Home | History | Annotate | Download | only in Reader
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Bitcode/ReaderWriter.h"
     11 #include "BitcodeReader.h"
     12 #include "llvm/ADT/SmallString.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/Bitcode/LLVMBitCodes.h"
     15 #include "llvm/IR/AutoUpgrade.h"
     16 #include "llvm/IR/Constants.h"
     17 #include "llvm/IR/DerivedTypes.h"
     18 #include "llvm/IR/InlineAsm.h"
     19 #include "llvm/IR/IntrinsicInst.h"
     20 #include "llvm/IR/LLVMContext.h"
     21 #include "llvm/IR/Module.h"
     22 #include "llvm/IR/OperandTraits.h"
     23 #include "llvm/IR/Operator.h"
     24 #include "llvm/Support/DataStream.h"
     25 #include "llvm/Support/MathExtras.h"
     26 #include "llvm/Support/MemoryBuffer.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 using namespace llvm;
     29 
     30 enum {
     31   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
     32 };
     33 
     34 void BitcodeReader::materializeForwardReferencedFunctions() {
     35   while (!BlockAddrFwdRefs.empty()) {
     36     Function *F = BlockAddrFwdRefs.begin()->first;
     37     F->Materialize();
     38   }
     39 }
     40 
     41 void BitcodeReader::FreeState() {
     42   Buffer = nullptr;
     43   std::vector<Type*>().swap(TypeList);
     44   ValueList.clear();
     45   MDValueList.clear();
     46   std::vector<Comdat *>().swap(ComdatList);
     47 
     48   std::vector<AttributeSet>().swap(MAttributes);
     49   std::vector<BasicBlock*>().swap(FunctionBBs);
     50   std::vector<Function*>().swap(FunctionsWithBodies);
     51   DeferredFunctionInfo.clear();
     52   MDKindMap.clear();
     53 
     54   assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
     55 }
     56 
     57 //===----------------------------------------------------------------------===//
     58 //  Helper functions to implement forward reference resolution, etc.
     59 //===----------------------------------------------------------------------===//
     60 
     61 /// ConvertToString - Convert a string from a record into an std::string, return
     62 /// true on failure.
     63 template<typename StrTy>
     64 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
     65                             StrTy &Result) {
     66   if (Idx > Record.size())
     67     return true;
     68 
     69   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
     70     Result += (char)Record[i];
     71   return false;
     72 }
     73 
     74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
     75   switch (Val) {
     76   default: // Map unknown/new linkages to external
     77   case 0:  return GlobalValue::ExternalLinkage;
     78   case 1:  return GlobalValue::WeakAnyLinkage;
     79   case 2:  return GlobalValue::AppendingLinkage;
     80   case 3:  return GlobalValue::InternalLinkage;
     81   case 4:  return GlobalValue::LinkOnceAnyLinkage;
     82   case 5:  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
     83   case 6:  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
     84   case 7:  return GlobalValue::ExternalWeakLinkage;
     85   case 8:  return GlobalValue::CommonLinkage;
     86   case 9:  return GlobalValue::PrivateLinkage;
     87   case 10: return GlobalValue::WeakODRLinkage;
     88   case 11: return GlobalValue::LinkOnceODRLinkage;
     89   case 12: return GlobalValue::AvailableExternallyLinkage;
     90   case 13:
     91     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
     92   case 14:
     93     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
     94   }
     95 }
     96 
     97 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
     98   switch (Val) {
     99   default: // Map unknown visibilities to default.
    100   case 0: return GlobalValue::DefaultVisibility;
    101   case 1: return GlobalValue::HiddenVisibility;
    102   case 2: return GlobalValue::ProtectedVisibility;
    103   }
    104 }
    105 
    106 static GlobalValue::DLLStorageClassTypes
    107 GetDecodedDLLStorageClass(unsigned Val) {
    108   switch (Val) {
    109   default: // Map unknown values to default.
    110   case 0: return GlobalValue::DefaultStorageClass;
    111   case 1: return GlobalValue::DLLImportStorageClass;
    112   case 2: return GlobalValue::DLLExportStorageClass;
    113   }
    114 }
    115 
    116 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
    117   switch (Val) {
    118     case 0: return GlobalVariable::NotThreadLocal;
    119     default: // Map unknown non-zero value to general dynamic.
    120     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    121     case 2: return GlobalVariable::LocalDynamicTLSModel;
    122     case 3: return GlobalVariable::InitialExecTLSModel;
    123     case 4: return GlobalVariable::LocalExecTLSModel;
    124   }
    125 }
    126 
    127 static int GetDecodedCastOpcode(unsigned Val) {
    128   switch (Val) {
    129   default: return -1;
    130   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    131   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    132   case bitc::CAST_SEXT    : return Instruction::SExt;
    133   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    134   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    135   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    136   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    137   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    138   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    139   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    140   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    141   case bitc::CAST_BITCAST : return Instruction::BitCast;
    142   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
    143   }
    144 }
    145 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    146   switch (Val) {
    147   default: return -1;
    148   case bitc::BINOP_ADD:
    149     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    150   case bitc::BINOP_SUB:
    151     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    152   case bitc::BINOP_MUL:
    153     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    154   case bitc::BINOP_UDIV: return Instruction::UDiv;
    155   case bitc::BINOP_SDIV:
    156     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    157   case bitc::BINOP_UREM: return Instruction::URem;
    158   case bitc::BINOP_SREM:
    159     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    160   case bitc::BINOP_SHL:  return Instruction::Shl;
    161   case bitc::BINOP_LSHR: return Instruction::LShr;
    162   case bitc::BINOP_ASHR: return Instruction::AShr;
    163   case bitc::BINOP_AND:  return Instruction::And;
    164   case bitc::BINOP_OR:   return Instruction::Or;
    165   case bitc::BINOP_XOR:  return Instruction::Xor;
    166   }
    167 }
    168 
    169 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
    170   switch (Val) {
    171   default: return AtomicRMWInst::BAD_BINOP;
    172   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    173   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    174   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    175   case bitc::RMW_AND: return AtomicRMWInst::And;
    176   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    177   case bitc::RMW_OR: return AtomicRMWInst::Or;
    178   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    179   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    180   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    181   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    182   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    183   }
    184 }
    185 
    186 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
    187   switch (Val) {
    188   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    189   case bitc::ORDERING_UNORDERED: return Unordered;
    190   case bitc::ORDERING_MONOTONIC: return Monotonic;
    191   case bitc::ORDERING_ACQUIRE: return Acquire;
    192   case bitc::ORDERING_RELEASE: return Release;
    193   case bitc::ORDERING_ACQREL: return AcquireRelease;
    194   default: // Map unknown orderings to sequentially-consistent.
    195   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    196   }
    197 }
    198 
    199 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
    200   switch (Val) {
    201   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    202   default: // Map unknown scopes to cross-thread.
    203   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    204   }
    205 }
    206 
    207 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
    208   switch (Val) {
    209   default: // Map unknown selection kinds to any.
    210   case bitc::COMDAT_SELECTION_KIND_ANY:
    211     return Comdat::Any;
    212   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
    213     return Comdat::ExactMatch;
    214   case bitc::COMDAT_SELECTION_KIND_LARGEST:
    215     return Comdat::Largest;
    216   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
    217     return Comdat::NoDuplicates;
    218   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
    219     return Comdat::SameSize;
    220   }
    221 }
    222 
    223 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
    224   switch (Val) {
    225   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
    226   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
    227   }
    228 }
    229 
    230 namespace llvm {
    231 namespace {
    232   /// @brief A class for maintaining the slot number definition
    233   /// as a placeholder for the actual definition for forward constants defs.
    234   class ConstantPlaceHolder : public ConstantExpr {
    235     void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
    236   public:
    237     // allocate space for exactly one operand
    238     void *operator new(size_t s) {
    239       return User::operator new(s, 1);
    240     }
    241     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    242       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    243       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    244     }
    245 
    246     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    247     static bool classof(const Value *V) {
    248       return isa<ConstantExpr>(V) &&
    249              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    250     }
    251 
    252 
    253     /// Provide fast operand accessors
    254     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    255   };
    256 }
    257 
    258 // FIXME: can we inherit this from ConstantExpr?
    259 template <>
    260 struct OperandTraits<ConstantPlaceHolder> :
    261   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    262 };
    263 }
    264 
    265 
    266 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    267   if (Idx == size()) {
    268     push_back(V);
    269     return;
    270   }
    271 
    272   if (Idx >= size())
    273     resize(Idx+1);
    274 
    275   WeakVH &OldV = ValuePtrs[Idx];
    276   if (!OldV) {
    277     OldV = V;
    278     return;
    279   }
    280 
    281   // Handle constants and non-constants (e.g. instrs) differently for
    282   // efficiency.
    283   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    284     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    285     OldV = V;
    286   } else {
    287     // If there was a forward reference to this value, replace it.
    288     Value *PrevVal = OldV;
    289     OldV->replaceAllUsesWith(V);
    290     delete PrevVal;
    291   }
    292 }
    293 
    294 
    295 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    296                                                     Type *Ty) {
    297   if (Idx >= size())
    298     resize(Idx + 1);
    299 
    300   if (Value *V = ValuePtrs[Idx]) {
    301     assert(Ty == V->getType() && "Type mismatch in constant table!");
    302     return cast<Constant>(V);
    303   }
    304 
    305   // Create and return a placeholder, which will later be RAUW'd.
    306   Constant *C = new ConstantPlaceHolder(Ty, Context);
    307   ValuePtrs[Idx] = C;
    308   return C;
    309 }
    310 
    311 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    312   if (Idx >= size())
    313     resize(Idx + 1);
    314 
    315   if (Value *V = ValuePtrs[Idx]) {
    316     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
    317     return V;
    318   }
    319 
    320   // No type specified, must be invalid reference.
    321   if (!Ty) return nullptr;
    322 
    323   // Create and return a placeholder, which will later be RAUW'd.
    324   Value *V = new Argument(Ty);
    325   ValuePtrs[Idx] = V;
    326   return V;
    327 }
    328 
    329 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    330 /// resolves any forward references.  The idea behind this is that we sometimes
    331 /// get constants (such as large arrays) which reference *many* forward ref
    332 /// constants.  Replacing each of these causes a lot of thrashing when
    333 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    334 /// uses and rewrite all the place holders at once for any constant that uses
    335 /// a placeholder.
    336 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    337   // Sort the values by-pointer so that they are efficient to look up with a
    338   // binary search.
    339   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    340 
    341   SmallVector<Constant*, 64> NewOps;
    342 
    343   while (!ResolveConstants.empty()) {
    344     Value *RealVal = operator[](ResolveConstants.back().second);
    345     Constant *Placeholder = ResolveConstants.back().first;
    346     ResolveConstants.pop_back();
    347 
    348     // Loop over all users of the placeholder, updating them to reference the
    349     // new value.  If they reference more than one placeholder, update them all
    350     // at once.
    351     while (!Placeholder->use_empty()) {
    352       auto UI = Placeholder->user_begin();
    353       User *U = *UI;
    354 
    355       // If the using object isn't uniqued, just update the operands.  This
    356       // handles instructions and initializers for global variables.
    357       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    358         UI.getUse().set(RealVal);
    359         continue;
    360       }
    361 
    362       // Otherwise, we have a constant that uses the placeholder.  Replace that
    363       // constant with a new constant that has *all* placeholder uses updated.
    364       Constant *UserC = cast<Constant>(U);
    365       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    366            I != E; ++I) {
    367         Value *NewOp;
    368         if (!isa<ConstantPlaceHolder>(*I)) {
    369           // Not a placeholder reference.
    370           NewOp = *I;
    371         } else if (*I == Placeholder) {
    372           // Common case is that it just references this one placeholder.
    373           NewOp = RealVal;
    374         } else {
    375           // Otherwise, look up the placeholder in ResolveConstants.
    376           ResolveConstantsTy::iterator It =
    377             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    378                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    379                                                             0));
    380           assert(It != ResolveConstants.end() && It->first == *I);
    381           NewOp = operator[](It->second);
    382         }
    383 
    384         NewOps.push_back(cast<Constant>(NewOp));
    385       }
    386 
    387       // Make the new constant.
    388       Constant *NewC;
    389       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    390         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    391       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    392         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    393       } else if (isa<ConstantVector>(UserC)) {
    394         NewC = ConstantVector::get(NewOps);
    395       } else {
    396         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    397         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    398       }
    399 
    400       UserC->replaceAllUsesWith(NewC);
    401       UserC->destroyConstant();
    402       NewOps.clear();
    403     }
    404 
    405     // Update all ValueHandles, they should be the only users at this point.
    406     Placeholder->replaceAllUsesWith(RealVal);
    407     delete Placeholder;
    408   }
    409 }
    410 
    411 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
    412   if (Idx == size()) {
    413     push_back(V);
    414     return;
    415   }
    416 
    417   if (Idx >= size())
    418     resize(Idx+1);
    419 
    420   WeakVH &OldV = MDValuePtrs[Idx];
    421   if (!OldV) {
    422     OldV = V;
    423     return;
    424   }
    425 
    426   // If there was a forward reference to this value, replace it.
    427   MDNode *PrevVal = cast<MDNode>(OldV);
    428   OldV->replaceAllUsesWith(V);
    429   MDNode::deleteTemporary(PrevVal);
    430   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
    431   // value for Idx.
    432   MDValuePtrs[Idx] = V;
    433 }
    434 
    435 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
    436   if (Idx >= size())
    437     resize(Idx + 1);
    438 
    439   if (Value *V = MDValuePtrs[Idx]) {
    440     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
    441     return V;
    442   }
    443 
    444   // Create and return a placeholder, which will later be RAUW'd.
    445   Value *V = MDNode::getTemporary(Context, None);
    446   MDValuePtrs[Idx] = V;
    447   return V;
    448 }
    449 
    450 Type *BitcodeReader::getTypeByID(unsigned ID) {
    451   // The type table size is always specified correctly.
    452   if (ID >= TypeList.size())
    453     return nullptr;
    454 
    455   if (Type *Ty = TypeList[ID])
    456     return Ty;
    457 
    458   // If we have a forward reference, the only possible case is when it is to a
    459   // named struct.  Just create a placeholder for now.
    460   return TypeList[ID] = StructType::create(Context);
    461 }
    462 
    463 
    464 //===----------------------------------------------------------------------===//
    465 //  Functions for parsing blocks from the bitcode file
    466 //===----------------------------------------------------------------------===//
    467 
    468 
    469 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
    470 /// been decoded from the given integer. This function must stay in sync with
    471 /// 'encodeLLVMAttributesForBitcode'.
    472 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
    473                                            uint64_t EncodedAttrs) {
    474   // FIXME: Remove in 4.0.
    475 
    476   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
    477   // the bits above 31 down by 11 bits.
    478   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
    479   assert((!Alignment || isPowerOf2_32(Alignment)) &&
    480          "Alignment must be a power of two.");
    481 
    482   if (Alignment)
    483     B.addAlignmentAttr(Alignment);
    484   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
    485                 (EncodedAttrs & 0xffff));
    486 }
    487 
    488 std::error_code BitcodeReader::ParseAttributeBlock() {
    489   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
    490     return Error(InvalidRecord);
    491 
    492   if (!MAttributes.empty())
    493     return Error(InvalidMultipleBlocks);
    494 
    495   SmallVector<uint64_t, 64> Record;
    496 
    497   SmallVector<AttributeSet, 8> Attrs;
    498 
    499   // Read all the records.
    500   while (1) {
    501     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    502 
    503     switch (Entry.Kind) {
    504     case BitstreamEntry::SubBlock: // Handled for us already.
    505     case BitstreamEntry::Error:
    506       return Error(MalformedBlock);
    507     case BitstreamEntry::EndBlock:
    508       return std::error_code();
    509     case BitstreamEntry::Record:
    510       // The interesting case.
    511       break;
    512     }
    513 
    514     // Read a record.
    515     Record.clear();
    516     switch (Stream.readRecord(Entry.ID, Record)) {
    517     default:  // Default behavior: ignore.
    518       break;
    519     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
    520       // FIXME: Remove in 4.0.
    521       if (Record.size() & 1)
    522         return Error(InvalidRecord);
    523 
    524       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    525         AttrBuilder B;
    526         decodeLLVMAttributesForBitcode(B, Record[i+1]);
    527         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
    528       }
    529 
    530       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    531       Attrs.clear();
    532       break;
    533     }
    534     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
    535       for (unsigned i = 0, e = Record.size(); i != e; ++i)
    536         Attrs.push_back(MAttributeGroups[Record[i]]);
    537 
    538       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    539       Attrs.clear();
    540       break;
    541     }
    542     }
    543   }
    544 }
    545 
    546 // Returns Attribute::None on unrecognized codes.
    547 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
    548   switch (Code) {
    549   default:
    550     return Attribute::None;
    551   case bitc::ATTR_KIND_ALIGNMENT:
    552     return Attribute::Alignment;
    553   case bitc::ATTR_KIND_ALWAYS_INLINE:
    554     return Attribute::AlwaysInline;
    555   case bitc::ATTR_KIND_BUILTIN:
    556     return Attribute::Builtin;
    557   case bitc::ATTR_KIND_BY_VAL:
    558     return Attribute::ByVal;
    559   case bitc::ATTR_KIND_IN_ALLOCA:
    560     return Attribute::InAlloca;
    561   case bitc::ATTR_KIND_COLD:
    562     return Attribute::Cold;
    563   case bitc::ATTR_KIND_INLINE_HINT:
    564     return Attribute::InlineHint;
    565   case bitc::ATTR_KIND_IN_REG:
    566     return Attribute::InReg;
    567   case bitc::ATTR_KIND_JUMP_TABLE:
    568     return Attribute::JumpTable;
    569   case bitc::ATTR_KIND_MIN_SIZE:
    570     return Attribute::MinSize;
    571   case bitc::ATTR_KIND_NAKED:
    572     return Attribute::Naked;
    573   case bitc::ATTR_KIND_NEST:
    574     return Attribute::Nest;
    575   case bitc::ATTR_KIND_NO_ALIAS:
    576     return Attribute::NoAlias;
    577   case bitc::ATTR_KIND_NO_BUILTIN:
    578     return Attribute::NoBuiltin;
    579   case bitc::ATTR_KIND_NO_CAPTURE:
    580     return Attribute::NoCapture;
    581   case bitc::ATTR_KIND_NO_DUPLICATE:
    582     return Attribute::NoDuplicate;
    583   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
    584     return Attribute::NoImplicitFloat;
    585   case bitc::ATTR_KIND_NO_INLINE:
    586     return Attribute::NoInline;
    587   case bitc::ATTR_KIND_NON_LAZY_BIND:
    588     return Attribute::NonLazyBind;
    589   case bitc::ATTR_KIND_NON_NULL:
    590     return Attribute::NonNull;
    591   case bitc::ATTR_KIND_NO_RED_ZONE:
    592     return Attribute::NoRedZone;
    593   case bitc::ATTR_KIND_NO_RETURN:
    594     return Attribute::NoReturn;
    595   case bitc::ATTR_KIND_NO_UNWIND:
    596     return Attribute::NoUnwind;
    597   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
    598     return Attribute::OptimizeForSize;
    599   case bitc::ATTR_KIND_OPTIMIZE_NONE:
    600     return Attribute::OptimizeNone;
    601   case bitc::ATTR_KIND_READ_NONE:
    602     return Attribute::ReadNone;
    603   case bitc::ATTR_KIND_READ_ONLY:
    604     return Attribute::ReadOnly;
    605   case bitc::ATTR_KIND_RETURNED:
    606     return Attribute::Returned;
    607   case bitc::ATTR_KIND_RETURNS_TWICE:
    608     return Attribute::ReturnsTwice;
    609   case bitc::ATTR_KIND_S_EXT:
    610     return Attribute::SExt;
    611   case bitc::ATTR_KIND_STACK_ALIGNMENT:
    612     return Attribute::StackAlignment;
    613   case bitc::ATTR_KIND_STACK_PROTECT:
    614     return Attribute::StackProtect;
    615   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
    616     return Attribute::StackProtectReq;
    617   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
    618     return Attribute::StackProtectStrong;
    619   case bitc::ATTR_KIND_STRUCT_RET:
    620     return Attribute::StructRet;
    621   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
    622     return Attribute::SanitizeAddress;
    623   case bitc::ATTR_KIND_SANITIZE_THREAD:
    624     return Attribute::SanitizeThread;
    625   case bitc::ATTR_KIND_SANITIZE_MEMORY:
    626     return Attribute::SanitizeMemory;
    627   case bitc::ATTR_KIND_UW_TABLE:
    628     return Attribute::UWTable;
    629   case bitc::ATTR_KIND_Z_EXT:
    630     return Attribute::ZExt;
    631   }
    632 }
    633 
    634 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
    635                                              Attribute::AttrKind *Kind) {
    636   *Kind = GetAttrFromCode(Code);
    637   if (*Kind == Attribute::None)
    638     return Error(InvalidValue);
    639   return std::error_code();
    640 }
    641 
    642 std::error_code BitcodeReader::ParseAttributeGroupBlock() {
    643   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
    644     return Error(InvalidRecord);
    645 
    646   if (!MAttributeGroups.empty())
    647     return Error(InvalidMultipleBlocks);
    648 
    649   SmallVector<uint64_t, 64> Record;
    650 
    651   // Read all the records.
    652   while (1) {
    653     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    654 
    655     switch (Entry.Kind) {
    656     case BitstreamEntry::SubBlock: // Handled for us already.
    657     case BitstreamEntry::Error:
    658       return Error(MalformedBlock);
    659     case BitstreamEntry::EndBlock:
    660       return std::error_code();
    661     case BitstreamEntry::Record:
    662       // The interesting case.
    663       break;
    664     }
    665 
    666     // Read a record.
    667     Record.clear();
    668     switch (Stream.readRecord(Entry.ID, Record)) {
    669     default:  // Default behavior: ignore.
    670       break;
    671     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
    672       if (Record.size() < 3)
    673         return Error(InvalidRecord);
    674 
    675       uint64_t GrpID = Record[0];
    676       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
    677 
    678       AttrBuilder B;
    679       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    680         if (Record[i] == 0) {        // Enum attribute
    681           Attribute::AttrKind Kind;
    682           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
    683             return EC;
    684 
    685           B.addAttribute(Kind);
    686         } else if (Record[i] == 1) { // Align attribute
    687           Attribute::AttrKind Kind;
    688           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
    689             return EC;
    690           if (Kind == Attribute::Alignment)
    691             B.addAlignmentAttr(Record[++i]);
    692           else
    693             B.addStackAlignmentAttr(Record[++i]);
    694         } else {                     // String attribute
    695           assert((Record[i] == 3 || Record[i] == 4) &&
    696                  "Invalid attribute group entry");
    697           bool HasValue = (Record[i++] == 4);
    698           SmallString<64> KindStr;
    699           SmallString<64> ValStr;
    700 
    701           while (Record[i] != 0 && i != e)
    702             KindStr += Record[i++];
    703           assert(Record[i] == 0 && "Kind string not null terminated");
    704 
    705           if (HasValue) {
    706             // Has a value associated with it.
    707             ++i; // Skip the '0' that terminates the "kind" string.
    708             while (Record[i] != 0 && i != e)
    709               ValStr += Record[i++];
    710             assert(Record[i] == 0 && "Value string not null terminated");
    711           }
    712 
    713           B.addAttribute(KindStr.str(), ValStr.str());
    714         }
    715       }
    716 
    717       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
    718       break;
    719     }
    720     }
    721   }
    722 }
    723 
    724 std::error_code BitcodeReader::ParseTypeTable() {
    725   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
    726     return Error(InvalidRecord);
    727 
    728   return ParseTypeTableBody();
    729 }
    730 
    731 std::error_code BitcodeReader::ParseTypeTableBody() {
    732   if (!TypeList.empty())
    733     return Error(InvalidMultipleBlocks);
    734 
    735   SmallVector<uint64_t, 64> Record;
    736   unsigned NumRecords = 0;
    737 
    738   SmallString<64> TypeName;
    739 
    740   // Read all the records for this type table.
    741   while (1) {
    742     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    743 
    744     switch (Entry.Kind) {
    745     case BitstreamEntry::SubBlock: // Handled for us already.
    746     case BitstreamEntry::Error:
    747       return Error(MalformedBlock);
    748     case BitstreamEntry::EndBlock:
    749       if (NumRecords != TypeList.size())
    750         return Error(MalformedBlock);
    751       return std::error_code();
    752     case BitstreamEntry::Record:
    753       // The interesting case.
    754       break;
    755     }
    756 
    757     // Read a record.
    758     Record.clear();
    759     Type *ResultTy = nullptr;
    760     switch (Stream.readRecord(Entry.ID, Record)) {
    761     default:
    762       return Error(InvalidValue);
    763     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    764       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    765       // type list.  This allows us to reserve space.
    766       if (Record.size() < 1)
    767         return Error(InvalidRecord);
    768       TypeList.resize(Record[0]);
    769       continue;
    770     case bitc::TYPE_CODE_VOID:      // VOID
    771       ResultTy = Type::getVoidTy(Context);
    772       break;
    773     case bitc::TYPE_CODE_HALF:     // HALF
    774       ResultTy = Type::getHalfTy(Context);
    775       break;
    776     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    777       ResultTy = Type::getFloatTy(Context);
    778       break;
    779     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    780       ResultTy = Type::getDoubleTy(Context);
    781       break;
    782     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    783       ResultTy = Type::getX86_FP80Ty(Context);
    784       break;
    785     case bitc::TYPE_CODE_FP128:     // FP128
    786       ResultTy = Type::getFP128Ty(Context);
    787       break;
    788     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    789       ResultTy = Type::getPPC_FP128Ty(Context);
    790       break;
    791     case bitc::TYPE_CODE_LABEL:     // LABEL
    792       ResultTy = Type::getLabelTy(Context);
    793       break;
    794     case bitc::TYPE_CODE_METADATA:  // METADATA
    795       ResultTy = Type::getMetadataTy(Context);
    796       break;
    797     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    798       ResultTy = Type::getX86_MMXTy(Context);
    799       break;
    800     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    801       if (Record.size() < 1)
    802         return Error(InvalidRecord);
    803 
    804       ResultTy = IntegerType::get(Context, Record[0]);
    805       break;
    806     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    807                                     //          [pointee type, address space]
    808       if (Record.size() < 1)
    809         return Error(InvalidRecord);
    810       unsigned AddressSpace = 0;
    811       if (Record.size() == 2)
    812         AddressSpace = Record[1];
    813       ResultTy = getTypeByID(Record[0]);
    814       if (!ResultTy)
    815         return Error(InvalidType);
    816       ResultTy = PointerType::get(ResultTy, AddressSpace);
    817       break;
    818     }
    819     case bitc::TYPE_CODE_FUNCTION_OLD: {
    820       // FIXME: attrid is dead, remove it in LLVM 4.0
    821       // FUNCTION: [vararg, attrid, retty, paramty x N]
    822       if (Record.size() < 3)
    823         return Error(InvalidRecord);
    824       SmallVector<Type*, 8> ArgTys;
    825       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    826         if (Type *T = getTypeByID(Record[i]))
    827           ArgTys.push_back(T);
    828         else
    829           break;
    830       }
    831 
    832       ResultTy = getTypeByID(Record[2]);
    833       if (!ResultTy || ArgTys.size() < Record.size()-3)
    834         return Error(InvalidType);
    835 
    836       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    837       break;
    838     }
    839     case bitc::TYPE_CODE_FUNCTION: {
    840       // FUNCTION: [vararg, retty, paramty x N]
    841       if (Record.size() < 2)
    842         return Error(InvalidRecord);
    843       SmallVector<Type*, 8> ArgTys;
    844       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    845         if (Type *T = getTypeByID(Record[i]))
    846           ArgTys.push_back(T);
    847         else
    848           break;
    849       }
    850 
    851       ResultTy = getTypeByID(Record[1]);
    852       if (!ResultTy || ArgTys.size() < Record.size()-2)
    853         return Error(InvalidType);
    854 
    855       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    856       break;
    857     }
    858     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
    859       if (Record.size() < 1)
    860         return Error(InvalidRecord);
    861       SmallVector<Type*, 8> EltTys;
    862       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    863         if (Type *T = getTypeByID(Record[i]))
    864           EltTys.push_back(T);
    865         else
    866           break;
    867       }
    868       if (EltTys.size() != Record.size()-1)
    869         return Error(InvalidType);
    870       ResultTy = StructType::get(Context, EltTys, Record[0]);
    871       break;
    872     }
    873     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
    874       if (ConvertToString(Record, 0, TypeName))
    875         return Error(InvalidRecord);
    876       continue;
    877 
    878     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
    879       if (Record.size() < 1)
    880         return Error(InvalidRecord);
    881 
    882       if (NumRecords >= TypeList.size())
    883         return Error(InvalidTYPETable);
    884 
    885       // Check to see if this was forward referenced, if so fill in the temp.
    886       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    887       if (Res) {
    888         Res->setName(TypeName);
    889         TypeList[NumRecords] = nullptr;
    890       } else  // Otherwise, create a new struct.
    891         Res = StructType::create(Context, TypeName);
    892       TypeName.clear();
    893 
    894       SmallVector<Type*, 8> EltTys;
    895       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    896         if (Type *T = getTypeByID(Record[i]))
    897           EltTys.push_back(T);
    898         else
    899           break;
    900       }
    901       if (EltTys.size() != Record.size()-1)
    902         return Error(InvalidRecord);
    903       Res->setBody(EltTys, Record[0]);
    904       ResultTy = Res;
    905       break;
    906     }
    907     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
    908       if (Record.size() != 1)
    909         return Error(InvalidRecord);
    910 
    911       if (NumRecords >= TypeList.size())
    912         return Error(InvalidTYPETable);
    913 
    914       // Check to see if this was forward referenced, if so fill in the temp.
    915       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    916       if (Res) {
    917         Res->setName(TypeName);
    918         TypeList[NumRecords] = nullptr;
    919       } else  // Otherwise, create a new struct with no body.
    920         Res = StructType::create(Context, TypeName);
    921       TypeName.clear();
    922       ResultTy = Res;
    923       break;
    924     }
    925     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
    926       if (Record.size() < 2)
    927         return Error(InvalidRecord);
    928       if ((ResultTy = getTypeByID(Record[1])))
    929         ResultTy = ArrayType::get(ResultTy, Record[0]);
    930       else
    931         return Error(InvalidType);
    932       break;
    933     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
    934       if (Record.size() < 2)
    935         return Error(InvalidRecord);
    936       if ((ResultTy = getTypeByID(Record[1])))
    937         ResultTy = VectorType::get(ResultTy, Record[0]);
    938       else
    939         return Error(InvalidType);
    940       break;
    941     }
    942 
    943     if (NumRecords >= TypeList.size())
    944       return Error(InvalidTYPETable);
    945     assert(ResultTy && "Didn't read a type?");
    946     assert(!TypeList[NumRecords] && "Already read type?");
    947     TypeList[NumRecords++] = ResultTy;
    948   }
    949 }
    950 
    951 std::error_code BitcodeReader::ParseValueSymbolTable() {
    952   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
    953     return Error(InvalidRecord);
    954 
    955   SmallVector<uint64_t, 64> Record;
    956 
    957   // Read all the records for this value table.
    958   SmallString<128> ValueName;
    959   while (1) {
    960     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    961 
    962     switch (Entry.Kind) {
    963     case BitstreamEntry::SubBlock: // Handled for us already.
    964     case BitstreamEntry::Error:
    965       return Error(MalformedBlock);
    966     case BitstreamEntry::EndBlock:
    967       return std::error_code();
    968     case BitstreamEntry::Record:
    969       // The interesting case.
    970       break;
    971     }
    972 
    973     // Read a record.
    974     Record.clear();
    975     switch (Stream.readRecord(Entry.ID, Record)) {
    976     default:  // Default behavior: unknown type.
    977       break;
    978     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
    979       if (ConvertToString(Record, 1, ValueName))
    980         return Error(InvalidRecord);
    981       unsigned ValueID = Record[0];
    982       if (ValueID >= ValueList.size() || !ValueList[ValueID])
    983         return Error(InvalidRecord);
    984       Value *V = ValueList[ValueID];
    985 
    986       V->setName(StringRef(ValueName.data(), ValueName.size()));
    987       ValueName.clear();
    988       break;
    989     }
    990     case bitc::VST_CODE_BBENTRY: {
    991       if (ConvertToString(Record, 1, ValueName))
    992         return Error(InvalidRecord);
    993       BasicBlock *BB = getBasicBlock(Record[0]);
    994       if (!BB)
    995         return Error(InvalidRecord);
    996 
    997       BB->setName(StringRef(ValueName.data(), ValueName.size()));
    998       ValueName.clear();
    999       break;
   1000     }
   1001     }
   1002   }
   1003 }
   1004 
   1005 std::error_code BitcodeReader::ParseMetadata() {
   1006   unsigned NextMDValueNo = MDValueList.size();
   1007 
   1008   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1009     return Error(InvalidRecord);
   1010 
   1011   SmallVector<uint64_t, 64> Record;
   1012 
   1013   // Read all the records.
   1014   while (1) {
   1015     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1016 
   1017     switch (Entry.Kind) {
   1018     case BitstreamEntry::SubBlock: // Handled for us already.
   1019     case BitstreamEntry::Error:
   1020       return Error(MalformedBlock);
   1021     case BitstreamEntry::EndBlock:
   1022       return std::error_code();
   1023     case BitstreamEntry::Record:
   1024       // The interesting case.
   1025       break;
   1026     }
   1027 
   1028     bool IsFunctionLocal = false;
   1029     // Read a record.
   1030     Record.clear();
   1031     unsigned Code = Stream.readRecord(Entry.ID, Record);
   1032     switch (Code) {
   1033     default:  // Default behavior: ignore.
   1034       break;
   1035     case bitc::METADATA_NAME: {
   1036       // Read name of the named metadata.
   1037       SmallString<8> Name(Record.begin(), Record.end());
   1038       Record.clear();
   1039       Code = Stream.ReadCode();
   1040 
   1041       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
   1042       unsigned NextBitCode = Stream.readRecord(Code, Record);
   1043       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
   1044 
   1045       // Read named metadata elements.
   1046       unsigned Size = Record.size();
   1047       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1048       for (unsigned i = 0; i != Size; ++i) {
   1049         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1050         if (!MD)
   1051           return Error(InvalidRecord);
   1052         NMD->addOperand(MD);
   1053       }
   1054       break;
   1055     }
   1056     case bitc::METADATA_FN_NODE:
   1057       IsFunctionLocal = true;
   1058       // fall-through
   1059     case bitc::METADATA_NODE: {
   1060       if (Record.size() % 2 == 1)
   1061         return Error(InvalidRecord);
   1062 
   1063       unsigned Size = Record.size();
   1064       SmallVector<Value*, 8> Elts;
   1065       for (unsigned i = 0; i != Size; i += 2) {
   1066         Type *Ty = getTypeByID(Record[i]);
   1067         if (!Ty)
   1068           return Error(InvalidRecord);
   1069         if (Ty->isMetadataTy())
   1070           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1071         else if (!Ty->isVoidTy())
   1072           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
   1073         else
   1074           Elts.push_back(nullptr);
   1075       }
   1076       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
   1077       IsFunctionLocal = false;
   1078       MDValueList.AssignValue(V, NextMDValueNo++);
   1079       break;
   1080     }
   1081     case bitc::METADATA_STRING: {
   1082       std::string String(Record.begin(), Record.end());
   1083       llvm::UpgradeMDStringConstant(String);
   1084       Value *V = MDString::get(Context, String);
   1085       MDValueList.AssignValue(V, NextMDValueNo++);
   1086       break;
   1087     }
   1088     case bitc::METADATA_KIND: {
   1089       if (Record.size() < 2)
   1090         return Error(InvalidRecord);
   1091 
   1092       unsigned Kind = Record[0];
   1093       SmallString<8> Name(Record.begin()+1, Record.end());
   1094 
   1095       unsigned NewKind = TheModule->getMDKindID(Name.str());
   1096       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1097         return Error(ConflictingMETADATA_KINDRecords);
   1098       break;
   1099     }
   1100     }
   1101   }
   1102 }
   1103 
   1104 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
   1105 /// the LSB for dense VBR encoding.
   1106 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
   1107   if ((V & 1) == 0)
   1108     return V >> 1;
   1109   if (V != 1)
   1110     return -(V >> 1);
   1111   // There is no such thing as -0 with integers.  "-0" really means MININT.
   1112   return 1ULL << 63;
   1113 }
   1114 
   1115 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
   1116 /// values and aliases that we can.
   1117 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
   1118   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   1119   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   1120   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
   1121 
   1122   GlobalInitWorklist.swap(GlobalInits);
   1123   AliasInitWorklist.swap(AliasInits);
   1124   FunctionPrefixWorklist.swap(FunctionPrefixes);
   1125 
   1126   while (!GlobalInitWorklist.empty()) {
   1127     unsigned ValID = GlobalInitWorklist.back().second;
   1128     if (ValID >= ValueList.size()) {
   1129       // Not ready to resolve this yet, it requires something later in the file.
   1130       GlobalInits.push_back(GlobalInitWorklist.back());
   1131     } else {
   1132       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   1133         GlobalInitWorklist.back().first->setInitializer(C);
   1134       else
   1135         return Error(ExpectedConstant);
   1136     }
   1137     GlobalInitWorklist.pop_back();
   1138   }
   1139 
   1140   while (!AliasInitWorklist.empty()) {
   1141     unsigned ValID = AliasInitWorklist.back().second;
   1142     if (ValID >= ValueList.size()) {
   1143       AliasInits.push_back(AliasInitWorklist.back());
   1144     } else {
   1145       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   1146         AliasInitWorklist.back().first->setAliasee(C);
   1147       else
   1148         return Error(ExpectedConstant);
   1149     }
   1150     AliasInitWorklist.pop_back();
   1151   }
   1152 
   1153   while (!FunctionPrefixWorklist.empty()) {
   1154     unsigned ValID = FunctionPrefixWorklist.back().second;
   1155     if (ValID >= ValueList.size()) {
   1156       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
   1157     } else {
   1158       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   1159         FunctionPrefixWorklist.back().first->setPrefixData(C);
   1160       else
   1161         return Error(ExpectedConstant);
   1162     }
   1163     FunctionPrefixWorklist.pop_back();
   1164   }
   1165 
   1166   return std::error_code();
   1167 }
   1168 
   1169 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   1170   SmallVector<uint64_t, 8> Words(Vals.size());
   1171   std::transform(Vals.begin(), Vals.end(), Words.begin(),
   1172                  BitcodeReader::decodeSignRotatedValue);
   1173 
   1174   return APInt(TypeBits, Words);
   1175 }
   1176 
   1177 std::error_code BitcodeReader::ParseConstants() {
   1178   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1179     return Error(InvalidRecord);
   1180 
   1181   SmallVector<uint64_t, 64> Record;
   1182 
   1183   // Read all the records for this value table.
   1184   Type *CurTy = Type::getInt32Ty(Context);
   1185   unsigned NextCstNo = ValueList.size();
   1186   while (1) {
   1187     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1188 
   1189     switch (Entry.Kind) {
   1190     case BitstreamEntry::SubBlock: // Handled for us already.
   1191     case BitstreamEntry::Error:
   1192       return Error(MalformedBlock);
   1193     case BitstreamEntry::EndBlock:
   1194       if (NextCstNo != ValueList.size())
   1195         return Error(InvalidConstantReference);
   1196 
   1197       // Once all the constants have been read, go through and resolve forward
   1198       // references.
   1199       ValueList.ResolveConstantForwardRefs();
   1200       return std::error_code();
   1201     case BitstreamEntry::Record:
   1202       // The interesting case.
   1203       break;
   1204     }
   1205 
   1206     // Read a record.
   1207     Record.clear();
   1208     Value *V = nullptr;
   1209     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   1210     switch (BitCode) {
   1211     default:  // Default behavior: unknown constant
   1212     case bitc::CST_CODE_UNDEF:     // UNDEF
   1213       V = UndefValue::get(CurTy);
   1214       break;
   1215     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1216       if (Record.empty())
   1217         return Error(InvalidRecord);
   1218       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
   1219         return Error(InvalidRecord);
   1220       CurTy = TypeList[Record[0]];
   1221       continue;  // Skip the ValueList manipulation.
   1222     case bitc::CST_CODE_NULL:      // NULL
   1223       V = Constant::getNullValue(CurTy);
   1224       break;
   1225     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1226       if (!CurTy->isIntegerTy() || Record.empty())
   1227         return Error(InvalidRecord);
   1228       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   1229       break;
   1230     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1231       if (!CurTy->isIntegerTy() || Record.empty())
   1232         return Error(InvalidRecord);
   1233 
   1234       APInt VInt = ReadWideAPInt(Record,
   1235                                  cast<IntegerType>(CurTy)->getBitWidth());
   1236       V = ConstantInt::get(Context, VInt);
   1237 
   1238       break;
   1239     }
   1240     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1241       if (Record.empty())
   1242         return Error(InvalidRecord);
   1243       if (CurTy->isHalfTy())
   1244         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
   1245                                              APInt(16, (uint16_t)Record[0])));
   1246       else if (CurTy->isFloatTy())
   1247         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
   1248                                              APInt(32, (uint32_t)Record[0])));
   1249       else if (CurTy->isDoubleTy())
   1250         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
   1251                                              APInt(64, Record[0])));
   1252       else if (CurTy->isX86_FP80Ty()) {
   1253         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1254         uint64_t Rearrange[2];
   1255         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1256         Rearrange[1] = Record[0] >> 48;
   1257         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
   1258                                              APInt(80, Rearrange)));
   1259       } else if (CurTy->isFP128Ty())
   1260         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
   1261                                              APInt(128, Record)));
   1262       else if (CurTy->isPPC_FP128Ty())
   1263         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
   1264                                              APInt(128, Record)));
   1265       else
   1266         V = UndefValue::get(CurTy);
   1267       break;
   1268     }
   1269 
   1270     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   1271       if (Record.empty())
   1272         return Error(InvalidRecord);
   1273 
   1274       unsigned Size = Record.size();
   1275       SmallVector<Constant*, 16> Elts;
   1276 
   1277       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   1278         for (unsigned i = 0; i != Size; ++i)
   1279           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   1280                                                      STy->getElementType(i)));
   1281         V = ConstantStruct::get(STy, Elts);
   1282       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   1283         Type *EltTy = ATy->getElementType();
   1284         for (unsigned i = 0; i != Size; ++i)
   1285           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1286         V = ConstantArray::get(ATy, Elts);
   1287       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   1288         Type *EltTy = VTy->getElementType();
   1289         for (unsigned i = 0; i != Size; ++i)
   1290           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1291         V = ConstantVector::get(Elts);
   1292       } else {
   1293         V = UndefValue::get(CurTy);
   1294       }
   1295       break;
   1296     }
   1297     case bitc::CST_CODE_STRING:    // STRING: [values]
   1298     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   1299       if (Record.empty())
   1300         return Error(InvalidRecord);
   1301 
   1302       SmallString<16> Elts(Record.begin(), Record.end());
   1303       V = ConstantDataArray::getString(Context, Elts,
   1304                                        BitCode == bitc::CST_CODE_CSTRING);
   1305       break;
   1306     }
   1307     case bitc::CST_CODE_DATA: {// DATA: [n x value]
   1308       if (Record.empty())
   1309         return Error(InvalidRecord);
   1310 
   1311       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
   1312       unsigned Size = Record.size();
   1313 
   1314       if (EltTy->isIntegerTy(8)) {
   1315         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
   1316         if (isa<VectorType>(CurTy))
   1317           V = ConstantDataVector::get(Context, Elts);
   1318         else
   1319           V = ConstantDataArray::get(Context, Elts);
   1320       } else if (EltTy->isIntegerTy(16)) {
   1321         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   1322         if (isa<VectorType>(CurTy))
   1323           V = ConstantDataVector::get(Context, Elts);
   1324         else
   1325           V = ConstantDataArray::get(Context, Elts);
   1326       } else if (EltTy->isIntegerTy(32)) {
   1327         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   1328         if (isa<VectorType>(CurTy))
   1329           V = ConstantDataVector::get(Context, Elts);
   1330         else
   1331           V = ConstantDataArray::get(Context, Elts);
   1332       } else if (EltTy->isIntegerTy(64)) {
   1333         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   1334         if (isa<VectorType>(CurTy))
   1335           V = ConstantDataVector::get(Context, Elts);
   1336         else
   1337           V = ConstantDataArray::get(Context, Elts);
   1338       } else if (EltTy->isFloatTy()) {
   1339         SmallVector<float, 16> Elts(Size);
   1340         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
   1341         if (isa<VectorType>(CurTy))
   1342           V = ConstantDataVector::get(Context, Elts);
   1343         else
   1344           V = ConstantDataArray::get(Context, Elts);
   1345       } else if (EltTy->isDoubleTy()) {
   1346         SmallVector<double, 16> Elts(Size);
   1347         std::transform(Record.begin(), Record.end(), Elts.begin(),
   1348                        BitsToDouble);
   1349         if (isa<VectorType>(CurTy))
   1350           V = ConstantDataVector::get(Context, Elts);
   1351         else
   1352           V = ConstantDataArray::get(Context, Elts);
   1353       } else {
   1354         return Error(InvalidTypeForValue);
   1355       }
   1356       break;
   1357     }
   1358 
   1359     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   1360       if (Record.size() < 3)
   1361         return Error(InvalidRecord);
   1362       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   1363       if (Opc < 0) {
   1364         V = UndefValue::get(CurTy);  // Unknown binop.
   1365       } else {
   1366         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   1367         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   1368         unsigned Flags = 0;
   1369         if (Record.size() >= 4) {
   1370           if (Opc == Instruction::Add ||
   1371               Opc == Instruction::Sub ||
   1372               Opc == Instruction::Mul ||
   1373               Opc == Instruction::Shl) {
   1374             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   1375               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   1376             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   1377               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   1378           } else if (Opc == Instruction::SDiv ||
   1379                      Opc == Instruction::UDiv ||
   1380                      Opc == Instruction::LShr ||
   1381                      Opc == Instruction::AShr) {
   1382             if (Record[3] & (1 << bitc::PEO_EXACT))
   1383               Flags |= SDivOperator::IsExact;
   1384           }
   1385         }
   1386         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   1387       }
   1388       break;
   1389     }
   1390     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   1391       if (Record.size() < 3)
   1392         return Error(InvalidRecord);
   1393       int Opc = GetDecodedCastOpcode(Record[0]);
   1394       if (Opc < 0) {
   1395         V = UndefValue::get(CurTy);  // Unknown cast.
   1396       } else {
   1397         Type *OpTy = getTypeByID(Record[1]);
   1398         if (!OpTy)
   1399           return Error(InvalidRecord);
   1400         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   1401         V = UpgradeBitCastExpr(Opc, Op, CurTy);
   1402         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
   1403       }
   1404       break;
   1405     }
   1406     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   1407     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   1408       if (Record.size() & 1)
   1409         return Error(InvalidRecord);
   1410       SmallVector<Constant*, 16> Elts;
   1411       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1412         Type *ElTy = getTypeByID(Record[i]);
   1413         if (!ElTy)
   1414           return Error(InvalidRecord);
   1415         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   1416       }
   1417       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   1418       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   1419                                          BitCode ==
   1420                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
   1421       break;
   1422     }
   1423     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
   1424       if (Record.size() < 3)
   1425         return Error(InvalidRecord);
   1426 
   1427       Type *SelectorTy = Type::getInt1Ty(Context);
   1428 
   1429       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
   1430       // vector. Otherwise, it must be a single bit.
   1431       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
   1432         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
   1433                                      VTy->getNumElements());
   1434 
   1435       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   1436                                                               SelectorTy),
   1437                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   1438                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   1439       break;
   1440     }
   1441     case bitc::CST_CODE_CE_EXTRACTELT
   1442         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
   1443       if (Record.size() < 3)
   1444         return Error(InvalidRecord);
   1445       VectorType *OpTy =
   1446         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1447       if (!OpTy)
   1448         return Error(InvalidRecord);
   1449       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1450       Constant *Op1 = nullptr;
   1451       if (Record.size() == 4) {
   1452         Type *IdxTy = getTypeByID(Record[2]);
   1453         if (!IdxTy)
   1454           return Error(InvalidRecord);
   1455         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   1456       } else // TODO: Remove with llvm 4.0
   1457         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1458       if (!Op1)
   1459         return Error(InvalidRecord);
   1460       V = ConstantExpr::getExtractElement(Op0, Op1);
   1461       break;
   1462     }
   1463     case bitc::CST_CODE_CE_INSERTELT
   1464         : { // CE_INSERTELT: [opval, opval, opty, opval]
   1465       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1466       if (Record.size() < 3 || !OpTy)
   1467         return Error(InvalidRecord);
   1468       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1469       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   1470                                                   OpTy->getElementType());
   1471       Constant *Op2 = nullptr;
   1472       if (Record.size() == 4) {
   1473         Type *IdxTy = getTypeByID(Record[2]);
   1474         if (!IdxTy)
   1475           return Error(InvalidRecord);
   1476         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   1477       } else // TODO: Remove with llvm 4.0
   1478         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1479       if (!Op2)
   1480         return Error(InvalidRecord);
   1481       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   1482       break;
   1483     }
   1484     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   1485       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1486       if (Record.size() < 3 || !OpTy)
   1487         return Error(InvalidRecord);
   1488       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1489       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1490       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1491                                                  OpTy->getNumElements());
   1492       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   1493       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1494       break;
   1495     }
   1496     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   1497       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   1498       VectorType *OpTy =
   1499         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1500       if (Record.size() < 4 || !RTy || !OpTy)
   1501         return Error(InvalidRecord);
   1502       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1503       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1504       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1505                                                  RTy->getNumElements());
   1506       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   1507       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1508       break;
   1509     }
   1510     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   1511       if (Record.size() < 4)
   1512         return Error(InvalidRecord);
   1513       Type *OpTy = getTypeByID(Record[0]);
   1514       if (!OpTy)
   1515         return Error(InvalidRecord);
   1516       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1517       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1518 
   1519       if (OpTy->isFPOrFPVectorTy())
   1520         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   1521       else
   1522         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   1523       break;
   1524     }
   1525     // This maintains backward compatibility, pre-asm dialect keywords.
   1526     // FIXME: Remove with the 4.0 release.
   1527     case bitc::CST_CODE_INLINEASM_OLD: {
   1528       if (Record.size() < 2)
   1529         return Error(InvalidRecord);
   1530       std::string AsmStr, ConstrStr;
   1531       bool HasSideEffects = Record[0] & 1;
   1532       bool IsAlignStack = Record[0] >> 1;
   1533       unsigned AsmStrSize = Record[1];
   1534       if (2+AsmStrSize >= Record.size())
   1535         return Error(InvalidRecord);
   1536       unsigned ConstStrSize = Record[2+AsmStrSize];
   1537       if (3+AsmStrSize+ConstStrSize > Record.size())
   1538         return Error(InvalidRecord);
   1539 
   1540       for (unsigned i = 0; i != AsmStrSize; ++i)
   1541         AsmStr += (char)Record[2+i];
   1542       for (unsigned i = 0; i != ConstStrSize; ++i)
   1543         ConstrStr += (char)Record[3+AsmStrSize+i];
   1544       PointerType *PTy = cast<PointerType>(CurTy);
   1545       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1546                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   1547       break;
   1548     }
   1549     // This version adds support for the asm dialect keywords (e.g.,
   1550     // inteldialect).
   1551     case bitc::CST_CODE_INLINEASM: {
   1552       if (Record.size() < 2)
   1553         return Error(InvalidRecord);
   1554       std::string AsmStr, ConstrStr;
   1555       bool HasSideEffects = Record[0] & 1;
   1556       bool IsAlignStack = (Record[0] >> 1) & 1;
   1557       unsigned AsmDialect = Record[0] >> 2;
   1558       unsigned AsmStrSize = Record[1];
   1559       if (2+AsmStrSize >= Record.size())
   1560         return Error(InvalidRecord);
   1561       unsigned ConstStrSize = Record[2+AsmStrSize];
   1562       if (3+AsmStrSize+ConstStrSize > Record.size())
   1563         return Error(InvalidRecord);
   1564 
   1565       for (unsigned i = 0; i != AsmStrSize; ++i)
   1566         AsmStr += (char)Record[2+i];
   1567       for (unsigned i = 0; i != ConstStrSize; ++i)
   1568         ConstrStr += (char)Record[3+AsmStrSize+i];
   1569       PointerType *PTy = cast<PointerType>(CurTy);
   1570       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1571                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
   1572                          InlineAsm::AsmDialect(AsmDialect));
   1573       break;
   1574     }
   1575     case bitc::CST_CODE_BLOCKADDRESS:{
   1576       if (Record.size() < 3)
   1577         return Error(InvalidRecord);
   1578       Type *FnTy = getTypeByID(Record[0]);
   1579       if (!FnTy)
   1580         return Error(InvalidRecord);
   1581       Function *Fn =
   1582         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   1583       if (!Fn)
   1584         return Error(InvalidRecord);
   1585 
   1586       // If the function is already parsed we can insert the block address right
   1587       // away.
   1588       if (!Fn->empty()) {
   1589         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
   1590         for (size_t I = 0, E = Record[2]; I != E; ++I) {
   1591           if (BBI == BBE)
   1592             return Error(InvalidID);
   1593           ++BBI;
   1594         }
   1595         V = BlockAddress::get(Fn, BBI);
   1596       } else {
   1597         // Otherwise insert a placeholder and remember it so it can be inserted
   1598         // when the function is parsed.
   1599         GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   1600                                                     Type::getInt8Ty(Context),
   1601                                             false, GlobalValue::InternalLinkage,
   1602                                                     nullptr, "");
   1603         BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   1604         V = FwdRef;
   1605       }
   1606       break;
   1607     }
   1608     }
   1609 
   1610     ValueList.AssignValue(V, NextCstNo);
   1611     ++NextCstNo;
   1612   }
   1613 }
   1614 
   1615 std::error_code BitcodeReader::ParseUseLists() {
   1616   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
   1617     return Error(InvalidRecord);
   1618 
   1619   SmallVector<uint64_t, 64> Record;
   1620 
   1621   // Read all the records.
   1622   while (1) {
   1623     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1624 
   1625     switch (Entry.Kind) {
   1626     case BitstreamEntry::SubBlock: // Handled for us already.
   1627     case BitstreamEntry::Error:
   1628       return Error(MalformedBlock);
   1629     case BitstreamEntry::EndBlock:
   1630       return std::error_code();
   1631     case BitstreamEntry::Record:
   1632       // The interesting case.
   1633       break;
   1634     }
   1635 
   1636     // Read a use list record.
   1637     Record.clear();
   1638     switch (Stream.readRecord(Entry.ID, Record)) {
   1639     default:  // Default behavior: unknown type.
   1640       break;
   1641     case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
   1642       unsigned RecordLength = Record.size();
   1643       if (RecordLength < 1)
   1644         return Error(InvalidRecord);
   1645       UseListRecords.push_back(Record);
   1646       break;
   1647     }
   1648     }
   1649   }
   1650 }
   1651 
   1652 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   1653 /// remember where it is and then skip it.  This lets us lazily deserialize the
   1654 /// functions.
   1655 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
   1656   // Get the function we are talking about.
   1657   if (FunctionsWithBodies.empty())
   1658     return Error(InsufficientFunctionProtos);
   1659 
   1660   Function *Fn = FunctionsWithBodies.back();
   1661   FunctionsWithBodies.pop_back();
   1662 
   1663   // Save the current stream state.
   1664   uint64_t CurBit = Stream.GetCurrentBitNo();
   1665   DeferredFunctionInfo[Fn] = CurBit;
   1666 
   1667   // Skip over the function block for now.
   1668   if (Stream.SkipBlock())
   1669     return Error(InvalidRecord);
   1670   return std::error_code();
   1671 }
   1672 
   1673 std::error_code BitcodeReader::GlobalCleanup() {
   1674   // Patch the initializers for globals and aliases up.
   1675   ResolveGlobalAndAliasInits();
   1676   if (!GlobalInits.empty() || !AliasInits.empty())
   1677     return Error(MalformedGlobalInitializerSet);
   1678 
   1679   // Look for intrinsic functions which need to be upgraded at some point
   1680   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   1681        FI != FE; ++FI) {
   1682     Function *NewFn;
   1683     if (UpgradeIntrinsicFunction(FI, NewFn))
   1684       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   1685   }
   1686 
   1687   // Look for global variables which need to be renamed.
   1688   for (Module::global_iterator
   1689          GI = TheModule->global_begin(), GE = TheModule->global_end();
   1690        GI != GE;) {
   1691     GlobalVariable *GV = GI++;
   1692     UpgradeGlobalVariable(GV);
   1693   }
   1694 
   1695   // Force deallocation of memory for these vectors to favor the client that
   1696   // want lazy deserialization.
   1697   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   1698   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   1699   return std::error_code();
   1700 }
   1701 
   1702 std::error_code BitcodeReader::ParseModule(bool Resume) {
   1703   if (Resume)
   1704     Stream.JumpToBit(NextUnreadBit);
   1705   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1706     return Error(InvalidRecord);
   1707 
   1708   SmallVector<uint64_t, 64> Record;
   1709   std::vector<std::string> SectionTable;
   1710   std::vector<std::string> GCTable;
   1711 
   1712   // Read all the records for this module.
   1713   while (1) {
   1714     BitstreamEntry Entry = Stream.advance();
   1715 
   1716     switch (Entry.Kind) {
   1717     case BitstreamEntry::Error:
   1718       return Error(MalformedBlock);
   1719     case BitstreamEntry::EndBlock:
   1720       return GlobalCleanup();
   1721 
   1722     case BitstreamEntry::SubBlock:
   1723       switch (Entry.ID) {
   1724       default:  // Skip unknown content.
   1725         if (Stream.SkipBlock())
   1726           return Error(InvalidRecord);
   1727         break;
   1728       case bitc::BLOCKINFO_BLOCK_ID:
   1729         if (Stream.ReadBlockInfoBlock())
   1730           return Error(MalformedBlock);
   1731         break;
   1732       case bitc::PARAMATTR_BLOCK_ID:
   1733         if (std::error_code EC = ParseAttributeBlock())
   1734           return EC;
   1735         break;
   1736       case bitc::PARAMATTR_GROUP_BLOCK_ID:
   1737         if (std::error_code EC = ParseAttributeGroupBlock())
   1738           return EC;
   1739         break;
   1740       case bitc::TYPE_BLOCK_ID_NEW:
   1741         if (std::error_code EC = ParseTypeTable())
   1742           return EC;
   1743         break;
   1744       case bitc::VALUE_SYMTAB_BLOCK_ID:
   1745         if (std::error_code EC = ParseValueSymbolTable())
   1746           return EC;
   1747         SeenValueSymbolTable = true;
   1748         break;
   1749       case bitc::CONSTANTS_BLOCK_ID:
   1750         if (std::error_code EC = ParseConstants())
   1751           return EC;
   1752         if (std::error_code EC = ResolveGlobalAndAliasInits())
   1753           return EC;
   1754         break;
   1755       case bitc::METADATA_BLOCK_ID:
   1756         if (std::error_code EC = ParseMetadata())
   1757           return EC;
   1758         break;
   1759       case bitc::FUNCTION_BLOCK_ID:
   1760         // If this is the first function body we've seen, reverse the
   1761         // FunctionsWithBodies list.
   1762         if (!SeenFirstFunctionBody) {
   1763           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   1764           if (std::error_code EC = GlobalCleanup())
   1765             return EC;
   1766           SeenFirstFunctionBody = true;
   1767         }
   1768 
   1769         if (std::error_code EC = RememberAndSkipFunctionBody())
   1770           return EC;
   1771         // For streaming bitcode, suspend parsing when we reach the function
   1772         // bodies. Subsequent materialization calls will resume it when
   1773         // necessary. For streaming, the function bodies must be at the end of
   1774         // the bitcode. If the bitcode file is old, the symbol table will be
   1775         // at the end instead and will not have been seen yet. In this case,
   1776         // just finish the parse now.
   1777         if (LazyStreamer && SeenValueSymbolTable) {
   1778           NextUnreadBit = Stream.GetCurrentBitNo();
   1779           return std::error_code();
   1780         }
   1781         break;
   1782       case bitc::USELIST_BLOCK_ID:
   1783         if (std::error_code EC = ParseUseLists())
   1784           return EC;
   1785         break;
   1786       }
   1787       continue;
   1788 
   1789     case BitstreamEntry::Record:
   1790       // The interesting case.
   1791       break;
   1792     }
   1793 
   1794 
   1795     // Read a record.
   1796     switch (Stream.readRecord(Entry.ID, Record)) {
   1797     default: break;  // Default behavior, ignore unknown content.
   1798     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
   1799       if (Record.size() < 1)
   1800         return Error(InvalidRecord);
   1801       // Only version #0 and #1 are supported so far.
   1802       unsigned module_version = Record[0];
   1803       switch (module_version) {
   1804         default:
   1805           return Error(InvalidValue);
   1806         case 0:
   1807           UseRelativeIDs = false;
   1808           break;
   1809         case 1:
   1810           UseRelativeIDs = true;
   1811           break;
   1812       }
   1813       break;
   1814     }
   1815     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1816       std::string S;
   1817       if (ConvertToString(Record, 0, S))
   1818         return Error(InvalidRecord);
   1819       TheModule->setTargetTriple(S);
   1820       break;
   1821     }
   1822     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   1823       std::string S;
   1824       if (ConvertToString(Record, 0, S))
   1825         return Error(InvalidRecord);
   1826       TheModule->setDataLayout(S);
   1827       break;
   1828     }
   1829     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   1830       std::string S;
   1831       if (ConvertToString(Record, 0, S))
   1832         return Error(InvalidRecord);
   1833       TheModule->setModuleInlineAsm(S);
   1834       break;
   1835     }
   1836     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   1837       // FIXME: Remove in 4.0.
   1838       std::string S;
   1839       if (ConvertToString(Record, 0, S))
   1840         return Error(InvalidRecord);
   1841       // Ignore value.
   1842       break;
   1843     }
   1844     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   1845       std::string S;
   1846       if (ConvertToString(Record, 0, S))
   1847         return Error(InvalidRecord);
   1848       SectionTable.push_back(S);
   1849       break;
   1850     }
   1851     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   1852       std::string S;
   1853       if (ConvertToString(Record, 0, S))
   1854         return Error(InvalidRecord);
   1855       GCTable.push_back(S);
   1856       break;
   1857     }
   1858     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
   1859       if (Record.size() < 2)
   1860         return Error(InvalidRecord);
   1861       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
   1862       unsigned ComdatNameSize = Record[1];
   1863       std::string ComdatName;
   1864       ComdatName.reserve(ComdatNameSize);
   1865       for (unsigned i = 0; i != ComdatNameSize; ++i)
   1866         ComdatName += (char)Record[2 + i];
   1867       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
   1868       C->setSelectionKind(SK);
   1869       ComdatList.push_back(C);
   1870       break;
   1871     }
   1872     // GLOBALVAR: [pointer type, isconst, initid,
   1873     //             linkage, alignment, section, visibility, threadlocal,
   1874     //             unnamed_addr, dllstorageclass]
   1875     case bitc::MODULE_CODE_GLOBALVAR: {
   1876       if (Record.size() < 6)
   1877         return Error(InvalidRecord);
   1878       Type *Ty = getTypeByID(Record[0]);
   1879       if (!Ty)
   1880         return Error(InvalidRecord);
   1881       if (!Ty->isPointerTy())
   1882         return Error(InvalidTypeForValue);
   1883       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   1884       Ty = cast<PointerType>(Ty)->getElementType();
   1885 
   1886       bool isConstant = Record[1];
   1887       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
   1888       unsigned Alignment = (1 << Record[4]) >> 1;
   1889       std::string Section;
   1890       if (Record[5]) {
   1891         if (Record[5]-1 >= SectionTable.size())
   1892           return Error(InvalidID);
   1893         Section = SectionTable[Record[5]-1];
   1894       }
   1895       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   1896       // Local linkage must have default visibility.
   1897       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
   1898         // FIXME: Change to an error if non-default in 4.0.
   1899         Visibility = GetDecodedVisibility(Record[6]);
   1900 
   1901       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   1902       if (Record.size() > 7)
   1903         TLM = GetDecodedThreadLocalMode(Record[7]);
   1904 
   1905       bool UnnamedAddr = false;
   1906       if (Record.size() > 8)
   1907         UnnamedAddr = Record[8];
   1908 
   1909       bool ExternallyInitialized = false;
   1910       if (Record.size() > 9)
   1911         ExternallyInitialized = Record[9];
   1912 
   1913       GlobalVariable *NewGV =
   1914         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
   1915                            TLM, AddressSpace, ExternallyInitialized);
   1916       NewGV->setAlignment(Alignment);
   1917       if (!Section.empty())
   1918         NewGV->setSection(Section);
   1919       NewGV->setVisibility(Visibility);
   1920       NewGV->setUnnamedAddr(UnnamedAddr);
   1921 
   1922       if (Record.size() > 10)
   1923         NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
   1924       else
   1925         UpgradeDLLImportExportLinkage(NewGV, Record[3]);
   1926 
   1927       ValueList.push_back(NewGV);
   1928 
   1929       // Remember which value to use for the global initializer.
   1930       if (unsigned InitID = Record[2])
   1931         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   1932 
   1933       if (Record.size() > 11)
   1934         if (unsigned ComdatID = Record[11]) {
   1935           assert(ComdatID <= ComdatList.size());
   1936           NewGV->setComdat(ComdatList[ComdatID - 1]);
   1937         }
   1938       break;
   1939     }
   1940     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   1941     //             alignment, section, visibility, gc, unnamed_addr,
   1942     //             dllstorageclass]
   1943     case bitc::MODULE_CODE_FUNCTION: {
   1944       if (Record.size() < 8)
   1945         return Error(InvalidRecord);
   1946       Type *Ty = getTypeByID(Record[0]);
   1947       if (!Ty)
   1948         return Error(InvalidRecord);
   1949       if (!Ty->isPointerTy())
   1950         return Error(InvalidTypeForValue);
   1951       FunctionType *FTy =
   1952         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   1953       if (!FTy)
   1954         return Error(InvalidTypeForValue);
   1955 
   1956       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   1957                                         "", TheModule);
   1958 
   1959       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   1960       bool isProto = Record[2];
   1961       Func->setLinkage(GetDecodedLinkage(Record[3]));
   1962       Func->setAttributes(getAttributes(Record[4]));
   1963 
   1964       Func->setAlignment((1 << Record[5]) >> 1);
   1965       if (Record[6]) {
   1966         if (Record[6]-1 >= SectionTable.size())
   1967           return Error(InvalidID);
   1968         Func->setSection(SectionTable[Record[6]-1]);
   1969       }
   1970       // Local linkage must have default visibility.
   1971       if (!Func->hasLocalLinkage())
   1972         // FIXME: Change to an error if non-default in 4.0.
   1973         Func->setVisibility(GetDecodedVisibility(Record[7]));
   1974       if (Record.size() > 8 && Record[8]) {
   1975         if (Record[8]-1 > GCTable.size())
   1976           return Error(InvalidID);
   1977         Func->setGC(GCTable[Record[8]-1].c_str());
   1978       }
   1979       bool UnnamedAddr = false;
   1980       if (Record.size() > 9)
   1981         UnnamedAddr = Record[9];
   1982       Func->setUnnamedAddr(UnnamedAddr);
   1983       if (Record.size() > 10 && Record[10] != 0)
   1984         FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
   1985 
   1986       if (Record.size() > 11)
   1987         Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
   1988       else
   1989         UpgradeDLLImportExportLinkage(Func, Record[3]);
   1990 
   1991       if (Record.size() > 12)
   1992         if (unsigned ComdatID = Record[12]) {
   1993           assert(ComdatID <= ComdatList.size());
   1994           Func->setComdat(ComdatList[ComdatID - 1]);
   1995         }
   1996 
   1997       ValueList.push_back(Func);
   1998 
   1999       // If this is a function with a body, remember the prototype we are
   2000       // creating now, so that we can match up the body with them later.
   2001       if (!isProto) {
   2002         FunctionsWithBodies.push_back(Func);
   2003         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
   2004       }
   2005       break;
   2006     }
   2007     // ALIAS: [alias type, aliasee val#, linkage]
   2008     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
   2009     case bitc::MODULE_CODE_ALIAS: {
   2010       if (Record.size() < 3)
   2011         return Error(InvalidRecord);
   2012       Type *Ty = getTypeByID(Record[0]);
   2013       if (!Ty)
   2014         return Error(InvalidRecord);
   2015       auto *PTy = dyn_cast<PointerType>(Ty);
   2016       if (!PTy)
   2017         return Error(InvalidTypeForValue);
   2018 
   2019       auto *NewGA =
   2020           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
   2021                               GetDecodedLinkage(Record[2]), "", TheModule);
   2022       // Old bitcode files didn't have visibility field.
   2023       // Local linkage must have default visibility.
   2024       if (Record.size() > 3 && !NewGA->hasLocalLinkage())
   2025         // FIXME: Change to an error if non-default in 4.0.
   2026         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   2027       if (Record.size() > 4)
   2028         NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
   2029       else
   2030         UpgradeDLLImportExportLinkage(NewGA, Record[2]);
   2031       if (Record.size() > 5)
   2032 	NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
   2033       if (Record.size() > 6)
   2034 	NewGA->setUnnamedAddr(Record[6]);
   2035       ValueList.push_back(NewGA);
   2036       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   2037       break;
   2038     }
   2039     /// MODULE_CODE_PURGEVALS: [numvals]
   2040     case bitc::MODULE_CODE_PURGEVALS:
   2041       // Trim down the value list to the specified size.
   2042       if (Record.size() < 1 || Record[0] > ValueList.size())
   2043         return Error(InvalidRecord);
   2044       ValueList.shrinkTo(Record[0]);
   2045       break;
   2046     }
   2047     Record.clear();
   2048   }
   2049 }
   2050 
   2051 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
   2052   TheModule = nullptr;
   2053 
   2054   if (std::error_code EC = InitStream())
   2055     return EC;
   2056 
   2057   // Sniff for the signature.
   2058   if (Stream.Read(8) != 'B' ||
   2059       Stream.Read(8) != 'C' ||
   2060       Stream.Read(4) != 0x0 ||
   2061       Stream.Read(4) != 0xC ||
   2062       Stream.Read(4) != 0xE ||
   2063       Stream.Read(4) != 0xD)
   2064     return Error(InvalidBitcodeSignature);
   2065 
   2066   // We expect a number of well-defined blocks, though we don't necessarily
   2067   // need to understand them all.
   2068   while (1) {
   2069     if (Stream.AtEndOfStream())
   2070       return std::error_code();
   2071 
   2072     BitstreamEntry Entry =
   2073       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   2074 
   2075     switch (Entry.Kind) {
   2076     case BitstreamEntry::Error:
   2077       return Error(MalformedBlock);
   2078     case BitstreamEntry::EndBlock:
   2079       return std::error_code();
   2080 
   2081     case BitstreamEntry::SubBlock:
   2082       switch (Entry.ID) {
   2083       case bitc::BLOCKINFO_BLOCK_ID:
   2084         if (Stream.ReadBlockInfoBlock())
   2085           return Error(MalformedBlock);
   2086         break;
   2087       case bitc::MODULE_BLOCK_ID:
   2088         // Reject multiple MODULE_BLOCK's in a single bitstream.
   2089         if (TheModule)
   2090           return Error(InvalidMultipleBlocks);
   2091         TheModule = M;
   2092         if (std::error_code EC = ParseModule(false))
   2093           return EC;
   2094         if (LazyStreamer)
   2095           return std::error_code();
   2096         break;
   2097       default:
   2098         if (Stream.SkipBlock())
   2099           return Error(InvalidRecord);
   2100         break;
   2101       }
   2102       continue;
   2103     case BitstreamEntry::Record:
   2104       // There should be no records in the top-level of blocks.
   2105 
   2106       // The ranlib in Xcode 4 will align archive members by appending newlines
   2107       // to the end of them. If this file size is a multiple of 4 but not 8, we
   2108       // have to read and ignore these final 4 bytes :-(
   2109       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
   2110           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   2111           Stream.AtEndOfStream())
   2112         return std::error_code();
   2113 
   2114       return Error(InvalidRecord);
   2115     }
   2116   }
   2117 }
   2118 
   2119 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
   2120   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   2121     return Error(InvalidRecord);
   2122 
   2123   SmallVector<uint64_t, 64> Record;
   2124 
   2125   std::string Triple;
   2126   // Read all the records for this module.
   2127   while (1) {
   2128     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2129 
   2130     switch (Entry.Kind) {
   2131     case BitstreamEntry::SubBlock: // Handled for us already.
   2132     case BitstreamEntry::Error:
   2133       return Error(MalformedBlock);
   2134     case BitstreamEntry::EndBlock:
   2135       return Triple;
   2136     case BitstreamEntry::Record:
   2137       // The interesting case.
   2138       break;
   2139     }
   2140 
   2141     // Read a record.
   2142     switch (Stream.readRecord(Entry.ID, Record)) {
   2143     default: break;  // Default behavior, ignore unknown content.
   2144     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2145       std::string S;
   2146       if (ConvertToString(Record, 0, S))
   2147         return Error(InvalidRecord);
   2148       Triple = S;
   2149       break;
   2150     }
   2151     }
   2152     Record.clear();
   2153   }
   2154   llvm_unreachable("Exit infinite loop");
   2155 }
   2156 
   2157 ErrorOr<std::string> BitcodeReader::parseTriple() {
   2158   if (std::error_code EC = InitStream())
   2159     return EC;
   2160 
   2161   // Sniff for the signature.
   2162   if (Stream.Read(8) != 'B' ||
   2163       Stream.Read(8) != 'C' ||
   2164       Stream.Read(4) != 0x0 ||
   2165       Stream.Read(4) != 0xC ||
   2166       Stream.Read(4) != 0xE ||
   2167       Stream.Read(4) != 0xD)
   2168     return Error(InvalidBitcodeSignature);
   2169 
   2170   // We expect a number of well-defined blocks, though we don't necessarily
   2171   // need to understand them all.
   2172   while (1) {
   2173     BitstreamEntry Entry = Stream.advance();
   2174 
   2175     switch (Entry.Kind) {
   2176     case BitstreamEntry::Error:
   2177       return Error(MalformedBlock);
   2178     case BitstreamEntry::EndBlock:
   2179       return std::error_code();
   2180 
   2181     case BitstreamEntry::SubBlock:
   2182       if (Entry.ID == bitc::MODULE_BLOCK_ID)
   2183         return parseModuleTriple();
   2184 
   2185       // Ignore other sub-blocks.
   2186       if (Stream.SkipBlock())
   2187         return Error(MalformedBlock);
   2188       continue;
   2189 
   2190     case BitstreamEntry::Record:
   2191       Stream.skipRecord(Entry.ID);
   2192       continue;
   2193     }
   2194   }
   2195 }
   2196 
   2197 /// ParseMetadataAttachment - Parse metadata attachments.
   2198 std::error_code BitcodeReader::ParseMetadataAttachment() {
   2199   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   2200     return Error(InvalidRecord);
   2201 
   2202   SmallVector<uint64_t, 64> Record;
   2203   while (1) {
   2204     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2205 
   2206     switch (Entry.Kind) {
   2207     case BitstreamEntry::SubBlock: // Handled for us already.
   2208     case BitstreamEntry::Error:
   2209       return Error(MalformedBlock);
   2210     case BitstreamEntry::EndBlock:
   2211       return std::error_code();
   2212     case BitstreamEntry::Record:
   2213       // The interesting case.
   2214       break;
   2215     }
   2216 
   2217     // Read a metadata attachment record.
   2218     Record.clear();
   2219     switch (Stream.readRecord(Entry.ID, Record)) {
   2220     default:  // Default behavior: ignore.
   2221       break;
   2222     case bitc::METADATA_ATTACHMENT: {
   2223       unsigned RecordLength = Record.size();
   2224       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   2225         return Error(InvalidRecord);
   2226       Instruction *Inst = InstructionList[Record[0]];
   2227       for (unsigned i = 1; i != RecordLength; i = i+2) {
   2228         unsigned Kind = Record[i];
   2229         DenseMap<unsigned, unsigned>::iterator I =
   2230           MDKindMap.find(Kind);
   2231         if (I == MDKindMap.end())
   2232           return Error(InvalidID);
   2233         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
   2234         Inst->setMetadata(I->second, cast<MDNode>(Node));
   2235         if (I->second == LLVMContext::MD_tbaa)
   2236           InstsWithTBAATag.push_back(Inst);
   2237       }
   2238       break;
   2239     }
   2240     }
   2241   }
   2242 }
   2243 
   2244 /// ParseFunctionBody - Lazily parse the specified function body block.
   2245 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
   2246   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   2247     return Error(InvalidRecord);
   2248 
   2249   InstructionList.clear();
   2250   unsigned ModuleValueListSize = ValueList.size();
   2251   unsigned ModuleMDValueListSize = MDValueList.size();
   2252 
   2253   // Add all the function arguments to the value table.
   2254   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   2255     ValueList.push_back(I);
   2256 
   2257   unsigned NextValueNo = ValueList.size();
   2258   BasicBlock *CurBB = nullptr;
   2259   unsigned CurBBNo = 0;
   2260 
   2261   DebugLoc LastLoc;
   2262 
   2263   // Read all the records.
   2264   SmallVector<uint64_t, 64> Record;
   2265   while (1) {
   2266     BitstreamEntry Entry = Stream.advance();
   2267 
   2268     switch (Entry.Kind) {
   2269     case BitstreamEntry::Error:
   2270       return Error(MalformedBlock);
   2271     case BitstreamEntry::EndBlock:
   2272       goto OutOfRecordLoop;
   2273 
   2274     case BitstreamEntry::SubBlock:
   2275       switch (Entry.ID) {
   2276       default:  // Skip unknown content.
   2277         if (Stream.SkipBlock())
   2278           return Error(InvalidRecord);
   2279         break;
   2280       case bitc::CONSTANTS_BLOCK_ID:
   2281         if (std::error_code EC = ParseConstants())
   2282           return EC;
   2283         NextValueNo = ValueList.size();
   2284         break;
   2285       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2286         if (std::error_code EC = ParseValueSymbolTable())
   2287           return EC;
   2288         break;
   2289       case bitc::METADATA_ATTACHMENT_ID:
   2290         if (std::error_code EC = ParseMetadataAttachment())
   2291           return EC;
   2292         break;
   2293       case bitc::METADATA_BLOCK_ID:
   2294         if (std::error_code EC = ParseMetadata())
   2295           return EC;
   2296         break;
   2297       }
   2298       continue;
   2299 
   2300     case BitstreamEntry::Record:
   2301       // The interesting case.
   2302       break;
   2303     }
   2304 
   2305     // Read a record.
   2306     Record.clear();
   2307     Instruction *I = nullptr;
   2308     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   2309     switch (BitCode) {
   2310     default: // Default behavior: reject
   2311       return Error(InvalidValue);
   2312     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2313       if (Record.size() < 1 || Record[0] == 0)
   2314         return Error(InvalidRecord);
   2315       // Create all the basic blocks for the function.
   2316       FunctionBBs.resize(Record[0]);
   2317       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2318         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2319       CurBB = FunctionBBs[0];
   2320       continue;
   2321 
   2322     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2323       // This record indicates that the last instruction is at the same
   2324       // location as the previous instruction with a location.
   2325       I = nullptr;
   2326 
   2327       // Get the last instruction emitted.
   2328       if (CurBB && !CurBB->empty())
   2329         I = &CurBB->back();
   2330       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2331                !FunctionBBs[CurBBNo-1]->empty())
   2332         I = &FunctionBBs[CurBBNo-1]->back();
   2333 
   2334       if (!I)
   2335         return Error(InvalidRecord);
   2336       I->setDebugLoc(LastLoc);
   2337       I = nullptr;
   2338       continue;
   2339 
   2340     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2341       I = nullptr;     // Get the last instruction emitted.
   2342       if (CurBB && !CurBB->empty())
   2343         I = &CurBB->back();
   2344       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2345                !FunctionBBs[CurBBNo-1]->empty())
   2346         I = &FunctionBBs[CurBBNo-1]->back();
   2347       if (!I || Record.size() < 4)
   2348         return Error(InvalidRecord);
   2349 
   2350       unsigned Line = Record[0], Col = Record[1];
   2351       unsigned ScopeID = Record[2], IAID = Record[3];
   2352 
   2353       MDNode *Scope = nullptr, *IA = nullptr;
   2354       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2355       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2356       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2357       I->setDebugLoc(LastLoc);
   2358       I = nullptr;
   2359       continue;
   2360     }
   2361 
   2362     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2363       unsigned OpNum = 0;
   2364       Value *LHS, *RHS;
   2365       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2366           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   2367           OpNum+1 > Record.size())
   2368         return Error(InvalidRecord);
   2369 
   2370       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2371       if (Opc == -1)
   2372         return Error(InvalidRecord);
   2373       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2374       InstructionList.push_back(I);
   2375       if (OpNum < Record.size()) {
   2376         if (Opc == Instruction::Add ||
   2377             Opc == Instruction::Sub ||
   2378             Opc == Instruction::Mul ||
   2379             Opc == Instruction::Shl) {
   2380           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2381             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2382           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2383             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2384         } else if (Opc == Instruction::SDiv ||
   2385                    Opc == Instruction::UDiv ||
   2386                    Opc == Instruction::LShr ||
   2387                    Opc == Instruction::AShr) {
   2388           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2389             cast<BinaryOperator>(I)->setIsExact(true);
   2390         } else if (isa<FPMathOperator>(I)) {
   2391           FastMathFlags FMF;
   2392           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
   2393             FMF.setUnsafeAlgebra();
   2394           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
   2395             FMF.setNoNaNs();
   2396           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
   2397             FMF.setNoInfs();
   2398           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
   2399             FMF.setNoSignedZeros();
   2400           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
   2401             FMF.setAllowReciprocal();
   2402           if (FMF.any())
   2403             I->setFastMathFlags(FMF);
   2404         }
   2405 
   2406       }
   2407       break;
   2408     }
   2409     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2410       unsigned OpNum = 0;
   2411       Value *Op;
   2412       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2413           OpNum+2 != Record.size())
   2414         return Error(InvalidRecord);
   2415 
   2416       Type *ResTy = getTypeByID(Record[OpNum]);
   2417       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2418       if (Opc == -1 || !ResTy)
   2419         return Error(InvalidRecord);
   2420       Instruction *Temp = nullptr;
   2421       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
   2422         if (Temp) {
   2423           InstructionList.push_back(Temp);
   2424           CurBB->getInstList().push_back(Temp);
   2425         }
   2426       } else {
   2427         I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2428       }
   2429       InstructionList.push_back(I);
   2430       break;
   2431     }
   2432     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
   2433     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2434       unsigned OpNum = 0;
   2435       Value *BasePtr;
   2436       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2437         return Error(InvalidRecord);
   2438 
   2439       SmallVector<Value*, 16> GEPIdx;
   2440       while (OpNum != Record.size()) {
   2441         Value *Op;
   2442         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2443           return Error(InvalidRecord);
   2444         GEPIdx.push_back(Op);
   2445       }
   2446 
   2447       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
   2448       InstructionList.push_back(I);
   2449       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
   2450         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2451       break;
   2452     }
   2453 
   2454     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   2455                                        // EXTRACTVAL: [opty, opval, n x indices]
   2456       unsigned OpNum = 0;
   2457       Value *Agg;
   2458       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2459         return Error(InvalidRecord);
   2460 
   2461       SmallVector<unsigned, 4> EXTRACTVALIdx;
   2462       for (unsigned RecSize = Record.size();
   2463            OpNum != RecSize; ++OpNum) {
   2464         uint64_t Index = Record[OpNum];
   2465         if ((unsigned)Index != Index)
   2466           return Error(InvalidValue);
   2467         EXTRACTVALIdx.push_back((unsigned)Index);
   2468       }
   2469 
   2470       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   2471       InstructionList.push_back(I);
   2472       break;
   2473     }
   2474 
   2475     case bitc::FUNC_CODE_INST_INSERTVAL: {
   2476                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   2477       unsigned OpNum = 0;
   2478       Value *Agg;
   2479       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2480         return Error(InvalidRecord);
   2481       Value *Val;
   2482       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   2483         return Error(InvalidRecord);
   2484 
   2485       SmallVector<unsigned, 4> INSERTVALIdx;
   2486       for (unsigned RecSize = Record.size();
   2487            OpNum != RecSize; ++OpNum) {
   2488         uint64_t Index = Record[OpNum];
   2489         if ((unsigned)Index != Index)
   2490           return Error(InvalidValue);
   2491         INSERTVALIdx.push_back((unsigned)Index);
   2492       }
   2493 
   2494       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   2495       InstructionList.push_back(I);
   2496       break;
   2497     }
   2498 
   2499     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   2500       // obsolete form of select
   2501       // handles select i1 ... in old bitcode
   2502       unsigned OpNum = 0;
   2503       Value *TrueVal, *FalseVal, *Cond;
   2504       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2505           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   2506           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
   2507         return Error(InvalidRecord);
   2508 
   2509       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2510       InstructionList.push_back(I);
   2511       break;
   2512     }
   2513 
   2514     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   2515       // new form of select
   2516       // handles select i1 or select [N x i1]
   2517       unsigned OpNum = 0;
   2518       Value *TrueVal, *FalseVal, *Cond;
   2519       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2520           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   2521           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   2522         return Error(InvalidRecord);
   2523 
   2524       // select condition can be either i1 or [N x i1]
   2525       if (VectorType* vector_type =
   2526           dyn_cast<VectorType>(Cond->getType())) {
   2527         // expect <n x i1>
   2528         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   2529           return Error(InvalidTypeForValue);
   2530       } else {
   2531         // expect i1
   2532         if (Cond->getType() != Type::getInt1Ty(Context))
   2533           return Error(InvalidTypeForValue);
   2534       }
   2535 
   2536       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2537       InstructionList.push_back(I);
   2538       break;
   2539     }
   2540 
   2541     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   2542       unsigned OpNum = 0;
   2543       Value *Vec, *Idx;
   2544       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2545           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   2546         return Error(InvalidRecord);
   2547       I = ExtractElementInst::Create(Vec, Idx);
   2548       InstructionList.push_back(I);
   2549       break;
   2550     }
   2551 
   2552     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   2553       unsigned OpNum = 0;
   2554       Value *Vec, *Elt, *Idx;
   2555       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2556           popValue(Record, OpNum, NextValueNo,
   2557                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   2558           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   2559         return Error(InvalidRecord);
   2560       I = InsertElementInst::Create(Vec, Elt, Idx);
   2561       InstructionList.push_back(I);
   2562       break;
   2563     }
   2564 
   2565     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   2566       unsigned OpNum = 0;
   2567       Value *Vec1, *Vec2, *Mask;
   2568       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   2569           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
   2570         return Error(InvalidRecord);
   2571 
   2572       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   2573         return Error(InvalidRecord);
   2574       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   2575       InstructionList.push_back(I);
   2576       break;
   2577     }
   2578 
   2579     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   2580       // Old form of ICmp/FCmp returning bool
   2581       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   2582       // both legal on vectors but had different behaviour.
   2583     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   2584       // FCmp/ICmp returning bool or vector of bool
   2585 
   2586       unsigned OpNum = 0;
   2587       Value *LHS, *RHS;
   2588       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2589           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   2590           OpNum+1 != Record.size())
   2591         return Error(InvalidRecord);
   2592 
   2593       if (LHS->getType()->isFPOrFPVectorTy())
   2594         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   2595       else
   2596         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   2597       InstructionList.push_back(I);
   2598       break;
   2599     }
   2600 
   2601     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   2602       {
   2603         unsigned Size = Record.size();
   2604         if (Size == 0) {
   2605           I = ReturnInst::Create(Context);
   2606           InstructionList.push_back(I);
   2607           break;
   2608         }
   2609 
   2610         unsigned OpNum = 0;
   2611         Value *Op = nullptr;
   2612         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2613           return Error(InvalidRecord);
   2614         if (OpNum != Record.size())
   2615           return Error(InvalidRecord);
   2616 
   2617         I = ReturnInst::Create(Context, Op);
   2618         InstructionList.push_back(I);
   2619         break;
   2620       }
   2621     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   2622       if (Record.size() != 1 && Record.size() != 3)
   2623         return Error(InvalidRecord);
   2624       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   2625       if (!TrueDest)
   2626         return Error(InvalidRecord);
   2627 
   2628       if (Record.size() == 1) {
   2629         I = BranchInst::Create(TrueDest);
   2630         InstructionList.push_back(I);
   2631       }
   2632       else {
   2633         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   2634         Value *Cond = getValue(Record, 2, NextValueNo,
   2635                                Type::getInt1Ty(Context));
   2636         if (!FalseDest || !Cond)
   2637           return Error(InvalidRecord);
   2638         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   2639         InstructionList.push_back(I);
   2640       }
   2641       break;
   2642     }
   2643     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   2644       // Check magic
   2645       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
   2646         // "New" SwitchInst format with case ranges. The changes to write this
   2647         // format were reverted but we still recognize bitcode that uses it.
   2648         // Hopefully someday we will have support for case ranges and can use
   2649         // this format again.
   2650 
   2651         Type *OpTy = getTypeByID(Record[1]);
   2652         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
   2653 
   2654         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
   2655         BasicBlock *Default = getBasicBlock(Record[3]);
   2656         if (!OpTy || !Cond || !Default)
   2657           return Error(InvalidRecord);
   2658 
   2659         unsigned NumCases = Record[4];
   2660 
   2661         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2662         InstructionList.push_back(SI);
   2663 
   2664         unsigned CurIdx = 5;
   2665         for (unsigned i = 0; i != NumCases; ++i) {
   2666           SmallVector<ConstantInt*, 1> CaseVals;
   2667           unsigned NumItems = Record[CurIdx++];
   2668           for (unsigned ci = 0; ci != NumItems; ++ci) {
   2669             bool isSingleNumber = Record[CurIdx++];
   2670 
   2671             APInt Low;
   2672             unsigned ActiveWords = 1;
   2673             if (ValueBitWidth > 64)
   2674               ActiveWords = Record[CurIdx++];
   2675             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   2676                                 ValueBitWidth);
   2677             CurIdx += ActiveWords;
   2678 
   2679             if (!isSingleNumber) {
   2680               ActiveWords = 1;
   2681               if (ValueBitWidth > 64)
   2682                 ActiveWords = Record[CurIdx++];
   2683               APInt High =
   2684                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   2685                                 ValueBitWidth);
   2686               CurIdx += ActiveWords;
   2687 
   2688               // FIXME: It is not clear whether values in the range should be
   2689               // compared as signed or unsigned values. The partially
   2690               // implemented changes that used this format in the past used
   2691               // unsigned comparisons.
   2692               for ( ; Low.ule(High); ++Low)
   2693                 CaseVals.push_back(ConstantInt::get(Context, Low));
   2694             } else
   2695               CaseVals.push_back(ConstantInt::get(Context, Low));
   2696           }
   2697           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
   2698           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
   2699                  cve = CaseVals.end(); cvi != cve; ++cvi)
   2700             SI->addCase(*cvi, DestBB);
   2701         }
   2702         I = SI;
   2703         break;
   2704       }
   2705 
   2706       // Old SwitchInst format without case ranges.
   2707 
   2708       if (Record.size() < 3 || (Record.size() & 1) == 0)
   2709         return Error(InvalidRecord);
   2710       Type *OpTy = getTypeByID(Record[0]);
   2711       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
   2712       BasicBlock *Default = getBasicBlock(Record[2]);
   2713       if (!OpTy || !Cond || !Default)
   2714         return Error(InvalidRecord);
   2715       unsigned NumCases = (Record.size()-3)/2;
   2716       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2717       InstructionList.push_back(SI);
   2718       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   2719         ConstantInt *CaseVal =
   2720           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   2721         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   2722         if (!CaseVal || !DestBB) {
   2723           delete SI;
   2724           return Error(InvalidRecord);
   2725         }
   2726         SI->addCase(CaseVal, DestBB);
   2727       }
   2728       I = SI;
   2729       break;
   2730     }
   2731     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   2732       if (Record.size() < 2)
   2733         return Error(InvalidRecord);
   2734       Type *OpTy = getTypeByID(Record[0]);
   2735       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
   2736       if (!OpTy || !Address)
   2737         return Error(InvalidRecord);
   2738       unsigned NumDests = Record.size()-2;
   2739       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   2740       InstructionList.push_back(IBI);
   2741       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   2742         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   2743           IBI->addDestination(DestBB);
   2744         } else {
   2745           delete IBI;
   2746           return Error(InvalidRecord);
   2747         }
   2748       }
   2749       I = IBI;
   2750       break;
   2751     }
   2752 
   2753     case bitc::FUNC_CODE_INST_INVOKE: {
   2754       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   2755       if (Record.size() < 4)
   2756         return Error(InvalidRecord);
   2757       AttributeSet PAL = getAttributes(Record[0]);
   2758       unsigned CCInfo = Record[1];
   2759       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   2760       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   2761 
   2762       unsigned OpNum = 4;
   2763       Value *Callee;
   2764       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2765         return Error(InvalidRecord);
   2766 
   2767       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   2768       FunctionType *FTy = !CalleeTy ? nullptr :
   2769         dyn_cast<FunctionType>(CalleeTy->getElementType());
   2770 
   2771       // Check that the right number of fixed parameters are here.
   2772       if (!FTy || !NormalBB || !UnwindBB ||
   2773           Record.size() < OpNum+FTy->getNumParams())
   2774         return Error(InvalidRecord);
   2775 
   2776       SmallVector<Value*, 16> Ops;
   2777       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2778         Ops.push_back(getValue(Record, OpNum, NextValueNo,
   2779                                FTy->getParamType(i)));
   2780         if (!Ops.back())
   2781           return Error(InvalidRecord);
   2782       }
   2783 
   2784       if (!FTy->isVarArg()) {
   2785         if (Record.size() != OpNum)
   2786           return Error(InvalidRecord);
   2787       } else {
   2788         // Read type/value pairs for varargs params.
   2789         while (OpNum != Record.size()) {
   2790           Value *Op;
   2791           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2792             return Error(InvalidRecord);
   2793           Ops.push_back(Op);
   2794         }
   2795       }
   2796 
   2797       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   2798       InstructionList.push_back(I);
   2799       cast<InvokeInst>(I)->setCallingConv(
   2800         static_cast<CallingConv::ID>(CCInfo));
   2801       cast<InvokeInst>(I)->setAttributes(PAL);
   2802       break;
   2803     }
   2804     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   2805       unsigned Idx = 0;
   2806       Value *Val = nullptr;
   2807       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   2808         return Error(InvalidRecord);
   2809       I = ResumeInst::Create(Val);
   2810       InstructionList.push_back(I);
   2811       break;
   2812     }
   2813     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   2814       I = new UnreachableInst(Context);
   2815       InstructionList.push_back(I);
   2816       break;
   2817     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   2818       if (Record.size() < 1 || ((Record.size()-1)&1))
   2819         return Error(InvalidRecord);
   2820       Type *Ty = getTypeByID(Record[0]);
   2821       if (!Ty)
   2822         return Error(InvalidRecord);
   2823 
   2824       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   2825       InstructionList.push_back(PN);
   2826 
   2827       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   2828         Value *V;
   2829         // With the new function encoding, it is possible that operands have
   2830         // negative IDs (for forward references).  Use a signed VBR
   2831         // representation to keep the encoding small.
   2832         if (UseRelativeIDs)
   2833           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
   2834         else
   2835           V = getValue(Record, 1+i, NextValueNo, Ty);
   2836         BasicBlock *BB = getBasicBlock(Record[2+i]);
   2837         if (!V || !BB)
   2838           return Error(InvalidRecord);
   2839         PN->addIncoming(V, BB);
   2840       }
   2841       I = PN;
   2842       break;
   2843     }
   2844 
   2845     case bitc::FUNC_CODE_INST_LANDINGPAD: {
   2846       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   2847       unsigned Idx = 0;
   2848       if (Record.size() < 4)
   2849         return Error(InvalidRecord);
   2850       Type *Ty = getTypeByID(Record[Idx++]);
   2851       if (!Ty)
   2852         return Error(InvalidRecord);
   2853       Value *PersFn = nullptr;
   2854       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   2855         return Error(InvalidRecord);
   2856 
   2857       bool IsCleanup = !!Record[Idx++];
   2858       unsigned NumClauses = Record[Idx++];
   2859       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
   2860       LP->setCleanup(IsCleanup);
   2861       for (unsigned J = 0; J != NumClauses; ++J) {
   2862         LandingPadInst::ClauseType CT =
   2863           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   2864         Value *Val;
   2865 
   2866         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   2867           delete LP;
   2868           return Error(InvalidRecord);
   2869         }
   2870 
   2871         assert((CT != LandingPadInst::Catch ||
   2872                 !isa<ArrayType>(Val->getType())) &&
   2873                "Catch clause has a invalid type!");
   2874         assert((CT != LandingPadInst::Filter ||
   2875                 isa<ArrayType>(Val->getType())) &&
   2876                "Filter clause has invalid type!");
   2877         LP->addClause(cast<Constant>(Val));
   2878       }
   2879 
   2880       I = LP;
   2881       InstructionList.push_back(I);
   2882       break;
   2883     }
   2884 
   2885     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   2886       if (Record.size() != 4)
   2887         return Error(InvalidRecord);
   2888       PointerType *Ty =
   2889         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   2890       Type *OpTy = getTypeByID(Record[1]);
   2891       Value *Size = getFnValueByID(Record[2], OpTy);
   2892       unsigned Align = Record[3];
   2893       if (!Ty || !Size)
   2894         return Error(InvalidRecord);
   2895       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   2896       InstructionList.push_back(I);
   2897       break;
   2898     }
   2899     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   2900       unsigned OpNum = 0;
   2901       Value *Op;
   2902       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2903           OpNum+2 != Record.size())
   2904         return Error(InvalidRecord);
   2905 
   2906       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2907       InstructionList.push_back(I);
   2908       break;
   2909     }
   2910     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   2911        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   2912       unsigned OpNum = 0;
   2913       Value *Op;
   2914       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2915           OpNum+4 != Record.size())
   2916         return Error(InvalidRecord);
   2917 
   2918 
   2919       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2920       if (Ordering == NotAtomic || Ordering == Release ||
   2921           Ordering == AcquireRelease)
   2922         return Error(InvalidRecord);
   2923       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2924         return Error(InvalidRecord);
   2925       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2926 
   2927       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2928                        Ordering, SynchScope);
   2929       InstructionList.push_back(I);
   2930       break;
   2931     }
   2932     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   2933       unsigned OpNum = 0;
   2934       Value *Val, *Ptr;
   2935       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2936           popValue(Record, OpNum, NextValueNo,
   2937                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2938           OpNum+2 != Record.size())
   2939         return Error(InvalidRecord);
   2940 
   2941       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2942       InstructionList.push_back(I);
   2943       break;
   2944     }
   2945     case bitc::FUNC_CODE_INST_STOREATOMIC: {
   2946       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   2947       unsigned OpNum = 0;
   2948       Value *Val, *Ptr;
   2949       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2950           popValue(Record, OpNum, NextValueNo,
   2951                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2952           OpNum+4 != Record.size())
   2953         return Error(InvalidRecord);
   2954 
   2955       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2956       if (Ordering == NotAtomic || Ordering == Acquire ||
   2957           Ordering == AcquireRelease)
   2958         return Error(InvalidRecord);
   2959       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2960       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2961         return Error(InvalidRecord);
   2962 
   2963       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2964                         Ordering, SynchScope);
   2965       InstructionList.push_back(I);
   2966       break;
   2967     }
   2968     case bitc::FUNC_CODE_INST_CMPXCHG: {
   2969       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
   2970       //          failureordering?, isweak?]
   2971       unsigned OpNum = 0;
   2972       Value *Ptr, *Cmp, *New;
   2973       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2974           popValue(Record, OpNum, NextValueNo,
   2975                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
   2976           popValue(Record, OpNum, NextValueNo,
   2977                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
   2978           (Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
   2979         return Error(InvalidRecord);
   2980       AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
   2981       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
   2982         return Error(InvalidRecord);
   2983       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
   2984 
   2985       AtomicOrdering FailureOrdering;
   2986       if (Record.size() < 7)
   2987         FailureOrdering =
   2988             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
   2989       else
   2990         FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
   2991 
   2992       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
   2993                                 SynchScope);
   2994       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   2995 
   2996       if (Record.size() < 8) {
   2997         // Before weak cmpxchgs existed, the instruction simply returned the
   2998         // value loaded from memory, so bitcode files from that era will be
   2999         // expecting the first component of a modern cmpxchg.
   3000         CurBB->getInstList().push_back(I);
   3001         I = ExtractValueInst::Create(I, 0);
   3002       } else {
   3003         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
   3004       }
   3005 
   3006       InstructionList.push_back(I);
   3007       break;
   3008     }
   3009     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   3010       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   3011       unsigned OpNum = 0;
   3012       Value *Ptr, *Val;
   3013       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3014           popValue(Record, OpNum, NextValueNo,
   3015                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3016           OpNum+4 != Record.size())
   3017         return Error(InvalidRecord);
   3018       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
   3019       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   3020           Operation > AtomicRMWInst::LAST_BINOP)
   3021         return Error(InvalidRecord);
   3022       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3023       if (Ordering == NotAtomic || Ordering == Unordered)
   3024         return Error(InvalidRecord);
   3025       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3026       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   3027       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   3028       InstructionList.push_back(I);
   3029       break;
   3030     }
   3031     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   3032       if (2 != Record.size())
   3033         return Error(InvalidRecord);
   3034       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
   3035       if (Ordering == NotAtomic || Ordering == Unordered ||
   3036           Ordering == Monotonic)
   3037         return Error(InvalidRecord);
   3038       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
   3039       I = new FenceInst(Context, Ordering, SynchScope);
   3040       InstructionList.push_back(I);
   3041       break;
   3042     }
   3043     case bitc::FUNC_CODE_INST_CALL: {
   3044       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   3045       if (Record.size() < 3)
   3046         return Error(InvalidRecord);
   3047 
   3048       AttributeSet PAL = getAttributes(Record[0]);
   3049       unsigned CCInfo = Record[1];
   3050 
   3051       unsigned OpNum = 2;
   3052       Value *Callee;
   3053       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   3054         return Error(InvalidRecord);
   3055 
   3056       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   3057       FunctionType *FTy = nullptr;
   3058       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   3059       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   3060         return Error(InvalidRecord);
   3061 
   3062       SmallVector<Value*, 16> Args;
   3063       // Read the fixed params.
   3064       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   3065         if (FTy->getParamType(i)->isLabelTy())
   3066           Args.push_back(getBasicBlock(Record[OpNum]));
   3067         else
   3068           Args.push_back(getValue(Record, OpNum, NextValueNo,
   3069                                   FTy->getParamType(i)));
   3070         if (!Args.back())
   3071           return Error(InvalidRecord);
   3072       }
   3073 
   3074       // Read type/value pairs for varargs params.
   3075       if (!FTy->isVarArg()) {
   3076         if (OpNum != Record.size())
   3077           return Error(InvalidRecord);
   3078       } else {
   3079         while (OpNum != Record.size()) {
   3080           Value *Op;
   3081           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3082             return Error(InvalidRecord);
   3083           Args.push_back(Op);
   3084         }
   3085       }
   3086 
   3087       I = CallInst::Create(Callee, Args);
   3088       InstructionList.push_back(I);
   3089       cast<CallInst>(I)->setCallingConv(
   3090           static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
   3091       CallInst::TailCallKind TCK = CallInst::TCK_None;
   3092       if (CCInfo & 1)
   3093         TCK = CallInst::TCK_Tail;
   3094       if (CCInfo & (1 << 14))
   3095         TCK = CallInst::TCK_MustTail;
   3096       cast<CallInst>(I)->setTailCallKind(TCK);
   3097       cast<CallInst>(I)->setAttributes(PAL);
   3098       break;
   3099     }
   3100     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   3101       if (Record.size() < 3)
   3102         return Error(InvalidRecord);
   3103       Type *OpTy = getTypeByID(Record[0]);
   3104       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
   3105       Type *ResTy = getTypeByID(Record[2]);
   3106       if (!OpTy || !Op || !ResTy)
   3107         return Error(InvalidRecord);
   3108       I = new VAArgInst(Op, ResTy);
   3109       InstructionList.push_back(I);
   3110       break;
   3111     }
   3112     }
   3113 
   3114     // Add instruction to end of current BB.  If there is no current BB, reject
   3115     // this file.
   3116     if (!CurBB) {
   3117       delete I;
   3118       return Error(InvalidInstructionWithNoBB);
   3119     }
   3120     CurBB->getInstList().push_back(I);
   3121 
   3122     // If this was a terminator instruction, move to the next block.
   3123     if (isa<TerminatorInst>(I)) {
   3124       ++CurBBNo;
   3125       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
   3126     }
   3127 
   3128     // Non-void values get registered in the value table for future use.
   3129     if (I && !I->getType()->isVoidTy())
   3130       ValueList.AssignValue(I, NextValueNo++);
   3131   }
   3132 
   3133 OutOfRecordLoop:
   3134 
   3135   // Check the function list for unresolved values.
   3136   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   3137     if (!A->getParent()) {
   3138       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   3139       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   3140         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
   3141           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   3142           delete A;
   3143         }
   3144       }
   3145       return Error(NeverResolvedValueFoundInFunction);
   3146     }
   3147   }
   3148 
   3149   // FIXME: Check for unresolved forward-declared metadata references
   3150   // and clean up leaks.
   3151 
   3152   // See if anything took the address of blocks in this function.  If so,
   3153   // resolve them now.
   3154   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   3155     BlockAddrFwdRefs.find(F);
   3156   if (BAFRI != BlockAddrFwdRefs.end()) {
   3157     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   3158     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   3159       unsigned BlockIdx = RefList[i].first;
   3160       if (BlockIdx >= FunctionBBs.size())
   3161         return Error(InvalidID);
   3162 
   3163       GlobalVariable *FwdRef = RefList[i].second;
   3164       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   3165       FwdRef->eraseFromParent();
   3166     }
   3167 
   3168     BlockAddrFwdRefs.erase(BAFRI);
   3169   }
   3170 
   3171   // Trim the value list down to the size it was before we parsed this function.
   3172   ValueList.shrinkTo(ModuleValueListSize);
   3173   MDValueList.shrinkTo(ModuleMDValueListSize);
   3174   std::vector<BasicBlock*>().swap(FunctionBBs);
   3175   return std::error_code();
   3176 }
   3177 
   3178 /// Find the function body in the bitcode stream
   3179 std::error_code BitcodeReader::FindFunctionInStream(
   3180     Function *F,
   3181     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
   3182   while (DeferredFunctionInfoIterator->second == 0) {
   3183     if (Stream.AtEndOfStream())
   3184       return Error(CouldNotFindFunctionInStream);
   3185     // ParseModule will parse the next body in the stream and set its
   3186     // position in the DeferredFunctionInfo map.
   3187     if (std::error_code EC = ParseModule(true))
   3188       return EC;
   3189   }
   3190   return std::error_code();
   3191 }
   3192 
   3193 //===----------------------------------------------------------------------===//
   3194 // GVMaterializer implementation
   3195 //===----------------------------------------------------------------------===//
   3196 
   3197 void BitcodeReader::releaseBuffer() { Buffer.release(); }
   3198 
   3199 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
   3200   if (const Function *F = dyn_cast<Function>(GV)) {
   3201     return F->isDeclaration() &&
   3202       DeferredFunctionInfo.count(const_cast<Function*>(F));
   3203   }
   3204   return false;
   3205 }
   3206 
   3207 std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
   3208   Function *F = dyn_cast<Function>(GV);
   3209   // If it's not a function or is already material, ignore the request.
   3210   if (!F || !F->isMaterializable())
   3211     return std::error_code();
   3212 
   3213   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   3214   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   3215   // If its position is recorded as 0, its body is somewhere in the stream
   3216   // but we haven't seen it yet.
   3217   if (DFII->second == 0 && LazyStreamer)
   3218     if (std::error_code EC = FindFunctionInStream(F, DFII))
   3219       return EC;
   3220 
   3221   // Move the bit stream to the saved position of the deferred function body.
   3222   Stream.JumpToBit(DFII->second);
   3223 
   3224   if (std::error_code EC = ParseFunctionBody(F))
   3225     return EC;
   3226 
   3227   // Upgrade any old intrinsic calls in the function.
   3228   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   3229        E = UpgradedIntrinsics.end(); I != E; ++I) {
   3230     if (I->first != I->second) {
   3231       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
   3232            UI != UE;) {
   3233         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3234           UpgradeIntrinsicCall(CI, I->second);
   3235       }
   3236     }
   3237   }
   3238 
   3239   return std::error_code();
   3240 }
   3241 
   3242 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   3243   const Function *F = dyn_cast<Function>(GV);
   3244   if (!F || F->isDeclaration())
   3245     return false;
   3246   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   3247 }
   3248 
   3249 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   3250   Function *F = dyn_cast<Function>(GV);
   3251   // If this function isn't dematerializable, this is a noop.
   3252   if (!F || !isDematerializable(F))
   3253     return;
   3254 
   3255   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   3256 
   3257   // Just forget the function body, we can remat it later.
   3258   F->deleteBody();
   3259 }
   3260 
   3261 std::error_code BitcodeReader::MaterializeModule(Module *M) {
   3262   assert(M == TheModule &&
   3263          "Can only Materialize the Module this BitcodeReader is attached to.");
   3264   // Iterate over the module, deserializing any functions that are still on
   3265   // disk.
   3266   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   3267        F != E; ++F) {
   3268     if (F->isMaterializable()) {
   3269       if (std::error_code EC = Materialize(F))
   3270         return EC;
   3271     }
   3272   }
   3273   // At this point, if there are any function bodies, the current bit is
   3274   // pointing to the END_BLOCK record after them. Now make sure the rest
   3275   // of the bits in the module have been read.
   3276   if (NextUnreadBit)
   3277     ParseModule(true);
   3278 
   3279   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   3280   // delete the old functions to clean up. We can't do this unless the entire
   3281   // module is materialized because there could always be another function body
   3282   // with calls to the old function.
   3283   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   3284        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   3285     if (I->first != I->second) {
   3286       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
   3287            UI != UE;) {
   3288         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3289           UpgradeIntrinsicCall(CI, I->second);
   3290       }
   3291       if (!I->first->use_empty())
   3292         I->first->replaceAllUsesWith(I->second);
   3293       I->first->eraseFromParent();
   3294     }
   3295   }
   3296   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   3297 
   3298   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
   3299     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
   3300 
   3301   UpgradeDebugInfo(*M);
   3302   return std::error_code();
   3303 }
   3304 
   3305 std::error_code BitcodeReader::InitStream() {
   3306   if (LazyStreamer)
   3307     return InitLazyStream();
   3308   return InitStreamFromBuffer();
   3309 }
   3310 
   3311 std::error_code BitcodeReader::InitStreamFromBuffer() {
   3312   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
   3313   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   3314 
   3315   if (Buffer->getBufferSize() & 3) {
   3316     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
   3317       return Error(InvalidBitcodeSignature);
   3318     else
   3319       return Error(BitcodeStreamInvalidSize);
   3320   }
   3321 
   3322   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   3323   // The magic number is 0x0B17C0DE stored in little endian.
   3324   if (isBitcodeWrapper(BufPtr, BufEnd))
   3325     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   3326       return Error(InvalidBitcodeWrapperHeader);
   3327 
   3328   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   3329   Stream.init(*StreamFile);
   3330 
   3331   return std::error_code();
   3332 }
   3333 
   3334 std::error_code BitcodeReader::InitLazyStream() {
   3335   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   3336   // see it.
   3337   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
   3338   StreamFile.reset(new BitstreamReader(Bytes));
   3339   Stream.init(*StreamFile);
   3340 
   3341   unsigned char buf[16];
   3342   if (Bytes->readBytes(0, 16, buf) == -1)
   3343     return Error(BitcodeStreamInvalidSize);
   3344 
   3345   if (!isBitcode(buf, buf + 16))
   3346     return Error(InvalidBitcodeSignature);
   3347 
   3348   if (isBitcodeWrapper(buf, buf + 4)) {
   3349     const unsigned char *bitcodeStart = buf;
   3350     const unsigned char *bitcodeEnd = buf + 16;
   3351     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   3352     Bytes->dropLeadingBytes(bitcodeStart - buf);
   3353     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
   3354   }
   3355   return std::error_code();
   3356 }
   3357 
   3358 namespace {
   3359 class BitcodeErrorCategoryType : public std::error_category {
   3360   const char *name() const LLVM_NOEXCEPT override {
   3361     return "llvm.bitcode";
   3362   }
   3363   std::string message(int IE) const override {
   3364     BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
   3365     switch (E) {
   3366     case BitcodeReader::BitcodeStreamInvalidSize:
   3367       return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
   3368     case BitcodeReader::ConflictingMETADATA_KINDRecords:
   3369       return "Conflicting METADATA_KIND records";
   3370     case BitcodeReader::CouldNotFindFunctionInStream:
   3371       return "Could not find function in stream";
   3372     case BitcodeReader::ExpectedConstant:
   3373       return "Expected a constant";
   3374     case BitcodeReader::InsufficientFunctionProtos:
   3375       return "Insufficient function protos";
   3376     case BitcodeReader::InvalidBitcodeSignature:
   3377       return "Invalid bitcode signature";
   3378     case BitcodeReader::InvalidBitcodeWrapperHeader:
   3379       return "Invalid bitcode wrapper header";
   3380     case BitcodeReader::InvalidConstantReference:
   3381       return "Invalid ronstant reference";
   3382     case BitcodeReader::InvalidID:
   3383       return "Invalid ID";
   3384     case BitcodeReader::InvalidInstructionWithNoBB:
   3385       return "Invalid instruction with no BB";
   3386     case BitcodeReader::InvalidRecord:
   3387       return "Invalid record";
   3388     case BitcodeReader::InvalidTypeForValue:
   3389       return "Invalid type for value";
   3390     case BitcodeReader::InvalidTYPETable:
   3391       return "Invalid TYPE table";
   3392     case BitcodeReader::InvalidType:
   3393       return "Invalid type";
   3394     case BitcodeReader::MalformedBlock:
   3395       return "Malformed block";
   3396     case BitcodeReader::MalformedGlobalInitializerSet:
   3397       return "Malformed global initializer set";
   3398     case BitcodeReader::InvalidMultipleBlocks:
   3399       return "Invalid multiple blocks";
   3400     case BitcodeReader::NeverResolvedValueFoundInFunction:
   3401       return "Never resolved value found in function";
   3402     case BitcodeReader::InvalidValue:
   3403       return "Invalid value";
   3404     }
   3405     llvm_unreachable("Unknown error type!");
   3406   }
   3407 };
   3408 }
   3409 
   3410 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
   3411   static BitcodeErrorCategoryType O;
   3412   return O;
   3413 }
   3414 
   3415 //===----------------------------------------------------------------------===//
   3416 // External interface
   3417 //===----------------------------------------------------------------------===//
   3418 
   3419 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   3420 ///
   3421 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
   3422                                              LLVMContext &Context) {
   3423   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   3424   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3425   M->setMaterializer(R);
   3426   if (std::error_code EC = R->ParseBitcodeInto(M)) {
   3427     R->releaseBuffer(); // Never take ownership on error.
   3428     delete M;  // Also deletes R.
   3429     return EC;
   3430   }
   3431 
   3432   R->materializeForwardReferencedFunctions();
   3433 
   3434   return M;
   3435 }
   3436 
   3437 
   3438 Module *llvm::getStreamedBitcodeModule(const std::string &name,
   3439                                        DataStreamer *streamer,
   3440                                        LLVMContext &Context,
   3441                                        std::string *ErrMsg) {
   3442   Module *M = new Module(name, Context);
   3443   BitcodeReader *R = new BitcodeReader(streamer, Context);
   3444   M->setMaterializer(R);
   3445   if (std::error_code EC = R->ParseBitcodeInto(M)) {
   3446     if (ErrMsg)
   3447       *ErrMsg = EC.message();
   3448     delete M;  // Also deletes R.
   3449     return nullptr;
   3450   }
   3451   return M;
   3452 }
   3453 
   3454 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer,
   3455                                          LLVMContext &Context) {
   3456   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context);
   3457   if (!ModuleOrErr)
   3458     return ModuleOrErr;
   3459   Module *M = ModuleOrErr.get();
   3460   // Read in the entire module, and destroy the BitcodeReader.
   3461   if (std::error_code EC = M->materializeAllPermanently(true)) {
   3462     delete M;
   3463     return EC;
   3464   }
   3465 
   3466   // TODO: Restore the use-lists to the in-memory state when the bitcode was
   3467   // written.  We must defer until the Module has been fully materialized.
   3468 
   3469   return M;
   3470 }
   3471 
   3472 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
   3473                                          LLVMContext &Context) {
   3474   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3475   ErrorOr<std::string> Triple = R->parseTriple();
   3476   R->releaseBuffer();
   3477   delete R;
   3478   if (Triple.getError())
   3479     return "";
   3480   return Triple.get();
   3481 }
   3482