Home | History | Annotate | Download | only in Scalar
      1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements straight-line strength reduction (SLSR). Unlike loop
     11 // strength reduction, this algorithm is designed to reduce arithmetic
     12 // redundancy in straight-line code instead of loops. It has proven to be
     13 // effective in simplifying arithmetic statements derived from an unrolled loop.
     14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
     15 //
     16 // There are many optimizations we can perform in the domain of SLSR. This file
     17 // for now contains only an initial step. Specifically, we look for strength
     18 // reduction candidates in the following forms:
     19 //
     20 // Form 1: B + i * S
     21 // Form 2: (B + i) * S
     22 // Form 3: &B[i * S]
     23 //
     24 // where S is an integer variable, and i is a constant integer. If we found two
     25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
     26 // in a simpler way with respect to S1. For example,
     27 //
     28 // S1: X = B + i * S
     29 // S2: Y = B + i' * S   => X + (i' - i) * S
     30 //
     31 // S1: X = (B + i) * S
     32 // S2: Y = (B + i') * S => X + (i' - i) * S
     33 //
     34 // S1: X = &B[i * S]
     35 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
     36 //
     37 // Note: (i' - i) * S is folded to the extent possible.
     38 //
     39 // This rewriting is in general a good idea. The code patterns we focus on
     40 // usually come from loop unrolling, so (i' - i) * S is likely the same
     41 // across iterations and can be reused. When that happens, the optimized form
     42 // takes only one add starting from the second iteration.
     43 //
     44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
     45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
     46 // basis, the basis that is the closest ancestor in the dominator tree.
     47 //
     48 // TODO:
     49 //
     50 // - Floating point arithmetics when fast math is enabled.
     51 //
     52 // - SLSR may decrease ILP at the architecture level. Targets that are very
     53 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
     54 //   left as future work.
     55 //
     56 // - When (i' - i) is constant but i and i' are not, we could still perform
     57 //   SLSR.
     58 #include <vector>
     59 
     60 #include "llvm/ADT/DenseSet.h"
     61 #include "llvm/ADT/FoldingSet.h"
     62 #include "llvm/Analysis/ScalarEvolution.h"
     63 #include "llvm/Analysis/TargetTransformInfo.h"
     64 #include "llvm/IR/DataLayout.h"
     65 #include "llvm/IR/Dominators.h"
     66 #include "llvm/IR/IRBuilder.h"
     67 #include "llvm/IR/Module.h"
     68 #include "llvm/IR/PatternMatch.h"
     69 #include "llvm/Support/raw_ostream.h"
     70 #include "llvm/Transforms/Scalar.h"
     71 
     72 using namespace llvm;
     73 using namespace PatternMatch;
     74 
     75 namespace {
     76 
     77 class StraightLineStrengthReduce : public FunctionPass {
     78 public:
     79   // SLSR candidate. Such a candidate must be in one of the forms described in
     80   // the header comments.
     81   struct Candidate : public ilist_node<Candidate> {
     82     enum Kind {
     83       Invalid, // reserved for the default constructor
     84       Add,     // B + i * S
     85       Mul,     // (B + i) * S
     86       GEP,     // &B[..][i * S][..]
     87     };
     88 
     89     Candidate()
     90         : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
     91           Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
     92     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
     93               Instruction *I)
     94         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
     95           Basis(nullptr) {}
     96     Kind CandidateKind;
     97     const SCEV *Base;
     98     // Note that Index and Stride of a GEP candidate do not necessarily have the
     99     // same integer type. In that case, during rewriting, Stride will be
    100     // sign-extended or truncated to Index's type.
    101     ConstantInt *Index;
    102     Value *Stride;
    103     // The instruction this candidate corresponds to. It helps us to rewrite a
    104     // candidate with respect to its immediate basis. Note that one instruction
    105     // can correspond to multiple candidates depending on how you associate the
    106     // expression. For instance,
    107     //
    108     // (a + 1) * (b + 2)
    109     //
    110     // can be treated as
    111     //
    112     // <Base: a, Index: 1, Stride: b + 2>
    113     //
    114     // or
    115     //
    116     // <Base: b, Index: 2, Stride: a + 1>
    117     Instruction *Ins;
    118     // Points to the immediate basis of this candidate, or nullptr if we cannot
    119     // find any basis for this candidate.
    120     Candidate *Basis;
    121   };
    122 
    123   static char ID;
    124 
    125   StraightLineStrengthReduce()
    126       : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
    127     initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
    128   }
    129 
    130   void getAnalysisUsage(AnalysisUsage &AU) const override {
    131     AU.addRequired<DominatorTreeWrapperPass>();
    132     AU.addRequired<ScalarEvolution>();
    133     AU.addRequired<TargetTransformInfoWrapperPass>();
    134     // We do not modify the shape of the CFG.
    135     AU.setPreservesCFG();
    136   }
    137 
    138   bool doInitialization(Module &M) override {
    139     DL = &M.getDataLayout();
    140     return false;
    141   }
    142 
    143   bool runOnFunction(Function &F) override;
    144 
    145 private:
    146   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
    147   // share the same base and stride.
    148   bool isBasisFor(const Candidate &Basis, const Candidate &C);
    149   // Returns whether the candidate can be folded into an addressing mode.
    150   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
    151                   const DataLayout *DL);
    152   // Returns true if C is already in a simplest form and not worth being
    153   // rewritten.
    154   bool isSimplestForm(const Candidate &C);
    155   // Checks whether I is in a candidate form. If so, adds all the matching forms
    156   // to Candidates, and tries to find the immediate basis for each of them.
    157   void allocateCandidatesAndFindBasis(Instruction *I);
    158   // Allocate candidates and find bases for Add instructions.
    159   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
    160   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
    161   // candidate.
    162   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
    163                                             Instruction *I);
    164   // Allocate candidates and find bases for Mul instructions.
    165   void allocateCandidatesAndFindBasisForMul(Instruction *I);
    166   // Splits LHS into Base + Index and, if succeeds, calls
    167   // allocateCandidatesAndFindBasis.
    168   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
    169                                             Instruction *I);
    170   // Allocate candidates and find bases for GetElementPtr instructions.
    171   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
    172   // A helper function that scales Idx with ElementSize before invoking
    173   // allocateCandidatesAndFindBasis.
    174   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
    175                                             Value *S, uint64_t ElementSize,
    176                                             Instruction *I);
    177   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
    178   // basis.
    179   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
    180                                       ConstantInt *Idx, Value *S,
    181                                       Instruction *I);
    182   // Rewrites candidate C with respect to Basis.
    183   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
    184   // A helper function that factors ArrayIdx to a product of a stride and a
    185   // constant index, and invokes allocateCandidatesAndFindBasis with the
    186   // factorings.
    187   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
    188                         GetElementPtrInst *GEP);
    189   // Emit code that computes the "bump" from Basis to C. If the candidate is a
    190   // GEP and the bump is not divisible by the element size of the GEP, this
    191   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
    192   // basis using an ugly GEP.
    193   static Value *emitBump(const Candidate &Basis, const Candidate &C,
    194                          IRBuilder<> &Builder, const DataLayout *DL,
    195                          bool &BumpWithUglyGEP);
    196 
    197   const DataLayout *DL;
    198   DominatorTree *DT;
    199   ScalarEvolution *SE;
    200   TargetTransformInfo *TTI;
    201   ilist<Candidate> Candidates;
    202   // Temporarily holds all instructions that are unlinked (but not deleted) by
    203   // rewriteCandidateWithBasis. These instructions will be actually removed
    204   // after all rewriting finishes.
    205   std::vector<Instruction *> UnlinkedInstructions;
    206 };
    207 }  // anonymous namespace
    208 
    209 char StraightLineStrengthReduce::ID = 0;
    210 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
    211                       "Straight line strength reduction", false, false)
    212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    213 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    214 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    215 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
    216                     "Straight line strength reduction", false, false)
    217 
    218 FunctionPass *llvm::createStraightLineStrengthReducePass() {
    219   return new StraightLineStrengthReduce();
    220 }
    221 
    222 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
    223                                             const Candidate &C) {
    224   return (Basis.Ins != C.Ins && // skip the same instruction
    225           // Basis must dominate C in order to rewrite C with respect to Basis.
    226           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
    227           // They share the same base, stride, and candidate kind.
    228           Basis.Base == C.Base &&
    229           Basis.Stride == C.Stride &&
    230           Basis.CandidateKind == C.CandidateKind);
    231 }
    232 
    233 static bool isGEPFoldable(GetElementPtrInst *GEP,
    234                           const TargetTransformInfo *TTI,
    235                           const DataLayout *DL) {
    236   GlobalVariable *BaseGV = nullptr;
    237   int64_t BaseOffset = 0;
    238   bool HasBaseReg = false;
    239   int64_t Scale = 0;
    240 
    241   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
    242     BaseGV = GV;
    243   else
    244     HasBaseReg = true;
    245 
    246   gep_type_iterator GTI = gep_type_begin(GEP);
    247   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
    248     if (isa<SequentialType>(*GTI)) {
    249       int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
    250       if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
    251         BaseOffset += ConstIdx->getSExtValue() * ElementSize;
    252       } else {
    253         // Needs scale register.
    254         if (Scale != 0) {
    255           // No addressing mode takes two scale registers.
    256           return false;
    257         }
    258         Scale = ElementSize;
    259       }
    260     } else {
    261       StructType *STy = cast<StructType>(*GTI);
    262       uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
    263       BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
    264     }
    265   }
    266   return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
    267                                     BaseOffset, HasBaseReg, Scale);
    268 }
    269 
    270 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
    271 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
    272                           TargetTransformInfo *TTI) {
    273   return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
    274                                     Index->getSExtValue());
    275 }
    276 
    277 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
    278                                             TargetTransformInfo *TTI,
    279                                             const DataLayout *DL) {
    280   if (C.CandidateKind == Candidate::Add)
    281     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
    282   if (C.CandidateKind == Candidate::GEP)
    283     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
    284   return false;
    285 }
    286 
    287 // Returns true if GEP has zero or one non-zero index.
    288 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
    289   unsigned NumNonZeroIndices = 0;
    290   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
    291     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
    292     if (ConstIdx == nullptr || !ConstIdx->isZero())
    293       ++NumNonZeroIndices;
    294   }
    295   return NumNonZeroIndices <= 1;
    296 }
    297 
    298 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
    299   if (C.CandidateKind == Candidate::Add) {
    300     // B + 1 * S or B + (-1) * S
    301     return C.Index->isOne() || C.Index->isMinusOne();
    302   }
    303   if (C.CandidateKind == Candidate::Mul) {
    304     // (B + 0) * S
    305     return C.Index->isZero();
    306   }
    307   if (C.CandidateKind == Candidate::GEP) {
    308     // (char*)B + S or (char*)B - S
    309     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
    310             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
    311   }
    312   return false;
    313 }
    314 
    315 // TODO: We currently implement an algorithm whose time complexity is linear in
    316 // the number of existing candidates. However, we could do better by using
    317 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
    318 // maintain all the candidates that dominate the basic block being traversed in
    319 // a ScopedHashTable. This hash table is indexed by the base and the stride of
    320 // a candidate. Therefore, finding the immediate basis of a candidate boils down
    321 // to one hash-table look up.
    322 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
    323     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
    324     Instruction *I) {
    325   Candidate C(CT, B, Idx, S, I);
    326   // SLSR can complicate an instruction in two cases:
    327   //
    328   // 1. If we can fold I into an addressing mode, computing I is likely free or
    329   // takes only one instruction.
    330   //
    331   // 2. I is already in a simplest form. For example, when
    332   //      X = B + 8 * S
    333   //      Y = B + S,
    334   //    rewriting Y to X - 7 * S is probably a bad idea.
    335   //
    336   // In the above cases, we still add I to the candidate list so that I can be
    337   // the basis of other candidates, but we leave I's basis blank so that I
    338   // won't be rewritten.
    339   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
    340     // Try to compute the immediate basis of C.
    341     unsigned NumIterations = 0;
    342     // Limit the scan radius to avoid running in quadratice time.
    343     static const unsigned MaxNumIterations = 50;
    344     for (auto Basis = Candidates.rbegin();
    345          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
    346          ++Basis, ++NumIterations) {
    347       if (isBasisFor(*Basis, C)) {
    348         C.Basis = &(*Basis);
    349         break;
    350       }
    351     }
    352   }
    353   // Regardless of whether we find a basis for C, we need to push C to the
    354   // candidate list so that it can be the basis of other candidates.
    355   Candidates.push_back(C);
    356 }
    357 
    358 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
    359     Instruction *I) {
    360   switch (I->getOpcode()) {
    361   case Instruction::Add:
    362     allocateCandidatesAndFindBasisForAdd(I);
    363     break;
    364   case Instruction::Mul:
    365     allocateCandidatesAndFindBasisForMul(I);
    366     break;
    367   case Instruction::GetElementPtr:
    368     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
    369     break;
    370   }
    371 }
    372 
    373 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
    374     Instruction *I) {
    375   // Try matching B + i * S.
    376   if (!isa<IntegerType>(I->getType()))
    377     return;
    378 
    379   assert(I->getNumOperands() == 2 && "isn't I an add?");
    380   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
    381   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
    382   if (LHS != RHS)
    383     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
    384 }
    385 
    386 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
    387     Value *LHS, Value *RHS, Instruction *I) {
    388   Value *S = nullptr;
    389   ConstantInt *Idx = nullptr;
    390   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
    391     // I = LHS + RHS = LHS + Idx * S
    392     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
    393   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
    394     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
    395     APInt One(Idx->getBitWidth(), 1);
    396     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
    397     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
    398   } else {
    399     // At least, I = LHS + 1 * RHS
    400     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
    401     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
    402                                    I);
    403   }
    404 }
    405 
    406 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
    407     Value *LHS, Value *RHS, Instruction *I) {
    408   Value *B = nullptr;
    409   ConstantInt *Idx = nullptr;
    410   // Only handle the canonical operand ordering.
    411   if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
    412     // If LHS is in the form of "Base + Index", then I is in the form of
    413     // "(Base + Index) * RHS".
    414     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
    415   } else {
    416     // Otherwise, at least try the form (LHS + 0) * RHS.
    417     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
    418     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
    419                                   I);
    420   }
    421 }
    422 
    423 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
    424     Instruction *I) {
    425   // Try matching (B + i) * S.
    426   // TODO: we could extend SLSR to float and vector types.
    427   if (!isa<IntegerType>(I->getType()))
    428     return;
    429 
    430   assert(I->getNumOperands() == 2 && "isn't I a mul?");
    431   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
    432   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
    433   if (LHS != RHS) {
    434     // Symmetrically, try to split RHS to Base + Index.
    435     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
    436   }
    437 }
    438 
    439 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
    440     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
    441     Instruction *I) {
    442   // I = B + sext(Idx *nsw S) * ElementSize
    443   //   = B + (sext(Idx) * sext(S)) * ElementSize
    444   //   = B + (sext(Idx) * ElementSize) * sext(S)
    445   // Casting to IntegerType is safe because we skipped vector GEPs.
    446   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
    447   ConstantInt *ScaledIdx = ConstantInt::get(
    448       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
    449   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
    450 }
    451 
    452 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
    453                                                   const SCEV *Base,
    454                                                   uint64_t ElementSize,
    455                                                   GetElementPtrInst *GEP) {
    456   // At least, ArrayIdx = ArrayIdx *nsw 1.
    457   allocateCandidatesAndFindBasisForGEP(
    458       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
    459       ArrayIdx, ElementSize, GEP);
    460   Value *LHS = nullptr;
    461   ConstantInt *RHS = nullptr;
    462   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
    463   // itself. This would allow us to handle the shl case for free. However,
    464   // matching SCEVs has two issues:
    465   //
    466   // 1. this would complicate rewriting because the rewriting procedure
    467   // would have to translate SCEVs back to IR instructions. This translation
    468   // is difficult when LHS is further evaluated to a composite SCEV.
    469   //
    470   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
    471   // to strip nsw/nuw flags which are critical for SLSR to trace into
    472   // sext'ed multiplication.
    473   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
    474     // SLSR is currently unsafe if i * S may overflow.
    475     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
    476     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
    477   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
    478     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
    479     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
    480     APInt One(RHS->getBitWidth(), 1);
    481     ConstantInt *PowerOf2 =
    482         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
    483     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
    484   }
    485 }
    486 
    487 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
    488     GetElementPtrInst *GEP) {
    489   // TODO: handle vector GEPs
    490   if (GEP->getType()->isVectorTy())
    491     return;
    492 
    493   const SCEV *GEPExpr = SE->getSCEV(GEP);
    494   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
    495 
    496   gep_type_iterator GTI = gep_type_begin(GEP);
    497   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
    498     if (!isa<SequentialType>(*GTI++))
    499       continue;
    500     Value *ArrayIdx = *I;
    501     // Compute the byte offset of this index.
    502     uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
    503     const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
    504     const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
    505     ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
    506     const SCEV *LocalOffset =
    507         SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
    508     // The base of this candidate equals GEPExpr less the byte offset of this
    509     // index.
    510     const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
    511     factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
    512     // When ArrayIdx is the sext of a value, we try to factor that value as
    513     // well.  Handling this case is important because array indices are
    514     // typically sign-extended to the pointer size.
    515     Value *TruncatedArrayIdx = nullptr;
    516     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
    517       factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
    518   }
    519 }
    520 
    521 // A helper function that unifies the bitwidth of A and B.
    522 static void unifyBitWidth(APInt &A, APInt &B) {
    523   if (A.getBitWidth() < B.getBitWidth())
    524     A = A.sext(B.getBitWidth());
    525   else if (A.getBitWidth() > B.getBitWidth())
    526     B = B.sext(A.getBitWidth());
    527 }
    528 
    529 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
    530                                             const Candidate &C,
    531                                             IRBuilder<> &Builder,
    532                                             const DataLayout *DL,
    533                                             bool &BumpWithUglyGEP) {
    534   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
    535   unifyBitWidth(Idx, BasisIdx);
    536   APInt IndexOffset = Idx - BasisIdx;
    537 
    538   BumpWithUglyGEP = false;
    539   if (Basis.CandidateKind == Candidate::GEP) {
    540     APInt ElementSize(
    541         IndexOffset.getBitWidth(),
    542         DL->getTypeAllocSize(
    543             cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
    544     APInt Q, R;
    545     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
    546     if (R.getSExtValue() == 0)
    547       IndexOffset = Q;
    548     else
    549       BumpWithUglyGEP = true;
    550   }
    551 
    552   // Compute Bump = C - Basis = (i' - i) * S.
    553   // Common case 1: if (i' - i) is 1, Bump = S.
    554   if (IndexOffset.getSExtValue() == 1)
    555     return C.Stride;
    556   // Common case 2: if (i' - i) is -1, Bump = -S.
    557   if (IndexOffset.getSExtValue() == -1)
    558     return Builder.CreateNeg(C.Stride);
    559 
    560   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
    561   // have different bit widths.
    562   IntegerType *DeltaType =
    563       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
    564   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
    565   if (IndexOffset.isPowerOf2()) {
    566     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
    567     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
    568     return Builder.CreateShl(ExtendedStride, Exponent);
    569   }
    570   if ((-IndexOffset).isPowerOf2()) {
    571     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
    572     ConstantInt *Exponent =
    573         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
    574     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
    575   }
    576   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
    577   return Builder.CreateMul(ExtendedStride, Delta);
    578 }
    579 
    580 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
    581     const Candidate &C, const Candidate &Basis) {
    582   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
    583          C.Stride == Basis.Stride);
    584   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
    585   // basis of a candidate cannot be unlinked before the candidate.
    586   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
    587 
    588   // An instruction can correspond to multiple candidates. Therefore, instead of
    589   // simply deleting an instruction when we rewrite it, we mark its parent as
    590   // nullptr (i.e. unlink it) so that we can skip the candidates whose
    591   // instruction is already rewritten.
    592   if (!C.Ins->getParent())
    593     return;
    594 
    595   IRBuilder<> Builder(C.Ins);
    596   bool BumpWithUglyGEP;
    597   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
    598   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
    599   switch (C.CandidateKind) {
    600   case Candidate::Add:
    601   case Candidate::Mul:
    602     if (BinaryOperator::isNeg(Bump)) {
    603       Reduced =
    604           Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
    605     } else {
    606       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
    607     }
    608     break;
    609   case Candidate::GEP:
    610     {
    611       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
    612       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
    613       if (BumpWithUglyGEP) {
    614         // C = (char *)Basis + Bump
    615         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
    616         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
    617         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
    618         if (InBounds)
    619           Reduced =
    620               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
    621         else
    622           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
    623         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
    624       } else {
    625         // C = gep Basis, Bump
    626         // Canonicalize bump to pointer size.
    627         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
    628         if (InBounds)
    629           Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
    630         else
    631           Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
    632       }
    633     }
    634     break;
    635   default:
    636     llvm_unreachable("C.CandidateKind is invalid");
    637   };
    638   Reduced->takeName(C.Ins);
    639   C.Ins->replaceAllUsesWith(Reduced);
    640   C.Ins->dropAllReferences();
    641   // Unlink C.Ins so that we can skip other candidates also corresponding to
    642   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
    643   C.Ins->removeFromParent();
    644   UnlinkedInstructions.push_back(C.Ins);
    645 }
    646 
    647 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
    648   if (skipOptnoneFunction(F))
    649     return false;
    650 
    651   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    652   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    653   SE = &getAnalysis<ScalarEvolution>();
    654   // Traverse the dominator tree in the depth-first order. This order makes sure
    655   // all bases of a candidate are in Candidates when we process it.
    656   for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
    657        node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
    658     for (auto &I : *node->getBlock())
    659       allocateCandidatesAndFindBasis(&I);
    660   }
    661 
    662   // Rewrite candidates in the reverse depth-first order. This order makes sure
    663   // a candidate being rewritten is not a basis for any other candidate.
    664   while (!Candidates.empty()) {
    665     const Candidate &C = Candidates.back();
    666     if (C.Basis != nullptr) {
    667       rewriteCandidateWithBasis(C, *C.Basis);
    668     }
    669     Candidates.pop_back();
    670   }
    671 
    672   // Delete all unlink instructions.
    673   for (auto I : UnlinkedInstructions) {
    674     delete I;
    675   }
    676   bool Ret = !UnlinkedInstructions.empty();
    677   UnlinkedInstructions.clear();
    678   return Ret;
    679 }
    680