Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGOpenMPRuntime.h"
     19 #include "CodeGenModule.h"
     20 #include "CodeGenPGO.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/Decl.h"
     24 #include "clang/AST/DeclCXX.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/CodeGen/CGFunctionInfo.h"
     28 #include "clang/Frontend/CodeGenOptions.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/MDBuilder.h"
     32 #include "llvm/IR/Operator.h"
     33 using namespace clang;
     34 using namespace CodeGen;
     35 
     36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
     37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
     38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
     39               CGBuilderInserterTy(this)),
     40       CurFn(nullptr), CapturedStmtInfo(nullptr),
     41       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
     42       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
     43       IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
     44       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
     45       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
     46       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
     47       AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr),
     48       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
     49       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
     50       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
     51       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
     52       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
     53       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
     54       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
     55       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
     56       TerminateHandler(nullptr), TrapBB(nullptr) {
     57   if (!suppressNewContext)
     58     CGM.getCXXABI().getMangleContext().startNewFunction();
     59 
     60   llvm::FastMathFlags FMF;
     61   if (CGM.getLangOpts().FastMath)
     62     FMF.setUnsafeAlgebra();
     63   if (CGM.getLangOpts().FiniteMathOnly) {
     64     FMF.setNoNaNs();
     65     FMF.setNoInfs();
     66   }
     67   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
     68     FMF.setNoNaNs();
     69   }
     70   if (CGM.getCodeGenOpts().NoSignedZeros) {
     71     FMF.setNoSignedZeros();
     72   }
     73   if (CGM.getCodeGenOpts().ReciprocalMath) {
     74     FMF.setAllowReciprocal();
     75   }
     76   Builder.SetFastMathFlags(FMF);
     77 }
     78 
     79 CodeGenFunction::~CodeGenFunction() {
     80   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
     81 
     82   // If there are any unclaimed block infos, go ahead and destroy them
     83   // now.  This can happen if IR-gen gets clever and skips evaluating
     84   // something.
     85   if (FirstBlockInfo)
     86     destroyBlockInfos(FirstBlockInfo);
     87 
     88   if (getLangOpts().OpenMP) {
     89     CGM.getOpenMPRuntime().functionFinished(*this);
     90   }
     91 }
     92 
     93 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
     94   CharUnits Alignment;
     95   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
     96     Alignment = getContext().getTypeAlignInChars(T);
     97     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
     98     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
     99         !getContext().isAlignmentRequired(T))
    100       Alignment = CharUnits::fromQuantity(MaxAlign);
    101   }
    102   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
    103 }
    104 
    105 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
    106   return CGM.getTypes().ConvertTypeForMem(T);
    107 }
    108 
    109 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
    110   return CGM.getTypes().ConvertType(T);
    111 }
    112 
    113 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
    114   type = type.getCanonicalType();
    115   while (true) {
    116     switch (type->getTypeClass()) {
    117 #define TYPE(name, parent)
    118 #define ABSTRACT_TYPE(name, parent)
    119 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
    120 #define DEPENDENT_TYPE(name, parent) case Type::name:
    121 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
    122 #include "clang/AST/TypeNodes.def"
    123       llvm_unreachable("non-canonical or dependent type in IR-generation");
    124 
    125     case Type::Auto:
    126       llvm_unreachable("undeduced auto type in IR-generation");
    127 
    128     // Various scalar types.
    129     case Type::Builtin:
    130     case Type::Pointer:
    131     case Type::BlockPointer:
    132     case Type::LValueReference:
    133     case Type::RValueReference:
    134     case Type::MemberPointer:
    135     case Type::Vector:
    136     case Type::ExtVector:
    137     case Type::FunctionProto:
    138     case Type::FunctionNoProto:
    139     case Type::Enum:
    140     case Type::ObjCObjectPointer:
    141       return TEK_Scalar;
    142 
    143     // Complexes.
    144     case Type::Complex:
    145       return TEK_Complex;
    146 
    147     // Arrays, records, and Objective-C objects.
    148     case Type::ConstantArray:
    149     case Type::IncompleteArray:
    150     case Type::VariableArray:
    151     case Type::Record:
    152     case Type::ObjCObject:
    153     case Type::ObjCInterface:
    154       return TEK_Aggregate;
    155 
    156     // We operate on atomic values according to their underlying type.
    157     case Type::Atomic:
    158       type = cast<AtomicType>(type)->getValueType();
    159       continue;
    160     }
    161     llvm_unreachable("unknown type kind!");
    162   }
    163 }
    164 
    165 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
    166   // For cleanliness, we try to avoid emitting the return block for
    167   // simple cases.
    168   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    169 
    170   if (CurBB) {
    171     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    172 
    173     // We have a valid insert point, reuse it if it is empty or there are no
    174     // explicit jumps to the return block.
    175     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    176       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    177       delete ReturnBlock.getBlock();
    178     } else
    179       EmitBlock(ReturnBlock.getBlock());
    180     return llvm::DebugLoc();
    181   }
    182 
    183   // Otherwise, if the return block is the target of a single direct
    184   // branch then we can just put the code in that block instead. This
    185   // cleans up functions which started with a unified return block.
    186   if (ReturnBlock.getBlock()->hasOneUse()) {
    187     llvm::BranchInst *BI =
    188       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
    189     if (BI && BI->isUnconditional() &&
    190         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    191       // Record/return the DebugLoc of the simple 'return' expression to be used
    192       // later by the actual 'ret' instruction.
    193       llvm::DebugLoc Loc = BI->getDebugLoc();
    194       Builder.SetInsertPoint(BI->getParent());
    195       BI->eraseFromParent();
    196       delete ReturnBlock.getBlock();
    197       return Loc;
    198     }
    199   }
    200 
    201   // FIXME: We are at an unreachable point, there is no reason to emit the block
    202   // unless it has uses. However, we still need a place to put the debug
    203   // region.end for now.
    204 
    205   EmitBlock(ReturnBlock.getBlock());
    206   return llvm::DebugLoc();
    207 }
    208 
    209 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    210   if (!BB) return;
    211   if (!BB->use_empty())
    212     return CGF.CurFn->getBasicBlockList().push_back(BB);
    213   delete BB;
    214 }
    215 
    216 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    217   assert(BreakContinueStack.empty() &&
    218          "mismatched push/pop in break/continue stack!");
    219 
    220   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
    221     && NumSimpleReturnExprs == NumReturnExprs
    222     && ReturnBlock.getBlock()->use_empty();
    223   // Usually the return expression is evaluated before the cleanup
    224   // code.  If the function contains only a simple return statement,
    225   // such as a constant, the location before the cleanup code becomes
    226   // the last useful breakpoint in the function, because the simple
    227   // return expression will be evaluated after the cleanup code. To be
    228   // safe, set the debug location for cleanup code to the location of
    229   // the return statement.  Otherwise the cleanup code should be at the
    230   // end of the function's lexical scope.
    231   //
    232   // If there are multiple branches to the return block, the branch
    233   // instructions will get the location of the return statements and
    234   // all will be fine.
    235   if (CGDebugInfo *DI = getDebugInfo()) {
    236     if (OnlySimpleReturnStmts)
    237       DI->EmitLocation(Builder, LastStopPoint);
    238     else
    239       DI->EmitLocation(Builder, EndLoc);
    240   }
    241 
    242   // Pop any cleanups that might have been associated with the
    243   // parameters.  Do this in whatever block we're currently in; it's
    244   // important to do this before we enter the return block or return
    245   // edges will be *really* confused.
    246   bool EmitRetDbgLoc = true;
    247   if (EHStack.stable_begin() != PrologueCleanupDepth) {
    248     // Make sure the line table doesn't jump back into the body for
    249     // the ret after it's been at EndLoc.
    250     EmitRetDbgLoc = false;
    251 
    252     if (CGDebugInfo *DI = getDebugInfo())
    253       if (OnlySimpleReturnStmts)
    254         DI->EmitLocation(Builder, EndLoc);
    255 
    256     PopCleanupBlocks(PrologueCleanupDepth);
    257   }
    258 
    259   // Emit function epilog (to return).
    260   llvm::DebugLoc Loc = EmitReturnBlock();
    261 
    262   if (ShouldInstrumentFunction())
    263     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    264 
    265   // Emit debug descriptor for function end.
    266   if (CGDebugInfo *DI = getDebugInfo())
    267     DI->EmitFunctionEnd(Builder);
    268 
    269   // Reset the debug location to that of the simple 'return' expression, if any
    270   // rather than that of the end of the function's scope '}'.
    271   ApplyDebugLocation AL(*this, Loc);
    272   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
    273   EmitEndEHSpec(CurCodeDecl);
    274 
    275   assert(EHStack.empty() &&
    276          "did not remove all scopes from cleanup stack!");
    277 
    278   // If someone did an indirect goto, emit the indirect goto block at the end of
    279   // the function.
    280   if (IndirectBranch) {
    281     EmitBlock(IndirectBranch->getParent());
    282     Builder.ClearInsertionPoint();
    283   }
    284 
    285   // If some of our locals escaped, insert a call to llvm.frameescape in the
    286   // entry block.
    287   if (!EscapedLocals.empty()) {
    288     // Invert the map from local to index into a simple vector. There should be
    289     // no holes.
    290     SmallVector<llvm::Value *, 4> EscapeArgs;
    291     EscapeArgs.resize(EscapedLocals.size());
    292     for (auto &Pair : EscapedLocals)
    293       EscapeArgs[Pair.second] = Pair.first;
    294     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
    295         &CGM.getModule(), llvm::Intrinsic::frameescape);
    296     CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
    297   }
    298 
    299   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    300   llvm::Instruction *Ptr = AllocaInsertPt;
    301   AllocaInsertPt = nullptr;
    302   Ptr->eraseFromParent();
    303 
    304   // If someone took the address of a label but never did an indirect goto, we
    305   // made a zero entry PHI node, which is illegal, zap it now.
    306   if (IndirectBranch) {
    307     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    308     if (PN->getNumIncomingValues() == 0) {
    309       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    310       PN->eraseFromParent();
    311     }
    312   }
    313 
    314   EmitIfUsed(*this, EHResumeBlock);
    315   EmitIfUsed(*this, TerminateLandingPad);
    316   EmitIfUsed(*this, TerminateHandler);
    317   EmitIfUsed(*this, UnreachableBlock);
    318 
    319   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    320     EmitDeclMetadata();
    321 
    322   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
    323            I = DeferredReplacements.begin(),
    324            E = DeferredReplacements.end();
    325        I != E; ++I) {
    326     I->first->replaceAllUsesWith(I->second);
    327     I->first->eraseFromParent();
    328   }
    329 }
    330 
    331 /// ShouldInstrumentFunction - Return true if the current function should be
    332 /// instrumented with __cyg_profile_func_* calls
    333 bool CodeGenFunction::ShouldInstrumentFunction() {
    334   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    335     return false;
    336   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    337     return false;
    338   return true;
    339 }
    340 
    341 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    342 /// instrumentation function with the current function and the call site, if
    343 /// function instrumentation is enabled.
    344 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    345   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    346   llvm::PointerType *PointerTy = Int8PtrTy;
    347   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    348   llvm::FunctionType *FunctionTy =
    349     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    350 
    351   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    352   llvm::CallInst *CallSite = Builder.CreateCall(
    353     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    354     llvm::ConstantInt::get(Int32Ty, 0),
    355     "callsite");
    356 
    357   llvm::Value *args[] = {
    358     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    359     CallSite
    360   };
    361 
    362   EmitNounwindRuntimeCall(F, args);
    363 }
    364 
    365 void CodeGenFunction::EmitMCountInstrumentation() {
    366   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    367 
    368   llvm::Constant *MCountFn =
    369     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
    370   EmitNounwindRuntimeCall(MCountFn);
    371 }
    372 
    373 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
    374 // information in the program executable. The argument information stored
    375 // includes the argument name, its type, the address and access qualifiers used.
    376 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
    377                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
    378                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
    379                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
    380   // Create MDNodes that represent the kernel arg metadata.
    381   // Each MDNode is a list in the form of "key", N number of values which is
    382   // the same number of values as their are kernel arguments.
    383 
    384   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
    385 
    386   // MDNode for the kernel argument address space qualifiers.
    387   SmallVector<llvm::Metadata *, 8> addressQuals;
    388   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
    389 
    390   // MDNode for the kernel argument access qualifiers (images only).
    391   SmallVector<llvm::Metadata *, 8> accessQuals;
    392   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
    393 
    394   // MDNode for the kernel argument type names.
    395   SmallVector<llvm::Metadata *, 8> argTypeNames;
    396   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
    397 
    398   // MDNode for the kernel argument base type names.
    399   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
    400   argBaseTypeNames.push_back(
    401       llvm::MDString::get(Context, "kernel_arg_base_type"));
    402 
    403   // MDNode for the kernel argument type qualifiers.
    404   SmallVector<llvm::Metadata *, 8> argTypeQuals;
    405   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
    406 
    407   // MDNode for the kernel argument names.
    408   SmallVector<llvm::Metadata *, 8> argNames;
    409   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
    410 
    411   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    412     const ParmVarDecl *parm = FD->getParamDecl(i);
    413     QualType ty = parm->getType();
    414     std::string typeQuals;
    415 
    416     if (ty->isPointerType()) {
    417       QualType pointeeTy = ty->getPointeeType();
    418 
    419       // Get address qualifier.
    420       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
    421           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
    422 
    423       // Get argument type name.
    424       std::string typeName =
    425           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
    426 
    427       // Turn "unsigned type" to "utype"
    428       std::string::size_type pos = typeName.find("unsigned");
    429       if (pointeeTy.isCanonical() && pos != std::string::npos)
    430         typeName.erase(pos+1, 8);
    431 
    432       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    433 
    434       std::string baseTypeName =
    435           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
    436               Policy) +
    437           "*";
    438 
    439       // Turn "unsigned type" to "utype"
    440       pos = baseTypeName.find("unsigned");
    441       if (pos != std::string::npos)
    442         baseTypeName.erase(pos+1, 8);
    443 
    444       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
    445 
    446       // Get argument type qualifiers:
    447       if (ty.isRestrictQualified())
    448         typeQuals = "restrict";
    449       if (pointeeTy.isConstQualified() ||
    450           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
    451         typeQuals += typeQuals.empty() ? "const" : " const";
    452       if (pointeeTy.isVolatileQualified())
    453         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    454     } else {
    455       uint32_t AddrSpc = 0;
    456       if (ty->isImageType())
    457         AddrSpc =
    458           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
    459 
    460       addressQuals.push_back(
    461           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
    462 
    463       // Get argument type name.
    464       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
    465 
    466       // Turn "unsigned type" to "utype"
    467       std::string::size_type pos = typeName.find("unsigned");
    468       if (ty.isCanonical() && pos != std::string::npos)
    469         typeName.erase(pos+1, 8);
    470 
    471       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    472 
    473       std::string baseTypeName =
    474           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
    475 
    476       // Turn "unsigned type" to "utype"
    477       pos = baseTypeName.find("unsigned");
    478       if (pos != std::string::npos)
    479         baseTypeName.erase(pos+1, 8);
    480 
    481       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
    482 
    483       // Get argument type qualifiers:
    484       if (ty.isConstQualified())
    485         typeQuals = "const";
    486       if (ty.isVolatileQualified())
    487         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    488     }
    489 
    490     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
    491 
    492     // Get image access qualifier:
    493     if (ty->isImageType()) {
    494       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
    495       if (A && A->isWriteOnly())
    496         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
    497       else
    498         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
    499       // FIXME: what about read_write?
    500     } else
    501       accessQuals.push_back(llvm::MDString::get(Context, "none"));
    502 
    503     // Get argument name.
    504     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
    505   }
    506 
    507   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
    508   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
    509   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
    510   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
    511   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
    512   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    513     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
    514 }
    515 
    516 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
    517                                                llvm::Function *Fn)
    518 {
    519   if (!FD->hasAttr<OpenCLKernelAttr>())
    520     return;
    521 
    522   llvm::LLVMContext &Context = getLLVMContext();
    523 
    524   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
    525   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
    526 
    527   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
    528                        getContext());
    529 
    530   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
    531     QualType hintQTy = A->getTypeHint();
    532     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
    533     bool isSignedInteger =
    534         hintQTy->isSignedIntegerType() ||
    535         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
    536     llvm::Metadata *attrMDArgs[] = {
    537         llvm::MDString::get(Context, "vec_type_hint"),
    538         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
    539             CGM.getTypes().ConvertType(A->getTypeHint()))),
    540         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
    541             llvm::IntegerType::get(Context, 32),
    542             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
    543     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    544   }
    545 
    546   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
    547     llvm::Metadata *attrMDArgs[] = {
    548         llvm::MDString::get(Context, "work_group_size_hint"),
    549         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
    550         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
    551         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    552     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    553   }
    554 
    555   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
    556     llvm::Metadata *attrMDArgs[] = {
    557         llvm::MDString::get(Context, "reqd_work_group_size"),
    558         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
    559         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
    560         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    561     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    562   }
    563 
    564   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
    565   llvm::NamedMDNode *OpenCLKernelMetadata =
    566     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    567   OpenCLKernelMetadata->addOperand(kernelMDNode);
    568 }
    569 
    570 /// Determine whether the function F ends with a return stmt.
    571 static bool endsWithReturn(const Decl* F) {
    572   const Stmt *Body = nullptr;
    573   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
    574     Body = FD->getBody();
    575   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
    576     Body = OMD->getBody();
    577 
    578   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
    579     auto LastStmt = CS->body_rbegin();
    580     if (LastStmt != CS->body_rend())
    581       return isa<ReturnStmt>(*LastStmt);
    582   }
    583   return false;
    584 }
    585 
    586 void CodeGenFunction::StartFunction(GlobalDecl GD,
    587                                     QualType RetTy,
    588                                     llvm::Function *Fn,
    589                                     const CGFunctionInfo &FnInfo,
    590                                     const FunctionArgList &Args,
    591                                     SourceLocation Loc,
    592                                     SourceLocation StartLoc) {
    593   assert(!CurFn &&
    594          "Do not use a CodeGenFunction object for more than one function");
    595 
    596   const Decl *D = GD.getDecl();
    597 
    598   DidCallStackSave = false;
    599   CurCodeDecl = D;
    600   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
    601   FnRetTy = RetTy;
    602   CurFn = Fn;
    603   CurFnInfo = &FnInfo;
    604   assert(CurFn->isDeclaration() && "Function already has body?");
    605 
    606   if (CGM.isInSanitizerBlacklist(Fn, Loc))
    607     SanOpts.clear();
    608 
    609   // Pass inline keyword to optimizer if it appears explicitly on any
    610   // declaration. Also, in the case of -fno-inline attach NoInline
    611   // attribute to all function that are not marked AlwaysInline.
    612   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    613     if (!CGM.getCodeGenOpts().NoInline) {
    614       for (auto RI : FD->redecls())
    615         if (RI->isInlineSpecified()) {
    616           Fn->addFnAttr(llvm::Attribute::InlineHint);
    617           break;
    618         }
    619     } else if (!FD->hasAttr<AlwaysInlineAttr>())
    620       Fn->addFnAttr(llvm::Attribute::NoInline);
    621   }
    622 
    623   if (getLangOpts().OpenCL) {
    624     // Add metadata for a kernel function.
    625     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    626       EmitOpenCLKernelMetadata(FD, Fn);
    627   }
    628 
    629   // If we are checking function types, emit a function type signature as
    630   // prologue data.
    631   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
    632     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    633       if (llvm::Constant *PrologueSig =
    634               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
    635         llvm::Constant *FTRTTIConst =
    636             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
    637         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
    638         llvm::Constant *PrologueStructConst =
    639             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
    640         Fn->setPrologueData(PrologueStructConst);
    641       }
    642     }
    643   }
    644 
    645   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    646 
    647   // Create a marker to make it easy to insert allocas into the entryblock
    648   // later.  Don't create this with the builder, because we don't want it
    649   // folded.
    650   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    651   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    652   if (Builder.isNamePreserving())
    653     AllocaInsertPt->setName("allocapt");
    654 
    655   ReturnBlock = getJumpDestInCurrentScope("return");
    656 
    657   Builder.SetInsertPoint(EntryBB);
    658 
    659   // Emit subprogram debug descriptor.
    660   if (CGDebugInfo *DI = getDebugInfo()) {
    661     SmallVector<QualType, 16> ArgTypes;
    662     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    663 	 i != e; ++i) {
    664       ArgTypes.push_back((*i)->getType());
    665     }
    666 
    667     QualType FnType =
    668       getContext().getFunctionType(RetTy, ArgTypes,
    669                                    FunctionProtoType::ExtProtoInfo());
    670     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
    671   }
    672 
    673   if (ShouldInstrumentFunction())
    674     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    675 
    676   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    677     EmitMCountInstrumentation();
    678 
    679   if (RetTy->isVoidType()) {
    680     // Void type; nothing to return.
    681     ReturnValue = nullptr;
    682 
    683     // Count the implicit return.
    684     if (!endsWithReturn(D))
    685       ++NumReturnExprs;
    686   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    687              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    688     // Indirect aggregate return; emit returned value directly into sret slot.
    689     // This reduces code size, and affects correctness in C++.
    690     auto AI = CurFn->arg_begin();
    691     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
    692       ++AI;
    693     ReturnValue = AI;
    694   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
    695              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    696     // Load the sret pointer from the argument struct and return into that.
    697     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
    698     llvm::Function::arg_iterator EI = CurFn->arg_end();
    699     --EI;
    700     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
    701     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
    702   } else {
    703     ReturnValue = CreateIRTemp(RetTy, "retval");
    704 
    705     // Tell the epilog emitter to autorelease the result.  We do this
    706     // now so that various specialized functions can suppress it
    707     // during their IR-generation.
    708     if (getLangOpts().ObjCAutoRefCount &&
    709         !CurFnInfo->isReturnsRetained() &&
    710         RetTy->isObjCRetainableType())
    711       AutoreleaseResult = true;
    712   }
    713 
    714   EmitStartEHSpec(CurCodeDecl);
    715 
    716   PrologueCleanupDepth = EHStack.stable_begin();
    717   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    718 
    719   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    720     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    721     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    722     if (MD->getParent()->isLambda() &&
    723         MD->getOverloadedOperator() == OO_Call) {
    724       // We're in a lambda; figure out the captures.
    725       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    726                                         LambdaThisCaptureField);
    727       if (LambdaThisCaptureField) {
    728         // If this lambda captures this, load it.
    729         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
    730         CXXThisValue = EmitLoadOfLValue(ThisLValue,
    731                                         SourceLocation()).getScalarVal();
    732       }
    733       for (auto *FD : MD->getParent()->fields()) {
    734         if (FD->hasCapturedVLAType()) {
    735           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
    736                                            SourceLocation()).getScalarVal();
    737           auto VAT = FD->getCapturedVLAType();
    738           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
    739         }
    740       }
    741     } else {
    742       // Not in a lambda; just use 'this' from the method.
    743       // FIXME: Should we generate a new load for each use of 'this'?  The
    744       // fast register allocator would be happier...
    745       CXXThisValue = CXXABIThisValue;
    746     }
    747   }
    748 
    749   // If any of the arguments have a variably modified type, make sure to
    750   // emit the type size.
    751   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    752        i != e; ++i) {
    753     const VarDecl *VD = *i;
    754 
    755     // Dig out the type as written from ParmVarDecls; it's unclear whether
    756     // the standard (C99 6.9.1p10) requires this, but we're following the
    757     // precedent set by gcc.
    758     QualType Ty;
    759     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
    760       Ty = PVD->getOriginalType();
    761     else
    762       Ty = VD->getType();
    763 
    764     if (Ty->isVariablyModifiedType())
    765       EmitVariablyModifiedType(Ty);
    766   }
    767   // Emit a location at the end of the prologue.
    768   if (CGDebugInfo *DI = getDebugInfo())
    769     DI->EmitLocation(Builder, StartLoc);
    770 }
    771 
    772 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
    773                                        const Stmt *Body) {
    774   RegionCounter Cnt = getPGORegionCounter(Body);
    775   Cnt.beginRegion(Builder);
    776   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
    777     EmitCompoundStmtWithoutScope(*S);
    778   else
    779     EmitStmt(Body);
    780 }
    781 
    782 /// When instrumenting to collect profile data, the counts for some blocks
    783 /// such as switch cases need to not include the fall-through counts, so
    784 /// emit a branch around the instrumentation code. When not instrumenting,
    785 /// this just calls EmitBlock().
    786 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
    787                                                RegionCounter &Cnt) {
    788   llvm::BasicBlock *SkipCountBB = nullptr;
    789   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
    790     // When instrumenting for profiling, the fallthrough to certain
    791     // statements needs to skip over the instrumentation code so that we
    792     // get an accurate count.
    793     SkipCountBB = createBasicBlock("skipcount");
    794     EmitBranch(SkipCountBB);
    795   }
    796   EmitBlock(BB);
    797   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
    798   if (SkipCountBB)
    799     EmitBlock(SkipCountBB);
    800 }
    801 
    802 /// Tries to mark the given function nounwind based on the
    803 /// non-existence of any throwing calls within it.  We believe this is
    804 /// lightweight enough to do at -O0.
    805 static void TryMarkNoThrow(llvm::Function *F) {
    806   // LLVM treats 'nounwind' on a function as part of the type, so we
    807   // can't do this on functions that can be overwritten.
    808   if (F->mayBeOverridden()) return;
    809 
    810   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    811     for (llvm::BasicBlock::iterator
    812            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    813       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    814         if (!Call->doesNotThrow())
    815           return;
    816       } else if (isa<llvm::ResumeInst>(&*BI)) {
    817         return;
    818       }
    819   F->setDoesNotThrow();
    820 }
    821 
    822 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    823                                    const CGFunctionInfo &FnInfo) {
    824   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    825 
    826   // Check if we should generate debug info for this function.
    827   if (FD->hasAttr<NoDebugAttr>())
    828     DebugInfo = nullptr; // disable debug info indefinitely for this function
    829 
    830   FunctionArgList Args;
    831   QualType ResTy = FD->getReturnType();
    832 
    833   CurGD = GD;
    834   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
    835   if (MD && MD->isInstance()) {
    836     if (CGM.getCXXABI().HasThisReturn(GD))
    837       ResTy = MD->getThisType(getContext());
    838     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
    839       ResTy = CGM.getContext().VoidPtrTy;
    840     CGM.getCXXABI().buildThisParam(*this, Args);
    841   }
    842 
    843   Args.append(FD->param_begin(), FD->param_end());
    844 
    845   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
    846     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
    847 
    848   SourceRange BodyRange;
    849   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    850   CurEHLocation = BodyRange.getEnd();
    851 
    852   // Use the location of the start of the function to determine where
    853   // the function definition is located. By default use the location
    854   // of the declaration as the location for the subprogram. A function
    855   // may lack a declaration in the source code if it is created by code
    856   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
    857   SourceLocation Loc = FD->getLocation();
    858 
    859   // If this is a function specialization then use the pattern body
    860   // as the location for the function.
    861   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
    862     if (SpecDecl->hasBody(SpecDecl))
    863       Loc = SpecDecl->getLocation();
    864 
    865   // Emit the standard function prologue.
    866   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
    867 
    868   // Generate the body of the function.
    869   PGO.checkGlobalDecl(GD);
    870   PGO.assignRegionCounters(GD.getDecl(), CurFn);
    871   if (isa<CXXDestructorDecl>(FD))
    872     EmitDestructorBody(Args);
    873   else if (isa<CXXConstructorDecl>(FD))
    874     EmitConstructorBody(Args);
    875   else if (getLangOpts().CUDA &&
    876            !getLangOpts().CUDAIsDevice &&
    877            FD->hasAttr<CUDAGlobalAttr>())
    878     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    879   else if (isa<CXXConversionDecl>(FD) &&
    880            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    881     // The lambda conversion to block pointer is special; the semantics can't be
    882     // expressed in the AST, so IRGen needs to special-case it.
    883     EmitLambdaToBlockPointerBody(Args);
    884   } else if (isa<CXXMethodDecl>(FD) &&
    885              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    886     // The lambda static invoker function is special, because it forwards or
    887     // clones the body of the function call operator (but is actually static).
    888     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    889   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
    890              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
    891               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
    892     // Implicit copy-assignment gets the same special treatment as implicit
    893     // copy-constructors.
    894     emitImplicitAssignmentOperatorBody(Args);
    895   } else if (Stmt *Body = FD->getBody()) {
    896     EmitFunctionBody(Args, Body);
    897   } else
    898     llvm_unreachable("no definition for emitted function");
    899 
    900   // C++11 [stmt.return]p2:
    901   //   Flowing off the end of a function [...] results in undefined behavior in
    902   //   a value-returning function.
    903   // C11 6.9.1p12:
    904   //   If the '}' that terminates a function is reached, and the value of the
    905   //   function call is used by the caller, the behavior is undefined.
    906   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
    907       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
    908     if (SanOpts.has(SanitizerKind::Return)) {
    909       SanitizerScope SanScope(this);
    910       llvm::Value *IsFalse = Builder.getFalse();
    911       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
    912                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
    913                 None);
    914     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    915       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
    916     Builder.CreateUnreachable();
    917     Builder.ClearInsertionPoint();
    918   }
    919 
    920   // Emit the standard function epilogue.
    921   FinishFunction(BodyRange.getEnd());
    922 
    923   // If we haven't marked the function nothrow through other means, do
    924   // a quick pass now to see if we can.
    925   if (!CurFn->doesNotThrow())
    926     TryMarkNoThrow(CurFn);
    927 }
    928 
    929 /// ContainsLabel - Return true if the statement contains a label in it.  If
    930 /// this statement is not executed normally, it not containing a label means
    931 /// that we can just remove the code.
    932 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    933   // Null statement, not a label!
    934   if (!S) return false;
    935 
    936   // If this is a label, we have to emit the code, consider something like:
    937   // if (0) {  ...  foo:  bar(); }  goto foo;
    938   //
    939   // TODO: If anyone cared, we could track __label__'s, since we know that you
    940   // can't jump to one from outside their declared region.
    941   if (isa<LabelStmt>(S))
    942     return true;
    943 
    944   // If this is a case/default statement, and we haven't seen a switch, we have
    945   // to emit the code.
    946   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    947     return true;
    948 
    949   // If this is a switch statement, we want to ignore cases below it.
    950   if (isa<SwitchStmt>(S))
    951     IgnoreCaseStmts = true;
    952 
    953   // Scan subexpressions for verboten labels.
    954   for (Stmt::const_child_range I = S->children(); I; ++I)
    955     if (ContainsLabel(*I, IgnoreCaseStmts))
    956       return true;
    957 
    958   return false;
    959 }
    960 
    961 /// containsBreak - Return true if the statement contains a break out of it.
    962 /// If the statement (recursively) contains a switch or loop with a break
    963 /// inside of it, this is fine.
    964 bool CodeGenFunction::containsBreak(const Stmt *S) {
    965   // Null statement, not a label!
    966   if (!S) return false;
    967 
    968   // If this is a switch or loop that defines its own break scope, then we can
    969   // include it and anything inside of it.
    970   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    971       isa<ForStmt>(S))
    972     return false;
    973 
    974   if (isa<BreakStmt>(S))
    975     return true;
    976 
    977   // Scan subexpressions for verboten breaks.
    978   for (Stmt::const_child_range I = S->children(); I; ++I)
    979     if (containsBreak(*I))
    980       return true;
    981 
    982   return false;
    983 }
    984 
    985 
    986 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    987 /// to a constant, or if it does but contains a label, return false.  If it
    988 /// constant folds return true and set the boolean result in Result.
    989 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    990                                                    bool &ResultBool) {
    991   llvm::APSInt ResultInt;
    992   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    993     return false;
    994 
    995   ResultBool = ResultInt.getBoolValue();
    996   return true;
    997 }
    998 
    999 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   1000 /// to a constant, or if it does but contains a label, return false.  If it
   1001 /// constant folds return true and set the folded value.
   1002 bool CodeGenFunction::
   1003 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
   1004   // FIXME: Rename and handle conversion of other evaluatable things
   1005   // to bool.
   1006   llvm::APSInt Int;
   1007   if (!Cond->EvaluateAsInt(Int, getContext()))
   1008     return false;  // Not foldable, not integer or not fully evaluatable.
   1009 
   1010   if (CodeGenFunction::ContainsLabel(Cond))
   1011     return false;  // Contains a label.
   1012 
   1013   ResultInt = Int;
   1014   return true;
   1015 }
   1016 
   1017 
   1018 
   1019 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
   1020 /// statement) to the specified blocks.  Based on the condition, this might try
   1021 /// to simplify the codegen of the conditional based on the branch.
   1022 ///
   1023 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
   1024                                            llvm::BasicBlock *TrueBlock,
   1025                                            llvm::BasicBlock *FalseBlock,
   1026                                            uint64_t TrueCount) {
   1027   Cond = Cond->IgnoreParens();
   1028 
   1029   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
   1030 
   1031     // Handle X && Y in a condition.
   1032     if (CondBOp->getOpcode() == BO_LAnd) {
   1033       RegionCounter Cnt = getPGORegionCounter(CondBOp);
   1034 
   1035       // If we have "1 && X", simplify the code.  "0 && X" would have constant
   1036       // folded if the case was simple enough.
   1037       bool ConstantBool = false;
   1038       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
   1039           ConstantBool) {
   1040         // br(1 && X) -> br(X).
   1041         Cnt.beginRegion(Builder);
   1042         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
   1043                                     TrueCount);
   1044       }
   1045 
   1046       // If we have "X && 1", simplify the code to use an uncond branch.
   1047       // "X && 0" would have been constant folded to 0.
   1048       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
   1049           ConstantBool) {
   1050         // br(X && 1) -> br(X).
   1051         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
   1052                                     TrueCount);
   1053       }
   1054 
   1055       // Emit the LHS as a conditional.  If the LHS conditional is false, we
   1056       // want to jump to the FalseBlock.
   1057       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
   1058       // The counter tells us how often we evaluate RHS, and all of TrueCount
   1059       // can be propagated to that branch.
   1060       uint64_t RHSCount = Cnt.getCount();
   1061 
   1062       ConditionalEvaluation eval(*this);
   1063       {
   1064         ApplyDebugLocation DL(*this, Cond);
   1065         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
   1066         EmitBlock(LHSTrue);
   1067       }
   1068 
   1069       // Any temporaries created here are conditional.
   1070       Cnt.beginRegion(Builder);
   1071       eval.begin(*this);
   1072       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
   1073       eval.end(*this);
   1074 
   1075       return;
   1076     }
   1077 
   1078     if (CondBOp->getOpcode() == BO_LOr) {
   1079       RegionCounter Cnt = getPGORegionCounter(CondBOp);
   1080 
   1081       // If we have "0 || X", simplify the code.  "1 || X" would have constant
   1082       // folded if the case was simple enough.
   1083       bool ConstantBool = false;
   1084       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
   1085           !ConstantBool) {
   1086         // br(0 || X) -> br(X).
   1087         Cnt.beginRegion(Builder);
   1088         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
   1089                                     TrueCount);
   1090       }
   1091 
   1092       // If we have "X || 0", simplify the code to use an uncond branch.
   1093       // "X || 1" would have been constant folded to 1.
   1094       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
   1095           !ConstantBool) {
   1096         // br(X || 0) -> br(X).
   1097         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
   1098                                     TrueCount);
   1099       }
   1100 
   1101       // Emit the LHS as a conditional.  If the LHS conditional is true, we
   1102       // want to jump to the TrueBlock.
   1103       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
   1104       // We have the count for entry to the RHS and for the whole expression
   1105       // being true, so we can divy up True count between the short circuit and
   1106       // the RHS.
   1107       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
   1108       uint64_t RHSCount = TrueCount - LHSCount;
   1109 
   1110       ConditionalEvaluation eval(*this);
   1111       {
   1112         ApplyDebugLocation DL(*this, Cond);
   1113         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
   1114         EmitBlock(LHSFalse);
   1115       }
   1116 
   1117       // Any temporaries created here are conditional.
   1118       Cnt.beginRegion(Builder);
   1119       eval.begin(*this);
   1120       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
   1121 
   1122       eval.end(*this);
   1123 
   1124       return;
   1125     }
   1126   }
   1127 
   1128   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
   1129     // br(!x, t, f) -> br(x, f, t)
   1130     if (CondUOp->getOpcode() == UO_LNot) {
   1131       // Negate the count.
   1132       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
   1133       // Negate the condition and swap the destination blocks.
   1134       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
   1135                                   FalseCount);
   1136     }
   1137   }
   1138 
   1139   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
   1140     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
   1141     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
   1142     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
   1143 
   1144     RegionCounter Cnt = getPGORegionCounter(CondOp);
   1145     ConditionalEvaluation cond(*this);
   1146     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
   1147 
   1148     // When computing PGO branch weights, we only know the overall count for
   1149     // the true block. This code is essentially doing tail duplication of the
   1150     // naive code-gen, introducing new edges for which counts are not
   1151     // available. Divide the counts proportionally between the LHS and RHS of
   1152     // the conditional operator.
   1153     uint64_t LHSScaledTrueCount = 0;
   1154     if (TrueCount) {
   1155       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
   1156       LHSScaledTrueCount = TrueCount * LHSRatio;
   1157     }
   1158 
   1159     cond.begin(*this);
   1160     EmitBlock(LHSBlock);
   1161     Cnt.beginRegion(Builder);
   1162     {
   1163       ApplyDebugLocation DL(*this, Cond);
   1164       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
   1165                            LHSScaledTrueCount);
   1166     }
   1167     cond.end(*this);
   1168 
   1169     cond.begin(*this);
   1170     EmitBlock(RHSBlock);
   1171     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
   1172                          TrueCount - LHSScaledTrueCount);
   1173     cond.end(*this);
   1174 
   1175     return;
   1176   }
   1177 
   1178   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
   1179     // Conditional operator handling can give us a throw expression as a
   1180     // condition for a case like:
   1181     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
   1182     // Fold this to:
   1183     //   br(c, throw x, br(y, t, f))
   1184     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
   1185     return;
   1186   }
   1187 
   1188   // Create branch weights based on the number of times we get here and the
   1189   // number of times the condition should be true.
   1190   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
   1191   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
   1192                                                   CurrentCount - TrueCount);
   1193 
   1194   // Emit the code with the fully general case.
   1195   llvm::Value *CondV;
   1196   {
   1197     ApplyDebugLocation DL(*this, Cond);
   1198     CondV = EvaluateExprAsBool(Cond);
   1199   }
   1200   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
   1201 }
   1202 
   1203 /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1204 /// specified stmt yet.
   1205 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
   1206   CGM.ErrorUnsupported(S, Type);
   1207 }
   1208 
   1209 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
   1210 /// variable-length array whose elements have a non-zero bit-pattern.
   1211 ///
   1212 /// \param baseType the inner-most element type of the array
   1213 /// \param src - a char* pointing to the bit-pattern for a single
   1214 /// base element of the array
   1215 /// \param sizeInChars - the total size of the VLA, in chars
   1216 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
   1217                                llvm::Value *dest, llvm::Value *src,
   1218                                llvm::Value *sizeInChars) {
   1219   std::pair<CharUnits,CharUnits> baseSizeAndAlign
   1220     = CGF.getContext().getTypeInfoInChars(baseType);
   1221 
   1222   CGBuilderTy &Builder = CGF.Builder;
   1223 
   1224   llvm::Value *baseSizeInChars
   1225     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
   1226 
   1227   llvm::Type *i8p = Builder.getInt8PtrTy();
   1228 
   1229   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
   1230   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
   1231 
   1232   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
   1233   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
   1234   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
   1235 
   1236   // Make a loop over the VLA.  C99 guarantees that the VLA element
   1237   // count must be nonzero.
   1238   CGF.EmitBlock(loopBB);
   1239 
   1240   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
   1241   cur->addIncoming(begin, originBB);
   1242 
   1243   // memcpy the individual element bit-pattern.
   1244   Builder.CreateMemCpy(cur, src, baseSizeInChars,
   1245                        baseSizeAndAlign.second.getQuantity(),
   1246                        /*volatile*/ false);
   1247 
   1248   // Go to the next element.
   1249   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
   1250                                                          cur, 1, "vla.next");
   1251 
   1252   // Leave if that's the end of the VLA.
   1253   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
   1254   Builder.CreateCondBr(done, contBB, loopBB);
   1255   cur->addIncoming(next, loopBB);
   1256 
   1257   CGF.EmitBlock(contBB);
   1258 }
   1259 
   1260 void
   1261 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
   1262   // Ignore empty classes in C++.
   1263   if (getLangOpts().CPlusPlus) {
   1264     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1265       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
   1266         return;
   1267     }
   1268   }
   1269 
   1270   // Cast the dest ptr to the appropriate i8 pointer type.
   1271   unsigned DestAS =
   1272     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
   1273   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
   1274   if (DestPtr->getType() != BP)
   1275     DestPtr = Builder.CreateBitCast(DestPtr, BP);
   1276 
   1277   // Get size and alignment info for this aggregate.
   1278   std::pair<CharUnits, CharUnits> TypeInfo =
   1279     getContext().getTypeInfoInChars(Ty);
   1280   CharUnits Size = TypeInfo.first;
   1281   CharUnits Align = TypeInfo.second;
   1282 
   1283   llvm::Value *SizeVal;
   1284   const VariableArrayType *vla;
   1285 
   1286   // Don't bother emitting a zero-byte memset.
   1287   if (Size.isZero()) {
   1288     // But note that getTypeInfo returns 0 for a VLA.
   1289     if (const VariableArrayType *vlaType =
   1290           dyn_cast_or_null<VariableArrayType>(
   1291                                           getContext().getAsArrayType(Ty))) {
   1292       QualType eltType;
   1293       llvm::Value *numElts;
   1294       std::tie(numElts, eltType) = getVLASize(vlaType);
   1295 
   1296       SizeVal = numElts;
   1297       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
   1298       if (!eltSize.isOne())
   1299         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
   1300       vla = vlaType;
   1301     } else {
   1302       return;
   1303     }
   1304   } else {
   1305     SizeVal = CGM.getSize(Size);
   1306     vla = nullptr;
   1307   }
   1308 
   1309   // If the type contains a pointer to data member we can't memset it to zero.
   1310   // Instead, create a null constant and copy it to the destination.
   1311   // TODO: there are other patterns besides zero that we can usefully memset,
   1312   // like -1, which happens to be the pattern used by member-pointers.
   1313   if (!CGM.getTypes().isZeroInitializable(Ty)) {
   1314     // For a VLA, emit a single element, then splat that over the VLA.
   1315     if (vla) Ty = getContext().getBaseElementType(vla);
   1316 
   1317     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
   1318 
   1319     llvm::GlobalVariable *NullVariable =
   1320       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
   1321                                /*isConstant=*/true,
   1322                                llvm::GlobalVariable::PrivateLinkage,
   1323                                NullConstant, Twine());
   1324     llvm::Value *SrcPtr =
   1325       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
   1326 
   1327     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
   1328 
   1329     // Get and call the appropriate llvm.memcpy overload.
   1330     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
   1331     return;
   1332   }
   1333 
   1334   // Otherwise, just memset the whole thing to zero.  This is legal
   1335   // because in LLVM, all default initializers (other than the ones we just
   1336   // handled above) are guaranteed to have a bit pattern of all zeros.
   1337   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
   1338                        Align.getQuantity(), false);
   1339 }
   1340 
   1341 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
   1342   // Make sure that there is a block for the indirect goto.
   1343   if (!IndirectBranch)
   1344     GetIndirectGotoBlock();
   1345 
   1346   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
   1347 
   1348   // Make sure the indirect branch includes all of the address-taken blocks.
   1349   IndirectBranch->addDestination(BB);
   1350   return llvm::BlockAddress::get(CurFn, BB);
   1351 }
   1352 
   1353 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
   1354   // If we already made the indirect branch for indirect goto, return its block.
   1355   if (IndirectBranch) return IndirectBranch->getParent();
   1356 
   1357   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
   1358 
   1359   // Create the PHI node that indirect gotos will add entries to.
   1360   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
   1361                                               "indirect.goto.dest");
   1362 
   1363   // Create the indirect branch instruction.
   1364   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
   1365   return IndirectBranch->getParent();
   1366 }
   1367 
   1368 /// Computes the length of an array in elements, as well as the base
   1369 /// element type and a properly-typed first element pointer.
   1370 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
   1371                                               QualType &baseType,
   1372                                               llvm::Value *&addr) {
   1373   const ArrayType *arrayType = origArrayType;
   1374 
   1375   // If it's a VLA, we have to load the stored size.  Note that
   1376   // this is the size of the VLA in bytes, not its size in elements.
   1377   llvm::Value *numVLAElements = nullptr;
   1378   if (isa<VariableArrayType>(arrayType)) {
   1379     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
   1380 
   1381     // Walk into all VLAs.  This doesn't require changes to addr,
   1382     // which has type T* where T is the first non-VLA element type.
   1383     do {
   1384       QualType elementType = arrayType->getElementType();
   1385       arrayType = getContext().getAsArrayType(elementType);
   1386 
   1387       // If we only have VLA components, 'addr' requires no adjustment.
   1388       if (!arrayType) {
   1389         baseType = elementType;
   1390         return numVLAElements;
   1391       }
   1392     } while (isa<VariableArrayType>(arrayType));
   1393 
   1394     // We get out here only if we find a constant array type
   1395     // inside the VLA.
   1396   }
   1397 
   1398   // We have some number of constant-length arrays, so addr should
   1399   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
   1400   // down to the first element of addr.
   1401   SmallVector<llvm::Value*, 8> gepIndices;
   1402 
   1403   // GEP down to the array type.
   1404   llvm::ConstantInt *zero = Builder.getInt32(0);
   1405   gepIndices.push_back(zero);
   1406 
   1407   uint64_t countFromCLAs = 1;
   1408   QualType eltType;
   1409 
   1410   llvm::ArrayType *llvmArrayType =
   1411     dyn_cast<llvm::ArrayType>(
   1412       cast<llvm::PointerType>(addr->getType())->getElementType());
   1413   while (llvmArrayType) {
   1414     assert(isa<ConstantArrayType>(arrayType));
   1415     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
   1416              == llvmArrayType->getNumElements());
   1417 
   1418     gepIndices.push_back(zero);
   1419     countFromCLAs *= llvmArrayType->getNumElements();
   1420     eltType = arrayType->getElementType();
   1421 
   1422     llvmArrayType =
   1423       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
   1424     arrayType = getContext().getAsArrayType(arrayType->getElementType());
   1425     assert((!llvmArrayType || arrayType) &&
   1426            "LLVM and Clang types are out-of-synch");
   1427   }
   1428 
   1429   if (arrayType) {
   1430     // From this point onwards, the Clang array type has been emitted
   1431     // as some other type (probably a packed struct). Compute the array
   1432     // size, and just emit the 'begin' expression as a bitcast.
   1433     while (arrayType) {
   1434       countFromCLAs *=
   1435           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
   1436       eltType = arrayType->getElementType();
   1437       arrayType = getContext().getAsArrayType(eltType);
   1438     }
   1439 
   1440     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
   1441     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
   1442     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
   1443   } else {
   1444     // Create the actual GEP.
   1445     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
   1446   }
   1447 
   1448   baseType = eltType;
   1449 
   1450   llvm::Value *numElements
   1451     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
   1452 
   1453   // If we had any VLA dimensions, factor them in.
   1454   if (numVLAElements)
   1455     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
   1456 
   1457   return numElements;
   1458 }
   1459 
   1460 std::pair<llvm::Value*, QualType>
   1461 CodeGenFunction::getVLASize(QualType type) {
   1462   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
   1463   assert(vla && "type was not a variable array type!");
   1464   return getVLASize(vla);
   1465 }
   1466 
   1467 std::pair<llvm::Value*, QualType>
   1468 CodeGenFunction::getVLASize(const VariableArrayType *type) {
   1469   // The number of elements so far; always size_t.
   1470   llvm::Value *numElements = nullptr;
   1471 
   1472   QualType elementType;
   1473   do {
   1474     elementType = type->getElementType();
   1475     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
   1476     assert(vlaSize && "no size for VLA!");
   1477     assert(vlaSize->getType() == SizeTy);
   1478 
   1479     if (!numElements) {
   1480       numElements = vlaSize;
   1481     } else {
   1482       // It's undefined behavior if this wraps around, so mark it that way.
   1483       // FIXME: Teach -fsanitize=undefined to trap this.
   1484       numElements = Builder.CreateNUWMul(numElements, vlaSize);
   1485     }
   1486   } while ((type = getContext().getAsVariableArrayType(elementType)));
   1487 
   1488   return std::pair<llvm::Value*,QualType>(numElements, elementType);
   1489 }
   1490 
   1491 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
   1492   assert(type->isVariablyModifiedType() &&
   1493          "Must pass variably modified type to EmitVLASizes!");
   1494 
   1495   EnsureInsertPoint();
   1496 
   1497   // We're going to walk down into the type and look for VLA
   1498   // expressions.
   1499   do {
   1500     assert(type->isVariablyModifiedType());
   1501 
   1502     const Type *ty = type.getTypePtr();
   1503     switch (ty->getTypeClass()) {
   1504 
   1505 #define TYPE(Class, Base)
   1506 #define ABSTRACT_TYPE(Class, Base)
   1507 #define NON_CANONICAL_TYPE(Class, Base)
   1508 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1509 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   1510 #include "clang/AST/TypeNodes.def"
   1511       llvm_unreachable("unexpected dependent type!");
   1512 
   1513     // These types are never variably-modified.
   1514     case Type::Builtin:
   1515     case Type::Complex:
   1516     case Type::Vector:
   1517     case Type::ExtVector:
   1518     case Type::Record:
   1519     case Type::Enum:
   1520     case Type::Elaborated:
   1521     case Type::TemplateSpecialization:
   1522     case Type::ObjCObject:
   1523     case Type::ObjCInterface:
   1524     case Type::ObjCObjectPointer:
   1525       llvm_unreachable("type class is never variably-modified!");
   1526 
   1527     case Type::Adjusted:
   1528       type = cast<AdjustedType>(ty)->getAdjustedType();
   1529       break;
   1530 
   1531     case Type::Decayed:
   1532       type = cast<DecayedType>(ty)->getPointeeType();
   1533       break;
   1534 
   1535     case Type::Pointer:
   1536       type = cast<PointerType>(ty)->getPointeeType();
   1537       break;
   1538 
   1539     case Type::BlockPointer:
   1540       type = cast<BlockPointerType>(ty)->getPointeeType();
   1541       break;
   1542 
   1543     case Type::LValueReference:
   1544     case Type::RValueReference:
   1545       type = cast<ReferenceType>(ty)->getPointeeType();
   1546       break;
   1547 
   1548     case Type::MemberPointer:
   1549       type = cast<MemberPointerType>(ty)->getPointeeType();
   1550       break;
   1551 
   1552     case Type::ConstantArray:
   1553     case Type::IncompleteArray:
   1554       // Losing element qualification here is fine.
   1555       type = cast<ArrayType>(ty)->getElementType();
   1556       break;
   1557 
   1558     case Type::VariableArray: {
   1559       // Losing element qualification here is fine.
   1560       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1561 
   1562       // Unknown size indication requires no size computation.
   1563       // Otherwise, evaluate and record it.
   1564       if (const Expr *size = vat->getSizeExpr()) {
   1565         // It's possible that we might have emitted this already,
   1566         // e.g. with a typedef and a pointer to it.
   1567         llvm::Value *&entry = VLASizeMap[size];
   1568         if (!entry) {
   1569           llvm::Value *Size = EmitScalarExpr(size);
   1570 
   1571           // C11 6.7.6.2p5:
   1572           //   If the size is an expression that is not an integer constant
   1573           //   expression [...] each time it is evaluated it shall have a value
   1574           //   greater than zero.
   1575           if (SanOpts.has(SanitizerKind::VLABound) &&
   1576               size->getType()->isSignedIntegerType()) {
   1577             SanitizerScope SanScope(this);
   1578             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
   1579             llvm::Constant *StaticArgs[] = {
   1580               EmitCheckSourceLocation(size->getLocStart()),
   1581               EmitCheckTypeDescriptor(size->getType())
   1582             };
   1583             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
   1584                                      SanitizerKind::VLABound),
   1585                       "vla_bound_not_positive", StaticArgs, Size);
   1586           }
   1587 
   1588           // Always zexting here would be wrong if it weren't
   1589           // undefined behavior to have a negative bound.
   1590           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
   1591         }
   1592       }
   1593       type = vat->getElementType();
   1594       break;
   1595     }
   1596 
   1597     case Type::FunctionProto:
   1598     case Type::FunctionNoProto:
   1599       type = cast<FunctionType>(ty)->getReturnType();
   1600       break;
   1601 
   1602     case Type::Paren:
   1603     case Type::TypeOf:
   1604     case Type::UnaryTransform:
   1605     case Type::Attributed:
   1606     case Type::SubstTemplateTypeParm:
   1607     case Type::PackExpansion:
   1608       // Keep walking after single level desugaring.
   1609       type = type.getSingleStepDesugaredType(getContext());
   1610       break;
   1611 
   1612     case Type::Typedef:
   1613     case Type::Decltype:
   1614     case Type::Auto:
   1615       // Stop walking: nothing to do.
   1616       return;
   1617 
   1618     case Type::TypeOfExpr:
   1619       // Stop walking: emit typeof expression.
   1620       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1621       return;
   1622 
   1623     case Type::Atomic:
   1624       type = cast<AtomicType>(ty)->getValueType();
   1625       break;
   1626     }
   1627   } while (type->isVariablyModifiedType());
   1628 }
   1629 
   1630 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1631   if (getContext().getBuiltinVaListType()->isArrayType())
   1632     return EmitScalarExpr(E);
   1633   return EmitLValue(E).getAddress();
   1634 }
   1635 
   1636 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1637                                               llvm::Constant *Init) {
   1638   assert (Init && "Invalid DeclRefExpr initializer!");
   1639   if (CGDebugInfo *Dbg = getDebugInfo())
   1640     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
   1641       Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1642 }
   1643 
   1644 CodeGenFunction::PeepholeProtection
   1645 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1646   // At the moment, the only aggressive peephole we do in IR gen
   1647   // is trunc(zext) folding, but if we add more, we can easily
   1648   // extend this protection.
   1649 
   1650   if (!rvalue.isScalar()) return PeepholeProtection();
   1651   llvm::Value *value = rvalue.getScalarVal();
   1652   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1653 
   1654   // Just make an extra bitcast.
   1655   assert(HaveInsertPoint());
   1656   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1657                                                   Builder.GetInsertBlock());
   1658 
   1659   PeepholeProtection protection;
   1660   protection.Inst = inst;
   1661   return protection;
   1662 }
   1663 
   1664 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1665   if (!protection.Inst) return;
   1666 
   1667   // In theory, we could try to duplicate the peepholes now, but whatever.
   1668   protection.Inst->eraseFromParent();
   1669 }
   1670 
   1671 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1672                                                  llvm::Value *AnnotatedVal,
   1673                                                  StringRef AnnotationStr,
   1674                                                  SourceLocation Location) {
   1675   llvm::Value *Args[4] = {
   1676     AnnotatedVal,
   1677     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1678     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1679     CGM.EmitAnnotationLineNo(Location)
   1680   };
   1681   return Builder.CreateCall(AnnotationFn, Args);
   1682 }
   1683 
   1684 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1685   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1686   // FIXME We create a new bitcast for every annotation because that's what
   1687   // llvm-gcc was doing.
   1688   for (const auto *I : D->specific_attrs<AnnotateAttr>())
   1689     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1690                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1691                        I->getAnnotation(), D->getLocation());
   1692 }
   1693 
   1694 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1695                                                    llvm::Value *V) {
   1696   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1697   llvm::Type *VTy = V->getType();
   1698   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1699                                     CGM.Int8PtrTy);
   1700 
   1701   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
   1702     // FIXME Always emit the cast inst so we can differentiate between
   1703     // annotation on the first field of a struct and annotation on the struct
   1704     // itself.
   1705     if (VTy != CGM.Int8PtrTy)
   1706       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1707     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
   1708     V = Builder.CreateBitCast(V, VTy);
   1709   }
   1710 
   1711   return V;
   1712 }
   1713 
   1714 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
   1715 
   1716 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
   1717     : CGF(CGF) {
   1718   assert(!CGF->IsSanitizerScope);
   1719   CGF->IsSanitizerScope = true;
   1720 }
   1721 
   1722 CodeGenFunction::SanitizerScope::~SanitizerScope() {
   1723   CGF->IsSanitizerScope = false;
   1724 }
   1725 
   1726 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
   1727                                    const llvm::Twine &Name,
   1728                                    llvm::BasicBlock *BB,
   1729                                    llvm::BasicBlock::iterator InsertPt) const {
   1730   LoopStack.InsertHelper(I);
   1731   if (IsSanitizerScope)
   1732     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
   1733 }
   1734 
   1735 template <bool PreserveNames>
   1736 void CGBuilderInserter<PreserveNames>::InsertHelper(
   1737     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1738     llvm::BasicBlock::iterator InsertPt) const {
   1739   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
   1740                                                               InsertPt);
   1741   if (CGF)
   1742     CGF->InsertHelper(I, Name, BB, InsertPt);
   1743 }
   1744 
   1745 #ifdef NDEBUG
   1746 #define PreserveNames false
   1747 #else
   1748 #define PreserveNames true
   1749 #endif
   1750 template void CGBuilderInserter<PreserveNames>::InsertHelper(
   1751     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1752     llvm::BasicBlock::iterator InsertPt) const;
   1753 #undef PreserveNames
   1754