Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/GetElementPtrTypeIterator.h"
     19 #include "llvm/IR/PatternMatch.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 namespace {
     26 
     27   /// Class representing coefficient of floating-point addend.
     28   /// This class needs to be highly efficient, which is especially true for
     29   /// the constructor. As of I write this comment, the cost of the default
     30   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
     31   /// perform write-merging).
     32   ///
     33   class FAddendCoef {
     34   public:
     35     // The constructor has to initialize a APFloat, which is uncessary for
     36     // most addends which have coefficient either 1 or -1. So, the constructor
     37     // is expensive. In order to avoid the cost of the constructor, we should
     38     // reuse some instances whenever possible. The pre-created instances
     39     // FAddCombine::Add[0-5] embodies this idea.
     40     //
     41     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
     42     ~FAddendCoef();
     43 
     44     void set(short C) {
     45       assert(!insaneIntVal(C) && "Insane coefficient");
     46       IsFp = false; IntVal = C;
     47     }
     48 
     49     void set(const APFloat& C);
     50 
     51     void negate();
     52 
     53     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
     54     Value *getValue(Type *) const;
     55 
     56     // If possible, don't define operator+/operator- etc because these
     57     // operators inevitably call FAddendCoef's constructor which is not cheap.
     58     void operator=(const FAddendCoef &A);
     59     void operator+=(const FAddendCoef &A);
     60     void operator-=(const FAddendCoef &A);
     61     void operator*=(const FAddendCoef &S);
     62 
     63     bool isOne() const { return isInt() && IntVal == 1; }
     64     bool isTwo() const { return isInt() && IntVal == 2; }
     65     bool isMinusOne() const { return isInt() && IntVal == -1; }
     66     bool isMinusTwo() const { return isInt() && IntVal == -2; }
     67 
     68   private:
     69     bool insaneIntVal(int V) { return V > 4 || V < -4; }
     70     APFloat *getFpValPtr(void)
     71       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
     72     const APFloat *getFpValPtr(void) const
     73       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
     74 
     75     const APFloat &getFpVal(void) const {
     76       assert(IsFp && BufHasFpVal && "Incorret state");
     77       return *getFpValPtr();
     78     }
     79 
     80     APFloat &getFpVal(void) {
     81       assert(IsFp && BufHasFpVal && "Incorret state");
     82       return *getFpValPtr();
     83     }
     84 
     85     bool isInt() const { return !IsFp; }
     86 
     87     // If the coefficient is represented by an integer, promote it to a
     88     // floating point.
     89     void convertToFpType(const fltSemantics &Sem);
     90 
     91     // Construct an APFloat from a signed integer.
     92     // TODO: We should get rid of this function when APFloat can be constructed
     93     //       from an *SIGNED* integer.
     94     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
     95   private:
     96 
     97     bool IsFp;
     98 
     99     // True iff FpValBuf contains an instance of APFloat.
    100     bool BufHasFpVal;
    101 
    102     // The integer coefficient of an individual addend is either 1 or -1,
    103     // and we try to simplify at most 4 addends from neighboring at most
    104     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
    105     // is overkill of this end.
    106     short IntVal;
    107 
    108     AlignedCharArrayUnion<APFloat> FpValBuf;
    109   };
    110 
    111   /// FAddend is used to represent floating-point addend. An addend is
    112   /// represented as <C, V>, where the V is a symbolic value, and C is a
    113   /// constant coefficient. A constant addend is represented as <C, 0>.
    114   ///
    115   class FAddend {
    116   public:
    117     FAddend() { Val = nullptr; }
    118 
    119     Value *getSymVal (void) const { return Val; }
    120     const FAddendCoef &getCoef(void) const { return Coeff; }
    121 
    122     bool isConstant() const { return Val == nullptr; }
    123     bool isZero() const { return Coeff.isZero(); }
    124 
    125     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
    126     void set(const APFloat& Coefficient, Value *V)
    127       { Coeff.set(Coefficient); Val = V; }
    128     void set(const ConstantFP* Coefficient, Value *V)
    129       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
    130 
    131     void negate() { Coeff.negate(); }
    132 
    133     /// Drill down the U-D chain one step to find the definition of V, and
    134     /// try to break the definition into one or two addends.
    135     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
    136 
    137     /// Similar to FAddend::drillDownOneStep() except that the value being
    138     /// splitted is the addend itself.
    139     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
    140 
    141     void operator+=(const FAddend &T) {
    142       assert((Val == T.Val) && "Symbolic-values disagree");
    143       Coeff += T.Coeff;
    144     }
    145 
    146   private:
    147     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
    148 
    149     // This addend has the value of "Coeff * Val".
    150     Value *Val;
    151     FAddendCoef Coeff;
    152   };
    153 
    154   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
    155   /// with its neighboring at most two instructions.
    156   ///
    157   class FAddCombine {
    158   public:
    159     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
    160     Value *simplify(Instruction *FAdd);
    161 
    162   private:
    163     typedef SmallVector<const FAddend*, 4> AddendVect;
    164 
    165     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
    166 
    167     Value *performFactorization(Instruction *I);
    168 
    169     /// Convert given addend to a Value
    170     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
    171 
    172     /// Return the number of instructions needed to emit the N-ary addition.
    173     unsigned calcInstrNumber(const AddendVect& Vect);
    174     Value *createFSub(Value *Opnd0, Value *Opnd1);
    175     Value *createFAdd(Value *Opnd0, Value *Opnd1);
    176     Value *createFMul(Value *Opnd0, Value *Opnd1);
    177     Value *createFDiv(Value *Opnd0, Value *Opnd1);
    178     Value *createFNeg(Value *V);
    179     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
    180     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
    181 
    182     InstCombiner::BuilderTy *Builder;
    183     Instruction *Instr;
    184 
    185   private:
    186      // Debugging stuff are clustered here.
    187     #ifndef NDEBUG
    188       unsigned CreateInstrNum;
    189       void initCreateInstNum() { CreateInstrNum = 0; }
    190       void incCreateInstNum() { CreateInstrNum++; }
    191     #else
    192       void initCreateInstNum() {}
    193       void incCreateInstNum() {}
    194     #endif
    195   };
    196 }
    197 
    198 //===----------------------------------------------------------------------===//
    199 //
    200 // Implementation of
    201 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
    202 //
    203 //===----------------------------------------------------------------------===//
    204 FAddendCoef::~FAddendCoef() {
    205   if (BufHasFpVal)
    206     getFpValPtr()->~APFloat();
    207 }
    208 
    209 void FAddendCoef::set(const APFloat& C) {
    210   APFloat *P = getFpValPtr();
    211 
    212   if (isInt()) {
    213     // As the buffer is meanless byte stream, we cannot call
    214     // APFloat::operator=().
    215     new(P) APFloat(C);
    216   } else
    217     *P = C;
    218 
    219   IsFp = BufHasFpVal = true;
    220 }
    221 
    222 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
    223   if (!isInt())
    224     return;
    225 
    226   APFloat *P = getFpValPtr();
    227   if (IntVal > 0)
    228     new(P) APFloat(Sem, IntVal);
    229   else {
    230     new(P) APFloat(Sem, 0 - IntVal);
    231     P->changeSign();
    232   }
    233   IsFp = BufHasFpVal = true;
    234 }
    235 
    236 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
    237   if (Val >= 0)
    238     return APFloat(Sem, Val);
    239 
    240   APFloat T(Sem, 0 - Val);
    241   T.changeSign();
    242 
    243   return T;
    244 }
    245 
    246 void FAddendCoef::operator=(const FAddendCoef &That) {
    247   if (That.isInt())
    248     set(That.IntVal);
    249   else
    250     set(That.getFpVal());
    251 }
    252 
    253 void FAddendCoef::operator+=(const FAddendCoef &That) {
    254   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    255   if (isInt() == That.isInt()) {
    256     if (isInt())
    257       IntVal += That.IntVal;
    258     else
    259       getFpVal().add(That.getFpVal(), RndMode);
    260     return;
    261   }
    262 
    263   if (isInt()) {
    264     const APFloat &T = That.getFpVal();
    265     convertToFpType(T.getSemantics());
    266     getFpVal().add(T, RndMode);
    267     return;
    268   }
    269 
    270   APFloat &T = getFpVal();
    271   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
    272 }
    273 
    274 void FAddendCoef::operator-=(const FAddendCoef &That) {
    275   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    276   if (isInt() == That.isInt()) {
    277     if (isInt())
    278       IntVal -= That.IntVal;
    279     else
    280       getFpVal().subtract(That.getFpVal(), RndMode);
    281     return;
    282   }
    283 
    284   if (isInt()) {
    285     const APFloat &T = That.getFpVal();
    286     convertToFpType(T.getSemantics());
    287     getFpVal().subtract(T, RndMode);
    288     return;
    289   }
    290 
    291   APFloat &T = getFpVal();
    292   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
    293 }
    294 
    295 void FAddendCoef::operator*=(const FAddendCoef &That) {
    296   if (That.isOne())
    297     return;
    298 
    299   if (That.isMinusOne()) {
    300     negate();
    301     return;
    302   }
    303 
    304   if (isInt() && That.isInt()) {
    305     int Res = IntVal * (int)That.IntVal;
    306     assert(!insaneIntVal(Res) && "Insane int value");
    307     IntVal = Res;
    308     return;
    309   }
    310 
    311   const fltSemantics &Semantic =
    312     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
    313 
    314   if (isInt())
    315     convertToFpType(Semantic);
    316   APFloat &F0 = getFpVal();
    317 
    318   if (That.isInt())
    319     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
    320                 APFloat::rmNearestTiesToEven);
    321   else
    322     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
    323 
    324   return;
    325 }
    326 
    327 void FAddendCoef::negate() {
    328   if (isInt())
    329     IntVal = 0 - IntVal;
    330   else
    331     getFpVal().changeSign();
    332 }
    333 
    334 Value *FAddendCoef::getValue(Type *Ty) const {
    335   return isInt() ?
    336     ConstantFP::get(Ty, float(IntVal)) :
    337     ConstantFP::get(Ty->getContext(), getFpVal());
    338 }
    339 
    340 // The definition of <Val>     Addends
    341 // =========================================
    342 //  A + B                     <1, A>, <1,B>
    343 //  A - B                     <1, A>, <1,B>
    344 //  0 - B                     <-1, B>
    345 //  C * A,                    <C, A>
    346 //  A + C                     <1, A> <C, NULL>
    347 //  0 +/- 0                   <0, NULL> (corner case)
    348 //
    349 // Legend: A and B are not constant, C is constant
    350 //
    351 unsigned FAddend::drillValueDownOneStep
    352   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
    353   Instruction *I = nullptr;
    354   if (!Val || !(I = dyn_cast<Instruction>(Val)))
    355     return 0;
    356 
    357   unsigned Opcode = I->getOpcode();
    358 
    359   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
    360     ConstantFP *C0, *C1;
    361     Value *Opnd0 = I->getOperand(0);
    362     Value *Opnd1 = I->getOperand(1);
    363     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
    364       Opnd0 = nullptr;
    365 
    366     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
    367       Opnd1 = nullptr;
    368 
    369     if (Opnd0) {
    370       if (!C0)
    371         Addend0.set(1, Opnd0);
    372       else
    373         Addend0.set(C0, nullptr);
    374     }
    375 
    376     if (Opnd1) {
    377       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
    378       if (!C1)
    379         Addend.set(1, Opnd1);
    380       else
    381         Addend.set(C1, nullptr);
    382       if (Opcode == Instruction::FSub)
    383         Addend.negate();
    384     }
    385 
    386     if (Opnd0 || Opnd1)
    387       return Opnd0 && Opnd1 ? 2 : 1;
    388 
    389     // Both operands are zero. Weird!
    390     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
    391     return 1;
    392   }
    393 
    394   if (I->getOpcode() == Instruction::FMul) {
    395     Value *V0 = I->getOperand(0);
    396     Value *V1 = I->getOperand(1);
    397     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
    398       Addend0.set(C, V1);
    399       return 1;
    400     }
    401 
    402     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
    403       Addend0.set(C, V0);
    404       return 1;
    405     }
    406   }
    407 
    408   return 0;
    409 }
    410 
    411 // Try to break *this* addend into two addends. e.g. Suppose this addend is
    412 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
    413 // i.e. <2.3, X> and <2.3, Y>.
    414 //
    415 unsigned FAddend::drillAddendDownOneStep
    416   (FAddend &Addend0, FAddend &Addend1) const {
    417   if (isConstant())
    418     return 0;
    419 
    420   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
    421   if (!BreakNum || Coeff.isOne())
    422     return BreakNum;
    423 
    424   Addend0.Scale(Coeff);
    425 
    426   if (BreakNum == 2)
    427     Addend1.Scale(Coeff);
    428 
    429   return BreakNum;
    430 }
    431 
    432 // Try to perform following optimization on the input instruction I. Return the
    433 // simplified expression if was successful; otherwise, return 0.
    434 //
    435 //   Instruction "I" is                Simplified into
    436 // -------------------------------------------------------
    437 //   (x * y) +/- (x * z)               x * (y +/- z)
    438 //   (y / x) +/- (z / x)               (y +/- z) / x
    439 //
    440 Value *FAddCombine::performFactorization(Instruction *I) {
    441   assert((I->getOpcode() == Instruction::FAdd ||
    442           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    443 
    444   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
    445   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
    446 
    447   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
    448     return nullptr;
    449 
    450   bool isMpy = false;
    451   if (I0->getOpcode() == Instruction::FMul)
    452     isMpy = true;
    453   else if (I0->getOpcode() != Instruction::FDiv)
    454     return nullptr;
    455 
    456   Value *Opnd0_0 = I0->getOperand(0);
    457   Value *Opnd0_1 = I0->getOperand(1);
    458   Value *Opnd1_0 = I1->getOperand(0);
    459   Value *Opnd1_1 = I1->getOperand(1);
    460 
    461   //  Input Instr I       Factor   AddSub0  AddSub1
    462   //  ----------------------------------------------
    463   // (x*y) +/- (x*z)        x        y         z
    464   // (y/x) +/- (z/x)        x        y         z
    465   //
    466   Value *Factor = nullptr;
    467   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
    468 
    469   if (isMpy) {
    470     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
    471       Factor = Opnd0_0;
    472     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
    473       Factor = Opnd0_1;
    474 
    475     if (Factor) {
    476       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
    477       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
    478     }
    479   } else if (Opnd0_1 == Opnd1_1) {
    480     Factor = Opnd0_1;
    481     AddSub0 = Opnd0_0;
    482     AddSub1 = Opnd1_0;
    483   }
    484 
    485   if (!Factor)
    486     return nullptr;
    487 
    488   FastMathFlags Flags;
    489   Flags.setUnsafeAlgebra();
    490   if (I0) Flags &= I->getFastMathFlags();
    491   if (I1) Flags &= I->getFastMathFlags();
    492 
    493   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
    494   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
    495                       createFAdd(AddSub0, AddSub1) :
    496                       createFSub(AddSub0, AddSub1);
    497   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
    498     const APFloat &F = CFP->getValueAPF();
    499     if (!F.isNormal())
    500       return nullptr;
    501   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
    502     II->setFastMathFlags(Flags);
    503 
    504   if (isMpy) {
    505     Value *RI = createFMul(Factor, NewAddSub);
    506     if (Instruction *II = dyn_cast<Instruction>(RI))
    507       II->setFastMathFlags(Flags);
    508     return RI;
    509   }
    510 
    511   Value *RI = createFDiv(NewAddSub, Factor);
    512   if (Instruction *II = dyn_cast<Instruction>(RI))
    513     II->setFastMathFlags(Flags);
    514   return RI;
    515 }
    516 
    517 Value *FAddCombine::simplify(Instruction *I) {
    518   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
    519 
    520   // Currently we are not able to handle vector type.
    521   if (I->getType()->isVectorTy())
    522     return nullptr;
    523 
    524   assert((I->getOpcode() == Instruction::FAdd ||
    525           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    526 
    527   // Save the instruction before calling other member-functions.
    528   Instr = I;
    529 
    530   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
    531 
    532   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
    533 
    534   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
    535   unsigned Opnd0_ExpNum = 0;
    536   unsigned Opnd1_ExpNum = 0;
    537 
    538   if (!Opnd0.isConstant())
    539     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
    540 
    541   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
    542   if (OpndNum == 2 && !Opnd1.isConstant())
    543     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
    544 
    545   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
    546   if (Opnd0_ExpNum && Opnd1_ExpNum) {
    547     AddendVect AllOpnds;
    548     AllOpnds.push_back(&Opnd0_0);
    549     AllOpnds.push_back(&Opnd1_0);
    550     if (Opnd0_ExpNum == 2)
    551       AllOpnds.push_back(&Opnd0_1);
    552     if (Opnd1_ExpNum == 2)
    553       AllOpnds.push_back(&Opnd1_1);
    554 
    555     // Compute instruction quota. We should save at least one instruction.
    556     unsigned InstQuota = 0;
    557 
    558     Value *V0 = I->getOperand(0);
    559     Value *V1 = I->getOperand(1);
    560     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
    561                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
    562 
    563     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
    564       return R;
    565   }
    566 
    567   if (OpndNum != 2) {
    568     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
    569     // splitted into two addends, say "V = X - Y", the instruction would have
    570     // been optimized into "I = Y - X" in the previous steps.
    571     //
    572     const FAddendCoef &CE = Opnd0.getCoef();
    573     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
    574   }
    575 
    576   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
    577   if (Opnd1_ExpNum) {
    578     AddendVect AllOpnds;
    579     AllOpnds.push_back(&Opnd0);
    580     AllOpnds.push_back(&Opnd1_0);
    581     if (Opnd1_ExpNum == 2)
    582       AllOpnds.push_back(&Opnd1_1);
    583 
    584     if (Value *R = simplifyFAdd(AllOpnds, 1))
    585       return R;
    586   }
    587 
    588   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
    589   if (Opnd0_ExpNum) {
    590     AddendVect AllOpnds;
    591     AllOpnds.push_back(&Opnd1);
    592     AllOpnds.push_back(&Opnd0_0);
    593     if (Opnd0_ExpNum == 2)
    594       AllOpnds.push_back(&Opnd0_1);
    595 
    596     if (Value *R = simplifyFAdd(AllOpnds, 1))
    597       return R;
    598   }
    599 
    600   // step 6: Try factorization as the last resort,
    601   return performFactorization(I);
    602 }
    603 
    604 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
    605 
    606   unsigned AddendNum = Addends.size();
    607   assert(AddendNum <= 4 && "Too many addends");
    608 
    609   // For saving intermediate results;
    610   unsigned NextTmpIdx = 0;
    611   FAddend TmpResult[3];
    612 
    613   // Points to the constant addend of the resulting simplified expression.
    614   // If the resulting expr has constant-addend, this constant-addend is
    615   // desirable to reside at the top of the resulting expression tree. Placing
    616   // constant close to supper-expr(s) will potentially reveal some optimization
    617   // opportunities in super-expr(s).
    618   //
    619   const FAddend *ConstAdd = nullptr;
    620 
    621   // Simplified addends are placed <SimpVect>.
    622   AddendVect SimpVect;
    623 
    624   // The outer loop works on one symbolic-value at a time. Suppose the input
    625   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
    626   // The symbolic-values will be processed in this order: x, y, z.
    627   //
    628   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
    629 
    630     const FAddend *ThisAddend = Addends[SymIdx];
    631     if (!ThisAddend) {
    632       // This addend was processed before.
    633       continue;
    634     }
    635 
    636     Value *Val = ThisAddend->getSymVal();
    637     unsigned StartIdx = SimpVect.size();
    638     SimpVect.push_back(ThisAddend);
    639 
    640     // The inner loop collects addends sharing same symbolic-value, and these
    641     // addends will be later on folded into a single addend. Following above
    642     // example, if the symbolic value "y" is being processed, the inner loop
    643     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
    644     // be later on folded into "<b1+b2, y>".
    645     //
    646     for (unsigned SameSymIdx = SymIdx + 1;
    647          SameSymIdx < AddendNum; SameSymIdx++) {
    648       const FAddend *T = Addends[SameSymIdx];
    649       if (T && T->getSymVal() == Val) {
    650         // Set null such that next iteration of the outer loop will not process
    651         // this addend again.
    652         Addends[SameSymIdx] = nullptr;
    653         SimpVect.push_back(T);
    654       }
    655     }
    656 
    657     // If multiple addends share same symbolic value, fold them together.
    658     if (StartIdx + 1 != SimpVect.size()) {
    659       FAddend &R = TmpResult[NextTmpIdx ++];
    660       R = *SimpVect[StartIdx];
    661       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
    662         R += *SimpVect[Idx];
    663 
    664       // Pop all addends being folded and push the resulting folded addend.
    665       SimpVect.resize(StartIdx);
    666       if (Val) {
    667         if (!R.isZero()) {
    668           SimpVect.push_back(&R);
    669         }
    670       } else {
    671         // Don't push constant addend at this time. It will be the last element
    672         // of <SimpVect>.
    673         ConstAdd = &R;
    674       }
    675     }
    676   }
    677 
    678   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
    679          "out-of-bound access");
    680 
    681   if (ConstAdd)
    682     SimpVect.push_back(ConstAdd);
    683 
    684   Value *Result;
    685   if (!SimpVect.empty())
    686     Result = createNaryFAdd(SimpVect, InstrQuota);
    687   else {
    688     // The addition is folded to 0.0.
    689     Result = ConstantFP::get(Instr->getType(), 0.0);
    690   }
    691 
    692   return Result;
    693 }
    694 
    695 Value *FAddCombine::createNaryFAdd
    696   (const AddendVect &Opnds, unsigned InstrQuota) {
    697   assert(!Opnds.empty() && "Expect at least one addend");
    698 
    699   // Step 1: Check if the # of instructions needed exceeds the quota.
    700   //
    701   unsigned InstrNeeded = calcInstrNumber(Opnds);
    702   if (InstrNeeded > InstrQuota)
    703     return nullptr;
    704 
    705   initCreateInstNum();
    706 
    707   // step 2: Emit the N-ary addition.
    708   // Note that at most three instructions are involved in Fadd-InstCombine: the
    709   // addition in question, and at most two neighboring instructions.
    710   // The resulting optimized addition should have at least one less instruction
    711   // than the original addition expression tree. This implies that the resulting
    712   // N-ary addition has at most two instructions, and we don't need to worry
    713   // about tree-height when constructing the N-ary addition.
    714 
    715   Value *LastVal = nullptr;
    716   bool LastValNeedNeg = false;
    717 
    718   // Iterate the addends, creating fadd/fsub using adjacent two addends.
    719   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    720        I != E; I++) {
    721     bool NeedNeg;
    722     Value *V = createAddendVal(**I, NeedNeg);
    723     if (!LastVal) {
    724       LastVal = V;
    725       LastValNeedNeg = NeedNeg;
    726       continue;
    727     }
    728 
    729     if (LastValNeedNeg == NeedNeg) {
    730       LastVal = createFAdd(LastVal, V);
    731       continue;
    732     }
    733 
    734     if (LastValNeedNeg)
    735       LastVal = createFSub(V, LastVal);
    736     else
    737       LastVal = createFSub(LastVal, V);
    738 
    739     LastValNeedNeg = false;
    740   }
    741 
    742   if (LastValNeedNeg) {
    743     LastVal = createFNeg(LastVal);
    744   }
    745 
    746   #ifndef NDEBUG
    747     assert(CreateInstrNum == InstrNeeded &&
    748            "Inconsistent in instruction numbers");
    749   #endif
    750 
    751   return LastVal;
    752 }
    753 
    754 Value *FAddCombine::createFSub
    755   (Value *Opnd0, Value *Opnd1) {
    756   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
    757   if (Instruction *I = dyn_cast<Instruction>(V))
    758     createInstPostProc(I);
    759   return V;
    760 }
    761 
    762 Value *FAddCombine::createFNeg(Value *V) {
    763   Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
    764   Value *NewV = createFSub(Zero, V);
    765   if (Instruction *I = dyn_cast<Instruction>(NewV))
    766     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
    767   return NewV;
    768 }
    769 
    770 Value *FAddCombine::createFAdd
    771   (Value *Opnd0, Value *Opnd1) {
    772   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
    773   if (Instruction *I = dyn_cast<Instruction>(V))
    774     createInstPostProc(I);
    775   return V;
    776 }
    777 
    778 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
    779   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
    780   if (Instruction *I = dyn_cast<Instruction>(V))
    781     createInstPostProc(I);
    782   return V;
    783 }
    784 
    785 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
    786   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
    787   if (Instruction *I = dyn_cast<Instruction>(V))
    788     createInstPostProc(I);
    789   return V;
    790 }
    791 
    792 void FAddCombine::createInstPostProc(Instruction *NewInstr,
    793                                      bool NoNumber) {
    794   NewInstr->setDebugLoc(Instr->getDebugLoc());
    795 
    796   // Keep track of the number of instruction created.
    797   if (!NoNumber)
    798     incCreateInstNum();
    799 
    800   // Propagate fast-math flags
    801   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
    802 }
    803 
    804 // Return the number of instruction needed to emit the N-ary addition.
    805 // NOTE: Keep this function in sync with createAddendVal().
    806 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
    807   unsigned OpndNum = Opnds.size();
    808   unsigned InstrNeeded = OpndNum - 1;
    809 
    810   // The number of addends in the form of "(-1)*x".
    811   unsigned NegOpndNum = 0;
    812 
    813   // Adjust the number of instructions needed to emit the N-ary add.
    814   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    815        I != E; I++) {
    816     const FAddend *Opnd = *I;
    817     if (Opnd->isConstant())
    818       continue;
    819 
    820     const FAddendCoef &CE = Opnd->getCoef();
    821     if (CE.isMinusOne() || CE.isMinusTwo())
    822       NegOpndNum++;
    823 
    824     // Let the addend be "c * x". If "c == +/-1", the value of the addend
    825     // is immediately available; otherwise, it needs exactly one instruction
    826     // to evaluate the value.
    827     if (!CE.isMinusOne() && !CE.isOne())
    828       InstrNeeded++;
    829   }
    830   if (NegOpndNum == OpndNum)
    831     InstrNeeded++;
    832   return InstrNeeded;
    833 }
    834 
    835 // Input Addend        Value           NeedNeg(output)
    836 // ================================================================
    837 // Constant C          C               false
    838 // <+/-1, V>           V               coefficient is -1
    839 // <2/-2, V>          "fadd V, V"      coefficient is -2
    840 // <C, V>             "fmul V, C"      false
    841 //
    842 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
    843 Value *FAddCombine::createAddendVal
    844   (const FAddend &Opnd, bool &NeedNeg) {
    845   const FAddendCoef &Coeff = Opnd.getCoef();
    846 
    847   if (Opnd.isConstant()) {
    848     NeedNeg = false;
    849     return Coeff.getValue(Instr->getType());
    850   }
    851 
    852   Value *OpndVal = Opnd.getSymVal();
    853 
    854   if (Coeff.isMinusOne() || Coeff.isOne()) {
    855     NeedNeg = Coeff.isMinusOne();
    856     return OpndVal;
    857   }
    858 
    859   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
    860     NeedNeg = Coeff.isMinusTwo();
    861     return createFAdd(OpndVal, OpndVal);
    862   }
    863 
    864   NeedNeg = false;
    865   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
    866 }
    867 
    868 // If one of the operands only has one non-zero bit, and if the other
    869 // operand has a known-zero bit in a more significant place than it (not
    870 // including the sign bit) the ripple may go up to and fill the zero, but
    871 // won't change the sign. For example, (X & ~4) + 1.
    872 static bool checkRippleForAdd(const APInt &Op0KnownZero,
    873                               const APInt &Op1KnownZero) {
    874   APInt Op1MaybeOne = ~Op1KnownZero;
    875   // Make sure that one of the operand has at most one bit set to 1.
    876   if (Op1MaybeOne.countPopulation() != 1)
    877     return false;
    878 
    879   // Find the most significant known 0 other than the sign bit.
    880   int BitWidth = Op0KnownZero.getBitWidth();
    881   APInt Op0KnownZeroTemp(Op0KnownZero);
    882   Op0KnownZeroTemp.clearBit(BitWidth - 1);
    883   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
    884 
    885   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
    886   assert(Op1OnePosition >= 0);
    887 
    888   // This also covers the case of no known zero, since in that case
    889   // Op0ZeroPosition is -1.
    890   return Op0ZeroPosition >= Op1OnePosition;
    891 }
    892 
    893 /// WillNotOverflowSignedAdd - Return true if we can prove that:
    894 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
    895 /// This basically requires proving that the add in the original type would not
    896 /// overflow to change the sign bit or have a carry out.
    897 /// TODO: Handle this for Vectors.
    898 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
    899   // There are different heuristics we can use for this.  Here are some simple
    900   // ones.
    901 
    902   // If LHS and RHS each have at least two sign bits, the addition will look
    903   // like
    904   //
    905   // XX..... +
    906   // YY.....
    907   //
    908   // If the carry into the most significant position is 0, X and Y can't both
    909   // be 1 and therefore the carry out of the addition is also 0.
    910   //
    911   // If the carry into the most significant position is 1, X and Y can't both
    912   // be 0 and therefore the carry out of the addition is also 1.
    913   //
    914   // Since the carry into the most significant position is always equal to
    915   // the carry out of the addition, there is no signed overflow.
    916   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
    917     return true;
    918 
    919   if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
    920     int BitWidth = IT->getBitWidth();
    921     APInt LHSKnownZero(BitWidth, 0);
    922     APInt LHSKnownOne(BitWidth, 0);
    923     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
    924 
    925     APInt RHSKnownZero(BitWidth, 0);
    926     APInt RHSKnownOne(BitWidth, 0);
    927     computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
    928 
    929     // Addition of two 2's compliment numbers having opposite signs will never
    930     // overflow.
    931     if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
    932         (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
    933       return true;
    934 
    935     // Check if carry bit of addition will not cause overflow.
    936     if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
    937       return true;
    938     if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
    939       return true;
    940   }
    941   return false;
    942 }
    943 
    944 /// WillNotOverflowUnsignedAdd - Return true if we can prove that:
    945 ///    (zext (add LHS, RHS))  === (add (zext LHS), (zext RHS))
    946 bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS) {
    947   // There are different heuristics we can use for this. Here is a simple one.
    948   // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap.
    949   bool LHSKnownNonNegative, LHSKnownNegative;
    950   bool RHSKnownNonNegative, RHSKnownNegative;
    951   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0);
    952   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0);
    953   if (LHSKnownNonNegative && RHSKnownNonNegative)
    954     return true;
    955 
    956   return false;
    957 }
    958 
    959 // Checks if any operand is negative and we can convert add to sub.
    960 // This function checks for following negative patterns
    961 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
    962 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
    963 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
    964 static Value *checkForNegativeOperand(BinaryOperator &I,
    965                                       InstCombiner::BuilderTy *Builder) {
    966   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    967 
    968   // This function creates 2 instructions to replace ADD, we need at least one
    969   // of LHS or RHS to have one use to ensure benefit in transform.
    970   if (!LHS->hasOneUse() && !RHS->hasOneUse())
    971     return nullptr;
    972 
    973   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
    974   const APInt *C1 = nullptr, *C2 = nullptr;
    975 
    976   // if ONE is on other side, swap
    977   if (match(RHS, m_Add(m_Value(X), m_One())))
    978     std::swap(LHS, RHS);
    979 
    980   if (match(LHS, m_Add(m_Value(X), m_One()))) {
    981     // if XOR on other side, swap
    982     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
    983       std::swap(X, RHS);
    984 
    985     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
    986       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
    987       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
    988       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
    989         Value *NewAnd = Builder->CreateAnd(Z, *C1);
    990         return Builder->CreateSub(RHS, NewAnd, "sub");
    991       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
    992         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
    993         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
    994         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
    995         return Builder->CreateSub(RHS, NewOr, "sub");
    996       }
    997     }
    998   }
    999 
   1000   // Restore LHS and RHS
   1001   LHS = I.getOperand(0);
   1002   RHS = I.getOperand(1);
   1003 
   1004   // if XOR is on other side, swap
   1005   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1006     std::swap(LHS, RHS);
   1007 
   1008   // C2 is ODD
   1009   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
   1010   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
   1011   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1012     if (C1->countTrailingZeros() == 0)
   1013       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
   1014         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
   1015         return Builder->CreateSub(RHS, NewOr, "sub");
   1016       }
   1017   return nullptr;
   1018 }
   1019 
   1020 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
   1021    bool Changed = SimplifyAssociativeOrCommutative(I);
   1022    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1023 
   1024    if (Value *V = SimplifyVectorOp(I))
   1025      return ReplaceInstUsesWith(I, V);
   1026 
   1027    if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
   1028                                   I.hasNoUnsignedWrap(), DL))
   1029      return ReplaceInstUsesWith(I, V);
   1030 
   1031    // (A*B)+(A*C) -> A*(B+C) etc
   1032   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1033     return ReplaceInstUsesWith(I, V);
   1034 
   1035   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1036     // X + (signbit) --> X ^ signbit
   1037     const APInt &Val = CI->getValue();
   1038     if (Val.isSignBit())
   1039       return BinaryOperator::CreateXor(LHS, RHS);
   1040 
   1041     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
   1042     // (X & 254)+1 -> (X&254)|1
   1043     if (SimplifyDemandedInstructionBits(I))
   1044       return &I;
   1045 
   1046     // zext(bool) + C -> bool ? C + 1 : C
   1047     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
   1048       if (ZI->getSrcTy()->isIntegerTy(1))
   1049         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
   1050 
   1051     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
   1052     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
   1053       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
   1054       const APInt &RHSVal = CI->getValue();
   1055       unsigned ExtendAmt = 0;
   1056       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
   1057       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
   1058       if (XorRHS->getValue() == -RHSVal) {
   1059         if (RHSVal.isPowerOf2())
   1060           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
   1061         else if (XorRHS->getValue().isPowerOf2())
   1062           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
   1063       }
   1064 
   1065       if (ExtendAmt) {
   1066         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
   1067         if (!MaskedValueIsZero(XorLHS, Mask))
   1068           ExtendAmt = 0;
   1069       }
   1070 
   1071       if (ExtendAmt) {
   1072         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
   1073         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
   1074         return BinaryOperator::CreateAShr(NewShl, ShAmt);
   1075       }
   1076 
   1077       // If this is a xor that was canonicalized from a sub, turn it back into
   1078       // a sub and fuse this add with it.
   1079       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
   1080         IntegerType *IT = cast<IntegerType>(I.getType());
   1081         APInt LHSKnownOne(IT->getBitWidth(), 0);
   1082         APInt LHSKnownZero(IT->getBitWidth(), 0);
   1083         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne);
   1084         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
   1085           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
   1086                                            XorLHS);
   1087       }
   1088       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
   1089       // transform them into (X + (signbit ^ C))
   1090       if (XorRHS->getValue().isSignBit())
   1091           return BinaryOperator::CreateAdd(XorLHS,
   1092                                            ConstantExpr::getXor(XorRHS, CI));
   1093     }
   1094   }
   1095 
   1096   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
   1097     if (Instruction *NV = FoldOpIntoPhi(I))
   1098       return NV;
   1099 
   1100   if (I.getType()->getScalarType()->isIntegerTy(1))
   1101     return BinaryOperator::CreateXor(LHS, RHS);
   1102 
   1103   // X + X --> X << 1
   1104   if (LHS == RHS) {
   1105     BinaryOperator *New =
   1106       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
   1107     New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1108     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1109     return New;
   1110   }
   1111 
   1112   // -A + B  -->  B - A
   1113   // -A + -B  -->  -(A + B)
   1114   if (Value *LHSV = dyn_castNegVal(LHS)) {
   1115     if (!isa<Constant>(RHS))
   1116       if (Value *RHSV = dyn_castNegVal(RHS)) {
   1117         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
   1118         return BinaryOperator::CreateNeg(NewAdd);
   1119       }
   1120 
   1121     return BinaryOperator::CreateSub(RHS, LHSV);
   1122   }
   1123 
   1124   // A + -B  -->  A - B
   1125   if (!isa<Constant>(RHS))
   1126     if (Value *V = dyn_castNegVal(RHS))
   1127       return BinaryOperator::CreateSub(LHS, V);
   1128 
   1129   if (Value *V = checkForNegativeOperand(I, Builder))
   1130     return ReplaceInstUsesWith(I, V);
   1131 
   1132   // A+B --> A|B iff A and B have no bits set in common.
   1133   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
   1134     APInt LHSKnownOne(IT->getBitWidth(), 0);
   1135     APInt LHSKnownZero(IT->getBitWidth(), 0);
   1136     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
   1137     if (LHSKnownZero != 0) {
   1138       APInt RHSKnownOne(IT->getBitWidth(), 0);
   1139       APInt RHSKnownZero(IT->getBitWidth(), 0);
   1140       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
   1141 
   1142       // No bits in common -> bitwise or.
   1143       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
   1144         return BinaryOperator::CreateOr(LHS, RHS);
   1145     }
   1146   }
   1147 
   1148   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   1149     Value *X;
   1150     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
   1151       return BinaryOperator::CreateSub(SubOne(CRHS), X);
   1152   }
   1153 
   1154   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
   1155     // (X & FF00) + xx00  -> (X+xx00) & FF00
   1156     Value *X;
   1157     ConstantInt *C2;
   1158     if (LHS->hasOneUse() &&
   1159         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
   1160         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
   1161       // See if all bits from the first bit set in the Add RHS up are included
   1162       // in the mask.  First, get the rightmost bit.
   1163       const APInt &AddRHSV = CRHS->getValue();
   1164 
   1165       // Form a mask of all bits from the lowest bit added through the top.
   1166       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
   1167 
   1168       // See if the and mask includes all of these bits.
   1169       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
   1170 
   1171       if (AddRHSHighBits == AddRHSHighBitsAnd) {
   1172         // Okay, the xform is safe.  Insert the new add pronto.
   1173         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
   1174         return BinaryOperator::CreateAnd(NewAdd, C2);
   1175       }
   1176     }
   1177 
   1178     // Try to fold constant add into select arguments.
   1179     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1180       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1181         return R;
   1182   }
   1183 
   1184   // add (select X 0 (sub n A)) A  -->  select X A n
   1185   {
   1186     SelectInst *SI = dyn_cast<SelectInst>(LHS);
   1187     Value *A = RHS;
   1188     if (!SI) {
   1189       SI = dyn_cast<SelectInst>(RHS);
   1190       A = LHS;
   1191     }
   1192     if (SI && SI->hasOneUse()) {
   1193       Value *TV = SI->getTrueValue();
   1194       Value *FV = SI->getFalseValue();
   1195       Value *N;
   1196 
   1197       // Can we fold the add into the argument of the select?
   1198       // We check both true and false select arguments for a matching subtract.
   1199       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
   1200         // Fold the add into the true select value.
   1201         return SelectInst::Create(SI->getCondition(), N, A);
   1202 
   1203       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
   1204         // Fold the add into the false select value.
   1205         return SelectInst::Create(SI->getCondition(), A, N);
   1206     }
   1207   }
   1208 
   1209   // Check for (add (sext x), y), see if we can merge this into an
   1210   // integer add followed by a sext.
   1211   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
   1212     // (add (sext x), cst) --> (sext (add x, cst'))
   1213     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   1214       Constant *CI =
   1215         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
   1216       if (LHSConv->hasOneUse() &&
   1217           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
   1218           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
   1219         // Insert the new, smaller add.
   1220         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1221                                               CI, "addconv");
   1222         return new SExtInst(NewAdd, I.getType());
   1223       }
   1224     }
   1225 
   1226     // (add (sext x), (sext y)) --> (sext (add int x, y))
   1227     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
   1228       // Only do this if x/y have the same type, if at last one of them has a
   1229       // single use (so we don't increase the number of sexts), and if the
   1230       // integer add will not overflow.
   1231       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
   1232           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1233           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1234                                    RHSConv->getOperand(0))) {
   1235         // Insert the new integer add.
   1236         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1237                                              RHSConv->getOperand(0), "addconv");
   1238         return new SExtInst(NewAdd, I.getType());
   1239       }
   1240     }
   1241   }
   1242 
   1243   // Check for (x & y) + (x ^ y)
   1244   {
   1245     Value *A = nullptr, *B = nullptr;
   1246     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
   1247         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
   1248          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
   1249       return BinaryOperator::CreateOr(A, B);
   1250 
   1251     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
   1252         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
   1253          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
   1254       return BinaryOperator::CreateOr(A, B);
   1255   }
   1256 
   1257   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
   1258   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
   1259   // computeKnownBits.
   1260   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS)) {
   1261     Changed = true;
   1262     I.setHasNoSignedWrap(true);
   1263   }
   1264   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedAdd(LHS, RHS)) {
   1265     Changed = true;
   1266     I.setHasNoUnsignedWrap(true);
   1267   }
   1268 
   1269   return Changed ? &I : nullptr;
   1270 }
   1271 
   1272 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
   1273   bool Changed = SimplifyAssociativeOrCommutative(I);
   1274   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1275 
   1276   if (Value *V = SimplifyVectorOp(I))
   1277     return ReplaceInstUsesWith(I, V);
   1278 
   1279   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL))
   1280     return ReplaceInstUsesWith(I, V);
   1281 
   1282   if (isa<Constant>(RHS)) {
   1283     if (isa<PHINode>(LHS))
   1284       if (Instruction *NV = FoldOpIntoPhi(I))
   1285         return NV;
   1286 
   1287     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1288       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1289         return NV;
   1290   }
   1291 
   1292   // -A + B  -->  B - A
   1293   // -A + -B  -->  -(A + B)
   1294   if (Value *LHSV = dyn_castFNegVal(LHS)) {
   1295     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
   1296     RI->copyFastMathFlags(&I);
   1297     return RI;
   1298   }
   1299 
   1300   // A + -B  -->  A - B
   1301   if (!isa<Constant>(RHS))
   1302     if (Value *V = dyn_castFNegVal(RHS)) {
   1303       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
   1304       RI->copyFastMathFlags(&I);
   1305       return RI;
   1306     }
   1307 
   1308   // Check for (fadd double (sitofp x), y), see if we can merge this into an
   1309   // integer add followed by a promotion.
   1310   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
   1311     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
   1312     // ... if the constant fits in the integer value.  This is useful for things
   1313     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
   1314     // requires a constant pool load, and generally allows the add to be better
   1315     // instcombined.
   1316     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
   1317       Constant *CI =
   1318       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
   1319       if (LHSConv->hasOneUse() &&
   1320           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
   1321           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
   1322         // Insert the new integer add.
   1323         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1324                                               CI, "addconv");
   1325         return new SIToFPInst(NewAdd, I.getType());
   1326       }
   1327     }
   1328 
   1329     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
   1330     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
   1331       // Only do this if x/y have the same type, if at last one of them has a
   1332       // single use (so we don't increase the number of int->fp conversions),
   1333       // and if the integer add will not overflow.
   1334       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
   1335           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1336           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1337                                    RHSConv->getOperand(0))) {
   1338         // Insert the new integer add.
   1339         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1340                                               RHSConv->getOperand(0),"addconv");
   1341         return new SIToFPInst(NewAdd, I.getType());
   1342       }
   1343     }
   1344   }
   1345 
   1346   // select C, 0, B + select C, A, 0 -> select C, A, B
   1347   {
   1348     Value *A1, *B1, *C1, *A2, *B2, *C2;
   1349     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
   1350         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
   1351       if (C1 == C2) {
   1352         Constant *Z1=nullptr, *Z2=nullptr;
   1353         Value *A, *B, *C=C1;
   1354         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
   1355             Z1 = dyn_cast<Constant>(A1); A = A2;
   1356             Z2 = dyn_cast<Constant>(B2); B = B1;
   1357         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
   1358             Z1 = dyn_cast<Constant>(B1); B = B2;
   1359             Z2 = dyn_cast<Constant>(A2); A = A1;
   1360         }
   1361 
   1362         if (Z1 && Z2 &&
   1363             (I.hasNoSignedZeros() ||
   1364              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
   1365           return SelectInst::Create(C, A, B);
   1366         }
   1367       }
   1368     }
   1369   }
   1370 
   1371   if (I.hasUnsafeAlgebra()) {
   1372     if (Value *V = FAddCombine(Builder).simplify(&I))
   1373       return ReplaceInstUsesWith(I, V);
   1374   }
   1375 
   1376   return Changed ? &I : nullptr;
   1377 }
   1378 
   1379 
   1380 /// Optimize pointer differences into the same array into a size.  Consider:
   1381 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
   1382 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
   1383 ///
   1384 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
   1385                                                Type *Ty) {
   1386   assert(DL && "Must have target data info for this");
   1387 
   1388   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
   1389   // this.
   1390   bool Swapped = false;
   1391   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
   1392 
   1393   // For now we require one side to be the base pointer "A" or a constant
   1394   // GEP derived from it.
   1395   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1396     // (gep X, ...) - X
   1397     if (LHSGEP->getOperand(0) == RHS) {
   1398       GEP1 = LHSGEP;
   1399       Swapped = false;
   1400     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1401       // (gep X, ...) - (gep X, ...)
   1402       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
   1403             RHSGEP->getOperand(0)->stripPointerCasts()) {
   1404         GEP2 = RHSGEP;
   1405         GEP1 = LHSGEP;
   1406         Swapped = false;
   1407       }
   1408     }
   1409   }
   1410 
   1411   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1412     // X - (gep X, ...)
   1413     if (RHSGEP->getOperand(0) == LHS) {
   1414       GEP1 = RHSGEP;
   1415       Swapped = true;
   1416     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1417       // (gep X, ...) - (gep X, ...)
   1418       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
   1419             LHSGEP->getOperand(0)->stripPointerCasts()) {
   1420         GEP2 = LHSGEP;
   1421         GEP1 = RHSGEP;
   1422         Swapped = true;
   1423       }
   1424     }
   1425   }
   1426 
   1427   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
   1428   // multiple users.
   1429   if (!GEP1 ||
   1430       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
   1431     return nullptr;
   1432 
   1433   // Emit the offset of the GEP and an intptr_t.
   1434   Value *Result = EmitGEPOffset(GEP1);
   1435 
   1436   // If we had a constant expression GEP on the other side offsetting the
   1437   // pointer, subtract it from the offset we have.
   1438   if (GEP2) {
   1439     Value *Offset = EmitGEPOffset(GEP2);
   1440     Result = Builder->CreateSub(Result, Offset);
   1441   }
   1442 
   1443   // If we have p - gep(p, ...)  then we have to negate the result.
   1444   if (Swapped)
   1445     Result = Builder->CreateNeg(Result, "diff.neg");
   1446 
   1447   return Builder->CreateIntCast(Result, Ty, true);
   1448 }
   1449 
   1450 
   1451 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
   1452   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1453 
   1454   if (Value *V = SimplifyVectorOp(I))
   1455     return ReplaceInstUsesWith(I, V);
   1456 
   1457   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
   1458                                  I.hasNoUnsignedWrap(), DL))
   1459     return ReplaceInstUsesWith(I, V);
   1460 
   1461   // (A*B)-(A*C) -> A*(B-C) etc
   1462   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1463     return ReplaceInstUsesWith(I, V);
   1464 
   1465   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
   1466   if (Value *V = dyn_castNegVal(Op1)) {
   1467     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
   1468     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
   1469     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1470     return Res;
   1471   }
   1472 
   1473   if (I.getType()->isIntegerTy(1))
   1474     return BinaryOperator::CreateXor(Op0, Op1);
   1475 
   1476   // Replace (-1 - A) with (~A).
   1477   if (match(Op0, m_AllOnes()))
   1478     return BinaryOperator::CreateNot(Op1);
   1479 
   1480   if (Constant *C = dyn_cast<Constant>(Op0)) {
   1481     // C - ~X == X + (1+C)
   1482     Value *X = nullptr;
   1483     if (match(Op1, m_Not(m_Value(X))))
   1484       return BinaryOperator::CreateAdd(X, AddOne(C));
   1485 
   1486     // Try to fold constant sub into select arguments.
   1487     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1488       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1489         return R;
   1490 
   1491     // C-(X+C2) --> (C-C2)-X
   1492     Constant *C2;
   1493     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
   1494       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
   1495 
   1496     if (SimplifyDemandedInstructionBits(I))
   1497       return &I;
   1498 
   1499     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
   1500     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
   1501       if (X->getType()->getScalarType()->isIntegerTy(1))
   1502         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
   1503 
   1504     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
   1505     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
   1506       if (X->getType()->getScalarType()->isIntegerTy(1))
   1507         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
   1508   }
   1509 
   1510   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
   1511     // -(X >>u 31) -> (X >>s 31)
   1512     // -(X >>s 31) -> (X >>u 31)
   1513     if (C->isZero()) {
   1514       Value *X; ConstantInt *CI;
   1515       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
   1516           // Verify we are shifting out everything but the sign bit.
   1517           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
   1518         return BinaryOperator::CreateAShr(X, CI);
   1519 
   1520       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
   1521           // Verify we are shifting out everything but the sign bit.
   1522           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
   1523         return BinaryOperator::CreateLShr(X, CI);
   1524     }
   1525   }
   1526 
   1527 
   1528   { Value *Y;
   1529     // X-(X+Y) == -Y    X-(Y+X) == -Y
   1530     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
   1531         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
   1532       return BinaryOperator::CreateNeg(Y);
   1533 
   1534     // (X-Y)-X == -Y
   1535     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
   1536       return BinaryOperator::CreateNeg(Y);
   1537   }
   1538 
   1539   if (Op1->hasOneUse()) {
   1540     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   1541     Constant *C = nullptr;
   1542     Constant *CI = nullptr;
   1543 
   1544     // (X - (Y - Z))  -->  (X + (Z - Y)).
   1545     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
   1546       return BinaryOperator::CreateAdd(Op0,
   1547                                       Builder->CreateSub(Z, Y, Op1->getName()));
   1548 
   1549     // (X - (X & Y))   -->   (X & ~Y)
   1550     //
   1551     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
   1552         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
   1553       return BinaryOperator::CreateAnd(Op0,
   1554                                   Builder->CreateNot(Y, Y->getName() + ".not"));
   1555 
   1556     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
   1557     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
   1558         !C->isMinSignedValue())
   1559       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
   1560 
   1561     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
   1562     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
   1563       if (Value *XNeg = dyn_castNegVal(X))
   1564         return BinaryOperator::CreateShl(XNeg, Y);
   1565 
   1566     // X - A*-B -> X + A*B
   1567     // X - -A*B -> X + A*B
   1568     Value *A, *B;
   1569     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
   1570         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
   1571       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
   1572 
   1573     // X - A*CI -> X + A*-CI
   1574     // X - CI*A -> X + A*-CI
   1575     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
   1576         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
   1577       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
   1578       return BinaryOperator::CreateAdd(Op0, NewMul);
   1579     }
   1580   }
   1581 
   1582   // Optimize pointer differences into the same array into a size.  Consider:
   1583   //  &A[10] - &A[0]: we should compile this to "10".
   1584   if (DL) {
   1585     Value *LHSOp, *RHSOp;
   1586     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
   1587         match(Op1, m_PtrToInt(m_Value(RHSOp))))
   1588       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1589         return ReplaceInstUsesWith(I, Res);
   1590 
   1591     // trunc(p)-trunc(q) -> trunc(p-q)
   1592     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
   1593         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
   1594       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1595         return ReplaceInstUsesWith(I, Res);
   1596       }
   1597 
   1598   return nullptr;
   1599 }
   1600 
   1601 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
   1602   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1603 
   1604   if (Value *V = SimplifyVectorOp(I))
   1605     return ReplaceInstUsesWith(I, V);
   1606 
   1607   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL))
   1608     return ReplaceInstUsesWith(I, V);
   1609 
   1610   if (isa<Constant>(Op0))
   1611     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1612       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1613         return NV;
   1614 
   1615   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
   1616   // through FP extensions/truncations along the way.
   1617   if (Value *V = dyn_castFNegVal(Op1)) {
   1618     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
   1619     NewI->copyFastMathFlags(&I);
   1620     return NewI;
   1621   }
   1622   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
   1623     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
   1624       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
   1625       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
   1626       NewI->copyFastMathFlags(&I);
   1627       return NewI;
   1628     }
   1629   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
   1630     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
   1631       Value *NewExt = Builder->CreateFPExt(V, I.getType());
   1632       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
   1633       NewI->copyFastMathFlags(&I);
   1634       return NewI;
   1635     }
   1636   }
   1637 
   1638   if (I.hasUnsafeAlgebra()) {
   1639     if (Value *V = FAddCombine(Builder).simplify(&I))
   1640       return ReplaceInstUsesWith(I, V);
   1641   }
   1642 
   1643   return nullptr;
   1644 }
   1645