1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/BlockFrequencyInfo.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopIterator.h" 60 #include "llvm/Analysis/LoopPass.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpander.h" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfo.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/LLVMContext.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/PatternMatch.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/IR/ValueHandle.h" 82 #include "llvm/IR/Verifier.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/BranchProbability.h" 85 #include "llvm/Support/CommandLine.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/VectorUtils.h" 92 #include <algorithm> 93 #include <map> 94 #include <tuple> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 #define LV_NAME "loop-vectorize" 100 #define DEBUG_TYPE LV_NAME 101 102 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 104 105 static cl::opt<unsigned> 106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 107 cl::desc("Sets the SIMD width. Zero is autoselect.")); 108 109 static cl::opt<unsigned> 110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 111 cl::desc("Sets the vectorization unroll count. " 112 "Zero is autoselect.")); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 /// We don't unroll loops with a known constant trip count below this number. 142 static const unsigned TinyTripCountUnrollThreshold = 128; 143 144 /// When performing memory disambiguation checks at runtime do not make more 145 /// than this number of comparisons. 146 static const unsigned RuntimeMemoryCheckThreshold = 8; 147 148 /// Maximum simd width. 149 static const unsigned MaxVectorWidth = 64; 150 151 static cl::opt<unsigned> ForceTargetNumScalarRegs( 152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of scalar registers.")); 154 155 static cl::opt<unsigned> ForceTargetNumVectorRegs( 156 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of vector registers.")); 158 159 /// Maximum vectorization unroll count. 160 static const unsigned MaxUnrollFactor = 16; 161 162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max unroll factor for scalar " 165 "loops.")); 166 167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's max unroll factor for " 170 "vectorized loops.")); 171 172 static cl::opt<unsigned> ForceTargetInstructionCost( 173 "force-target-instruction-cost", cl::init(0), cl::Hidden, 174 cl::desc("A flag that overrides the target's expected cost for " 175 "an instruction to a single constant value. Mostly " 176 "useful for getting consistent testing.")); 177 178 static cl::opt<unsigned> SmallLoopCost( 179 "small-loop-cost", cl::init(20), cl::Hidden, 180 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 181 182 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 184 cl::desc("Enable the use of the block frequency analysis to access PGO " 185 "heuristics minimizing code growth in cold regions and being more " 186 "aggressive in hot regions.")); 187 188 // Runtime unroll loops for load/store throughput. 189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 191 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 192 193 /// The number of stores in a loop that are allowed to need predication. 194 static cl::opt<unsigned> NumberOfStoresToPredicate( 195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 196 cl::desc("Max number of stores to be predicated behind an if.")); 197 198 static cl::opt<bool> EnableIndVarRegisterHeur( 199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 200 cl::desc("Count the induction variable only once when unrolling")); 201 202 static cl::opt<bool> EnableCondStoresVectorization( 203 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 204 cl::desc("Enable if predication of stores during vectorization.")); 205 206 namespace { 207 208 // Forward declarations. 209 class LoopVectorizationLegality; 210 class LoopVectorizationCostModel; 211 212 /// Optimization analysis message produced during vectorization. Messages inform 213 /// the user why vectorization did not occur. 214 class Report { 215 std::string Message; 216 raw_string_ostream Out; 217 Instruction *Instr; 218 219 public: 220 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 221 Out << "loop not vectorized: "; 222 } 223 224 template <typename A> Report &operator<<(const A &Value) { 225 Out << Value; 226 return *this; 227 } 228 229 Instruction *getInstr() { return Instr; } 230 231 std::string &str() { return Out.str(); } 232 operator Twine() { return Out.str(); } 233 }; 234 235 /// InnerLoopVectorizer vectorizes loops which contain only one basic 236 /// block to a specified vectorization factor (VF). 237 /// This class performs the widening of scalars into vectors, or multiple 238 /// scalars. This class also implements the following features: 239 /// * It inserts an epilogue loop for handling loops that don't have iteration 240 /// counts that are known to be a multiple of the vectorization factor. 241 /// * It handles the code generation for reduction variables. 242 /// * Scalarization (implementation using scalars) of un-vectorizable 243 /// instructions. 244 /// InnerLoopVectorizer does not perform any vectorization-legality 245 /// checks, and relies on the caller to check for the different legality 246 /// aspects. The InnerLoopVectorizer relies on the 247 /// LoopVectorizationLegality class to provide information about the induction 248 /// and reduction variables that were found to a given vectorization factor. 249 class InnerLoopVectorizer { 250 public: 251 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 252 DominatorTree *DT, const DataLayout *DL, 253 const TargetLibraryInfo *TLI, unsigned VecWidth, 254 unsigned UnrollFactor) 255 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 256 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 257 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 258 Legal(nullptr) {} 259 260 // Perform the actual loop widening (vectorization). 261 void vectorize(LoopVectorizationLegality *L) { 262 Legal = L; 263 // Create a new empty loop. Unlink the old loop and connect the new one. 264 createEmptyLoop(); 265 // Widen each instruction in the old loop to a new one in the new loop. 266 // Use the Legality module to find the induction and reduction variables. 267 vectorizeLoop(); 268 // Register the new loop and update the analysis passes. 269 updateAnalysis(); 270 } 271 272 virtual ~InnerLoopVectorizer() {} 273 274 protected: 275 /// A small list of PHINodes. 276 typedef SmallVector<PHINode*, 4> PhiVector; 277 /// When we unroll loops we have multiple vector values for each scalar. 278 /// This data structure holds the unrolled and vectorized values that 279 /// originated from one scalar instruction. 280 typedef SmallVector<Value*, 2> VectorParts; 281 282 // When we if-convert we need create edge masks. We have to cache values so 283 // that we don't end up with exponential recursion/IR. 284 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 285 VectorParts> EdgeMaskCache; 286 287 /// \brief Add code that checks at runtime if the accessed arrays overlap. 288 /// 289 /// Returns a pair of instructions where the first element is the first 290 /// instruction generated in possibly a sequence of instructions and the 291 /// second value is the final comparator value or NULL if no check is needed. 292 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 293 294 /// \brief Add checks for strides that where assumed to be 1. 295 /// 296 /// Returns the last check instruction and the first check instruction in the 297 /// pair as (first, last). 298 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 299 300 /// Create an empty loop, based on the loop ranges of the old loop. 301 void createEmptyLoop(); 302 /// Copy and widen the instructions from the old loop. 303 virtual void vectorizeLoop(); 304 305 /// \brief The Loop exit block may have single value PHI nodes where the 306 /// incoming value is 'Undef'. While vectorizing we only handled real values 307 /// that were defined inside the loop. Here we fix the 'undef case'. 308 /// See PR14725. 309 void fixLCSSAPHIs(); 310 311 /// A helper function that computes the predicate of the block BB, assuming 312 /// that the header block of the loop is set to True. It returns the *entry* 313 /// mask for the block BB. 314 VectorParts createBlockInMask(BasicBlock *BB); 315 /// A helper function that computes the predicate of the edge between SRC 316 /// and DST. 317 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 318 319 /// A helper function to vectorize a single BB within the innermost loop. 320 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 321 322 /// Vectorize a single PHINode in a block. This method handles the induction 323 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 324 /// arbitrary length vectors. 325 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 326 unsigned UF, unsigned VF, PhiVector *PV); 327 328 /// Insert the new loop to the loop hierarchy and pass manager 329 /// and update the analysis passes. 330 void updateAnalysis(); 331 332 /// This instruction is un-vectorizable. Implement it as a sequence 333 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 334 /// scalarized instruction behind an if block predicated on the control 335 /// dependence of the instruction. 336 virtual void scalarizeInstruction(Instruction *Instr, 337 bool IfPredicateStore=false); 338 339 /// Vectorize Load and Store instructions, 340 virtual void vectorizeMemoryInstruction(Instruction *Instr); 341 342 /// Create a broadcast instruction. This method generates a broadcast 343 /// instruction (shuffle) for loop invariant values and for the induction 344 /// value. If this is the induction variable then we extend it to N, N+1, ... 345 /// this is needed because each iteration in the loop corresponds to a SIMD 346 /// element. 347 virtual Value *getBroadcastInstrs(Value *V); 348 349 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 350 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 351 /// The sequence starts at StartIndex. 352 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 353 354 /// When we go over instructions in the basic block we rely on previous 355 /// values within the current basic block or on loop invariant values. 356 /// When we widen (vectorize) values we place them in the map. If the values 357 /// are not within the map, they have to be loop invariant, so we simply 358 /// broadcast them into a vector. 359 VectorParts &getVectorValue(Value *V); 360 361 /// Generate a shuffle sequence that will reverse the vector Vec. 362 virtual Value *reverseVector(Value *Vec); 363 364 /// This is a helper class that holds the vectorizer state. It maps scalar 365 /// instructions to vector instructions. When the code is 'unrolled' then 366 /// then a single scalar value is mapped to multiple vector parts. The parts 367 /// are stored in the VectorPart type. 368 struct ValueMap { 369 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 370 /// are mapped. 371 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 372 373 /// \return True if 'Key' is saved in the Value Map. 374 bool has(Value *Key) const { return MapStorage.count(Key); } 375 376 /// Initializes a new entry in the map. Sets all of the vector parts to the 377 /// save value in 'Val'. 378 /// \return A reference to a vector with splat values. 379 VectorParts &splat(Value *Key, Value *Val) { 380 VectorParts &Entry = MapStorage[Key]; 381 Entry.assign(UF, Val); 382 return Entry; 383 } 384 385 ///\return A reference to the value that is stored at 'Key'. 386 VectorParts &get(Value *Key) { 387 VectorParts &Entry = MapStorage[Key]; 388 if (Entry.empty()) 389 Entry.resize(UF); 390 assert(Entry.size() == UF); 391 return Entry; 392 } 393 394 private: 395 /// The unroll factor. Each entry in the map stores this number of vector 396 /// elements. 397 unsigned UF; 398 399 /// Map storage. We use std::map and not DenseMap because insertions to a 400 /// dense map invalidates its iterators. 401 std::map<Value *, VectorParts> MapStorage; 402 }; 403 404 /// The original loop. 405 Loop *OrigLoop; 406 /// Scev analysis to use. 407 ScalarEvolution *SE; 408 /// Loop Info. 409 LoopInfo *LI; 410 /// Dominator Tree. 411 DominatorTree *DT; 412 /// Data Layout. 413 const DataLayout *DL; 414 /// Target Library Info. 415 const TargetLibraryInfo *TLI; 416 417 /// The vectorization SIMD factor to use. Each vector will have this many 418 /// vector elements. 419 unsigned VF; 420 421 protected: 422 /// The vectorization unroll factor to use. Each scalar is vectorized to this 423 /// many different vector instructions. 424 unsigned UF; 425 426 /// The builder that we use 427 IRBuilder<> Builder; 428 429 // --- Vectorization state --- 430 431 /// The vector-loop preheader. 432 BasicBlock *LoopVectorPreHeader; 433 /// The scalar-loop preheader. 434 BasicBlock *LoopScalarPreHeader; 435 /// Middle Block between the vector and the scalar. 436 BasicBlock *LoopMiddleBlock; 437 ///The ExitBlock of the scalar loop. 438 BasicBlock *LoopExitBlock; 439 ///The vector loop body. 440 SmallVector<BasicBlock *, 4> LoopVectorBody; 441 ///The scalar loop body. 442 BasicBlock *LoopScalarBody; 443 /// A list of all bypass blocks. The first block is the entry of the loop. 444 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 445 446 /// The new Induction variable which was added to the new block. 447 PHINode *Induction; 448 /// The induction variable of the old basic block. 449 PHINode *OldInduction; 450 /// Holds the extended (to the widest induction type) start index. 451 Value *ExtendedIdx; 452 /// Maps scalars to widened vectors. 453 ValueMap WidenMap; 454 EdgeMaskCache MaskCache; 455 456 LoopVectorizationLegality *Legal; 457 }; 458 459 class InnerLoopUnroller : public InnerLoopVectorizer { 460 public: 461 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 462 DominatorTree *DT, const DataLayout *DL, 463 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 464 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 465 466 private: 467 void scalarizeInstruction(Instruction *Instr, 468 bool IfPredicateStore = false) override; 469 void vectorizeMemoryInstruction(Instruction *Instr) override; 470 Value *getBroadcastInstrs(Value *V) override; 471 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 472 Value *reverseVector(Value *Vec) override; 473 }; 474 475 /// \brief Look for a meaningful debug location on the instruction or it's 476 /// operands. 477 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 478 if (!I) 479 return I; 480 481 DebugLoc Empty; 482 if (I->getDebugLoc() != Empty) 483 return I; 484 485 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 486 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 487 if (OpInst->getDebugLoc() != Empty) 488 return OpInst; 489 } 490 491 return I; 492 } 493 494 /// \brief Set the debug location in the builder using the debug location in the 495 /// instruction. 496 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 497 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 498 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 499 else 500 B.SetCurrentDebugLocation(DebugLoc()); 501 } 502 503 #ifndef NDEBUG 504 /// \return string containing a file name and a line # for the given loop. 505 static std::string getDebugLocString(const Loop *L) { 506 std::string Result; 507 if (L) { 508 raw_string_ostream OS(Result); 509 const DebugLoc LoopDbgLoc = L->getStartLoc(); 510 if (!LoopDbgLoc.isUnknown()) 511 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 512 else 513 // Just print the module name. 514 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 515 OS.flush(); 516 } 517 return Result; 518 } 519 #endif 520 521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 522 /// to what vectorization factor. 523 /// This class does not look at the profitability of vectorization, only the 524 /// legality. This class has two main kinds of checks: 525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 526 /// will change the order of memory accesses in a way that will change the 527 /// correctness of the program. 528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 529 /// checks for a number of different conditions, such as the availability of a 530 /// single induction variable, that all types are supported and vectorize-able, 531 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 532 /// This class is also used by InnerLoopVectorizer for identifying 533 /// induction variable and the different reduction variables. 534 class LoopVectorizationLegality { 535 public: 536 unsigned NumLoads; 537 unsigned NumStores; 538 unsigned NumPredStores; 539 540 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 541 DominatorTree *DT, TargetLibraryInfo *TLI, 542 Function *F) 543 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 544 DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr), 545 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 546 } 547 548 /// This enum represents the kinds of reductions that we support. 549 enum ReductionKind { 550 RK_NoReduction, ///< Not a reduction. 551 RK_IntegerAdd, ///< Sum of integers. 552 RK_IntegerMult, ///< Product of integers. 553 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 554 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 555 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 556 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 557 RK_FloatAdd, ///< Sum of floats. 558 RK_FloatMult, ///< Product of floats. 559 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 560 }; 561 562 /// This enum represents the kinds of inductions that we support. 563 enum InductionKind { 564 IK_NoInduction, ///< Not an induction variable. 565 IK_IntInduction, ///< Integer induction variable. Step = 1. 566 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 567 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 568 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 569 }; 570 571 // This enum represents the kind of minmax reduction. 572 enum MinMaxReductionKind { 573 MRK_Invalid, 574 MRK_UIntMin, 575 MRK_UIntMax, 576 MRK_SIntMin, 577 MRK_SIntMax, 578 MRK_FloatMin, 579 MRK_FloatMax 580 }; 581 582 /// This struct holds information about reduction variables. 583 struct ReductionDescriptor { 584 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 585 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 586 587 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 588 MinMaxReductionKind MK) 589 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 590 591 // The starting value of the reduction. 592 // It does not have to be zero! 593 TrackingVH<Value> StartValue; 594 // The instruction who's value is used outside the loop. 595 Instruction *LoopExitInstr; 596 // The kind of the reduction. 597 ReductionKind Kind; 598 // If this a min/max reduction the kind of reduction. 599 MinMaxReductionKind MinMaxKind; 600 }; 601 602 /// This POD struct holds information about a potential reduction operation. 603 struct ReductionInstDesc { 604 ReductionInstDesc(bool IsRedux, Instruction *I) : 605 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 606 607 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 608 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 609 610 // Is this instruction a reduction candidate. 611 bool IsReduction; 612 // The last instruction in a min/max pattern (select of the select(icmp()) 613 // pattern), or the current reduction instruction otherwise. 614 Instruction *PatternLastInst; 615 // If this is a min/max pattern the comparison predicate. 616 MinMaxReductionKind MinMaxKind; 617 }; 618 619 /// This struct holds information about the memory runtime legality 620 /// check that a group of pointers do not overlap. 621 struct RuntimePointerCheck { 622 RuntimePointerCheck() : Need(false) {} 623 624 /// Reset the state of the pointer runtime information. 625 void reset() { 626 Need = false; 627 Pointers.clear(); 628 Starts.clear(); 629 Ends.clear(); 630 IsWritePtr.clear(); 631 DependencySetId.clear(); 632 } 633 634 /// Insert a pointer and calculate the start and end SCEVs. 635 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 636 unsigned DepSetId, ValueToValueMap &Strides); 637 638 /// This flag indicates if we need to add the runtime check. 639 bool Need; 640 /// Holds the pointers that we need to check. 641 SmallVector<TrackingVH<Value>, 2> Pointers; 642 /// Holds the pointer value at the beginning of the loop. 643 SmallVector<const SCEV*, 2> Starts; 644 /// Holds the pointer value at the end of the loop. 645 SmallVector<const SCEV*, 2> Ends; 646 /// Holds the information if this pointer is used for writing to memory. 647 SmallVector<bool, 2> IsWritePtr; 648 /// Holds the id of the set of pointers that could be dependent because of a 649 /// shared underlying object. 650 SmallVector<unsigned, 2> DependencySetId; 651 }; 652 653 /// A struct for saving information about induction variables. 654 struct InductionInfo { 655 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 656 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 657 /// Start value. 658 TrackingVH<Value> StartValue; 659 /// Induction kind. 660 InductionKind IK; 661 }; 662 663 /// ReductionList contains the reduction descriptors for all 664 /// of the reductions that were found in the loop. 665 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 666 667 /// InductionList saves induction variables and maps them to the 668 /// induction descriptor. 669 typedef MapVector<PHINode*, InductionInfo> InductionList; 670 671 /// Returns true if it is legal to vectorize this loop. 672 /// This does not mean that it is profitable to vectorize this 673 /// loop, only that it is legal to do so. 674 bool canVectorize(); 675 676 /// Returns the Induction variable. 677 PHINode *getInduction() { return Induction; } 678 679 /// Returns the reduction variables found in the loop. 680 ReductionList *getReductionVars() { return &Reductions; } 681 682 /// Returns the induction variables found in the loop. 683 InductionList *getInductionVars() { return &Inductions; } 684 685 /// Returns the widest induction type. 686 Type *getWidestInductionType() { return WidestIndTy; } 687 688 /// Returns True if V is an induction variable in this loop. 689 bool isInductionVariable(const Value *V); 690 691 /// Return true if the block BB needs to be predicated in order for the loop 692 /// to be vectorized. 693 bool blockNeedsPredication(BasicBlock *BB); 694 695 /// Check if this pointer is consecutive when vectorizing. This happens 696 /// when the last index of the GEP is the induction variable, or that the 697 /// pointer itself is an induction variable. 698 /// This check allows us to vectorize A[idx] into a wide load/store. 699 /// Returns: 700 /// 0 - Stride is unknown or non-consecutive. 701 /// 1 - Address is consecutive. 702 /// -1 - Address is consecutive, and decreasing. 703 int isConsecutivePtr(Value *Ptr); 704 705 /// Returns true if the value V is uniform within the loop. 706 bool isUniform(Value *V); 707 708 /// Returns true if this instruction will remain scalar after vectorization. 709 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 710 711 /// Returns the information that we collected about runtime memory check. 712 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 713 714 /// This function returns the identity element (or neutral element) for 715 /// the operation K. 716 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 717 718 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 719 720 bool hasStride(Value *V) { return StrideSet.count(V); } 721 bool mustCheckStrides() { return !StrideSet.empty(); } 722 SmallPtrSet<Value *, 8>::iterator strides_begin() { 723 return StrideSet.begin(); 724 } 725 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 726 727 private: 728 /// Check if a single basic block loop is vectorizable. 729 /// At this point we know that this is a loop with a constant trip count 730 /// and we only need to check individual instructions. 731 bool canVectorizeInstrs(); 732 733 /// When we vectorize loops we may change the order in which 734 /// we read and write from memory. This method checks if it is 735 /// legal to vectorize the code, considering only memory constrains. 736 /// Returns true if the loop is vectorizable 737 bool canVectorizeMemory(); 738 739 /// Return true if we can vectorize this loop using the IF-conversion 740 /// transformation. 741 bool canVectorizeWithIfConvert(); 742 743 /// Collect the variables that need to stay uniform after vectorization. 744 void collectLoopUniforms(); 745 746 /// Return true if all of the instructions in the block can be speculatively 747 /// executed. \p SafePtrs is a list of addresses that are known to be legal 748 /// and we know that we can read from them without segfault. 749 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 750 751 /// Returns True, if 'Phi' is the kind of reduction variable for type 752 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 753 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 754 /// Returns a struct describing if the instruction 'I' can be a reduction 755 /// variable of type 'Kind'. If the reduction is a min/max pattern of 756 /// select(icmp()) this function advances the instruction pointer 'I' from the 757 /// compare instruction to the select instruction and stores this pointer in 758 /// 'PatternLastInst' member of the returned struct. 759 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 760 ReductionInstDesc &Desc); 761 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 762 /// pattern corresponding to a min(X, Y) or max(X, Y). 763 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 764 ReductionInstDesc &Prev); 765 /// Returns the induction kind of Phi. This function may return NoInduction 766 /// if the PHI is not an induction variable. 767 InductionKind isInductionVariable(PHINode *Phi); 768 769 /// \brief Collect memory access with loop invariant strides. 770 /// 771 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 772 /// invariant. 773 void collectStridedAcccess(Value *LoadOrStoreInst); 774 775 /// Report an analysis message to assist the user in diagnosing loops that are 776 /// not vectorized. 777 void emitAnalysis(Report &Message) { 778 DebugLoc DL = TheLoop->getStartLoc(); 779 if (Instruction *I = Message.getInstr()) 780 DL = I->getDebugLoc(); 781 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 782 *TheFunction, DL, Message.str()); 783 } 784 785 /// The loop that we evaluate. 786 Loop *TheLoop; 787 /// Scev analysis. 788 ScalarEvolution *SE; 789 /// DataLayout analysis. 790 const DataLayout *DL; 791 /// Dominators. 792 DominatorTree *DT; 793 /// Target Library Info. 794 TargetLibraryInfo *TLI; 795 /// Parent function 796 Function *TheFunction; 797 798 // --- vectorization state --- // 799 800 /// Holds the integer induction variable. This is the counter of the 801 /// loop. 802 PHINode *Induction; 803 /// Holds the reduction variables. 804 ReductionList Reductions; 805 /// Holds all of the induction variables that we found in the loop. 806 /// Notice that inductions don't need to start at zero and that induction 807 /// variables can be pointers. 808 InductionList Inductions; 809 /// Holds the widest induction type encountered. 810 Type *WidestIndTy; 811 812 /// Allowed outside users. This holds the reduction 813 /// vars which can be accessed from outside the loop. 814 SmallPtrSet<Value*, 4> AllowedExit; 815 /// This set holds the variables which are known to be uniform after 816 /// vectorization. 817 SmallPtrSet<Instruction*, 4> Uniforms; 818 /// We need to check that all of the pointers in this list are disjoint 819 /// at runtime. 820 RuntimePointerCheck PtrRtCheck; 821 /// Can we assume the absence of NaNs. 822 bool HasFunNoNaNAttr; 823 824 unsigned MaxSafeDepDistBytes; 825 826 ValueToValueMap Strides; 827 SmallPtrSet<Value *, 8> StrideSet; 828 }; 829 830 /// LoopVectorizationCostModel - estimates the expected speedups due to 831 /// vectorization. 832 /// In many cases vectorization is not profitable. This can happen because of 833 /// a number of reasons. In this class we mainly attempt to predict the 834 /// expected speedup/slowdowns due to the supported instruction set. We use the 835 /// TargetTransformInfo to query the different backends for the cost of 836 /// different operations. 837 class LoopVectorizationCostModel { 838 public: 839 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 840 LoopVectorizationLegality *Legal, 841 const TargetTransformInfo &TTI, 842 const DataLayout *DL, const TargetLibraryInfo *TLI) 843 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 844 845 /// Information about vectorization costs 846 struct VectorizationFactor { 847 unsigned Width; // Vector width with best cost 848 unsigned Cost; // Cost of the loop with that width 849 }; 850 /// \return The most profitable vectorization factor and the cost of that VF. 851 /// This method checks every power of two up to VF. If UserVF is not ZERO 852 /// then this vectorization factor will be selected if vectorization is 853 /// possible. 854 VectorizationFactor selectVectorizationFactor(bool OptForSize, 855 unsigned UserVF, 856 bool ForceVectorization); 857 858 /// \return The size (in bits) of the widest type in the code that 859 /// needs to be vectorized. We ignore values that remain scalar such as 860 /// 64 bit loop indices. 861 unsigned getWidestType(); 862 863 /// \return The most profitable unroll factor. 864 /// If UserUF is non-zero then this method finds the best unroll-factor 865 /// based on register pressure and other parameters. 866 /// VF and LoopCost are the selected vectorization factor and the cost of the 867 /// selected VF. 868 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 869 unsigned LoopCost); 870 871 /// \brief A struct that represents some properties of the register usage 872 /// of a loop. 873 struct RegisterUsage { 874 /// Holds the number of loop invariant values that are used in the loop. 875 unsigned LoopInvariantRegs; 876 /// Holds the maximum number of concurrent live intervals in the loop. 877 unsigned MaxLocalUsers; 878 /// Holds the number of instructions in the loop. 879 unsigned NumInstructions; 880 }; 881 882 /// \return information about the register usage of the loop. 883 RegisterUsage calculateRegisterUsage(); 884 885 private: 886 /// Returns the expected execution cost. The unit of the cost does 887 /// not matter because we use the 'cost' units to compare different 888 /// vector widths. The cost that is returned is *not* normalized by 889 /// the factor width. 890 unsigned expectedCost(unsigned VF); 891 892 /// Returns the execution time cost of an instruction for a given vector 893 /// width. Vector width of one means scalar. 894 unsigned getInstructionCost(Instruction *I, unsigned VF); 895 896 /// A helper function for converting Scalar types to vector types. 897 /// If the incoming type is void, we return void. If the VF is 1, we return 898 /// the scalar type. 899 static Type* ToVectorTy(Type *Scalar, unsigned VF); 900 901 /// Returns whether the instruction is a load or store and will be a emitted 902 /// as a vector operation. 903 bool isConsecutiveLoadOrStore(Instruction *I); 904 905 /// The loop that we evaluate. 906 Loop *TheLoop; 907 /// Scev analysis. 908 ScalarEvolution *SE; 909 /// Loop Info analysis. 910 LoopInfo *LI; 911 /// Vectorization legality. 912 LoopVectorizationLegality *Legal; 913 /// Vector target information. 914 const TargetTransformInfo &TTI; 915 /// Target data layout information. 916 const DataLayout *DL; 917 /// Target Library Info. 918 const TargetLibraryInfo *TLI; 919 }; 920 921 /// Utility class for getting and setting loop vectorizer hints in the form 922 /// of loop metadata. 923 class LoopVectorizeHints { 924 public: 925 enum ForceKind { 926 FK_Undefined = -1, ///< Not selected. 927 FK_Disabled = 0, ///< Forcing disabled. 928 FK_Enabled = 1, ///< Forcing enabled. 929 }; 930 931 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 932 : Width(VectorizationFactor), 933 Unroll(DisableUnrolling), 934 Force(FK_Undefined), 935 LoopID(L->getLoopID()) { 936 getHints(L); 937 // force-vector-unroll overrides DisableUnrolling. 938 if (VectorizationUnroll.getNumOccurrences() > 0) 939 Unroll = VectorizationUnroll; 940 941 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 942 << "LV: Unrolling disabled by the pass manager\n"); 943 } 944 945 /// Return the loop vectorizer metadata prefix. 946 static StringRef Prefix() { return "llvm.loop.vectorize."; } 947 948 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 949 SmallVector<Value*, 2> Vals; 950 Vals.push_back(MDString::get(Context, Name)); 951 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 952 return MDNode::get(Context, Vals); 953 } 954 955 /// Mark the loop L as already vectorized by setting the width to 1. 956 void setAlreadyVectorized(Loop *L) { 957 LLVMContext &Context = L->getHeader()->getContext(); 958 959 Width = 1; 960 961 // Create a new loop id with one more operand for the already_vectorized 962 // hint. If the loop already has a loop id then copy the existing operands. 963 SmallVector<Value*, 4> Vals(1); 964 if (LoopID) 965 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 966 Vals.push_back(LoopID->getOperand(i)); 967 968 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 969 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 970 971 MDNode *NewLoopID = MDNode::get(Context, Vals); 972 // Set operand 0 to refer to the loop id itself. 973 NewLoopID->replaceOperandWith(0, NewLoopID); 974 975 L->setLoopID(NewLoopID); 976 if (LoopID) 977 LoopID->replaceAllUsesWith(NewLoopID); 978 979 LoopID = NewLoopID; 980 } 981 982 std::string emitRemark() const { 983 Report R; 984 R << "vectorization "; 985 switch (Force) { 986 case LoopVectorizeHints::FK_Disabled: 987 R << "is explicitly disabled"; 988 break; 989 case LoopVectorizeHints::FK_Enabled: 990 R << "is explicitly enabled"; 991 if (Width != 0 && Unroll != 0) 992 R << " with width " << Width << " and interleave count " << Unroll; 993 else if (Width != 0) 994 R << " with width " << Width; 995 else if (Unroll != 0) 996 R << " with interleave count " << Unroll; 997 break; 998 case LoopVectorizeHints::FK_Undefined: 999 R << "was not specified"; 1000 break; 1001 } 1002 return R.str(); 1003 } 1004 1005 unsigned getWidth() const { return Width; } 1006 unsigned getUnroll() const { return Unroll; } 1007 enum ForceKind getForce() const { return Force; } 1008 MDNode *getLoopID() const { return LoopID; } 1009 1010 private: 1011 /// Find hints specified in the loop metadata. 1012 void getHints(const Loop *L) { 1013 if (!LoopID) 1014 return; 1015 1016 // First operand should refer to the loop id itself. 1017 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1018 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1019 1020 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1021 const MDString *S = nullptr; 1022 SmallVector<Value*, 4> Args; 1023 1024 // The expected hint is either a MDString or a MDNode with the first 1025 // operand a MDString. 1026 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1027 if (!MD || MD->getNumOperands() == 0) 1028 continue; 1029 S = dyn_cast<MDString>(MD->getOperand(0)); 1030 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1031 Args.push_back(MD->getOperand(i)); 1032 } else { 1033 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1034 assert(Args.size() == 0 && "too many arguments for MDString"); 1035 } 1036 1037 if (!S) 1038 continue; 1039 1040 // Check if the hint starts with the vectorizer prefix. 1041 StringRef Hint = S->getString(); 1042 if (!Hint.startswith(Prefix())) 1043 continue; 1044 // Remove the prefix. 1045 Hint = Hint.substr(Prefix().size(), StringRef::npos); 1046 1047 if (Args.size() == 1) 1048 getHint(Hint, Args[0]); 1049 } 1050 } 1051 1052 // Check string hint with one operand. 1053 void getHint(StringRef Hint, Value *Arg) { 1054 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1055 if (!C) return; 1056 unsigned Val = C->getZExtValue(); 1057 1058 if (Hint == "width") { 1059 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1060 Width = Val; 1061 else 1062 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1063 } else if (Hint == "unroll") { 1064 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1065 Unroll = Val; 1066 else 1067 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1068 } else if (Hint == "enable") { 1069 if (C->getBitWidth() == 1) 1070 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1071 : LoopVectorizeHints::FK_Disabled; 1072 else 1073 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1074 } else { 1075 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1076 } 1077 } 1078 1079 /// Vectorization width. 1080 unsigned Width; 1081 /// Vectorization unroll factor. 1082 unsigned Unroll; 1083 /// Vectorization forced 1084 enum ForceKind Force; 1085 1086 MDNode *LoopID; 1087 }; 1088 1089 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1090 if (L.empty()) 1091 return V.push_back(&L); 1092 1093 for (Loop *InnerL : L) 1094 addInnerLoop(*InnerL, V); 1095 } 1096 1097 /// The LoopVectorize Pass. 1098 struct LoopVectorize : public FunctionPass { 1099 /// Pass identification, replacement for typeid 1100 static char ID; 1101 1102 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1103 : FunctionPass(ID), 1104 DisableUnrolling(NoUnrolling), 1105 AlwaysVectorize(AlwaysVectorize) { 1106 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1107 } 1108 1109 ScalarEvolution *SE; 1110 const DataLayout *DL; 1111 LoopInfo *LI; 1112 TargetTransformInfo *TTI; 1113 DominatorTree *DT; 1114 BlockFrequencyInfo *BFI; 1115 TargetLibraryInfo *TLI; 1116 bool DisableUnrolling; 1117 bool AlwaysVectorize; 1118 1119 BlockFrequency ColdEntryFreq; 1120 1121 bool runOnFunction(Function &F) override { 1122 SE = &getAnalysis<ScalarEvolution>(); 1123 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1124 DL = DLP ? &DLP->getDataLayout() : nullptr; 1125 LI = &getAnalysis<LoopInfo>(); 1126 TTI = &getAnalysis<TargetTransformInfo>(); 1127 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1128 BFI = &getAnalysis<BlockFrequencyInfo>(); 1129 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1130 1131 // Compute some weights outside of the loop over the loops. Compute this 1132 // using a BranchProbability to re-use its scaling math. 1133 const BranchProbability ColdProb(1, 5); // 20% 1134 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1135 1136 // If the target claims to have no vector registers don't attempt 1137 // vectorization. 1138 if (!TTI->getNumberOfRegisters(true)) 1139 return false; 1140 1141 if (!DL) { 1142 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1143 << ": Missing data layout\n"); 1144 return false; 1145 } 1146 1147 // Build up a worklist of inner-loops to vectorize. This is necessary as 1148 // the act of vectorizing or partially unrolling a loop creates new loops 1149 // and can invalidate iterators across the loops. 1150 SmallVector<Loop *, 8> Worklist; 1151 1152 for (Loop *L : *LI) 1153 addInnerLoop(*L, Worklist); 1154 1155 LoopsAnalyzed += Worklist.size(); 1156 1157 // Now walk the identified inner loops. 1158 bool Changed = false; 1159 while (!Worklist.empty()) 1160 Changed |= processLoop(Worklist.pop_back_val()); 1161 1162 // Process each loop nest in the function. 1163 return Changed; 1164 } 1165 1166 bool processLoop(Loop *L) { 1167 assert(L->empty() && "Only process inner loops."); 1168 1169 #ifndef NDEBUG 1170 const std::string DebugLocStr = getDebugLocString(L); 1171 #endif /* NDEBUG */ 1172 1173 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1174 << L->getHeader()->getParent()->getName() << "\" from " 1175 << DebugLocStr << "\n"); 1176 1177 LoopVectorizeHints Hints(L, DisableUnrolling); 1178 1179 DEBUG(dbgs() << "LV: Loop hints:" 1180 << " force=" 1181 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1182 ? "disabled" 1183 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1184 ? "enabled" 1185 : "?")) << " width=" << Hints.getWidth() 1186 << " unroll=" << Hints.getUnroll() << "\n"); 1187 1188 // Function containing loop 1189 Function *F = L->getHeader()->getParent(); 1190 1191 // Looking at the diagnostic output is the only way to determine if a loop 1192 // was vectorized (other than looking at the IR or machine code), so it 1193 // is important to generate an optimization remark for each loop. Most of 1194 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1195 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1196 // less verbose reporting vectorized loops and unvectorized loops that may 1197 // benefit from vectorization, respectively. 1198 1199 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1200 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1201 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1202 L->getStartLoc(), Hints.emitRemark()); 1203 return false; 1204 } 1205 1206 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1207 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1208 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1209 L->getStartLoc(), Hints.emitRemark()); 1210 return false; 1211 } 1212 1213 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1214 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1215 emitOptimizationRemarkAnalysis( 1216 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1217 "loop not vectorized: vector width and interleave count are " 1218 "explicitly set to 1"); 1219 return false; 1220 } 1221 1222 // Check the loop for a trip count threshold: 1223 // do not vectorize loops with a tiny trip count. 1224 BasicBlock *Latch = L->getLoopLatch(); 1225 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1226 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1227 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1228 << "This loop is not worth vectorizing."); 1229 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1230 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1231 else { 1232 DEBUG(dbgs() << "\n"); 1233 emitOptimizationRemarkAnalysis( 1234 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1235 "vectorization is not beneficial and is not explicitly forced"); 1236 return false; 1237 } 1238 } 1239 1240 // Check if it is legal to vectorize the loop. 1241 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F); 1242 if (!LVL.canVectorize()) { 1243 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1244 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1245 L->getStartLoc(), Hints.emitRemark()); 1246 return false; 1247 } 1248 1249 // Use the cost model. 1250 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1251 1252 // Check the function attributes to find out if this function should be 1253 // optimized for size. 1254 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1255 F->hasFnAttribute(Attribute::OptimizeForSize); 1256 1257 // Compute the weighted frequency of this loop being executed and see if it 1258 // is less than 20% of the function entry baseline frequency. Note that we 1259 // always have a canonical loop here because we think we *can* vectoriez. 1260 // FIXME: This is hidden behind a flag due to pervasive problems with 1261 // exactly what block frequency models. 1262 if (LoopVectorizeWithBlockFrequency) { 1263 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1264 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1265 LoopEntryFreq < ColdEntryFreq) 1266 OptForSize = true; 1267 } 1268 1269 // Check the function attributes to see if implicit floats are allowed.a 1270 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1271 // an integer loop and the vector instructions selected are purely integer 1272 // vector instructions? 1273 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1274 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1275 "attribute is used.\n"); 1276 emitOptimizationRemarkAnalysis( 1277 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1278 "loop not vectorized due to NoImplicitFloat attribute"); 1279 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1280 L->getStartLoc(), Hints.emitRemark()); 1281 return false; 1282 } 1283 1284 // Select the optimal vectorization factor. 1285 const LoopVectorizationCostModel::VectorizationFactor VF = 1286 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1287 Hints.getForce() == 1288 LoopVectorizeHints::FK_Enabled); 1289 1290 // Select the unroll factor. 1291 const unsigned UF = 1292 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1293 1294 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1295 << DebugLocStr << '\n'); 1296 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1297 1298 if (VF.Width == 1) { 1299 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1300 1301 if (UF == 1) { 1302 emitOptimizationRemarkAnalysis( 1303 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1304 "not beneficial to vectorize and user disabled interleaving"); 1305 return false; 1306 } 1307 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1308 1309 // Report the unrolling decision. 1310 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1311 Twine("unrolled with interleaving factor " + 1312 Twine(UF) + 1313 " (vectorization not beneficial)")); 1314 1315 // We decided not to vectorize, but we may want to unroll. 1316 1317 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1318 Unroller.vectorize(&LVL); 1319 } else { 1320 // If we decided that it is *legal* to vectorize the loop then do it. 1321 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1322 LB.vectorize(&LVL); 1323 ++LoopsVectorized; 1324 1325 // Report the vectorization decision. 1326 emitOptimizationRemark( 1327 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1328 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1329 ", unrolling interleave factor: " + Twine(UF) + ")"); 1330 } 1331 1332 // Mark the loop as already vectorized to avoid vectorizing again. 1333 Hints.setAlreadyVectorized(L); 1334 1335 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1336 return true; 1337 } 1338 1339 void getAnalysisUsage(AnalysisUsage &AU) const override { 1340 AU.addRequiredID(LoopSimplifyID); 1341 AU.addRequiredID(LCSSAID); 1342 AU.addRequired<BlockFrequencyInfo>(); 1343 AU.addRequired<DominatorTreeWrapperPass>(); 1344 AU.addRequired<LoopInfo>(); 1345 AU.addRequired<ScalarEvolution>(); 1346 AU.addRequired<TargetTransformInfo>(); 1347 AU.addPreserved<LoopInfo>(); 1348 AU.addPreserved<DominatorTreeWrapperPass>(); 1349 } 1350 1351 }; 1352 1353 } // end anonymous namespace 1354 1355 //===----------------------------------------------------------------------===// 1356 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1357 // LoopVectorizationCostModel. 1358 //===----------------------------------------------------------------------===// 1359 1360 static Value *stripIntegerCast(Value *V) { 1361 if (CastInst *CI = dyn_cast<CastInst>(V)) 1362 if (CI->getOperand(0)->getType()->isIntegerTy()) 1363 return CI->getOperand(0); 1364 return V; 1365 } 1366 1367 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1368 /// 1369 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1370 /// \p Ptr. 1371 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1372 ValueToValueMap &PtrToStride, 1373 Value *Ptr, Value *OrigPtr = nullptr) { 1374 1375 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1376 1377 // If there is an entry in the map return the SCEV of the pointer with the 1378 // symbolic stride replaced by one. 1379 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1380 if (SI != PtrToStride.end()) { 1381 Value *StrideVal = SI->second; 1382 1383 // Strip casts. 1384 StrideVal = stripIntegerCast(StrideVal); 1385 1386 // Replace symbolic stride by one. 1387 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1388 ValueToValueMap RewriteMap; 1389 RewriteMap[StrideVal] = One; 1390 1391 const SCEV *ByOne = 1392 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1393 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1394 << "\n"); 1395 return ByOne; 1396 } 1397 1398 // Otherwise, just return the SCEV of the original pointer. 1399 return SE->getSCEV(Ptr); 1400 } 1401 1402 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1403 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1404 ValueToValueMap &Strides) { 1405 // Get the stride replaced scev. 1406 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1407 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1408 assert(AR && "Invalid addrec expression"); 1409 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1410 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1411 Pointers.push_back(Ptr); 1412 Starts.push_back(AR->getStart()); 1413 Ends.push_back(ScEnd); 1414 IsWritePtr.push_back(WritePtr); 1415 DependencySetId.push_back(DepSetId); 1416 } 1417 1418 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1419 // We need to place the broadcast of invariant variables outside the loop. 1420 Instruction *Instr = dyn_cast<Instruction>(V); 1421 bool NewInstr = 1422 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1423 Instr->getParent()) != LoopVectorBody.end()); 1424 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1425 1426 // Place the code for broadcasting invariant variables in the new preheader. 1427 IRBuilder<>::InsertPointGuard Guard(Builder); 1428 if (Invariant) 1429 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1430 1431 // Broadcast the scalar into all locations in the vector. 1432 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1433 1434 return Shuf; 1435 } 1436 1437 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1438 bool Negate) { 1439 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1440 assert(Val->getType()->getScalarType()->isIntegerTy() && 1441 "Elem must be an integer"); 1442 // Create the types. 1443 Type *ITy = Val->getType()->getScalarType(); 1444 VectorType *Ty = cast<VectorType>(Val->getType()); 1445 int VLen = Ty->getNumElements(); 1446 SmallVector<Constant*, 8> Indices; 1447 1448 // Create a vector of consecutive numbers from zero to VF. 1449 for (int i = 0; i < VLen; ++i) { 1450 int64_t Idx = Negate ? (-i) : i; 1451 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1452 } 1453 1454 // Add the consecutive indices to the vector value. 1455 Constant *Cv = ConstantVector::get(Indices); 1456 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1457 return Builder.CreateAdd(Val, Cv, "induction"); 1458 } 1459 1460 /// \brief Find the operand of the GEP that should be checked for consecutive 1461 /// stores. This ignores trailing indices that have no effect on the final 1462 /// pointer. 1463 static unsigned getGEPInductionOperand(const DataLayout *DL, 1464 const GetElementPtrInst *Gep) { 1465 unsigned LastOperand = Gep->getNumOperands() - 1; 1466 unsigned GEPAllocSize = DL->getTypeAllocSize( 1467 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1468 1469 // Walk backwards and try to peel off zeros. 1470 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1471 // Find the type we're currently indexing into. 1472 gep_type_iterator GEPTI = gep_type_begin(Gep); 1473 std::advance(GEPTI, LastOperand - 1); 1474 1475 // If it's a type with the same allocation size as the result of the GEP we 1476 // can peel off the zero index. 1477 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1478 break; 1479 --LastOperand; 1480 } 1481 1482 return LastOperand; 1483 } 1484 1485 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1486 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1487 // Make sure that the pointer does not point to structs. 1488 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1489 return 0; 1490 1491 // If this value is a pointer induction variable we know it is consecutive. 1492 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1493 if (Phi && Inductions.count(Phi)) { 1494 InductionInfo II = Inductions[Phi]; 1495 if (IK_PtrInduction == II.IK) 1496 return 1; 1497 else if (IK_ReversePtrInduction == II.IK) 1498 return -1; 1499 } 1500 1501 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1502 if (!Gep) 1503 return 0; 1504 1505 unsigned NumOperands = Gep->getNumOperands(); 1506 Value *GpPtr = Gep->getPointerOperand(); 1507 // If this GEP value is a consecutive pointer induction variable and all of 1508 // the indices are constant then we know it is consecutive. We can 1509 Phi = dyn_cast<PHINode>(GpPtr); 1510 if (Phi && Inductions.count(Phi)) { 1511 1512 // Make sure that the pointer does not point to structs. 1513 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1514 if (GepPtrType->getElementType()->isAggregateType()) 1515 return 0; 1516 1517 // Make sure that all of the index operands are loop invariant. 1518 for (unsigned i = 1; i < NumOperands; ++i) 1519 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1520 return 0; 1521 1522 InductionInfo II = Inductions[Phi]; 1523 if (IK_PtrInduction == II.IK) 1524 return 1; 1525 else if (IK_ReversePtrInduction == II.IK) 1526 return -1; 1527 } 1528 1529 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1530 1531 // Check that all of the gep indices are uniform except for our induction 1532 // operand. 1533 for (unsigned i = 0; i != NumOperands; ++i) 1534 if (i != InductionOperand && 1535 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1536 return 0; 1537 1538 // We can emit wide load/stores only if the last non-zero index is the 1539 // induction variable. 1540 const SCEV *Last = nullptr; 1541 if (!Strides.count(Gep)) 1542 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1543 else { 1544 // Because of the multiplication by a stride we can have a s/zext cast. 1545 // We are going to replace this stride by 1 so the cast is safe to ignore. 1546 // 1547 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1548 // %0 = trunc i64 %indvars.iv to i32 1549 // %mul = mul i32 %0, %Stride1 1550 // %idxprom = zext i32 %mul to i64 << Safe cast. 1551 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1552 // 1553 Last = replaceSymbolicStrideSCEV(SE, Strides, 1554 Gep->getOperand(InductionOperand), Gep); 1555 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1556 Last = 1557 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1558 ? C->getOperand() 1559 : Last; 1560 } 1561 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1562 const SCEV *Step = AR->getStepRecurrence(*SE); 1563 1564 // The memory is consecutive because the last index is consecutive 1565 // and all other indices are loop invariant. 1566 if (Step->isOne()) 1567 return 1; 1568 if (Step->isAllOnesValue()) 1569 return -1; 1570 } 1571 1572 return 0; 1573 } 1574 1575 bool LoopVectorizationLegality::isUniform(Value *V) { 1576 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1577 } 1578 1579 InnerLoopVectorizer::VectorParts& 1580 InnerLoopVectorizer::getVectorValue(Value *V) { 1581 assert(V != Induction && "The new induction variable should not be used."); 1582 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1583 1584 // If we have a stride that is replaced by one, do it here. 1585 if (Legal->hasStride(V)) 1586 V = ConstantInt::get(V->getType(), 1); 1587 1588 // If we have this scalar in the map, return it. 1589 if (WidenMap.has(V)) 1590 return WidenMap.get(V); 1591 1592 // If this scalar is unknown, assume that it is a constant or that it is 1593 // loop invariant. Broadcast V and save the value for future uses. 1594 Value *B = getBroadcastInstrs(V); 1595 return WidenMap.splat(V, B); 1596 } 1597 1598 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1599 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1600 SmallVector<Constant*, 8> ShuffleMask; 1601 for (unsigned i = 0; i < VF; ++i) 1602 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1603 1604 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1605 ConstantVector::get(ShuffleMask), 1606 "reverse"); 1607 } 1608 1609 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1610 // Attempt to issue a wide load. 1611 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1612 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1613 1614 assert((LI || SI) && "Invalid Load/Store instruction"); 1615 1616 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1617 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1618 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1619 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1620 // An alignment of 0 means target abi alignment. We need to use the scalar's 1621 // target abi alignment in such a case. 1622 if (!Alignment) 1623 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1624 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1625 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1626 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1627 1628 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1629 return scalarizeInstruction(Instr, true); 1630 1631 if (ScalarAllocatedSize != VectorElementSize) 1632 return scalarizeInstruction(Instr); 1633 1634 // If the pointer is loop invariant or if it is non-consecutive, 1635 // scalarize the load. 1636 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1637 bool Reverse = ConsecutiveStride < 0; 1638 bool UniformLoad = LI && Legal->isUniform(Ptr); 1639 if (!ConsecutiveStride || UniformLoad) 1640 return scalarizeInstruction(Instr); 1641 1642 Constant *Zero = Builder.getInt32(0); 1643 VectorParts &Entry = WidenMap.get(Instr); 1644 1645 // Handle consecutive loads/stores. 1646 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1647 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1648 setDebugLocFromInst(Builder, Gep); 1649 Value *PtrOperand = Gep->getPointerOperand(); 1650 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1651 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1652 1653 // Create the new GEP with the new induction variable. 1654 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1655 Gep2->setOperand(0, FirstBasePtr); 1656 Gep2->setName("gep.indvar.base"); 1657 Ptr = Builder.Insert(Gep2); 1658 } else if (Gep) { 1659 setDebugLocFromInst(Builder, Gep); 1660 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1661 OrigLoop) && "Base ptr must be invariant"); 1662 1663 // The last index does not have to be the induction. It can be 1664 // consecutive and be a function of the index. For example A[I+1]; 1665 unsigned NumOperands = Gep->getNumOperands(); 1666 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1667 // Create the new GEP with the new induction variable. 1668 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1669 1670 for (unsigned i = 0; i < NumOperands; ++i) { 1671 Value *GepOperand = Gep->getOperand(i); 1672 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1673 1674 // Update last index or loop invariant instruction anchored in loop. 1675 if (i == InductionOperand || 1676 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1677 assert((i == InductionOperand || 1678 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1679 "Must be last index or loop invariant"); 1680 1681 VectorParts &GEPParts = getVectorValue(GepOperand); 1682 Value *Index = GEPParts[0]; 1683 Index = Builder.CreateExtractElement(Index, Zero); 1684 Gep2->setOperand(i, Index); 1685 Gep2->setName("gep.indvar.idx"); 1686 } 1687 } 1688 Ptr = Builder.Insert(Gep2); 1689 } else { 1690 // Use the induction element ptr. 1691 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1692 setDebugLocFromInst(Builder, Ptr); 1693 VectorParts &PtrVal = getVectorValue(Ptr); 1694 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1695 } 1696 1697 // Handle Stores: 1698 if (SI) { 1699 assert(!Legal->isUniform(SI->getPointerOperand()) && 1700 "We do not allow storing to uniform addresses"); 1701 setDebugLocFromInst(Builder, SI); 1702 // We don't want to update the value in the map as it might be used in 1703 // another expression. So don't use a reference type for "StoredVal". 1704 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1705 1706 for (unsigned Part = 0; Part < UF; ++Part) { 1707 // Calculate the pointer for the specific unroll-part. 1708 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1709 1710 if (Reverse) { 1711 // If we store to reverse consecutive memory locations then we need 1712 // to reverse the order of elements in the stored value. 1713 StoredVal[Part] = reverseVector(StoredVal[Part]); 1714 // If the address is consecutive but reversed, then the 1715 // wide store needs to start at the last vector element. 1716 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1717 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1718 } 1719 1720 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1721 DataTy->getPointerTo(AddressSpace)); 1722 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1723 } 1724 return; 1725 } 1726 1727 // Handle loads. 1728 assert(LI && "Must have a load instruction"); 1729 setDebugLocFromInst(Builder, LI); 1730 for (unsigned Part = 0; Part < UF; ++Part) { 1731 // Calculate the pointer for the specific unroll-part. 1732 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1733 1734 if (Reverse) { 1735 // If the address is consecutive but reversed, then the 1736 // wide store needs to start at the last vector element. 1737 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1738 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1739 } 1740 1741 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1742 DataTy->getPointerTo(AddressSpace)); 1743 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1744 cast<LoadInst>(LI)->setAlignment(Alignment); 1745 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1746 } 1747 } 1748 1749 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1750 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1751 // Holds vector parameters or scalars, in case of uniform vals. 1752 SmallVector<VectorParts, 4> Params; 1753 1754 setDebugLocFromInst(Builder, Instr); 1755 1756 // Find all of the vectorized parameters. 1757 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1758 Value *SrcOp = Instr->getOperand(op); 1759 1760 // If we are accessing the old induction variable, use the new one. 1761 if (SrcOp == OldInduction) { 1762 Params.push_back(getVectorValue(SrcOp)); 1763 continue; 1764 } 1765 1766 // Try using previously calculated values. 1767 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1768 1769 // If the src is an instruction that appeared earlier in the basic block 1770 // then it should already be vectorized. 1771 if (SrcInst && OrigLoop->contains(SrcInst)) { 1772 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1773 // The parameter is a vector value from earlier. 1774 Params.push_back(WidenMap.get(SrcInst)); 1775 } else { 1776 // The parameter is a scalar from outside the loop. Maybe even a constant. 1777 VectorParts Scalars; 1778 Scalars.append(UF, SrcOp); 1779 Params.push_back(Scalars); 1780 } 1781 } 1782 1783 assert(Params.size() == Instr->getNumOperands() && 1784 "Invalid number of operands"); 1785 1786 // Does this instruction return a value ? 1787 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1788 1789 Value *UndefVec = IsVoidRetTy ? nullptr : 1790 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1791 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1792 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1793 1794 Instruction *InsertPt = Builder.GetInsertPoint(); 1795 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1796 BasicBlock *CondBlock = nullptr; 1797 1798 VectorParts Cond; 1799 Loop *VectorLp = nullptr; 1800 if (IfPredicateStore) { 1801 assert(Instr->getParent()->getSinglePredecessor() && 1802 "Only support single predecessor blocks"); 1803 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1804 Instr->getParent()); 1805 VectorLp = LI->getLoopFor(IfBlock); 1806 assert(VectorLp && "Must have a loop for this block"); 1807 } 1808 1809 // For each vector unroll 'part': 1810 for (unsigned Part = 0; Part < UF; ++Part) { 1811 // For each scalar that we create: 1812 for (unsigned Width = 0; Width < VF; ++Width) { 1813 1814 // Start if-block. 1815 Value *Cmp = nullptr; 1816 if (IfPredicateStore) { 1817 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1818 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1819 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1820 LoopVectorBody.push_back(CondBlock); 1821 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1822 // Update Builder with newly created basic block. 1823 Builder.SetInsertPoint(InsertPt); 1824 } 1825 1826 Instruction *Cloned = Instr->clone(); 1827 if (!IsVoidRetTy) 1828 Cloned->setName(Instr->getName() + ".cloned"); 1829 // Replace the operands of the cloned instructions with extracted scalars. 1830 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1831 Value *Op = Params[op][Part]; 1832 // Param is a vector. Need to extract the right lane. 1833 if (Op->getType()->isVectorTy()) 1834 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1835 Cloned->setOperand(op, Op); 1836 } 1837 1838 // Place the cloned scalar in the new loop. 1839 Builder.Insert(Cloned); 1840 1841 // If the original scalar returns a value we need to place it in a vector 1842 // so that future users will be able to use it. 1843 if (!IsVoidRetTy) 1844 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1845 Builder.getInt32(Width)); 1846 // End if-block. 1847 if (IfPredicateStore) { 1848 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1849 LoopVectorBody.push_back(NewIfBlock); 1850 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1851 Builder.SetInsertPoint(InsertPt); 1852 Instruction *OldBr = IfBlock->getTerminator(); 1853 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1854 OldBr->eraseFromParent(); 1855 IfBlock = NewIfBlock; 1856 } 1857 } 1858 } 1859 } 1860 1861 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1862 Instruction *Loc) { 1863 if (FirstInst) 1864 return FirstInst; 1865 if (Instruction *I = dyn_cast<Instruction>(V)) 1866 return I->getParent() == Loc->getParent() ? I : nullptr; 1867 return nullptr; 1868 } 1869 1870 std::pair<Instruction *, Instruction *> 1871 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1872 Instruction *tnullptr = nullptr; 1873 if (!Legal->mustCheckStrides()) 1874 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1875 1876 IRBuilder<> ChkBuilder(Loc); 1877 1878 // Emit checks. 1879 Value *Check = nullptr; 1880 Instruction *FirstInst = nullptr; 1881 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1882 SE = Legal->strides_end(); 1883 SI != SE; ++SI) { 1884 Value *Ptr = stripIntegerCast(*SI); 1885 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1886 "stride.chk"); 1887 // Store the first instruction we create. 1888 FirstInst = getFirstInst(FirstInst, C, Loc); 1889 if (Check) 1890 Check = ChkBuilder.CreateOr(Check, C); 1891 else 1892 Check = C; 1893 } 1894 1895 // We have to do this trickery because the IRBuilder might fold the check to a 1896 // constant expression in which case there is no Instruction anchored in a 1897 // the block. 1898 LLVMContext &Ctx = Loc->getContext(); 1899 Instruction *TheCheck = 1900 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1901 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1902 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1903 1904 return std::make_pair(FirstInst, TheCheck); 1905 } 1906 1907 std::pair<Instruction *, Instruction *> 1908 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1909 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1910 Legal->getRuntimePointerCheck(); 1911 1912 Instruction *tnullptr = nullptr; 1913 if (!PtrRtCheck->Need) 1914 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1915 1916 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1917 SmallVector<TrackingVH<Value> , 2> Starts; 1918 SmallVector<TrackingVH<Value> , 2> Ends; 1919 1920 LLVMContext &Ctx = Loc->getContext(); 1921 SCEVExpander Exp(*SE, "induction"); 1922 Instruction *FirstInst = nullptr; 1923 1924 for (unsigned i = 0; i < NumPointers; ++i) { 1925 Value *Ptr = PtrRtCheck->Pointers[i]; 1926 const SCEV *Sc = SE->getSCEV(Ptr); 1927 1928 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1929 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1930 *Ptr <<"\n"); 1931 Starts.push_back(Ptr); 1932 Ends.push_back(Ptr); 1933 } else { 1934 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1935 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1936 1937 // Use this type for pointer arithmetic. 1938 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1939 1940 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1941 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1942 Starts.push_back(Start); 1943 Ends.push_back(End); 1944 } 1945 } 1946 1947 IRBuilder<> ChkBuilder(Loc); 1948 // Our instructions might fold to a constant. 1949 Value *MemoryRuntimeCheck = nullptr; 1950 for (unsigned i = 0; i < NumPointers; ++i) { 1951 for (unsigned j = i+1; j < NumPointers; ++j) { 1952 // No need to check if two readonly pointers intersect. 1953 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1954 continue; 1955 1956 // Only need to check pointers between two different dependency sets. 1957 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1958 continue; 1959 1960 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1961 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1962 1963 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1964 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1965 "Trying to bounds check pointers with different address spaces"); 1966 1967 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1968 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1969 1970 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1971 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1972 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1973 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1974 1975 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1976 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1977 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1978 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1979 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1980 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1981 if (MemoryRuntimeCheck) { 1982 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1983 "conflict.rdx"); 1984 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1985 } 1986 MemoryRuntimeCheck = IsConflict; 1987 } 1988 } 1989 1990 // We have to do this trickery because the IRBuilder might fold the check to a 1991 // constant expression in which case there is no Instruction anchored in a 1992 // the block. 1993 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1994 ConstantInt::getTrue(Ctx)); 1995 ChkBuilder.Insert(Check, "memcheck.conflict"); 1996 FirstInst = getFirstInst(FirstInst, Check, Loc); 1997 return std::make_pair(FirstInst, Check); 1998 } 1999 2000 void InnerLoopVectorizer::createEmptyLoop() { 2001 /* 2002 In this function we generate a new loop. The new loop will contain 2003 the vectorized instructions while the old loop will continue to run the 2004 scalar remainder. 2005 2006 [ ] <-- Back-edge taken count overflow check. 2007 / | 2008 / v 2009 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2010 | / | 2011 | / v 2012 || [ ] <-- vector pre header. 2013 || | 2014 || v 2015 || [ ] \ 2016 || [ ]_| <-- vector loop. 2017 || | 2018 | \ v 2019 | >[ ] <--- middle-block. 2020 | / | 2021 | / v 2022 -|- >[ ] <--- new preheader. 2023 | | 2024 | v 2025 | [ ] \ 2026 | [ ]_| <-- old scalar loop to handle remainder. 2027 \ | 2028 \ v 2029 >[ ] <-- exit block. 2030 ... 2031 */ 2032 2033 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2034 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2035 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2036 assert(BypassBlock && "Invalid loop structure"); 2037 assert(ExitBlock && "Must have an exit block"); 2038 2039 // Some loops have a single integer induction variable, while other loops 2040 // don't. One example is c++ iterators that often have multiple pointer 2041 // induction variables. In the code below we also support a case where we 2042 // don't have a single induction variable. 2043 OldInduction = Legal->getInduction(); 2044 Type *IdxTy = Legal->getWidestInductionType(); 2045 2046 // Find the loop boundaries. 2047 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2048 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2049 2050 // The exit count might have the type of i64 while the phi is i32. This can 2051 // happen if we have an induction variable that is sign extended before the 2052 // compare. The only way that we get a backedge taken count is that the 2053 // induction variable was signed and as such will not overflow. In such a case 2054 // truncation is legal. 2055 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2056 IdxTy->getPrimitiveSizeInBits()) 2057 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2058 2059 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2060 // Get the total trip count from the count by adding 1. 2061 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2062 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2063 2064 // Expand the trip count and place the new instructions in the preheader. 2065 // Notice that the pre-header does not change, only the loop body. 2066 SCEVExpander Exp(*SE, "induction"); 2067 2068 // We need to test whether the backedge-taken count is uint##_max. Adding one 2069 // to it will cause overflow and an incorrect loop trip count in the vector 2070 // body. In case of overflow we want to directly jump to the scalar remainder 2071 // loop. 2072 Value *BackedgeCount = 2073 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2074 BypassBlock->getTerminator()); 2075 if (BackedgeCount->getType()->isPointerTy()) 2076 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2077 "backedge.ptrcnt.to.int", 2078 BypassBlock->getTerminator()); 2079 Instruction *CheckBCOverflow = 2080 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2081 Constant::getAllOnesValue(BackedgeCount->getType()), 2082 "backedge.overflow", BypassBlock->getTerminator()); 2083 2084 // The loop index does not have to start at Zero. Find the original start 2085 // value from the induction PHI node. If we don't have an induction variable 2086 // then we know that it starts at zero. 2087 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2088 Value *StartIdx = ExtendedIdx = OldInduction ? 2089 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2090 IdxTy): 2091 ConstantInt::get(IdxTy, 0); 2092 2093 // We need an instruction to anchor the overflow check on. StartIdx needs to 2094 // be defined before the overflow check branch. Because the scalar preheader 2095 // is going to merge the start index and so the overflow branch block needs to 2096 // contain a definition of the start index. 2097 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2098 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2099 BypassBlock->getTerminator()); 2100 2101 // Count holds the overall loop count (N). 2102 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2103 BypassBlock->getTerminator()); 2104 2105 LoopBypassBlocks.push_back(BypassBlock); 2106 2107 // Split the single block loop into the two loop structure described above. 2108 BasicBlock *VectorPH = 2109 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2110 BasicBlock *VecBody = 2111 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2112 BasicBlock *MiddleBlock = 2113 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2114 BasicBlock *ScalarPH = 2115 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2116 2117 // Create and register the new vector loop. 2118 Loop* Lp = new Loop(); 2119 Loop *ParentLoop = OrigLoop->getParentLoop(); 2120 2121 // Insert the new loop into the loop nest and register the new basic blocks 2122 // before calling any utilities such as SCEV that require valid LoopInfo. 2123 if (ParentLoop) { 2124 ParentLoop->addChildLoop(Lp); 2125 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2126 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2127 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2128 } else { 2129 LI->addTopLevelLoop(Lp); 2130 } 2131 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2132 2133 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2134 // inside the loop. 2135 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2136 2137 // Generate the induction variable. 2138 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2139 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2140 // The loop step is equal to the vectorization factor (num of SIMD elements) 2141 // times the unroll factor (num of SIMD instructions). 2142 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2143 2144 // This is the IR builder that we use to add all of the logic for bypassing 2145 // the new vector loop. 2146 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2147 setDebugLocFromInst(BypassBuilder, 2148 getDebugLocFromInstOrOperands(OldInduction)); 2149 2150 // We may need to extend the index in case there is a type mismatch. 2151 // We know that the count starts at zero and does not overflow. 2152 if (Count->getType() != IdxTy) { 2153 // The exit count can be of pointer type. Convert it to the correct 2154 // integer type. 2155 if (ExitCount->getType()->isPointerTy()) 2156 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2157 else 2158 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2159 } 2160 2161 // Add the start index to the loop count to get the new end index. 2162 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2163 2164 // Now we need to generate the expression for N - (N % VF), which is 2165 // the part that the vectorized body will execute. 2166 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2167 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2168 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2169 "end.idx.rnd.down"); 2170 2171 // Now, compare the new count to zero. If it is zero skip the vector loop and 2172 // jump to the scalar loop. 2173 Value *Cmp = 2174 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2175 2176 BasicBlock *LastBypassBlock = BypassBlock; 2177 2178 // Generate code to check that the loops trip count that we computed by adding 2179 // one to the backedge-taken count will not overflow. 2180 { 2181 auto PastOverflowCheck = 2182 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2183 BasicBlock *CheckBlock = 2184 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2185 if (ParentLoop) 2186 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2187 LoopBypassBlocks.push_back(CheckBlock); 2188 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2189 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2190 OldTerm->eraseFromParent(); 2191 LastBypassBlock = CheckBlock; 2192 } 2193 2194 // Generate the code to check that the strides we assumed to be one are really 2195 // one. We want the new basic block to start at the first instruction in a 2196 // sequence of instructions that form a check. 2197 Instruction *StrideCheck; 2198 Instruction *FirstCheckInst; 2199 std::tie(FirstCheckInst, StrideCheck) = 2200 addStrideCheck(LastBypassBlock->getTerminator()); 2201 if (StrideCheck) { 2202 // Create a new block containing the stride check. 2203 BasicBlock *CheckBlock = 2204 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2205 if (ParentLoop) 2206 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2207 LoopBypassBlocks.push_back(CheckBlock); 2208 2209 // Replace the branch into the memory check block with a conditional branch 2210 // for the "few elements case". 2211 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2212 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2213 OldTerm->eraseFromParent(); 2214 2215 Cmp = StrideCheck; 2216 LastBypassBlock = CheckBlock; 2217 } 2218 2219 // Generate the code that checks in runtime if arrays overlap. We put the 2220 // checks into a separate block to make the more common case of few elements 2221 // faster. 2222 Instruction *MemRuntimeCheck; 2223 std::tie(FirstCheckInst, MemRuntimeCheck) = 2224 addRuntimeCheck(LastBypassBlock->getTerminator()); 2225 if (MemRuntimeCheck) { 2226 // Create a new block containing the memory check. 2227 BasicBlock *CheckBlock = 2228 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2229 if (ParentLoop) 2230 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2231 LoopBypassBlocks.push_back(CheckBlock); 2232 2233 // Replace the branch into the memory check block with a conditional branch 2234 // for the "few elements case". 2235 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2236 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2237 OldTerm->eraseFromParent(); 2238 2239 Cmp = MemRuntimeCheck; 2240 LastBypassBlock = CheckBlock; 2241 } 2242 2243 LastBypassBlock->getTerminator()->eraseFromParent(); 2244 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2245 LastBypassBlock); 2246 2247 // We are going to resume the execution of the scalar loop. 2248 // Go over all of the induction variables that we found and fix the 2249 // PHIs that are left in the scalar version of the loop. 2250 // The starting values of PHI nodes depend on the counter of the last 2251 // iteration in the vectorized loop. 2252 // If we come from a bypass edge then we need to start from the original 2253 // start value. 2254 2255 // This variable saves the new starting index for the scalar loop. 2256 PHINode *ResumeIndex = nullptr; 2257 LoopVectorizationLegality::InductionList::iterator I, E; 2258 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2259 // Set builder to point to last bypass block. 2260 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2261 for (I = List->begin(), E = List->end(); I != E; ++I) { 2262 PHINode *OrigPhi = I->first; 2263 LoopVectorizationLegality::InductionInfo II = I->second; 2264 2265 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2266 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2267 MiddleBlock->getTerminator()); 2268 // We might have extended the type of the induction variable but we need a 2269 // truncated version for the scalar loop. 2270 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2271 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2272 MiddleBlock->getTerminator()) : nullptr; 2273 2274 // Create phi nodes to merge from the backedge-taken check block. 2275 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2276 ScalarPH->getTerminator()); 2277 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2278 2279 PHINode *BCTruncResumeVal = nullptr; 2280 if (OrigPhi == OldInduction) { 2281 BCTruncResumeVal = 2282 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2283 ScalarPH->getTerminator()); 2284 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2285 } 2286 2287 Value *EndValue = nullptr; 2288 switch (II.IK) { 2289 case LoopVectorizationLegality::IK_NoInduction: 2290 llvm_unreachable("Unknown induction"); 2291 case LoopVectorizationLegality::IK_IntInduction: { 2292 // Handle the integer induction counter. 2293 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2294 2295 // We have the canonical induction variable. 2296 if (OrigPhi == OldInduction) { 2297 // Create a truncated version of the resume value for the scalar loop, 2298 // we might have promoted the type to a larger width. 2299 EndValue = 2300 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2301 // The new PHI merges the original incoming value, in case of a bypass, 2302 // or the value at the end of the vectorized loop. 2303 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2304 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2305 TruncResumeVal->addIncoming(EndValue, VecBody); 2306 2307 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2308 2309 // We know what the end value is. 2310 EndValue = IdxEndRoundDown; 2311 // We also know which PHI node holds it. 2312 ResumeIndex = ResumeVal; 2313 break; 2314 } 2315 2316 // Not the canonical induction variable - add the vector loop count to the 2317 // start value. 2318 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2319 II.StartValue->getType(), 2320 "cast.crd"); 2321 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2322 break; 2323 } 2324 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2325 // Convert the CountRoundDown variable to the PHI size. 2326 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2327 II.StartValue->getType(), 2328 "cast.crd"); 2329 // Handle reverse integer induction counter. 2330 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2331 break; 2332 } 2333 case LoopVectorizationLegality::IK_PtrInduction: { 2334 // For pointer induction variables, calculate the offset using 2335 // the end index. 2336 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2337 "ptr.ind.end"); 2338 break; 2339 } 2340 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2341 // The value at the end of the loop for the reverse pointer is calculated 2342 // by creating a GEP with a negative index starting from the start value. 2343 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2344 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2345 "rev.ind.end"); 2346 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2347 "rev.ptr.ind.end"); 2348 break; 2349 } 2350 }// end of case 2351 2352 // The new PHI merges the original incoming value, in case of a bypass, 2353 // or the value at the end of the vectorized loop. 2354 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2355 if (OrigPhi == OldInduction) 2356 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2357 else 2358 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2359 } 2360 ResumeVal->addIncoming(EndValue, VecBody); 2361 2362 // Fix the scalar body counter (PHI node). 2363 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2364 2365 // The old induction's phi node in the scalar body needs the truncated 2366 // value. 2367 if (OrigPhi == OldInduction) { 2368 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2369 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2370 } else { 2371 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2372 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2373 } 2374 } 2375 2376 // If we are generating a new induction variable then we also need to 2377 // generate the code that calculates the exit value. This value is not 2378 // simply the end of the counter because we may skip the vectorized body 2379 // in case of a runtime check. 2380 if (!OldInduction){ 2381 assert(!ResumeIndex && "Unexpected resume value found"); 2382 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2383 MiddleBlock->getTerminator()); 2384 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2385 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2386 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2387 } 2388 2389 // Make sure that we found the index where scalar loop needs to continue. 2390 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2391 "Invalid resume Index"); 2392 2393 // Add a check in the middle block to see if we have completed 2394 // all of the iterations in the first vector loop. 2395 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2396 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2397 ResumeIndex, "cmp.n", 2398 MiddleBlock->getTerminator()); 2399 2400 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2401 // Remove the old terminator. 2402 MiddleBlock->getTerminator()->eraseFromParent(); 2403 2404 // Create i+1 and fill the PHINode. 2405 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2406 Induction->addIncoming(StartIdx, VectorPH); 2407 Induction->addIncoming(NextIdx, VecBody); 2408 // Create the compare. 2409 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2410 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2411 2412 // Now we have two terminators. Remove the old one from the block. 2413 VecBody->getTerminator()->eraseFromParent(); 2414 2415 // Get ready to start creating new instructions into the vectorized body. 2416 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2417 2418 // Save the state. 2419 LoopVectorPreHeader = VectorPH; 2420 LoopScalarPreHeader = ScalarPH; 2421 LoopMiddleBlock = MiddleBlock; 2422 LoopExitBlock = ExitBlock; 2423 LoopVectorBody.push_back(VecBody); 2424 LoopScalarBody = OldBasicBlock; 2425 2426 LoopVectorizeHints Hints(Lp, true); 2427 Hints.setAlreadyVectorized(Lp); 2428 } 2429 2430 /// This function returns the identity element (or neutral element) for 2431 /// the operation K. 2432 Constant* 2433 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2434 switch (K) { 2435 case RK_IntegerXor: 2436 case RK_IntegerAdd: 2437 case RK_IntegerOr: 2438 // Adding, Xoring, Oring zero to a number does not change it. 2439 return ConstantInt::get(Tp, 0); 2440 case RK_IntegerMult: 2441 // Multiplying a number by 1 does not change it. 2442 return ConstantInt::get(Tp, 1); 2443 case RK_IntegerAnd: 2444 // AND-ing a number with an all-1 value does not change it. 2445 return ConstantInt::get(Tp, -1, true); 2446 case RK_FloatMult: 2447 // Multiplying a number by 1 does not change it. 2448 return ConstantFP::get(Tp, 1.0L); 2449 case RK_FloatAdd: 2450 // Adding zero to a number does not change it. 2451 return ConstantFP::get(Tp, 0.0L); 2452 default: 2453 llvm_unreachable("Unknown reduction kind"); 2454 } 2455 } 2456 2457 /// This function translates the reduction kind to an LLVM binary operator. 2458 static unsigned 2459 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2460 switch (Kind) { 2461 case LoopVectorizationLegality::RK_IntegerAdd: 2462 return Instruction::Add; 2463 case LoopVectorizationLegality::RK_IntegerMult: 2464 return Instruction::Mul; 2465 case LoopVectorizationLegality::RK_IntegerOr: 2466 return Instruction::Or; 2467 case LoopVectorizationLegality::RK_IntegerAnd: 2468 return Instruction::And; 2469 case LoopVectorizationLegality::RK_IntegerXor: 2470 return Instruction::Xor; 2471 case LoopVectorizationLegality::RK_FloatMult: 2472 return Instruction::FMul; 2473 case LoopVectorizationLegality::RK_FloatAdd: 2474 return Instruction::FAdd; 2475 case LoopVectorizationLegality::RK_IntegerMinMax: 2476 return Instruction::ICmp; 2477 case LoopVectorizationLegality::RK_FloatMinMax: 2478 return Instruction::FCmp; 2479 default: 2480 llvm_unreachable("Unknown reduction operation"); 2481 } 2482 } 2483 2484 Value *createMinMaxOp(IRBuilder<> &Builder, 2485 LoopVectorizationLegality::MinMaxReductionKind RK, 2486 Value *Left, 2487 Value *Right) { 2488 CmpInst::Predicate P = CmpInst::ICMP_NE; 2489 switch (RK) { 2490 default: 2491 llvm_unreachable("Unknown min/max reduction kind"); 2492 case LoopVectorizationLegality::MRK_UIntMin: 2493 P = CmpInst::ICMP_ULT; 2494 break; 2495 case LoopVectorizationLegality::MRK_UIntMax: 2496 P = CmpInst::ICMP_UGT; 2497 break; 2498 case LoopVectorizationLegality::MRK_SIntMin: 2499 P = CmpInst::ICMP_SLT; 2500 break; 2501 case LoopVectorizationLegality::MRK_SIntMax: 2502 P = CmpInst::ICMP_SGT; 2503 break; 2504 case LoopVectorizationLegality::MRK_FloatMin: 2505 P = CmpInst::FCMP_OLT; 2506 break; 2507 case LoopVectorizationLegality::MRK_FloatMax: 2508 P = CmpInst::FCMP_OGT; 2509 break; 2510 } 2511 2512 Value *Cmp; 2513 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2514 RK == LoopVectorizationLegality::MRK_FloatMax) 2515 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2516 else 2517 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2518 2519 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2520 return Select; 2521 } 2522 2523 namespace { 2524 struct CSEDenseMapInfo { 2525 static bool canHandle(Instruction *I) { 2526 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2527 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2528 } 2529 static inline Instruction *getEmptyKey() { 2530 return DenseMapInfo<Instruction *>::getEmptyKey(); 2531 } 2532 static inline Instruction *getTombstoneKey() { 2533 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2534 } 2535 static unsigned getHashValue(Instruction *I) { 2536 assert(canHandle(I) && "Unknown instruction!"); 2537 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2538 I->value_op_end())); 2539 } 2540 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2541 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2542 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2543 return LHS == RHS; 2544 return LHS->isIdenticalTo(RHS); 2545 } 2546 }; 2547 } 2548 2549 /// \brief Check whether this block is a predicated block. 2550 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2551 /// = ...; " blocks. We start with one vectorized basic block. For every 2552 /// conditional block we split this vectorized block. Therefore, every second 2553 /// block will be a predicated one. 2554 static bool isPredicatedBlock(unsigned BlockNum) { 2555 return BlockNum % 2; 2556 } 2557 2558 ///\brief Perform cse of induction variable instructions. 2559 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2560 // Perform simple cse. 2561 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2562 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2563 BasicBlock *BB = BBs[i]; 2564 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2565 Instruction *In = I++; 2566 2567 if (!CSEDenseMapInfo::canHandle(In)) 2568 continue; 2569 2570 // Check if we can replace this instruction with any of the 2571 // visited instructions. 2572 if (Instruction *V = CSEMap.lookup(In)) { 2573 In->replaceAllUsesWith(V); 2574 In->eraseFromParent(); 2575 continue; 2576 } 2577 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2578 // ...;" blocks for predicated stores. Every second block is a predicated 2579 // block. 2580 if (isPredicatedBlock(i)) 2581 continue; 2582 2583 CSEMap[In] = In; 2584 } 2585 } 2586 } 2587 2588 /// \brief Adds a 'fast' flag to floating point operations. 2589 static Value *addFastMathFlag(Value *V) { 2590 if (isa<FPMathOperator>(V)){ 2591 FastMathFlags Flags; 2592 Flags.setUnsafeAlgebra(); 2593 cast<Instruction>(V)->setFastMathFlags(Flags); 2594 } 2595 return V; 2596 } 2597 2598 void InnerLoopVectorizer::vectorizeLoop() { 2599 //===------------------------------------------------===// 2600 // 2601 // Notice: any optimization or new instruction that go 2602 // into the code below should be also be implemented in 2603 // the cost-model. 2604 // 2605 //===------------------------------------------------===// 2606 Constant *Zero = Builder.getInt32(0); 2607 2608 // In order to support reduction variables we need to be able to vectorize 2609 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2610 // stages. First, we create a new vector PHI node with no incoming edges. 2611 // We use this value when we vectorize all of the instructions that use the 2612 // PHI. Next, after all of the instructions in the block are complete we 2613 // add the new incoming edges to the PHI. At this point all of the 2614 // instructions in the basic block are vectorized, so we can use them to 2615 // construct the PHI. 2616 PhiVector RdxPHIsToFix; 2617 2618 // Scan the loop in a topological order to ensure that defs are vectorized 2619 // before users. 2620 LoopBlocksDFS DFS(OrigLoop); 2621 DFS.perform(LI); 2622 2623 // Vectorize all of the blocks in the original loop. 2624 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2625 be = DFS.endRPO(); bb != be; ++bb) 2626 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2627 2628 // At this point every instruction in the original loop is widened to 2629 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2630 // that we vectorized. The PHI nodes are currently empty because we did 2631 // not want to introduce cycles. Notice that the remaining PHI nodes 2632 // that we need to fix are reduction variables. 2633 2634 // Create the 'reduced' values for each of the induction vars. 2635 // The reduced values are the vector values that we scalarize and combine 2636 // after the loop is finished. 2637 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2638 it != e; ++it) { 2639 PHINode *RdxPhi = *it; 2640 assert(RdxPhi && "Unable to recover vectorized PHI"); 2641 2642 // Find the reduction variable descriptor. 2643 assert(Legal->getReductionVars()->count(RdxPhi) && 2644 "Unable to find the reduction variable"); 2645 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2646 (*Legal->getReductionVars())[RdxPhi]; 2647 2648 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2649 2650 // We need to generate a reduction vector from the incoming scalar. 2651 // To do so, we need to generate the 'identity' vector and override 2652 // one of the elements with the incoming scalar reduction. We need 2653 // to do it in the vector-loop preheader. 2654 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2655 2656 // This is the vector-clone of the value that leaves the loop. 2657 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2658 Type *VecTy = VectorExit[0]->getType(); 2659 2660 // Find the reduction identity variable. Zero for addition, or, xor, 2661 // one for multiplication, -1 for And. 2662 Value *Identity; 2663 Value *VectorStart; 2664 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2665 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2666 // MinMax reduction have the start value as their identify. 2667 if (VF == 1) { 2668 VectorStart = Identity = RdxDesc.StartValue; 2669 } else { 2670 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2671 RdxDesc.StartValue, 2672 "minmax.ident"); 2673 } 2674 } else { 2675 // Handle other reduction kinds: 2676 Constant *Iden = 2677 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2678 VecTy->getScalarType()); 2679 if (VF == 1) { 2680 Identity = Iden; 2681 // This vector is the Identity vector where the first element is the 2682 // incoming scalar reduction. 2683 VectorStart = RdxDesc.StartValue; 2684 } else { 2685 Identity = ConstantVector::getSplat(VF, Iden); 2686 2687 // This vector is the Identity vector where the first element is the 2688 // incoming scalar reduction. 2689 VectorStart = Builder.CreateInsertElement(Identity, 2690 RdxDesc.StartValue, Zero); 2691 } 2692 } 2693 2694 // Fix the vector-loop phi. 2695 // We created the induction variable so we know that the 2696 // preheader is the first entry. 2697 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2698 2699 // Reductions do not have to start at zero. They can start with 2700 // any loop invariant values. 2701 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2702 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2703 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2704 VectorParts &Val = getVectorValue(LoopVal); 2705 for (unsigned part = 0; part < UF; ++part) { 2706 // Make sure to add the reduction stat value only to the 2707 // first unroll part. 2708 Value *StartVal = (part == 0) ? VectorStart : Identity; 2709 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2710 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2711 LoopVectorBody.back()); 2712 } 2713 2714 // Before each round, move the insertion point right between 2715 // the PHIs and the values we are going to write. 2716 // This allows us to write both PHINodes and the extractelement 2717 // instructions. 2718 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2719 2720 VectorParts RdxParts; 2721 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2722 for (unsigned part = 0; part < UF; ++part) { 2723 // This PHINode contains the vectorized reduction variable, or 2724 // the initial value vector, if we bypass the vector loop. 2725 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2726 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2727 Value *StartVal = (part == 0) ? VectorStart : Identity; 2728 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2729 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2730 NewPhi->addIncoming(RdxExitVal[part], 2731 LoopVectorBody.back()); 2732 RdxParts.push_back(NewPhi); 2733 } 2734 2735 // Reduce all of the unrolled parts into a single vector. 2736 Value *ReducedPartRdx = RdxParts[0]; 2737 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2738 setDebugLocFromInst(Builder, ReducedPartRdx); 2739 for (unsigned part = 1; part < UF; ++part) { 2740 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2741 // Floating point operations had to be 'fast' to enable the reduction. 2742 ReducedPartRdx = addFastMathFlag( 2743 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2744 ReducedPartRdx, "bin.rdx")); 2745 else 2746 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2747 ReducedPartRdx, RdxParts[part]); 2748 } 2749 2750 if (VF > 1) { 2751 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2752 // and vector ops, reducing the set of values being computed by half each 2753 // round. 2754 assert(isPowerOf2_32(VF) && 2755 "Reduction emission only supported for pow2 vectors!"); 2756 Value *TmpVec = ReducedPartRdx; 2757 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2758 for (unsigned i = VF; i != 1; i >>= 1) { 2759 // Move the upper half of the vector to the lower half. 2760 for (unsigned j = 0; j != i/2; ++j) 2761 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2762 2763 // Fill the rest of the mask with undef. 2764 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2765 UndefValue::get(Builder.getInt32Ty())); 2766 2767 Value *Shuf = 2768 Builder.CreateShuffleVector(TmpVec, 2769 UndefValue::get(TmpVec->getType()), 2770 ConstantVector::get(ShuffleMask), 2771 "rdx.shuf"); 2772 2773 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2774 // Floating point operations had to be 'fast' to enable the reduction. 2775 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2776 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2777 else 2778 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2779 } 2780 2781 // The result is in the first element of the vector. 2782 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2783 Builder.getInt32(0)); 2784 } 2785 2786 // Create a phi node that merges control-flow from the backedge-taken check 2787 // block and the middle block. 2788 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2789 LoopScalarPreHeader->getTerminator()); 2790 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2791 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2792 2793 // Now, we need to fix the users of the reduction variable 2794 // inside and outside of the scalar remainder loop. 2795 // We know that the loop is in LCSSA form. We need to update the 2796 // PHI nodes in the exit blocks. 2797 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2798 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2799 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2800 if (!LCSSAPhi) break; 2801 2802 // All PHINodes need to have a single entry edge, or two if 2803 // we already fixed them. 2804 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2805 2806 // We found our reduction value exit-PHI. Update it with the 2807 // incoming bypass edge. 2808 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2809 // Add an edge coming from the bypass. 2810 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2811 break; 2812 } 2813 }// end of the LCSSA phi scan. 2814 2815 // Fix the scalar loop reduction variable with the incoming reduction sum 2816 // from the vector body and from the backedge value. 2817 int IncomingEdgeBlockIdx = 2818 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2819 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2820 // Pick the other block. 2821 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2822 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2823 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2824 }// end of for each redux variable. 2825 2826 fixLCSSAPHIs(); 2827 2828 // Remove redundant induction instructions. 2829 cse(LoopVectorBody); 2830 } 2831 2832 void InnerLoopVectorizer::fixLCSSAPHIs() { 2833 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2834 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2835 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2836 if (!LCSSAPhi) break; 2837 if (LCSSAPhi->getNumIncomingValues() == 1) 2838 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2839 LoopMiddleBlock); 2840 } 2841 } 2842 2843 InnerLoopVectorizer::VectorParts 2844 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2845 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2846 "Invalid edge"); 2847 2848 // Look for cached value. 2849 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2850 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2851 if (ECEntryIt != MaskCache.end()) 2852 return ECEntryIt->second; 2853 2854 VectorParts SrcMask = createBlockInMask(Src); 2855 2856 // The terminator has to be a branch inst! 2857 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2858 assert(BI && "Unexpected terminator found"); 2859 2860 if (BI->isConditional()) { 2861 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2862 2863 if (BI->getSuccessor(0) != Dst) 2864 for (unsigned part = 0; part < UF; ++part) 2865 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2866 2867 for (unsigned part = 0; part < UF; ++part) 2868 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2869 2870 MaskCache[Edge] = EdgeMask; 2871 return EdgeMask; 2872 } 2873 2874 MaskCache[Edge] = SrcMask; 2875 return SrcMask; 2876 } 2877 2878 InnerLoopVectorizer::VectorParts 2879 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2880 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2881 2882 // Loop incoming mask is all-one. 2883 if (OrigLoop->getHeader() == BB) { 2884 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2885 return getVectorValue(C); 2886 } 2887 2888 // This is the block mask. We OR all incoming edges, and with zero. 2889 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2890 VectorParts BlockMask = getVectorValue(Zero); 2891 2892 // For each pred: 2893 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2894 VectorParts EM = createEdgeMask(*it, BB); 2895 for (unsigned part = 0; part < UF; ++part) 2896 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2897 } 2898 2899 return BlockMask; 2900 } 2901 2902 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2903 InnerLoopVectorizer::VectorParts &Entry, 2904 unsigned UF, unsigned VF, PhiVector *PV) { 2905 PHINode* P = cast<PHINode>(PN); 2906 // Handle reduction variables: 2907 if (Legal->getReductionVars()->count(P)) { 2908 for (unsigned part = 0; part < UF; ++part) { 2909 // This is phase one of vectorizing PHIs. 2910 Type *VecTy = (VF == 1) ? PN->getType() : 2911 VectorType::get(PN->getType(), VF); 2912 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2913 LoopVectorBody.back()-> getFirstInsertionPt()); 2914 } 2915 PV->push_back(P); 2916 return; 2917 } 2918 2919 setDebugLocFromInst(Builder, P); 2920 // Check for PHI nodes that are lowered to vector selects. 2921 if (P->getParent() != OrigLoop->getHeader()) { 2922 // We know that all PHIs in non-header blocks are converted into 2923 // selects, so we don't have to worry about the insertion order and we 2924 // can just use the builder. 2925 // At this point we generate the predication tree. There may be 2926 // duplications since this is a simple recursive scan, but future 2927 // optimizations will clean it up. 2928 2929 unsigned NumIncoming = P->getNumIncomingValues(); 2930 2931 // Generate a sequence of selects of the form: 2932 // SELECT(Mask3, In3, 2933 // SELECT(Mask2, In2, 2934 // ( ...))) 2935 for (unsigned In = 0; In < NumIncoming; In++) { 2936 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2937 P->getParent()); 2938 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2939 2940 for (unsigned part = 0; part < UF; ++part) { 2941 // We might have single edge PHIs (blocks) - use an identity 2942 // 'select' for the first PHI operand. 2943 if (In == 0) 2944 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2945 In0[part]); 2946 else 2947 // Select between the current value and the previous incoming edge 2948 // based on the incoming mask. 2949 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2950 Entry[part], "predphi"); 2951 } 2952 } 2953 return; 2954 } 2955 2956 // This PHINode must be an induction variable. 2957 // Make sure that we know about it. 2958 assert(Legal->getInductionVars()->count(P) && 2959 "Not an induction variable"); 2960 2961 LoopVectorizationLegality::InductionInfo II = 2962 Legal->getInductionVars()->lookup(P); 2963 2964 switch (II.IK) { 2965 case LoopVectorizationLegality::IK_NoInduction: 2966 llvm_unreachable("Unknown induction"); 2967 case LoopVectorizationLegality::IK_IntInduction: { 2968 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2969 Type *PhiTy = P->getType(); 2970 Value *Broadcasted; 2971 if (P == OldInduction) { 2972 // Handle the canonical induction variable. We might have had to 2973 // extend the type. 2974 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2975 } else { 2976 // Handle other induction variables that are now based on the 2977 // canonical one. 2978 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2979 "normalized.idx"); 2980 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2981 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2982 "offset.idx"); 2983 } 2984 Broadcasted = getBroadcastInstrs(Broadcasted); 2985 // After broadcasting the induction variable we need to make the vector 2986 // consecutive by adding 0, 1, 2, etc. 2987 for (unsigned part = 0; part < UF; ++part) 2988 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2989 return; 2990 } 2991 case LoopVectorizationLegality::IK_ReverseIntInduction: 2992 case LoopVectorizationLegality::IK_PtrInduction: 2993 case LoopVectorizationLegality::IK_ReversePtrInduction: 2994 // Handle reverse integer and pointer inductions. 2995 Value *StartIdx = ExtendedIdx; 2996 // This is the normalized GEP that starts counting at zero. 2997 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2998 "normalized.idx"); 2999 3000 // Handle the reverse integer induction variable case. 3001 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3002 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3003 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3004 "resize.norm.idx"); 3005 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3006 "reverse.idx"); 3007 3008 // This is a new value so do not hoist it out. 3009 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3010 // After broadcasting the induction variable we need to make the 3011 // vector consecutive by adding ... -3, -2, -1, 0. 3012 for (unsigned part = 0; part < UF; ++part) 3013 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3014 true); 3015 return; 3016 } 3017 3018 // Handle the pointer induction variable case. 3019 assert(P->getType()->isPointerTy() && "Unexpected type."); 3020 3021 // Is this a reverse induction ptr or a consecutive induction ptr. 3022 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3023 II.IK); 3024 3025 // This is the vector of results. Notice that we don't generate 3026 // vector geps because scalar geps result in better code. 3027 for (unsigned part = 0; part < UF; ++part) { 3028 if (VF == 1) { 3029 int EltIndex = (part) * (Reverse ? -1 : 1); 3030 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3031 Value *GlobalIdx; 3032 if (Reverse) 3033 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3034 else 3035 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3036 3037 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3038 "next.gep"); 3039 Entry[part] = SclrGep; 3040 continue; 3041 } 3042 3043 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3044 for (unsigned int i = 0; i < VF; ++i) { 3045 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3046 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3047 Value *GlobalIdx; 3048 if (!Reverse) 3049 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3050 else 3051 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3052 3053 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3054 "next.gep"); 3055 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3056 Builder.getInt32(i), 3057 "insert.gep"); 3058 } 3059 Entry[part] = VecVal; 3060 } 3061 return; 3062 } 3063 } 3064 3065 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3066 // For each instruction in the old loop. 3067 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3068 VectorParts &Entry = WidenMap.get(it); 3069 switch (it->getOpcode()) { 3070 case Instruction::Br: 3071 // Nothing to do for PHIs and BR, since we already took care of the 3072 // loop control flow instructions. 3073 continue; 3074 case Instruction::PHI:{ 3075 // Vectorize PHINodes. 3076 widenPHIInstruction(it, Entry, UF, VF, PV); 3077 continue; 3078 }// End of PHI. 3079 3080 case Instruction::Add: 3081 case Instruction::FAdd: 3082 case Instruction::Sub: 3083 case Instruction::FSub: 3084 case Instruction::Mul: 3085 case Instruction::FMul: 3086 case Instruction::UDiv: 3087 case Instruction::SDiv: 3088 case Instruction::FDiv: 3089 case Instruction::URem: 3090 case Instruction::SRem: 3091 case Instruction::FRem: 3092 case Instruction::Shl: 3093 case Instruction::LShr: 3094 case Instruction::AShr: 3095 case Instruction::And: 3096 case Instruction::Or: 3097 case Instruction::Xor: { 3098 // Just widen binops. 3099 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3100 setDebugLocFromInst(Builder, BinOp); 3101 VectorParts &A = getVectorValue(it->getOperand(0)); 3102 VectorParts &B = getVectorValue(it->getOperand(1)); 3103 3104 // Use this vector value for all users of the original instruction. 3105 for (unsigned Part = 0; Part < UF; ++Part) { 3106 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3107 3108 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3109 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3110 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3111 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3112 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3113 } 3114 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3115 VecOp->setIsExact(BinOp->isExact()); 3116 3117 // Copy the fast-math flags. 3118 if (VecOp && isa<FPMathOperator>(V)) 3119 VecOp->setFastMathFlags(it->getFastMathFlags()); 3120 3121 Entry[Part] = V; 3122 } 3123 break; 3124 } 3125 case Instruction::Select: { 3126 // Widen selects. 3127 // If the selector is loop invariant we can create a select 3128 // instruction with a scalar condition. Otherwise, use vector-select. 3129 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3130 OrigLoop); 3131 setDebugLocFromInst(Builder, it); 3132 3133 // The condition can be loop invariant but still defined inside the 3134 // loop. This means that we can't just use the original 'cond' value. 3135 // We have to take the 'vectorized' value and pick the first lane. 3136 // Instcombine will make this a no-op. 3137 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3138 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3139 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3140 3141 Value *ScalarCond = (VF == 1) ? Cond[0] : 3142 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3143 3144 for (unsigned Part = 0; Part < UF; ++Part) { 3145 Entry[Part] = Builder.CreateSelect( 3146 InvariantCond ? ScalarCond : Cond[Part], 3147 Op0[Part], 3148 Op1[Part]); 3149 } 3150 break; 3151 } 3152 3153 case Instruction::ICmp: 3154 case Instruction::FCmp: { 3155 // Widen compares. Generate vector compares. 3156 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3157 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3158 setDebugLocFromInst(Builder, it); 3159 VectorParts &A = getVectorValue(it->getOperand(0)); 3160 VectorParts &B = getVectorValue(it->getOperand(1)); 3161 for (unsigned Part = 0; Part < UF; ++Part) { 3162 Value *C = nullptr; 3163 if (FCmp) 3164 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3165 else 3166 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3167 Entry[Part] = C; 3168 } 3169 break; 3170 } 3171 3172 case Instruction::Store: 3173 case Instruction::Load: 3174 vectorizeMemoryInstruction(it); 3175 break; 3176 case Instruction::ZExt: 3177 case Instruction::SExt: 3178 case Instruction::FPToUI: 3179 case Instruction::FPToSI: 3180 case Instruction::FPExt: 3181 case Instruction::PtrToInt: 3182 case Instruction::IntToPtr: 3183 case Instruction::SIToFP: 3184 case Instruction::UIToFP: 3185 case Instruction::Trunc: 3186 case Instruction::FPTrunc: 3187 case Instruction::BitCast: { 3188 CastInst *CI = dyn_cast<CastInst>(it); 3189 setDebugLocFromInst(Builder, it); 3190 /// Optimize the special case where the source is the induction 3191 /// variable. Notice that we can only optimize the 'trunc' case 3192 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3193 /// c. other casts depend on pointer size. 3194 if (CI->getOperand(0) == OldInduction && 3195 it->getOpcode() == Instruction::Trunc) { 3196 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3197 CI->getType()); 3198 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3199 for (unsigned Part = 0; Part < UF; ++Part) 3200 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3201 break; 3202 } 3203 /// Vectorize casts. 3204 Type *DestTy = (VF == 1) ? CI->getType() : 3205 VectorType::get(CI->getType(), VF); 3206 3207 VectorParts &A = getVectorValue(it->getOperand(0)); 3208 for (unsigned Part = 0; Part < UF; ++Part) 3209 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3210 break; 3211 } 3212 3213 case Instruction::Call: { 3214 // Ignore dbg intrinsics. 3215 if (isa<DbgInfoIntrinsic>(it)) 3216 break; 3217 setDebugLocFromInst(Builder, it); 3218 3219 Module *M = BB->getParent()->getParent(); 3220 CallInst *CI = cast<CallInst>(it); 3221 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3222 assert(ID && "Not an intrinsic call!"); 3223 switch (ID) { 3224 case Intrinsic::lifetime_end: 3225 case Intrinsic::lifetime_start: 3226 scalarizeInstruction(it); 3227 break; 3228 default: 3229 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3230 for (unsigned Part = 0; Part < UF; ++Part) { 3231 SmallVector<Value *, 4> Args; 3232 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3233 if (HasScalarOpd && i == 1) { 3234 Args.push_back(CI->getArgOperand(i)); 3235 continue; 3236 } 3237 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3238 Args.push_back(Arg[Part]); 3239 } 3240 Type *Tys[] = {CI->getType()}; 3241 if (VF > 1) 3242 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3243 3244 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3245 Entry[Part] = Builder.CreateCall(F, Args); 3246 } 3247 break; 3248 } 3249 break; 3250 } 3251 3252 default: 3253 // All other instructions are unsupported. Scalarize them. 3254 scalarizeInstruction(it); 3255 break; 3256 }// end of switch. 3257 }// end of for_each instr. 3258 } 3259 3260 void InnerLoopVectorizer::updateAnalysis() { 3261 // Forget the original basic block. 3262 SE->forgetLoop(OrigLoop); 3263 3264 // Update the dominator tree information. 3265 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3266 "Entry does not dominate exit."); 3267 3268 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3269 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3270 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3271 3272 // Due to if predication of stores we might create a sequence of "if(pred) 3273 // a[i] = ...; " blocks. 3274 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3275 if (i == 0) 3276 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3277 else if (isPredicatedBlock(i)) { 3278 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3279 } else { 3280 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3281 } 3282 } 3283 3284 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3285 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3286 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3287 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3288 3289 DEBUG(DT->verifyDomTree()); 3290 } 3291 3292 /// \brief Check whether it is safe to if-convert this phi node. 3293 /// 3294 /// Phi nodes with constant expressions that can trap are not safe to if 3295 /// convert. 3296 static bool canIfConvertPHINodes(BasicBlock *BB) { 3297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3298 PHINode *Phi = dyn_cast<PHINode>(I); 3299 if (!Phi) 3300 return true; 3301 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3302 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3303 if (C->canTrap()) 3304 return false; 3305 } 3306 return true; 3307 } 3308 3309 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3310 if (!EnableIfConversion) { 3311 emitAnalysis(Report() << "if-conversion is disabled"); 3312 return false; 3313 } 3314 3315 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3316 3317 // A list of pointers that we can safely read and write to. 3318 SmallPtrSet<Value *, 8> SafePointes; 3319 3320 // Collect safe addresses. 3321 for (Loop::block_iterator BI = TheLoop->block_begin(), 3322 BE = TheLoop->block_end(); BI != BE; ++BI) { 3323 BasicBlock *BB = *BI; 3324 3325 if (blockNeedsPredication(BB)) 3326 continue; 3327 3328 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3329 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3330 SafePointes.insert(LI->getPointerOperand()); 3331 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3332 SafePointes.insert(SI->getPointerOperand()); 3333 } 3334 } 3335 3336 // Collect the blocks that need predication. 3337 BasicBlock *Header = TheLoop->getHeader(); 3338 for (Loop::block_iterator BI = TheLoop->block_begin(), 3339 BE = TheLoop->block_end(); BI != BE; ++BI) { 3340 BasicBlock *BB = *BI; 3341 3342 // We don't support switch statements inside loops. 3343 if (!isa<BranchInst>(BB->getTerminator())) { 3344 emitAnalysis(Report(BB->getTerminator()) 3345 << "loop contains a switch statement"); 3346 return false; 3347 } 3348 3349 // We must be able to predicate all blocks that need to be predicated. 3350 if (blockNeedsPredication(BB)) { 3351 if (!blockCanBePredicated(BB, SafePointes)) { 3352 emitAnalysis(Report(BB->getTerminator()) 3353 << "control flow cannot be substituted for a select"); 3354 return false; 3355 } 3356 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3357 emitAnalysis(Report(BB->getTerminator()) 3358 << "control flow cannot be substituted for a select"); 3359 return false; 3360 } 3361 } 3362 3363 // We can if-convert this loop. 3364 return true; 3365 } 3366 3367 bool LoopVectorizationLegality::canVectorize() { 3368 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3369 // be canonicalized. 3370 if (!TheLoop->getLoopPreheader()) { 3371 emitAnalysis( 3372 Report() << "loop control flow is not understood by vectorizer"); 3373 return false; 3374 } 3375 3376 // We can only vectorize innermost loops. 3377 if (TheLoop->getSubLoopsVector().size()) { 3378 emitAnalysis(Report() << "loop is not the innermost loop"); 3379 return false; 3380 } 3381 3382 // We must have a single backedge. 3383 if (TheLoop->getNumBackEdges() != 1) { 3384 emitAnalysis( 3385 Report() << "loop control flow is not understood by vectorizer"); 3386 return false; 3387 } 3388 3389 // We must have a single exiting block. 3390 if (!TheLoop->getExitingBlock()) { 3391 emitAnalysis( 3392 Report() << "loop control flow is not understood by vectorizer"); 3393 return false; 3394 } 3395 3396 // We need to have a loop header. 3397 DEBUG(dbgs() << "LV: Found a loop: " << 3398 TheLoop->getHeader()->getName() << '\n'); 3399 3400 // Check if we can if-convert non-single-bb loops. 3401 unsigned NumBlocks = TheLoop->getNumBlocks(); 3402 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3403 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3404 return false; 3405 } 3406 3407 // ScalarEvolution needs to be able to find the exit count. 3408 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3409 if (ExitCount == SE->getCouldNotCompute()) { 3410 emitAnalysis(Report() << "could not determine number of loop iterations"); 3411 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3412 return false; 3413 } 3414 3415 // Check if we can vectorize the instructions and CFG in this loop. 3416 if (!canVectorizeInstrs()) { 3417 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3418 return false; 3419 } 3420 3421 // Go over each instruction and look at memory deps. 3422 if (!canVectorizeMemory()) { 3423 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3424 return false; 3425 } 3426 3427 // Collect all of the variables that remain uniform after vectorization. 3428 collectLoopUniforms(); 3429 3430 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3431 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3432 <<"!\n"); 3433 3434 // Okay! We can vectorize. At this point we don't have any other mem analysis 3435 // which may limit our maximum vectorization factor, so just return true with 3436 // no restrictions. 3437 return true; 3438 } 3439 3440 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3441 if (Ty->isPointerTy()) 3442 return DL.getIntPtrType(Ty); 3443 3444 // It is possible that char's or short's overflow when we ask for the loop's 3445 // trip count, work around this by changing the type size. 3446 if (Ty->getScalarSizeInBits() < 32) 3447 return Type::getInt32Ty(Ty->getContext()); 3448 3449 return Ty; 3450 } 3451 3452 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3453 Ty0 = convertPointerToIntegerType(DL, Ty0); 3454 Ty1 = convertPointerToIntegerType(DL, Ty1); 3455 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3456 return Ty0; 3457 return Ty1; 3458 } 3459 3460 /// \brief Check that the instruction has outside loop users and is not an 3461 /// identified reduction variable. 3462 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3463 SmallPtrSet<Value *, 4> &Reductions) { 3464 // Reduction instructions are allowed to have exit users. All other 3465 // instructions must not have external users. 3466 if (!Reductions.count(Inst)) 3467 //Check that all of the users of the loop are inside the BB. 3468 for (User *U : Inst->users()) { 3469 Instruction *UI = cast<Instruction>(U); 3470 // This user may be a reduction exit value. 3471 if (!TheLoop->contains(UI)) { 3472 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3473 return true; 3474 } 3475 } 3476 return false; 3477 } 3478 3479 bool LoopVectorizationLegality::canVectorizeInstrs() { 3480 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3481 BasicBlock *Header = TheLoop->getHeader(); 3482 3483 // Look for the attribute signaling the absence of NaNs. 3484 Function &F = *Header->getParent(); 3485 if (F.hasFnAttribute("no-nans-fp-math")) 3486 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3487 AttributeSet::FunctionIndex, 3488 "no-nans-fp-math").getValueAsString() == "true"; 3489 3490 // For each block in the loop. 3491 for (Loop::block_iterator bb = TheLoop->block_begin(), 3492 be = TheLoop->block_end(); bb != be; ++bb) { 3493 3494 // Scan the instructions in the block and look for hazards. 3495 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3496 ++it) { 3497 3498 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3499 Type *PhiTy = Phi->getType(); 3500 // Check that this PHI type is allowed. 3501 if (!PhiTy->isIntegerTy() && 3502 !PhiTy->isFloatingPointTy() && 3503 !PhiTy->isPointerTy()) { 3504 emitAnalysis(Report(it) 3505 << "loop control flow is not understood by vectorizer"); 3506 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3507 return false; 3508 } 3509 3510 // If this PHINode is not in the header block, then we know that we 3511 // can convert it to select during if-conversion. No need to check if 3512 // the PHIs in this block are induction or reduction variables. 3513 if (*bb != Header) { 3514 // Check that this instruction has no outside users or is an 3515 // identified reduction value with an outside user. 3516 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3517 continue; 3518 emitAnalysis(Report(it) << "value that could not be identified as " 3519 "reduction is used outside the loop"); 3520 return false; 3521 } 3522 3523 // We only allow if-converted PHIs with more than two incoming values. 3524 if (Phi->getNumIncomingValues() != 2) { 3525 emitAnalysis(Report(it) 3526 << "control flow not understood by vectorizer"); 3527 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3528 return false; 3529 } 3530 3531 // This is the value coming from the preheader. 3532 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3533 // Check if this is an induction variable. 3534 InductionKind IK = isInductionVariable(Phi); 3535 3536 if (IK_NoInduction != IK) { 3537 // Get the widest type. 3538 if (!WidestIndTy) 3539 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3540 else 3541 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3542 3543 // Int inductions are special because we only allow one IV. 3544 if (IK == IK_IntInduction) { 3545 // Use the phi node with the widest type as induction. Use the last 3546 // one if there are multiple (no good reason for doing this other 3547 // than it is expedient). 3548 if (!Induction || PhiTy == WidestIndTy) 3549 Induction = Phi; 3550 } 3551 3552 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3553 Inductions[Phi] = InductionInfo(StartValue, IK); 3554 3555 // Until we explicitly handle the case of an induction variable with 3556 // an outside loop user we have to give up vectorizing this loop. 3557 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3558 emitAnalysis(Report(it) << "use of induction value outside of the " 3559 "loop is not handled by vectorizer"); 3560 return false; 3561 } 3562 3563 continue; 3564 } 3565 3566 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3567 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3568 continue; 3569 } 3570 if (AddReductionVar(Phi, RK_IntegerMult)) { 3571 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3572 continue; 3573 } 3574 if (AddReductionVar(Phi, RK_IntegerOr)) { 3575 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3576 continue; 3577 } 3578 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3579 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3580 continue; 3581 } 3582 if (AddReductionVar(Phi, RK_IntegerXor)) { 3583 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3584 continue; 3585 } 3586 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3587 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3588 continue; 3589 } 3590 if (AddReductionVar(Phi, RK_FloatMult)) { 3591 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3592 continue; 3593 } 3594 if (AddReductionVar(Phi, RK_FloatAdd)) { 3595 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3596 continue; 3597 } 3598 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3599 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3600 "\n"); 3601 continue; 3602 } 3603 3604 emitAnalysis(Report(it) << "unvectorizable operation"); 3605 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3606 return false; 3607 }// end of PHI handling 3608 3609 // We still don't handle functions. However, we can ignore dbg intrinsic 3610 // calls and we do handle certain intrinsic and libm functions. 3611 CallInst *CI = dyn_cast<CallInst>(it); 3612 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3613 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3614 DEBUG(dbgs() << "LV: Found a call site.\n"); 3615 return false; 3616 } 3617 3618 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3619 // second argument is the same (i.e. loop invariant) 3620 if (CI && 3621 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3622 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3623 emitAnalysis(Report(it) 3624 << "intrinsic instruction cannot be vectorized"); 3625 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3626 return false; 3627 } 3628 } 3629 3630 // Check that the instruction return type is vectorizable. 3631 // Also, we can't vectorize extractelement instructions. 3632 if ((!VectorType::isValidElementType(it->getType()) && 3633 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3634 emitAnalysis(Report(it) 3635 << "instruction return type cannot be vectorized"); 3636 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3637 return false; 3638 } 3639 3640 // Check that the stored type is vectorizable. 3641 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3642 Type *T = ST->getValueOperand()->getType(); 3643 if (!VectorType::isValidElementType(T)) { 3644 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3645 return false; 3646 } 3647 if (EnableMemAccessVersioning) 3648 collectStridedAcccess(ST); 3649 } 3650 3651 if (EnableMemAccessVersioning) 3652 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3653 collectStridedAcccess(LI); 3654 3655 // Reduction instructions are allowed to have exit users. 3656 // All other instructions must not have external users. 3657 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3658 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3659 return false; 3660 } 3661 3662 } // next instr. 3663 3664 } 3665 3666 if (!Induction) { 3667 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3668 if (Inductions.empty()) { 3669 emitAnalysis(Report() 3670 << "loop induction variable could not be identified"); 3671 return false; 3672 } 3673 } 3674 3675 return true; 3676 } 3677 3678 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3679 /// return the induction operand of the gep pointer. 3680 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3681 const DataLayout *DL, Loop *Lp) { 3682 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3683 if (!GEP) 3684 return Ptr; 3685 3686 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3687 3688 // Check that all of the gep indices are uniform except for our induction 3689 // operand. 3690 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3691 if (i != InductionOperand && 3692 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3693 return Ptr; 3694 return GEP->getOperand(InductionOperand); 3695 } 3696 3697 ///\brief Look for a cast use of the passed value. 3698 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3699 Value *UniqueCast = nullptr; 3700 for (User *U : Ptr->users()) { 3701 CastInst *CI = dyn_cast<CastInst>(U); 3702 if (CI && CI->getType() == Ty) { 3703 if (!UniqueCast) 3704 UniqueCast = CI; 3705 else 3706 return nullptr; 3707 } 3708 } 3709 return UniqueCast; 3710 } 3711 3712 ///\brief Get the stride of a pointer access in a loop. 3713 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3714 /// pointer to the Value, or null otherwise. 3715 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3716 const DataLayout *DL, Loop *Lp) { 3717 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3718 if (!PtrTy || PtrTy->isAggregateType()) 3719 return nullptr; 3720 3721 // Try to remove a gep instruction to make the pointer (actually index at this 3722 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3723 // pointer, otherwise, we are analyzing the index. 3724 Value *OrigPtr = Ptr; 3725 3726 // The size of the pointer access. 3727 int64_t PtrAccessSize = 1; 3728 3729 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3730 const SCEV *V = SE->getSCEV(Ptr); 3731 3732 if (Ptr != OrigPtr) 3733 // Strip off casts. 3734 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3735 V = C->getOperand(); 3736 3737 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3738 if (!S) 3739 return nullptr; 3740 3741 V = S->getStepRecurrence(*SE); 3742 if (!V) 3743 return nullptr; 3744 3745 // Strip off the size of access multiplication if we are still analyzing the 3746 // pointer. 3747 if (OrigPtr == Ptr) { 3748 DL->getTypeAllocSize(PtrTy->getElementType()); 3749 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3750 if (M->getOperand(0)->getSCEVType() != scConstant) 3751 return nullptr; 3752 3753 const APInt &APStepVal = 3754 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3755 3756 // Huge step value - give up. 3757 if (APStepVal.getBitWidth() > 64) 3758 return nullptr; 3759 3760 int64_t StepVal = APStepVal.getSExtValue(); 3761 if (PtrAccessSize != StepVal) 3762 return nullptr; 3763 V = M->getOperand(1); 3764 } 3765 } 3766 3767 // Strip off casts. 3768 Type *StripedOffRecurrenceCast = nullptr; 3769 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3770 StripedOffRecurrenceCast = C->getType(); 3771 V = C->getOperand(); 3772 } 3773 3774 // Look for the loop invariant symbolic value. 3775 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3776 if (!U) 3777 return nullptr; 3778 3779 Value *Stride = U->getValue(); 3780 if (!Lp->isLoopInvariant(Stride)) 3781 return nullptr; 3782 3783 // If we have stripped off the recurrence cast we have to make sure that we 3784 // return the value that is used in this loop so that we can replace it later. 3785 if (StripedOffRecurrenceCast) 3786 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3787 3788 return Stride; 3789 } 3790 3791 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3792 Value *Ptr = nullptr; 3793 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3794 Ptr = LI->getPointerOperand(); 3795 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3796 Ptr = SI->getPointerOperand(); 3797 else 3798 return; 3799 3800 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3801 if (!Stride) 3802 return; 3803 3804 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3805 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3806 Strides[Ptr] = Stride; 3807 StrideSet.insert(Stride); 3808 } 3809 3810 void LoopVectorizationLegality::collectLoopUniforms() { 3811 // We now know that the loop is vectorizable! 3812 // Collect variables that will remain uniform after vectorization. 3813 std::vector<Value*> Worklist; 3814 BasicBlock *Latch = TheLoop->getLoopLatch(); 3815 3816 // Start with the conditional branch and walk up the block. 3817 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3818 3819 // Also add all consecutive pointer values; these values will be uniform 3820 // after vectorization (and subsequent cleanup) and, until revectorization is 3821 // supported, all dependencies must also be uniform. 3822 for (Loop::block_iterator B = TheLoop->block_begin(), 3823 BE = TheLoop->block_end(); B != BE; ++B) 3824 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3825 I != IE; ++I) 3826 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3827 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3828 3829 while (Worklist.size()) { 3830 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3831 Worklist.pop_back(); 3832 3833 // Look at instructions inside this loop. 3834 // Stop when reaching PHI nodes. 3835 // TODO: we need to follow values all over the loop, not only in this block. 3836 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3837 continue; 3838 3839 // This is a known uniform. 3840 Uniforms.insert(I); 3841 3842 // Insert all operands. 3843 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3844 } 3845 } 3846 3847 namespace { 3848 /// \brief Analyses memory accesses in a loop. 3849 /// 3850 /// Checks whether run time pointer checks are needed and builds sets for data 3851 /// dependence checking. 3852 class AccessAnalysis { 3853 public: 3854 /// \brief Read or write access location. 3855 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3856 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3857 3858 /// \brief Set of potential dependent memory accesses. 3859 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3860 3861 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) : 3862 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3863 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3864 3865 /// \brief Register a load and whether it is only read from. 3866 void addLoad(Value *Ptr, bool IsReadOnly) { 3867 Accesses.insert(MemAccessInfo(Ptr, false)); 3868 if (IsReadOnly) 3869 ReadOnlyPtr.insert(Ptr); 3870 } 3871 3872 /// \brief Register a store. 3873 void addStore(Value *Ptr) { 3874 Accesses.insert(MemAccessInfo(Ptr, true)); 3875 } 3876 3877 /// \brief Check whether we can check the pointers at runtime for 3878 /// non-intersection. 3879 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3880 unsigned &NumComparisons, ScalarEvolution *SE, 3881 Loop *TheLoop, ValueToValueMap &Strides, 3882 bool ShouldCheckStride = false); 3883 3884 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3885 /// and builds sets of dependent accesses. 3886 void buildDependenceSets() { 3887 // Process read-write pointers first. 3888 processMemAccesses(false); 3889 // Next, process read pointers. 3890 processMemAccesses(true); 3891 } 3892 3893 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3894 3895 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3896 void resetDepChecks() { CheckDeps.clear(); } 3897 3898 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3899 3900 private: 3901 typedef SetVector<MemAccessInfo> PtrAccessSet; 3902 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3903 3904 /// \brief Go over all memory access or only the deferred ones if 3905 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3906 /// and build sets of dependency check candidates. 3907 void processMemAccesses(bool UseDeferred); 3908 3909 /// Set of all accesses. 3910 PtrAccessSet Accesses; 3911 3912 /// Set of access to check after all writes have been processed. 3913 PtrAccessSet DeferredAccesses; 3914 3915 /// Map of pointers to last access encountered. 3916 UnderlyingObjToAccessMap ObjToLastAccess; 3917 3918 /// Set of accesses that need a further dependence check. 3919 MemAccessInfoSet CheckDeps; 3920 3921 /// Set of pointers that are read only. 3922 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3923 3924 /// Set of underlying objects already written to. 3925 SmallPtrSet<Value*, 16> WriteObjects; 3926 3927 const DataLayout *DL; 3928 3929 /// Sets of potentially dependent accesses - members of one set share an 3930 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3931 /// dependence check. 3932 DepCandidates &DepCands; 3933 3934 bool AreAllWritesIdentified; 3935 bool AreAllReadsIdentified; 3936 bool IsRTCheckNeeded; 3937 }; 3938 3939 } // end anonymous namespace 3940 3941 /// \brief Check whether a pointer can participate in a runtime bounds check. 3942 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3943 Value *Ptr) { 3944 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3945 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3946 if (!AR) 3947 return false; 3948 3949 return AR->isAffine(); 3950 } 3951 3952 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3953 /// the address space. 3954 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 3955 const Loop *Lp, ValueToValueMap &StridesMap); 3956 3957 bool AccessAnalysis::canCheckPtrAtRT( 3958 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3959 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3960 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3961 // Find pointers with computable bounds. We are going to use this information 3962 // to place a runtime bound check. 3963 unsigned NumReadPtrChecks = 0; 3964 unsigned NumWritePtrChecks = 0; 3965 bool CanDoRT = true; 3966 3967 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3968 // We assign consecutive id to access from different dependence sets. 3969 // Accesses within the same set don't need a runtime check. 3970 unsigned RunningDepId = 1; 3971 DenseMap<Value *, unsigned> DepSetId; 3972 3973 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3974 AI != AE; ++AI) { 3975 const MemAccessInfo &Access = *AI; 3976 Value *Ptr = Access.getPointer(); 3977 bool IsWrite = Access.getInt(); 3978 3979 // Just add write checks if we have both. 3980 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3981 continue; 3982 3983 if (IsWrite) 3984 ++NumWritePtrChecks; 3985 else 3986 ++NumReadPtrChecks; 3987 3988 if (hasComputableBounds(SE, StridesMap, Ptr) && 3989 // When we run after a failing dependency check we have to make sure we 3990 // don't have wrapping pointers. 3991 (!ShouldCheckStride || 3992 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3993 // The id of the dependence set. 3994 unsigned DepId; 3995 3996 if (IsDepCheckNeeded) { 3997 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3998 unsigned &LeaderId = DepSetId[Leader]; 3999 if (!LeaderId) 4000 LeaderId = RunningDepId++; 4001 DepId = LeaderId; 4002 } else 4003 // Each access has its own dependence set. 4004 DepId = RunningDepId++; 4005 4006 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 4007 4008 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4009 } else { 4010 CanDoRT = false; 4011 } 4012 } 4013 4014 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4015 NumComparisons = 0; // Only one dependence set. 4016 else { 4017 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 4018 NumWritePtrChecks - 1)); 4019 } 4020 4021 // If the pointers that we would use for the bounds comparison have different 4022 // address spaces, assume the values aren't directly comparable, so we can't 4023 // use them for the runtime check. We also have to assume they could 4024 // overlap. In the future there should be metadata for whether address spaces 4025 // are disjoint. 4026 unsigned NumPointers = RtCheck.Pointers.size(); 4027 for (unsigned i = 0; i < NumPointers; ++i) { 4028 for (unsigned j = i + 1; j < NumPointers; ++j) { 4029 // Only need to check pointers between two different dependency sets. 4030 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4031 continue; 4032 4033 Value *PtrI = RtCheck.Pointers[i]; 4034 Value *PtrJ = RtCheck.Pointers[j]; 4035 4036 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4037 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4038 if (ASi != ASj) { 4039 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4040 " different address spaces\n"); 4041 return false; 4042 } 4043 } 4044 } 4045 4046 return CanDoRT; 4047 } 4048 4049 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 4050 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 4051 } 4052 4053 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 4054 // We process the set twice: first we process read-write pointers, last we 4055 // process read-only pointers. This allows us to skip dependence tests for 4056 // read-only pointers. 4057 4058 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4059 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 4060 const MemAccessInfo &Access = *AI; 4061 Value *Ptr = Access.getPointer(); 4062 bool IsWrite = Access.getInt(); 4063 4064 DepCands.insert(Access); 4065 4066 // Memorize read-only pointers for later processing and skip them in the 4067 // first round (they need to be checked after we have seen all write 4068 // pointers). Note: we also mark pointer that are not consecutive as 4069 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 4070 // second check for "!IsWrite". 4071 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4072 if (!UseDeferred && IsReadOnlyPtr) { 4073 DeferredAccesses.insert(Access); 4074 continue; 4075 } 4076 4077 bool NeedDepCheck = false; 4078 // Check whether there is the possibility of dependency because of 4079 // underlying objects being the same. 4080 typedef SmallVector<Value*, 16> ValueVector; 4081 ValueVector TempObjects; 4082 GetUnderlyingObjects(Ptr, TempObjects, DL); 4083 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 4084 UI != UE; ++UI) { 4085 Value *UnderlyingObj = *UI; 4086 4087 // If this is a write then it needs to be an identified object. If this a 4088 // read and all writes (so far) are identified function scope objects we 4089 // don't need an identified underlying object but only an Argument (the 4090 // next write is going to invalidate this assumption if it is 4091 // unidentified). 4092 // This is a micro-optimization for the case where all writes are 4093 // identified and we have one argument pointer. 4094 // Otherwise, we do need a runtime check. 4095 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 4096 (!IsWrite && (!AreAllWritesIdentified || 4097 !isa<Argument>(UnderlyingObj)) && 4098 !isIdentifiedObject(UnderlyingObj))) { 4099 DEBUG(dbgs() << "LV: Found an unidentified " << 4100 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 4101 "\n"); 4102 IsRTCheckNeeded = (IsRTCheckNeeded || 4103 !isIdentifiedObject(UnderlyingObj) || 4104 !AreAllReadsIdentified); 4105 4106 if (IsWrite) 4107 AreAllWritesIdentified = false; 4108 if (!IsWrite) 4109 AreAllReadsIdentified = false; 4110 } 4111 4112 // If this is a write - check other reads and writes for conflicts. If 4113 // this is a read only check other writes for conflicts (but only if there 4114 // is no other write to the ptr - this is an optimization to catch "a[i] = 4115 // a[i] + " without having to do a dependence check). 4116 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 4117 NeedDepCheck = true; 4118 4119 if (IsWrite) 4120 WriteObjects.insert(UnderlyingObj); 4121 4122 // Create sets of pointers connected by shared underlying objects. 4123 UnderlyingObjToAccessMap::iterator Prev = 4124 ObjToLastAccess.find(UnderlyingObj); 4125 if (Prev != ObjToLastAccess.end()) 4126 DepCands.unionSets(Access, Prev->second); 4127 4128 ObjToLastAccess[UnderlyingObj] = Access; 4129 } 4130 4131 if (NeedDepCheck) 4132 CheckDeps.insert(Access); 4133 } 4134 } 4135 4136 namespace { 4137 /// \brief Checks memory dependences among accesses to the same underlying 4138 /// object to determine whether there vectorization is legal or not (and at 4139 /// which vectorization factor). 4140 /// 4141 /// This class works under the assumption that we already checked that memory 4142 /// locations with different underlying pointers are "must-not alias". 4143 /// We use the ScalarEvolution framework to symbolically evalutate access 4144 /// functions pairs. Since we currently don't restructure the loop we can rely 4145 /// on the program order of memory accesses to determine their safety. 4146 /// At the moment we will only deem accesses as safe for: 4147 /// * A negative constant distance assuming program order. 4148 /// 4149 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4150 /// a[i] = tmp; y = a[i]; 4151 /// 4152 /// The latter case is safe because later checks guarantuee that there can't 4153 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4154 /// the same variable: a header phi can only be an induction or a reduction, a 4155 /// reduction can't have a memory sink, an induction can't have a memory 4156 /// source). This is important and must not be violated (or we have to 4157 /// resort to checking for cycles through memory). 4158 /// 4159 /// * A positive constant distance assuming program order that is bigger 4160 /// than the biggest memory access. 4161 /// 4162 /// tmp = a[i] OR b[i] = x 4163 /// a[i+2] = tmp y = b[i+2]; 4164 /// 4165 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4166 /// 4167 /// * Zero distances and all accesses have the same size. 4168 /// 4169 class MemoryDepChecker { 4170 public: 4171 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4172 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4173 4174 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4175 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4176 ShouldRetryWithRuntimeCheck(false) {} 4177 4178 /// \brief Register the location (instructions are given increasing numbers) 4179 /// of a write access. 4180 void addAccess(StoreInst *SI) { 4181 Value *Ptr = SI->getPointerOperand(); 4182 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4183 InstMap.push_back(SI); 4184 ++AccessIdx; 4185 } 4186 4187 /// \brief Register the location (instructions are given increasing numbers) 4188 /// of a write access. 4189 void addAccess(LoadInst *LI) { 4190 Value *Ptr = LI->getPointerOperand(); 4191 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4192 InstMap.push_back(LI); 4193 ++AccessIdx; 4194 } 4195 4196 /// \brief Check whether the dependencies between the accesses are safe. 4197 /// 4198 /// Only checks sets with elements in \p CheckDeps. 4199 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4200 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4201 4202 /// \brief The maximum number of bytes of a vector register we can vectorize 4203 /// the accesses safely with. 4204 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4205 4206 /// \brief In same cases when the dependency check fails we can still 4207 /// vectorize the loop with a dynamic array access check. 4208 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4209 4210 private: 4211 ScalarEvolution *SE; 4212 const DataLayout *DL; 4213 const Loop *InnermostLoop; 4214 4215 /// \brief Maps access locations (ptr, read/write) to program order. 4216 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4217 4218 /// \brief Memory access instructions in program order. 4219 SmallVector<Instruction *, 16> InstMap; 4220 4221 /// \brief The program order index to be used for the next instruction. 4222 unsigned AccessIdx; 4223 4224 // We can access this many bytes in parallel safely. 4225 unsigned MaxSafeDepDistBytes; 4226 4227 /// \brief If we see a non-constant dependence distance we can still try to 4228 /// vectorize this loop with runtime checks. 4229 bool ShouldRetryWithRuntimeCheck; 4230 4231 /// \brief Check whether there is a plausible dependence between the two 4232 /// accesses. 4233 /// 4234 /// Access \p A must happen before \p B in program order. The two indices 4235 /// identify the index into the program order map. 4236 /// 4237 /// This function checks whether there is a plausible dependence (or the 4238 /// absence of such can't be proved) between the two accesses. If there is a 4239 /// plausible dependence but the dependence distance is bigger than one 4240 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4241 /// distance is smaller than any other distance encountered so far). 4242 /// Otherwise, this function returns true signaling a possible dependence. 4243 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4244 const MemAccessInfo &B, unsigned BIdx, 4245 ValueToValueMap &Strides); 4246 4247 /// \brief Check whether the data dependence could prevent store-load 4248 /// forwarding. 4249 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4250 }; 4251 4252 } // end anonymous namespace 4253 4254 static bool isInBoundsGep(Value *Ptr) { 4255 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4256 return GEP->isInBounds(); 4257 return false; 4258 } 4259 4260 /// \brief Check whether the access through \p Ptr has a constant stride. 4261 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4262 const Loop *Lp, ValueToValueMap &StridesMap) { 4263 const Type *Ty = Ptr->getType(); 4264 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4265 4266 // Make sure that the pointer does not point to aggregate types. 4267 const PointerType *PtrTy = cast<PointerType>(Ty); 4268 if (PtrTy->getElementType()->isAggregateType()) { 4269 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4270 "\n"); 4271 return 0; 4272 } 4273 4274 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4275 4276 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4277 if (!AR) { 4278 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4279 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4280 return 0; 4281 } 4282 4283 // The accesss function must stride over the innermost loop. 4284 if (Lp != AR->getLoop()) { 4285 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4286 *Ptr << " SCEV: " << *PtrScev << "\n"); 4287 } 4288 4289 // The address calculation must not wrap. Otherwise, a dependence could be 4290 // inverted. 4291 // An inbounds getelementptr that is a AddRec with a unit stride 4292 // cannot wrap per definition. The unit stride requirement is checked later. 4293 // An getelementptr without an inbounds attribute and unit stride would have 4294 // to access the pointer value "0" which is undefined behavior in address 4295 // space 0, therefore we can also vectorize this case. 4296 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4297 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4298 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4299 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4300 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4301 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4302 return 0; 4303 } 4304 4305 // Check the step is constant. 4306 const SCEV *Step = AR->getStepRecurrence(*SE); 4307 4308 // Calculate the pointer stride and check if it is consecutive. 4309 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4310 if (!C) { 4311 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4312 " SCEV: " << *PtrScev << "\n"); 4313 return 0; 4314 } 4315 4316 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4317 const APInt &APStepVal = C->getValue()->getValue(); 4318 4319 // Huge step value - give up. 4320 if (APStepVal.getBitWidth() > 64) 4321 return 0; 4322 4323 int64_t StepVal = APStepVal.getSExtValue(); 4324 4325 // Strided access. 4326 int64_t Stride = StepVal / Size; 4327 int64_t Rem = StepVal % Size; 4328 if (Rem) 4329 return 0; 4330 4331 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4332 // know we can't "wrap around the address space". In case of address space 4333 // zero we know that this won't happen without triggering undefined behavior. 4334 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4335 Stride != 1 && Stride != -1) 4336 return 0; 4337 4338 return Stride; 4339 } 4340 4341 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4342 unsigned TypeByteSize) { 4343 // If loads occur at a distance that is not a multiple of a feasible vector 4344 // factor store-load forwarding does not take place. 4345 // Positive dependences might cause troubles because vectorizing them might 4346 // prevent store-load forwarding making vectorized code run a lot slower. 4347 // a[i] = a[i-3] ^ a[i-8]; 4348 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4349 // hence on your typical architecture store-load forwarding does not take 4350 // place. Vectorizing in such cases does not make sense. 4351 // Store-load forwarding distance. 4352 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4353 // Maximum vector factor. 4354 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4355 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4356 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4357 4358 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4359 vf *= 2) { 4360 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4361 MaxVFWithoutSLForwardIssues = (vf >>=1); 4362 break; 4363 } 4364 } 4365 4366 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4367 DEBUG(dbgs() << "LV: Distance " << Distance << 4368 " that could cause a store-load forwarding conflict\n"); 4369 return true; 4370 } 4371 4372 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4373 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4374 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4375 return false; 4376 } 4377 4378 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4379 const MemAccessInfo &B, unsigned BIdx, 4380 ValueToValueMap &Strides) { 4381 assert (AIdx < BIdx && "Must pass arguments in program order"); 4382 4383 Value *APtr = A.getPointer(); 4384 Value *BPtr = B.getPointer(); 4385 bool AIsWrite = A.getInt(); 4386 bool BIsWrite = B.getInt(); 4387 4388 // Two reads are independent. 4389 if (!AIsWrite && !BIsWrite) 4390 return false; 4391 4392 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4393 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4394 4395 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4396 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4397 4398 const SCEV *Src = AScev; 4399 const SCEV *Sink = BScev; 4400 4401 // If the induction step is negative we have to invert source and sink of the 4402 // dependence. 4403 if (StrideAPtr < 0) { 4404 //Src = BScev; 4405 //Sink = AScev; 4406 std::swap(APtr, BPtr); 4407 std::swap(Src, Sink); 4408 std::swap(AIsWrite, BIsWrite); 4409 std::swap(AIdx, BIdx); 4410 std::swap(StrideAPtr, StrideBPtr); 4411 } 4412 4413 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4414 4415 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4416 << "(Induction step: " << StrideAPtr << ")\n"); 4417 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4418 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4419 4420 // Need consecutive accesses. We don't want to vectorize 4421 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4422 // the address space. 4423 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4424 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4425 return true; 4426 } 4427 4428 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4429 if (!C) { 4430 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4431 ShouldRetryWithRuntimeCheck = true; 4432 return true; 4433 } 4434 4435 Type *ATy = APtr->getType()->getPointerElementType(); 4436 Type *BTy = BPtr->getType()->getPointerElementType(); 4437 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4438 4439 // Negative distances are not plausible dependencies. 4440 const APInt &Val = C->getValue()->getValue(); 4441 if (Val.isNegative()) { 4442 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4443 if (IsTrueDataDependence && 4444 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4445 ATy != BTy)) 4446 return true; 4447 4448 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4449 return false; 4450 } 4451 4452 // Write to the same location with the same size. 4453 // Could be improved to assert type sizes are the same (i32 == float, etc). 4454 if (Val == 0) { 4455 if (ATy == BTy) 4456 return false; 4457 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4458 return true; 4459 } 4460 4461 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4462 4463 // Positive distance bigger than max vectorization factor. 4464 if (ATy != BTy) { 4465 DEBUG(dbgs() << 4466 "LV: ReadWrite-Write positive dependency with different types\n"); 4467 return false; 4468 } 4469 4470 unsigned Distance = (unsigned) Val.getZExtValue(); 4471 4472 // Bail out early if passed-in parameters make vectorization not feasible. 4473 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4474 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4475 4476 // The distance must be bigger than the size needed for a vectorized version 4477 // of the operation and the size of the vectorized operation must not be 4478 // bigger than the currrent maximum size. 4479 if (Distance < 2*TypeByteSize || 4480 2*TypeByteSize > MaxSafeDepDistBytes || 4481 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4482 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4483 << Val.getSExtValue() << '\n'); 4484 return true; 4485 } 4486 4487 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4488 Distance : MaxSafeDepDistBytes; 4489 4490 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4491 if (IsTrueDataDependence && 4492 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4493 return true; 4494 4495 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4496 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4497 4498 return false; 4499 } 4500 4501 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4502 MemAccessInfoSet &CheckDeps, 4503 ValueToValueMap &Strides) { 4504 4505 MaxSafeDepDistBytes = -1U; 4506 while (!CheckDeps.empty()) { 4507 MemAccessInfo CurAccess = *CheckDeps.begin(); 4508 4509 // Get the relevant memory access set. 4510 EquivalenceClasses<MemAccessInfo>::iterator I = 4511 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4512 4513 // Check accesses within this set. 4514 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4515 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4516 4517 // Check every access pair. 4518 while (AI != AE) { 4519 CheckDeps.erase(*AI); 4520 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4521 while (OI != AE) { 4522 // Check every accessing instruction pair in program order. 4523 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4524 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4525 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4526 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4527 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4528 return false; 4529 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4530 return false; 4531 } 4532 ++OI; 4533 } 4534 AI++; 4535 } 4536 } 4537 return true; 4538 } 4539 4540 bool LoopVectorizationLegality::canVectorizeMemory() { 4541 4542 typedef SmallVector<Value*, 16> ValueVector; 4543 typedef SmallPtrSet<Value*, 16> ValueSet; 4544 4545 // Holds the Load and Store *instructions*. 4546 ValueVector Loads; 4547 ValueVector Stores; 4548 4549 // Holds all the different accesses in the loop. 4550 unsigned NumReads = 0; 4551 unsigned NumReadWrites = 0; 4552 4553 PtrRtCheck.Pointers.clear(); 4554 PtrRtCheck.Need = false; 4555 4556 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4557 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4558 4559 // For each block. 4560 for (Loop::block_iterator bb = TheLoop->block_begin(), 4561 be = TheLoop->block_end(); bb != be; ++bb) { 4562 4563 // Scan the BB and collect legal loads and stores. 4564 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4565 ++it) { 4566 4567 // If this is a load, save it. If this instruction can read from memory 4568 // but is not a load, then we quit. Notice that we don't handle function 4569 // calls that read or write. 4570 if (it->mayReadFromMemory()) { 4571 // Many math library functions read the rounding mode. We will only 4572 // vectorize a loop if it contains known function calls that don't set 4573 // the flag. Therefore, it is safe to ignore this read from memory. 4574 CallInst *Call = dyn_cast<CallInst>(it); 4575 if (Call && getIntrinsicIDForCall(Call, TLI)) 4576 continue; 4577 4578 LoadInst *Ld = dyn_cast<LoadInst>(it); 4579 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4580 emitAnalysis(Report(Ld) 4581 << "read with atomic ordering or volatile read"); 4582 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4583 return false; 4584 } 4585 NumLoads++; 4586 Loads.push_back(Ld); 4587 DepChecker.addAccess(Ld); 4588 continue; 4589 } 4590 4591 // Save 'store' instructions. Abort if other instructions write to memory. 4592 if (it->mayWriteToMemory()) { 4593 StoreInst *St = dyn_cast<StoreInst>(it); 4594 if (!St) { 4595 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4596 return false; 4597 } 4598 if (!St->isSimple() && !IsAnnotatedParallel) { 4599 emitAnalysis(Report(St) 4600 << "write with atomic ordering or volatile write"); 4601 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4602 return false; 4603 } 4604 NumStores++; 4605 Stores.push_back(St); 4606 DepChecker.addAccess(St); 4607 } 4608 } // Next instr. 4609 } // Next block. 4610 4611 // Now we have two lists that hold the loads and the stores. 4612 // Next, we find the pointers that they use. 4613 4614 // Check if we see any stores. If there are no stores, then we don't 4615 // care if the pointers are *restrict*. 4616 if (!Stores.size()) { 4617 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4618 return true; 4619 } 4620 4621 AccessAnalysis::DepCandidates DependentAccesses; 4622 AccessAnalysis Accesses(DL, DependentAccesses); 4623 4624 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4625 // multiple times on the same object. If the ptr is accessed twice, once 4626 // for read and once for write, it will only appear once (on the write 4627 // list). This is okay, since we are going to check for conflicts between 4628 // writes and between reads and writes, but not between reads and reads. 4629 ValueSet Seen; 4630 4631 ValueVector::iterator I, IE; 4632 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4633 StoreInst *ST = cast<StoreInst>(*I); 4634 Value* Ptr = ST->getPointerOperand(); 4635 4636 if (isUniform(Ptr)) { 4637 emitAnalysis( 4638 Report(ST) 4639 << "write to a loop invariant address could not be vectorized"); 4640 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4641 return false; 4642 } 4643 4644 // If we did *not* see this pointer before, insert it to the read-write 4645 // list. At this phase it is only a 'write' list. 4646 if (Seen.insert(Ptr)) { 4647 ++NumReadWrites; 4648 Accesses.addStore(Ptr); 4649 } 4650 } 4651 4652 if (IsAnnotatedParallel) { 4653 DEBUG(dbgs() 4654 << "LV: A loop annotated parallel, ignore memory dependency " 4655 << "checks.\n"); 4656 return true; 4657 } 4658 4659 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4660 LoadInst *LD = cast<LoadInst>(*I); 4661 Value* Ptr = LD->getPointerOperand(); 4662 // If we did *not* see this pointer before, insert it to the 4663 // read list. If we *did* see it before, then it is already in 4664 // the read-write list. This allows us to vectorize expressions 4665 // such as A[i] += x; Because the address of A[i] is a read-write 4666 // pointer. This only works if the index of A[i] is consecutive. 4667 // If the address of i is unknown (for example A[B[i]]) then we may 4668 // read a few words, modify, and write a few words, and some of the 4669 // words may be written to the same address. 4670 bool IsReadOnlyPtr = false; 4671 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4672 ++NumReads; 4673 IsReadOnlyPtr = true; 4674 } 4675 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4676 } 4677 4678 // If we write (or read-write) to a single destination and there are no 4679 // other reads in this loop then is it safe to vectorize. 4680 if (NumReadWrites == 1 && NumReads == 0) { 4681 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4682 return true; 4683 } 4684 4685 // Build dependence sets and check whether we need a runtime pointer bounds 4686 // check. 4687 Accesses.buildDependenceSets(); 4688 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4689 4690 // Find pointers with computable bounds. We are going to use this information 4691 // to place a runtime bound check. 4692 unsigned NumComparisons = 0; 4693 bool CanDoRT = false; 4694 if (NeedRTCheck) 4695 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4696 Strides); 4697 4698 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4699 " pointer comparisons.\n"); 4700 4701 // If we only have one set of dependences to check pointers among we don't 4702 // need a runtime check. 4703 if (NumComparisons == 0 && NeedRTCheck) 4704 NeedRTCheck = false; 4705 4706 // Check that we did not collect too many pointers or found an unsizeable 4707 // pointer. 4708 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4709 PtrRtCheck.reset(); 4710 CanDoRT = false; 4711 } 4712 4713 if (CanDoRT) { 4714 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4715 } 4716 4717 if (NeedRTCheck && !CanDoRT) { 4718 emitAnalysis(Report() << "cannot identify array bounds"); 4719 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4720 "the array bounds.\n"); 4721 PtrRtCheck.reset(); 4722 return false; 4723 } 4724 4725 PtrRtCheck.Need = NeedRTCheck; 4726 4727 bool CanVecMem = true; 4728 if (Accesses.isDependencyCheckNeeded()) { 4729 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4730 CanVecMem = DepChecker.areDepsSafe( 4731 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4732 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4733 4734 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4735 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4736 NeedRTCheck = true; 4737 4738 // Clear the dependency checks. We assume they are not needed. 4739 Accesses.resetDepChecks(); 4740 4741 PtrRtCheck.reset(); 4742 PtrRtCheck.Need = true; 4743 4744 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4745 TheLoop, Strides, true); 4746 // Check that we did not collect too many pointers or found an unsizeable 4747 // pointer. 4748 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4749 if (!CanDoRT && NumComparisons > 0) 4750 emitAnalysis(Report() 4751 << "cannot check memory dependencies at runtime"); 4752 else 4753 emitAnalysis(Report() 4754 << NumComparisons << " exceeds limit of " 4755 << RuntimeMemoryCheckThreshold 4756 << " dependent memory operations checked at runtime"); 4757 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4758 PtrRtCheck.reset(); 4759 return false; 4760 } 4761 4762 CanVecMem = true; 4763 } 4764 } 4765 4766 if (!CanVecMem) 4767 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4768 4769 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4770 " need a runtime memory check.\n"); 4771 4772 return CanVecMem; 4773 } 4774 4775 static bool hasMultipleUsesOf(Instruction *I, 4776 SmallPtrSet<Instruction *, 8> &Insts) { 4777 unsigned NumUses = 0; 4778 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4779 if (Insts.count(dyn_cast<Instruction>(*Use))) 4780 ++NumUses; 4781 if (NumUses > 1) 4782 return true; 4783 } 4784 4785 return false; 4786 } 4787 4788 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4789 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4790 if (!Set.count(dyn_cast<Instruction>(*Use))) 4791 return false; 4792 return true; 4793 } 4794 4795 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4796 ReductionKind Kind) { 4797 if (Phi->getNumIncomingValues() != 2) 4798 return false; 4799 4800 // Reduction variables are only found in the loop header block. 4801 if (Phi->getParent() != TheLoop->getHeader()) 4802 return false; 4803 4804 // Obtain the reduction start value from the value that comes from the loop 4805 // preheader. 4806 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4807 4808 // ExitInstruction is the single value which is used outside the loop. 4809 // We only allow for a single reduction value to be used outside the loop. 4810 // This includes users of the reduction, variables (which form a cycle 4811 // which ends in the phi node). 4812 Instruction *ExitInstruction = nullptr; 4813 // Indicates that we found a reduction operation in our scan. 4814 bool FoundReduxOp = false; 4815 4816 // We start with the PHI node and scan for all of the users of this 4817 // instruction. All users must be instructions that can be used as reduction 4818 // variables (such as ADD). We must have a single out-of-block user. The cycle 4819 // must include the original PHI. 4820 bool FoundStartPHI = false; 4821 4822 // To recognize min/max patterns formed by a icmp select sequence, we store 4823 // the number of instruction we saw from the recognized min/max pattern, 4824 // to make sure we only see exactly the two instructions. 4825 unsigned NumCmpSelectPatternInst = 0; 4826 ReductionInstDesc ReduxDesc(false, nullptr); 4827 4828 SmallPtrSet<Instruction *, 8> VisitedInsts; 4829 SmallVector<Instruction *, 8> Worklist; 4830 Worklist.push_back(Phi); 4831 VisitedInsts.insert(Phi); 4832 4833 // A value in the reduction can be used: 4834 // - By the reduction: 4835 // - Reduction operation: 4836 // - One use of reduction value (safe). 4837 // - Multiple use of reduction value (not safe). 4838 // - PHI: 4839 // - All uses of the PHI must be the reduction (safe). 4840 // - Otherwise, not safe. 4841 // - By one instruction outside of the loop (safe). 4842 // - By further instructions outside of the loop (not safe). 4843 // - By an instruction that is not part of the reduction (not safe). 4844 // This is either: 4845 // * An instruction type other than PHI or the reduction operation. 4846 // * A PHI in the header other than the initial PHI. 4847 while (!Worklist.empty()) { 4848 Instruction *Cur = Worklist.back(); 4849 Worklist.pop_back(); 4850 4851 // No Users. 4852 // If the instruction has no users then this is a broken chain and can't be 4853 // a reduction variable. 4854 if (Cur->use_empty()) 4855 return false; 4856 4857 bool IsAPhi = isa<PHINode>(Cur); 4858 4859 // A header PHI use other than the original PHI. 4860 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4861 return false; 4862 4863 // Reductions of instructions such as Div, and Sub is only possible if the 4864 // LHS is the reduction variable. 4865 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4866 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4867 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4868 return false; 4869 4870 // Any reduction instruction must be of one of the allowed kinds. 4871 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4872 if (!ReduxDesc.IsReduction) 4873 return false; 4874 4875 // A reduction operation must only have one use of the reduction value. 4876 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4877 hasMultipleUsesOf(Cur, VisitedInsts)) 4878 return false; 4879 4880 // All inputs to a PHI node must be a reduction value. 4881 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4882 return false; 4883 4884 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4885 isa<SelectInst>(Cur))) 4886 ++NumCmpSelectPatternInst; 4887 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4888 isa<SelectInst>(Cur))) 4889 ++NumCmpSelectPatternInst; 4890 4891 // Check whether we found a reduction operator. 4892 FoundReduxOp |= !IsAPhi; 4893 4894 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4895 // onto the stack. This way we are going to have seen all inputs to PHI 4896 // nodes once we get to them. 4897 SmallVector<Instruction *, 8> NonPHIs; 4898 SmallVector<Instruction *, 8> PHIs; 4899 for (User *U : Cur->users()) { 4900 Instruction *UI = cast<Instruction>(U); 4901 4902 // Check if we found the exit user. 4903 BasicBlock *Parent = UI->getParent(); 4904 if (!TheLoop->contains(Parent)) { 4905 // Exit if you find multiple outside users or if the header phi node is 4906 // being used. In this case the user uses the value of the previous 4907 // iteration, in which case we would loose "VF-1" iterations of the 4908 // reduction operation if we vectorize. 4909 if (ExitInstruction != nullptr || Cur == Phi) 4910 return false; 4911 4912 // The instruction used by an outside user must be the last instruction 4913 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4914 // operations on the value. 4915 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4916 return false; 4917 4918 ExitInstruction = Cur; 4919 continue; 4920 } 4921 4922 // Process instructions only once (termination). Each reduction cycle 4923 // value must only be used once, except by phi nodes and min/max 4924 // reductions which are represented as a cmp followed by a select. 4925 ReductionInstDesc IgnoredVal(false, nullptr); 4926 if (VisitedInsts.insert(UI)) { 4927 if (isa<PHINode>(UI)) 4928 PHIs.push_back(UI); 4929 else 4930 NonPHIs.push_back(UI); 4931 } else if (!isa<PHINode>(UI) && 4932 ((!isa<FCmpInst>(UI) && 4933 !isa<ICmpInst>(UI) && 4934 !isa<SelectInst>(UI)) || 4935 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4936 return false; 4937 4938 // Remember that we completed the cycle. 4939 if (UI == Phi) 4940 FoundStartPHI = true; 4941 } 4942 Worklist.append(PHIs.begin(), PHIs.end()); 4943 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4944 } 4945 4946 // This means we have seen one but not the other instruction of the 4947 // pattern or more than just a select and cmp. 4948 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4949 NumCmpSelectPatternInst != 2) 4950 return false; 4951 4952 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4953 return false; 4954 4955 // We found a reduction var if we have reached the original phi node and we 4956 // only have a single instruction with out-of-loop users. 4957 4958 // This instruction is allowed to have out-of-loop users. 4959 AllowedExit.insert(ExitInstruction); 4960 4961 // Save the description of this reduction variable. 4962 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4963 ReduxDesc.MinMaxKind); 4964 Reductions[Phi] = RD; 4965 // We've ended the cycle. This is a reduction variable if we have an 4966 // outside user and it has a binary op. 4967 4968 return true; 4969 } 4970 4971 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4972 /// pattern corresponding to a min(X, Y) or max(X, Y). 4973 LoopVectorizationLegality::ReductionInstDesc 4974 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4975 ReductionInstDesc &Prev) { 4976 4977 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4978 "Expect a select instruction"); 4979 Instruction *Cmp = nullptr; 4980 SelectInst *Select = nullptr; 4981 4982 // We must handle the select(cmp()) as a single instruction. Advance to the 4983 // select. 4984 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4985 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4986 return ReductionInstDesc(false, I); 4987 return ReductionInstDesc(Select, Prev.MinMaxKind); 4988 } 4989 4990 // Only handle single use cases for now. 4991 if (!(Select = dyn_cast<SelectInst>(I))) 4992 return ReductionInstDesc(false, I); 4993 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4994 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4995 return ReductionInstDesc(false, I); 4996 if (!Cmp->hasOneUse()) 4997 return ReductionInstDesc(false, I); 4998 4999 Value *CmpLeft; 5000 Value *CmpRight; 5001 5002 // Look for a min/max pattern. 5003 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5004 return ReductionInstDesc(Select, MRK_UIntMin); 5005 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5006 return ReductionInstDesc(Select, MRK_UIntMax); 5007 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5008 return ReductionInstDesc(Select, MRK_SIntMax); 5009 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5010 return ReductionInstDesc(Select, MRK_SIntMin); 5011 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5012 return ReductionInstDesc(Select, MRK_FloatMin); 5013 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5014 return ReductionInstDesc(Select, MRK_FloatMax); 5015 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5016 return ReductionInstDesc(Select, MRK_FloatMin); 5017 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5018 return ReductionInstDesc(Select, MRK_FloatMax); 5019 5020 return ReductionInstDesc(false, I); 5021 } 5022 5023 LoopVectorizationLegality::ReductionInstDesc 5024 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5025 ReductionKind Kind, 5026 ReductionInstDesc &Prev) { 5027 bool FP = I->getType()->isFloatingPointTy(); 5028 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 5029 switch (I->getOpcode()) { 5030 default: 5031 return ReductionInstDesc(false, I); 5032 case Instruction::PHI: 5033 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5034 Kind != RK_FloatMinMax)) 5035 return ReductionInstDesc(false, I); 5036 return ReductionInstDesc(I, Prev.MinMaxKind); 5037 case Instruction::Sub: 5038 case Instruction::Add: 5039 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5040 case Instruction::Mul: 5041 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5042 case Instruction::And: 5043 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5044 case Instruction::Or: 5045 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5046 case Instruction::Xor: 5047 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5048 case Instruction::FMul: 5049 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5050 case Instruction::FAdd: 5051 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5052 case Instruction::FCmp: 5053 case Instruction::ICmp: 5054 case Instruction::Select: 5055 if (Kind != RK_IntegerMinMax && 5056 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5057 return ReductionInstDesc(false, I); 5058 return isMinMaxSelectCmpPattern(I, Prev); 5059 } 5060 } 5061 5062 LoopVectorizationLegality::InductionKind 5063 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5064 Type *PhiTy = Phi->getType(); 5065 // We only handle integer and pointer inductions variables. 5066 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5067 return IK_NoInduction; 5068 5069 // Check that the PHI is consecutive. 5070 const SCEV *PhiScev = SE->getSCEV(Phi); 5071 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5072 if (!AR) { 5073 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5074 return IK_NoInduction; 5075 } 5076 const SCEV *Step = AR->getStepRecurrence(*SE); 5077 5078 // Integer inductions need to have a stride of one. 5079 if (PhiTy->isIntegerTy()) { 5080 if (Step->isOne()) 5081 return IK_IntInduction; 5082 if (Step->isAllOnesValue()) 5083 return IK_ReverseIntInduction; 5084 return IK_NoInduction; 5085 } 5086 5087 // Calculate the pointer stride and check if it is consecutive. 5088 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5089 if (!C) 5090 return IK_NoInduction; 5091 5092 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5093 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5094 if (C->getValue()->equalsInt(Size)) 5095 return IK_PtrInduction; 5096 else if (C->getValue()->equalsInt(0 - Size)) 5097 return IK_ReversePtrInduction; 5098 5099 return IK_NoInduction; 5100 } 5101 5102 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5103 Value *In0 = const_cast<Value*>(V); 5104 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5105 if (!PN) 5106 return false; 5107 5108 return Inductions.count(PN); 5109 } 5110 5111 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5112 assert(TheLoop->contains(BB) && "Unknown block used"); 5113 5114 // Blocks that do not dominate the latch need predication. 5115 BasicBlock* Latch = TheLoop->getLoopLatch(); 5116 return !DT->dominates(BB, Latch); 5117 } 5118 5119 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5120 SmallPtrSet<Value *, 8>& SafePtrs) { 5121 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5122 // We might be able to hoist the load. 5123 if (it->mayReadFromMemory()) { 5124 LoadInst *LI = dyn_cast<LoadInst>(it); 5125 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5126 return false; 5127 } 5128 5129 // We don't predicate stores at the moment. 5130 if (it->mayWriteToMemory()) { 5131 StoreInst *SI = dyn_cast<StoreInst>(it); 5132 // We only support predication of stores in basic blocks with one 5133 // predecessor. 5134 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5135 !SafePtrs.count(SI->getPointerOperand()) || 5136 !SI->getParent()->getSinglePredecessor()) 5137 return false; 5138 } 5139 if (it->mayThrow()) 5140 return false; 5141 5142 // Check that we don't have a constant expression that can trap as operand. 5143 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5144 OI != OE; ++OI) { 5145 if (Constant *C = dyn_cast<Constant>(*OI)) 5146 if (C->canTrap()) 5147 return false; 5148 } 5149 5150 // The instructions below can trap. 5151 switch (it->getOpcode()) { 5152 default: continue; 5153 case Instruction::UDiv: 5154 case Instruction::SDiv: 5155 case Instruction::URem: 5156 case Instruction::SRem: 5157 return false; 5158 } 5159 } 5160 5161 return true; 5162 } 5163 5164 LoopVectorizationCostModel::VectorizationFactor 5165 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 5166 unsigned UserVF, 5167 bool ForceVectorization) { 5168 // Width 1 means no vectorize 5169 VectorizationFactor Factor = { 1U, 0U }; 5170 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5171 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5172 return Factor; 5173 } 5174 5175 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5176 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5177 return Factor; 5178 } 5179 5180 // Find the trip count. 5181 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5182 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5183 5184 unsigned WidestType = getWidestType(); 5185 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5186 unsigned MaxSafeDepDist = -1U; 5187 if (Legal->getMaxSafeDepDistBytes() != -1U) 5188 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5189 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5190 WidestRegister : MaxSafeDepDist); 5191 unsigned MaxVectorSize = WidestRegister / WidestType; 5192 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5193 DEBUG(dbgs() << "LV: The Widest register is: " 5194 << WidestRegister << " bits.\n"); 5195 5196 if (MaxVectorSize == 0) { 5197 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5198 MaxVectorSize = 1; 5199 } 5200 5201 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5202 " into one vector!"); 5203 5204 unsigned VF = MaxVectorSize; 5205 5206 // If we optimize the program for size, avoid creating the tail loop. 5207 if (OptForSize) { 5208 // If we are unable to calculate the trip count then don't try to vectorize. 5209 if (TC < 2) { 5210 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5211 return Factor; 5212 } 5213 5214 // Find the maximum SIMD width that can fit within the trip count. 5215 VF = TC % MaxVectorSize; 5216 5217 if (VF == 0) 5218 VF = MaxVectorSize; 5219 5220 // If the trip count that we found modulo the vectorization factor is not 5221 // zero then we require a tail. 5222 if (VF < 2) { 5223 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5224 return Factor; 5225 } 5226 } 5227 5228 if (UserVF != 0) { 5229 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5230 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5231 5232 Factor.Width = UserVF; 5233 return Factor; 5234 } 5235 5236 float Cost = expectedCost(1); 5237 #ifndef NDEBUG 5238 const float ScalarCost = Cost; 5239 #endif /* NDEBUG */ 5240 unsigned Width = 1; 5241 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5242 5243 // Ignore scalar width, because the user explicitly wants vectorization. 5244 if (ForceVectorization && VF > 1) { 5245 Width = 2; 5246 Cost = expectedCost(Width) / (float)Width; 5247 } 5248 5249 for (unsigned i=2; i <= VF; i*=2) { 5250 // Notice that the vector loop needs to be executed less times, so 5251 // we need to divide the cost of the vector loops by the width of 5252 // the vector elements. 5253 float VectorCost = expectedCost(i) / (float)i; 5254 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5255 (int)VectorCost << ".\n"); 5256 if (VectorCost < Cost) { 5257 Cost = VectorCost; 5258 Width = i; 5259 } 5260 } 5261 5262 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5263 << "LV: Vectorization seems to be not beneficial, " 5264 << "but was forced by a user.\n"); 5265 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5266 Factor.Width = Width; 5267 Factor.Cost = Width * Cost; 5268 return Factor; 5269 } 5270 5271 unsigned LoopVectorizationCostModel::getWidestType() { 5272 unsigned MaxWidth = 8; 5273 5274 // For each block. 5275 for (Loop::block_iterator bb = TheLoop->block_begin(), 5276 be = TheLoop->block_end(); bb != be; ++bb) { 5277 BasicBlock *BB = *bb; 5278 5279 // For each instruction in the loop. 5280 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5281 Type *T = it->getType(); 5282 5283 // Only examine Loads, Stores and PHINodes. 5284 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5285 continue; 5286 5287 // Examine PHI nodes that are reduction variables. 5288 if (PHINode *PN = dyn_cast<PHINode>(it)) 5289 if (!Legal->getReductionVars()->count(PN)) 5290 continue; 5291 5292 // Examine the stored values. 5293 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5294 T = ST->getValueOperand()->getType(); 5295 5296 // Ignore loaded pointer types and stored pointer types that are not 5297 // consecutive. However, we do want to take consecutive stores/loads of 5298 // pointer vectors into account. 5299 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5300 continue; 5301 5302 MaxWidth = std::max(MaxWidth, 5303 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5304 } 5305 } 5306 5307 return MaxWidth; 5308 } 5309 5310 unsigned 5311 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5312 unsigned UserUF, 5313 unsigned VF, 5314 unsigned LoopCost) { 5315 5316 // -- The unroll heuristics -- 5317 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5318 // There are many micro-architectural considerations that we can't predict 5319 // at this level. For example frontend pressure (on decode or fetch) due to 5320 // code size, or the number and capabilities of the execution ports. 5321 // 5322 // We use the following heuristics to select the unroll factor: 5323 // 1. If the code has reductions the we unroll in order to break the cross 5324 // iteration dependency. 5325 // 2. If the loop is really small then we unroll in order to reduce the loop 5326 // overhead. 5327 // 3. We don't unroll if we think that we will spill registers to memory due 5328 // to the increased register pressure. 5329 5330 // Use the user preference, unless 'auto' is selected. 5331 if (UserUF != 0) 5332 return UserUF; 5333 5334 // When we optimize for size we don't unroll. 5335 if (OptForSize) 5336 return 1; 5337 5338 // We used the distance for the unroll factor. 5339 if (Legal->getMaxSafeDepDistBytes() != -1U) 5340 return 1; 5341 5342 // Do not unroll loops with a relatively small trip count. 5343 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5344 TheLoop->getLoopLatch()); 5345 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5346 return 1; 5347 5348 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5349 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5350 " registers\n"); 5351 5352 if (VF == 1) { 5353 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5354 TargetNumRegisters = ForceTargetNumScalarRegs; 5355 } else { 5356 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5357 TargetNumRegisters = ForceTargetNumVectorRegs; 5358 } 5359 5360 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5361 // We divide by these constants so assume that we have at least one 5362 // instruction that uses at least one register. 5363 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5364 R.NumInstructions = std::max(R.NumInstructions, 1U); 5365 5366 // We calculate the unroll factor using the following formula. 5367 // Subtract the number of loop invariants from the number of available 5368 // registers. These registers are used by all of the unrolled instances. 5369 // Next, divide the remaining registers by the number of registers that is 5370 // required by the loop, in order to estimate how many parallel instances 5371 // fit without causing spills. All of this is rounded down if necessary to be 5372 // a power of two. We want power of two unroll factors to simplify any 5373 // addressing operations or alignment considerations. 5374 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5375 R.MaxLocalUsers); 5376 5377 // Don't count the induction variable as unrolled. 5378 if (EnableIndVarRegisterHeur) 5379 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5380 std::max(1U, (R.MaxLocalUsers - 1))); 5381 5382 // Clamp the unroll factor ranges to reasonable factors. 5383 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5384 5385 // Check if the user has overridden the unroll max. 5386 if (VF == 1) { 5387 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5388 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5389 } else { 5390 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5391 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5392 } 5393 5394 // If we did not calculate the cost for VF (because the user selected the VF) 5395 // then we calculate the cost of VF here. 5396 if (LoopCost == 0) 5397 LoopCost = expectedCost(VF); 5398 5399 // Clamp the calculated UF to be between the 1 and the max unroll factor 5400 // that the target allows. 5401 if (UF > MaxUnrollSize) 5402 UF = MaxUnrollSize; 5403 else if (UF < 1) 5404 UF = 1; 5405 5406 // Unroll if we vectorized this loop and there is a reduction that could 5407 // benefit from unrolling. 5408 if (VF > 1 && Legal->getReductionVars()->size()) { 5409 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5410 return UF; 5411 } 5412 5413 // Note that if we've already vectorized the loop we will have done the 5414 // runtime check and so unrolling won't require further checks. 5415 bool UnrollingRequiresRuntimePointerCheck = 5416 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5417 5418 // We want to unroll small loops in order to reduce the loop overhead and 5419 // potentially expose ILP opportunities. 5420 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5421 if (!UnrollingRequiresRuntimePointerCheck && 5422 LoopCost < SmallLoopCost) { 5423 // We assume that the cost overhead is 1 and we use the cost model 5424 // to estimate the cost of the loop and unroll until the cost of the 5425 // loop overhead is about 5% of the cost of the loop. 5426 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5427 5428 // Unroll until store/load ports (estimated by max unroll factor) are 5429 // saturated. 5430 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5431 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5432 5433 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5434 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5435 return std::max(StoresUF, LoadsUF); 5436 } 5437 5438 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5439 return SmallUF; 5440 } 5441 5442 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5443 return 1; 5444 } 5445 5446 LoopVectorizationCostModel::RegisterUsage 5447 LoopVectorizationCostModel::calculateRegisterUsage() { 5448 // This function calculates the register usage by measuring the highest number 5449 // of values that are alive at a single location. Obviously, this is a very 5450 // rough estimation. We scan the loop in a topological order in order and 5451 // assign a number to each instruction. We use RPO to ensure that defs are 5452 // met before their users. We assume that each instruction that has in-loop 5453 // users starts an interval. We record every time that an in-loop value is 5454 // used, so we have a list of the first and last occurrences of each 5455 // instruction. Next, we transpose this data structure into a multi map that 5456 // holds the list of intervals that *end* at a specific location. This multi 5457 // map allows us to perform a linear search. We scan the instructions linearly 5458 // and record each time that a new interval starts, by placing it in a set. 5459 // If we find this value in the multi-map then we remove it from the set. 5460 // The max register usage is the maximum size of the set. 5461 // We also search for instructions that are defined outside the loop, but are 5462 // used inside the loop. We need this number separately from the max-interval 5463 // usage number because when we unroll, loop-invariant values do not take 5464 // more register. 5465 LoopBlocksDFS DFS(TheLoop); 5466 DFS.perform(LI); 5467 5468 RegisterUsage R; 5469 R.NumInstructions = 0; 5470 5471 // Each 'key' in the map opens a new interval. The values 5472 // of the map are the index of the 'last seen' usage of the 5473 // instruction that is the key. 5474 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5475 // Maps instruction to its index. 5476 DenseMap<unsigned, Instruction*> IdxToInstr; 5477 // Marks the end of each interval. 5478 IntervalMap EndPoint; 5479 // Saves the list of instruction indices that are used in the loop. 5480 SmallSet<Instruction*, 8> Ends; 5481 // Saves the list of values that are used in the loop but are 5482 // defined outside the loop, such as arguments and constants. 5483 SmallPtrSet<Value*, 8> LoopInvariants; 5484 5485 unsigned Index = 0; 5486 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5487 be = DFS.endRPO(); bb != be; ++bb) { 5488 R.NumInstructions += (*bb)->size(); 5489 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5490 ++it) { 5491 Instruction *I = it; 5492 IdxToInstr[Index++] = I; 5493 5494 // Save the end location of each USE. 5495 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5496 Value *U = I->getOperand(i); 5497 Instruction *Instr = dyn_cast<Instruction>(U); 5498 5499 // Ignore non-instruction values such as arguments, constants, etc. 5500 if (!Instr) continue; 5501 5502 // If this instruction is outside the loop then record it and continue. 5503 if (!TheLoop->contains(Instr)) { 5504 LoopInvariants.insert(Instr); 5505 continue; 5506 } 5507 5508 // Overwrite previous end points. 5509 EndPoint[Instr] = Index; 5510 Ends.insert(Instr); 5511 } 5512 } 5513 } 5514 5515 // Saves the list of intervals that end with the index in 'key'. 5516 typedef SmallVector<Instruction*, 2> InstrList; 5517 DenseMap<unsigned, InstrList> TransposeEnds; 5518 5519 // Transpose the EndPoints to a list of values that end at each index. 5520 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5521 it != e; ++it) 5522 TransposeEnds[it->second].push_back(it->first); 5523 5524 SmallSet<Instruction*, 8> OpenIntervals; 5525 unsigned MaxUsage = 0; 5526 5527 5528 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5529 for (unsigned int i = 0; i < Index; ++i) { 5530 Instruction *I = IdxToInstr[i]; 5531 // Ignore instructions that are never used within the loop. 5532 if (!Ends.count(I)) continue; 5533 5534 // Remove all of the instructions that end at this location. 5535 InstrList &List = TransposeEnds[i]; 5536 for (unsigned int j=0, e = List.size(); j < e; ++j) 5537 OpenIntervals.erase(List[j]); 5538 5539 // Count the number of live interals. 5540 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5541 5542 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5543 OpenIntervals.size() << '\n'); 5544 5545 // Add the current instruction to the list of open intervals. 5546 OpenIntervals.insert(I); 5547 } 5548 5549 unsigned Invariant = LoopInvariants.size(); 5550 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5551 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5552 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5553 5554 R.LoopInvariantRegs = Invariant; 5555 R.MaxLocalUsers = MaxUsage; 5556 return R; 5557 } 5558 5559 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5560 unsigned Cost = 0; 5561 5562 // For each block. 5563 for (Loop::block_iterator bb = TheLoop->block_begin(), 5564 be = TheLoop->block_end(); bb != be; ++bb) { 5565 unsigned BlockCost = 0; 5566 BasicBlock *BB = *bb; 5567 5568 // For each instruction in the old loop. 5569 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5570 // Skip dbg intrinsics. 5571 if (isa<DbgInfoIntrinsic>(it)) 5572 continue; 5573 5574 unsigned C = getInstructionCost(it, VF); 5575 5576 // Check if we should override the cost. 5577 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5578 C = ForceTargetInstructionCost; 5579 5580 BlockCost += C; 5581 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5582 VF << " For instruction: " << *it << '\n'); 5583 } 5584 5585 // We assume that if-converted blocks have a 50% chance of being executed. 5586 // When the code is scalar then some of the blocks are avoided due to CF. 5587 // When the code is vectorized we execute all code paths. 5588 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5589 BlockCost /= 2; 5590 5591 Cost += BlockCost; 5592 } 5593 5594 return Cost; 5595 } 5596 5597 /// \brief Check whether the address computation for a non-consecutive memory 5598 /// access looks like an unlikely candidate for being merged into the indexing 5599 /// mode. 5600 /// 5601 /// We look for a GEP which has one index that is an induction variable and all 5602 /// other indices are loop invariant. If the stride of this access is also 5603 /// within a small bound we decide that this address computation can likely be 5604 /// merged into the addressing mode. 5605 /// In all other cases, we identify the address computation as complex. 5606 static bool isLikelyComplexAddressComputation(Value *Ptr, 5607 LoopVectorizationLegality *Legal, 5608 ScalarEvolution *SE, 5609 const Loop *TheLoop) { 5610 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5611 if (!Gep) 5612 return true; 5613 5614 // We are looking for a gep with all loop invariant indices except for one 5615 // which should be an induction variable. 5616 unsigned NumOperands = Gep->getNumOperands(); 5617 for (unsigned i = 1; i < NumOperands; ++i) { 5618 Value *Opd = Gep->getOperand(i); 5619 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5620 !Legal->isInductionVariable(Opd)) 5621 return true; 5622 } 5623 5624 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5625 // can likely be merged into the address computation. 5626 unsigned MaxMergeDistance = 64; 5627 5628 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5629 if (!AddRec) 5630 return true; 5631 5632 // Check the step is constant. 5633 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5634 // Calculate the pointer stride and check if it is consecutive. 5635 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5636 if (!C) 5637 return true; 5638 5639 const APInt &APStepVal = C->getValue()->getValue(); 5640 5641 // Huge step value - give up. 5642 if (APStepVal.getBitWidth() > 64) 5643 return true; 5644 5645 int64_t StepVal = APStepVal.getSExtValue(); 5646 5647 return StepVal > MaxMergeDistance; 5648 } 5649 5650 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5651 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5652 return true; 5653 return false; 5654 } 5655 5656 unsigned 5657 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5658 // If we know that this instruction will remain uniform, check the cost of 5659 // the scalar version. 5660 if (Legal->isUniformAfterVectorization(I)) 5661 VF = 1; 5662 5663 Type *RetTy = I->getType(); 5664 Type *VectorTy = ToVectorTy(RetTy, VF); 5665 5666 // TODO: We need to estimate the cost of intrinsic calls. 5667 switch (I->getOpcode()) { 5668 case Instruction::GetElementPtr: 5669 // We mark this instruction as zero-cost because the cost of GEPs in 5670 // vectorized code depends on whether the corresponding memory instruction 5671 // is scalarized or not. Therefore, we handle GEPs with the memory 5672 // instruction cost. 5673 return 0; 5674 case Instruction::Br: { 5675 return TTI.getCFInstrCost(I->getOpcode()); 5676 } 5677 case Instruction::PHI: 5678 //TODO: IF-converted IFs become selects. 5679 return 0; 5680 case Instruction::Add: 5681 case Instruction::FAdd: 5682 case Instruction::Sub: 5683 case Instruction::FSub: 5684 case Instruction::Mul: 5685 case Instruction::FMul: 5686 case Instruction::UDiv: 5687 case Instruction::SDiv: 5688 case Instruction::FDiv: 5689 case Instruction::URem: 5690 case Instruction::SRem: 5691 case Instruction::FRem: 5692 case Instruction::Shl: 5693 case Instruction::LShr: 5694 case Instruction::AShr: 5695 case Instruction::And: 5696 case Instruction::Or: 5697 case Instruction::Xor: { 5698 // Since we will replace the stride by 1 the multiplication should go away. 5699 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5700 return 0; 5701 // Certain instructions can be cheaper to vectorize if they have a constant 5702 // second vector operand. One example of this are shifts on x86. 5703 TargetTransformInfo::OperandValueKind Op1VK = 5704 TargetTransformInfo::OK_AnyValue; 5705 TargetTransformInfo::OperandValueKind Op2VK = 5706 TargetTransformInfo::OK_AnyValue; 5707 Value *Op2 = I->getOperand(1); 5708 5709 // Check for a splat of a constant or for a non uniform vector of constants. 5710 if (isa<ConstantInt>(Op2)) 5711 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5712 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5713 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5714 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5715 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5716 } 5717 5718 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5719 } 5720 case Instruction::Select: { 5721 SelectInst *SI = cast<SelectInst>(I); 5722 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5723 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5724 Type *CondTy = SI->getCondition()->getType(); 5725 if (!ScalarCond) 5726 CondTy = VectorType::get(CondTy, VF); 5727 5728 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5729 } 5730 case Instruction::ICmp: 5731 case Instruction::FCmp: { 5732 Type *ValTy = I->getOperand(0)->getType(); 5733 VectorTy = ToVectorTy(ValTy, VF); 5734 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5735 } 5736 case Instruction::Store: 5737 case Instruction::Load: { 5738 StoreInst *SI = dyn_cast<StoreInst>(I); 5739 LoadInst *LI = dyn_cast<LoadInst>(I); 5740 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5741 LI->getType()); 5742 VectorTy = ToVectorTy(ValTy, VF); 5743 5744 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5745 unsigned AS = SI ? SI->getPointerAddressSpace() : 5746 LI->getPointerAddressSpace(); 5747 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5748 // We add the cost of address computation here instead of with the gep 5749 // instruction because only here we know whether the operation is 5750 // scalarized. 5751 if (VF == 1) 5752 return TTI.getAddressComputationCost(VectorTy) + 5753 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5754 5755 // Scalarized loads/stores. 5756 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5757 bool Reverse = ConsecutiveStride < 0; 5758 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5759 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5760 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5761 bool IsComplexComputation = 5762 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5763 unsigned Cost = 0; 5764 // The cost of extracting from the value vector and pointer vector. 5765 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5766 for (unsigned i = 0; i < VF; ++i) { 5767 // The cost of extracting the pointer operand. 5768 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5769 // In case of STORE, the cost of ExtractElement from the vector. 5770 // In case of LOAD, the cost of InsertElement into the returned 5771 // vector. 5772 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5773 Instruction::InsertElement, 5774 VectorTy, i); 5775 } 5776 5777 // The cost of the scalar loads/stores. 5778 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5779 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5780 Alignment, AS); 5781 return Cost; 5782 } 5783 5784 // Wide load/stores. 5785 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5786 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5787 5788 if (Reverse) 5789 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5790 VectorTy, 0); 5791 return Cost; 5792 } 5793 case Instruction::ZExt: 5794 case Instruction::SExt: 5795 case Instruction::FPToUI: 5796 case Instruction::FPToSI: 5797 case Instruction::FPExt: 5798 case Instruction::PtrToInt: 5799 case Instruction::IntToPtr: 5800 case Instruction::SIToFP: 5801 case Instruction::UIToFP: 5802 case Instruction::Trunc: 5803 case Instruction::FPTrunc: 5804 case Instruction::BitCast: { 5805 // We optimize the truncation of induction variable. 5806 // The cost of these is the same as the scalar operation. 5807 if (I->getOpcode() == Instruction::Trunc && 5808 Legal->isInductionVariable(I->getOperand(0))) 5809 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5810 I->getOperand(0)->getType()); 5811 5812 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5813 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5814 } 5815 case Instruction::Call: { 5816 CallInst *CI = cast<CallInst>(I); 5817 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5818 assert(ID && "Not an intrinsic call!"); 5819 Type *RetTy = ToVectorTy(CI->getType(), VF); 5820 SmallVector<Type*, 4> Tys; 5821 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5822 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5823 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5824 } 5825 default: { 5826 // We are scalarizing the instruction. Return the cost of the scalar 5827 // instruction, plus the cost of insert and extract into vector 5828 // elements, times the vector width. 5829 unsigned Cost = 0; 5830 5831 if (!RetTy->isVoidTy() && VF != 1) { 5832 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5833 VectorTy); 5834 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5835 VectorTy); 5836 5837 // The cost of inserting the results plus extracting each one of the 5838 // operands. 5839 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5840 } 5841 5842 // The cost of executing VF copies of the scalar instruction. This opcode 5843 // is unknown. Assume that it is the same as 'mul'. 5844 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5845 return Cost; 5846 } 5847 }// end of switch. 5848 } 5849 5850 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5851 if (Scalar->isVoidTy() || VF == 1) 5852 return Scalar; 5853 return VectorType::get(Scalar, VF); 5854 } 5855 5856 char LoopVectorize::ID = 0; 5857 static const char lv_name[] = "Loop Vectorization"; 5858 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5859 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5860 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5861 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5862 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5863 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5864 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5865 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5866 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5867 5868 namespace llvm { 5869 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5870 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5871 } 5872 } 5873 5874 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5875 // Check for a store. 5876 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5877 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5878 5879 // Check for a load. 5880 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5881 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5882 5883 return false; 5884 } 5885 5886 5887 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5888 bool IfPredicateStore) { 5889 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5890 // Holds vector parameters or scalars, in case of uniform vals. 5891 SmallVector<VectorParts, 4> Params; 5892 5893 setDebugLocFromInst(Builder, Instr); 5894 5895 // Find all of the vectorized parameters. 5896 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5897 Value *SrcOp = Instr->getOperand(op); 5898 5899 // If we are accessing the old induction variable, use the new one. 5900 if (SrcOp == OldInduction) { 5901 Params.push_back(getVectorValue(SrcOp)); 5902 continue; 5903 } 5904 5905 // Try using previously calculated values. 5906 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5907 5908 // If the src is an instruction that appeared earlier in the basic block 5909 // then it should already be vectorized. 5910 if (SrcInst && OrigLoop->contains(SrcInst)) { 5911 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5912 // The parameter is a vector value from earlier. 5913 Params.push_back(WidenMap.get(SrcInst)); 5914 } else { 5915 // The parameter is a scalar from outside the loop. Maybe even a constant. 5916 VectorParts Scalars; 5917 Scalars.append(UF, SrcOp); 5918 Params.push_back(Scalars); 5919 } 5920 } 5921 5922 assert(Params.size() == Instr->getNumOperands() && 5923 "Invalid number of operands"); 5924 5925 // Does this instruction return a value ? 5926 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5927 5928 Value *UndefVec = IsVoidRetTy ? nullptr : 5929 UndefValue::get(Instr->getType()); 5930 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5931 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5932 5933 Instruction *InsertPt = Builder.GetInsertPoint(); 5934 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5935 BasicBlock *CondBlock = nullptr; 5936 5937 VectorParts Cond; 5938 Loop *VectorLp = nullptr; 5939 if (IfPredicateStore) { 5940 assert(Instr->getParent()->getSinglePredecessor() && 5941 "Only support single predecessor blocks"); 5942 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5943 Instr->getParent()); 5944 VectorLp = LI->getLoopFor(IfBlock); 5945 assert(VectorLp && "Must have a loop for this block"); 5946 } 5947 5948 // For each vector unroll 'part': 5949 for (unsigned Part = 0; Part < UF; ++Part) { 5950 // For each scalar that we create: 5951 5952 // Start an "if (pred) a[i] = ..." block. 5953 Value *Cmp = nullptr; 5954 if (IfPredicateStore) { 5955 if (Cond[Part]->getType()->isVectorTy()) 5956 Cond[Part] = 5957 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5958 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5959 ConstantInt::get(Cond[Part]->getType(), 1)); 5960 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5961 LoopVectorBody.push_back(CondBlock); 5962 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5963 // Update Builder with newly created basic block. 5964 Builder.SetInsertPoint(InsertPt); 5965 } 5966 5967 Instruction *Cloned = Instr->clone(); 5968 if (!IsVoidRetTy) 5969 Cloned->setName(Instr->getName() + ".cloned"); 5970 // Replace the operands of the cloned instructions with extracted scalars. 5971 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5972 Value *Op = Params[op][Part]; 5973 Cloned->setOperand(op, Op); 5974 } 5975 5976 // Place the cloned scalar in the new loop. 5977 Builder.Insert(Cloned); 5978 5979 // If the original scalar returns a value we need to place it in a vector 5980 // so that future users will be able to use it. 5981 if (!IsVoidRetTy) 5982 VecResults[Part] = Cloned; 5983 5984 // End if-block. 5985 if (IfPredicateStore) { 5986 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5987 LoopVectorBody.push_back(NewIfBlock); 5988 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 5989 Builder.SetInsertPoint(InsertPt); 5990 Instruction *OldBr = IfBlock->getTerminator(); 5991 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5992 OldBr->eraseFromParent(); 5993 IfBlock = NewIfBlock; 5994 } 5995 } 5996 } 5997 5998 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5999 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6000 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6001 6002 return scalarizeInstruction(Instr, IfPredicateStore); 6003 } 6004 6005 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6006 return Vec; 6007 } 6008 6009 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6010 return V; 6011 } 6012 6013 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6014 bool Negate) { 6015 // When unrolling and the VF is 1, we only need to add a simple scalar. 6016 Type *ITy = Val->getType(); 6017 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6018 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6019 return Builder.CreateAdd(Val, C, "induction"); 6020 } 6021