Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     16 #include "llvm/ADT/PostOrderIterator.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/DebugInfo.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetFrameLowering.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetLowering.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "function-lowering-info"
     43 
     44 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     45 /// PHI nodes or outside of the basic block that defines it, or used by a
     46 /// switch or atomic instruction, which may expand to multiple basic blocks.
     47 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     48   if (I->use_empty()) return false;
     49   if (isa<PHINode>(I)) return true;
     50   const BasicBlock *BB = I->getParent();
     51   for (const User *U : I->users())
     52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     53       return true;
     54 
     55   return false;
     56 }
     57 
     58 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
     59                                SelectionDAG *DAG) {
     60   const TargetLowering *TLI = TM.getTargetLowering();
     61 
     62   Fn = &fn;
     63   MF = &mf;
     64   RegInfo = &MF->getRegInfo();
     65 
     66   // Check whether the function can return without sret-demotion.
     67   SmallVector<ISD::OutputArg, 4> Outs;
     68   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
     69   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
     70                                        Fn->isVarArg(),
     71                                        Outs, Fn->getContext());
     72 
     73   // Initialize the mapping of values to registers.  This is only set up for
     74   // instruction values that are used outside of the block that defines
     75   // them.
     76   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
     77   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
     78     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
     79       // Don't fold inalloca allocas or other dynamic allocas into the initial
     80       // stack frame allocation, even if they are in the entry block.
     81       if (!AI->isStaticAlloca())
     82         continue;
     83 
     84       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
     85         Type *Ty = AI->getAllocatedType();
     86         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
     87         unsigned Align =
     88           std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
     89                    AI->getAlignment());
     90 
     91         TySize *= CUI->getZExtValue();   // Get total allocated size.
     92         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
     93 
     94         StaticAllocaMap[AI] =
     95           MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
     96       }
     97     }
     98 
     99   for (; BB != EB; ++BB)
    100     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    101          I != E; ++I) {
    102       // Look for dynamic allocas.
    103       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    104         if (!AI->isStaticAlloca()) {
    105           unsigned Align = std::max(
    106               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
    107                 AI->getAllocatedType()),
    108               AI->getAlignment());
    109           unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
    110           if (Align <= StackAlign)
    111             Align = 0;
    112           // Inform the Frame Information that we have variable-sized objects.
    113           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
    114         }
    115       }
    116 
    117       // Look for inline asm that clobbers the SP register.
    118       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    119         ImmutableCallSite CS(I);
    120         if (isa<InlineAsm>(CS.getCalledValue())) {
    121           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
    122           std::vector<TargetLowering::AsmOperandInfo> Ops =
    123             TLI->ParseConstraints(CS);
    124           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
    125             TargetLowering::AsmOperandInfo &Op = Ops[I];
    126             if (Op.Type == InlineAsm::isClobber) {
    127               // Clobbers don't have SDValue operands, hence SDValue().
    128               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
    129               std::pair<unsigned, const TargetRegisterClass*> PhysReg =
    130                 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode,
    131                                                   Op.ConstraintVT);
    132               if (PhysReg.first == SP)
    133                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
    134             }
    135           }
    136         }
    137       }
    138 
    139       // Mark values used outside their block as exported, by allocating
    140       // a virtual register for them.
    141       if (isUsedOutsideOfDefiningBlock(I))
    142         if (!isa<AllocaInst>(I) ||
    143             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    144           InitializeRegForValue(I);
    145 
    146       // Collect llvm.dbg.declare information. This is done now instead of
    147       // during the initial isel pass through the IR so that it is done
    148       // in a predictable order.
    149       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    150         MachineModuleInfo &MMI = MF->getMMI();
    151         DIVariable DIVar(DI->getVariable());
    152         assert((!DIVar || DIVar.isVariable()) &&
    153           "Variable in DbgDeclareInst should be either null or a DIVariable.");
    154         if (MMI.hasDebugInfo() &&
    155             DIVar &&
    156             !DI->getDebugLoc().isUnknown()) {
    157           // Don't handle byval struct arguments or VLAs, for example.
    158           // Non-byval arguments are handled here (they refer to the stack
    159           // temporary alloca at this point).
    160           const Value *Address = DI->getAddress();
    161           if (Address) {
    162             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    163               Address = BCI->getOperand(0);
    164             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    165               DenseMap<const AllocaInst *, int>::iterator SI =
    166                 StaticAllocaMap.find(AI);
    167               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    168                 int FI = SI->second;
    169                 MMI.setVariableDbgInfo(DI->getVariable(),
    170                                        FI, DI->getDebugLoc());
    171               }
    172             }
    173           }
    174         }
    175       }
    176     }
    177 
    178   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    179   // also creates the initial PHI MachineInstrs, though none of the input
    180   // operands are populated.
    181   for (BB = Fn->begin(); BB != EB; ++BB) {
    182     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    183     MBBMap[BB] = MBB;
    184     MF->push_back(MBB);
    185 
    186     // Transfer the address-taken flag. This is necessary because there could
    187     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    188     // the first one should be marked.
    189     if (BB->hasAddressTaken())
    190       MBB->setHasAddressTaken();
    191 
    192     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    193     // appropriate.
    194     for (BasicBlock::const_iterator I = BB->begin();
    195          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    196       if (PN->use_empty()) continue;
    197 
    198       // Skip empty types
    199       if (PN->getType()->isEmptyTy())
    200         continue;
    201 
    202       DebugLoc DL = PN->getDebugLoc();
    203       unsigned PHIReg = ValueMap[PN];
    204       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    205 
    206       SmallVector<EVT, 4> ValueVTs;
    207       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
    208       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    209         EVT VT = ValueVTs[vti];
    210         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
    211         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    212         for (unsigned i = 0; i != NumRegisters; ++i)
    213           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    214         PHIReg += NumRegisters;
    215       }
    216     }
    217   }
    218 
    219   // Mark landing pad blocks.
    220   for (BB = Fn->begin(); BB != EB; ++BB)
    221     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    222       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    223 }
    224 
    225 /// clear - Clear out all the function-specific state. This returns this
    226 /// FunctionLoweringInfo to an empty state, ready to be used for a
    227 /// different function.
    228 void FunctionLoweringInfo::clear() {
    229   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    230          "Not all catch info was assigned to a landing pad!");
    231 
    232   MBBMap.clear();
    233   ValueMap.clear();
    234   StaticAllocaMap.clear();
    235 #ifndef NDEBUG
    236   CatchInfoLost.clear();
    237   CatchInfoFound.clear();
    238 #endif
    239   LiveOutRegInfo.clear();
    240   VisitedBBs.clear();
    241   ArgDbgValues.clear();
    242   ByValArgFrameIndexMap.clear();
    243   RegFixups.clear();
    244 }
    245 
    246 /// CreateReg - Allocate a single virtual register for the given type.
    247 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    248   return RegInfo->
    249     createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT));
    250 }
    251 
    252 /// CreateRegs - Allocate the appropriate number of virtual registers of
    253 /// the correctly promoted or expanded types.  Assign these registers
    254 /// consecutive vreg numbers and return the first assigned number.
    255 ///
    256 /// In the case that the given value has struct or array type, this function
    257 /// will assign registers for each member or element.
    258 ///
    259 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    260   const TargetLowering *TLI = TM.getTargetLowering();
    261 
    262   SmallVector<EVT, 4> ValueVTs;
    263   ComputeValueVTs(*TLI, Ty, ValueVTs);
    264 
    265   unsigned FirstReg = 0;
    266   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    267     EVT ValueVT = ValueVTs[Value];
    268     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
    269 
    270     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    271     for (unsigned i = 0; i != NumRegs; ++i) {
    272       unsigned R = CreateReg(RegisterVT);
    273       if (!FirstReg) FirstReg = R;
    274     }
    275   }
    276   return FirstReg;
    277 }
    278 
    279 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    280 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    281 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    282 /// the larger bit width by zero extension. The bit width must be no smaller
    283 /// than the LiveOutInfo's existing bit width.
    284 const FunctionLoweringInfo::LiveOutInfo *
    285 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    286   if (!LiveOutRegInfo.inBounds(Reg))
    287     return nullptr;
    288 
    289   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    290   if (!LOI->IsValid)
    291     return nullptr;
    292 
    293   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    294     LOI->NumSignBits = 1;
    295     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    296     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    297   }
    298 
    299   return LOI;
    300 }
    301 
    302 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    303 /// register based on the LiveOutInfo of its operands.
    304 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    305   Type *Ty = PN->getType();
    306   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    307     return;
    308 
    309   const TargetLowering *TLI = TM.getTargetLowering();
    310 
    311   SmallVector<EVT, 1> ValueVTs;
    312   ComputeValueVTs(*TLI, Ty, ValueVTs);
    313   assert(ValueVTs.size() == 1 &&
    314          "PHIs with non-vector integer types should have a single VT.");
    315   EVT IntVT = ValueVTs[0];
    316 
    317   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    318     return;
    319   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
    320   unsigned BitWidth = IntVT.getSizeInBits();
    321 
    322   unsigned DestReg = ValueMap[PN];
    323   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    324     return;
    325   LiveOutRegInfo.grow(DestReg);
    326   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    327 
    328   Value *V = PN->getIncomingValue(0);
    329   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    330     DestLOI.NumSignBits = 1;
    331     APInt Zero(BitWidth, 0);
    332     DestLOI.KnownZero = Zero;
    333     DestLOI.KnownOne = Zero;
    334     return;
    335   }
    336 
    337   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    338     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    339     DestLOI.NumSignBits = Val.getNumSignBits();
    340     DestLOI.KnownZero = ~Val;
    341     DestLOI.KnownOne = Val;
    342   } else {
    343     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    344                                 "CopyToReg node was created.");
    345     unsigned SrcReg = ValueMap[V];
    346     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    347       DestLOI.IsValid = false;
    348       return;
    349     }
    350     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    351     if (!SrcLOI) {
    352       DestLOI.IsValid = false;
    353       return;
    354     }
    355     DestLOI = *SrcLOI;
    356   }
    357 
    358   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    359          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    360          "Masks should have the same bit width as the type.");
    361 
    362   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    363     Value *V = PN->getIncomingValue(i);
    364     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    365       DestLOI.NumSignBits = 1;
    366       APInt Zero(BitWidth, 0);
    367       DestLOI.KnownZero = Zero;
    368       DestLOI.KnownOne = Zero;
    369       return;
    370     }
    371 
    372     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    373       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    374       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    375       DestLOI.KnownZero &= ~Val;
    376       DestLOI.KnownOne &= Val;
    377       continue;
    378     }
    379 
    380     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    381                                 "its CopyToReg node was created.");
    382     unsigned SrcReg = ValueMap[V];
    383     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    384       DestLOI.IsValid = false;
    385       return;
    386     }
    387     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    388     if (!SrcLOI) {
    389       DestLOI.IsValid = false;
    390       return;
    391     }
    392     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    393     DestLOI.KnownZero &= SrcLOI->KnownZero;
    394     DestLOI.KnownOne &= SrcLOI->KnownOne;
    395   }
    396 }
    397 
    398 /// setArgumentFrameIndex - Record frame index for the byval
    399 /// argument. This overrides previous frame index entry for this argument,
    400 /// if any.
    401 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    402                                                  int FI) {
    403   ByValArgFrameIndexMap[A] = FI;
    404 }
    405 
    406 /// getArgumentFrameIndex - Get frame index for the byval argument.
    407 /// If the argument does not have any assigned frame index then 0 is
    408 /// returned.
    409 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    410   DenseMap<const Argument *, int>::iterator I =
    411     ByValArgFrameIndexMap.find(A);
    412   if (I != ByValArgFrameIndexMap.end())
    413     return I->second;
    414   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    415   return 0;
    416 }
    417 
    418 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    419 /// being passed to this variadic function, and set the MachineModuleInfo's
    420 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    421 /// reference to _fltused on Windows, which will link in MSVCRT's
    422 /// floating-point support.
    423 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    424                                       MachineModuleInfo *MMI)
    425 {
    426   FunctionType *FT = cast<FunctionType>(
    427     I.getCalledValue()->getType()->getContainedType(0));
    428   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    429     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    430       Type* T = I.getArgOperand(i)->getType();
    431       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
    432            i != e; ++i) {
    433         if (i->isFloatingPointTy()) {
    434           MMI->setUsesVAFloatArgument(true);
    435           return;
    436         }
    437       }
    438     }
    439   }
    440 }
    441 
    442 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
    443 /// call, and add them to the specified machine basic block.
    444 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
    445                         MachineBasicBlock *MBB) {
    446   // Inform the MachineModuleInfo of the personality for this landing pad.
    447   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
    448   assert(CE->getOpcode() == Instruction::BitCast &&
    449          isa<Function>(CE->getOperand(0)) &&
    450          "Personality should be a function");
    451   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
    452 
    453   // Gather all the type infos for this landing pad and pass them along to
    454   // MachineModuleInfo.
    455   std::vector<const GlobalVariable *> TyInfo;
    456   unsigned N = I.getNumArgOperands();
    457 
    458   for (unsigned i = N - 1; i > 1; --i) {
    459     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
    460       unsigned FilterLength = CI->getZExtValue();
    461       unsigned FirstCatch = i + FilterLength + !FilterLength;
    462       assert(FirstCatch <= N && "Invalid filter length");
    463 
    464       if (FirstCatch < N) {
    465         TyInfo.reserve(N - FirstCatch);
    466         for (unsigned j = FirstCatch; j < N; ++j)
    467           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    468         MMI->addCatchTypeInfo(MBB, TyInfo);
    469         TyInfo.clear();
    470       }
    471 
    472       if (!FilterLength) {
    473         // Cleanup.
    474         MMI->addCleanup(MBB);
    475       } else {
    476         // Filter.
    477         TyInfo.reserve(FilterLength - 1);
    478         for (unsigned j = i + 1; j < FirstCatch; ++j)
    479           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    480         MMI->addFilterTypeInfo(MBB, TyInfo);
    481         TyInfo.clear();
    482       }
    483 
    484       N = i;
    485     }
    486   }
    487 
    488   if (N > 2) {
    489     TyInfo.reserve(N - 2);
    490     for (unsigned j = 2; j < N; ++j)
    491       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    492     MMI->addCatchTypeInfo(MBB, TyInfo);
    493   }
    494 }
    495 
    496 /// AddLandingPadInfo - Extract the exception handling information from the
    497 /// landingpad instruction and add them to the specified machine module info.
    498 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    499                              MachineBasicBlock *MBB) {
    500   MMI.addPersonality(MBB,
    501                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    502 
    503   if (I.isCleanup())
    504     MMI.addCleanup(MBB);
    505 
    506   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    507   //        but we need to do it this way because of how the DWARF EH emitter
    508   //        processes the clauses.
    509   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    510     Value *Val = I.getClause(i - 1);
    511     if (I.isCatch(i - 1)) {
    512       MMI.addCatchTypeInfo(MBB,
    513                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
    514     } else {
    515       // Add filters in a list.
    516       Constant *CVal = cast<Constant>(Val);
    517       SmallVector<const GlobalVariable*, 4> FilterList;
    518       for (User::op_iterator
    519              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    520         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
    521 
    522       MMI.addFilterTypeInfo(MBB, FilterList);
    523     }
    524   }
    525 }
    526