Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
     11 // are used to describe target instructions and their operands.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_MC_MCINSTRDESC_H
     16 #define LLVM_MC_MCINSTRDESC_H
     17 
     18 #include "llvm/MC/MCInst.h"
     19 #include "llvm/MC/MCRegisterInfo.h"
     20 #include "llvm/MC/MCSubtargetInfo.h"
     21 #include "llvm/Support/DataTypes.h"
     22 
     23 namespace llvm {
     24 
     25 //===----------------------------------------------------------------------===//
     26 // Machine Operand Flags and Description
     27 //===----------------------------------------------------------------------===//
     28 
     29 namespace MCOI {
     30   // Operand constraints
     31   enum OperandConstraint {
     32     TIED_TO = 0,    // Must be allocated the same register as.
     33     EARLY_CLOBBER   // Operand is an early clobber register operand
     34   };
     35 
     36   /// OperandFlags - These are flags set on operands, but should be considered
     37   /// private, all access should go through the MCOperandInfo accessors.
     38   /// See the accessors for a description of what these are.
     39   enum OperandFlags {
     40     LookupPtrRegClass = 0,
     41     Predicate,
     42     OptionalDef
     43   };
     44 
     45   /// Operand Type - Operands are tagged with one of the values of this enum.
     46   enum OperandType {
     47     OPERAND_UNKNOWN,
     48     OPERAND_IMMEDIATE,
     49     OPERAND_REGISTER,
     50     OPERAND_MEMORY,
     51     OPERAND_PCREL
     52   };
     53 }
     54 
     55 /// MCOperandInfo - This holds information about one operand of a machine
     56 /// instruction, indicating the register class for register operands, etc.
     57 ///
     58 class MCOperandInfo {
     59 public:
     60   /// RegClass - This specifies the register class enumeration of the operand
     61   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
     62   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
     63   /// get a dynamic register class.
     64   int16_t RegClass;
     65 
     66   /// Flags - These are flags from the MCOI::OperandFlags enum.
     67   uint8_t Flags;
     68 
     69   /// OperandType - Information about the type of the operand.
     70   uint8_t OperandType;
     71 
     72   /// Lower 16 bits are used to specify which constraints are set. The higher 16
     73   /// bits are used to specify the value of constraints (4 bits each).
     74   uint32_t Constraints;
     75   /// Currently no other information.
     76 
     77   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
     78   /// requires a callback to look up its register class.
     79   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
     80 
     81   /// isPredicate - Set if this is one of the operands that made up of
     82   /// the predicate operand that controls an isPredicable() instruction.
     83   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
     84 
     85   /// isOptionalDef - Set if this operand is a optional def.
     86   ///
     87   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
     88 };
     89 
     90 
     91 //===----------------------------------------------------------------------===//
     92 // Machine Instruction Flags and Description
     93 //===----------------------------------------------------------------------===//
     94 
     95 /// MCInstrDesc flags - These should be considered private to the
     96 /// implementation of the MCInstrDesc class.  Clients should use the predicate
     97 /// methods on MCInstrDesc, not use these directly.  These all correspond to
     98 /// bitfields in the MCInstrDesc::Flags field.
     99 namespace MCID {
    100   enum {
    101     Variadic = 0,
    102     HasOptionalDef,
    103     Pseudo,
    104     Return,
    105     Call,
    106     Barrier,
    107     Terminator,
    108     Branch,
    109     IndirectBranch,
    110     Compare,
    111     MoveImm,
    112     Bitcast,
    113     Select,
    114     DelaySlot,
    115     FoldableAsLoad,
    116     MayLoad,
    117     MayStore,
    118     Predicable,
    119     NotDuplicable,
    120     UnmodeledSideEffects,
    121     Commutable,
    122     ConvertibleTo3Addr,
    123     UsesCustomInserter,
    124     HasPostISelHook,
    125     Rematerializable,
    126     CheapAsAMove,
    127     ExtraSrcRegAllocReq,
    128     ExtraDefRegAllocReq
    129   };
    130 }
    131 
    132 /// MCInstrDesc - Describe properties that are true of each instruction in the
    133 /// target description file.  This captures information about side effects,
    134 /// register use and many other things.  There is one instance of this struct
    135 /// for each target instruction class, and the MachineInstr class points to
    136 /// this struct directly to describe itself.
    137 class MCInstrDesc {
    138 public:
    139   unsigned short  Opcode;        // The opcode number
    140   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
    141   unsigned short  NumDefs;       // Num of args that are definitions
    142   unsigned short  SchedClass;    // enum identifying instr sched class
    143   unsigned short  Size;          // Number of bytes in encoding.
    144   unsigned        Flags;         // Flags identifying machine instr class
    145   uint64_t        TSFlags;       // Target Specific Flag values
    146   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
    147   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
    148   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
    149   uint64_t DeprecatedFeatureMask;// Feature bits that this is deprecated on, if any
    150   // A complex method to determine is a certain is deprecated or not, and return
    151   // the reason for deprecation.
    152   bool (*ComplexDeprecationInfo)(MCInst &, MCSubtargetInfo &, std::string &);
    153 
    154   /// \brief Returns the value of the specific constraint if
    155   /// it is set. Returns -1 if it is not set.
    156   int getOperandConstraint(unsigned OpNum,
    157                            MCOI::OperandConstraint Constraint) const {
    158     if (OpNum < NumOperands &&
    159         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
    160       unsigned Pos = 16 + Constraint * 4;
    161       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    162     }
    163     return -1;
    164   }
    165 
    166   /// \brief Returns true if a certain instruction is deprecated and if so
    167   /// returns the reason in \p Info.
    168   bool getDeprecatedInfo(MCInst &MI, MCSubtargetInfo &STI,
    169                          std::string &Info) const {
    170     if (ComplexDeprecationInfo)
    171       return ComplexDeprecationInfo(MI, STI, Info);
    172     if ((DeprecatedFeatureMask & STI.getFeatureBits()) != 0) {
    173       // FIXME: it would be nice to include the subtarget feature here.
    174       Info = "deprecated";
    175       return true;
    176     }
    177     return false;
    178   }
    179 
    180   /// \brief Return the opcode number for this descriptor.
    181   unsigned getOpcode() const {
    182     return Opcode;
    183   }
    184 
    185   /// \brief Return the number of declared MachineOperands for this
    186   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
    187   /// instructions may have additional operands at the end of the list, and note
    188   /// that the machine instruction may include implicit register def/uses as
    189   /// well.
    190   unsigned getNumOperands() const {
    191     return NumOperands;
    192   }
    193 
    194   /// \brief Return the number of MachineOperands that are register
    195   /// definitions.  Register definitions always occur at the start of the
    196   /// machine operand list.  This is the number of "outs" in the .td file,
    197   /// and does not include implicit defs.
    198   unsigned getNumDefs() const {
    199     return NumDefs;
    200   }
    201 
    202   /// \brief Return flags of this instruction.
    203   unsigned getFlags() const { return Flags; }
    204 
    205   /// \brief Return true if this instruction can have a variable number of
    206   /// operands.  In this case, the variable operands will be after the normal
    207   /// operands but before the implicit definitions and uses (if any are
    208   /// present).
    209   bool isVariadic() const {
    210     return Flags & (1 << MCID::Variadic);
    211   }
    212 
    213   /// \brief Set if this instruction has an optional definition, e.g.
    214   /// ARM instructions which can set condition code if 's' bit is set.
    215   bool hasOptionalDef() const {
    216     return Flags & (1 << MCID::HasOptionalDef);
    217   }
    218 
    219   /// \brief Return true if this is a pseudo instruction that doesn't
    220   /// correspond to a real machine instruction.
    221   ///
    222   bool isPseudo() const {
    223     return Flags & (1 << MCID::Pseudo);
    224   }
    225 
    226   /// \brief Return true if the instruction is a return.
    227   bool isReturn() const {
    228     return Flags & (1 << MCID::Return);
    229   }
    230 
    231   /// \brief  Return true if the instruction is a call.
    232   bool isCall() const {
    233     return Flags & (1 << MCID::Call);
    234   }
    235 
    236   /// \brief Returns true if the specified instruction stops control flow
    237   /// from executing the instruction immediately following it.  Examples include
    238   /// unconditional branches and return instructions.
    239   bool isBarrier() const {
    240     return Flags & (1 << MCID::Barrier);
    241   }
    242 
    243   /// \brief Returns true if this instruction part of the terminator for
    244   /// a basic block.  Typically this is things like return and branch
    245   /// instructions.
    246   ///
    247   /// Various passes use this to insert code into the bottom of a basic block,
    248   /// but before control flow occurs.
    249   bool isTerminator() const {
    250     return Flags & (1 << MCID::Terminator);
    251   }
    252 
    253   /// \brief Returns true if this is a conditional, unconditional, or
    254   /// indirect branch.  Predicates below can be used to discriminate between
    255   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    256   /// get more information.
    257   bool isBranch() const {
    258     return Flags & (1 << MCID::Branch);
    259   }
    260 
    261   /// \brief Return true if this is an indirect branch, such as a
    262   /// branch through a register.
    263   bool isIndirectBranch() const {
    264     return Flags & (1 << MCID::IndirectBranch);
    265   }
    266 
    267   /// \brief Return true if this is a branch which may fall
    268   /// through to the next instruction or may transfer control flow to some other
    269   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    270   /// information about this branch.
    271   bool isConditionalBranch() const {
    272     return isBranch() & !isBarrier() & !isIndirectBranch();
    273   }
    274 
    275   /// \brief Return true if this is a branch which always
    276   /// transfers control flow to some other block.  The
    277   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    278   /// about this branch.
    279   bool isUnconditionalBranch() const {
    280     return isBranch() & isBarrier() & !isIndirectBranch();
    281   }
    282 
    283   /// \brief Return true if this is a branch or an instruction which directly
    284   /// writes to the program counter. Considered 'may' affect rather than
    285   /// 'does' affect as things like predication are not taken into account.
    286   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
    287     if (isBranch() || isCall() || isReturn() || isIndirectBranch())
    288       return true;
    289     unsigned PC = RI.getProgramCounter();
    290     if (PC == 0)
    291       return false;
    292     if (hasDefOfPhysReg(MI, PC, RI))
    293       return true;
    294     // A variadic instruction may define PC in the variable operand list.
    295     // There's currently no indication of which entries in a variable
    296     // list are defs and which are uses. While that's the case, this function
    297     // needs to assume they're defs in order to be conservatively correct.
    298     for (int i = NumOperands, e = MI.getNumOperands(); i != e; ++i) {
    299       if (MI.getOperand(i).isReg() &&
    300           RI.isSubRegisterEq(PC, MI.getOperand(i).getReg()))
    301         return true;
    302     }
    303     return false;
    304   }
    305 
    306   /// \brief Return true if this instruction has a predicate operand
    307   /// that controls execution. It may be set to 'always', or may be set to other
    308   /// values. There are various methods in TargetInstrInfo that can be used to
    309   /// control and modify the predicate in this instruction.
    310   bool isPredicable() const {
    311     return Flags & (1 << MCID::Predicable);
    312   }
    313 
    314   /// \brief Return true if this instruction is a comparison.
    315   bool isCompare() const {
    316     return Flags & (1 << MCID::Compare);
    317   }
    318 
    319   /// \brief Return true if this instruction is a move immediate
    320   /// (including conditional moves) instruction.
    321   bool isMoveImmediate() const {
    322     return Flags & (1 << MCID::MoveImm);
    323   }
    324 
    325   /// \brief Return true if this instruction is a bitcast instruction.
    326   bool isBitcast() const {
    327     return Flags & (1 << MCID::Bitcast);
    328   }
    329 
    330   /// \brief Return true if this is a select instruction.
    331   bool isSelect() const {
    332     return Flags & (1 << MCID::Select);
    333   }
    334 
    335   /// \brief Return true if this instruction cannot be safely
    336   /// duplicated.  For example, if the instruction has a unique labels attached
    337   /// to it, duplicating it would cause multiple definition errors.
    338   bool isNotDuplicable() const {
    339     return Flags & (1 << MCID::NotDuplicable);
    340   }
    341 
    342   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    343   /// which must be filled by the code generator.
    344   bool hasDelaySlot() const {
    345     return Flags & (1 << MCID::DelaySlot);
    346   }
    347 
    348   /// canFoldAsLoad - Return true for instructions that can be folded as
    349   /// memory operands in other instructions. The most common use for this
    350   /// is instructions that are simple loads from memory that don't modify
    351   /// the loaded value in any way, but it can also be used for instructions
    352   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    353   /// on x86, to allow them to be folded when it is beneficial.
    354   /// This should only be set on instructions that return a value in their
    355   /// only virtual register definition.
    356   bool canFoldAsLoad() const {
    357     return Flags & (1 << MCID::FoldableAsLoad);
    358   }
    359 
    360   //===--------------------------------------------------------------------===//
    361   // Side Effect Analysis
    362   //===--------------------------------------------------------------------===//
    363 
    364   /// \brief Return true if this instruction could possibly read memory.
    365   /// Instructions with this flag set are not necessarily simple load
    366   /// instructions, they may load a value and modify it, for example.
    367   bool mayLoad() const {
    368     return Flags & (1 << MCID::MayLoad);
    369   }
    370 
    371 
    372   /// \brief Return true if this instruction could possibly modify memory.
    373   /// Instructions with this flag set are not necessarily simple store
    374   /// instructions, they may store a modified value based on their operands, or
    375   /// may not actually modify anything, for example.
    376   bool mayStore() const {
    377     return Flags & (1 << MCID::MayStore);
    378   }
    379 
    380   /// hasUnmodeledSideEffects - Return true if this instruction has side
    381   /// effects that are not modeled by other flags.  This does not return true
    382   /// for instructions whose effects are captured by:
    383   ///
    384   ///  1. Their operand list and implicit definition/use list.  Register use/def
    385   ///     info is explicit for instructions.
    386   ///  2. Memory accesses.  Use mayLoad/mayStore.
    387   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
    388   ///
    389   /// Examples of side effects would be modifying 'invisible' machine state like
    390   /// a control register, flushing a cache, modifying a register invisible to
    391   /// LLVM, etc.
    392   ///
    393   bool hasUnmodeledSideEffects() const {
    394     return Flags & (1 << MCID::UnmodeledSideEffects);
    395   }
    396 
    397   //===--------------------------------------------------------------------===//
    398   // Flags that indicate whether an instruction can be modified by a method.
    399   //===--------------------------------------------------------------------===//
    400 
    401   /// isCommutable - Return true if this may be a 2- or 3-address
    402   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    403   /// result if Y and Z are exchanged.  If this flag is set, then the
    404   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    405   /// instruction.
    406   ///
    407   /// Note that this flag may be set on instructions that are only commutable
    408   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    409   /// Also note that some instructions require non-trivial modification to
    410   /// commute them.
    411   bool isCommutable() const {
    412     return Flags & (1 << MCID::Commutable);
    413   }
    414 
    415   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    416   /// which can be changed into a 3-address instruction if needed.  Doing this
    417   /// transformation can be profitable in the register allocator, because it
    418   /// means that the instruction can use a 2-address form if possible, but
    419   /// degrade into a less efficient form if the source and dest register cannot
    420   /// be assigned to the same register.  For example, this allows the x86
    421   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    422   /// is the same speed as the shift but has bigger code size.
    423   ///
    424   /// If this returns true, then the target must implement the
    425   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    426   /// is allowed to fail if the transformation isn't valid for this specific
    427   /// instruction (e.g. shl reg, 4 on x86).
    428   ///
    429   bool isConvertibleTo3Addr() const {
    430     return Flags & (1 << MCID::ConvertibleTo3Addr);
    431   }
    432 
    433   /// usesCustomInsertionHook - Return true if this instruction requires
    434   /// custom insertion support when the DAG scheduler is inserting it into a
    435   /// machine basic block.  If this is true for the instruction, it basically
    436   /// means that it is a pseudo instruction used at SelectionDAG time that is
    437   /// expanded out into magic code by the target when MachineInstrs are formed.
    438   ///
    439   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    440   /// is used to insert this into the MachineBasicBlock.
    441   bool usesCustomInsertionHook() const {
    442     return Flags & (1 << MCID::UsesCustomInserter);
    443   }
    444 
    445   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    446   /// after instruction selection by calling a target hook. For example, this
    447   /// can be used to fill in ARM 's' optional operand depending on whether
    448   /// the conditional flag register is used.
    449   bool hasPostISelHook() const {
    450     return Flags & (1 << MCID::HasPostISelHook);
    451   }
    452 
    453   /// isRematerializable - Returns true if this instruction is a candidate for
    454   /// remat. This flag is only used in TargetInstrInfo method
    455   /// isTriviallyRematerializable.
    456   ///
    457   /// If this flag is set, the isReallyTriviallyReMaterializable()
    458   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
    459   /// the instruction is really rematable.
    460   bool isRematerializable() const {
    461     return Flags & (1 << MCID::Rematerializable);
    462   }
    463 
    464   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    465   /// less) than a move instruction. This is useful during certain types of
    466   /// optimizations (e.g., remat during two-address conversion or machine licm)
    467   /// where we would like to remat or hoist the instruction, but not if it costs
    468   /// more than moving the instruction into the appropriate register. Note, we
    469   /// are not marking copies from and to the same register class with this flag.
    470   ///
    471   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
    472   /// for different subtargets.
    473   bool isAsCheapAsAMove() const {
    474     return Flags & (1 << MCID::CheapAsAMove);
    475   }
    476 
    477   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    478   /// have special register allocation requirements that are not captured by the
    479   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    480   /// even / odd pair, ARM::STM registers have to be in ascending order.
    481   /// Post-register allocation passes should not attempt to change allocations
    482   /// for sources of instructions with this flag.
    483   bool hasExtraSrcRegAllocReq() const {
    484     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
    485   }
    486 
    487   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    488   /// have special register allocation requirements that are not captured by the
    489   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    490   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    491   /// Post-register allocation passes should not attempt to change allocations
    492   /// for definitions of instructions with this flag.
    493   bool hasExtraDefRegAllocReq() const {
    494     return Flags & (1 << MCID::ExtraDefRegAllocReq);
    495   }
    496 
    497 
    498   /// getImplicitUses - Return a list of registers that are potentially
    499   /// read by any instance of this machine instruction.  For example, on X86,
    500   /// the "adc" instruction adds two register operands and adds the carry bit in
    501   /// from the flags register.  In this case, the instruction is marked as
    502   /// implicitly reading the flags.  Likewise, the variable shift instruction on
    503   /// X86 is marked as implicitly reading the 'CL' register, which it always
    504   /// does.
    505   ///
    506   /// This method returns null if the instruction has no implicit uses.
    507   const uint16_t *getImplicitUses() const {
    508     return ImplicitUses;
    509   }
    510 
    511   /// \brief Return the number of implicit uses this instruction has.
    512   unsigned getNumImplicitUses() const {
    513     if (!ImplicitUses) return 0;
    514     unsigned i = 0;
    515     for (; ImplicitUses[i]; ++i) /*empty*/;
    516     return i;
    517   }
    518 
    519   /// getImplicitDefs - Return a list of registers that are potentially
    520   /// written by any instance of this machine instruction.  For example, on X86,
    521   /// many instructions implicitly set the flags register.  In this case, they
    522   /// are marked as setting the FLAGS.  Likewise, many instructions always
    523   /// deposit their result in a physical register.  For example, the X86 divide
    524   /// instruction always deposits the quotient and remainder in the EAX/EDX
    525   /// registers.  For that instruction, this will return a list containing the
    526   /// EAX/EDX/EFLAGS registers.
    527   ///
    528   /// This method returns null if the instruction has no implicit defs.
    529   const uint16_t *getImplicitDefs() const {
    530     return ImplicitDefs;
    531   }
    532 
    533   /// \brief Return the number of implicit defs this instruct has.
    534   unsigned getNumImplicitDefs() const {
    535     if (!ImplicitDefs) return 0;
    536     unsigned i = 0;
    537     for (; ImplicitDefs[i]; ++i) /*empty*/;
    538     return i;
    539   }
    540 
    541   /// \brief Return true if this instruction implicitly
    542   /// uses the specified physical register.
    543   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    544     if (const uint16_t *ImpUses = ImplicitUses)
    545       for (; *ImpUses; ++ImpUses)
    546         if (*ImpUses == Reg) return true;
    547     return false;
    548   }
    549 
    550   /// \brief Return true if this instruction implicitly
    551   /// defines the specified physical register.
    552   bool hasImplicitDefOfPhysReg(unsigned Reg,
    553                                const MCRegisterInfo *MRI = nullptr) const {
    554     if (const uint16_t *ImpDefs = ImplicitDefs)
    555       for (; *ImpDefs; ++ImpDefs)
    556         if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
    557             return true;
    558     return false;
    559   }
    560 
    561   /// \brief Return true if this instruction defines the specified physical
    562   /// register, either explicitly or implicitly.
    563   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
    564                        const MCRegisterInfo &RI) const {
    565     for (int i = 0, e = NumDefs; i != e; ++i)
    566       if (MI.getOperand(i).isReg() &&
    567           RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
    568         return true;
    569     return hasImplicitDefOfPhysReg(Reg, &RI);
    570   }
    571 
    572   /// \brief Return the scheduling class for this instruction.  The
    573   /// scheduling class is an index into the InstrItineraryData table.  This
    574   /// returns zero if there is no known scheduling information for the
    575   /// instruction.
    576   unsigned getSchedClass() const {
    577     return SchedClass;
    578   }
    579 
    580   /// \brief Return the number of bytes in the encoding of this instruction,
    581   /// or zero if the encoding size cannot be known from the opcode.
    582   unsigned getSize() const {
    583     return Size;
    584   }
    585 
    586   /// \brief Find the index of the first operand in the
    587   /// operand list that is used to represent the predicate. It returns -1 if
    588   /// none is found.
    589   int findFirstPredOperandIdx() const {
    590     if (isPredicable()) {
    591       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    592         if (OpInfo[i].isPredicate())
    593           return i;
    594     }
    595     return -1;
    596   }
    597 };
    598 
    599 } // end namespace llvm
    600 
    601 #endif
    602