Home | History | Annotate | Download | only in SelectionDAG
      1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "InstrEmitter.h"
     17 #include "SDNodeDbgValue.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SelectionDAG.h"
     26 #include "llvm/MC/MCInstrItineraries.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetInstrInfo.h"
     31 #include "llvm/Target/TargetLowering.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "pre-RA-sched"
     38 
     39 STATISTIC(LoadsClustered, "Number of loads clustered together");
     40 
     41 // This allows latency based scheduler to notice high latency instructions
     42 // without a target itinerary. The choise if number here has more to do with
     43 // balancing scheduler heursitics than with the actual machine latency.
     44 static cl::opt<int> HighLatencyCycles(
     45   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
     46   cl::desc("Roughly estimate the number of cycles that 'long latency'"
     47            "instructions take for targets with no itinerary"));
     48 
     49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
     50   : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
     51     InstrItins(mf.getTarget().getInstrItineraryData()) {}
     52 
     53 /// Run - perform scheduling.
     54 ///
     55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
     56   BB = bb;
     57   DAG = dag;
     58 
     59   // Clear the scheduler's SUnit DAG.
     60   ScheduleDAG::clearDAG();
     61   Sequence.clear();
     62 
     63   // Invoke the target's selection of scheduler.
     64   Schedule();
     65 }
     66 
     67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
     68 ///
     69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
     70 #ifndef NDEBUG
     71   const SUnit *Addr = nullptr;
     72   if (!SUnits.empty())
     73     Addr = &SUnits[0];
     74 #endif
     75   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
     76   assert((Addr == nullptr || Addr == &SUnits[0]) &&
     77          "SUnits std::vector reallocated on the fly!");
     78   SUnits.back().OrigNode = &SUnits.back();
     79   SUnit *SU = &SUnits.back();
     80   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
     81   if (!N ||
     82       (N->isMachineOpcode() &&
     83        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
     84     SU->SchedulingPref = Sched::None;
     85   else
     86     SU->SchedulingPref = TLI.getSchedulingPreference(N);
     87   return SU;
     88 }
     89 
     90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
     91   SUnit *SU = newSUnit(Old->getNode());
     92   SU->OrigNode = Old->OrigNode;
     93   SU->Latency = Old->Latency;
     94   SU->isVRegCycle = Old->isVRegCycle;
     95   SU->isCall = Old->isCall;
     96   SU->isCallOp = Old->isCallOp;
     97   SU->isTwoAddress = Old->isTwoAddress;
     98   SU->isCommutable = Old->isCommutable;
     99   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
    100   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
    101   SU->isScheduleHigh = Old->isScheduleHigh;
    102   SU->isScheduleLow = Old->isScheduleLow;
    103   SU->SchedulingPref = Old->SchedulingPref;
    104   Old->isCloned = true;
    105   return SU;
    106 }
    107 
    108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
    109 /// a specified operand is a physical register dependency. If so, returns the
    110 /// register and the cost of copying the register.
    111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
    112                                       const TargetRegisterInfo *TRI,
    113                                       const TargetInstrInfo *TII,
    114                                       unsigned &PhysReg, int &Cost) {
    115   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
    116     return;
    117 
    118   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
    119   if (TargetRegisterInfo::isVirtualRegister(Reg))
    120     return;
    121 
    122   unsigned ResNo = User->getOperand(2).getResNo();
    123   if (Def->isMachineOpcode()) {
    124     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
    125     if (ResNo >= II.getNumDefs() &&
    126         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
    127       PhysReg = Reg;
    128       const TargetRegisterClass *RC =
    129         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
    130       Cost = RC->getCopyCost();
    131     }
    132   }
    133 }
    134 
    135 // Helper for AddGlue to clone node operands.
    136 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
    137                                 SmallVectorImpl<EVT> &VTs,
    138                                 SDValue ExtraOper = SDValue()) {
    139   SmallVector<SDValue, 4> Ops;
    140   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
    141     Ops.push_back(N->getOperand(I));
    142 
    143   if (ExtraOper.getNode())
    144     Ops.push_back(ExtraOper);
    145 
    146   SDVTList VTList = DAG->getVTList(VTs);
    147   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
    148   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
    149 
    150   // Store memory references.
    151   if (MN) {
    152     Begin = MN->memoperands_begin();
    153     End = MN->memoperands_end();
    154   }
    155 
    156   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
    157 
    158   // Reset the memory references
    159   if (MN)
    160     MN->setMemRefs(Begin, End);
    161 }
    162 
    163 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
    164   SmallVector<EVT, 4> VTs;
    165   SDNode *GlueDestNode = Glue.getNode();
    166 
    167   // Don't add glue from a node to itself.
    168   if (GlueDestNode == N) return false;
    169 
    170   // Don't add a glue operand to something that already uses glue.
    171   if (GlueDestNode &&
    172       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    173     return false;
    174   }
    175   // Don't add glue to something that already has a glue value.
    176   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
    177 
    178   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
    179     VTs.push_back(N->getValueType(I));
    180 
    181   if (AddGlue)
    182     VTs.push_back(MVT::Glue);
    183 
    184   CloneNodeWithValues(N, DAG, VTs, Glue);
    185 
    186   return true;
    187 }
    188 
    189 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
    190 // node even though simply shrinking the value list is sufficient.
    191 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
    192   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
    193           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
    194          "expected an unused glue value");
    195 
    196   SmallVector<EVT, 4> VTs;
    197   for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
    198     VTs.push_back(N->getValueType(I));
    199 
    200   CloneNodeWithValues(N, DAG, VTs);
    201 }
    202 
    203 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
    204 /// This function finds loads of the same base and different offsets. If the
    205 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
    206 /// outputs to ensure they are scheduled together and in order. This
    207 /// optimization may benefit some targets by improving cache locality.
    208 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
    209   SDNode *Chain = nullptr;
    210   unsigned NumOps = Node->getNumOperands();
    211   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    212     Chain = Node->getOperand(NumOps-1).getNode();
    213   if (!Chain)
    214     return;
    215 
    216   // Look for other loads of the same chain. Find loads that are loading from
    217   // the same base pointer and different offsets.
    218   SmallPtrSet<SDNode*, 16> Visited;
    219   SmallVector<int64_t, 4> Offsets;
    220   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
    221   bool Cluster = false;
    222   SDNode *Base = Node;
    223   // This algorithm requires a reasonably low use count before finding a match
    224   // to avoid uselessly blowing up compile time in large blocks.
    225   unsigned UseCount = 0;
    226   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
    227        I != E && UseCount < 100; ++I, ++UseCount) {
    228     SDNode *User = *I;
    229     if (User == Node || !Visited.insert(User))
    230       continue;
    231     int64_t Offset1, Offset2;
    232     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
    233         Offset1 == Offset2)
    234       // FIXME: Should be ok if they addresses are identical. But earlier
    235       // optimizations really should have eliminated one of the loads.
    236       continue;
    237     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
    238       Offsets.push_back(Offset1);
    239     O2SMap.insert(std::make_pair(Offset2, User));
    240     Offsets.push_back(Offset2);
    241     if (Offset2 < Offset1)
    242       Base = User;
    243     Cluster = true;
    244     // Reset UseCount to allow more matches.
    245     UseCount = 0;
    246   }
    247 
    248   if (!Cluster)
    249     return;
    250 
    251   // Sort them in increasing order.
    252   std::sort(Offsets.begin(), Offsets.end());
    253 
    254   // Check if the loads are close enough.
    255   SmallVector<SDNode*, 4> Loads;
    256   unsigned NumLoads = 0;
    257   int64_t BaseOff = Offsets[0];
    258   SDNode *BaseLoad = O2SMap[BaseOff];
    259   Loads.push_back(BaseLoad);
    260   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
    261     int64_t Offset = Offsets[i];
    262     SDNode *Load = O2SMap[Offset];
    263     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
    264       break; // Stop right here. Ignore loads that are further away.
    265     Loads.push_back(Load);
    266     ++NumLoads;
    267   }
    268 
    269   if (NumLoads == 0)
    270     return;
    271 
    272   // Cluster loads by adding MVT::Glue outputs and inputs. This also
    273   // ensure they are scheduled in order of increasing addresses.
    274   SDNode *Lead = Loads[0];
    275   SDValue InGlue = SDValue(nullptr, 0);
    276   if (AddGlue(Lead, InGlue, true, DAG))
    277     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
    278   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
    279     bool OutGlue = I < E - 1;
    280     SDNode *Load = Loads[I];
    281 
    282     // If AddGlue fails, we could leave an unsused glue value. This should not
    283     // cause any
    284     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
    285       if (OutGlue)
    286         InGlue = SDValue(Load, Load->getNumValues() - 1);
    287 
    288       ++LoadsClustered;
    289     }
    290     else if (!OutGlue && InGlue.getNode())
    291       RemoveUnusedGlue(InGlue.getNode(), DAG);
    292   }
    293 }
    294 
    295 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
    296 ///
    297 void ScheduleDAGSDNodes::ClusterNodes() {
    298   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
    299        E = DAG->allnodes_end(); NI != E; ++NI) {
    300     SDNode *Node = &*NI;
    301     if (!Node || !Node->isMachineOpcode())
    302       continue;
    303 
    304     unsigned Opc = Node->getMachineOpcode();
    305     const MCInstrDesc &MCID = TII->get(Opc);
    306     if (MCID.mayLoad())
    307       // Cluster loads from "near" addresses into combined SUnits.
    308       ClusterNeighboringLoads(Node);
    309   }
    310 }
    311 
    312 void ScheduleDAGSDNodes::BuildSchedUnits() {
    313   // During scheduling, the NodeId field of SDNode is used to map SDNodes
    314   // to their associated SUnits by holding SUnits table indices. A value
    315   // of -1 means the SDNode does not yet have an associated SUnit.
    316   unsigned NumNodes = 0;
    317   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
    318        E = DAG->allnodes_end(); NI != E; ++NI) {
    319     NI->setNodeId(-1);
    320     ++NumNodes;
    321   }
    322 
    323   // Reserve entries in the vector for each of the SUnits we are creating.  This
    324   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
    325   // invalidated.
    326   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
    327   // This is a temporary workaround.
    328   SUnits.reserve(NumNodes * 2);
    329 
    330   // Add all nodes in depth first order.
    331   SmallVector<SDNode*, 64> Worklist;
    332   SmallPtrSet<SDNode*, 64> Visited;
    333   Worklist.push_back(DAG->getRoot().getNode());
    334   Visited.insert(DAG->getRoot().getNode());
    335 
    336   SmallVector<SUnit*, 8> CallSUnits;
    337   while (!Worklist.empty()) {
    338     SDNode *NI = Worklist.pop_back_val();
    339 
    340     // Add all operands to the worklist unless they've already been added.
    341     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
    342       if (Visited.insert(NI->getOperand(i).getNode()))
    343         Worklist.push_back(NI->getOperand(i).getNode());
    344 
    345     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
    346       continue;
    347 
    348     // If this node has already been processed, stop now.
    349     if (NI->getNodeId() != -1) continue;
    350 
    351     SUnit *NodeSUnit = newSUnit(NI);
    352 
    353     // See if anything is glued to this node, if so, add them to glued
    354     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
    355     // is required to be the last operand and result of a node.
    356 
    357     // Scan up to find glued preds.
    358     SDNode *N = NI;
    359     while (N->getNumOperands() &&
    360            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    361       N = N->getOperand(N->getNumOperands()-1).getNode();
    362       assert(N->getNodeId() == -1 && "Node already inserted!");
    363       N->setNodeId(NodeSUnit->NodeNum);
    364       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    365         NodeSUnit->isCall = true;
    366     }
    367 
    368     // Scan down to find any glued succs.
    369     N = NI;
    370     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
    371       SDValue GlueVal(N, N->getNumValues()-1);
    372 
    373       // There are either zero or one users of the Glue result.
    374       bool HasGlueUse = false;
    375       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    376            UI != E; ++UI)
    377         if (GlueVal.isOperandOf(*UI)) {
    378           HasGlueUse = true;
    379           assert(N->getNodeId() == -1 && "Node already inserted!");
    380           N->setNodeId(NodeSUnit->NodeNum);
    381           N = *UI;
    382           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    383             NodeSUnit->isCall = true;
    384           break;
    385         }
    386       if (!HasGlueUse) break;
    387     }
    388 
    389     if (NodeSUnit->isCall)
    390       CallSUnits.push_back(NodeSUnit);
    391 
    392     // Schedule zero-latency TokenFactor below any nodes that may increase the
    393     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
    394     // have false stalls.
    395     if (NI->getOpcode() == ISD::TokenFactor)
    396       NodeSUnit->isScheduleLow = true;
    397 
    398     // If there are glue operands involved, N is now the bottom-most node
    399     // of the sequence of nodes that are glued together.
    400     // Update the SUnit.
    401     NodeSUnit->setNode(N);
    402     assert(N->getNodeId() == -1 && "Node already inserted!");
    403     N->setNodeId(NodeSUnit->NodeNum);
    404 
    405     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
    406     InitNumRegDefsLeft(NodeSUnit);
    407 
    408     // Assign the Latency field of NodeSUnit using target-provided information.
    409     computeLatency(NodeSUnit);
    410   }
    411 
    412   // Find all call operands.
    413   while (!CallSUnits.empty()) {
    414     SUnit *SU = CallSUnits.pop_back_val();
    415     for (const SDNode *SUNode = SU->getNode(); SUNode;
    416          SUNode = SUNode->getGluedNode()) {
    417       if (SUNode->getOpcode() != ISD::CopyToReg)
    418         continue;
    419       SDNode *SrcN = SUNode->getOperand(2).getNode();
    420       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
    421       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
    422       SrcSU->isCallOp = true;
    423     }
    424   }
    425 }
    426 
    427 void ScheduleDAGSDNodes::AddSchedEdges() {
    428   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    429 
    430   // Check to see if the scheduler cares about latencies.
    431   bool UnitLatencies = forceUnitLatencies();
    432 
    433   // Pass 2: add the preds, succs, etc.
    434   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    435     SUnit *SU = &SUnits[su];
    436     SDNode *MainNode = SU->getNode();
    437 
    438     if (MainNode->isMachineOpcode()) {
    439       unsigned Opc = MainNode->getMachineOpcode();
    440       const MCInstrDesc &MCID = TII->get(Opc);
    441       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    442         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    443           SU->isTwoAddress = true;
    444           break;
    445         }
    446       }
    447       if (MCID.isCommutable())
    448         SU->isCommutable = true;
    449     }
    450 
    451     // Find all predecessors and successors of the group.
    452     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
    453       if (N->isMachineOpcode() &&
    454           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
    455         SU->hasPhysRegClobbers = true;
    456         unsigned NumUsed = InstrEmitter::CountResults(N);
    457         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
    458           --NumUsed;    // Skip over unused values at the end.
    459         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
    460           SU->hasPhysRegDefs = true;
    461       }
    462 
    463       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    464         SDNode *OpN = N->getOperand(i).getNode();
    465         if (isPassiveNode(OpN)) continue;   // Not scheduled.
    466         SUnit *OpSU = &SUnits[OpN->getNodeId()];
    467         assert(OpSU && "Node has no SUnit!");
    468         if (OpSU == SU) continue;           // In the same group.
    469 
    470         EVT OpVT = N->getOperand(i).getValueType();
    471         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
    472         bool isChain = OpVT == MVT::Other;
    473 
    474         unsigned PhysReg = 0;
    475         int Cost = 1;
    476         // Determine if this is a physical register dependency.
    477         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
    478         assert((PhysReg == 0 || !isChain) &&
    479                "Chain dependence via physreg data?");
    480         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
    481         // emits a copy from the physical register to a virtual register unless
    482         // it requires a cross class copy (cost < 0). That means we are only
    483         // treating "expensive to copy" register dependency as physical register
    484         // dependency. This may change in the future though.
    485         if (Cost >= 0 && !StressSched)
    486           PhysReg = 0;
    487 
    488         // If this is a ctrl dep, latency is 1.
    489         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
    490         // Special-case TokenFactor chains as zero-latency.
    491         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
    492           OpLatency = 0;
    493 
    494         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
    495           : SDep(OpSU, SDep::Data, PhysReg);
    496         Dep.setLatency(OpLatency);
    497         if (!isChain && !UnitLatencies) {
    498           computeOperandLatency(OpN, N, i, Dep);
    499           ST.adjustSchedDependency(OpSU, SU, Dep);
    500         }
    501 
    502         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
    503           // Multiple register uses are combined in the same SUnit. For example,
    504           // we could have a set of glued nodes with all their defs consumed by
    505           // another set of glued nodes. Register pressure tracking sees this as
    506           // a single use, so to keep pressure balanced we reduce the defs.
    507           //
    508           // We can't tell (without more book-keeping) if this results from
    509           // glued nodes or duplicate operands. As long as we don't reduce
    510           // NumRegDefsLeft to zero, we handle the common cases well.
    511           --OpSU->NumRegDefsLeft;
    512         }
    513       }
    514     }
    515   }
    516 }
    517 
    518 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
    519 /// are input.  This SUnit graph is similar to the SelectionDAG, but
    520 /// excludes nodes that aren't interesting to scheduling, and represents
    521 /// glued together nodes with a single SUnit.
    522 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
    523   // Cluster certain nodes which should be scheduled together.
    524   ClusterNodes();
    525   // Populate the SUnits array.
    526   BuildSchedUnits();
    527   // Compute all the scheduling dependencies between nodes.
    528   AddSchedEdges();
    529 }
    530 
    531 // Initialize NumNodeDefs for the current Node's opcode.
    532 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
    533   // Check for phys reg copy.
    534   if (!Node)
    535     return;
    536 
    537   if (!Node->isMachineOpcode()) {
    538     if (Node->getOpcode() == ISD::CopyFromReg)
    539       NodeNumDefs = 1;
    540     else
    541       NodeNumDefs = 0;
    542     return;
    543   }
    544   unsigned POpc = Node->getMachineOpcode();
    545   if (POpc == TargetOpcode::IMPLICIT_DEF) {
    546     // No register need be allocated for this.
    547     NodeNumDefs = 0;
    548     return;
    549   }
    550   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
    551   // Some instructions define regs that are not represented in the selection DAG
    552   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
    553   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
    554   DefIdx = 0;
    555 }
    556 
    557 // Construct a RegDefIter for this SUnit and find the first valid value.
    558 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
    559                                            const ScheduleDAGSDNodes *SD)
    560   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
    561   InitNodeNumDefs();
    562   Advance();
    563 }
    564 
    565 // Advance to the next valid value defined by the SUnit.
    566 void ScheduleDAGSDNodes::RegDefIter::Advance() {
    567   for (;Node;) { // Visit all glued nodes.
    568     for (;DefIdx < NodeNumDefs; ++DefIdx) {
    569       if (!Node->hasAnyUseOfValue(DefIdx))
    570         continue;
    571       ValueType = Node->getSimpleValueType(DefIdx);
    572       ++DefIdx;
    573       return; // Found a normal regdef.
    574     }
    575     Node = Node->getGluedNode();
    576     if (!Node) {
    577       return; // No values left to visit.
    578     }
    579     InitNodeNumDefs();
    580   }
    581 }
    582 
    583 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
    584   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
    585   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
    586     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
    587     ++SU->NumRegDefsLeft;
    588   }
    589 }
    590 
    591 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
    592   SDNode *N = SU->getNode();
    593 
    594   // TokenFactor operands are considered zero latency, and some schedulers
    595   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
    596   // whenever node latency is nonzero.
    597   if (N && N->getOpcode() == ISD::TokenFactor) {
    598     SU->Latency = 0;
    599     return;
    600   }
    601 
    602   // Check to see if the scheduler cares about latencies.
    603   if (forceUnitLatencies()) {
    604     SU->Latency = 1;
    605     return;
    606   }
    607 
    608   if (!InstrItins || InstrItins->isEmpty()) {
    609     if (N && N->isMachineOpcode() &&
    610         TII->isHighLatencyDef(N->getMachineOpcode()))
    611       SU->Latency = HighLatencyCycles;
    612     else
    613       SU->Latency = 1;
    614     return;
    615   }
    616 
    617   // Compute the latency for the node.  We use the sum of the latencies for
    618   // all nodes glued together into this SUnit.
    619   SU->Latency = 0;
    620   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
    621     if (N->isMachineOpcode())
    622       SU->Latency += TII->getInstrLatency(InstrItins, N);
    623 }
    624 
    625 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
    626                                                unsigned OpIdx, SDep& dep) const{
    627   // Check to see if the scheduler cares about latencies.
    628   if (forceUnitLatencies())
    629     return;
    630 
    631   if (dep.getKind() != SDep::Data)
    632     return;
    633 
    634   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
    635   if (Use->isMachineOpcode())
    636     // Adjust the use operand index by num of defs.
    637     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
    638   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
    639   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
    640       !BB->succ_empty()) {
    641     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
    642     if (TargetRegisterInfo::isVirtualRegister(Reg))
    643       // This copy is a liveout value. It is likely coalesced, so reduce the
    644       // latency so not to penalize the def.
    645       // FIXME: need target specific adjustment here?
    646       Latency = (Latency > 1) ? Latency - 1 : 1;
    647   }
    648   if (Latency >= 0)
    649     dep.setLatency(Latency);
    650 }
    651 
    652 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
    653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    654   if (!SU->getNode()) {
    655     dbgs() << "PHYS REG COPY\n";
    656     return;
    657   }
    658 
    659   SU->getNode()->dump(DAG);
    660   dbgs() << "\n";
    661   SmallVector<SDNode *, 4> GluedNodes;
    662   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    663     GluedNodes.push_back(N);
    664   while (!GluedNodes.empty()) {
    665     dbgs() << "    ";
    666     GluedNodes.back()->dump(DAG);
    667     dbgs() << "\n";
    668     GluedNodes.pop_back();
    669   }
    670 #endif
    671 }
    672 
    673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    674 void ScheduleDAGSDNodes::dumpSchedule() const {
    675   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    676     if (SUnit *SU = Sequence[i])
    677       SU->dump(this);
    678     else
    679       dbgs() << "**** NOOP ****\n";
    680   }
    681 }
    682 #endif
    683 
    684 #ifndef NDEBUG
    685 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
    686 /// their state is consistent with the nodes listed in Sequence.
    687 ///
    688 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
    689   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
    690   unsigned Noops = 0;
    691   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    692     if (!Sequence[i])
    693       ++Noops;
    694   assert(Sequence.size() - Noops == ScheduledNodes &&
    695          "The number of nodes scheduled doesn't match the expected number!");
    696 }
    697 #endif // NDEBUG
    698 
    699 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
    700 static void
    701 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    702                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    703                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
    704   if (!N->getHasDebugValue())
    705     return;
    706 
    707   // Opportunistically insert immediate dbg_value uses, i.e. those with source
    708   // order number right after the N.
    709   MachineBasicBlock *BB = Emitter.getBlock();
    710   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
    711   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
    712   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
    713     if (DVs[i]->isInvalidated())
    714       continue;
    715     unsigned DVOrder = DVs[i]->getOrder();
    716     if (!Order || DVOrder == ++Order) {
    717       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
    718       if (DbgMI) {
    719         Orders.push_back(std::make_pair(DVOrder, DbgMI));
    720         BB->insert(InsertPos, DbgMI);
    721       }
    722       DVs[i]->setIsInvalidated();
    723     }
    724   }
    725 }
    726 
    727 // ProcessSourceNode - Process nodes with source order numbers. These are added
    728 // to a vector which EmitSchedule uses to determine how to insert dbg_value
    729 // instructions in the right order.
    730 static void
    731 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    732                   DenseMap<SDValue, unsigned> &VRBaseMap,
    733                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    734                   SmallSet<unsigned, 8> &Seen) {
    735   unsigned Order = N->getIROrder();
    736   if (!Order || !Seen.insert(Order)) {
    737     // Process any valid SDDbgValues even if node does not have any order
    738     // assigned.
    739     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
    740     return;
    741   }
    742 
    743   MachineBasicBlock *BB = Emitter.getBlock();
    744   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
    745       // Fast-isel may have inserted some instructions, in which case the
    746       // BB->back().isPHI() test will not fire when we want it to.
    747       std::prev(Emitter.getInsertPos())->isPHI()) {
    748     // Did not insert any instruction.
    749     Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
    750     return;
    751   }
    752 
    753   Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos())));
    754   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
    755 }
    756 
    757 void ScheduleDAGSDNodes::
    758 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
    759                 MachineBasicBlock::iterator InsertPos) {
    760   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    761        I != E; ++I) {
    762     if (I->isCtrl()) continue;  // ignore chain preds
    763     if (I->getSUnit()->CopyDstRC) {
    764       // Copy to physical register.
    765       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
    766       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
    767       // Find the destination physical register.
    768       unsigned Reg = 0;
    769       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
    770              EE = SU->Succs.end(); II != EE; ++II) {
    771         if (II->isCtrl()) continue;  // ignore chain preds
    772         if (II->getReg()) {
    773           Reg = II->getReg();
    774           break;
    775         }
    776       }
    777       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
    778         .addReg(VRI->second);
    779     } else {
    780       // Copy from physical register.
    781       assert(I->getReg() && "Unknown physical register!");
    782       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
    783       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
    784       (void)isNew; // Silence compiler warning.
    785       assert(isNew && "Node emitted out of order - early");
    786       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
    787         .addReg(I->getReg());
    788     }
    789     break;
    790   }
    791 }
    792 
    793 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
    794 /// InsertPos and MachineBasicBlock that contains this insertion
    795 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
    796 /// not necessarily refer to returned BB. The emitter may split blocks.
    797 MachineBasicBlock *ScheduleDAGSDNodes::
    798 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
    799   InstrEmitter Emitter(BB, InsertPos);
    800   DenseMap<SDValue, unsigned> VRBaseMap;
    801   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
    802   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
    803   SmallSet<unsigned, 8> Seen;
    804   bool HasDbg = DAG->hasDebugValues();
    805 
    806   // If this is the first BB, emit byval parameter dbg_value's.
    807   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
    808     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
    809     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
    810     for (; PDI != PDE; ++PDI) {
    811       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
    812       if (DbgMI)
    813         BB->insert(InsertPos, DbgMI);
    814     }
    815   }
    816 
    817   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    818     SUnit *SU = Sequence[i];
    819     if (!SU) {
    820       // Null SUnit* is a noop.
    821       TII->insertNoop(*Emitter.getBlock(), InsertPos);
    822       continue;
    823     }
    824 
    825     // For pre-regalloc scheduling, create instructions corresponding to the
    826     // SDNode and any glued SDNodes and append them to the block.
    827     if (!SU->getNode()) {
    828       // Emit a copy.
    829       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
    830       continue;
    831     }
    832 
    833     SmallVector<SDNode *, 4> GluedNodes;
    834     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    835       GluedNodes.push_back(N);
    836     while (!GluedNodes.empty()) {
    837       SDNode *N = GluedNodes.back();
    838       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
    839                        VRBaseMap);
    840       // Remember the source order of the inserted instruction.
    841       if (HasDbg)
    842         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
    843       GluedNodes.pop_back();
    844     }
    845     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
    846                      VRBaseMap);
    847     // Remember the source order of the inserted instruction.
    848     if (HasDbg)
    849       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
    850                         Seen);
    851   }
    852 
    853   // Insert all the dbg_values which have not already been inserted in source
    854   // order sequence.
    855   if (HasDbg) {
    856     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
    857 
    858     // Sort the source order instructions and use the order to insert debug
    859     // values.
    860     std::sort(Orders.begin(), Orders.end(), less_first());
    861 
    862     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
    863     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
    864     // Now emit the rest according to source order.
    865     unsigned LastOrder = 0;
    866     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
    867       unsigned Order = Orders[i].first;
    868       MachineInstr *MI = Orders[i].second;
    869       // Insert all SDDbgValue's whose order(s) are before "Order".
    870       if (!MI)
    871         continue;
    872       for (; DI != DE &&
    873              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
    874         if ((*DI)->isInvalidated())
    875           continue;
    876         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
    877         if (DbgMI) {
    878           if (!LastOrder)
    879             // Insert to start of the BB (after PHIs).
    880             BB->insert(BBBegin, DbgMI);
    881           else {
    882             // Insert at the instruction, which may be in a different
    883             // block, if the block was split by a custom inserter.
    884             MachineBasicBlock::iterator Pos = MI;
    885             MI->getParent()->insert(Pos, DbgMI);
    886           }
    887         }
    888       }
    889       LastOrder = Order;
    890     }
    891     // Add trailing DbgValue's before the terminator. FIXME: May want to add
    892     // some of them before one or more conditional branches?
    893     SmallVector<MachineInstr*, 8> DbgMIs;
    894     while (DI != DE) {
    895       if (!(*DI)->isInvalidated())
    896         if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
    897           DbgMIs.push_back(DbgMI);
    898       ++DI;
    899     }
    900 
    901     MachineBasicBlock *InsertBB = Emitter.getBlock();
    902     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
    903     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
    904   }
    905 
    906   InsertPos = Emitter.getInsertPos();
    907   return Emitter.getBlock();
    908 }
    909 
    910 /// Return the basic block label.
    911 std::string ScheduleDAGSDNodes::getDAGName() const {
    912   return "sunit-dag." + BB->getFullName();
    913 }
    914