Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGRecordLayout.h"
     18 #include "CodeGenFunction.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Basic/TargetBuiltins.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 static CharUnits
     33 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
     34                                  const CXXRecordDecl *DerivedClass,
     35                                  CastExpr::path_const_iterator Start,
     36                                  CastExpr::path_const_iterator End) {
     37   CharUnits Offset = CharUnits::Zero();
     38 
     39   const CXXRecordDecl *RD = DerivedClass;
     40 
     41   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
     42     const CXXBaseSpecifier *Base = *I;
     43     assert(!Base->isVirtual() && "Should not see virtual bases here!");
     44 
     45     // Get the layout.
     46     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
     47 
     48     const CXXRecordDecl *BaseDecl =
     49       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
     50 
     51     // Add the offset.
     52     Offset += Layout.getBaseClassOffset(BaseDecl);
     53 
     54     RD = BaseDecl;
     55   }
     56 
     57   return Offset;
     58 }
     59 
     60 llvm::Constant *
     61 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
     62                                    CastExpr::path_const_iterator PathBegin,
     63                                    CastExpr::path_const_iterator PathEnd) {
     64   assert(PathBegin != PathEnd && "Base path should not be empty!");
     65 
     66   CharUnits Offset =
     67     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
     68                                      PathBegin, PathEnd);
     69   if (Offset.isZero())
     70     return nullptr;
     71 
     72   llvm::Type *PtrDiffTy =
     73   Types.ConvertType(getContext().getPointerDiffType());
     74 
     75   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
     76 }
     77 
     78 /// Gets the address of a direct base class within a complete object.
     79 /// This should only be used for (1) non-virtual bases or (2) virtual bases
     80 /// when the type is known to be complete (e.g. in complete destructors).
     81 ///
     82 /// The object pointed to by 'This' is assumed to be non-null.
     83 llvm::Value *
     84 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
     85                                                    const CXXRecordDecl *Derived,
     86                                                    const CXXRecordDecl *Base,
     87                                                    bool BaseIsVirtual) {
     88   // 'this' must be a pointer (in some address space) to Derived.
     89   assert(This->getType()->isPointerTy() &&
     90          cast<llvm::PointerType>(This->getType())->getElementType()
     91            == ConvertType(Derived));
     92 
     93   // Compute the offset of the virtual base.
     94   CharUnits Offset;
     95   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
     96   if (BaseIsVirtual)
     97     Offset = Layout.getVBaseClassOffset(Base);
     98   else
     99     Offset = Layout.getBaseClassOffset(Base);
    100 
    101   // Shift and cast down to the base type.
    102   // TODO: for complete types, this should be possible with a GEP.
    103   llvm::Value *V = This;
    104   if (Offset.isPositive()) {
    105     V = Builder.CreateBitCast(V, Int8PtrTy);
    106     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
    107   }
    108   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
    109 
    110   return V;
    111 }
    112 
    113 static llvm::Value *
    114 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
    115                                 CharUnits nonVirtualOffset,
    116                                 llvm::Value *virtualOffset) {
    117   // Assert that we have something to do.
    118   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
    119 
    120   // Compute the offset from the static and dynamic components.
    121   llvm::Value *baseOffset;
    122   if (!nonVirtualOffset.isZero()) {
    123     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    124                                         nonVirtualOffset.getQuantity());
    125     if (virtualOffset) {
    126       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    127     }
    128   } else {
    129     baseOffset = virtualOffset;
    130   }
    131 
    132   // Apply the base offset.
    133   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    134   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    135   return ptr;
    136 }
    137 
    138 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
    139     llvm::Value *Value, const CXXRecordDecl *Derived,
    140     CastExpr::path_const_iterator PathBegin,
    141     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
    142     SourceLocation Loc) {
    143   assert(PathBegin != PathEnd && "Base path should not be empty!");
    144 
    145   CastExpr::path_const_iterator Start = PathBegin;
    146   const CXXRecordDecl *VBase = nullptr;
    147 
    148   // Sema has done some convenient canonicalization here: if the
    149   // access path involved any virtual steps, the conversion path will
    150   // *start* with a step down to the correct virtual base subobject,
    151   // and hence will not require any further steps.
    152   if ((*Start)->isVirtual()) {
    153     VBase =
    154       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    155     ++Start;
    156   }
    157 
    158   // Compute the static offset of the ultimate destination within its
    159   // allocating subobject (the virtual base, if there is one, or else
    160   // the "complete" object that we see).
    161   CharUnits NonVirtualOffset =
    162     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
    163                                      Start, PathEnd);
    164 
    165   // If there's a virtual step, we can sometimes "devirtualize" it.
    166   // For now, that's limited to when the derived type is final.
    167   // TODO: "devirtualize" this for accesses to known-complete objects.
    168   if (VBase && Derived->hasAttr<FinalAttr>()) {
    169     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    170     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    171     NonVirtualOffset += vBaseOffset;
    172     VBase = nullptr; // we no longer have a virtual step
    173   }
    174 
    175   // Get the base pointer type.
    176   llvm::Type *BasePtrTy =
    177     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    178 
    179   QualType DerivedTy = getContext().getRecordType(Derived);
    180   CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
    181 
    182   // If the static offset is zero and we don't have a virtual step,
    183   // just do a bitcast; null checks are unnecessary.
    184   if (NonVirtualOffset.isZero() && !VBase) {
    185     if (sanitizePerformTypeCheck()) {
    186       EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
    187                     !NullCheckValue);
    188     }
    189     return Builder.CreateBitCast(Value, BasePtrTy);
    190   }
    191 
    192   llvm::BasicBlock *origBB = nullptr;
    193   llvm::BasicBlock *endBB = nullptr;
    194 
    195   // Skip over the offset (and the vtable load) if we're supposed to
    196   // null-check the pointer.
    197   if (NullCheckValue) {
    198     origBB = Builder.GetInsertBlock();
    199     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    200     endBB = createBasicBlock("cast.end");
    201 
    202     llvm::Value *isNull = Builder.CreateIsNull(Value);
    203     Builder.CreateCondBr(isNull, endBB, notNullBB);
    204     EmitBlock(notNullBB);
    205   }
    206 
    207   if (sanitizePerformTypeCheck()) {
    208     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
    209                   DerivedTy, DerivedAlign, true);
    210   }
    211 
    212   // Compute the virtual offset.
    213   llvm::Value *VirtualOffset = nullptr;
    214   if (VBase) {
    215     VirtualOffset =
    216       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
    217   }
    218 
    219   // Apply both offsets.
    220   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
    221                                           NonVirtualOffset,
    222                                           VirtualOffset);
    223 
    224   // Cast to the destination type.
    225   Value = Builder.CreateBitCast(Value, BasePtrTy);
    226 
    227   // Build a phi if we needed a null check.
    228   if (NullCheckValue) {
    229     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    230     Builder.CreateBr(endBB);
    231     EmitBlock(endBB);
    232 
    233     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    234     PHI->addIncoming(Value, notNullBB);
    235     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    236     Value = PHI;
    237   }
    238 
    239   return Value;
    240 }
    241 
    242 llvm::Value *
    243 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
    244                                           const CXXRecordDecl *Derived,
    245                                         CastExpr::path_const_iterator PathBegin,
    246                                           CastExpr::path_const_iterator PathEnd,
    247                                           bool NullCheckValue) {
    248   assert(PathBegin != PathEnd && "Base path should not be empty!");
    249 
    250   QualType DerivedTy =
    251     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    252   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    253 
    254   llvm::Value *NonVirtualOffset =
    255     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    256 
    257   if (!NonVirtualOffset) {
    258     // No offset, we can just cast back.
    259     return Builder.CreateBitCast(Value, DerivedPtrTy);
    260   }
    261 
    262   llvm::BasicBlock *CastNull = nullptr;
    263   llvm::BasicBlock *CastNotNull = nullptr;
    264   llvm::BasicBlock *CastEnd = nullptr;
    265 
    266   if (NullCheckValue) {
    267     CastNull = createBasicBlock("cast.null");
    268     CastNotNull = createBasicBlock("cast.notnull");
    269     CastEnd = createBasicBlock("cast.end");
    270 
    271     llvm::Value *IsNull = Builder.CreateIsNull(Value);
    272     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    273     EmitBlock(CastNotNull);
    274   }
    275 
    276   // Apply the offset.
    277   Value = Builder.CreateBitCast(Value, Int8PtrTy);
    278   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    279                             "sub.ptr");
    280 
    281   // Just cast.
    282   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    283 
    284   if (NullCheckValue) {
    285     Builder.CreateBr(CastEnd);
    286     EmitBlock(CastNull);
    287     Builder.CreateBr(CastEnd);
    288     EmitBlock(CastEnd);
    289 
    290     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    291     PHI->addIncoming(Value, CastNotNull);
    292     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
    293                      CastNull);
    294     Value = PHI;
    295   }
    296 
    297   return Value;
    298 }
    299 
    300 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    301                                               bool ForVirtualBase,
    302                                               bool Delegating) {
    303   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
    304     // This constructor/destructor does not need a VTT parameter.
    305     return nullptr;
    306   }
    307 
    308   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
    309   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    310 
    311   llvm::Value *VTT;
    312 
    313   uint64_t SubVTTIndex;
    314 
    315   if (Delegating) {
    316     // If this is a delegating constructor call, just load the VTT.
    317     return LoadCXXVTT();
    318   } else if (RD == Base) {
    319     // If the record matches the base, this is the complete ctor/dtor
    320     // variant calling the base variant in a class with virtual bases.
    321     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
    322            "doing no-op VTT offset in base dtor/ctor?");
    323     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    324     SubVTTIndex = 0;
    325   } else {
    326     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    327     CharUnits BaseOffset = ForVirtualBase ?
    328       Layout.getVBaseClassOffset(Base) :
    329       Layout.getBaseClassOffset(Base);
    330 
    331     SubVTTIndex =
    332       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    333     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    334   }
    335 
    336   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
    337     // A VTT parameter was passed to the constructor, use it.
    338     VTT = LoadCXXVTT();
    339     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    340   } else {
    341     // We're the complete constructor, so get the VTT by name.
    342     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    343     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    344   }
    345 
    346   return VTT;
    347 }
    348 
    349 namespace {
    350   /// Call the destructor for a direct base class.
    351   struct CallBaseDtor : EHScopeStack::Cleanup {
    352     const CXXRecordDecl *BaseClass;
    353     bool BaseIsVirtual;
    354     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    355       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    356 
    357     void Emit(CodeGenFunction &CGF, Flags flags) override {
    358       const CXXRecordDecl *DerivedClass =
    359         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    360 
    361       const CXXDestructorDecl *D = BaseClass->getDestructor();
    362       llvm::Value *Addr =
    363         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
    364                                                   DerivedClass, BaseClass,
    365                                                   BaseIsVirtual);
    366       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    367                                 /*Delegating=*/false, Addr);
    368     }
    369   };
    370 
    371   /// A visitor which checks whether an initializer uses 'this' in a
    372   /// way which requires the vtable to be properly set.
    373   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
    374     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
    375 
    376     bool UsesThis;
    377 
    378     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
    379 
    380     // Black-list all explicit and implicit references to 'this'.
    381     //
    382     // Do we need to worry about external references to 'this' derived
    383     // from arbitrary code?  If so, then anything which runs arbitrary
    384     // external code might potentially access the vtable.
    385     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
    386   };
    387 }
    388 
    389 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    390   DynamicThisUseChecker Checker(C);
    391   Checker.Visit(const_cast<Expr*>(Init));
    392   return Checker.UsesThis;
    393 }
    394 
    395 static void EmitBaseInitializer(CodeGenFunction &CGF,
    396                                 const CXXRecordDecl *ClassDecl,
    397                                 CXXCtorInitializer *BaseInit,
    398                                 CXXCtorType CtorType) {
    399   assert(BaseInit->isBaseInitializer() &&
    400          "Must have base initializer!");
    401 
    402   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    403 
    404   const Type *BaseType = BaseInit->getBaseClass();
    405   CXXRecordDecl *BaseClassDecl =
    406     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    407 
    408   bool isBaseVirtual = BaseInit->isBaseVirtual();
    409 
    410   // The base constructor doesn't construct virtual bases.
    411   if (CtorType == Ctor_Base && isBaseVirtual)
    412     return;
    413 
    414   // If the initializer for the base (other than the constructor
    415   // itself) accesses 'this' in any way, we need to initialize the
    416   // vtables.
    417   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    418     CGF.InitializeVTablePointers(ClassDecl);
    419 
    420   // We can pretend to be a complete class because it only matters for
    421   // virtual bases, and we only do virtual bases for complete ctors.
    422   llvm::Value *V =
    423     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    424                                               BaseClassDecl,
    425                                               isBaseVirtual);
    426   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
    427   AggValueSlot AggSlot =
    428     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
    429                           AggValueSlot::IsDestructed,
    430                           AggValueSlot::DoesNotNeedGCBarriers,
    431                           AggValueSlot::IsNotAliased);
    432 
    433   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    434 
    435   if (CGF.CGM.getLangOpts().Exceptions &&
    436       !BaseClassDecl->hasTrivialDestructor())
    437     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    438                                           isBaseVirtual);
    439 }
    440 
    441 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    442                                      LValue LHS,
    443                                      Expr *Init,
    444                                      llvm::Value *ArrayIndexVar,
    445                                      QualType T,
    446                                      ArrayRef<VarDecl *> ArrayIndexes,
    447                                      unsigned Index) {
    448   if (Index == ArrayIndexes.size()) {
    449     LValue LV = LHS;
    450 
    451     if (ArrayIndexVar) {
    452       // If we have an array index variable, load it and use it as an offset.
    453       // Then, increment the value.
    454       llvm::Value *Dest = LHS.getAddress();
    455       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    456       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    457       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    458       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    459       CGF.Builder.CreateStore(Next, ArrayIndexVar);
    460 
    461       // Update the LValue.
    462       LV.setAddress(Dest);
    463       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
    464       LV.setAlignment(std::min(Align, LV.getAlignment()));
    465     }
    466 
    467     switch (CGF.getEvaluationKind(T)) {
    468     case TEK_Scalar:
    469       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
    470       break;
    471     case TEK_Complex:
    472       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    473       break;
    474     case TEK_Aggregate: {
    475       AggValueSlot Slot =
    476         AggValueSlot::forLValue(LV,
    477                                 AggValueSlot::IsDestructed,
    478                                 AggValueSlot::DoesNotNeedGCBarriers,
    479                                 AggValueSlot::IsNotAliased);
    480 
    481       CGF.EmitAggExpr(Init, Slot);
    482       break;
    483     }
    484     }
    485 
    486     return;
    487   }
    488 
    489   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    490   assert(Array && "Array initialization without the array type?");
    491   llvm::Value *IndexVar
    492     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    493   assert(IndexVar && "Array index variable not loaded");
    494 
    495   // Initialize this index variable to zero.
    496   llvm::Value* Zero
    497     = llvm::Constant::getNullValue(
    498                               CGF.ConvertType(CGF.getContext().getSizeType()));
    499   CGF.Builder.CreateStore(Zero, IndexVar);
    500 
    501   // Start the loop with a block that tests the condition.
    502   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    503   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    504 
    505   CGF.EmitBlock(CondBlock);
    506 
    507   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    508   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    509   // otherwise, go to the block after the for-loop.
    510   uint64_t NumElements = Array->getSize().getZExtValue();
    511   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    512   llvm::Value *NumElementsPtr =
    513     llvm::ConstantInt::get(Counter->getType(), NumElements);
    514   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    515                                                   "isless");
    516 
    517   // If the condition is true, execute the body.
    518   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    519 
    520   CGF.EmitBlock(ForBody);
    521   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    522 
    523   // Inside the loop body recurse to emit the inner loop or, eventually, the
    524   // constructor call.
    525   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    526                            Array->getElementType(), ArrayIndexes, Index + 1);
    527 
    528   CGF.EmitBlock(ContinueBlock);
    529 
    530   // Emit the increment of the loop counter.
    531   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    532   Counter = CGF.Builder.CreateLoad(IndexVar);
    533   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    534   CGF.Builder.CreateStore(NextVal, IndexVar);
    535 
    536   // Finally, branch back up to the condition for the next iteration.
    537   CGF.EmitBranch(CondBlock);
    538 
    539   // Emit the fall-through block.
    540   CGF.EmitBlock(AfterFor, true);
    541 }
    542 
    543 static void EmitMemberInitializer(CodeGenFunction &CGF,
    544                                   const CXXRecordDecl *ClassDecl,
    545                                   CXXCtorInitializer *MemberInit,
    546                                   const CXXConstructorDecl *Constructor,
    547                                   FunctionArgList &Args) {
    548   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
    549   assert(MemberInit->isAnyMemberInitializer() &&
    550          "Must have member initializer!");
    551   assert(MemberInit->getInit() && "Must have initializer!");
    552 
    553   // non-static data member initializers.
    554   FieldDecl *Field = MemberInit->getAnyMember();
    555   QualType FieldType = Field->getType();
    556 
    557   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    558   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    559   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    560 
    561   if (MemberInit->isIndirectMemberInitializer()) {
    562     // If we are initializing an anonymous union field, drill down to
    563     // the field.
    564     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    565     for (const auto *I : IndirectField->chain())
    566       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
    567     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
    568   } else {
    569     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    570   }
    571 
    572   // Special case: if we are in a copy or move constructor, and we are copying
    573   // an array of PODs or classes with trivial copy constructors, ignore the
    574   // AST and perform the copy we know is equivalent.
    575   // FIXME: This is hacky at best... if we had a bit more explicit information
    576   // in the AST, we could generalize it more easily.
    577   const ConstantArrayType *Array
    578     = CGF.getContext().getAsConstantArrayType(FieldType);
    579   if (Array && Constructor->isDefaulted() &&
    580       Constructor->isCopyOrMoveConstructor()) {
    581     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    582     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    583     if (BaseElementTy.isPODType(CGF.getContext()) ||
    584         (CE && CE->getConstructor()->isTrivial())) {
    585       unsigned SrcArgIndex =
    586           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
    587       llvm::Value *SrcPtr
    588         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    589       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    590       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    591 
    592       // Copy the aggregate.
    593       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    594                             LHS.isVolatileQualified());
    595       return;
    596     }
    597   }
    598 
    599   ArrayRef<VarDecl *> ArrayIndexes;
    600   if (MemberInit->getNumArrayIndices())
    601     ArrayIndexes = MemberInit->getArrayIndexes();
    602   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    603 }
    604 
    605 void CodeGenFunction::EmitInitializerForField(
    606     FieldDecl *Field, LValue LHS, Expr *Init,
    607     ArrayRef<VarDecl *> ArrayIndexes) {
    608   QualType FieldType = Field->getType();
    609   switch (getEvaluationKind(FieldType)) {
    610   case TEK_Scalar:
    611     if (LHS.isSimple()) {
    612       EmitExprAsInit(Init, Field, LHS, false);
    613     } else {
    614       RValue RHS = RValue::get(EmitScalarExpr(Init));
    615       EmitStoreThroughLValue(RHS, LHS);
    616     }
    617     break;
    618   case TEK_Complex:
    619     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    620     break;
    621   case TEK_Aggregate: {
    622     llvm::Value *ArrayIndexVar = nullptr;
    623     if (ArrayIndexes.size()) {
    624       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    625 
    626       // The LHS is a pointer to the first object we'll be constructing, as
    627       // a flat array.
    628       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    629       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    630       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    631       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
    632                                                        BasePtr);
    633       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    634 
    635       // Create an array index that will be used to walk over all of the
    636       // objects we're constructing.
    637       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
    638       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
    639       Builder.CreateStore(Zero, ArrayIndexVar);
    640 
    641 
    642       // Emit the block variables for the array indices, if any.
    643       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    644         EmitAutoVarDecl(*ArrayIndexes[I]);
    645     }
    646 
    647     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    648                              ArrayIndexes, 0);
    649   }
    650   }
    651 
    652   // Ensure that we destroy this object if an exception is thrown
    653   // later in the constructor.
    654   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    655   if (needsEHCleanup(dtorKind))
    656     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    657 }
    658 
    659 /// Checks whether the given constructor is a valid subject for the
    660 /// complete-to-base constructor delegation optimization, i.e.
    661 /// emitting the complete constructor as a simple call to the base
    662 /// constructor.
    663 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    664 
    665   // Currently we disable the optimization for classes with virtual
    666   // bases because (1) the addresses of parameter variables need to be
    667   // consistent across all initializers but (2) the delegate function
    668   // call necessarily creates a second copy of the parameter variable.
    669   //
    670   // The limiting example (purely theoretical AFAIK):
    671   //   struct A { A(int &c) { c++; } };
    672   //   struct B : virtual A {
    673   //     B(int count) : A(count) { printf("%d\n", count); }
    674   //   };
    675   // ...although even this example could in principle be emitted as a
    676   // delegation since the address of the parameter doesn't escape.
    677   if (Ctor->getParent()->getNumVBases()) {
    678     // TODO: white-list trivial vbase initializers.  This case wouldn't
    679     // be subject to the restrictions below.
    680 
    681     // TODO: white-list cases where:
    682     //  - there are no non-reference parameters to the constructor
    683     //  - the initializers don't access any non-reference parameters
    684     //  - the initializers don't take the address of non-reference
    685     //    parameters
    686     //  - etc.
    687     // If we ever add any of the above cases, remember that:
    688     //  - function-try-blocks will always blacklist this optimization
    689     //  - we need to perform the constructor prologue and cleanup in
    690     //    EmitConstructorBody.
    691 
    692     return false;
    693   }
    694 
    695   // We also disable the optimization for variadic functions because
    696   // it's impossible to "re-pass" varargs.
    697   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    698     return false;
    699 
    700   // FIXME: Decide if we can do a delegation of a delegating constructor.
    701   if (Ctor->isDelegatingConstructor())
    702     return false;
    703 
    704   return true;
    705 }
    706 
    707 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
    708 // to poison the extra field paddings inserted under
    709 // -fsanitize-address-field-padding=1|2.
    710 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
    711   ASTContext &Context = getContext();
    712   const CXXRecordDecl *ClassDecl =
    713       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
    714                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
    715   if (!ClassDecl->mayInsertExtraPadding()) return;
    716 
    717   struct SizeAndOffset {
    718     uint64_t Size;
    719     uint64_t Offset;
    720   };
    721 
    722   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
    723   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
    724 
    725   // Populate sizes and offsets of fields.
    726   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
    727   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
    728     SSV[i].Offset =
    729         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
    730 
    731   size_t NumFields = 0;
    732   for (const auto *Field : ClassDecl->fields()) {
    733     const FieldDecl *D = Field;
    734     std::pair<CharUnits, CharUnits> FieldInfo =
    735         Context.getTypeInfoInChars(D->getType());
    736     CharUnits FieldSize = FieldInfo.first;
    737     assert(NumFields < SSV.size());
    738     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
    739     NumFields++;
    740   }
    741   assert(NumFields == SSV.size());
    742   if (SSV.size() <= 1) return;
    743 
    744   // We will insert calls to __asan_* run-time functions.
    745   // LLVM AddressSanitizer pass may decide to inline them later.
    746   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
    747   llvm::FunctionType *FTy =
    748       llvm::FunctionType::get(CGM.VoidTy, Args, false);
    749   llvm::Constant *F = CGM.CreateRuntimeFunction(
    750       FTy, Prologue ? "__asan_poison_intra_object_redzone"
    751                     : "__asan_unpoison_intra_object_redzone");
    752 
    753   llvm::Value *ThisPtr = LoadCXXThis();
    754   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
    755   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
    756   // For each field check if it has sufficient padding,
    757   // if so (un)poison it with a call.
    758   for (size_t i = 0; i < SSV.size(); i++) {
    759     uint64_t AsanAlignment = 8;
    760     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
    761     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
    762     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
    763     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
    764         (NextField % AsanAlignment) != 0)
    765       continue;
    766     Builder.CreateCall2(
    767         F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
    768         Builder.getIntN(PtrSize, PoisonSize));
    769   }
    770 }
    771 
    772 /// EmitConstructorBody - Emits the body of the current constructor.
    773 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    774   EmitAsanPrologueOrEpilogue(true);
    775   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    776   CXXCtorType CtorType = CurGD.getCtorType();
    777 
    778   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
    779           CtorType == Ctor_Complete) &&
    780          "can only generate complete ctor for this ABI");
    781 
    782   // Before we go any further, try the complete->base constructor
    783   // delegation optimization.
    784   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    785       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    786     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
    787     return;
    788   }
    789 
    790   const FunctionDecl *Definition = 0;
    791   Stmt *Body = Ctor->getBody(Definition);
    792   assert(Definition == Ctor && "emitting wrong constructor body");
    793 
    794   // Enter the function-try-block before the constructor prologue if
    795   // applicable.
    796   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    797   if (IsTryBody)
    798     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    799 
    800   RegionCounter Cnt = getPGORegionCounter(Body);
    801   Cnt.beginRegion(Builder);
    802 
    803   RunCleanupsScope RunCleanups(*this);
    804 
    805   // TODO: in restricted cases, we can emit the vbase initializers of
    806   // a complete ctor and then delegate to the base ctor.
    807 
    808   // Emit the constructor prologue, i.e. the base and member
    809   // initializers.
    810   EmitCtorPrologue(Ctor, CtorType, Args);
    811 
    812   // Emit the body of the statement.
    813   if (IsTryBody)
    814     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    815   else if (Body)
    816     EmitStmt(Body);
    817 
    818   // Emit any cleanup blocks associated with the member or base
    819   // initializers, which includes (along the exceptional path) the
    820   // destructors for those members and bases that were fully
    821   // constructed.
    822   RunCleanups.ForceCleanup();
    823 
    824   if (IsTryBody)
    825     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    826 }
    827 
    828 namespace {
    829   /// RAII object to indicate that codegen is copying the value representation
    830   /// instead of the object representation. Useful when copying a struct or
    831   /// class which has uninitialized members and we're only performing
    832   /// lvalue-to-rvalue conversion on the object but not its members.
    833   class CopyingValueRepresentation {
    834   public:
    835     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
    836         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
    837       CGF.SanOpts.set(SanitizerKind::Bool, false);
    838       CGF.SanOpts.set(SanitizerKind::Enum, false);
    839     }
    840     ~CopyingValueRepresentation() {
    841       CGF.SanOpts = OldSanOpts;
    842     }
    843   private:
    844     CodeGenFunction &CGF;
    845     SanitizerSet OldSanOpts;
    846   };
    847 }
    848 
    849 namespace {
    850   class FieldMemcpyizer {
    851   public:
    852     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    853                     const VarDecl *SrcRec)
    854       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    855         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    856         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
    857         LastFieldOffset(0), LastAddedFieldIndex(0) {}
    858 
    859     bool isMemcpyableField(FieldDecl *F) const {
    860       // Never memcpy fields when we are adding poisoned paddings.
    861       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
    862         return false;
    863       Qualifiers Qual = F->getType().getQualifiers();
    864       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
    865         return false;
    866       return true;
    867     }
    868 
    869     void addMemcpyableField(FieldDecl *F) {
    870       if (!FirstField)
    871         addInitialField(F);
    872       else
    873         addNextField(F);
    874     }
    875 
    876     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
    877       unsigned LastFieldSize =
    878         LastField->isBitField() ?
    879           LastField->getBitWidthValue(CGF.getContext()) :
    880           CGF.getContext().getTypeSize(LastField->getType());
    881       uint64_t MemcpySizeBits =
    882         LastFieldOffset + LastFieldSize - FirstByteOffset +
    883         CGF.getContext().getCharWidth() - 1;
    884       CharUnits MemcpySize =
    885         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
    886       return MemcpySize;
    887     }
    888 
    889     void emitMemcpy() {
    890       // Give the subclass a chance to bail out if it feels the memcpy isn't
    891       // worth it (e.g. Hasn't aggregated enough data).
    892       if (!FirstField) {
    893         return;
    894       }
    895 
    896       CharUnits Alignment;
    897 
    898       uint64_t FirstByteOffset;
    899       if (FirstField->isBitField()) {
    900         const CGRecordLayout &RL =
    901           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
    902         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
    903         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
    904         // FirstFieldOffset is not appropriate for bitfields,
    905         // it won't tell us what the storage offset should be and thus might not
    906         // be properly aligned.
    907         //
    908         // Instead calculate the storage offset using the offset of the field in
    909         // the struct type.
    910         const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
    911         FirstByteOffset =
    912             DL.getStructLayout(RL.getLLVMType())
    913                 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField));
    914       } else {
    915         Alignment = CGF.getContext().getDeclAlign(FirstField);
    916         FirstByteOffset = FirstFieldOffset;
    917       }
    918 
    919       assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) %
    920               Alignment) == 0 && "Bad field alignment.");
    921 
    922       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
    923       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    924       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    925       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    926       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
    927       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
    928       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    929       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
    930 
    931       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
    932                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
    933                    MemcpySize, Alignment);
    934       reset();
    935     }
    936 
    937     void reset() {
    938       FirstField = nullptr;
    939     }
    940 
    941   protected:
    942     CodeGenFunction &CGF;
    943     const CXXRecordDecl *ClassDecl;
    944 
    945   private:
    946 
    947     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
    948                       CharUnits Size, CharUnits Alignment) {
    949       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
    950       llvm::Type *DBP =
    951         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
    952       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
    953 
    954       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
    955       llvm::Type *SBP =
    956         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
    957       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
    958 
    959       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
    960                                Alignment.getQuantity());
    961     }
    962 
    963     void addInitialField(FieldDecl *F) {
    964         FirstField = F;
    965         LastField = F;
    966         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    967         LastFieldOffset = FirstFieldOffset;
    968         LastAddedFieldIndex = F->getFieldIndex();
    969         return;
    970       }
    971 
    972     void addNextField(FieldDecl *F) {
    973       // For the most part, the following invariant will hold:
    974       //   F->getFieldIndex() == LastAddedFieldIndex + 1
    975       // The one exception is that Sema won't add a copy-initializer for an
    976       // unnamed bitfield, which will show up here as a gap in the sequence.
    977       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
    978              "Cannot aggregate fields out of order.");
    979       LastAddedFieldIndex = F->getFieldIndex();
    980 
    981       // The 'first' and 'last' fields are chosen by offset, rather than field
    982       // index. This allows the code to support bitfields, as well as regular
    983       // fields.
    984       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    985       if (FOffset < FirstFieldOffset) {
    986         FirstField = F;
    987         FirstFieldOffset = FOffset;
    988       } else if (FOffset > LastFieldOffset) {
    989         LastField = F;
    990         LastFieldOffset = FOffset;
    991       }
    992     }
    993 
    994     const VarDecl *SrcRec;
    995     const ASTRecordLayout &RecLayout;
    996     FieldDecl *FirstField;
    997     FieldDecl *LastField;
    998     uint64_t FirstFieldOffset, LastFieldOffset;
    999     unsigned LastAddedFieldIndex;
   1000   };
   1001 
   1002   class ConstructorMemcpyizer : public FieldMemcpyizer {
   1003   private:
   1004 
   1005     /// Get source argument for copy constructor. Returns null if not a copy
   1006     /// constructor.
   1007     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
   1008                                                const CXXConstructorDecl *CD,
   1009                                                FunctionArgList &Args) {
   1010       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
   1011         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
   1012       return nullptr;
   1013     }
   1014 
   1015     // Returns true if a CXXCtorInitializer represents a member initialization
   1016     // that can be rolled into a memcpy.
   1017     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
   1018       if (!MemcpyableCtor)
   1019         return false;
   1020       FieldDecl *Field = MemberInit->getMember();
   1021       assert(Field && "No field for member init.");
   1022       QualType FieldType = Field->getType();
   1023       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
   1024 
   1025       // Bail out on non-POD, not-trivially-constructable members.
   1026       if (!(CE && CE->getConstructor()->isTrivial()) &&
   1027           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
   1028             FieldType->isReferenceType()))
   1029         return false;
   1030 
   1031       // Bail out on volatile fields.
   1032       if (!isMemcpyableField(Field))
   1033         return false;
   1034 
   1035       // Otherwise we're good.
   1036       return true;
   1037     }
   1038 
   1039   public:
   1040     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
   1041                           FunctionArgList &Args)
   1042       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
   1043         ConstructorDecl(CD),
   1044         MemcpyableCtor(CD->isDefaulted() &&
   1045                        CD->isCopyOrMoveConstructor() &&
   1046                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
   1047         Args(Args) { }
   1048 
   1049     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
   1050       if (isMemberInitMemcpyable(MemberInit)) {
   1051         AggregatedInits.push_back(MemberInit);
   1052         addMemcpyableField(MemberInit->getMember());
   1053       } else {
   1054         emitAggregatedInits();
   1055         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
   1056                               ConstructorDecl, Args);
   1057       }
   1058     }
   1059 
   1060     void emitAggregatedInits() {
   1061       if (AggregatedInits.size() <= 1) {
   1062         // This memcpy is too small to be worthwhile. Fall back on default
   1063         // codegen.
   1064         if (!AggregatedInits.empty()) {
   1065           CopyingValueRepresentation CVR(CGF);
   1066           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
   1067                                 AggregatedInits[0], ConstructorDecl, Args);
   1068         }
   1069         reset();
   1070         return;
   1071       }
   1072 
   1073       pushEHDestructors();
   1074       emitMemcpy();
   1075       AggregatedInits.clear();
   1076     }
   1077 
   1078     void pushEHDestructors() {
   1079       llvm::Value *ThisPtr = CGF.LoadCXXThis();
   1080       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
   1081       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
   1082 
   1083       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
   1084         QualType FieldType = AggregatedInits[i]->getMember()->getType();
   1085         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
   1086         if (CGF.needsEHCleanup(dtorKind))
   1087           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
   1088       }
   1089     }
   1090 
   1091     void finish() {
   1092       emitAggregatedInits();
   1093     }
   1094 
   1095   private:
   1096     const CXXConstructorDecl *ConstructorDecl;
   1097     bool MemcpyableCtor;
   1098     FunctionArgList &Args;
   1099     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
   1100   };
   1101 
   1102   class AssignmentMemcpyizer : public FieldMemcpyizer {
   1103   private:
   1104 
   1105     // Returns the memcpyable field copied by the given statement, if one
   1106     // exists. Otherwise returns null.
   1107     FieldDecl *getMemcpyableField(Stmt *S) {
   1108       if (!AssignmentsMemcpyable)
   1109         return nullptr;
   1110       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
   1111         // Recognise trivial assignments.
   1112         if (BO->getOpcode() != BO_Assign)
   1113           return nullptr;
   1114         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
   1115         if (!ME)
   1116           return nullptr;
   1117         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1118         if (!Field || !isMemcpyableField(Field))
   1119           return nullptr;
   1120         Stmt *RHS = BO->getRHS();
   1121         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
   1122           RHS = EC->getSubExpr();
   1123         if (!RHS)
   1124           return nullptr;
   1125         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1126         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1127           return nullptr;
   1128         return Field;
   1129       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1130         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1131         if (!(MD && (MD->isCopyAssignmentOperator() ||
   1132                        MD->isMoveAssignmentOperator()) &&
   1133               MD->isTrivial()))
   1134           return nullptr;
   1135         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1136         if (!IOA)
   1137           return nullptr;
   1138         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1139         if (!Field || !isMemcpyableField(Field))
   1140           return nullptr;
   1141         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1142         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1143           return nullptr;
   1144         return Field;
   1145       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1146         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1147         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1148           return nullptr;
   1149         Expr *DstPtr = CE->getArg(0);
   1150         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1151           DstPtr = DC->getSubExpr();
   1152         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1153         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1154           return nullptr;
   1155         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1156         if (!ME)
   1157           return nullptr;
   1158         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1159         if (!Field || !isMemcpyableField(Field))
   1160           return nullptr;
   1161         Expr *SrcPtr = CE->getArg(1);
   1162         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1163           SrcPtr = SC->getSubExpr();
   1164         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1165         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1166           return nullptr;
   1167         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1168         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1169           return nullptr;
   1170         return Field;
   1171       }
   1172 
   1173       return nullptr;
   1174     }
   1175 
   1176     bool AssignmentsMemcpyable;
   1177     SmallVector<Stmt*, 16> AggregatedStmts;
   1178 
   1179   public:
   1180 
   1181     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1182                          FunctionArgList &Args)
   1183       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1184         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1185       assert(Args.size() == 2);
   1186     }
   1187 
   1188     void emitAssignment(Stmt *S) {
   1189       FieldDecl *F = getMemcpyableField(S);
   1190       if (F) {
   1191         addMemcpyableField(F);
   1192         AggregatedStmts.push_back(S);
   1193       } else {
   1194         emitAggregatedStmts();
   1195         CGF.EmitStmt(S);
   1196       }
   1197     }
   1198 
   1199     void emitAggregatedStmts() {
   1200       if (AggregatedStmts.size() <= 1) {
   1201         if (!AggregatedStmts.empty()) {
   1202           CopyingValueRepresentation CVR(CGF);
   1203           CGF.EmitStmt(AggregatedStmts[0]);
   1204         }
   1205         reset();
   1206       }
   1207 
   1208       emitMemcpy();
   1209       AggregatedStmts.clear();
   1210     }
   1211 
   1212     void finish() {
   1213       emitAggregatedStmts();
   1214     }
   1215   };
   1216 
   1217 }
   1218 
   1219 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1220 /// base classes and non-static data members belonging to this constructor.
   1221 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1222                                        CXXCtorType CtorType,
   1223                                        FunctionArgList &Args) {
   1224   if (CD->isDelegatingConstructor())
   1225     return EmitDelegatingCXXConstructorCall(CD, Args);
   1226 
   1227   const CXXRecordDecl *ClassDecl = CD->getParent();
   1228 
   1229   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1230                                           E = CD->init_end();
   1231 
   1232   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
   1233   if (ClassDecl->getNumVBases() &&
   1234       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1235     // The ABIs that don't have constructor variants need to put a branch
   1236     // before the virtual base initialization code.
   1237     BaseCtorContinueBB =
   1238       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
   1239     assert(BaseCtorContinueBB);
   1240   }
   1241 
   1242   // Virtual base initializers first.
   1243   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1244     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1245   }
   1246 
   1247   if (BaseCtorContinueBB) {
   1248     // Complete object handler should continue to the remaining initializers.
   1249     Builder.CreateBr(BaseCtorContinueBB);
   1250     EmitBlock(BaseCtorContinueBB);
   1251   }
   1252 
   1253   // Then, non-virtual base initializers.
   1254   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1255     assert(!(*B)->isBaseVirtual());
   1256     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1257   }
   1258 
   1259   InitializeVTablePointers(ClassDecl);
   1260 
   1261   // And finally, initialize class members.
   1262   FieldConstructionScope FCS(*this, CXXThisValue);
   1263   ConstructorMemcpyizer CM(*this, CD, Args);
   1264   for (; B != E; B++) {
   1265     CXXCtorInitializer *Member = (*B);
   1266     assert(!Member->isBaseInitializer());
   1267     assert(Member->isAnyMemberInitializer() &&
   1268            "Delegating initializer on non-delegating constructor");
   1269     CM.addMemberInitializer(Member);
   1270   }
   1271   CM.finish();
   1272 }
   1273 
   1274 static bool
   1275 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1276 
   1277 static bool
   1278 HasTrivialDestructorBody(ASTContext &Context,
   1279                          const CXXRecordDecl *BaseClassDecl,
   1280                          const CXXRecordDecl *MostDerivedClassDecl)
   1281 {
   1282   // If the destructor is trivial we don't have to check anything else.
   1283   if (BaseClassDecl->hasTrivialDestructor())
   1284     return true;
   1285 
   1286   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1287     return false;
   1288 
   1289   // Check fields.
   1290   for (const auto *Field : BaseClassDecl->fields())
   1291     if (!FieldHasTrivialDestructorBody(Context, Field))
   1292       return false;
   1293 
   1294   // Check non-virtual bases.
   1295   for (const auto &I : BaseClassDecl->bases()) {
   1296     if (I.isVirtual())
   1297       continue;
   1298 
   1299     const CXXRecordDecl *NonVirtualBase =
   1300       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1301     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1302                                   MostDerivedClassDecl))
   1303       return false;
   1304   }
   1305 
   1306   if (BaseClassDecl == MostDerivedClassDecl) {
   1307     // Check virtual bases.
   1308     for (const auto &I : BaseClassDecl->vbases()) {
   1309       const CXXRecordDecl *VirtualBase =
   1310         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1311       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1312                                     MostDerivedClassDecl))
   1313         return false;
   1314     }
   1315   }
   1316 
   1317   return true;
   1318 }
   1319 
   1320 static bool
   1321 FieldHasTrivialDestructorBody(ASTContext &Context,
   1322                               const FieldDecl *Field)
   1323 {
   1324   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1325 
   1326   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1327   if (!RT)
   1328     return true;
   1329 
   1330   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1331   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1332 }
   1333 
   1334 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1335 /// any vtable pointers before calling this destructor.
   1336 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
   1337                                                const CXXDestructorDecl *Dtor) {
   1338   if (!Dtor->hasTrivialBody())
   1339     return false;
   1340 
   1341   // Check the fields.
   1342   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1343   for (const auto *Field : ClassDecl->fields())
   1344     if (!FieldHasTrivialDestructorBody(Context, Field))
   1345       return false;
   1346 
   1347   return true;
   1348 }
   1349 
   1350 /// EmitDestructorBody - Emits the body of the current destructor.
   1351 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1352   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1353   CXXDtorType DtorType = CurGD.getDtorType();
   1354 
   1355   // The call to operator delete in a deleting destructor happens
   1356   // outside of the function-try-block, which means it's always
   1357   // possible to delegate the destructor body to the complete
   1358   // destructor.  Do so.
   1359   if (DtorType == Dtor_Deleting) {
   1360     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1361     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1362                           /*Delegating=*/false, LoadCXXThis());
   1363     PopCleanupBlock();
   1364     return;
   1365   }
   1366 
   1367   Stmt *Body = Dtor->getBody();
   1368 
   1369   // If the body is a function-try-block, enter the try before
   1370   // anything else.
   1371   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1372   if (isTryBody)
   1373     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1374   EmitAsanPrologueOrEpilogue(false);
   1375 
   1376   // Enter the epilogue cleanups.
   1377   RunCleanupsScope DtorEpilogue(*this);
   1378 
   1379   // If this is the complete variant, just invoke the base variant;
   1380   // the epilogue will destruct the virtual bases.  But we can't do
   1381   // this optimization if the body is a function-try-block, because
   1382   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
   1383   // always delegate because we might not have a definition in this TU.
   1384   switch (DtorType) {
   1385   case Dtor_Comdat:
   1386     llvm_unreachable("not expecting a COMDAT");
   1387 
   1388   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1389 
   1390   case Dtor_Complete:
   1391     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
   1392            "can't emit a dtor without a body for non-Microsoft ABIs");
   1393 
   1394     // Enter the cleanup scopes for virtual bases.
   1395     EnterDtorCleanups(Dtor, Dtor_Complete);
   1396 
   1397     if (!isTryBody) {
   1398       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1399                             /*Delegating=*/false, LoadCXXThis());
   1400       break;
   1401     }
   1402     // Fallthrough: act like we're in the base variant.
   1403 
   1404   case Dtor_Base:
   1405     assert(Body);
   1406 
   1407     RegionCounter Cnt = getPGORegionCounter(Body);
   1408     Cnt.beginRegion(Builder);
   1409 
   1410     // Enter the cleanup scopes for fields and non-virtual bases.
   1411     EnterDtorCleanups(Dtor, Dtor_Base);
   1412 
   1413     // Initialize the vtable pointers before entering the body.
   1414     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
   1415         InitializeVTablePointers(Dtor->getParent());
   1416 
   1417     if (isTryBody)
   1418       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1419     else if (Body)
   1420       EmitStmt(Body);
   1421     else {
   1422       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1423       // nothing to do besides what's in the epilogue
   1424     }
   1425     // -fapple-kext must inline any call to this dtor into
   1426     // the caller's body.
   1427     if (getLangOpts().AppleKext)
   1428       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1429     break;
   1430   }
   1431 
   1432   // Jump out through the epilogue cleanups.
   1433   DtorEpilogue.ForceCleanup();
   1434 
   1435   // Exit the try if applicable.
   1436   if (isTryBody)
   1437     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1438 }
   1439 
   1440 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1441   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1442   const Stmt *RootS = AssignOp->getBody();
   1443   assert(isa<CompoundStmt>(RootS) &&
   1444          "Body of an implicit assignment operator should be compound stmt.");
   1445   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1446 
   1447   LexicalScope Scope(*this, RootCS->getSourceRange());
   1448 
   1449   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1450   for (auto *I : RootCS->body())
   1451     AM.emitAssignment(I);
   1452   AM.finish();
   1453 }
   1454 
   1455 namespace {
   1456   /// Call the operator delete associated with the current destructor.
   1457   struct CallDtorDelete : EHScopeStack::Cleanup {
   1458     CallDtorDelete() {}
   1459 
   1460     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1461       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1462       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1463       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1464                          CGF.getContext().getTagDeclType(ClassDecl));
   1465     }
   1466   };
   1467 
   1468   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
   1469     llvm::Value *ShouldDeleteCondition;
   1470   public:
   1471     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1472       : ShouldDeleteCondition(ShouldDeleteCondition) {
   1473       assert(ShouldDeleteCondition != nullptr);
   1474     }
   1475 
   1476     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1477       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1478       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1479       llvm::Value *ShouldCallDelete
   1480         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1481       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1482 
   1483       CGF.EmitBlock(callDeleteBB);
   1484       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1485       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1486       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1487                          CGF.getContext().getTagDeclType(ClassDecl));
   1488       CGF.Builder.CreateBr(continueBB);
   1489 
   1490       CGF.EmitBlock(continueBB);
   1491     }
   1492   };
   1493 
   1494   class DestroyField  : public EHScopeStack::Cleanup {
   1495     const FieldDecl *field;
   1496     CodeGenFunction::Destroyer *destroyer;
   1497     bool useEHCleanupForArray;
   1498 
   1499   public:
   1500     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1501                  bool useEHCleanupForArray)
   1502       : field(field), destroyer(destroyer),
   1503         useEHCleanupForArray(useEHCleanupForArray) {}
   1504 
   1505     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1506       // Find the address of the field.
   1507       llvm::Value *thisValue = CGF.LoadCXXThis();
   1508       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1509       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1510       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1511       assert(LV.isSimple());
   1512 
   1513       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1514                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1515     }
   1516   };
   1517 }
   1518 
   1519 /// \brief Emit all code that comes at the end of class's
   1520 /// destructor. This is to call destructors on members and base classes
   1521 /// in reverse order of their construction.
   1522 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1523                                         CXXDtorType DtorType) {
   1524   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
   1525          "Should not emit dtor epilogue for non-exported trivial dtor!");
   1526 
   1527   // The deleting-destructor phase just needs to call the appropriate
   1528   // operator delete that Sema picked up.
   1529   if (DtorType == Dtor_Deleting) {
   1530     assert(DD->getOperatorDelete() &&
   1531            "operator delete missing - EnterDtorCleanups");
   1532     if (CXXStructorImplicitParamValue) {
   1533       // If there is an implicit param to the deleting dtor, it's a boolean
   1534       // telling whether we should call delete at the end of the dtor.
   1535       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1536           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1537     } else {
   1538       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1539     }
   1540     return;
   1541   }
   1542 
   1543   const CXXRecordDecl *ClassDecl = DD->getParent();
   1544 
   1545   // Unions have no bases and do not call field destructors.
   1546   if (ClassDecl->isUnion())
   1547     return;
   1548 
   1549   // The complete-destructor phase just destructs all the virtual bases.
   1550   if (DtorType == Dtor_Complete) {
   1551 
   1552     // We push them in the forward order so that they'll be popped in
   1553     // the reverse order.
   1554     for (const auto &Base : ClassDecl->vbases()) {
   1555       CXXRecordDecl *BaseClassDecl
   1556         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1557 
   1558       // Ignore trivial destructors.
   1559       if (BaseClassDecl->hasTrivialDestructor())
   1560         continue;
   1561 
   1562       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1563                                         BaseClassDecl,
   1564                                         /*BaseIsVirtual*/ true);
   1565     }
   1566 
   1567     return;
   1568   }
   1569 
   1570   assert(DtorType == Dtor_Base);
   1571 
   1572   // Destroy non-virtual bases.
   1573   for (const auto &Base : ClassDecl->bases()) {
   1574     // Ignore virtual bases.
   1575     if (Base.isVirtual())
   1576       continue;
   1577 
   1578     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1579 
   1580     // Ignore trivial destructors.
   1581     if (BaseClassDecl->hasTrivialDestructor())
   1582       continue;
   1583 
   1584     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1585                                       BaseClassDecl,
   1586                                       /*BaseIsVirtual*/ false);
   1587   }
   1588 
   1589   // Destroy direct fields.
   1590   for (const auto *Field : ClassDecl->fields()) {
   1591     QualType type = Field->getType();
   1592     QualType::DestructionKind dtorKind = type.isDestructedType();
   1593     if (!dtorKind) continue;
   1594 
   1595     // Anonymous union members do not have their destructors called.
   1596     const RecordType *RT = type->getAsUnionType();
   1597     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1598 
   1599     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1600     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
   1601                                       getDestroyer(dtorKind),
   1602                                       cleanupKind & EHCleanup);
   1603   }
   1604 }
   1605 
   1606 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1607 /// constructor for each of several members of an array.
   1608 ///
   1609 /// \param ctor the constructor to call for each element
   1610 /// \param arrayType the type of the array to initialize
   1611 /// \param arrayBegin an arrayType*
   1612 /// \param zeroInitialize true if each element should be
   1613 ///   zero-initialized before it is constructed
   1614 void CodeGenFunction::EmitCXXAggrConstructorCall(
   1615     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
   1616     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
   1617   QualType elementType;
   1618   llvm::Value *numElements =
   1619     emitArrayLength(arrayType, elementType, arrayBegin);
   1620 
   1621   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
   1622 }
   1623 
   1624 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1625 /// constructor for each of several members of an array.
   1626 ///
   1627 /// \param ctor the constructor to call for each element
   1628 /// \param numElements the number of elements in the array;
   1629 ///   may be zero
   1630 /// \param arrayBegin a T*, where T is the type constructed by ctor
   1631 /// \param zeroInitialize true if each element should be
   1632 ///   zero-initialized before it is constructed
   1633 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1634                                                  llvm::Value *numElements,
   1635                                                  llvm::Value *arrayBegin,
   1636                                                  const CXXConstructExpr *E,
   1637                                                  bool zeroInitialize) {
   1638 
   1639   // It's legal for numElements to be zero.  This can happen both
   1640   // dynamically, because x can be zero in 'new A[x]', and statically,
   1641   // because of GCC extensions that permit zero-length arrays.  There
   1642   // are probably legitimate places where we could assume that this
   1643   // doesn't happen, but it's not clear that it's worth it.
   1644   llvm::BranchInst *zeroCheckBranch = nullptr;
   1645 
   1646   // Optimize for a constant count.
   1647   llvm::ConstantInt *constantCount
   1648     = dyn_cast<llvm::ConstantInt>(numElements);
   1649   if (constantCount) {
   1650     // Just skip out if the constant count is zero.
   1651     if (constantCount->isZero()) return;
   1652 
   1653   // Otherwise, emit the check.
   1654   } else {
   1655     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1656     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1657     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1658     EmitBlock(loopBB);
   1659   }
   1660 
   1661   // Find the end of the array.
   1662   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1663                                                     "arrayctor.end");
   1664 
   1665   // Enter the loop, setting up a phi for the current location to initialize.
   1666   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1667   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1668   EmitBlock(loopBB);
   1669   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1670                                          "arrayctor.cur");
   1671   cur->addIncoming(arrayBegin, entryBB);
   1672 
   1673   // Inside the loop body, emit the constructor call on the array element.
   1674 
   1675   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1676 
   1677   // Zero initialize the storage, if requested.
   1678   if (zeroInitialize)
   1679     EmitNullInitialization(cur, type);
   1680 
   1681   // C++ [class.temporary]p4:
   1682   // There are two contexts in which temporaries are destroyed at a different
   1683   // point than the end of the full-expression. The first context is when a
   1684   // default constructor is called to initialize an element of an array.
   1685   // If the constructor has one or more default arguments, the destruction of
   1686   // every temporary created in a default argument expression is sequenced
   1687   // before the construction of the next array element, if any.
   1688 
   1689   {
   1690     RunCleanupsScope Scope(*this);
   1691 
   1692     // Evaluate the constructor and its arguments in a regular
   1693     // partial-destroy cleanup.
   1694     if (getLangOpts().Exceptions &&
   1695         !ctor->getParent()->hasTrivialDestructor()) {
   1696       Destroyer *destroyer = destroyCXXObject;
   1697       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
   1698     }
   1699 
   1700     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
   1701                            /*Delegating=*/false, cur, E);
   1702   }
   1703 
   1704   // Go to the next element.
   1705   llvm::Value *next =
   1706     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   1707                               "arrayctor.next");
   1708   cur->addIncoming(next, Builder.GetInsertBlock());
   1709 
   1710   // Check whether that's the end of the loop.
   1711   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   1712   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   1713   Builder.CreateCondBr(done, contBB, loopBB);
   1714 
   1715   // Patch the earlier check to skip over the loop.
   1716   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   1717 
   1718   EmitBlock(contBB);
   1719 }
   1720 
   1721 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   1722                                        llvm::Value *addr,
   1723                                        QualType type) {
   1724   const RecordType *rtype = type->castAs<RecordType>();
   1725   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   1726   const CXXDestructorDecl *dtor = record->getDestructor();
   1727   assert(!dtor->isTrivial());
   1728   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   1729                             /*Delegating=*/false, addr);
   1730 }
   1731 
   1732 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   1733                                              CXXCtorType Type,
   1734                                              bool ForVirtualBase,
   1735                                              bool Delegating, llvm::Value *This,
   1736                                              const CXXConstructExpr *E) {
   1737   // If this is a trivial constructor, just emit what's needed.
   1738   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) {
   1739     if (E->getNumArgs() == 0) {
   1740       // Trivial default constructor, no codegen required.
   1741       assert(D->isDefaultConstructor() &&
   1742              "trivial 0-arg ctor not a default ctor");
   1743       return;
   1744     }
   1745 
   1746     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
   1747     assert(D->isCopyOrMoveConstructor() &&
   1748            "trivial 1-arg ctor not a copy/move ctor");
   1749 
   1750     const Expr *Arg = E->getArg(0);
   1751     QualType SrcTy = Arg->getType();
   1752     llvm::Value *Src = EmitLValue(Arg).getAddress();
   1753     QualType DestTy = getContext().getTypeDeclType(D->getParent());
   1754     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
   1755     return;
   1756   }
   1757 
   1758   // C++11 [class.mfct.non-static]p2:
   1759   //   If a non-static member function of a class X is called for an object that
   1760   //   is not of type X, or of a type derived from X, the behavior is undefined.
   1761   // FIXME: Provide a source location here.
   1762   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
   1763                 getContext().getRecordType(D->getParent()));
   1764 
   1765   CallArgList Args;
   1766 
   1767   // Push the this ptr.
   1768   Args.add(RValue::get(This), D->getThisType(getContext()));
   1769 
   1770   // Add the rest of the user-supplied arguments.
   1771   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1772   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
   1773 
   1774   // Insert any ABI-specific implicit constructor arguments.
   1775   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
   1776       *this, D, Type, ForVirtualBase, Delegating, Args);
   1777 
   1778   // Emit the call.
   1779   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
   1780   const CGFunctionInfo &Info =
   1781       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
   1782   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
   1783 }
   1784 
   1785 void
   1786 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1787                                         llvm::Value *This, llvm::Value *Src,
   1788                                         const CXXConstructExpr *E) {
   1789   if (D->isTrivial() &&
   1790       !D->getParent()->mayInsertExtraPadding()) {
   1791     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
   1792     assert(D->isCopyOrMoveConstructor() &&
   1793            "trivial 1-arg ctor not a copy/move ctor");
   1794     EmitAggregateCopyCtor(This, Src,
   1795                           getContext().getTypeDeclType(D->getParent()),
   1796                           E->arg_begin()->getType());
   1797     return;
   1798   }
   1799   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
   1800   assert(D->isInstance() &&
   1801          "Trying to emit a member call expr on a static method!");
   1802 
   1803   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1804 
   1805   CallArgList Args;
   1806 
   1807   // Push the this ptr.
   1808   Args.add(RValue::get(This), D->getThisType(getContext()));
   1809 
   1810   // Push the src ptr.
   1811   QualType QT = *(FPT->param_type_begin());
   1812   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   1813   Src = Builder.CreateBitCast(Src, t);
   1814   Args.add(RValue::get(Src), QT);
   1815 
   1816   // Skip over first argument (Src).
   1817   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
   1818                /*ParamsToSkip*/ 1);
   1819 
   1820   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
   1821            Callee, ReturnValueSlot(), Args, D);
   1822 }
   1823 
   1824 void
   1825 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1826                                                 CXXCtorType CtorType,
   1827                                                 const FunctionArgList &Args,
   1828                                                 SourceLocation Loc) {
   1829   CallArgList DelegateArgs;
   1830 
   1831   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   1832   assert(I != E && "no parameters to constructor");
   1833 
   1834   // this
   1835   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
   1836   ++I;
   1837 
   1838   // vtt
   1839   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
   1840                                          /*ForVirtualBase=*/false,
   1841                                          /*Delegating=*/true)) {
   1842     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
   1843     DelegateArgs.add(RValue::get(VTT), VoidPP);
   1844 
   1845     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
   1846       assert(I != E && "cannot skip vtt parameter, already done with args");
   1847       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
   1848       ++I;
   1849     }
   1850   }
   1851 
   1852   // Explicit arguments.
   1853   for (; I != E; ++I) {
   1854     const VarDecl *param = *I;
   1855     // FIXME: per-argument source location
   1856     EmitDelegateCallArg(DelegateArgs, param, Loc);
   1857   }
   1858 
   1859   llvm::Value *Callee =
   1860       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
   1861   EmitCall(CGM.getTypes()
   1862                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
   1863            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
   1864 }
   1865 
   1866 namespace {
   1867   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
   1868     const CXXDestructorDecl *Dtor;
   1869     llvm::Value *Addr;
   1870     CXXDtorType Type;
   1871 
   1872     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
   1873                            CXXDtorType Type)
   1874       : Dtor(D), Addr(Addr), Type(Type) {}
   1875 
   1876     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1877       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   1878                                 /*Delegating=*/true, Addr);
   1879     }
   1880   };
   1881 }
   1882 
   1883 void
   1884 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1885                                                   const FunctionArgList &Args) {
   1886   assert(Ctor->isDelegatingConstructor());
   1887 
   1888   llvm::Value *ThisPtr = LoadCXXThis();
   1889 
   1890   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
   1891   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1892   AggValueSlot AggSlot =
   1893     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
   1894                           AggValueSlot::IsDestructed,
   1895                           AggValueSlot::DoesNotNeedGCBarriers,
   1896                           AggValueSlot::IsNotAliased);
   1897 
   1898   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   1899 
   1900   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   1901   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   1902     CXXDtorType Type =
   1903       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   1904 
   1905     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   1906                                                 ClassDecl->getDestructor(),
   1907                                                 ThisPtr, Type);
   1908   }
   1909 }
   1910 
   1911 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   1912                                             CXXDtorType Type,
   1913                                             bool ForVirtualBase,
   1914                                             bool Delegating,
   1915                                             llvm::Value *This) {
   1916   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
   1917                                      Delegating, This);
   1918 }
   1919 
   1920 namespace {
   1921   struct CallLocalDtor : EHScopeStack::Cleanup {
   1922     const CXXDestructorDecl *Dtor;
   1923     llvm::Value *Addr;
   1924 
   1925     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
   1926       : Dtor(D), Addr(Addr) {}
   1927 
   1928     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1929       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1930                                 /*ForVirtualBase=*/false,
   1931                                 /*Delegating=*/false, Addr);
   1932     }
   1933   };
   1934 }
   1935 
   1936 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   1937                                             llvm::Value *Addr) {
   1938   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   1939 }
   1940 
   1941 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
   1942   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   1943   if (!ClassDecl) return;
   1944   if (ClassDecl->hasTrivialDestructor()) return;
   1945 
   1946   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   1947   assert(D && D->isUsed() && "destructor not marked as used!");
   1948   PushDestructorCleanup(D, Addr);
   1949 }
   1950 
   1951 void
   1952 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
   1953                                          const CXXRecordDecl *NearestVBase,
   1954                                          CharUnits OffsetFromNearestVBase,
   1955                                          const CXXRecordDecl *VTableClass) {
   1956   const CXXRecordDecl *RD = Base.getBase();
   1957 
   1958   // Don't initialize the vtable pointer if the class is marked with the
   1959   // 'novtable' attribute.
   1960   if ((RD == VTableClass || RD == NearestVBase) &&
   1961       VTableClass->hasAttr<MSNoVTableAttr>())
   1962     return;
   1963 
   1964   // Compute the address point.
   1965   bool NeedsVirtualOffset;
   1966   llvm::Value *VTableAddressPoint =
   1967       CGM.getCXXABI().getVTableAddressPointInStructor(
   1968           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
   1969   if (!VTableAddressPoint)
   1970     return;
   1971 
   1972   // Compute where to store the address point.
   1973   llvm::Value *VirtualOffset = nullptr;
   1974   CharUnits NonVirtualOffset = CharUnits::Zero();
   1975 
   1976   if (NeedsVirtualOffset) {
   1977     // We need to use the virtual base offset offset because the virtual base
   1978     // might have a different offset in the most derived class.
   1979     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
   1980                                                               LoadCXXThis(),
   1981                                                               VTableClass,
   1982                                                               NearestVBase);
   1983     NonVirtualOffset = OffsetFromNearestVBase;
   1984   } else {
   1985     // We can just use the base offset in the complete class.
   1986     NonVirtualOffset = Base.getBaseOffset();
   1987   }
   1988 
   1989   // Apply the offsets.
   1990   llvm::Value *VTableField = LoadCXXThis();
   1991 
   1992   if (!NonVirtualOffset.isZero() || VirtualOffset)
   1993     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
   1994                                                   NonVirtualOffset,
   1995                                                   VirtualOffset);
   1996 
   1997   // Finally, store the address point. Use the same LLVM types as the field to
   1998   // support optimization.
   1999   llvm::Type *VTablePtrTy =
   2000       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
   2001           ->getPointerTo()
   2002           ->getPointerTo();
   2003   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
   2004   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
   2005   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   2006   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
   2007 }
   2008 
   2009 void
   2010 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
   2011                                           const CXXRecordDecl *NearestVBase,
   2012                                           CharUnits OffsetFromNearestVBase,
   2013                                           bool BaseIsNonVirtualPrimaryBase,
   2014                                           const CXXRecordDecl *VTableClass,
   2015                                           VisitedVirtualBasesSetTy& VBases) {
   2016   // If this base is a non-virtual primary base the address point has already
   2017   // been set.
   2018   if (!BaseIsNonVirtualPrimaryBase) {
   2019     // Initialize the vtable pointer for this base.
   2020     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
   2021                             VTableClass);
   2022   }
   2023 
   2024   const CXXRecordDecl *RD = Base.getBase();
   2025 
   2026   // Traverse bases.
   2027   for (const auto &I : RD->bases()) {
   2028     CXXRecordDecl *BaseDecl
   2029       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2030 
   2031     // Ignore classes without a vtable.
   2032     if (!BaseDecl->isDynamicClass())
   2033       continue;
   2034 
   2035     CharUnits BaseOffset;
   2036     CharUnits BaseOffsetFromNearestVBase;
   2037     bool BaseDeclIsNonVirtualPrimaryBase;
   2038 
   2039     if (I.isVirtual()) {
   2040       // Check if we've visited this virtual base before.
   2041       if (!VBases.insert(BaseDecl).second)
   2042         continue;
   2043 
   2044       const ASTRecordLayout &Layout =
   2045         getContext().getASTRecordLayout(VTableClass);
   2046 
   2047       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   2048       BaseOffsetFromNearestVBase = CharUnits::Zero();
   2049       BaseDeclIsNonVirtualPrimaryBase = false;
   2050     } else {
   2051       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   2052 
   2053       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   2054       BaseOffsetFromNearestVBase =
   2055         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   2056       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   2057     }
   2058 
   2059     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
   2060                              I.isVirtual() ? BaseDecl : NearestVBase,
   2061                              BaseOffsetFromNearestVBase,
   2062                              BaseDeclIsNonVirtualPrimaryBase,
   2063                              VTableClass, VBases);
   2064   }
   2065 }
   2066 
   2067 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   2068   // Ignore classes without a vtable.
   2069   if (!RD->isDynamicClass())
   2070     return;
   2071 
   2072   // Initialize the vtable pointers for this class and all of its bases.
   2073   VisitedVirtualBasesSetTy VBases;
   2074   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
   2075                            /*NearestVBase=*/nullptr,
   2076                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   2077                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
   2078 
   2079   if (RD->getNumVBases())
   2080     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
   2081 }
   2082 
   2083 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
   2084                                            llvm::Type *Ty) {
   2085   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
   2086   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   2087   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
   2088   return VTable;
   2089 }
   2090 
   2091 // If a class has a single non-virtual base and does not introduce or override
   2092 // virtual member functions or fields, it will have the same layout as its base.
   2093 // This function returns the least derived such class.
   2094 //
   2095 // Casting an instance of a base class to such a derived class is technically
   2096 // undefined behavior, but it is a relatively common hack for introducing member
   2097 // functions on class instances with specific properties (e.g. llvm::Operator)
   2098 // that works under most compilers and should not have security implications, so
   2099 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
   2100 static const CXXRecordDecl *
   2101 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
   2102   if (!RD->field_empty())
   2103     return RD;
   2104 
   2105   if (RD->getNumVBases() != 0)
   2106     return RD;
   2107 
   2108   if (RD->getNumBases() != 1)
   2109     return RD;
   2110 
   2111   for (const CXXMethodDecl *MD : RD->methods()) {
   2112     if (MD->isVirtual()) {
   2113       // Virtual member functions are only ok if they are implicit destructors
   2114       // because the implicit destructor will have the same semantics as the
   2115       // base class's destructor if no fields are added.
   2116       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
   2117         continue;
   2118       return RD;
   2119     }
   2120   }
   2121 
   2122   return LeastDerivedClassWithSameLayout(
   2123       RD->bases_begin()->getType()->getAsCXXRecordDecl());
   2124 }
   2125 
   2126 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
   2127                                                 llvm::Value *VTable) {
   2128   const CXXRecordDecl *ClassDecl = MD->getParent();
   2129   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2130     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
   2131 
   2132   EmitVTablePtrCheck(ClassDecl, VTable);
   2133 }
   2134 
   2135 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
   2136                                                 llvm::Value *Derived,
   2137                                                 bool MayBeNull) {
   2138   if (!getLangOpts().CPlusPlus)
   2139     return;
   2140 
   2141   auto *ClassTy = T->getAs<RecordType>();
   2142   if (!ClassTy)
   2143     return;
   2144 
   2145   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
   2146 
   2147   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
   2148     return;
   2149 
   2150   SmallString<64> MangledName;
   2151   llvm::raw_svector_ostream Out(MangledName);
   2152   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(),
   2153                                                    Out);
   2154 
   2155   // Blacklist based on the mangled type.
   2156   if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str()))
   2157     return;
   2158 
   2159   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2160     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
   2161 
   2162   llvm::BasicBlock *ContBlock = 0;
   2163 
   2164   if (MayBeNull) {
   2165     llvm::Value *DerivedNotNull =
   2166         Builder.CreateIsNotNull(Derived, "cast.nonnull");
   2167 
   2168     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
   2169     ContBlock = createBasicBlock("cast.cont");
   2170 
   2171     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
   2172 
   2173     EmitBlock(CheckBlock);
   2174   }
   2175 
   2176   llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy);
   2177   EmitVTablePtrCheck(ClassDecl, VTable);
   2178 
   2179   if (MayBeNull) {
   2180     Builder.CreateBr(ContBlock);
   2181     EmitBlock(ContBlock);
   2182   }
   2183 }
   2184 
   2185 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
   2186                                          llvm::Value *VTable) {
   2187   // FIXME: Add blacklisting scheme.
   2188   if (RD->isInStdNamespace())
   2189     return;
   2190 
   2191   std::string OutName;
   2192   llvm::raw_string_ostream Out(OutName);
   2193   CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out);
   2194 
   2195   llvm::Value *BitSetName = llvm::MetadataAsValue::get(
   2196       getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str()));
   2197 
   2198   llvm::Value *BitSetTest = Builder.CreateCall2(
   2199       CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
   2200       Builder.CreateBitCast(VTable, CGM.Int8PtrTy), BitSetName);
   2201 
   2202   llvm::BasicBlock *ContBlock = createBasicBlock("vtable.check.cont");
   2203   llvm::BasicBlock *TrapBlock = createBasicBlock("vtable.check.trap");
   2204 
   2205   Builder.CreateCondBr(BitSetTest, ContBlock, TrapBlock);
   2206 
   2207   EmitBlock(TrapBlock);
   2208   Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
   2209   Builder.CreateUnreachable();
   2210 
   2211   EmitBlock(ContBlock);
   2212 }
   2213 
   2214 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   2215 // quite what we want.
   2216 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   2217   while (true) {
   2218     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   2219       E = PE->getSubExpr();
   2220       continue;
   2221     }
   2222 
   2223     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2224       if (CE->getCastKind() == CK_NoOp) {
   2225         E = CE->getSubExpr();
   2226         continue;
   2227       }
   2228     }
   2229     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2230       if (UO->getOpcode() == UO_Extension) {
   2231         E = UO->getSubExpr();
   2232         continue;
   2233       }
   2234     }
   2235     return E;
   2236   }
   2237 }
   2238 
   2239 bool
   2240 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
   2241                                                    const CXXMethodDecl *MD) {
   2242   // When building with -fapple-kext, all calls must go through the vtable since
   2243   // the kernel linker can do runtime patching of vtables.
   2244   if (getLangOpts().AppleKext)
   2245     return false;
   2246 
   2247   // If the most derived class is marked final, we know that no subclass can
   2248   // override this member function and so we can devirtualize it. For example:
   2249   //
   2250   // struct A { virtual void f(); }
   2251   // struct B final : A { };
   2252   //
   2253   // void f(B *b) {
   2254   //   b->f();
   2255   // }
   2256   //
   2257   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   2258   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2259     return true;
   2260 
   2261   // If the member function is marked 'final', we know that it can't be
   2262   // overridden and can therefore devirtualize it.
   2263   if (MD->hasAttr<FinalAttr>())
   2264     return true;
   2265 
   2266   // Similarly, if the class itself is marked 'final' it can't be overridden
   2267   // and we can therefore devirtualize the member function call.
   2268   if (MD->getParent()->hasAttr<FinalAttr>())
   2269     return true;
   2270 
   2271   Base = skipNoOpCastsAndParens(Base);
   2272   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2273     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2274       // This is a record decl. We know the type and can devirtualize it.
   2275       return VD->getType()->isRecordType();
   2276     }
   2277 
   2278     return false;
   2279   }
   2280 
   2281   // We can devirtualize calls on an object accessed by a class member access
   2282   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
   2283   // a derived class object constructed in the same location.
   2284   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
   2285     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
   2286       return VD->getType()->isRecordType();
   2287 
   2288   // We can always devirtualize calls on temporary object expressions.
   2289   if (isa<CXXConstructExpr>(Base))
   2290     return true;
   2291 
   2292   // And calls on bound temporaries.
   2293   if (isa<CXXBindTemporaryExpr>(Base))
   2294     return true;
   2295 
   2296   // Check if this is a call expr that returns a record type.
   2297   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2298     return CE->getCallReturnType(getContext())->isRecordType();
   2299 
   2300   // We can't devirtualize the call.
   2301   return false;
   2302 }
   2303 
   2304 void CodeGenFunction::EmitForwardingCallToLambda(
   2305                                       const CXXMethodDecl *callOperator,
   2306                                       CallArgList &callArgs) {
   2307   // Get the address of the call operator.
   2308   const CGFunctionInfo &calleeFnInfo =
   2309     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2310   llvm::Value *callee =
   2311     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2312                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2313 
   2314   // Prepare the return slot.
   2315   const FunctionProtoType *FPT =
   2316     callOperator->getType()->castAs<FunctionProtoType>();
   2317   QualType resultType = FPT->getReturnType();
   2318   ReturnValueSlot returnSlot;
   2319   if (!resultType->isVoidType() &&
   2320       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2321       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2322     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2323 
   2324   // We don't need to separately arrange the call arguments because
   2325   // the call can't be variadic anyway --- it's impossible to forward
   2326   // variadic arguments.
   2327 
   2328   // Now emit our call.
   2329   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2330                        callArgs, callOperator);
   2331 
   2332   // If necessary, copy the returned value into the slot.
   2333   if (!resultType->isVoidType() && returnSlot.isNull())
   2334     EmitReturnOfRValue(RV, resultType);
   2335   else
   2336     EmitBranchThroughCleanup(ReturnBlock);
   2337 }
   2338 
   2339 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2340   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2341   const VarDecl *variable = BD->capture_begin()->getVariable();
   2342   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2343 
   2344   // Start building arguments for forwarding call
   2345   CallArgList CallArgs;
   2346 
   2347   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2348   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
   2349   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2350 
   2351   // Add the rest of the parameters.
   2352   for (auto param : BD->params())
   2353     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
   2354 
   2355   assert(!Lambda->isGenericLambda() &&
   2356             "generic lambda interconversion to block not implemented");
   2357   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
   2358 }
   2359 
   2360 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2361   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
   2362     // FIXME: Making this work correctly is nasty because it requires either
   2363     // cloning the body of the call operator or making the call operator forward.
   2364     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
   2365     return;
   2366   }
   2367 
   2368   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
   2369 }
   2370 
   2371 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2372   const CXXRecordDecl *Lambda = MD->getParent();
   2373 
   2374   // Start building arguments for forwarding call
   2375   CallArgList CallArgs;
   2376 
   2377   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2378   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2379   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2380 
   2381   // Add the rest of the parameters.
   2382   for (auto Param : MD->params())
   2383     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
   2384 
   2385   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
   2386   // For a generic lambda, find the corresponding call operator specialization
   2387   // to which the call to the static-invoker shall be forwarded.
   2388   if (Lambda->isGenericLambda()) {
   2389     assert(MD->isFunctionTemplateSpecialization());
   2390     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
   2391     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
   2392     void *InsertPos = nullptr;
   2393     FunctionDecl *CorrespondingCallOpSpecialization =
   2394         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
   2395     assert(CorrespondingCallOpSpecialization);
   2396     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
   2397   }
   2398   EmitForwardingCallToLambda(CallOp, CallArgs);
   2399 }
   2400 
   2401 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2402   if (MD->isVariadic()) {
   2403     // FIXME: Making this work correctly is nasty because it requires either
   2404     // cloning the body of the call operator or making the call operator forward.
   2405     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   2406     return;
   2407   }
   2408 
   2409   EmitLambdaDelegatingInvokeBody(MD);
   2410 }
   2411