1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CriticalAntiDepBreaker.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetMachine.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "post-RA-sched" 29 30 CriticalAntiDepBreaker:: 31 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) : 32 AntiDepBreaker(), MF(MFi), 33 MRI(MF.getRegInfo()), 34 TII(MF.getTarget().getInstrInfo()), 35 TRI(MF.getTarget().getRegisterInfo()), 36 RegClassInfo(RCI), 37 Classes(TRI->getNumRegs(), nullptr), 38 KillIndices(TRI->getNumRegs(), 0), 39 DefIndices(TRI->getNumRegs(), 0), 40 KeepRegs(TRI->getNumRegs(), false) {} 41 42 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 43 } 44 45 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 46 const unsigned BBSize = BB->size(); 47 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 48 // Clear out the register class data. 49 Classes[i] = nullptr; 50 51 // Initialize the indices to indicate that no registers are live. 52 KillIndices[i] = ~0u; 53 DefIndices[i] = BBSize; 54 } 55 56 // Clear "do not change" set. 57 KeepRegs.reset(); 58 59 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn()); 60 61 // Examine the live-in regs of all successors. 62 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 63 SE = BB->succ_end(); SI != SE; ++SI) 64 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 65 E = (*SI)->livein_end(); I != E; ++I) { 66 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 67 unsigned Reg = *AI; 68 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 69 KillIndices[Reg] = BBSize; 70 DefIndices[Reg] = ~0u; 71 } 72 } 73 74 // Mark live-out callee-saved registers. In a return block this is 75 // all callee-saved registers. In non-return this is any 76 // callee-saved register that is not saved in the prolog. 77 const MachineFrameInfo *MFI = MF.getFrameInfo(); 78 BitVector Pristine = MFI->getPristineRegs(BB); 79 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 80 if (!IsReturnBlock && !Pristine.test(*I)) continue; 81 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 82 unsigned Reg = *AI; 83 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 84 KillIndices[Reg] = BBSize; 85 DefIndices[Reg] = ~0u; 86 } 87 } 88 } 89 90 void CriticalAntiDepBreaker::FinishBlock() { 91 RegRefs.clear(); 92 KeepRegs.reset(); 93 } 94 95 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 96 unsigned InsertPosIndex) { 97 // Kill instructions can define registers but are really nops, and there might 98 // be a real definition earlier that needs to be paired with uses dominated by 99 // this kill. 100 101 // FIXME: It may be possible to remove the isKill() restriction once PR18663 102 // has been properly fixed. There can be value in processing kills as seen in 103 // the AggressiveAntiDepBreaker class. 104 if (MI->isDebugValue() || MI->isKill()) 105 return; 106 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 107 108 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 109 if (KillIndices[Reg] != ~0u) { 110 // If Reg is currently live, then mark that it can't be renamed as 111 // we don't know the extent of its live-range anymore (now that it 112 // has been scheduled). 113 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 114 KillIndices[Reg] = Count; 115 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 116 // Any register which was defined within the previous scheduling region 117 // may have been rescheduled and its lifetime may overlap with registers 118 // in ways not reflected in our current liveness state. For each such 119 // register, adjust the liveness state to be conservatively correct. 120 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 121 122 // Move the def index to the end of the previous region, to reflect 123 // that the def could theoretically have been scheduled at the end. 124 DefIndices[Reg] = InsertPosIndex; 125 } 126 } 127 128 PrescanInstruction(MI); 129 ScanInstruction(MI, Count); 130 } 131 132 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 133 /// critical path. 134 static const SDep *CriticalPathStep(const SUnit *SU) { 135 const SDep *Next = nullptr; 136 unsigned NextDepth = 0; 137 // Find the predecessor edge with the greatest depth. 138 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 139 P != PE; ++P) { 140 const SUnit *PredSU = P->getSUnit(); 141 unsigned PredLatency = P->getLatency(); 142 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 143 // In the case of a latency tie, prefer an anti-dependency edge over 144 // other types of edges. 145 if (NextDepth < PredTotalLatency || 146 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 147 NextDepth = PredTotalLatency; 148 Next = &*P; 149 } 150 } 151 return Next; 152 } 153 154 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 155 // It's not safe to change register allocation for source operands of 156 // instructions that have special allocation requirements. Also assume all 157 // registers used in a call must not be changed (ABI). 158 // FIXME: The issue with predicated instruction is more complex. We are being 159 // conservative here because the kill markers cannot be trusted after 160 // if-conversion: 161 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 162 // ... 163 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 164 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 165 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 166 // 167 // The first R6 kill is not really a kill since it's killed by a predicated 168 // instruction which may not be executed. The second R6 def may or may not 169 // re-define R6 so it's not safe to change it since the last R6 use cannot be 170 // changed. 171 bool Special = MI->isCall() || 172 MI->hasExtraSrcRegAllocReq() || 173 TII->isPredicated(MI); 174 175 // Scan the register operands for this instruction and update 176 // Classes and RegRefs. 177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 178 MachineOperand &MO = MI->getOperand(i); 179 if (!MO.isReg()) continue; 180 unsigned Reg = MO.getReg(); 181 if (Reg == 0) continue; 182 const TargetRegisterClass *NewRC = nullptr; 183 184 if (i < MI->getDesc().getNumOperands()) 185 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 186 187 // For now, only allow the register to be changed if its register 188 // class is consistent across all uses. 189 if (!Classes[Reg] && NewRC) 190 Classes[Reg] = NewRC; 191 else if (!NewRC || Classes[Reg] != NewRC) 192 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 193 194 // Now check for aliases. 195 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 196 // If an alias of the reg is used during the live range, give up. 197 // Note that this allows us to skip checking if AntiDepReg 198 // overlaps with any of the aliases, among other things. 199 unsigned AliasReg = *AI; 200 if (Classes[AliasReg]) { 201 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 202 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 203 } 204 } 205 206 // If we're still willing to consider this register, note the reference. 207 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 208 RegRefs.insert(std::make_pair(Reg, &MO)); 209 210 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 211 // it or any of its sub or super regs. We need to use KeepRegs to mark the 212 // reg because not all uses of the same reg within an instruction are 213 // necessarily tagged as tied. 214 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 215 // def register but not the second (see PR20020 for details). 216 // FIXME: can this check be relaxed to account for undef uses 217 // of a register? In the above 'xor' example, the uses of %eax are undef, so 218 // earlier instructions could still replace %eax even though the 'xor' 219 // itself can't be changed. 220 if (MI->isRegTiedToUseOperand(i) && 221 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 222 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 223 SubRegs.isValid(); ++SubRegs) { 224 KeepRegs.set(*SubRegs); 225 } 226 for (MCSuperRegIterator SuperRegs(Reg, TRI); 227 SuperRegs.isValid(); ++SuperRegs) { 228 KeepRegs.set(*SuperRegs); 229 } 230 } 231 232 if (MO.isUse() && Special) { 233 if (!KeepRegs.test(Reg)) { 234 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 235 SubRegs.isValid(); ++SubRegs) 236 KeepRegs.set(*SubRegs); 237 } 238 } 239 } 240 } 241 242 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 243 unsigned Count) { 244 // Update liveness. 245 // Proceeding upwards, registers that are defed but not used in this 246 // instruction are now dead. 247 assert(!MI->isKill() && "Attempting to scan a kill instruction"); 248 249 if (!TII->isPredicated(MI)) { 250 // Predicated defs are modeled as read + write, i.e. similar to two 251 // address updates. 252 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 253 MachineOperand &MO = MI->getOperand(i); 254 255 if (MO.isRegMask()) 256 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 257 if (MO.clobbersPhysReg(i)) { 258 DefIndices[i] = Count; 259 KillIndices[i] = ~0u; 260 KeepRegs.reset(i); 261 Classes[i] = nullptr; 262 RegRefs.erase(i); 263 } 264 265 if (!MO.isReg()) continue; 266 unsigned Reg = MO.getReg(); 267 if (Reg == 0) continue; 268 if (!MO.isDef()) continue; 269 270 // If we've already marked this reg as unchangeable, carry on. 271 if (KeepRegs.test(Reg)) continue; 272 273 // Ignore two-addr defs. 274 if (MI->isRegTiedToUseOperand(i)) continue; 275 276 // FIXME: we should use a SubRegIterator that includes self (as above), so 277 // we don't have to repeat all this code for the reg itself. 278 DefIndices[Reg] = Count; 279 KillIndices[Reg] = ~0u; 280 assert(((KillIndices[Reg] == ~0u) != 281 (DefIndices[Reg] == ~0u)) && 282 "Kill and Def maps aren't consistent for Reg!"); 283 KeepRegs.reset(Reg); 284 Classes[Reg] = nullptr; 285 RegRefs.erase(Reg); 286 // Repeat, for all subregs. 287 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 288 unsigned SubregReg = *SubRegs; 289 DefIndices[SubregReg] = Count; 290 KillIndices[SubregReg] = ~0u; 291 KeepRegs.reset(SubregReg); 292 Classes[SubregReg] = nullptr; 293 RegRefs.erase(SubregReg); 294 } 295 // Conservatively mark super-registers as unusable. 296 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 297 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 298 } 299 } 300 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 301 MachineOperand &MO = MI->getOperand(i); 302 if (!MO.isReg()) continue; 303 unsigned Reg = MO.getReg(); 304 if (Reg == 0) continue; 305 if (!MO.isUse()) continue; 306 307 const TargetRegisterClass *NewRC = nullptr; 308 if (i < MI->getDesc().getNumOperands()) 309 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 310 311 // For now, only allow the register to be changed if its register 312 // class is consistent across all uses. 313 if (!Classes[Reg] && NewRC) 314 Classes[Reg] = NewRC; 315 else if (!NewRC || Classes[Reg] != NewRC) 316 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 317 318 RegRefs.insert(std::make_pair(Reg, &MO)); 319 320 // FIXME: we should use an MCRegAliasIterator that includes self so we don't 321 // have to repeat all this code for the reg itself. 322 323 // It wasn't previously live but now it is, this is a kill. 324 if (KillIndices[Reg] == ~0u) { 325 KillIndices[Reg] = Count; 326 DefIndices[Reg] = ~0u; 327 assert(((KillIndices[Reg] == ~0u) != 328 (DefIndices[Reg] == ~0u)) && 329 "Kill and Def maps aren't consistent for Reg!"); 330 } 331 // Repeat, for all aliases. 332 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 333 unsigned AliasReg = *AI; 334 if (KillIndices[AliasReg] == ~0u) { 335 KillIndices[AliasReg] = Count; 336 DefIndices[AliasReg] = ~0u; 337 } 338 } 339 } 340 } 341 342 // Check all machine operands that reference the antidependent register and must 343 // be replaced by NewReg. Return true if any of their parent instructions may 344 // clobber the new register. 345 // 346 // Note: AntiDepReg may be referenced by a two-address instruction such that 347 // it's use operand is tied to a def operand. We guard against the case in which 348 // the two-address instruction also defines NewReg, as may happen with 349 // pre/postincrement loads. In this case, both the use and def operands are in 350 // RegRefs because the def is inserted by PrescanInstruction and not erased 351 // during ScanInstruction. So checking for an instruction with definitions of 352 // both NewReg and AntiDepReg covers it. 353 bool 354 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 355 RegRefIter RegRefEnd, 356 unsigned NewReg) 357 { 358 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 359 MachineOperand *RefOper = I->second; 360 361 // Don't allow the instruction defining AntiDepReg to earlyclobber its 362 // operands, in case they may be assigned to NewReg. In this case antidep 363 // breaking must fail, but it's too rare to bother optimizing. 364 if (RefOper->isDef() && RefOper->isEarlyClobber()) 365 return true; 366 367 // Handle cases in which this instruction defines NewReg. 368 MachineInstr *MI = RefOper->getParent(); 369 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 370 const MachineOperand &CheckOper = MI->getOperand(i); 371 372 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 373 return true; 374 375 if (!CheckOper.isReg() || !CheckOper.isDef() || 376 CheckOper.getReg() != NewReg) 377 continue; 378 379 // Don't allow the instruction to define NewReg and AntiDepReg. 380 // When AntiDepReg is renamed it will be an illegal op. 381 if (RefOper->isDef()) 382 return true; 383 384 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 385 // NewReg. 386 if (CheckOper.isEarlyClobber()) 387 return true; 388 389 // Don't allow inline asm to define NewReg at all. Who knows what it's 390 // doing with it. 391 if (MI->isInlineAsm()) 392 return true; 393 } 394 } 395 return false; 396 } 397 398 unsigned CriticalAntiDepBreaker:: 399 findSuitableFreeRegister(RegRefIter RegRefBegin, 400 RegRefIter RegRefEnd, 401 unsigned AntiDepReg, 402 unsigned LastNewReg, 403 const TargetRegisterClass *RC, 404 SmallVectorImpl<unsigned> &Forbid) 405 { 406 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 407 for (unsigned i = 0; i != Order.size(); ++i) { 408 unsigned NewReg = Order[i]; 409 // Don't replace a register with itself. 410 if (NewReg == AntiDepReg) continue; 411 // Don't replace a register with one that was recently used to repair 412 // an anti-dependence with this AntiDepReg, because that would 413 // re-introduce that anti-dependence. 414 if (NewReg == LastNewReg) continue; 415 // If any instructions that define AntiDepReg also define the NewReg, it's 416 // not suitable. For example, Instruction with multiple definitions can 417 // result in this condition. 418 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 419 // If NewReg is dead and NewReg's most recent def is not before 420 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 421 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 422 && "Kill and Def maps aren't consistent for AntiDepReg!"); 423 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 424 && "Kill and Def maps aren't consistent for NewReg!"); 425 if (KillIndices[NewReg] != ~0u || 426 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 427 KillIndices[AntiDepReg] > DefIndices[NewReg]) 428 continue; 429 // If NewReg overlaps any of the forbidden registers, we can't use it. 430 bool Forbidden = false; 431 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 432 ite = Forbid.end(); it != ite; ++it) 433 if (TRI->regsOverlap(NewReg, *it)) { 434 Forbidden = true; 435 break; 436 } 437 if (Forbidden) continue; 438 return NewReg; 439 } 440 441 // No registers are free and available! 442 return 0; 443 } 444 445 unsigned CriticalAntiDepBreaker:: 446 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 447 MachineBasicBlock::iterator Begin, 448 MachineBasicBlock::iterator End, 449 unsigned InsertPosIndex, 450 DbgValueVector &DbgValues) { 451 // The code below assumes that there is at least one instruction, 452 // so just duck out immediately if the block is empty. 453 if (SUnits.empty()) return 0; 454 455 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 456 // This is used for updating debug information. 457 // 458 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 459 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 460 461 // Find the node at the bottom of the critical path. 462 const SUnit *Max = nullptr; 463 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 464 const SUnit *SU = &SUnits[i]; 465 MISUnitMap[SU->getInstr()] = SU; 466 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 467 Max = SU; 468 } 469 470 #ifndef NDEBUG 471 { 472 DEBUG(dbgs() << "Critical path has total latency " 473 << (Max->getDepth() + Max->Latency) << "\n"); 474 DEBUG(dbgs() << "Available regs:"); 475 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 476 if (KillIndices[Reg] == ~0u) 477 DEBUG(dbgs() << " " << TRI->getName(Reg)); 478 } 479 DEBUG(dbgs() << '\n'); 480 } 481 #endif 482 483 // Track progress along the critical path through the SUnit graph as we walk 484 // the instructions. 485 const SUnit *CriticalPathSU = Max; 486 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 487 488 // Consider this pattern: 489 // A = ... 490 // ... = A 491 // A = ... 492 // ... = A 493 // A = ... 494 // ... = A 495 // A = ... 496 // ... = A 497 // There are three anti-dependencies here, and without special care, 498 // we'd break all of them using the same register: 499 // A = ... 500 // ... = A 501 // B = ... 502 // ... = B 503 // B = ... 504 // ... = B 505 // B = ... 506 // ... = B 507 // because at each anti-dependence, B is the first register that 508 // isn't A which is free. This re-introduces anti-dependencies 509 // at all but one of the original anti-dependencies that we were 510 // trying to break. To avoid this, keep track of the most recent 511 // register that each register was replaced with, avoid 512 // using it to repair an anti-dependence on the same register. 513 // This lets us produce this: 514 // A = ... 515 // ... = A 516 // B = ... 517 // ... = B 518 // C = ... 519 // ... = C 520 // B = ... 521 // ... = B 522 // This still has an anti-dependence on B, but at least it isn't on the 523 // original critical path. 524 // 525 // TODO: If we tracked more than one register here, we could potentially 526 // fix that remaining critical edge too. This is a little more involved, 527 // because unlike the most recent register, less recent registers should 528 // still be considered, though only if no other registers are available. 529 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 530 531 // Attempt to break anti-dependence edges on the critical path. Walk the 532 // instructions from the bottom up, tracking information about liveness 533 // as we go to help determine which registers are available. 534 unsigned Broken = 0; 535 unsigned Count = InsertPosIndex - 1; 536 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 537 MachineInstr *MI = --I; 538 // Kill instructions can define registers but are really nops, and there 539 // might be a real definition earlier that needs to be paired with uses 540 // dominated by this kill. 541 542 // FIXME: It may be possible to remove the isKill() restriction once PR18663 543 // has been properly fixed. There can be value in processing kills as seen 544 // in the AggressiveAntiDepBreaker class. 545 if (MI->isDebugValue() || MI->isKill()) 546 continue; 547 548 // Check if this instruction has a dependence on the critical path that 549 // is an anti-dependence that we may be able to break. If it is, set 550 // AntiDepReg to the non-zero register associated with the anti-dependence. 551 // 552 // We limit our attention to the critical path as a heuristic to avoid 553 // breaking anti-dependence edges that aren't going to significantly 554 // impact the overall schedule. There are a limited number of registers 555 // and we want to save them for the important edges. 556 // 557 // TODO: Instructions with multiple defs could have multiple 558 // anti-dependencies. The current code here only knows how to break one 559 // edge per instruction. Note that we'd have to be able to break all of 560 // the anti-dependencies in an instruction in order to be effective. 561 unsigned AntiDepReg = 0; 562 if (MI == CriticalPathMI) { 563 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 564 const SUnit *NextSU = Edge->getSUnit(); 565 566 // Only consider anti-dependence edges. 567 if (Edge->getKind() == SDep::Anti) { 568 AntiDepReg = Edge->getReg(); 569 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 570 if (!MRI.isAllocatable(AntiDepReg)) 571 // Don't break anti-dependencies on non-allocatable registers. 572 AntiDepReg = 0; 573 else if (KeepRegs.test(AntiDepReg)) 574 // Don't break anti-dependencies if a use down below requires 575 // this exact register. 576 AntiDepReg = 0; 577 else { 578 // If the SUnit has other dependencies on the SUnit that it 579 // anti-depends on, don't bother breaking the anti-dependency 580 // since those edges would prevent such units from being 581 // scheduled past each other regardless. 582 // 583 // Also, if there are dependencies on other SUnits with the 584 // same register as the anti-dependency, don't attempt to 585 // break it. 586 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 587 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 588 if (P->getSUnit() == NextSU ? 589 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 590 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 591 AntiDepReg = 0; 592 break; 593 } 594 } 595 } 596 CriticalPathSU = NextSU; 597 CriticalPathMI = CriticalPathSU->getInstr(); 598 } else { 599 // We've reached the end of the critical path. 600 CriticalPathSU = nullptr; 601 CriticalPathMI = nullptr; 602 } 603 } 604 605 PrescanInstruction(MI); 606 607 SmallVector<unsigned, 2> ForbidRegs; 608 609 // If MI's defs have a special allocation requirement, don't allow 610 // any def registers to be changed. Also assume all registers 611 // defined in a call must not be changed (ABI). 612 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 613 // If this instruction's defs have special allocation requirement, don't 614 // break this anti-dependency. 615 AntiDepReg = 0; 616 else if (AntiDepReg) { 617 // If this instruction has a use of AntiDepReg, breaking it 618 // is invalid. If the instruction defines other registers, 619 // save a list of them so that we don't pick a new register 620 // that overlaps any of them. 621 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 622 MachineOperand &MO = MI->getOperand(i); 623 if (!MO.isReg()) continue; 624 unsigned Reg = MO.getReg(); 625 if (Reg == 0) continue; 626 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 627 AntiDepReg = 0; 628 break; 629 } 630 if (MO.isDef() && Reg != AntiDepReg) 631 ForbidRegs.push_back(Reg); 632 } 633 } 634 635 // Determine AntiDepReg's register class, if it is live and is 636 // consistently used within a single class. 637 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 638 : nullptr; 639 assert((AntiDepReg == 0 || RC != nullptr) && 640 "Register should be live if it's causing an anti-dependence!"); 641 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 642 AntiDepReg = 0; 643 644 // Look for a suitable register to use to break the anti-dependence. 645 // 646 // TODO: Instead of picking the first free register, consider which might 647 // be the best. 648 if (AntiDepReg != 0) { 649 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 650 std::multimap<unsigned, MachineOperand *>::iterator> 651 Range = RegRefs.equal_range(AntiDepReg); 652 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 653 AntiDepReg, 654 LastNewReg[AntiDepReg], 655 RC, ForbidRegs)) { 656 DEBUG(dbgs() << "Breaking anti-dependence edge on " 657 << TRI->getName(AntiDepReg) 658 << " with " << RegRefs.count(AntiDepReg) << " references" 659 << " using " << TRI->getName(NewReg) << "!\n"); 660 661 // Update the references to the old register to refer to the new 662 // register. 663 for (std::multimap<unsigned, MachineOperand *>::iterator 664 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 665 Q->second->setReg(NewReg); 666 // If the SU for the instruction being updated has debug information 667 // related to the anti-dependency register, make sure to update that 668 // as well. 669 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 670 if (!SU) continue; 671 for (DbgValueVector::iterator DVI = DbgValues.begin(), 672 DVE = DbgValues.end(); DVI != DVE; ++DVI) 673 if (DVI->second == Q->second->getParent()) 674 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 675 } 676 677 // We just went back in time and modified history; the 678 // liveness information for the anti-dependence reg is now 679 // inconsistent. Set the state as if it were dead. 680 Classes[NewReg] = Classes[AntiDepReg]; 681 DefIndices[NewReg] = DefIndices[AntiDepReg]; 682 KillIndices[NewReg] = KillIndices[AntiDepReg]; 683 assert(((KillIndices[NewReg] == ~0u) != 684 (DefIndices[NewReg] == ~0u)) && 685 "Kill and Def maps aren't consistent for NewReg!"); 686 687 Classes[AntiDepReg] = nullptr; 688 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 689 KillIndices[AntiDepReg] = ~0u; 690 assert(((KillIndices[AntiDepReg] == ~0u) != 691 (DefIndices[AntiDepReg] == ~0u)) && 692 "Kill and Def maps aren't consistent for AntiDepReg!"); 693 694 RegRefs.erase(AntiDepReg); 695 LastNewReg[AntiDepReg] = NewReg; 696 ++Broken; 697 } 698 } 699 700 ScanInstruction(MI, Count); 701 } 702 703 return Broken; 704 } 705