Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific values in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "CodeGenTarget.h"
    100 #include "llvm/ADT/PointerUnion.h"
    101 #include "llvm/ADT/STLExtras.h"
    102 #include "llvm/ADT/SmallPtrSet.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/ADT/StringExtras.h"
    105 #include "llvm/Support/CommandLine.h"
    106 #include "llvm/Support/Debug.h"
    107 #include "llvm/Support/ErrorHandling.h"
    108 #include "llvm/TableGen/Error.h"
    109 #include "llvm/TableGen/Record.h"
    110 #include "llvm/TableGen/StringMatcher.h"
    111 #include "llvm/TableGen/StringToOffsetTable.h"
    112 #include "llvm/TableGen/TableGenBackend.h"
    113 #include <cassert>
    114 #include <cctype>
    115 #include <map>
    116 #include <set>
    117 #include <sstream>
    118 #include <forward_list>
    119 using namespace llvm;
    120 
    121 #define DEBUG_TYPE "asm-matcher-emitter"
    122 
    123 static cl::opt<std::string>
    124 MatchPrefix("match-prefix", cl::init(""),
    125             cl::desc("Only match instructions with the given prefix"));
    126 
    127 namespace {
    128 class AsmMatcherInfo;
    129 struct SubtargetFeatureInfo;
    130 
    131 // Register sets are used as keys in some second-order sets TableGen creates
    132 // when generating its data structures. This means that the order of two
    133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
    134 // can even affect compiler output (at least seen in diagnostics produced when
    135 // all matches fail). So we use a type that sorts them consistently.
    136 typedef std::set<Record*, LessRecordByID> RegisterSet;
    137 
    138 class AsmMatcherEmitter {
    139   RecordKeeper &Records;
    140 public:
    141   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
    142 
    143   void run(raw_ostream &o);
    144 };
    145 
    146 /// ClassInfo - Helper class for storing the information about a particular
    147 /// class of operands which can be matched.
    148 struct ClassInfo {
    149   enum ClassInfoKind {
    150     /// Invalid kind, for use as a sentinel value.
    151     Invalid = 0,
    152 
    153     /// The class for a particular token.
    154     Token,
    155 
    156     /// The (first) register class, subsequent register classes are
    157     /// RegisterClass0+1, and so on.
    158     RegisterClass0,
    159 
    160     /// The (first) user defined class, subsequent user defined classes are
    161     /// UserClass0+1, and so on.
    162     UserClass0 = 1<<16
    163   };
    164 
    165   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    166   /// N) for the Nth user defined class.
    167   unsigned Kind;
    168 
    169   /// SuperClasses - The super classes of this class. Note that for simplicities
    170   /// sake user operands only record their immediate super class, while register
    171   /// operands include all superclasses.
    172   std::vector<ClassInfo*> SuperClasses;
    173 
    174   /// Name - The full class name, suitable for use in an enum.
    175   std::string Name;
    176 
    177   /// ClassName - The unadorned generic name for this class (e.g., Token).
    178   std::string ClassName;
    179 
    180   /// ValueName - The name of the value this class represents; for a token this
    181   /// is the literal token string, for an operand it is the TableGen class (or
    182   /// empty if this is a derived class).
    183   std::string ValueName;
    184 
    185   /// PredicateMethod - The name of the operand method to test whether the
    186   /// operand matches this class; this is not valid for Token or register kinds.
    187   std::string PredicateMethod;
    188 
    189   /// RenderMethod - The name of the operand method to add this operand to an
    190   /// MCInst; this is not valid for Token or register kinds.
    191   std::string RenderMethod;
    192 
    193   /// ParserMethod - The name of the operand method to do a target specific
    194   /// parsing on the operand.
    195   std::string ParserMethod;
    196 
    197   /// For register classes: the records for all the registers in this class.
    198   RegisterSet Registers;
    199 
    200   /// For custom match classes: the diagnostic kind for when the predicate fails.
    201   std::string DiagnosticType;
    202 public:
    203   /// isRegisterClass() - Check if this is a register class.
    204   bool isRegisterClass() const {
    205     return Kind >= RegisterClass0 && Kind < UserClass0;
    206   }
    207 
    208   /// isUserClass() - Check if this is a user defined class.
    209   bool isUserClass() const {
    210     return Kind >= UserClass0;
    211   }
    212 
    213   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
    214   /// are related if they are in the same class hierarchy.
    215   bool isRelatedTo(const ClassInfo &RHS) const {
    216     // Tokens are only related to tokens.
    217     if (Kind == Token || RHS.Kind == Token)
    218       return Kind == Token && RHS.Kind == Token;
    219 
    220     // Registers classes are only related to registers classes, and only if
    221     // their intersection is non-empty.
    222     if (isRegisterClass() || RHS.isRegisterClass()) {
    223       if (!isRegisterClass() || !RHS.isRegisterClass())
    224         return false;
    225 
    226       RegisterSet Tmp;
    227       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
    228       std::set_intersection(Registers.begin(), Registers.end(),
    229                             RHS.Registers.begin(), RHS.Registers.end(),
    230                             II, LessRecordByID());
    231 
    232       return !Tmp.empty();
    233     }
    234 
    235     // Otherwise we have two users operands; they are related if they are in the
    236     // same class hierarchy.
    237     //
    238     // FIXME: This is an oversimplification, they should only be related if they
    239     // intersect, however we don't have that information.
    240     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    241     const ClassInfo *Root = this;
    242     while (!Root->SuperClasses.empty())
    243       Root = Root->SuperClasses.front();
    244 
    245     const ClassInfo *RHSRoot = &RHS;
    246     while (!RHSRoot->SuperClasses.empty())
    247       RHSRoot = RHSRoot->SuperClasses.front();
    248 
    249     return Root == RHSRoot;
    250   }
    251 
    252   /// isSubsetOf - Test whether this class is a subset of \p RHS.
    253   bool isSubsetOf(const ClassInfo &RHS) const {
    254     // This is a subset of RHS if it is the same class...
    255     if (this == &RHS)
    256       return true;
    257 
    258     // ... or if any of its super classes are a subset of RHS.
    259     for (const ClassInfo *CI : SuperClasses)
    260       if (CI->isSubsetOf(RHS))
    261         return true;
    262 
    263     return false;
    264   }
    265 
    266   /// operator< - Compare two classes.
    267   // FIXME: This ordering seems to be broken. For example:
    268   // u64 < i64, i64 < s8, s8 < u64, forming a cycle
    269   // u64 is a subset of i64
    270   // i64 and s8 are not subsets of each other, so are ordered by name
    271   // s8 and u64 are not subsets of each other, so are ordered by name
    272   bool operator<(const ClassInfo &RHS) const {
    273     if (this == &RHS)
    274       return false;
    275 
    276     // Unrelated classes can be ordered by kind.
    277     if (!isRelatedTo(RHS))
    278       return Kind < RHS.Kind;
    279 
    280     switch (Kind) {
    281     case Invalid:
    282       llvm_unreachable("Invalid kind!");
    283 
    284     default:
    285       // This class precedes the RHS if it is a proper subset of the RHS.
    286       if (isSubsetOf(RHS))
    287         return true;
    288       if (RHS.isSubsetOf(*this))
    289         return false;
    290 
    291       // Otherwise, order by name to ensure we have a total ordering.
    292       return ValueName < RHS.ValueName;
    293     }
    294   }
    295 };
    296 
    297 /// MatchableInfo - Helper class for storing the necessary information for an
    298 /// instruction or alias which is capable of being matched.
    299 struct MatchableInfo {
    300   struct AsmOperand {
    301     /// Token - This is the token that the operand came from.
    302     StringRef Token;
    303 
    304     /// The unique class instance this operand should match.
    305     ClassInfo *Class;
    306 
    307     /// The operand name this is, if anything.
    308     StringRef SrcOpName;
    309 
    310     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    311     int SubOpIdx;
    312 
    313     /// Register record if this token is singleton register.
    314     Record *SingletonReg;
    315 
    316     explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
    317                                        SingletonReg(nullptr) {}
    318   };
    319 
    320   /// ResOperand - This represents a single operand in the result instruction
    321   /// generated by the match.  In cases (like addressing modes) where a single
    322   /// assembler operand expands to multiple MCOperands, this represents the
    323   /// single assembler operand, not the MCOperand.
    324   struct ResOperand {
    325     enum {
    326       /// RenderAsmOperand - This represents an operand result that is
    327       /// generated by calling the render method on the assembly operand.  The
    328       /// corresponding AsmOperand is specified by AsmOperandNum.
    329       RenderAsmOperand,
    330 
    331       /// TiedOperand - This represents a result operand that is a duplicate of
    332       /// a previous result operand.
    333       TiedOperand,
    334 
    335       /// ImmOperand - This represents an immediate value that is dumped into
    336       /// the operand.
    337       ImmOperand,
    338 
    339       /// RegOperand - This represents a fixed register that is dumped in.
    340       RegOperand
    341     } Kind;
    342 
    343     union {
    344       /// This is the operand # in the AsmOperands list that this should be
    345       /// copied from.
    346       unsigned AsmOperandNum;
    347 
    348       /// TiedOperandNum - This is the (earlier) result operand that should be
    349       /// copied from.
    350       unsigned TiedOperandNum;
    351 
    352       /// ImmVal - This is the immediate value added to the instruction.
    353       int64_t ImmVal;
    354 
    355       /// Register - This is the register record.
    356       Record *Register;
    357     };
    358 
    359     /// MINumOperands - The number of MCInst operands populated by this
    360     /// operand.
    361     unsigned MINumOperands;
    362 
    363     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    364       ResOperand X;
    365       X.Kind = RenderAsmOperand;
    366       X.AsmOperandNum = AsmOpNum;
    367       X.MINumOperands = NumOperands;
    368       return X;
    369     }
    370 
    371     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    372       ResOperand X;
    373       X.Kind = TiedOperand;
    374       X.TiedOperandNum = TiedOperandNum;
    375       X.MINumOperands = 1;
    376       return X;
    377     }
    378 
    379     static ResOperand getImmOp(int64_t Val) {
    380       ResOperand X;
    381       X.Kind = ImmOperand;
    382       X.ImmVal = Val;
    383       X.MINumOperands = 1;
    384       return X;
    385     }
    386 
    387     static ResOperand getRegOp(Record *Reg) {
    388       ResOperand X;
    389       X.Kind = RegOperand;
    390       X.Register = Reg;
    391       X.MINumOperands = 1;
    392       return X;
    393     }
    394   };
    395 
    396   /// AsmVariantID - Target's assembly syntax variant no.
    397   int AsmVariantID;
    398 
    399   /// AsmString - The assembly string for this instruction (with variants
    400   /// removed), e.g. "movsx $src, $dst".
    401   std::string AsmString;
    402 
    403   /// TheDef - This is the definition of the instruction or InstAlias that this
    404   /// matchable came from.
    405   Record *const TheDef;
    406 
    407   /// DefRec - This is the definition that it came from.
    408   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    409 
    410   const CodeGenInstruction *getResultInst() const {
    411     if (DefRec.is<const CodeGenInstruction*>())
    412       return DefRec.get<const CodeGenInstruction*>();
    413     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    414   }
    415 
    416   /// ResOperands - This is the operand list that should be built for the result
    417   /// MCInst.
    418   SmallVector<ResOperand, 8> ResOperands;
    419 
    420   /// Mnemonic - This is the first token of the matched instruction, its
    421   /// mnemonic.
    422   StringRef Mnemonic;
    423 
    424   /// AsmOperands - The textual operands that this instruction matches,
    425   /// annotated with a class and where in the OperandList they were defined.
    426   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    427   /// removed.
    428   SmallVector<AsmOperand, 8> AsmOperands;
    429 
    430   /// Predicates - The required subtarget features to match this instruction.
    431   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
    432 
    433   /// ConversionFnKind - The enum value which is passed to the generated
    434   /// convertToMCInst to convert parsed operands into an MCInst for this
    435   /// function.
    436   std::string ConversionFnKind;
    437 
    438   /// If this instruction is deprecated in some form.
    439   bool HasDeprecation;
    440 
    441   MatchableInfo(const CodeGenInstruction &CGI)
    442     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI) {
    443   }
    444 
    445   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
    446     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()) {
    447   }
    448 
    449   ~MatchableInfo() {
    450     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
    451   }
    452 
    453   // Two-operand aliases clone from the main matchable, but mark the second
    454   // operand as a tied operand of the first for purposes of the assembler.
    455   void formTwoOperandAlias(StringRef Constraint);
    456 
    457   void initialize(const AsmMatcherInfo &Info,
    458                   SmallPtrSetImpl<Record*> &SingletonRegisters,
    459                   int AsmVariantNo, std::string &RegisterPrefix);
    460 
    461   /// validate - Return true if this matchable is a valid thing to match against
    462   /// and perform a bunch of validity checking.
    463   bool validate(StringRef CommentDelimiter, bool Hack) const;
    464 
    465   /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    466   /// if present, from specified token.
    467   void
    468   extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
    469                                         std::string &RegisterPrefix);
    470 
    471   /// findAsmOperand - Find the AsmOperand with the specified name and
    472   /// suboperand index.
    473   int findAsmOperand(StringRef N, int SubOpIdx) const {
    474     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    475       if (N == AsmOperands[i].SrcOpName &&
    476           SubOpIdx == AsmOperands[i].SubOpIdx)
    477         return i;
    478     return -1;
    479   }
    480 
    481   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
    482   /// This does not check the suboperand index.
    483   int findAsmOperandNamed(StringRef N) const {
    484     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    485       if (N == AsmOperands[i].SrcOpName)
    486         return i;
    487     return -1;
    488   }
    489 
    490   void buildInstructionResultOperands();
    491   void buildAliasResultOperands();
    492 
    493   /// operator< - Compare two matchables.
    494   bool operator<(const MatchableInfo &RHS) const {
    495     // The primary comparator is the instruction mnemonic.
    496     if (Mnemonic != RHS.Mnemonic)
    497       return Mnemonic < RHS.Mnemonic;
    498 
    499     if (AsmOperands.size() != RHS.AsmOperands.size())
    500       return AsmOperands.size() < RHS.AsmOperands.size();
    501 
    502     // Compare lexicographically by operand. The matcher validates that other
    503     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    504     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    505       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    506         return true;
    507       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    508         return false;
    509     }
    510 
    511     // Give matches that require more features higher precedence. This is useful
    512     // because we cannot define AssemblerPredicates with the negation of
    513     // processor features. For example, ARM v6 "nop" may be either a HINT or
    514     // MOV. With v6, we want to match HINT. The assembler has no way to
    515     // predicate MOV under "NoV6", but HINT will always match first because it
    516     // requires V6 while MOV does not.
    517     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
    518       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
    519 
    520     return false;
    521   }
    522 
    523   /// couldMatchAmbiguouslyWith - Check whether this matchable could
    524   /// ambiguously match the same set of operands as \p RHS (without being a
    525   /// strictly superior match).
    526   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
    527     // The primary comparator is the instruction mnemonic.
    528     if (Mnemonic != RHS.Mnemonic)
    529       return false;
    530 
    531     // The number of operands is unambiguous.
    532     if (AsmOperands.size() != RHS.AsmOperands.size())
    533       return false;
    534 
    535     // Otherwise, make sure the ordering of the two instructions is unambiguous
    536     // by checking that either (a) a token or operand kind discriminates them,
    537     // or (b) the ordering among equivalent kinds is consistent.
    538 
    539     // Tokens and operand kinds are unambiguous (assuming a correct target
    540     // specific parser).
    541     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    542       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    543           AsmOperands[i].Class->Kind == ClassInfo::Token)
    544         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    545             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    546           return false;
    547 
    548     // Otherwise, this operand could commute if all operands are equivalent, or
    549     // there is a pair of operands that compare less than and a pair that
    550     // compare greater than.
    551     bool HasLT = false, HasGT = false;
    552     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    553       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    554         HasLT = true;
    555       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    556         HasGT = true;
    557     }
    558 
    559     return !(HasLT ^ HasGT);
    560   }
    561 
    562   void dump() const;
    563 
    564 private:
    565   void tokenizeAsmString(const AsmMatcherInfo &Info);
    566 };
    567 
    568 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    569 /// feature which participates in instruction matching.
    570 struct SubtargetFeatureInfo {
    571   /// \brief The predicate record for this feature.
    572   Record *TheDef;
    573 
    574   /// \brief An unique index assigned to represent this feature.
    575   uint64_t Index;
    576 
    577   SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
    578 
    579   /// \brief The name of the enumerated constant identifying this feature.
    580   std::string getEnumName() const {
    581     return "Feature_" + TheDef->getName();
    582   }
    583 
    584   void dump() const {
    585     errs() << getEnumName() << " " << Index << "\n";
    586     TheDef->dump();
    587   }
    588 };
    589 
    590 struct OperandMatchEntry {
    591   unsigned OperandMask;
    592   const MatchableInfo* MI;
    593   ClassInfo *CI;
    594 
    595   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
    596                                   unsigned opMask) {
    597     OperandMatchEntry X;
    598     X.OperandMask = opMask;
    599     X.CI = ci;
    600     X.MI = mi;
    601     return X;
    602   }
    603 };
    604 
    605 
    606 class AsmMatcherInfo {
    607 public:
    608   /// Tracked Records
    609   RecordKeeper &Records;
    610 
    611   /// The tablegen AsmParser record.
    612   Record *AsmParser;
    613 
    614   /// Target - The target information.
    615   CodeGenTarget &Target;
    616 
    617   /// The classes which are needed for matching.
    618   std::forward_list<ClassInfo> Classes;
    619 
    620   /// The information on the matchables to match.
    621   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
    622 
    623   /// Info for custom matching operands by user defined methods.
    624   std::vector<OperandMatchEntry> OperandMatchInfo;
    625 
    626   /// Map of Register records to their class information.
    627   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
    628   RegisterClassesTy RegisterClasses;
    629 
    630   /// Map of Predicate records to their subtarget information.
    631   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
    632 
    633   /// Map of AsmOperandClass records to their class information.
    634   std::map<Record*, ClassInfo*> AsmOperandClasses;
    635 
    636 private:
    637   /// Map of token to class information which has already been constructed.
    638   std::map<std::string, ClassInfo*> TokenClasses;
    639 
    640   /// Map of RegisterClass records to their class information.
    641   std::map<Record*, ClassInfo*> RegisterClassClasses;
    642 
    643 private:
    644   /// getTokenClass - Lookup or create the class for the given token.
    645   ClassInfo *getTokenClass(StringRef Token);
    646 
    647   /// getOperandClass - Lookup or create the class for the given operand.
    648   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    649                              int SubOpIdx);
    650   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    651 
    652   /// buildRegisterClasses - Build the ClassInfo* instances for register
    653   /// classes.
    654   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
    655 
    656   /// buildOperandClasses - Build the ClassInfo* instances for user defined
    657   /// operand classes.
    658   void buildOperandClasses();
    659 
    660   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    661                                         unsigned AsmOpIdx);
    662   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    663                                   MatchableInfo::AsmOperand &Op);
    664 
    665 public:
    666   AsmMatcherInfo(Record *AsmParser,
    667                  CodeGenTarget &Target,
    668                  RecordKeeper &Records);
    669 
    670   /// buildInfo - Construct the various tables used during matching.
    671   void buildInfo();
    672 
    673   /// buildOperandMatchInfo - Build the necessary information to handle user
    674   /// defined operand parsing methods.
    675   void buildOperandMatchInfo();
    676 
    677   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    678   /// given operand.
    679   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    680     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    681     const auto &I = SubtargetFeatures.find(Def);
    682     return I == SubtargetFeatures.end() ? nullptr : &I->second;
    683   }
    684 
    685   RecordKeeper &getRecords() const {
    686     return Records;
    687   }
    688 };
    689 
    690 } // End anonymous namespace
    691 
    692 void MatchableInfo::dump() const {
    693   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    694 
    695   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    696     const AsmOperand &Op = AsmOperands[i];
    697     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    698     errs() << '\"' << Op.Token << "\"\n";
    699   }
    700 }
    701 
    702 static std::pair<StringRef, StringRef>
    703 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
    704   // Split via the '='.
    705   std::pair<StringRef, StringRef> Ops = S.split('=');
    706   if (Ops.second == "")
    707     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
    708   // Trim whitespace and the leading '$' on the operand names.
    709   size_t start = Ops.first.find_first_of('$');
    710   if (start == std::string::npos)
    711     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    712   Ops.first = Ops.first.slice(start + 1, std::string::npos);
    713   size_t end = Ops.first.find_last_of(" \t");
    714   Ops.first = Ops.first.slice(0, end);
    715   // Now the second operand.
    716   start = Ops.second.find_first_of('$');
    717   if (start == std::string::npos)
    718     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    719   Ops.second = Ops.second.slice(start + 1, std::string::npos);
    720   end = Ops.second.find_last_of(" \t");
    721   Ops.first = Ops.first.slice(0, end);
    722   return Ops;
    723 }
    724 
    725 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
    726   // Figure out which operands are aliased and mark them as tied.
    727   std::pair<StringRef, StringRef> Ops =
    728     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
    729 
    730   // Find the AsmOperands that refer to the operands we're aliasing.
    731   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
    732   int DstAsmOperand = findAsmOperandNamed(Ops.second);
    733   if (SrcAsmOperand == -1)
    734     PrintFatalError(TheDef->getLoc(),
    735                     "unknown source two-operand alias operand '" + Ops.first +
    736                     "'.");
    737   if (DstAsmOperand == -1)
    738     PrintFatalError(TheDef->getLoc(),
    739                     "unknown destination two-operand alias operand '" +
    740                     Ops.second + "'.");
    741 
    742   // Find the ResOperand that refers to the operand we're aliasing away
    743   // and update it to refer to the combined operand instead.
    744   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    745     ResOperand &Op = ResOperands[i];
    746     if (Op.Kind == ResOperand::RenderAsmOperand &&
    747         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
    748       Op.AsmOperandNum = DstAsmOperand;
    749       break;
    750     }
    751   }
    752   // Remove the AsmOperand for the alias operand.
    753   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
    754   // Adjust the ResOperand references to any AsmOperands that followed
    755   // the one we just deleted.
    756   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    757     ResOperand &Op = ResOperands[i];
    758     switch(Op.Kind) {
    759     default:
    760       // Nothing to do for operands that don't reference AsmOperands.
    761       break;
    762     case ResOperand::RenderAsmOperand:
    763       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
    764         --Op.AsmOperandNum;
    765       break;
    766     case ResOperand::TiedOperand:
    767       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
    768         --Op.TiedOperandNum;
    769       break;
    770     }
    771   }
    772 }
    773 
    774 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
    775                                SmallPtrSetImpl<Record*> &SingletonRegisters,
    776                                int AsmVariantNo, std::string &RegisterPrefix) {
    777   AsmVariantID = AsmVariantNo;
    778   AsmString =
    779     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    780 
    781   tokenizeAsmString(Info);
    782 
    783   // Compute the require features.
    784   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
    785   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
    786     if (const SubtargetFeatureInfo *Feature =
    787             Info.getSubtargetFeature(Predicates[i]))
    788       RequiredFeatures.push_back(Feature);
    789 
    790   // Collect singleton registers, if used.
    791   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    792     extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
    793     if (Record *Reg = AsmOperands[i].SingletonReg)
    794       SingletonRegisters.insert(Reg);
    795   }
    796 
    797   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
    798   if (!DepMask)
    799     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
    800 
    801   HasDeprecation =
    802       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
    803 }
    804 
    805 /// tokenizeAsmString - Tokenize a simplified assembly string.
    806 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
    807   StringRef String = AsmString;
    808   unsigned Prev = 0;
    809   bool InTok = true;
    810   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    811     switch (String[i]) {
    812     case '[':
    813     case ']':
    814     case '*':
    815     case '!':
    816     case ' ':
    817     case '\t':
    818     case ',':
    819       if (InTok) {
    820         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    821         InTok = false;
    822       }
    823       if (!isspace(String[i]) && String[i] != ',')
    824         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    825       Prev = i + 1;
    826       break;
    827 
    828     case '\\':
    829       if (InTok) {
    830         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    831         InTok = false;
    832       }
    833       ++i;
    834       assert(i != String.size() && "Invalid quoted character");
    835       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    836       Prev = i + 1;
    837       break;
    838 
    839     case '$': {
    840       if (InTok) {
    841         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    842         InTok = false;
    843       }
    844 
    845       // If this isn't "${", treat like a normal token.
    846       if (i + 1 == String.size() || String[i + 1] != '{') {
    847         Prev = i;
    848         break;
    849       }
    850 
    851       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    852       assert(End != String.end() && "Missing brace in operand reference!");
    853       size_t EndPos = End - String.begin();
    854       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
    855       Prev = EndPos + 1;
    856       i = EndPos;
    857       break;
    858     }
    859 
    860     case '.':
    861       if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
    862         if (InTok)
    863           AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    864         Prev = i;
    865       }
    866       InTok = true;
    867       break;
    868 
    869     default:
    870       InTok = true;
    871     }
    872   }
    873   if (InTok && Prev != String.size())
    874     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
    875 
    876   // The first token of the instruction is the mnemonic, which must be a
    877   // simple string, not a $foo variable or a singleton register.
    878   if (AsmOperands.empty())
    879     PrintFatalError(TheDef->getLoc(),
    880                   "Instruction '" + TheDef->getName() + "' has no tokens");
    881   Mnemonic = AsmOperands[0].Token;
    882   if (Mnemonic.empty())
    883     PrintFatalError(TheDef->getLoc(),
    884                   "Missing instruction mnemonic");
    885   // FIXME : Check and raise an error if it is a register.
    886   if (Mnemonic[0] == '$')
    887     PrintFatalError(TheDef->getLoc(),
    888                     "Invalid instruction mnemonic '" + Mnemonic + "'!");
    889 
    890   // Remove the first operand, it is tracked in the mnemonic field.
    891   AsmOperands.erase(AsmOperands.begin());
    892 }
    893 
    894 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
    895   // Reject matchables with no .s string.
    896   if (AsmString.empty())
    897     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
    898 
    899   // Reject any matchables with a newline in them, they should be marked
    900   // isCodeGenOnly if they are pseudo instructions.
    901   if (AsmString.find('\n') != std::string::npos)
    902     PrintFatalError(TheDef->getLoc(),
    903                   "multiline instruction is not valid for the asmparser, "
    904                   "mark it isCodeGenOnly");
    905 
    906   // Remove comments from the asm string.  We know that the asmstring only
    907   // has one line.
    908   if (!CommentDelimiter.empty() &&
    909       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    910     PrintFatalError(TheDef->getLoc(),
    911                   "asmstring for instruction has comment character in it, "
    912                   "mark it isCodeGenOnly");
    913 
    914   // Reject matchables with operand modifiers, these aren't something we can
    915   // handle, the target should be refactored to use operands instead of
    916   // modifiers.
    917   //
    918   // Also, check for instructions which reference the operand multiple times;
    919   // this implies a constraint we would not honor.
    920   std::set<std::string> OperandNames;
    921   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    922     StringRef Tok = AsmOperands[i].Token;
    923     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    924       PrintFatalError(TheDef->getLoc(),
    925                       "matchable with operand modifier '" + Tok +
    926                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
    927 
    928     // Verify that any operand is only mentioned once.
    929     // We reject aliases and ignore instructions for now.
    930     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
    931       if (!Hack)
    932         PrintFatalError(TheDef->getLoc(),
    933                         "ERROR: matchable with tied operand '" + Tok +
    934                         "' can never be matched!");
    935       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
    936       // bunch of instructions.  It is unclear what the right answer is.
    937       DEBUG({
    938         errs() << "warning: '" << TheDef->getName() << "': "
    939                << "ignoring instruction with tied operand '"
    940                << Tok << "'\n";
    941       });
    942       return false;
    943     }
    944   }
    945 
    946   return true;
    947 }
    948 
    949 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    950 /// if present, from specified token.
    951 void MatchableInfo::
    952 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
    953                                       const AsmMatcherInfo &Info,
    954                                       std::string &RegisterPrefix) {
    955   StringRef Tok = AsmOperands[OperandNo].Token;
    956   if (RegisterPrefix.empty()) {
    957     std::string LoweredTok = Tok.lower();
    958     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    959       AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    960     return;
    961   }
    962 
    963   if (!Tok.startswith(RegisterPrefix))
    964     return;
    965 
    966   StringRef RegName = Tok.substr(RegisterPrefix.size());
    967   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    968     AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    969 
    970   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    971   // be some random non-register token, just ignore it.
    972   return;
    973 }
    974 
    975 static std::string getEnumNameForToken(StringRef Str) {
    976   std::string Res;
    977 
    978   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    979     switch (*it) {
    980     case '*': Res += "_STAR_"; break;
    981     case '%': Res += "_PCT_"; break;
    982     case ':': Res += "_COLON_"; break;
    983     case '!': Res += "_EXCLAIM_"; break;
    984     case '.': Res += "_DOT_"; break;
    985     case '<': Res += "_LT_"; break;
    986     case '>': Res += "_GT_"; break;
    987     case '-': Res += "_MINUS_"; break;
    988     default:
    989       if ((*it >= 'A' && *it <= 'Z') ||
    990           (*it >= 'a' && *it <= 'z') ||
    991           (*it >= '0' && *it <= '9'))
    992         Res += *it;
    993       else
    994         Res += "_" + utostr((unsigned) *it) + "_";
    995     }
    996   }
    997 
    998   return Res;
    999 }
   1000 
   1001 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
   1002   ClassInfo *&Entry = TokenClasses[Token];
   1003 
   1004   if (!Entry) {
   1005     Classes.emplace_front();
   1006     Entry = &Classes.front();
   1007     Entry->Kind = ClassInfo::Token;
   1008     Entry->ClassName = "Token";
   1009     Entry->Name = "MCK_" + getEnumNameForToken(Token);
   1010     Entry->ValueName = Token;
   1011     Entry->PredicateMethod = "<invalid>";
   1012     Entry->RenderMethod = "<invalid>";
   1013     Entry->ParserMethod = "";
   1014     Entry->DiagnosticType = "";
   1015   }
   1016 
   1017   return Entry;
   1018 }
   1019 
   1020 ClassInfo *
   1021 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
   1022                                 int SubOpIdx) {
   1023   Record *Rec = OI.Rec;
   1024   if (SubOpIdx != -1)
   1025     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
   1026   return getOperandClass(Rec, SubOpIdx);
   1027 }
   1028 
   1029 ClassInfo *
   1030 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
   1031   if (Rec->isSubClassOf("RegisterOperand")) {
   1032     // RegisterOperand may have an associated ParserMatchClass. If it does,
   1033     // use it, else just fall back to the underlying register class.
   1034     const RecordVal *R = Rec->getValue("ParserMatchClass");
   1035     if (!R || !R->getValue())
   1036       PrintFatalError("Record `" + Rec->getName() +
   1037         "' does not have a ParserMatchClass!\n");
   1038 
   1039     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
   1040       Record *MatchClass = DI->getDef();
   1041       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1042         return CI;
   1043     }
   1044 
   1045     // No custom match class. Just use the register class.
   1046     Record *ClassRec = Rec->getValueAsDef("RegClass");
   1047     if (!ClassRec)
   1048       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
   1049                     "' has no associated register class!\n");
   1050     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
   1051       return CI;
   1052     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1053   }
   1054 
   1055 
   1056   if (Rec->isSubClassOf("RegisterClass")) {
   1057     if (ClassInfo *CI = RegisterClassClasses[Rec])
   1058       return CI;
   1059     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1060   }
   1061 
   1062   if (!Rec->isSubClassOf("Operand"))
   1063     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
   1064                   "' does not derive from class Operand!\n");
   1065   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1066   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1067     return CI;
   1068 
   1069   PrintFatalError(Rec->getLoc(), "operand has no match class!");
   1070 }
   1071 
   1072 struct LessRegisterSet {
   1073   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
   1074     // std::set<T> defines its own compariso "operator<", but it
   1075     // performs a lexicographical comparison by T's innate comparison
   1076     // for some reason. We don't want non-deterministic pointer
   1077     // comparisons so use this instead.
   1078     return std::lexicographical_compare(LHS.begin(), LHS.end(),
   1079                                         RHS.begin(), RHS.end(),
   1080                                         LessRecordByID());
   1081   }
   1082 };
   1083 
   1084 void AsmMatcherInfo::
   1085 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
   1086   const auto &Registers = Target.getRegBank().getRegisters();
   1087   auto &RegClassList = Target.getRegBank().getRegClasses();
   1088 
   1089   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
   1090 
   1091   // The register sets used for matching.
   1092   RegisterSetSet RegisterSets;
   1093 
   1094   // Gather the defined sets.
   1095   for (const CodeGenRegisterClass &RC : RegClassList)
   1096     RegisterSets.insert(
   1097         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
   1098 
   1099   // Add any required singleton sets.
   1100   for (Record *Rec : SingletonRegisters) {
   1101     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
   1102   }
   1103 
   1104   // Introduce derived sets where necessary (when a register does not determine
   1105   // a unique register set class), and build the mapping of registers to the set
   1106   // they should classify to.
   1107   std::map<Record*, RegisterSet> RegisterMap;
   1108   for (const CodeGenRegister &CGR : Registers) {
   1109     // Compute the intersection of all sets containing this register.
   1110     RegisterSet ContainingSet;
   1111 
   1112     for (const RegisterSet &RS : RegisterSets) {
   1113       if (!RS.count(CGR.TheDef))
   1114         continue;
   1115 
   1116       if (ContainingSet.empty()) {
   1117         ContainingSet = RS;
   1118         continue;
   1119       }
   1120 
   1121       RegisterSet Tmp;
   1122       std::swap(Tmp, ContainingSet);
   1123       std::insert_iterator<RegisterSet> II(ContainingSet,
   1124                                            ContainingSet.begin());
   1125       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
   1126                             LessRecordByID());
   1127     }
   1128 
   1129     if (!ContainingSet.empty()) {
   1130       RegisterSets.insert(ContainingSet);
   1131       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
   1132     }
   1133   }
   1134 
   1135   // Construct the register classes.
   1136   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
   1137   unsigned Index = 0;
   1138   for (const RegisterSet &RS : RegisterSets) {
   1139     Classes.emplace_front();
   1140     ClassInfo *CI = &Classes.front();
   1141     CI->Kind = ClassInfo::RegisterClass0 + Index;
   1142     CI->ClassName = "Reg" + utostr(Index);
   1143     CI->Name = "MCK_Reg" + utostr(Index);
   1144     CI->ValueName = "";
   1145     CI->PredicateMethod = ""; // unused
   1146     CI->RenderMethod = "addRegOperands";
   1147     CI->Registers = RS;
   1148     // FIXME: diagnostic type.
   1149     CI->DiagnosticType = "";
   1150     RegisterSetClasses.insert(std::make_pair(RS, CI));
   1151     ++Index;
   1152   }
   1153 
   1154   // Find the superclasses; we could compute only the subgroup lattice edges,
   1155   // but there isn't really a point.
   1156   for (const RegisterSet &RS : RegisterSets) {
   1157     ClassInfo *CI = RegisterSetClasses[RS];
   1158     for (const RegisterSet &RS2 : RegisterSets)
   1159       if (RS != RS2 &&
   1160           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
   1161                         LessRecordByID()))
   1162         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
   1163   }
   1164 
   1165   // Name the register classes which correspond to a user defined RegisterClass.
   1166   for (const CodeGenRegisterClass &RC : RegClassList) {
   1167     // Def will be NULL for non-user defined register classes.
   1168     Record *Def = RC.getDef();
   1169     if (!Def)
   1170       continue;
   1171     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
   1172                                                    RC.getOrder().end())];
   1173     if (CI->ValueName.empty()) {
   1174       CI->ClassName = RC.getName();
   1175       CI->Name = "MCK_" + RC.getName();
   1176       CI->ValueName = RC.getName();
   1177     } else
   1178       CI->ValueName = CI->ValueName + "," + RC.getName();
   1179 
   1180     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1181   }
   1182 
   1183   // Populate the map for individual registers.
   1184   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
   1185          ie = RegisterMap.end(); it != ie; ++it)
   1186     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1187 
   1188   // Name the register classes which correspond to singleton registers.
   1189   for (Record *Rec : SingletonRegisters) {
   1190     ClassInfo *CI = RegisterClasses[Rec];
   1191     assert(CI && "Missing singleton register class info!");
   1192 
   1193     if (CI->ValueName.empty()) {
   1194       CI->ClassName = Rec->getName();
   1195       CI->Name = "MCK_" + Rec->getName();
   1196       CI->ValueName = Rec->getName();
   1197     } else
   1198       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1199   }
   1200 }
   1201 
   1202 void AsmMatcherInfo::buildOperandClasses() {
   1203   std::vector<Record*> AsmOperands =
   1204     Records.getAllDerivedDefinitions("AsmOperandClass");
   1205 
   1206   // Pre-populate AsmOperandClasses map.
   1207   for (Record *Rec : AsmOperands) {
   1208     Classes.emplace_front();
   1209     AsmOperandClasses[Rec] = &Classes.front();
   1210   }
   1211 
   1212   unsigned Index = 0;
   1213   for (Record *Rec : AsmOperands) {
   1214     ClassInfo *CI = AsmOperandClasses[Rec];
   1215     CI->Kind = ClassInfo::UserClass0 + Index;
   1216 
   1217     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
   1218     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
   1219       DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
   1220       if (!DI) {
   1221         PrintError(Rec->getLoc(), "Invalid super class reference!");
   1222         continue;
   1223       }
   1224 
   1225       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1226       if (!SC)
   1227         PrintError(Rec->getLoc(), "Invalid super class reference!");
   1228       else
   1229         CI->SuperClasses.push_back(SC);
   1230     }
   1231     CI->ClassName = Rec->getValueAsString("Name");
   1232     CI->Name = "MCK_" + CI->ClassName;
   1233     CI->ValueName = Rec->getName();
   1234 
   1235     // Get or construct the predicate method name.
   1236     Init *PMName = Rec->getValueInit("PredicateMethod");
   1237     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
   1238       CI->PredicateMethod = SI->getValue();
   1239     } else {
   1240       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
   1241       CI->PredicateMethod = "is" + CI->ClassName;
   1242     }
   1243 
   1244     // Get or construct the render method name.
   1245     Init *RMName = Rec->getValueInit("RenderMethod");
   1246     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
   1247       CI->RenderMethod = SI->getValue();
   1248     } else {
   1249       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
   1250       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1251     }
   1252 
   1253     // Get the parse method name or leave it as empty.
   1254     Init *PRMName = Rec->getValueInit("ParserMethod");
   1255     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
   1256       CI->ParserMethod = SI->getValue();
   1257 
   1258     // Get the diagnostic type or leave it as empty.
   1259     // Get the parse method name or leave it as empty.
   1260     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
   1261     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
   1262       CI->DiagnosticType = SI->getValue();
   1263 
   1264     ++Index;
   1265   }
   1266 }
   1267 
   1268 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1269                                CodeGenTarget &target,
   1270                                RecordKeeper &records)
   1271   : Records(records), AsmParser(asmParser), Target(target) {
   1272 }
   1273 
   1274 /// buildOperandMatchInfo - Build the necessary information to handle user
   1275 /// defined operand parsing methods.
   1276 void AsmMatcherInfo::buildOperandMatchInfo() {
   1277 
   1278   /// Map containing a mask with all operands indices that can be found for
   1279   /// that class inside a instruction.
   1280   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
   1281   OpClassMaskTy OpClassMask;
   1282 
   1283   for (const auto &MI : Matchables) {
   1284     OpClassMask.clear();
   1285 
   1286     // Keep track of all operands of this instructions which belong to the
   1287     // same class.
   1288     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
   1289       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
   1290       if (Op.Class->ParserMethod.empty())
   1291         continue;
   1292       unsigned &OperandMask = OpClassMask[Op.Class];
   1293       OperandMask |= (1 << i);
   1294     }
   1295 
   1296     // Generate operand match info for each mnemonic/operand class pair.
   1297     for (const auto &OCM : OpClassMask) {
   1298       unsigned OpMask = OCM.second;
   1299       ClassInfo *CI = OCM.first;
   1300       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
   1301                                                            OpMask));
   1302     }
   1303   }
   1304 }
   1305 
   1306 void AsmMatcherInfo::buildInfo() {
   1307   // Build information about all of the AssemblerPredicates.
   1308   std::vector<Record*> AllPredicates =
   1309     Records.getAllDerivedDefinitions("Predicate");
   1310   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1311     Record *Pred = AllPredicates[i];
   1312     // Ignore predicates that are not intended for the assembler.
   1313     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1314       continue;
   1315 
   1316     if (Pred->getName().empty())
   1317       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
   1318 
   1319     SubtargetFeatures.insert(std::make_pair(
   1320         Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
   1321     DEBUG(SubtargetFeatures.find(Pred)->second.dump());
   1322     assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
   1323   }
   1324 
   1325   // Parse the instructions; we need to do this first so that we can gather the
   1326   // singleton register classes.
   1327   SmallPtrSet<Record*, 16> SingletonRegisters;
   1328   unsigned VariantCount = Target.getAsmParserVariantCount();
   1329   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1330     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1331     std::string CommentDelimiter =
   1332       AsmVariant->getValueAsString("CommentDelimiter");
   1333     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1334     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1335 
   1336     for (const CodeGenInstruction *CGI : Target.instructions()) {
   1337 
   1338       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1339       // filter the set of instructions we consider.
   1340       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
   1341         continue;
   1342 
   1343       // Ignore "codegen only" instructions.
   1344       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
   1345         continue;
   1346 
   1347       std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI));
   1348 
   1349       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1350 
   1351       // Ignore instructions which shouldn't be matched and diagnose invalid
   1352       // instruction definitions with an error.
   1353       if (!II->validate(CommentDelimiter, true))
   1354         continue;
   1355 
   1356       Matchables.push_back(std::move(II));
   1357     }
   1358 
   1359     // Parse all of the InstAlias definitions and stick them in the list of
   1360     // matchables.
   1361     std::vector<Record*> AllInstAliases =
   1362       Records.getAllDerivedDefinitions("InstAlias");
   1363     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1364       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
   1365                                                        AsmVariantNo, Target);
   1366 
   1367       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1368       // filter the set of instruction aliases we consider, based on the target
   1369       // instruction.
   1370       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1371             .startswith( MatchPrefix))
   1372         continue;
   1373 
   1374       std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias)));
   1375 
   1376       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1377 
   1378       // Validate the alias definitions.
   1379       II->validate(CommentDelimiter, false);
   1380 
   1381       Matchables.push_back(std::move(II));
   1382     }
   1383   }
   1384 
   1385   // Build info for the register classes.
   1386   buildRegisterClasses(SingletonRegisters);
   1387 
   1388   // Build info for the user defined assembly operand classes.
   1389   buildOperandClasses();
   1390 
   1391   // Build the information about matchables, now that we have fully formed
   1392   // classes.
   1393   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
   1394   for (auto &II : Matchables) {
   1395     // Parse the tokens after the mnemonic.
   1396     // Note: buildInstructionOperandReference may insert new AsmOperands, so
   1397     // don't precompute the loop bound.
   1398     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1399       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1400       StringRef Token = Op.Token;
   1401 
   1402       // Check for singleton registers.
   1403       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1404         Op.Class = RegisterClasses[RegRecord];
   1405         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1406                "Unexpected class for singleton register");
   1407         continue;
   1408       }
   1409 
   1410       // Check for simple tokens.
   1411       if (Token[0] != '$') {
   1412         Op.Class = getTokenClass(Token);
   1413         continue;
   1414       }
   1415 
   1416       if (Token.size() > 1 && isdigit(Token[1])) {
   1417         Op.Class = getTokenClass(Token);
   1418         continue;
   1419       }
   1420 
   1421       // Otherwise this is an operand reference.
   1422       StringRef OperandName;
   1423       if (Token[1] == '{')
   1424         OperandName = Token.substr(2, Token.size() - 3);
   1425       else
   1426         OperandName = Token.substr(1);
   1427 
   1428       if (II->DefRec.is<const CodeGenInstruction*>())
   1429         buildInstructionOperandReference(II.get(), OperandName, i);
   1430       else
   1431         buildAliasOperandReference(II.get(), OperandName, Op);
   1432     }
   1433 
   1434     if (II->DefRec.is<const CodeGenInstruction*>()) {
   1435       II->buildInstructionResultOperands();
   1436       // If the instruction has a two-operand alias, build up the
   1437       // matchable here. We'll add them in bulk at the end to avoid
   1438       // confusing this loop.
   1439       std::string Constraint =
   1440         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
   1441       if (Constraint != "") {
   1442         // Start by making a copy of the original matchable.
   1443         std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
   1444 
   1445         // Adjust it to be a two-operand alias.
   1446         AliasII->formTwoOperandAlias(Constraint);
   1447 
   1448         // Add the alias to the matchables list.
   1449         NewMatchables.push_back(std::move(AliasII));
   1450       }
   1451     } else
   1452       II->buildAliasResultOperands();
   1453   }
   1454   if (!NewMatchables.empty())
   1455     Matchables.insert(Matchables.end(),
   1456                       std::make_move_iterator(NewMatchables.begin()),
   1457                       std::make_move_iterator(NewMatchables.end()));
   1458 
   1459   // Process token alias definitions and set up the associated superclass
   1460   // information.
   1461   std::vector<Record*> AllTokenAliases =
   1462     Records.getAllDerivedDefinitions("TokenAlias");
   1463   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1464     Record *Rec = AllTokenAliases[i];
   1465     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1466     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1467     if (FromClass == ToClass)
   1468       PrintFatalError(Rec->getLoc(),
   1469                     "error: Destination value identical to source value.");
   1470     FromClass->SuperClasses.push_back(ToClass);
   1471   }
   1472 
   1473   // Reorder classes so that classes precede super classes.
   1474   Classes.sort();
   1475 }
   1476 
   1477 /// buildInstructionOperandReference - The specified operand is a reference to a
   1478 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1479 void AsmMatcherInfo::
   1480 buildInstructionOperandReference(MatchableInfo *II,
   1481                                  StringRef OperandName,
   1482                                  unsigned AsmOpIdx) {
   1483   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1484   const CGIOperandList &Operands = CGI.Operands;
   1485   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1486 
   1487   // Map this token to an operand.
   1488   unsigned Idx;
   1489   if (!Operands.hasOperandNamed(OperandName, Idx))
   1490     PrintFatalError(II->TheDef->getLoc(),
   1491                     "error: unable to find operand: '" + OperandName + "'");
   1492 
   1493   // If the instruction operand has multiple suboperands, but the parser
   1494   // match class for the asm operand is still the default "ImmAsmOperand",
   1495   // then handle each suboperand separately.
   1496   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1497     Record *Rec = Operands[Idx].Rec;
   1498     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1499     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1500     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1501       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1502       StringRef Token = Op->Token; // save this in case Op gets moved
   1503       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1504         MatchableInfo::AsmOperand NewAsmOp(Token);
   1505         NewAsmOp.SubOpIdx = SI;
   1506         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1507       }
   1508       // Replace Op with first suboperand.
   1509       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1510       Op->SubOpIdx = 0;
   1511     }
   1512   }
   1513 
   1514   // Set up the operand class.
   1515   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1516 
   1517   // If the named operand is tied, canonicalize it to the untied operand.
   1518   // For example, something like:
   1519   //   (outs GPR:$dst), (ins GPR:$src)
   1520   // with an asmstring of
   1521   //   "inc $src"
   1522   // we want to canonicalize to:
   1523   //   "inc $dst"
   1524   // so that we know how to provide the $dst operand when filling in the result.
   1525   int OITied = -1;
   1526   if (Operands[Idx].MINumOperands == 1)
   1527     OITied = Operands[Idx].getTiedRegister();
   1528   if (OITied != -1) {
   1529     // The tied operand index is an MIOperand index, find the operand that
   1530     // contains it.
   1531     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1532     OperandName = Operands[Idx.first].Name;
   1533     Op->SubOpIdx = Idx.second;
   1534   }
   1535 
   1536   Op->SrcOpName = OperandName;
   1537 }
   1538 
   1539 /// buildAliasOperandReference - When parsing an operand reference out of the
   1540 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1541 /// operand reference is by looking it up in the result pattern definition.
   1542 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
   1543                                                 StringRef OperandName,
   1544                                                 MatchableInfo::AsmOperand &Op) {
   1545   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1546 
   1547   // Set up the operand class.
   1548   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1549     if (CGA.ResultOperands[i].isRecord() &&
   1550         CGA.ResultOperands[i].getName() == OperandName) {
   1551       // It's safe to go with the first one we find, because CodeGenInstAlias
   1552       // validates that all operands with the same name have the same record.
   1553       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1554       // Use the match class from the Alias definition, not the
   1555       // destination instruction, as we may have an immediate that's
   1556       // being munged by the match class.
   1557       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1558                                  Op.SubOpIdx);
   1559       Op.SrcOpName = OperandName;
   1560       return;
   1561     }
   1562 
   1563   PrintFatalError(II->TheDef->getLoc(),
   1564                   "error: unable to find operand: '" + OperandName + "'");
   1565 }
   1566 
   1567 void MatchableInfo::buildInstructionResultOperands() {
   1568   const CodeGenInstruction *ResultInst = getResultInst();
   1569 
   1570   // Loop over all operands of the result instruction, determining how to
   1571   // populate them.
   1572   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1573     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1574 
   1575     // If this is a tied operand, just copy from the previously handled operand.
   1576     int TiedOp = -1;
   1577     if (OpInfo.MINumOperands == 1)
   1578       TiedOp = OpInfo.getTiedRegister();
   1579     if (TiedOp != -1) {
   1580       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1581       continue;
   1582     }
   1583 
   1584     // Find out what operand from the asmparser this MCInst operand comes from.
   1585     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
   1586     if (OpInfo.Name.empty() || SrcOperand == -1) {
   1587       // This may happen for operands that are tied to a suboperand of a
   1588       // complex operand.  Simply use a dummy value here; nobody should
   1589       // use this operand slot.
   1590       // FIXME: The long term goal is for the MCOperand list to not contain
   1591       // tied operands at all.
   1592       ResOperands.push_back(ResOperand::getImmOp(0));
   1593       continue;
   1594     }
   1595 
   1596     // Check if the one AsmOperand populates the entire operand.
   1597     unsigned NumOperands = OpInfo.MINumOperands;
   1598     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1599       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1600       continue;
   1601     }
   1602 
   1603     // Add a separate ResOperand for each suboperand.
   1604     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1605       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1606              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1607              "unexpected AsmOperands for suboperands");
   1608       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1609     }
   1610   }
   1611 }
   1612 
   1613 void MatchableInfo::buildAliasResultOperands() {
   1614   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1615   const CodeGenInstruction *ResultInst = getResultInst();
   1616 
   1617   // Loop over all operands of the result instruction, determining how to
   1618   // populate them.
   1619   unsigned AliasOpNo = 0;
   1620   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1621   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1622     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1623 
   1624     // If this is a tied operand, just copy from the previously handled operand.
   1625     int TiedOp = -1;
   1626     if (OpInfo->MINumOperands == 1)
   1627       TiedOp = OpInfo->getTiedRegister();
   1628     if (TiedOp != -1) {
   1629       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1630       continue;
   1631     }
   1632 
   1633     // Handle all the suboperands for this operand.
   1634     const std::string &OpName = OpInfo->Name;
   1635     for ( ; AliasOpNo <  LastOpNo &&
   1636             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1637       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1638 
   1639       // Find out what operand from the asmparser that this MCInst operand
   1640       // comes from.
   1641       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1642       case CodeGenInstAlias::ResultOperand::K_Record: {
   1643         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1644         int SrcOperand = findAsmOperand(Name, SubIdx);
   1645         if (SrcOperand == -1)
   1646           PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1647                         TheDef->getName() + "' has operand '" + OpName +
   1648                         "' that doesn't appear in asm string!");
   1649         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1650         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1651                                                         NumOperands));
   1652         break;
   1653       }
   1654       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1655         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1656         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1657         break;
   1658       }
   1659       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1660         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1661         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1662         break;
   1663       }
   1664       }
   1665     }
   1666   }
   1667 }
   1668 
   1669 static unsigned getConverterOperandID(const std::string &Name,
   1670                                       SetVector<std::string> &Table,
   1671                                       bool &IsNew) {
   1672   IsNew = Table.insert(Name);
   1673 
   1674   unsigned ID = IsNew ? Table.size() - 1 :
   1675     std::find(Table.begin(), Table.end(), Name) - Table.begin();
   1676 
   1677   assert(ID < Table.size());
   1678 
   1679   return ID;
   1680 }
   1681 
   1682 
   1683 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
   1684                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
   1685                              raw_ostream &OS) {
   1686   SetVector<std::string> OperandConversionKinds;
   1687   SetVector<std::string> InstructionConversionKinds;
   1688   std::vector<std::vector<uint8_t> > ConversionTable;
   1689   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
   1690 
   1691   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1692   std::string TargetOperandClass = Target.getName() + "Operand";
   1693 
   1694   // Write the convert function to a separate stream, so we can drop it after
   1695   // the enum. We'll build up the conversion handlers for the individual
   1696   // operand types opportunistically as we encounter them.
   1697   std::string ConvertFnBody;
   1698   raw_string_ostream CvtOS(ConvertFnBody);
   1699   // Start the unified conversion function.
   1700   CvtOS << "void " << Target.getName() << ClassName << "::\n"
   1701         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
   1702         << "unsigned Opcode,\n"
   1703         << "                const OperandVector"
   1704         << " &Operands) {\n"
   1705         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1706         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1707         << "  Inst.setOpcode(Opcode);\n"
   1708         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1709         << "    switch (*p) {\n"
   1710         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1711         << "    case CVT_Reg:\n"
   1712         << "      static_cast<" << TargetOperandClass
   1713         << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
   1714         << "      break;\n"
   1715         << "    case CVT_Tied:\n"
   1716         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
   1717         << "      break;\n";
   1718 
   1719   std::string OperandFnBody;
   1720   raw_string_ostream OpOS(OperandFnBody);
   1721   // Start the operand number lookup function.
   1722   OpOS << "void " << Target.getName() << ClassName << "::\n"
   1723        << "convertToMapAndConstraints(unsigned Kind,\n";
   1724   OpOS.indent(27);
   1725   OpOS << "const OperandVector &Operands) {\n"
   1726        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1727        << "  unsigned NumMCOperands = 0;\n"
   1728        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1729        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1730        << "    switch (*p) {\n"
   1731        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1732        << "    case CVT_Reg:\n"
   1733        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1734        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
   1735        << "      ++NumMCOperands;\n"
   1736        << "      break;\n"
   1737        << "    case CVT_Tied:\n"
   1738        << "      ++NumMCOperands;\n"
   1739        << "      break;\n";
   1740 
   1741   // Pre-populate the operand conversion kinds with the standard always
   1742   // available entries.
   1743   OperandConversionKinds.insert("CVT_Done");
   1744   OperandConversionKinds.insert("CVT_Reg");
   1745   OperandConversionKinds.insert("CVT_Tied");
   1746   enum { CVT_Done, CVT_Reg, CVT_Tied };
   1747 
   1748   for (auto &II : Infos) {
   1749     // Check if we have a custom match function.
   1750     std::string AsmMatchConverter =
   1751       II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1752     if (!AsmMatchConverter.empty()) {
   1753       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1754       II->ConversionFnKind = Signature;
   1755 
   1756       // Check if we have already generated this signature.
   1757       if (!InstructionConversionKinds.insert(Signature))
   1758         continue;
   1759 
   1760       // Remember this converter for the kind enum.
   1761       unsigned KindID = OperandConversionKinds.size();
   1762       OperandConversionKinds.insert("CVT_" +
   1763                                     getEnumNameForToken(AsmMatchConverter));
   1764 
   1765       // Add the converter row for this instruction.
   1766       ConversionTable.push_back(std::vector<uint8_t>());
   1767       ConversionTable.back().push_back(KindID);
   1768       ConversionTable.back().push_back(CVT_Done);
   1769 
   1770       // Add the handler to the conversion driver function.
   1771       CvtOS << "    case CVT_"
   1772             << getEnumNameForToken(AsmMatchConverter) << ":\n"
   1773             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
   1774             << "      break;\n";
   1775 
   1776       // FIXME: Handle the operand number lookup for custom match functions.
   1777       continue;
   1778     }
   1779 
   1780     // Build the conversion function signature.
   1781     std::string Signature = "Convert";
   1782 
   1783     std::vector<uint8_t> ConversionRow;
   1784 
   1785     // Compute the convert enum and the case body.
   1786     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
   1787 
   1788     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
   1789       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
   1790 
   1791       // Generate code to populate each result operand.
   1792       switch (OpInfo.Kind) {
   1793       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1794         // This comes from something we parsed.
   1795         const MatchableInfo::AsmOperand &Op =
   1796           II->AsmOperands[OpInfo.AsmOperandNum];
   1797 
   1798         // Registers are always converted the same, don't duplicate the
   1799         // conversion function based on them.
   1800         Signature += "__";
   1801         std::string Class;
   1802         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
   1803         Signature += Class;
   1804         Signature += utostr(OpInfo.MINumOperands);
   1805         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1806 
   1807         // Add the conversion kind, if necessary, and get the associated ID
   1808         // the index of its entry in the vector).
   1809         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
   1810                                      Op.Class->RenderMethod);
   1811         Name = getEnumNameForToken(Name);
   1812 
   1813         bool IsNewConverter = false;
   1814         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1815                                             IsNewConverter);
   1816 
   1817         // Add the operand entry to the instruction kind conversion row.
   1818         ConversionRow.push_back(ID);
   1819         ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
   1820 
   1821         if (!IsNewConverter)
   1822           break;
   1823 
   1824         // This is a new operand kind. Add a handler for it to the
   1825         // converter driver.
   1826         CvtOS << "    case " << Name << ":\n"
   1827               << "      static_cast<" << TargetOperandClass
   1828               << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
   1829               << "(Inst, " << OpInfo.MINumOperands << ");\n"
   1830               << "      break;\n";
   1831 
   1832         // Add a handler for the operand number lookup.
   1833         OpOS << "    case " << Name << ":\n"
   1834              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
   1835 
   1836         if (Op.Class->isRegisterClass())
   1837           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
   1838         else
   1839           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
   1840         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
   1841              << "      break;\n";
   1842         break;
   1843       }
   1844       case MatchableInfo::ResOperand::TiedOperand: {
   1845         // If this operand is tied to a previous one, just copy the MCInst
   1846         // operand from the earlier one.We can only tie single MCOperand values.
   1847         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1848         unsigned TiedOp = OpInfo.TiedOperandNum;
   1849         assert(i > TiedOp && "Tied operand precedes its target!");
   1850         Signature += "__Tie" + utostr(TiedOp);
   1851         ConversionRow.push_back(CVT_Tied);
   1852         ConversionRow.push_back(TiedOp);
   1853         break;
   1854       }
   1855       case MatchableInfo::ResOperand::ImmOperand: {
   1856         int64_t Val = OpInfo.ImmVal;
   1857         std::string Ty = "imm_" + itostr(Val);
   1858         Ty = getEnumNameForToken(Ty);
   1859         Signature += "__" + Ty;
   1860 
   1861         std::string Name = "CVT_" + Ty;
   1862         bool IsNewConverter = false;
   1863         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1864                                             IsNewConverter);
   1865         // Add the operand entry to the instruction kind conversion row.
   1866         ConversionRow.push_back(ID);
   1867         ConversionRow.push_back(0);
   1868 
   1869         if (!IsNewConverter)
   1870           break;
   1871 
   1872         CvtOS << "    case " << Name << ":\n"
   1873               << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
   1874               << "      break;\n";
   1875 
   1876         OpOS << "    case " << Name << ":\n"
   1877              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1878              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
   1879              << "      ++NumMCOperands;\n"
   1880              << "      break;\n";
   1881         break;
   1882       }
   1883       case MatchableInfo::ResOperand::RegOperand: {
   1884         std::string Reg, Name;
   1885         if (!OpInfo.Register) {
   1886           Name = "reg0";
   1887           Reg = "0";
   1888         } else {
   1889           Reg = getQualifiedName(OpInfo.Register);
   1890           Name = "reg" + OpInfo.Register->getName();
   1891         }
   1892         Signature += "__" + Name;
   1893         Name = "CVT_" + Name;
   1894         bool IsNewConverter = false;
   1895         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1896                                             IsNewConverter);
   1897         // Add the operand entry to the instruction kind conversion row.
   1898         ConversionRow.push_back(ID);
   1899         ConversionRow.push_back(0);
   1900 
   1901         if (!IsNewConverter)
   1902           break;
   1903         CvtOS << "    case " << Name << ":\n"
   1904               << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
   1905               << "      break;\n";
   1906 
   1907         OpOS << "    case " << Name << ":\n"
   1908              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1909              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
   1910              << "      ++NumMCOperands;\n"
   1911              << "      break;\n";
   1912       }
   1913       }
   1914     }
   1915 
   1916     // If there were no operands, add to the signature to that effect
   1917     if (Signature == "Convert")
   1918       Signature += "_NoOperands";
   1919 
   1920     II->ConversionFnKind = Signature;
   1921 
   1922     // Save the signature. If we already have it, don't add a new row
   1923     // to the table.
   1924     if (!InstructionConversionKinds.insert(Signature))
   1925       continue;
   1926 
   1927     // Add the row to the table.
   1928     ConversionTable.push_back(ConversionRow);
   1929   }
   1930 
   1931   // Finish up the converter driver function.
   1932   CvtOS << "    }\n  }\n}\n\n";
   1933 
   1934   // Finish up the operand number lookup function.
   1935   OpOS << "    }\n  }\n}\n\n";
   1936 
   1937   OS << "namespace {\n";
   1938 
   1939   // Output the operand conversion kind enum.
   1940   OS << "enum OperatorConversionKind {\n";
   1941   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
   1942     OS << "  " << OperandConversionKinds[i] << ",\n";
   1943   OS << "  CVT_NUM_CONVERTERS\n";
   1944   OS << "};\n\n";
   1945 
   1946   // Output the instruction conversion kind enum.
   1947   OS << "enum InstructionConversionKind {\n";
   1948   for (SetVector<std::string>::const_iterator
   1949          i = InstructionConversionKinds.begin(),
   1950          e = InstructionConversionKinds.end(); i != e; ++i)
   1951     OS << "  " << *i << ",\n";
   1952   OS << "  CVT_NUM_SIGNATURES\n";
   1953   OS << "};\n\n";
   1954 
   1955 
   1956   OS << "} // end anonymous namespace\n\n";
   1957 
   1958   // Output the conversion table.
   1959   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
   1960      << MaxRowLength << "] = {\n";
   1961 
   1962   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
   1963     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
   1964     OS << "  // " << InstructionConversionKinds[Row] << "\n";
   1965     OS << "  { ";
   1966     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
   1967       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
   1968          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
   1969     OS << "CVT_Done },\n";
   1970   }
   1971 
   1972   OS << "};\n\n";
   1973 
   1974   // Spit out the conversion driver function.
   1975   OS << CvtOS.str();
   1976 
   1977   // Spit out the operand number lookup function.
   1978   OS << OpOS.str();
   1979 }
   1980 
   1981 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
   1982 static void emitMatchClassEnumeration(CodeGenTarget &Target,
   1983                                       std::forward_list<ClassInfo> &Infos,
   1984                                       raw_ostream &OS) {
   1985   OS << "namespace {\n\n";
   1986 
   1987   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   1988      << "/// instruction matching.\n";
   1989   OS << "enum MatchClassKind {\n";
   1990   OS << "  InvalidMatchClass = 0,\n";
   1991   for (const auto &CI : Infos) {
   1992     OS << "  " << CI.Name << ", // ";
   1993     if (CI.Kind == ClassInfo::Token) {
   1994       OS << "'" << CI.ValueName << "'\n";
   1995     } else if (CI.isRegisterClass()) {
   1996       if (!CI.ValueName.empty())
   1997         OS << "register class '" << CI.ValueName << "'\n";
   1998       else
   1999         OS << "derived register class\n";
   2000     } else {
   2001       OS << "user defined class '" << CI.ValueName << "'\n";
   2002     }
   2003   }
   2004   OS << "  NumMatchClassKinds\n";
   2005   OS << "};\n\n";
   2006 
   2007   OS << "}\n\n";
   2008 }
   2009 
   2010 /// emitValidateOperandClass - Emit the function to validate an operand class.
   2011 static void emitValidateOperandClass(AsmMatcherInfo &Info,
   2012                                      raw_ostream &OS) {
   2013   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
   2014      << "MatchClassKind Kind) {\n";
   2015   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
   2016      << Info.Target.getName() << "Operand&)GOp;\n";
   2017 
   2018   // The InvalidMatchClass is not to match any operand.
   2019   OS << "  if (Kind == InvalidMatchClass)\n";
   2020   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2021 
   2022   // Check for Token operands first.
   2023   // FIXME: Use a more specific diagnostic type.
   2024   OS << "  if (Operand.isToken())\n";
   2025   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
   2026      << "             MCTargetAsmParser::Match_Success :\n"
   2027      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2028 
   2029   // Check the user classes. We don't care what order since we're only
   2030   // actually matching against one of them.
   2031   for (const auto &CI : Info.Classes) {
   2032     if (!CI.isUserClass())
   2033       continue;
   2034 
   2035     OS << "  // '" << CI.ClassName << "' class\n";
   2036     OS << "  if (Kind == " << CI.Name << ") {\n";
   2037     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
   2038     OS << "      return MCTargetAsmParser::Match_Success;\n";
   2039     if (!CI.DiagnosticType.empty())
   2040       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
   2041          << CI.DiagnosticType << ";\n";
   2042     OS << "  }\n\n";
   2043   }
   2044 
   2045   // Check for register operands, including sub-classes.
   2046   OS << "  if (Operand.isReg()) {\n";
   2047   OS << "    MatchClassKind OpKind;\n";
   2048   OS << "    switch (Operand.getReg()) {\n";
   2049   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   2050   for (const auto &RC : Info.RegisterClasses)
   2051     OS << "    case " << Info.Target.getName() << "::"
   2052        << RC.first->getName() << ": OpKind = " << RC.second->Name
   2053        << "; break;\n";
   2054   OS << "    }\n";
   2055   OS << "    return isSubclass(OpKind, Kind) ? "
   2056      << "MCTargetAsmParser::Match_Success :\n                             "
   2057      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
   2058 
   2059   // Generic fallthrough match failure case for operands that don't have
   2060   // specialized diagnostic types.
   2061   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
   2062   OS << "}\n\n";
   2063 }
   2064 
   2065 /// emitIsSubclass - Emit the subclass predicate function.
   2066 static void emitIsSubclass(CodeGenTarget &Target,
   2067                            std::forward_list<ClassInfo> &Infos,
   2068                            raw_ostream &OS) {
   2069   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
   2070   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   2071   OS << "  if (A == B)\n";
   2072   OS << "    return true;\n\n";
   2073 
   2074   std::string OStr;
   2075   raw_string_ostream SS(OStr);
   2076   unsigned Count = 0;
   2077   SS << "  switch (A) {\n";
   2078   SS << "  default:\n";
   2079   SS << "    return false;\n";
   2080   for (const auto &A : Infos) {
   2081     std::vector<StringRef> SuperClasses;
   2082     for (const auto &B : Infos) {
   2083       if (&A != &B && A.isSubsetOf(B))
   2084         SuperClasses.push_back(B.Name);
   2085     }
   2086 
   2087     if (SuperClasses.empty())
   2088       continue;
   2089     ++Count;
   2090 
   2091     SS << "\n  case " << A.Name << ":\n";
   2092 
   2093     if (SuperClasses.size() == 1) {
   2094       SS << "    return B == " << SuperClasses.back().str() << ";\n";
   2095       continue;
   2096     }
   2097 
   2098     if (!SuperClasses.empty()) {
   2099       SS << "    switch (B) {\n";
   2100       SS << "    default: return false;\n";
   2101       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   2102         SS << "    case " << SuperClasses[i].str() << ": return true;\n";
   2103       SS << "    }\n";
   2104     } else {
   2105       // No case statement to emit
   2106       SS << "    return false;\n";
   2107     }
   2108   }
   2109   SS << "  }\n";
   2110 
   2111   // If there were case statements emitted into the string stream, write them
   2112   // to the output stream, otherwise write the default.
   2113   if (Count)
   2114     OS << SS.str();
   2115   else
   2116     OS << "  return false;\n";
   2117 
   2118   OS << "}\n\n";
   2119 }
   2120 
   2121 /// emitMatchTokenString - Emit the function to match a token string to the
   2122 /// appropriate match class value.
   2123 static void emitMatchTokenString(CodeGenTarget &Target,
   2124                                  std::forward_list<ClassInfo> &Infos,
   2125                                  raw_ostream &OS) {
   2126   // Construct the match list.
   2127   std::vector<StringMatcher::StringPair> Matches;
   2128   for (const auto &CI : Infos) {
   2129     if (CI.Kind == ClassInfo::Token)
   2130       Matches.push_back(
   2131           StringMatcher::StringPair(CI.ValueName, "return " + CI.Name + ";"));
   2132   }
   2133 
   2134   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   2135 
   2136   StringMatcher("Name", Matches, OS).Emit();
   2137 
   2138   OS << "  return InvalidMatchClass;\n";
   2139   OS << "}\n\n";
   2140 }
   2141 
   2142 /// emitMatchRegisterName - Emit the function to match a string to the target
   2143 /// specific register enum.
   2144 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   2145                                   raw_ostream &OS) {
   2146   // Construct the match list.
   2147   std::vector<StringMatcher::StringPair> Matches;
   2148   const auto &Regs = Target.getRegBank().getRegisters();
   2149   for (const CodeGenRegister &Reg : Regs) {
   2150     if (Reg.TheDef->getValueAsString("AsmName").empty())
   2151       continue;
   2152 
   2153     Matches.push_back(
   2154         StringMatcher::StringPair(Reg.TheDef->getValueAsString("AsmName"),
   2155                                   "return " + utostr(Reg.EnumValue) + ";"));
   2156   }
   2157 
   2158   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   2159 
   2160   StringMatcher("Name", Matches, OS).Emit();
   2161 
   2162   OS << "  return 0;\n";
   2163   OS << "}\n\n";
   2164 }
   2165 
   2166 static const char *getMinimalTypeForRange(uint64_t Range) {
   2167   assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
   2168   if (Range > 0xFFFFFFFFULL)
   2169     return "uint64_t";
   2170   if (Range > 0xFFFF)
   2171     return "uint32_t";
   2172   if (Range > 0xFF)
   2173     return "uint16_t";
   2174   return "uint8_t";
   2175 }
   2176 
   2177 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
   2178   uint64_t MaxIndex = Info.SubtargetFeatures.size();
   2179   if (MaxIndex > 0)
   2180     MaxIndex--;
   2181   return getMinimalTypeForRange(1ULL << MaxIndex);
   2182 }
   2183 
   2184 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   2185 /// definitions.
   2186 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   2187                                                 raw_ostream &OS) {
   2188   OS << "// Flags for subtarget features that participate in "
   2189      << "instruction matching.\n";
   2190   OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
   2191      << " {\n";
   2192   for (const auto &SF : Info.SubtargetFeatures) {
   2193     const SubtargetFeatureInfo &SFI = SF.second;
   2194     OS << "  " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
   2195   }
   2196   OS << "  Feature_None = 0\n";
   2197   OS << "};\n\n";
   2198 }
   2199 
   2200 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
   2201 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
   2202   // Get the set of diagnostic types from all of the operand classes.
   2203   std::set<StringRef> Types;
   2204   for (std::map<Record*, ClassInfo*>::const_iterator
   2205        I = Info.AsmOperandClasses.begin(),
   2206        E = Info.AsmOperandClasses.end(); I != E; ++I) {
   2207     if (!I->second->DiagnosticType.empty())
   2208       Types.insert(I->second->DiagnosticType);
   2209   }
   2210 
   2211   if (Types.empty()) return;
   2212 
   2213   // Now emit the enum entries.
   2214   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
   2215        I != E; ++I)
   2216     OS << "  Match_" << *I << ",\n";
   2217   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
   2218 }
   2219 
   2220 /// emitGetSubtargetFeatureName - Emit the helper function to get the
   2221 /// user-level name for a subtarget feature.
   2222 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
   2223   OS << "// User-level names for subtarget features that participate in\n"
   2224      << "// instruction matching.\n"
   2225      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
   2226   if (!Info.SubtargetFeatures.empty()) {
   2227     OS << "  switch(Val) {\n";
   2228     for (const auto &SF : Info.SubtargetFeatures) {
   2229       const SubtargetFeatureInfo &SFI = SF.second;
   2230       // FIXME: Totally just a placeholder name to get the algorithm working.
   2231       OS << "  case " << SFI.getEnumName() << ": return \""
   2232          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
   2233     }
   2234     OS << "  default: return \"(unknown)\";\n";
   2235     OS << "  }\n";
   2236   } else {
   2237     // Nothing to emit, so skip the switch
   2238     OS << "  return \"(unknown)\";\n";
   2239   }
   2240   OS << "}\n\n";
   2241 }
   2242 
   2243 /// emitComputeAvailableFeatures - Emit the function to compute the list of
   2244 /// available features given a subtarget.
   2245 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
   2246                                          raw_ostream &OS) {
   2247   std::string ClassName =
   2248     Info.AsmParser->getValueAsString("AsmParserClassName");
   2249 
   2250   OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
   2251      << "ComputeAvailableFeatures(uint64_t FB) const {\n";
   2252   OS << "  uint64_t Features = 0;\n";
   2253   for (const auto &SF : Info.SubtargetFeatures) {
   2254     const SubtargetFeatureInfo &SFI = SF.second;
   2255 
   2256     OS << "  if (";
   2257     std::string CondStorage =
   2258       SFI.TheDef->getValueAsString("AssemblerCondString");
   2259     StringRef Conds = CondStorage;
   2260     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   2261     bool First = true;
   2262     do {
   2263       if (!First)
   2264         OS << " && ";
   2265 
   2266       bool Neg = false;
   2267       StringRef Cond = Comma.first;
   2268       if (Cond[0] == '!') {
   2269         Neg = true;
   2270         Cond = Cond.substr(1);
   2271       }
   2272 
   2273       OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
   2274       if (Neg)
   2275         OS << " == 0";
   2276       else
   2277         OS << " != 0";
   2278       OS << ")";
   2279 
   2280       if (Comma.second.empty())
   2281         break;
   2282 
   2283       First = false;
   2284       Comma = Comma.second.split(',');
   2285     } while (true);
   2286 
   2287     OS << ")\n";
   2288     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   2289   }
   2290   OS << "  return Features;\n";
   2291   OS << "}\n\n";
   2292 }
   2293 
   2294 static std::string GetAliasRequiredFeatures(Record *R,
   2295                                             const AsmMatcherInfo &Info) {
   2296   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   2297   std::string Result;
   2298   unsigned NumFeatures = 0;
   2299   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   2300     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   2301 
   2302     if (!F)
   2303       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   2304                     "' is not marked as an AssemblerPredicate!");
   2305 
   2306     if (NumFeatures)
   2307       Result += '|';
   2308 
   2309     Result += F->getEnumName();
   2310     ++NumFeatures;
   2311   }
   2312 
   2313   if (NumFeatures > 1)
   2314     Result = '(' + Result + ')';
   2315   return Result;
   2316 }
   2317 
   2318 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
   2319                                      std::vector<Record*> &Aliases,
   2320                                      unsigned Indent = 0,
   2321                                   StringRef AsmParserVariantName = StringRef()){
   2322   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   2323   // iteration order of the map is stable.
   2324   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   2325 
   2326   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   2327     Record *R = Aliases[i];
   2328     // FIXME: Allow AssemblerVariantName to be a comma separated list.
   2329     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
   2330     if (AsmVariantName != AsmParserVariantName)
   2331       continue;
   2332     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   2333   }
   2334   if (AliasesFromMnemonic.empty())
   2335     return;
   2336 
   2337   // Process each alias a "from" mnemonic at a time, building the code executed
   2338   // by the string remapper.
   2339   std::vector<StringMatcher::StringPair> Cases;
   2340   for (std::map<std::string, std::vector<Record*> >::iterator
   2341        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   2342        I != E; ++I) {
   2343     const std::vector<Record*> &ToVec = I->second;
   2344 
   2345     // Loop through each alias and emit code that handles each case.  If there
   2346     // are two instructions without predicates, emit an error.  If there is one,
   2347     // emit it last.
   2348     std::string MatchCode;
   2349     int AliasWithNoPredicate = -1;
   2350 
   2351     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   2352       Record *R = ToVec[i];
   2353       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   2354 
   2355       // If this unconditionally matches, remember it for later and diagnose
   2356       // duplicates.
   2357       if (FeatureMask.empty()) {
   2358         if (AliasWithNoPredicate != -1) {
   2359           // We can't have two aliases from the same mnemonic with no predicate.
   2360           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   2361                      "two MnemonicAliases with the same 'from' mnemonic!");
   2362           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
   2363         }
   2364 
   2365         AliasWithNoPredicate = i;
   2366         continue;
   2367       }
   2368       if (R->getValueAsString("ToMnemonic") == I->first)
   2369         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
   2370 
   2371       if (!MatchCode.empty())
   2372         MatchCode += "else ";
   2373       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   2374       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   2375     }
   2376 
   2377     if (AliasWithNoPredicate != -1) {
   2378       Record *R = ToVec[AliasWithNoPredicate];
   2379       if (!MatchCode.empty())
   2380         MatchCode += "else\n  ";
   2381       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2382     }
   2383 
   2384     MatchCode += "return;";
   2385 
   2386     Cases.push_back(std::make_pair(I->first, MatchCode));
   2387   }
   2388   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
   2389 }
   2390 
   2391 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   2392 /// emit a function for them and return true, otherwise return false.
   2393 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
   2394                                 CodeGenTarget &Target) {
   2395   // Ignore aliases when match-prefix is set.
   2396   if (!MatchPrefix.empty())
   2397     return false;
   2398 
   2399   std::vector<Record*> Aliases =
   2400     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   2401   if (Aliases.empty()) return false;
   2402 
   2403   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   2404     "uint64_t Features, unsigned VariantID) {\n";
   2405   OS << "  switch (VariantID) {\n";
   2406   unsigned VariantCount = Target.getAsmParserVariantCount();
   2407   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2408     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2409     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
   2410     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
   2411     OS << "    case " << AsmParserVariantNo << ":\n";
   2412     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
   2413                              AsmParserVariantName);
   2414     OS << "    break;\n";
   2415   }
   2416   OS << "  }\n";
   2417 
   2418   // Emit aliases that apply to all variants.
   2419   emitMnemonicAliasVariant(OS, Info, Aliases);
   2420 
   2421   OS << "}\n\n";
   2422 
   2423   return true;
   2424 }
   2425 
   2426 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2427                               const AsmMatcherInfo &Info, StringRef ClassName,
   2428                               StringToOffsetTable &StringTable,
   2429                               unsigned MaxMnemonicIndex) {
   2430   unsigned MaxMask = 0;
   2431   for (std::vector<OperandMatchEntry>::const_iterator it =
   2432        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2433        it != ie; ++it) {
   2434     MaxMask |= it->OperandMask;
   2435   }
   2436 
   2437   // Emit the static custom operand parsing table;
   2438   OS << "namespace {\n";
   2439   OS << "  struct OperandMatchEntry {\n";
   2440   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2441                << " RequiredFeatures;\n";
   2442   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2443                << " Mnemonic;\n";
   2444   OS << "    " << getMinimalTypeForRange(std::distance(
   2445                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
   2446   OS << "    " << getMinimalTypeForRange(MaxMask)
   2447                << " OperandMask;\n\n";
   2448   OS << "    StringRef getMnemonic() const {\n";
   2449   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2450   OS << "                       MnemonicTable[Mnemonic]);\n";
   2451   OS << "    }\n";
   2452   OS << "  };\n\n";
   2453 
   2454   OS << "  // Predicate for searching for an opcode.\n";
   2455   OS << "  struct LessOpcodeOperand {\n";
   2456   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2457   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2458   OS << "    }\n";
   2459   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2460   OS << "      return LHS < RHS.getMnemonic();\n";
   2461   OS << "    }\n";
   2462   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2463   OS << " const OperandMatchEntry &RHS) {\n";
   2464   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2465   OS << "    }\n";
   2466   OS << "  };\n";
   2467 
   2468   OS << "} // end anonymous namespace.\n\n";
   2469 
   2470   OS << "static const OperandMatchEntry OperandMatchTable["
   2471      << Info.OperandMatchInfo.size() << "] = {\n";
   2472 
   2473   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2474   for (std::vector<OperandMatchEntry>::const_iterator it =
   2475        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2476        it != ie; ++it) {
   2477     const OperandMatchEntry &OMI = *it;
   2478     const MatchableInfo &II = *OMI.MI;
   2479 
   2480     OS << "  { ";
   2481 
   2482     // Write the required features mask.
   2483     if (!II.RequiredFeatures.empty()) {
   2484       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2485         if (i) OS << "|";
   2486         OS << II.RequiredFeatures[i]->getEnumName();
   2487       }
   2488     } else
   2489       OS << "0";
   2490 
   2491     // Store a pascal-style length byte in the mnemonic.
   2492     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2493     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2494        << " /* " << II.Mnemonic << " */, ";
   2495 
   2496     OS << OMI.CI->Name;
   2497 
   2498     OS << ", " << OMI.OperandMask;
   2499     OS << " /* ";
   2500     bool printComma = false;
   2501     for (int i = 0, e = 31; i !=e; ++i)
   2502       if (OMI.OperandMask & (1 << i)) {
   2503         if (printComma)
   2504           OS << ", ";
   2505         OS << i;
   2506         printComma = true;
   2507       }
   2508     OS << " */";
   2509 
   2510     OS << " },\n";
   2511   }
   2512   OS << "};\n\n";
   2513 
   2514   // Emit the operand class switch to call the correct custom parser for
   2515   // the found operand class.
   2516   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2517      << Target.getName() << ClassName << "::\n"
   2518      << "tryCustomParseOperand(OperandVector"
   2519      << " &Operands,\n                      unsigned MCK) {\n\n"
   2520      << "  switch(MCK) {\n";
   2521 
   2522   for (const auto &CI : Info.Classes) {
   2523     if (CI.ParserMethod.empty())
   2524       continue;
   2525     OS << "  case " << CI.Name << ":\n"
   2526        << "    return " << CI.ParserMethod << "(Operands);\n";
   2527   }
   2528 
   2529   OS << "  default:\n";
   2530   OS << "    return MatchOperand_NoMatch;\n";
   2531   OS << "  }\n";
   2532   OS << "  return MatchOperand_NoMatch;\n";
   2533   OS << "}\n\n";
   2534 
   2535   // Emit the static custom operand parser. This code is very similar with
   2536   // the other matcher. Also use MatchResultTy here just in case we go for
   2537   // a better error handling.
   2538   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2539      << Target.getName() << ClassName << "::\n"
   2540      << "MatchOperandParserImpl(OperandVector"
   2541      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2542 
   2543   // Emit code to get the available features.
   2544   OS << "  // Get the current feature set.\n";
   2545   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
   2546 
   2547   OS << "  // Get the next operand index.\n";
   2548   OS << "  unsigned NextOpNum = Operands.size()-1;\n";
   2549 
   2550   // Emit code to search the table.
   2551   OS << "  // Search the table.\n";
   2552   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2553   OS << " MnemonicRange =\n";
   2554   OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
   2555      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2556      << "                     LessOpcodeOperand());\n\n";
   2557 
   2558   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2559   OS << "    return MatchOperand_NoMatch;\n\n";
   2560 
   2561   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2562      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2563 
   2564   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2565   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2566 
   2567   // Emit check that the required features are available.
   2568   OS << "    // check if the available features match\n";
   2569   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2570      << "!= it->RequiredFeatures) {\n";
   2571   OS << "      continue;\n";
   2572   OS << "    }\n\n";
   2573 
   2574   // Emit check to ensure the operand number matches.
   2575   OS << "    // check if the operand in question has a custom parser.\n";
   2576   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2577   OS << "      continue;\n\n";
   2578 
   2579   // Emit call to the custom parser method
   2580   OS << "    // call custom parse method to handle the operand\n";
   2581   OS << "    OperandMatchResultTy Result = ";
   2582   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2583   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2584   OS << "      return Result;\n";
   2585   OS << "  }\n\n";
   2586 
   2587   OS << "  // Okay, we had no match.\n";
   2588   OS << "  return MatchOperand_NoMatch;\n";
   2589   OS << "}\n\n";
   2590 }
   2591 
   2592 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2593   CodeGenTarget Target(Records);
   2594   Record *AsmParser = Target.getAsmParser();
   2595   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2596 
   2597   // Compute the information on the instructions to match.
   2598   AsmMatcherInfo Info(AsmParser, Target, Records);
   2599   Info.buildInfo();
   2600 
   2601   // Sort the instruction table using the partial order on classes. We use
   2602   // stable_sort to ensure that ambiguous instructions are still
   2603   // deterministically ordered.
   2604   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2605                    [](const std::unique_ptr<MatchableInfo> &a,
   2606                       const std::unique_ptr<MatchableInfo> &b){
   2607                      return *a < *b;});
   2608 
   2609   DEBUG_WITH_TYPE("instruction_info", {
   2610       for (const auto &MI : Info.Matchables)
   2611         MI->dump();
   2612     });
   2613 
   2614   // Check for ambiguous matchables.
   2615   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2616     unsigned NumAmbiguous = 0;
   2617     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
   2618          ++I) {
   2619       for (auto J = std::next(I); J != E; ++J) {
   2620         const MatchableInfo &A = **I;
   2621         const MatchableInfo &B = **J;
   2622 
   2623         if (A.couldMatchAmbiguouslyWith(B)) {
   2624           errs() << "warning: ambiguous matchables:\n";
   2625           A.dump();
   2626           errs() << "\nis incomparable with:\n";
   2627           B.dump();
   2628           errs() << "\n\n";
   2629           ++NumAmbiguous;
   2630         }
   2631       }
   2632     }
   2633     if (NumAmbiguous)
   2634       errs() << "warning: " << NumAmbiguous
   2635              << " ambiguous matchables!\n";
   2636   });
   2637 
   2638   // Compute the information on the custom operand parsing.
   2639   Info.buildOperandMatchInfo();
   2640 
   2641   // Write the output.
   2642 
   2643   // Information for the class declaration.
   2644   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2645   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2646   OS << "  // This should be included into the middle of the declaration of\n";
   2647   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2648   OS << "  uint64_t ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
   2649   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
   2650      << "unsigned Opcode,\n"
   2651      << "                       const OperandVector "
   2652      << "&Operands);\n";
   2653   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
   2654   OS << "           const OperandVector &Operands) override;\n";
   2655   OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
   2656   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
   2657      << "                                MCInst &Inst,\n"
   2658      << "                                uint64_t &ErrorInfo,"
   2659      << " bool matchingInlineAsm,\n"
   2660      << "                                unsigned VariantID = 0);\n";
   2661 
   2662   if (!Info.OperandMatchInfo.empty()) {
   2663     OS << "\n  enum OperandMatchResultTy {\n";
   2664     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2665     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2666     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2667     OS << "  };\n";
   2668     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2669     OS << "    OperandVector &Operands,\n";
   2670     OS << "    StringRef Mnemonic);\n";
   2671 
   2672     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2673     OS << "    OperandVector &Operands,\n";
   2674     OS << "    unsigned MCK);\n\n";
   2675   }
   2676 
   2677   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2678 
   2679   // Emit the operand match diagnostic enum names.
   2680   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
   2681   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2682   emitOperandDiagnosticTypes(Info, OS);
   2683   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2684 
   2685 
   2686   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2687   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2688 
   2689   // Emit the subtarget feature enumeration.
   2690   emitSubtargetFeatureFlagEnumeration(Info, OS);
   2691 
   2692   // Emit the function to match a register name to number.
   2693   // This should be omitted for Mips target
   2694   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
   2695     emitMatchRegisterName(Target, AsmParser, OS);
   2696 
   2697   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2698 
   2699   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
   2700   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
   2701 
   2702   // Generate the helper function to get the names for subtarget features.
   2703   emitGetSubtargetFeatureName(Info, OS);
   2704 
   2705   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
   2706 
   2707   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2708   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2709 
   2710   // Generate the function that remaps for mnemonic aliases.
   2711   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
   2712 
   2713   // Generate the convertToMCInst function to convert operands into an MCInst.
   2714   // Also, generate the convertToMapAndConstraints function for MS-style inline
   2715   // assembly.  The latter doesn't actually generate a MCInst.
   2716   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
   2717 
   2718   // Emit the enumeration for classes which participate in matching.
   2719   emitMatchClassEnumeration(Target, Info.Classes, OS);
   2720 
   2721   // Emit the routine to match token strings to their match class.
   2722   emitMatchTokenString(Target, Info.Classes, OS);
   2723 
   2724   // Emit the subclass predicate routine.
   2725   emitIsSubclass(Target, Info.Classes, OS);
   2726 
   2727   // Emit the routine to validate an operand against a match class.
   2728   emitValidateOperandClass(Info, OS);
   2729 
   2730   // Emit the available features compute function.
   2731   emitComputeAvailableFeatures(Info, OS);
   2732 
   2733 
   2734   StringToOffsetTable StringTable;
   2735 
   2736   size_t MaxNumOperands = 0;
   2737   unsigned MaxMnemonicIndex = 0;
   2738   bool HasDeprecation = false;
   2739   for (const auto &MI : Info.Matchables) {
   2740     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
   2741     HasDeprecation |= MI->HasDeprecation;
   2742 
   2743     // Store a pascal-style length byte in the mnemonic.
   2744     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
   2745     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
   2746                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
   2747   }
   2748 
   2749   OS << "static const char *const MnemonicTable =\n";
   2750   StringTable.EmitString(OS);
   2751   OS << ";\n\n";
   2752 
   2753   // Emit the static match table; unused classes get initalized to 0 which is
   2754   // guaranteed to be InvalidMatchClass.
   2755   //
   2756   // FIXME: We can reduce the size of this table very easily. First, we change
   2757   // it so that store the kinds in separate bit-fields for each index, which
   2758   // only needs to be the max width used for classes at that index (we also need
   2759   // to reject based on this during classification). If we then make sure to
   2760   // order the match kinds appropriately (putting mnemonics last), then we
   2761   // should only end up using a few bits for each class, especially the ones
   2762   // following the mnemonic.
   2763   OS << "namespace {\n";
   2764   OS << "  struct MatchEntry {\n";
   2765   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2766                << " Mnemonic;\n";
   2767   OS << "    uint16_t Opcode;\n";
   2768   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2769                << " ConvertFn;\n";
   2770   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2771                << " RequiredFeatures;\n";
   2772   OS << "    " << getMinimalTypeForRange(
   2773                       std::distance(Info.Classes.begin(), Info.Classes.end()))
   2774      << " Classes[" << MaxNumOperands << "];\n";
   2775   OS << "    StringRef getMnemonic() const {\n";
   2776   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2777   OS << "                       MnemonicTable[Mnemonic]);\n";
   2778   OS << "    }\n";
   2779   OS << "  };\n\n";
   2780 
   2781   OS << "  // Predicate for searching for an opcode.\n";
   2782   OS << "  struct LessOpcode {\n";
   2783   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2784   OS << "      return LHS.getMnemonic() < RHS;\n";
   2785   OS << "    }\n";
   2786   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2787   OS << "      return LHS < RHS.getMnemonic();\n";
   2788   OS << "    }\n";
   2789   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2790   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2791   OS << "    }\n";
   2792   OS << "  };\n";
   2793 
   2794   OS << "} // end anonymous namespace.\n\n";
   2795 
   2796   unsigned VariantCount = Target.getAsmParserVariantCount();
   2797   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2798     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2799     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2800 
   2801     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
   2802 
   2803     for (const auto &MI : Info.Matchables) {
   2804       if (MI->AsmVariantID != AsmVariantNo)
   2805         continue;
   2806 
   2807       // Store a pascal-style length byte in the mnemonic.
   2808       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
   2809       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2810          << " /* " << MI->Mnemonic << " */, "
   2811          << Target.getName() << "::"
   2812          << MI->getResultInst()->TheDef->getName() << ", "
   2813          << MI->ConversionFnKind << ", ";
   2814 
   2815       // Write the required features mask.
   2816       if (!MI->RequiredFeatures.empty()) {
   2817         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
   2818           if (i) OS << "|";
   2819           OS << MI->RequiredFeatures[i]->getEnumName();
   2820         }
   2821       } else
   2822         OS << "0";
   2823 
   2824       OS << ", { ";
   2825       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
   2826         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
   2827 
   2828         if (i) OS << ", ";
   2829         OS << Op.Class->Name;
   2830       }
   2831       OS << " }, },\n";
   2832     }
   2833 
   2834     OS << "};\n\n";
   2835   }
   2836 
   2837   // A method to determine if a mnemonic is in the list.
   2838   OS << "bool " << Target.getName() << ClassName << "::\n"
   2839      << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
   2840   OS << "  // Find the appropriate table for this asm variant.\n";
   2841   OS << "  const MatchEntry *Start, *End;\n";
   2842   OS << "  switch (VariantID) {\n";
   2843   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
   2844   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2845     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2846     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2847     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2848        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2849   }
   2850   OS << "  }\n";
   2851   OS << "  // Search the table.\n";
   2852   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2853   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
   2854   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2855   OS << "}\n\n";
   2856 
   2857   // Finally, build the match function.
   2858   OS << "unsigned " << Target.getName() << ClassName << "::\n"
   2859      << "MatchInstructionImpl(const OperandVector &Operands,\n";
   2860   OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
   2861      << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
   2862 
   2863   OS << "  // Eliminate obvious mismatches.\n";
   2864   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
   2865   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
   2866   OS << "    return Match_InvalidOperand;\n";
   2867   OS << "  }\n\n";
   2868 
   2869   // Emit code to get the available features.
   2870   OS << "  // Get the current feature set.\n";
   2871   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
   2872 
   2873   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2874   OS << "  StringRef Mnemonic = ((" << Target.getName()
   2875      << "Operand&)*Operands[0]).getToken();\n\n";
   2876 
   2877   if (HasMnemonicAliases) {
   2878     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2879     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
   2880   }
   2881 
   2882   // Emit code to compute the class list for this operand vector.
   2883   OS << "  // Some state to try to produce better error messages.\n";
   2884   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2885   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2886   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2887   OS << "  uint64_t MissingFeatures = ~0ULL;\n";
   2888   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2889   OS << "  // wrong for all instances of the instruction.\n";
   2890   OS << "  ErrorInfo = ~0ULL;\n";
   2891 
   2892   // Emit code to search the table.
   2893   OS << "  // Find the appropriate table for this asm variant.\n";
   2894   OS << "  const MatchEntry *Start, *End;\n";
   2895   OS << "  switch (VariantID) {\n";
   2896   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
   2897   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2898     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2899     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2900     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2901        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2902   }
   2903   OS << "  }\n";
   2904   OS << "  // Search the table.\n";
   2905   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2906   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
   2907 
   2908   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2909   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2910   OS << "    return Match_MnemonicFail;\n\n";
   2911 
   2912   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2913      << "*ie = MnemonicRange.second;\n";
   2914   OS << "       it != ie; ++it) {\n";
   2915 
   2916   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2917   OS << "    assert(Mnemonic == it->getMnemonic());\n";
   2918 
   2919   // Emit check that the subclasses match.
   2920   OS << "    bool OperandsValid = true;\n";
   2921   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
   2922   OS << "      if (i + 1 >= Operands.size()) {\n";
   2923   OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
   2924   OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
   2925   OS << "        break;\n";
   2926   OS << "      }\n";
   2927   OS << "      unsigned Diag = validateOperandClass(*Operands[i+1],\n";
   2928   OS.indent(43);
   2929   OS << "(MatchClassKind)it->Classes[i]);\n";
   2930   OS << "      if (Diag == Match_Success)\n";
   2931   OS << "        continue;\n";
   2932   OS << "      // If the generic handler indicates an invalid operand\n";
   2933   OS << "      // failure, check for a special case.\n";
   2934   OS << "      if (Diag == Match_InvalidOperand) {\n";
   2935   OS << "        Diag = validateTargetOperandClass(*Operands[i+1],\n";
   2936   OS.indent(43);
   2937   OS << "(MatchClassKind)it->Classes[i]);\n";
   2938   OS << "        if (Diag == Match_Success)\n";
   2939   OS << "          continue;\n";
   2940   OS << "      }\n";
   2941   OS << "      // If this operand is broken for all of the instances of this\n";
   2942   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2943   OS << "      // If we already had a match that only failed due to a\n";
   2944   OS << "      // target predicate, that diagnostic is preferred.\n";
   2945   OS << "      if (!HadMatchOtherThanPredicate &&\n";
   2946   OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
   2947   OS << "        ErrorInfo = i+1;\n";
   2948   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
   2949   OS << "        if (Diag != Match_InvalidOperand)\n";
   2950   OS << "          RetCode = Diag;\n";
   2951   OS << "      }\n";
   2952   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   2953   OS << "      OperandsValid = false;\n";
   2954   OS << "      break;\n";
   2955   OS << "    }\n\n";
   2956 
   2957   OS << "    if (!OperandsValid) continue;\n";
   2958 
   2959   // Emit check that the required features are available.
   2960   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2961      << "!= it->RequiredFeatures) {\n";
   2962   OS << "      HadMatchOtherThanFeatures = true;\n";
   2963   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
   2964         "~AvailableFeatures;\n";
   2965   OS << "      if (countPopulation(NewMissingFeatures) <=\n"
   2966         "          countPopulation(MissingFeatures))\n";
   2967   OS << "        MissingFeatures = NewMissingFeatures;\n";
   2968   OS << "      continue;\n";
   2969   OS << "    }\n";
   2970   OS << "\n";
   2971   OS << "    Inst.clear();\n\n";
   2972   OS << "    if (matchingInlineAsm) {\n";
   2973   OS << "      Inst.setOpcode(it->Opcode);\n";
   2974   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
   2975   OS << "      return Match_Success;\n";
   2976   OS << "    }\n\n";
   2977   OS << "    // We have selected a definite instruction, convert the parsed\n"
   2978      << "    // operands into the appropriate MCInst.\n";
   2979   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
   2980   OS << "\n";
   2981 
   2982   // Verify the instruction with the target-specific match predicate function.
   2983   OS << "    // We have a potential match. Check the target predicate to\n"
   2984      << "    // handle any context sensitive constraints.\n"
   2985      << "    unsigned MatchResult;\n"
   2986      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   2987      << " Match_Success) {\n"
   2988      << "      Inst.clear();\n"
   2989      << "      RetCode = MatchResult;\n"
   2990      << "      HadMatchOtherThanPredicate = true;\n"
   2991      << "      continue;\n"
   2992      << "    }\n\n";
   2993 
   2994   // Call the post-processing function, if used.
   2995   std::string InsnCleanupFn =
   2996     AsmParser->getValueAsString("AsmParserInstCleanup");
   2997   if (!InsnCleanupFn.empty())
   2998     OS << "    " << InsnCleanupFn << "(Inst);\n";
   2999 
   3000   if (HasDeprecation) {
   3001     OS << "    std::string Info;\n";
   3002     OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
   3003     OS << "      SMLoc Loc = ((" << Target.getName()
   3004        << "Operand&)*Operands[0]).getStartLoc();\n";
   3005     OS << "      getParser().Warning(Loc, Info, None);\n";
   3006     OS << "    }\n";
   3007   }
   3008 
   3009   OS << "    return Match_Success;\n";
   3010   OS << "  }\n\n";
   3011 
   3012   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   3013   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
   3014   OS << "    return RetCode;\n\n";
   3015   OS << "  // Missing feature matches return which features were missing\n";
   3016   OS << "  ErrorInfo = MissingFeatures;\n";
   3017   OS << "  return Match_MissingFeature;\n";
   3018   OS << "}\n\n";
   3019 
   3020   if (!Info.OperandMatchInfo.empty())
   3021     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
   3022                              MaxMnemonicIndex);
   3023 
   3024   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   3025 }
   3026 
   3027 namespace llvm {
   3028 
   3029 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
   3030   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   3031   AsmMatcherEmitter(RK).run(OS);
   3032 }
   3033 
   3034 } // End llvm namespace
   3035