (PtrTy->getElementType()->isAggregateType()) {
   4269     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
   4270           "\n");
   4271     return 0;
   4272   }
   4273 
   4274   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
   4275 
   4276   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   4277   if (!AR) {
   4278     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
   4279           << *Ptr << " SCEV: " << *PtrScev << "\n");
   4280     return 0;
   4281   }
   4282 
   4283   // The accesss function must stride over the innermost loop.
   4284   if (Lp != AR->getLoop()) {
   4285     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
   4286           *Ptr << " SCEV: " << *PtrScev << "\n");
   4287   }
   4288 
   4289   // The address calculation must not wrap. Otherwise, a dependence could be
   4290   // inverted.
   4291   // An inbounds getelementptr that is a AddRec with a unit stride
   4292   // cannot wrap per definition. The unit stride requirement is checked later.
   4293   // An getelementptr without an inbounds attribute and unit stride would have
   4294   // to access the pointer value "0" which is undefined behavior in address
   4295   // space 0, therefore we can also vectorize this case.
   4296   bool IsInBoundsGEP = isInBoundsGep(Ptr);
   4297   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
   4298   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
   4299   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
   4300     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
   4301           << *Ptr << " SCEV: " << *PtrScev << "\n");
   4302     return 0;
   4303   }
   4304 
   4305   // Check the step is constant.
   4306   const SCEV *Step = AR->getStepRecurrence(*SE);
   4307 
   4308   // Calculate the pointer stride and check if it is consecutive.
   4309   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   4310   if (!C) {
   4311     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
   4312           " SCEV: " << *PtrScev << "\n");
   4313     return 0;
   4314   }
   4315 
   4316   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
   4317   const APInt &APStepVal = C->getValue()->getValue();
   4318 
   4319   // Huge step value - give up.
   4320   if (APStepVal.getBitWidth() > 64)
   4321     return 0;
   4322 
   4323   int64_t StepVal = APStepVal.getSExtValue();
   4324 
   4325   // Strided access.
   4326   int64_t Stride = StepVal / Size;
   4327   int64_t Rem = StepVal % Size;
   4328   if (Rem)
   4329     return 0;
   4330 
   4331   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
   4332   // know we can't "wrap around the address space". In case of address space
   4333   // zero we know that this won't happen without triggering undefined behavior.
   4334   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
   4335       Stride != 1 && Stride != -1)
   4336     return 0;
   4337 
   4338   return Stride;
   4339 }
   4340 
   4341 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
   4342                                                     unsigned TypeByteSize) {
   4343   // If loads occur at a distance that is not a multiple of a feasible vector
   4344   // factor store-load forwarding does not take place.
   4345   // Positive dependences might cause troubles because vectorizing them might
   4346   // prevent store-load forwarding making vectorized code run a lot slower.
   4347   //   a[i] = a[i-3] ^ a[i-8];
   4348   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
   4349   //   hence on your typical architecture store-load forwarding does not take
   4350   //   place. Vectorizing in such cases does not make sense.
   4351   // Store-load forwarding distance.
   4352   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
   4353   // Maximum vector factor.
   4354   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
   4355   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
   4356     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
   4357 
   4358   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
   4359        vf *= 2) {
   4360     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
   4361       MaxVFWithoutSLForwardIssues = (vf >>=1);
   4362       break;
   4363     }
   4364   }
   4365 
   4366   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
   4367     DEBUG(dbgs() << "LV: Distance " << Distance <<
   4368           " that could cause a store-load forwarding conflict\n");
   4369     return true;
   4370   }
   4371 
   4372   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
   4373       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
   4374     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
   4375   return false;
   4376 }
   4377 
   4378 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   4379                                    const MemAccessInfo &B, unsigned BIdx,
   4380                                    ValueToValueMap &Strides) {
   4381   assert (AIdx < BIdx && "Must pass arguments in program order");
   4382 
   4383   Value *APtr = A.getPointer();
   4384   Value *BPtr = B.getPointer();
   4385   bool AIsWrite = A.getInt();
   4386   bool BIsWrite = B.getInt();
   4387 
   4388   // Two reads are independent.
   4389   if (!AIsWrite && !BIsWrite)
   4390     return false;
   4391 
   4392   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
   4393   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
   4394 
   4395   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
   4396   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
   4397 
   4398   const SCEV *Src = AScev;
   4399   const SCEV *Sink = BScev;
   4400 
   4401   // If the induction step is negative we have to invert source and sink of the
   4402   // dependence.
   4403   if (StrideAPtr < 0) {
   4404     //Src = BScev;
   4405     //Sink = AScev;
   4406     std::swap(APtr, BPtr);
   4407     std::swap(Src, Sink);
   4408     std::swap(AIsWrite, BIsWrite);
   4409     std::swap(AIdx, BIdx);
   4410     std::swap(StrideAPtr, StrideBPtr);
   4411   }
   4412 
   4413   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
   4414 
   4415   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
   4416         << "(Induction step: " << StrideAPtr <<  ")\n");
   4417   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
   4418         << *InstMap[BIdx] << ": " << *Dist << "\n");
   4419 
   4420   // Need consecutive accesses. We don't want to vectorize
   4421   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
   4422   // the address space.
   4423   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
   4424     DEBUG(dbgs() << "Non-consecutive pointer access\n");
   4425     return true;
   4426   }
   4427 
   4428   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   4429   if (!C) {
   4430     DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
   4431     ShouldRetryWithRuntimeCheck = true;
   4432     return true;
   4433   }
   4434 
   4435   Type *ATy = APtr->getType()->getPointerElementType();
   4436   Type *BTy = BPtr->getType()->getPointerElementType();
   4437   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
   4438 
   4439   // Negative distances are not plausible dependencies.
   4440   const APInt &Val = C->getValue()->getValue();
   4441   if (Val.isNegative()) {
   4442     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
   4443     if (IsTrueDataDependence &&
   4444         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
   4445          ATy != BTy))
   4446       return true;
   4447 
   4448     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
   4449     return false;
   4450   }
   4451 
   4452   // Write to the same location with the same size.
   4453   // Could be improved to assert type sizes are the same (i32 == float, etc).
   4454   if (Val == 0) {
   4455     if (ATy == BTy)
   4456       return false;
   4457     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
   4458     return true;
   4459   }
   4460 
   4461   assert(Val.isStrictlyPositive() && "Expect a positive value");
   4462 
   4463   // Positive distance bigger than max vectorization factor.
   4464   if (ATy != BTy) {
   4465     DEBUG(dbgs() <<
   4466           "LV: ReadWrite-Write positive dependency with different types\n");
   4467     return false;
   4468   }
   4469 
   4470   unsigned Distance = (unsigned) Val.getZExtValue();
   4471 
   4472   // Bail out early if passed-in parameters make vectorization not feasible.
   4473   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
   4474   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
   4475 
   4476   // The distance must be bigger than the size needed for a vectorized version
   4477   // of the operation and the size of the vectorized operation must not be
   4478   // bigger than the currrent maximum size.
   4479   if (Distance < 2*TypeByteSize ||
   4480       2*TypeByteSize > MaxSafeDepDistBytes ||
   4481       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
   4482     DEBUG(dbgs() << "LV: Failure because of Positive distance "
   4483         << Val.getSExtValue() << '\n');
   4484     return true;
   4485   }
   4486 
   4487   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
   4488     Distance : MaxSafeDepDistBytes;
   4489 
   4490   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
   4491   if (IsTrueDataDependence &&
   4492       couldPreventStoreLoadForward(Distance, TypeByteSize))
   4493      return true;
   4494 
   4495   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
   4496         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
   4497 
   4498   return false;
   4499 }
   4500 
   4501 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
   4502                                    MemAccessInfoSet &CheckDeps,
   4503                                    ValueToValueMap &Strides) {
   4504 
   4505   MaxSafeDepDistBytes = -1U;
   4506   while (!CheckDeps.empty()) {
   4507     MemAccessInfo CurAccess = *CheckDeps.begin();
   4508 
   4509     // Get the relevant memory access set.
   4510     EquivalenceClasses<MemAccessInfo>::iterator I =
   4511       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
   4512 
   4513     // Check accesses within this set.
   4514     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
   4515     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
   4516 
   4517     // Check every access pair.
   4518     while (AI != AE) {
   4519       CheckDeps.erase(*AI);
   4520       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
   4521       while (OI != AE) {
   4522         // Check every accessing instruction pair in program order.
   4523         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
   4524              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
   4525           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
   4526                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
   4527             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
   4528               return false;
   4529             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
   4530               return false;
   4531           }
   4532         ++OI;
   4533       }
   4534       AI++;
   4535     }
   4536   }
   4537   return true;
   4538 }
   4539 
   4540 bool LoopVectorizationLegality::canVectorizeMemory() {
   4541 
   4542   typedef SmallVector<Value*, 16> ValueVector;
   4543   typedef SmallPtrSet<Value*, 16> ValueSet;
   4544 
   4545   // Holds the Load and Store *instructions*.
   4546   ValueVector Loads;
   4547   ValueVector Stores;
   4548 
   4549   // Holds all the different accesses in the loop.
   4550   unsigned NumReads = 0;
   4551   unsigned NumReadWrites = 0;
   4552 
   4553   PtrRtCheck.Pointers.clear();
   4554   PtrRtCheck.Need = false;
   4555 
   4556   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
   4557   MemoryDepChecker DepChecker(SE, DL, TheLoop);
   4558 
   4559   // For each block.
   4560   for (Loop::block_iterator bb = TheLoop->block_begin(),
   4561        be = TheLoop->block_end(); bb != be; ++bb) {
   4562 
   4563     // Scan the BB and collect legal loads and stores.
   4564     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   4565          ++it) {
   4566 
   4567       // If this is a load, save it. If this instruction can read from memory
   4568       // but is not a load, then we quit. Notice that we don't handle function
   4569       // calls that read or write.
   4570       if (it->mayReadFromMemory()) {
   4571         // Many math library functions read the rounding mode. We will only
   4572         // vectorize a loop if it contains known function calls that don't set
   4573         // the flag. Therefore, it is safe to ignore this read from memory.
   4574         CallInst *Call = dyn_cast<CallInst>(it);
   4575         if (Call && getIntrinsicIDForCall(Call, TLI))
   4576           continue;
   4577 
   4578         LoadInst *Ld = dyn_cast<LoadInst>(it);
   4579         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
   4580           emitAnalysis(Report(Ld)
   4581                        << "read with atomic ordering or volatile read");
   4582           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
   4583           return false;
   4584         }
   4585         NumLoads++;
   4586         Loads.push_back(Ld);
   4587         DepChecker.addAccess(Ld);
   4588         continue;
   4589       }
   4590 
   4591       // Save 'store' instructions. Abort if other instructions write to memory.
   4592       if (it->mayWriteToMemory()) {
   4593         StoreInst *St = dyn_cast<StoreInst>(it);
   4594         if (!St) {
   4595           emitAnalysis(Report(it) << "instruction cannot be vectorized");
   4596           return false;
   4597         }
   4598         if (!St->isSimple() && !IsAnnotatedParallel) {
   4599           emitAnalysis(Report(St)
   4600                        << "write with atomic ordering or volatile write");
   4601           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
   4602           return false;
   4603         }
   4604         NumStores++;
   4605         Stores.push_back(St);
   4606         DepChecker.addAccess(St);
   4607       }
   4608     } // Next instr.
   4609   } // Next block.
   4610 
   4611   // Now we have two lists that hold the loads and the stores.
   4612   // Next, we find the pointers that they use.
   4613 
   4614   // Check if we see any stores. If there are no stores, then we don't
   4615   // care if the pointers are *restrict*.
   4616   if (!Stores.size()) {
   4617     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
   4618     return true;
   4619   }
   4620 
   4621   AccessAnalysis::DepCandidates DependentAccesses;
   4622   AccessAnalysis Accesses(DL, DependentAccesses);
   4623 
   4624   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
   4625   // multiple times on the same object. If the ptr is accessed twice, once
   4626   // for read and once for write, it will only appear once (on the write
   4627   // list). This is okay, since we are going to check for conflicts between
   4628   // writes and between reads and writes, but not between reads and reads.
   4629   ValueSet Seen;
   4630 
   4631   ValueVector::iterator I, IE;
   4632   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
   4633     StoreInst *ST = cast<StoreInst>(*I);
   4634     Value* Ptr = ST->getPointerOperand();
   4635 
   4636     if (isUniform(Ptr)) {
   4637       emitAnalysis(
   4638           Report(ST)
   4639           << "write to a loop invariant address could not be vectorized");
   4640       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
   4641       return false;
   4642     }
   4643 
   4644     // If we did *not* see this pointer before, insert it to  the read-write
   4645     // list. At this phase it is only a 'write' list.
   4646     if (Seen.insert(Ptr)) {
   4647       ++NumReadWrites;
   4648       Accesses.addStore(Ptr);
   4649     }
   4650   }
   4651 
   4652   if (IsAnnotatedParallel) {
   4653     DEBUG(dbgs()
   4654           << "LV: A loop annotated parallel, ignore memory dependency "
   4655           << "checks.\n");
   4656     return true;
   4657   }
   4658 
   4659   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
   4660     LoadInst *LD = cast<LoadInst>(*I);
   4661     Value* Ptr = LD->getPointerOperand();
   4662     // If we did *not* see this pointer before, insert it to the
   4663     // read list. If we *did* see it before, then it is already in
   4664     // the read-write list. This allows us to vectorize expressions
   4665     // such as A[i] += x;  Because the address of A[i] is a read-write
   4666     // pointer. This only works if the index of A[i] is consecutive.
   4667     // If the address of i is unknown (for example A[B[i]]) then we may
   4668     // read a few words, modify, and write a few words, and some of the
   4669     // words may be written to the same address.
   4670     bool IsReadOnlyPtr = false;
   4671     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
   4672       ++NumReads;
   4673       IsReadOnlyPtr = true;
   4674     }
   4675     Accesses.addLoad(Ptr, IsReadOnlyPtr);
   4676   }
   4677 
   4678   // If we write (or read-write) to a single destination and there are no
   4679   // other reads in this loop then is it safe to vectorize.
   4680   if (NumReadWrites == 1 && NumReads == 0) {
   4681     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
   4682     return true;
   4683   }
   4684 
   4685   // Build dependence sets and check whether we need a runtime pointer bounds
   4686   // check.
   4687   Accesses.buildDependenceSets();
   4688   bool NeedRTCheck = Accesses.isRTCheckNeeded();
   4689 
   4690   // Find pointers with computable bounds. We are going to use this information
   4691   // to place a runtime bound check.
   4692   unsigned NumComparisons = 0;
   4693   bool CanDoRT = false;
   4694   if (NeedRTCheck)
   4695     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
   4696                                        Strides);
   4697 
   4698   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
   4699         " pointer comparisons.\n");
   4700 
   4701   // If we only have one set of dependences to check pointers among we don't
   4702   // need a runtime check.
   4703   if (NumComparisons == 0 && NeedRTCheck)
   4704     NeedRTCheck = false;
   4705 
   4706   // Check that we did not collect too many pointers or found an unsizeable
   4707   // pointer.
   4708   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
   4709     PtrRtCheck.reset();
   4710     CanDoRT = false;
   4711   }
   4712 
   4713   if (CanDoRT) {
   4714     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
   4715   }
   4716 
   4717   if (NeedRTCheck && !CanDoRT) {
   4718     emitAnalysis(Report() << "cannot identify array bounds");
   4719     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
   4720           "the array bounds.\n");
   4721     PtrRtCheck.reset();
   4722     return false;
   4723   }
   4724 
   4725   PtrRtCheck.Need = NeedRTCheck;
   4726 
   4727   bool CanVecMem = true;
   4728   if (Accesses.isDependencyCheckNeeded()) {
   4729     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
   4730     CanVecMem = DepChecker.areDepsSafe(
   4731         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
   4732     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
   4733 
   4734     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
   4735       DEBUG(dbgs() << "LV: Retrying with memory checks\n");
   4736       NeedRTCheck = true;
   4737 
   4738       // Clear the dependency checks. We assume they are not needed.
   4739       Accesses.resetDepChecks();
   4740 
   4741       PtrRtCheck.reset();
   4742       PtrRtCheck.Need = true;
   4743 
   4744       CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
   4745                                          TheLoop, Strides, true);
   4746       // Check that we did not collect too many pointers or found an unsizeable
   4747       // pointer.
   4748       if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
   4749         if (!CanDoRT && NumComparisons > 0)
   4750           emitAnalysis(Report()
   4751                        << "cannot check memory dependencies at runtime");
   4752         else
   4753           emitAnalysis(Report()
   4754                        << NumComparisons << " exceeds limit of "
   4755                        << RuntimeMemoryCheckThreshold
   4756                        << " dependent memory operations checked at runtime");
   4757         DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
   4758         PtrRtCheck.reset();
   4759         return false;
   4760       }
   4761 
   4762       CanVecMem = true;
   4763     }
   4764   }
   4765 
   4766   if (!CanVecMem)
   4767     emitAnalysis(Report() << "unsafe dependent memory operations in loop");
   4768 
   4769   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
   4770         " need a runtime memory check.\n");
   4771 
   4772   return CanVecMem;
   4773 }
   4774 
   4775 static bool hasMultipleUsesOf(Instruction *I,
   4776                               SmallPtrSet<Instruction *, 8> &Insts) {
   4777   unsigned NumUses = 0;
   4778   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
   4779     if (Insts.count(dyn_cast<Instruction>(*Use)))
   4780       ++NumUses;
   4781     if (NumUses > 1)
   4782       return true;
   4783   }
   4784 
   4785   return false;
   4786 }
   4787 
   4788 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
   4789   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
   4790     if (!Set.count(dyn_cast<Instruction>(*Use)))
   4791       return false;
   4792   return true;
   4793 }
   4794 
   4795 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
   4796                                                 ReductionKind Kind) {
   4797   if (Phi->getNumIncomingValues() != 2)
   4798     return false;
   4799 
   4800   // Reduction variables are only found in the loop header block.
   4801   if (Phi->getParent() != TheLoop->getHeader())
   4802     return false;
   4803 
   4804   // Obtain the reduction start value from the value that comes from the loop
   4805   // preheader.
   4806   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
   4807 
   4808   // ExitInstruction is the single value which is used outside the loop.
   4809   // We only allow for a single reduction value to be used outside the loop.
   4810   // This includes users of the reduction, variables (which form a cycle
   4811   // which ends in the phi node).
   4812   Instruction *ExitInstruction = nullptr;
   4813   // Indicates that we found a reduction operation in our scan.
   4814   bool FoundReduxOp = false;
   4815 
   4816   // We start with the PHI node and scan for all of the users of this
   4817   // instruction. All users must be instructions that can be used as reduction
   4818   // variables (such as ADD). We must have a single out-of-block user. The cycle
   4819   // must include the original PHI.
   4820   bool FoundStartPHI = false;
   4821 
   4822   // To recognize min/max patterns formed by a icmp select sequence, we store
   4823   // the number of instruction we saw from the recognized min/max pattern,
   4824   //  to make sure we only see exactly the two instructions.
   4825   unsigned NumCmpSelectPatternInst = 0;
   4826   ReductionInstDesc ReduxDesc(false, nullptr);
   4827 
   4828   SmallPtrSet<Instruction *, 8> VisitedInsts;
   4829   SmallVector<Instruction *, 8> Worklist;
   4830   Worklist.push_back(Phi);
   4831   VisitedInsts.insert(Phi);
   4832 
   4833   // A value in the reduction can be used:
   4834   //  - By the reduction:
   4835   //      - Reduction operation:
   4836   //        - One use of reduction value (safe).
   4837   //        - Multiple use of reduction value (not safe).
   4838   //      - PHI:
   4839   //        - All uses of the PHI must be the reduction (safe).
   4840   //        - Otherwise, not safe.
   4841   //  - By one instruction outside of the loop (safe).
   4842   //  - By further instructions outside of the loop (not safe).
   4843   //  - By an instruction that is not part of the reduction (not safe).
   4844   //    This is either:
   4845   //      * An instruction type other than PHI or the reduction operation.
   4846   //      * A PHI in the header other than the initial PHI.
   4847   while (!Worklist.empty()) {
   4848     Instruction *Cur = Worklist.back();
   4849     Worklist.pop_back();
   4850 
   4851     // No Users.
   4852     // If the instruction has no users then this is a broken chain and can't be
   4853     // a reduction variable.
   4854     if (Cur->use_empty())
   4855       return false;
   4856 
   4857     bool IsAPhi = isa<PHINode>(Cur);
   4858 
   4859     // A header PHI use other than the original PHI.
   4860     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
   4861       return false;
   4862 
   4863     // Reductions of instructions such as Div, and Sub is only possible if the
   4864     // LHS is the reduction variable.
   4865     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
   4866         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
   4867         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
   4868       return false;
   4869 
   4870     // Any reduction instruction must be of one of the allowed kinds.
   4871     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
   4872     if (!ReduxDesc.IsReduction)
   4873       return false;
   4874 
   4875     // A reduction operation must only have one use of the reduction value.
   4876     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
   4877         hasMultipleUsesOf(Cur, VisitedInsts))
   4878       return false;
   4879 
   4880     // All inputs to a PHI node must be a reduction value.
   4881     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
   4882       return false;
   4883 
   4884     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
   4885                                      isa<SelectInst>(Cur)))
   4886       ++NumCmpSelectPatternInst;
   4887     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
   4888                                    isa<SelectInst>(Cur)))
   4889       ++NumCmpSelectPatternInst;
   4890 
   4891     // Check  whether we found a reduction operator.
   4892     FoundReduxOp |= !IsAPhi;
   4893 
   4894     // Process users of current instruction. Push non-PHI nodes after PHI nodes
   4895     // onto the stack. This way we are going to have seen all inputs to PHI
   4896     // nodes once we get to them.
   4897     SmallVector<Instruction *, 8> NonPHIs;
   4898     SmallVector<Instruction *, 8> PHIs;
   4899     for (User *U : Cur->users()) {
   4900       Instruction *UI = cast<Instruction>(U);
   4901 
   4902       // Check if we found the exit user.
   4903       BasicBlock *Parent = UI->getParent();
   4904       if (!TheLoop->contains(Parent)) {
   4905         // Exit if you find multiple outside users or if the header phi node is
   4906         // being used. In this case the user uses the value of the previous
   4907         // iteration, in which case we would loose "VF-1" iterations of the
   4908         // reduction operation if we vectorize.
   4909         if (ExitInstruction != nullptr || Cur == Phi)
   4910           return false;
   4911 
   4912         // The instruction used by an outside user must be the last instruction
   4913         // before we feed back to the reduction phi. Otherwise, we loose VF-1
   4914         // operations on the value.
   4915         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
   4916          return false;
   4917 
   4918         ExitInstruction = Cur;
   4919         continue;
   4920       }
   4921 
   4922       // Process instructions only once (termination). Each reduction cycle
   4923       // value must only be used once, except by phi nodes and min/max
   4924       // reductions which are represented as a cmp followed by a select.
   4925       ReductionInstDesc IgnoredVal(false, nullptr);
   4926       if (VisitedInsts.insert(UI)) {
   4927         if (isa<PHINode>(UI))
   4928           PHIs.push_back(UI);
   4929         else
   4930           NonPHIs.push_back(UI);
   4931       } else if (!isa<PHINode>(UI) &&
   4932                  ((!isa<FCmpInst>(UI) &&
   4933                    !isa<ICmpInst>(UI) &&
   4934                    !isa<SelectInst>(UI)) ||
   4935                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
   4936         return false;
   4937 
   4938       // Remember that we completed the cycle.
   4939       if (UI == Phi)
   4940         FoundStartPHI = true;
   4941     }
   4942     Worklist.append(PHIs.begin(), PHIs.end());
   4943     Worklist.append(NonPHIs.begin(), NonPHIs.end());
   4944   }
   4945 
   4946   // This means we have seen one but not the other instruction of the
   4947   // pattern or more than just a select and cmp.
   4948   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
   4949       NumCmpSelectPatternInst != 2)
   4950     return false;
   4951 
   4952   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
   4953     return false;
   4954 
   4955   // We found a reduction var if we have reached the original phi node and we
   4956   // only have a single instruction with out-of-loop users.
   4957 
   4958   // This instruction is allowed to have out-of-loop users.
   4959   AllowedExit.insert(ExitInstruction);
   4960 
   4961   // Save the description of this reduction variable.
   4962   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
   4963                          ReduxDesc.MinMaxKind);
   4964   Reductions[Phi] = RD;
   4965   // We've ended the cycle. This is a reduction variable if we have an
   4966   // outside user and it has a binary op.
   4967 
   4968   return true;
   4969 }
   4970 
   4971 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
   4972 /// pattern corresponding to a min(X, Y) or max(X, Y).
   4973 LoopVectorizationLegality::ReductionInstDesc
   4974 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
   4975                                                     ReductionInstDesc &Prev) {
   4976 
   4977   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
   4978          "Expect a select instruction");
   4979   Instruction *Cmp = nullptr;
   4980   SelectInst *Select = nullptr;
   4981 
   4982   // We must handle the select(cmp()) as a single instruction. Advance to the
   4983   // select.
   4984   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
   4985     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
   4986       return ReductionInstDesc(false, I);
   4987     return ReductionInstDesc(Select, Prev.MinMaxKind);
   4988   }
   4989 
   4990   // Only handle single use cases for now.
   4991   if (!(Select = dyn_cast<SelectInst>(I)))
   4992     return ReductionInstDesc(false, I);
   4993   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
   4994       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
   4995     return ReductionInstDesc(false, I);
   4996   if (!Cmp->hasOneUse())
   4997     return ReductionInstDesc(false, I);
   4998 
   4999   Value *CmpLeft;
   5000   Value *CmpRight;
   5001 
   5002   // Look for a min/max pattern.
   5003   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5004     return ReductionInstDesc(Select, MRK_UIntMin);
   5005   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5006     return ReductionInstDesc(Select, MRK_UIntMax);
   5007   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5008     return ReductionInstDesc(Select, MRK_SIntMax);
   5009   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5010     return ReductionInstDesc(Select, MRK_SIntMin);
   5011   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5012     return ReductionInstDesc(Select, MRK_FloatMin);
   5013   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5014     return ReductionInstDesc(Select, MRK_FloatMax);
   5015   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5016     return ReductionInstDesc(Select, MRK_FloatMin);
   5017   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   5018     return ReductionInstDesc(Select, MRK_FloatMax);
   5019 
   5020   return ReductionInstDesc(false, I);
   5021 }
   5022 
   5023 LoopVectorizationLegality::ReductionInstDesc
   5024 LoopVectorizationLegality::isReductionInstr(Instruction *I,
   5025                                             ReductionKind Kind,
   5026                                             ReductionInstDesc &Prev) {
   5027   bool FP = I->getType()->isFloatingPointTy();
   5028   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
   5029   switch (I->getOpcode()) {
   5030   default:
   5031     return ReductionInstDesc(false, I);
   5032   case Instruction::PHI:
   5033       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
   5034                  Kind != RK_FloatMinMax))
   5035         return ReductionInstDesc(false, I);
   5036     return ReductionInstDesc(I, Prev.MinMaxKind);
   5037   case Instruction::Sub:
   5038   case Instruction::Add:
   5039     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
   5040   case Instruction::Mul:
   5041     return ReductionInstDesc(Kind == RK_IntegerMult, I);
   5042   case Instruction::And:
   5043     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
   5044   case Instruction::Or:
   5045     return ReductionInstDesc(Kind == RK_IntegerOr, I);
   5046   case Instruction::Xor:
   5047     return ReductionInstDesc(Kind == RK_IntegerXor, I);
   5048   case Instruction::FMul:
   5049     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
   5050   case Instruction::FAdd:
   5051     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
   5052   case Instruction::FCmp:
   5053   case Instruction::ICmp:
   5054   case Instruction::Select:
   5055     if (Kind != RK_IntegerMinMax &&
   5056         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
   5057       return ReductionInstDesc(false, I);
   5058     return isMinMaxSelectCmpPattern(I, Prev);
   5059   }
   5060 }
   5061 
   5062 LoopVectorizationLegality::InductionKind
   5063 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
   5064   Type *PhiTy = Phi->getType();
   5065   // We only handle integer and pointer inductions variables.
   5066   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
   5067     return IK_NoInduction;
   5068 
   5069   // Check that the PHI is consecutive.
   5070   const SCEV *PhiScev = SE->getSCEV(Phi);
   5071   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
   5072   if (!AR) {
   5073     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
   5074     return IK_NoInduction;
   5075   }
   5076   const SCEV *Step = AR->getStepRecurrence(*SE);
   5077 
   5078   // Integer inductions need to have a stride of one.
   5079   if (PhiTy->isIntegerTy()) {
   5080     if (Step->isOne())
   5081       return IK_IntInduction;
   5082     if (Step->isAllOnesValue())
   5083       return IK_ReverseIntInduction;
   5084     return IK_NoInduction;
   5085   }
   5086 
   5087   // Calculate the pointer stride and check if it is consecutive.
   5088   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   5089   if (!C)
   5090     return IK_NoInduction;
   5091 
   5092   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
   5093   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
   5094   if (C->getValue()->equalsInt(Size))
   5095     return IK_PtrInduction;
   5096   else if (C->getValue()->equalsInt(0 - Size))
   5097     return IK_ReversePtrInduction;
   5098 
   5099   return IK_NoInduction;
   5100 }
   5101 
   5102 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
   5103   Value *In0 = const_cast<Value*>(V);
   5104   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
   5105   if (!PN)
   5106     return false;
   5107 
   5108   return Inductions.count(PN);
   5109 }
   5110 
   5111 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
   5112   assert(TheLoop->contains(BB) && "Unknown block used");
   5113 
   5114   // Blocks that do not dominate the latch need predication.
   5115   BasicBlock* Latch = TheLoop->getLoopLatch();
   5116   return !DT->dominates(BB, Latch);
   5117 }
   5118 
   5119 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
   5120                                             SmallPtrSet<Value *, 8>& SafePtrs) {
   5121   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   5122     // We might be able to hoist the load.
   5123     if (it->mayReadFromMemory()) {
   5124       LoadInst *LI = dyn_cast<LoadInst>(it);
   5125       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
   5126         return false;
   5127     }
   5128 
   5129     // We don't predicate stores at the moment.
   5130     if (it->mayWriteToMemory()) {
   5131       StoreInst *SI = dyn_cast<StoreInst>(it);
   5132       // We only support predication of stores in basic blocks with one
   5133       // predecessor.
   5134       if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
   5135           !SafePtrs.count(SI->getPointerOperand()) ||
   5136           !SI->getParent()->getSinglePredecessor())
   5137         return false;
   5138     }
   5139     if (it->mayThrow())
   5140       return false;
   5141 
   5142     // Check that we don't have a constant expression that can trap as operand.
   5143     for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
   5144          OI != OE; ++OI) {
   5145       if (Constant *C = dyn_cast<Constant>(*OI))
   5146         if (C->canTrap())
   5147           return false;
   5148     }
   5149 
   5150     // The instructions below can trap.
   5151     switch (it->getOpcode()) {
   5152     default: continue;
   5153     case Instruction::UDiv:
   5154     case Instruction::SDiv:
   5155     case Instruction::URem:
   5156     case Instruction::SRem:
   5157              return false;
   5158     }
   5159   }
   5160 
   5161   return true;
   5162 }
   5163 
   5164 LoopVectorizationCostModel::VectorizationFactor
   5165 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
   5166                                                       unsigned UserVF,
   5167                                                       bool ForceVectorization) {
   5168   // Width 1 means no vectorize
   5169   VectorizationFactor Factor = { 1U, 0U };
   5170   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
   5171     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
   5172     return Factor;
   5173   }
   5174 
   5175   if (!EnableCondStoresVectorization && Legal->NumPredStores) {
   5176     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
   5177     return Factor;
   5178   }
   5179 
   5180   // Find the trip count.
   5181   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
   5182   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
   5183 
   5184   unsigned WidestType = getWidestType();
   5185   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
   5186   unsigned MaxSafeDepDist = -1U;
   5187   if (Legal->getMaxSafeDepDistBytes() != -1U)
   5188     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
   5189   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
   5190                     WidestRegister : MaxSafeDepDist);
   5191   unsigned MaxVectorSize = WidestRegister / WidestType;
   5192   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
   5193   DEBUG(dbgs() << "LV: The Widest register is: "
   5194           << WidestRegister << " bits.\n");
   5195 
   5196   if (MaxVectorSize == 0) {
   5197     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
   5198     MaxVectorSize = 1;
   5199   }
   5200 
   5201   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
   5202          " into one vector!");
   5203 
   5204   unsigned VF = MaxVectorSize;
   5205 
   5206   // If we optimize the program for size, avoid creating the tail loop.
   5207   if (OptForSize) {
   5208     // If we are unable to calculate the trip count then don't try to vectorize.
   5209     if (TC < 2) {
   5210       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   5211       return Factor;
   5212     }
   5213 
   5214     // Find the maximum SIMD width that can fit within the trip count.
   5215     VF = TC % MaxVectorSize;
   5216 
   5217     if (VF == 0)
   5218       VF = MaxVectorSize;
   5219 
   5220     // If the trip count that we found modulo the vectorization factor is not
   5221     // zero then we require a tail.
   5222     if (VF < 2) {
   5223       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   5224       return Factor;
   5225     }
   5226   }
   5227 
   5228   if (UserVF != 0) {
   5229     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
   5230     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
   5231 
   5232     Factor.Width = UserVF;
   5233     return Factor;
   5234   }
   5235 
   5236   float Cost = expectedCost(1);
   5237 #ifndef NDEBUG
   5238   const float ScalarCost = Cost;
   5239 #endif /* NDEBUG */
   5240   unsigned Width = 1;
   5241   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
   5242 
   5243   // Ignore scalar width, because the user explicitly wants vectorization.
   5244   if (ForceVectorization && VF > 1) {
   5245     Width = 2;
   5246     Cost = expectedCost(Width) / (float)Width;
   5247   }
   5248 
   5249   for (unsigned i=2; i <= VF; i*=2) {
   5250     // Notice that the vector loop needs to be executed less times, so
   5251     // we need to divide the cost of the vector loops by the width of
   5252     // the vector elements.
   5253     float VectorCost = expectedCost(i) / (float)i;
   5254     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
   5255           (int)VectorCost << ".\n");
   5256     if (VectorCost < Cost) {
   5257       Cost = VectorCost;
   5258       Width = i;
   5259     }
   5260   }
   5261 
   5262   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
   5263         << "LV: Vectorization seems to be not beneficial, "
   5264         << "but was forced by a user.\n");
   5265   DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
   5266   Factor.Width = Width;
   5267   Factor.Cost = Width * Cost;
   5268   return Factor;
   5269 }
   5270 
   5271 unsigned LoopVectorizationCostModel::getWidestType() {
   5272   unsigned MaxWidth = 8;
   5273 
   5274   // For each block.
   5275   for (Loop::block_iterator bb = TheLoop->block_begin(),
   5276        be = TheLoop->block_end(); bb != be; ++bb) {
   5277     BasicBlock *BB = *bb;
   5278 
   5279     // For each instruction in the loop.
   5280     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   5281       Type *T = it->getType();
   5282 
   5283       // Only examine Loads, Stores and PHINodes.
   5284       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
   5285         continue;
   5286 
   5287       // Examine PHI nodes that are reduction variables.
   5288       if (PHINode *PN = dyn_cast<PHINode>(it))
   5289         if (!Legal->getReductionVars()->count(PN))
   5290           continue;
   5291 
   5292       // Examine the stored values.
   5293       if (StoreInst *ST = dyn_cast<StoreInst>(it))
   5294         T = ST->getValueOperand()->getType();
   5295 
   5296       // Ignore loaded pointer types and stored pointer types that are not
   5297       // consecutive. However, we do want to take consecutive stores/loads of
   5298       // pointer vectors into account.
   5299       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
   5300         continue;
   5301 
   5302       MaxWidth = std::max(MaxWidth,
   5303                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
   5304     }
   5305   }
   5306 
   5307   return MaxWidth;
   5308 }
   5309 
   5310 unsigned
   5311 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   5312                                                unsigned UserUF,
   5313                                                unsigned VF,
   5314                                                unsigned LoopCost) {
   5315 
   5316   // -- The unroll heuristics --
   5317   // We unroll the loop in order to expose ILP and reduce the loop overhead.
   5318   // There are many micro-architectural considerations that we can't predict
   5319   // at this level. For example frontend pressure (on decode or fetch) due to
   5320   // code size, or the number and capabilities of the execution ports.
   5321   //
   5322   // We use the following heuristics to select the unroll factor:
   5323   // 1. If the code has reductions the we unroll in order to break the cross
   5324   // iteration dependency.
   5325   // 2. If the loop is really small then we unroll in order to reduce the loop
   5326   // overhead.
   5327   // 3. We don't unroll if we think that we will spill registers to memory due
   5328   // to the increased register pressure.
   5329 
   5330   // Use the user preference, unless 'auto' is selected.
   5331   if (UserUF != 0)
   5332     return UserUF;
   5333 
   5334   // When we optimize for size we don't unroll.
   5335   if (OptForSize)
   5336     return 1;
   5337 
   5338   // We used the distance for the unroll factor.
   5339   if (Legal->getMaxSafeDepDistBytes() != -1U)
   5340     return 1;
   5341 
   5342   // Do not unroll loops with a relatively small trip count.
   5343   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
   5344                                               TheLoop->getLoopLatch());
   5345   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
   5346     return 1;
   5347 
   5348   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
   5349   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
   5350         " registers\n");
   5351 
   5352   if (VF == 1) {
   5353     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
   5354       TargetNumRegisters = ForceTargetNumScalarRegs;
   5355   } else {
   5356     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
   5357       TargetNumRegisters = ForceTargetNumVectorRegs;
   5358   }
   5359 
   5360   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
   5361   // We divide by these constants so assume that we have at least one
   5362   // instruction that uses at least one register.
   5363   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
   5364   R.NumInstructions = std::max(R.NumInstructions, 1U);
   5365 
   5366   // We calculate the unroll factor using the following formula.
   5367   // Subtract the number of loop invariants from the number of available
   5368   // registers. These registers are used by all of the unrolled instances.
   5369   // Next, divide the remaining registers by the number of registers that is
   5370   // required by the loop, in order to estimate how many parallel instances
   5371   // fit without causing spills. All of this is rounded down if necessary to be
   5372   // a power of two. We want power of two unroll factors to simplify any
   5373   // addressing operations or alignment considerations.
   5374   unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
   5375                               R.MaxLocalUsers);
   5376 
   5377   // Don't count the induction variable as unrolled.
   5378   if (EnableIndVarRegisterHeur)
   5379     UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
   5380                        std::max(1U, (R.MaxLocalUsers - 1)));
   5381 
   5382   // Clamp the unroll factor ranges to reasonable factors.
   5383   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
   5384 
   5385   // Check if the user has overridden the unroll max.
   5386   if (VF == 1) {
   5387     if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
   5388       MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
   5389   } else {
   5390     if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
   5391       MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
   5392   }
   5393 
   5394   // If we did not calculate the cost for VF (because the user selected the VF)
   5395   // then we calculate the cost of VF here.
   5396   if (LoopCost == 0)
   5397     LoopCost = expectedCost(VF);
   5398 
   5399   // Clamp the calculated UF to be between the 1 and the max unroll factor
   5400   // that the target allows.
   5401   if (UF > MaxUnrollSize)
   5402     UF = MaxUnrollSize;
   5403   else if (UF < 1)
   5404     UF = 1;
   5405 
   5406   // Unroll if we vectorized this loop and there is a reduction that could
   5407   // benefit from unrolling.
   5408   if (VF > 1 && Legal->getReductionVars()->size()) {
   5409     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
   5410     return UF;
   5411   }
   5412 
   5413   // Note that if we've already vectorized the loop we will have done the
   5414   // runtime check and so unrolling won't require further checks.
   5415   bool UnrollingRequiresRuntimePointerCheck =
   5416       (VF == 1 && Legal->getRuntimePointerCheck()->Need);
   5417 
   5418   // We want to unroll small loops in order to reduce the loop overhead and
   5419   // potentially expose ILP opportunities.
   5420   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
   5421   if (!UnrollingRequiresRuntimePointerCheck &&
   5422       LoopCost < SmallLoopCost) {
   5423     // We assume that the cost overhead is 1 and we use the cost model
   5424     // to estimate the cost of the loop and unroll until the cost of the
   5425     // loop overhead is about 5% of the cost of the loop.
   5426     unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
   5427 
   5428     // Unroll until store/load ports (estimated by max unroll factor) are
   5429     // saturated.
   5430     unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
   5431     unsigned LoadsUF = UF /  (Legal->NumLoads ? Legal->NumLoads : 1);
   5432 
   5433     if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
   5434       DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
   5435       return std::max(StoresUF, LoadsUF);
   5436     }
   5437 
   5438     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
   5439     return SmallUF;
   5440   }
   5441 
   5442   DEBUG(dbgs() << "LV: Not Unrolling.\n");
   5443   return 1;
   5444 }
   5445 
   5446 LoopVectorizationCostModel::RegisterUsage
   5447 LoopVectorizationCostModel::calculateRegisterUsage() {
   5448   // This function calculates the register usage by measuring the highest number
   5449   // of values that are alive at a single location. Obviously, this is a very
   5450   // rough estimation. We scan the loop in a topological order in order and
   5451   // assign a number to each instruction. We use RPO to ensure that defs are
   5452   // met before their users. We assume that each instruction that has in-loop
   5453   // users starts an interval. We record every time that an in-loop value is
   5454   // used, so we have a list of the first and last occurrences of each
   5455   // instruction. Next, we transpose this data structure into a multi map that
   5456   // holds the list of intervals that *end* at a specific location. This multi
   5457   // map allows us to perform a linear search. We scan the instructions linearly
   5458   // and record each time that a new interval starts, by placing it in a set.
   5459   // If we find this value in the multi-map then we remove it from the set.
   5460   // The max register usage is the maximum size of the set.
   5461   // We also search for instructions that are defined outside the loop, but are
   5462   // used inside the loop. We need this number separately from the max-interval
   5463   // usage number because when we unroll, loop-invariant values do not take
   5464   // more register.
   5465   LoopBlocksDFS DFS(TheLoop);
   5466   DFS.perform(LI);
   5467 
   5468   RegisterUsage R;
   5469   R.NumInstructions = 0;
   5470 
   5471   // Each 'key' in the map opens a new interval. The values
   5472   // of the map are the index of the 'last seen' usage of the
   5473   // instruction that is the key.
   5474   typedef DenseMap<Instruction*, unsigned> IntervalMap;
   5475   // Maps instruction to its index.
   5476   DenseMap<unsigned, Instruction*> IdxToInstr;
   5477   // Marks the end of each interval.
   5478   IntervalMap EndPoint;
   5479   // Saves the list of instruction indices that are used in the loop.
   5480   SmallSet<Instruction*, 8> Ends;
   5481   // Saves the list of values that are used in the loop but are
   5482   // defined outside the loop, such as arguments and constants.
   5483   SmallPtrSet<Value*, 8> LoopInvariants;
   5484 
   5485   unsigned Index = 0;
   5486   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   5487        be = DFS.endRPO(); bb != be; ++bb) {
   5488     R.NumInstructions += (*bb)->size();
   5489     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   5490          ++it) {
   5491       Instruction *I = it;
   5492       IdxToInstr[Index++] = I;
   5493 
   5494       // Save the end location of each USE.
   5495       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   5496         Value *U = I->getOperand(i);
   5497         Instruction *Instr = dyn_cast<Instruction>(U);
   5498 
   5499         // Ignore non-instruction values such as arguments, constants, etc.
   5500         if (!Instr) continue;
   5501 
   5502         // If this instruction is outside the loop then record it and continue.
   5503         if (!TheLoop->contains(Instr)) {
   5504           LoopInvariants.insert(Instr);
   5505           continue;
   5506         }
   5507 
   5508         // Overwrite previous end points.
   5509         EndPoint[Instr] = Index;
   5510         Ends.insert(Instr);
   5511       }
   5512     }
   5513   }
   5514 
   5515   // Saves the list of intervals that end with the index in 'key'.
   5516   typedef SmallVector<Instruction*, 2> InstrList;
   5517   DenseMap<unsigned, InstrList> TransposeEnds;
   5518 
   5519   // Transpose the EndPoints to a list of values that end at each index.
   5520   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
   5521        it != e; ++it)
   5522     TransposeEnds[it->second].push_back(it->first);
   5523 
   5524   SmallSet<Instruction*, 8> OpenIntervals;
   5525   unsigned MaxUsage = 0;
   5526 
   5527 
   5528   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
   5529   for (unsigned int i = 0; i < Index; ++i) {
   5530     Instruction *I = IdxToInstr[i];
   5531     // Ignore instructions that are never used within the loop.
   5532     if (!Ends.count(I)) continue;
   5533 
   5534     // Remove all of the instructions that end at this location.
   5535     InstrList &List = TransposeEnds[i];
   5536     for (unsigned int j=0, e = List.size(); j < e; ++j)
   5537       OpenIntervals.erase(List[j]);
   5538 
   5539     // Count the number of live interals.
   5540     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
   5541 
   5542     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
   5543           OpenIntervals.size() << '\n');
   5544 
   5545     // Add the current instruction to the list of open intervals.
   5546     OpenIntervals.insert(I);
   5547   }
   5548 
   5549   unsigned Invariant = LoopInvariants.size();
   5550   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
   5551   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
   5552   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
   5553 
   5554   R.LoopInvariantRegs = Invariant;
   5555   R.MaxLocalUsers = MaxUsage;
   5556   return R;
   5557 }
   5558 
   5559 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
   5560   unsigned Cost = 0;
   5561 
   5562   // For each block.
   5563   for (Loop::block_iterator bb = TheLoop->block_begin(),
   5564        be = TheLoop->block_end(); bb != be; ++bb) {
   5565     unsigned BlockCost = 0;
   5566     BasicBlock *BB = *bb;
   5567 
   5568     // For each instruction in the old loop.
   5569     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   5570       // Skip dbg intrinsics.
   5571       if (isa<DbgInfoIntrinsic>(it))
   5572         continue;
   5573 
   5574       unsigned C = getInstructionCost(it, VF);
   5575 
   5576       // Check if we should override the cost.
   5577       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
   5578         C = ForceTargetInstructionCost;
   5579 
   5580       BlockCost += C;
   5581       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
   5582             VF << " For instruction: " << *it << '\n');
   5583     }
   5584 
   5585     // We assume that if-converted blocks have a 50% chance of being executed.
   5586     // When the code is scalar then some of the blocks are avoided due to CF.
   5587     // When the code is vectorized we execute all code paths.
   5588     if (VF == 1 && Legal->blockNeedsPredication(*bb))
   5589       BlockCost /= 2;
   5590 
   5591     Cost += BlockCost;
   5592   }
   5593 
   5594   return Cost;
   5595 }
   5596 
   5597 /// \brief Check whether the address computation for a non-consecutive memory
   5598 /// access looks like an unlikely candidate for being merged into the indexing
   5599 /// mode.
   5600 ///
   5601 /// We look for a GEP which has one index that is an induction variable and all
   5602 /// other indices are loop invariant. If the stride of this access is also
   5603 /// within a small bound we decide that this address computation can likely be
   5604 /// merged into the addressing mode.
   5605 /// In all other cases, we identify the address computation as complex.
   5606 static bool isLikelyComplexAddressComputation(Value *Ptr,
   5607                                               LoopVectorizationLegality *Legal,
   5608                                               ScalarEvolution *SE,
   5609                                               const Loop *TheLoop) {
   5610   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   5611   if (!Gep)
   5612     return true;
   5613 
   5614   // We are looking for a gep with all loop invariant indices except for one
   5615   // which should be an induction variable.
   5616   unsigned NumOperands = Gep->getNumOperands();
   5617   for (unsigned i = 1; i < NumOperands; ++i) {
   5618     Value *Opd = Gep->getOperand(i);
   5619     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
   5620         !Legal->isInductionVariable(Opd))
   5621       return true;
   5622   }
   5623 
   5624   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
   5625   // can likely be merged into the address computation.
   5626   unsigned MaxMergeDistance = 64;
   5627 
   5628   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
   5629   if (!AddRec)
   5630     return true;
   5631 
   5632   // Check the step is constant.
   5633   const SCEV *Step = AddRec->getStepRecurrence(*SE);
   5634   // Calculate the pointer stride and check if it is consecutive.
   5635   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   5636   if (!C)
   5637     return true;
   5638 
   5639   const APInt &APStepVal = C->getValue()->getValue();
   5640 
   5641   // Huge step value - give up.
   5642   if (APStepVal.getBitWidth() > 64)
   5643     return true;
   5644 
   5645   int64_t StepVal = APStepVal.getSExtValue();
   5646 
   5647   return StepVal > MaxMergeDistance;
   5648 }
   5649 
   5650 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
   5651   if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
   5652     return true;
   5653   return false;
   5654 }
   5655 
   5656 unsigned
   5657 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
   5658   // If we know that this instruction will remain uniform, check the cost of
   5659   // the scalar version.
   5660   if (Legal->isUniformAfterVectorization(I))
   5661     VF = 1;
   5662 
   5663   Type *RetTy = I->getType();
   5664   Type *VectorTy = ToVectorTy(RetTy, VF);
   5665 
   5666   // TODO: We need to estimate the cost of intrinsic calls.
   5667   switch (I->getOpcode()) {
   5668   case Instruction::GetElementPtr:
   5669     // We mark this instruction as zero-cost because the cost of GEPs in
   5670     // vectorized code depends on whether the corresponding memory instruction
   5671     // is scalarized or not. Therefore, we handle GEPs with the memory
   5672     // instruction cost.
   5673     return 0;
   5674   case Instruction::Br: {
   5675     return TTI.getCFInstrCost(I->getOpcode());
   5676   }
   5677   case Instruction::PHI:
   5678     //TODO: IF-converted IFs become selects.
   5679     return 0;
   5680   case Instruction::Add:
   5681   case Instruction::FAdd:
   5682   case Instruction::Sub:
   5683   case Instruction::FSub:
   5684   case Instruction::Mul:
   5685   case Instruction::FMul:
   5686   case Instruction::UDiv:
   5687   case Instruction::SDiv:
   5688   case Instruction::FDiv:
   5689   case Instruction::URem:
   5690   case Instruction::SRem:
   5691   case Instruction::FRem:
   5692   case Instruction::Shl:
   5693   case Instruction::LShr:
   5694   case Instruction::AShr:
   5695   case Instruction::And:
   5696   case Instruction::Or:
   5697   case Instruction::Xor: {
   5698     // Since we will replace the stride by 1 the multiplication should go away.
   5699     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
   5700       return 0;
   5701     // Certain instructions can be cheaper to vectorize if they have a constant
   5702     // second vector operand. One example of this are shifts on x86.
   5703     TargetTransformInfo::OperandValueKind Op1VK =
   5704       TargetTransformInfo::OK_AnyValue;
   5705     TargetTransformInfo::OperandValueKind Op2VK =
   5706       TargetTransformInfo::OK_AnyValue;
   5707     Value *Op2 = I->getOperand(1);
   5708 
   5709     // Check for a splat of a constant or for a non uniform vector of constants.
   5710     if (isa<ConstantInt>(Op2))
   5711       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   5712     else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
   5713       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
   5714       if (cast<Constant>(Op2)->getSplatValue() != nullptr)
   5715         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   5716     }
   5717 
   5718     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
   5719   }
   5720   case Instruction::Select: {
   5721     SelectInst *SI = cast<SelectInst>(I);
   5722     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
   5723     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
   5724     Type *CondTy = SI->getCondition()->getType();
   5725     if (!ScalarCond)
   5726       CondTy = VectorType::get(CondTy, VF);
   5727 
   5728     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
   5729   }
   5730   case Instruction::ICmp:
   5731   case Instruction::FCmp: {
   5732     Type *ValTy = I->getOperand(0)->getType();
   5733     VectorTy = ToVectorTy(ValTy, VF);
   5734     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
   5735   }
   5736   case Instruction::Store:
   5737   case Instruction::Load: {
   5738     StoreInst *SI = dyn_cast<StoreInst>(I);
   5739     LoadInst *LI = dyn_cast<LoadInst>(I);
   5740     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
   5741                    LI->getType());
   5742     VectorTy = ToVectorTy(ValTy, VF);
   5743 
   5744     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
   5745     unsigned AS = SI ? SI->getPointerAddressSpace() :
   5746       LI->getPointerAddressSpace();
   5747     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
   5748     // We add the cost of address computation here instead of with the gep
   5749     // instruction because only here we know whether the operation is
   5750     // scalarized.
   5751     if (VF == 1)
   5752       return TTI.getAddressComputationCost(VectorTy) +
   5753         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   5754 
   5755     // Scalarized loads/stores.
   5756     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   5757     bool Reverse = ConsecutiveStride < 0;
   5758     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
   5759     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
   5760     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
   5761       bool IsComplexComputation =
   5762         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
   5763       unsigned Cost = 0;
   5764       // The cost of extracting from the value vector and pointer vector.
   5765       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
   5766       for (unsigned i = 0; i < VF; ++i) {
   5767         //  The cost of extracting the pointer operand.
   5768         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
   5769         // In case of STORE, the cost of ExtractElement from the vector.
   5770         // In case of LOAD, the cost of InsertElement into the returned
   5771         // vector.
   5772         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
   5773                                             Instruction::InsertElement,
   5774                                             VectorTy, i);
   5775       }
   5776 
   5777       // The cost of the scalar loads/stores.
   5778       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
   5779       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
   5780                                        Alignment, AS);
   5781       return Cost;
   5782     }
   5783 
   5784     // Wide load/stores.
   5785     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
   5786     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   5787 
   5788     if (Reverse)
   5789       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
   5790                                   VectorTy, 0);
   5791     return Cost;
   5792   }
   5793   case Instruction::ZExt:
   5794   case Instruction::SExt:
   5795   case Instruction::FPToUI:
   5796   case Instruction::FPToSI:
   5797   case Instruction::FPExt:
   5798   case Instruction::PtrToInt:
   5799   case Instruction::IntToPtr:
   5800   case Instruction::SIToFP:
   5801   case Instruction::UIToFP:
   5802   case Instruction::Trunc:
   5803   case Instruction::FPTrunc:
   5804   case Instruction::BitCast: {
   5805     // We optimize the truncation of induction variable.
   5806     // The cost of these is the same as the scalar operation.
   5807     if (I->getOpcode() == Instruction::Trunc &&
   5808         Legal->isInductionVariable(I->getOperand(0)))
   5809       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
   5810                                   I->getOperand(0)->getType());
   5811 
   5812     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
   5813     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
   5814   }
   5815   case Instruction::Call: {
   5816     CallInst *CI = cast<CallInst>(I);
   5817     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   5818     assert(ID && "Not an intrinsic call!");
   5819     Type *RetTy = ToVectorTy(CI->getType(), VF);
   5820     SmallVector<Type*, 4> Tys;
   5821     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
   5822       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
   5823     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
   5824   }
   5825   default: {
   5826     // We are scalarizing the instruction. Return the cost of the scalar
   5827     // instruction, plus the cost of insert and extract into vector
   5828     // elements, times the vector width.
   5829     unsigned Cost = 0;
   5830 
   5831     if (!RetTy->isVoidTy() && VF != 1) {
   5832       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
   5833                                                 VectorTy);
   5834       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
   5835                                                 VectorTy);
   5836 
   5837       // The cost of inserting the results plus extracting each one of the
   5838       // operands.
   5839       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
   5840     }
   5841 
   5842     // The cost of executing VF copies of the scalar instruction. This opcode
   5843     // is unknown. Assume that it is the same as 'mul'.
   5844     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
   5845     return Cost;
   5846   }
   5847   }// end of switch.
   5848 }
   5849 
   5850 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
   5851   if (Scalar->isVoidTy() || VF == 1)
   5852     return Scalar;
   5853   return VectorType::get(Scalar, VF);
   5854 }
   5855 
   5856 char LoopVectorize::ID = 0;
   5857 static const char lv_name[] = "Loop Vectorization";
   5858 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
   5859 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   5860 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
   5861 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   5862 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   5863 INITIALIZE_PASS_DEPENDENCY(LCSSA)
   5864 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   5865 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   5866 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
   5867 
   5868 namespace llvm {
   5869   Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
   5870     return new LoopVectorize(NoUnrolling, AlwaysVectorize);
   5871   }
   5872 }
   5873 
   5874 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
   5875   // Check for a store.
   5876   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
   5877     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
   5878 
   5879   // Check for a load.
   5880   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
   5881     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
   5882 
   5883   return false;
   5884 }
   5885 
   5886 
   5887 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
   5888                                              bool IfPredicateStore) {
   5889   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
   5890   // Holds vector parameters or scalars, in case of uniform vals.
   5891   SmallVector<VectorParts, 4> Params;
   5892 
   5893   setDebugLocFromInst(Builder, Instr);
   5894 
   5895   // Find all of the vectorized parameters.
   5896   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   5897     Value *SrcOp = Instr->getOperand(op);
   5898 
   5899     // If we are accessing the old induction variable, use the new one.
   5900     if (SrcOp == OldInduction) {
   5901       Params.push_back(getVectorValue(SrcOp));
   5902       continue;
   5903     }
   5904 
   5905     // Try using previously calculated values.
   5906     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
   5907 
   5908     // If the src is an instruction that appeared earlier in the basic block
   5909     // then it should already be vectorized.
   5910     if (SrcInst && OrigLoop->contains(SrcInst)) {
   5911       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
   5912       // The parameter is a vector value from earlier.
   5913       Params.push_back(WidenMap.get(SrcInst));
   5914     } else {
   5915       // The parameter is a scalar from outside the loop. Maybe even a constant.
   5916       VectorParts Scalars;
   5917       Scalars.append(UF, SrcOp);
   5918       Params.push_back(Scalars);
   5919     }
   5920   }
   5921 
   5922   assert(Params.size() == Instr->getNumOperands() &&
   5923          "Invalid number of operands");
   5924 
   5925   // Does this instruction return a value ?
   5926   bool IsVoidRetTy = Instr->getType()->isVoidTy();
   5927 
   5928   Value *UndefVec = IsVoidRetTy ? nullptr :
   5929   UndefValue::get(Instr->getType());
   5930   // Create a new entry in the WidenMap and initialize it to Undef or Null.
   5931   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
   5932 
   5933   Instruction *InsertPt = Builder.GetInsertPoint();
   5934   BasicBlock *IfBlock = Builder.GetInsertBlock();
   5935   BasicBlock *CondBlock = nullptr;
   5936 
   5937   VectorParts Cond;
   5938   Loop *VectorLp = nullptr;
   5939   if (IfPredicateStore) {
   5940     assert(Instr->getParent()->getSinglePredecessor() &&
   5941            "Only support single predecessor blocks");
   5942     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
   5943                           Instr->getParent());
   5944     VectorLp = LI->getLoopFor(IfBlock);
   5945     assert(VectorLp && "Must have a loop for this block");
   5946   }
   5947 
   5948   // For each vector unroll 'part':
   5949   for (unsigned Part = 0; Part < UF; ++Part) {
   5950     // For each scalar that we create:
   5951 
   5952     // Start an "if (pred) a[i] = ..." block.
   5953     Value *Cmp = nullptr;
   5954     if (IfPredicateStore) {
   5955       if (Cond[Part]->getType()->isVectorTy())
   5956         Cond[Part] =
   5957             Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
   5958       Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
   5959                                ConstantInt::get(Cond[Part]->getType(), 1));
   5960       CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
   5961       LoopVectorBody.push_back(CondBlock);
   5962       VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
   5963       // Update Builder with newly created basic block.
   5964       Builder.SetInsertPoint(InsertPt);
   5965     }
   5966 
   5967     Instruction *Cloned = Instr->clone();
   5968       if (!IsVoidRetTy)
   5969         Cloned->setName(Instr->getName() + ".cloned");
   5970       // Replace the operands of the cloned instructions with extracted scalars.
   5971       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   5972         Value *Op = Params[op][Part];
   5973         Cloned->setOperand(op, Op);
   5974       }
   5975 
   5976       // Place the cloned scalar in the new loop.
   5977       Builder.Insert(Cloned);
   5978 
   5979       // If the original scalar returns a value we need to place it in a vector
   5980       // so that future users will be able to use it.
   5981       if (!IsVoidRetTy)
   5982         VecResults[Part] = Cloned;
   5983 
   5984     // End if-block.
   5985       if (IfPredicateStore) {
   5986         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   5987         LoopVectorBody.push_back(NewIfBlock);
   5988         VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
   5989         Builder.SetInsertPoint(InsertPt);
   5990         Instruction *OldBr = IfBlock->getTerminator();
   5991         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   5992         OldBr->eraseFromParent();
   5993         IfBlock = NewIfBlock;
   5994       }
   5995   }
   5996 }
   5997 
   5998 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
   5999   StoreInst *SI = dyn_cast<StoreInst>(Instr);
   6000   bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
   6001 
   6002   return scalarizeInstruction(Instr, IfPredicateStore);
   6003 }
   6004 
   6005 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
   6006   return Vec;
   6007 }
   6008 
   6009 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
   6010   return V;
   6011 }
   6012 
   6013 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
   6014                                                bool Negate) {
   6015   // When unrolling and the VF is 1, we only need to add a simple scalar.
   6016   Type *ITy = Val->getType();
   6017   assert(!ITy->isVectorTy() && "Val must be a scalar");
   6018   Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
   6019   return Builder.CreateAdd(Val, C, "induction");
   6020 }
   6021